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Continuous functors as a model
for the equivariant stable homotopy category

ANDREW J BLUMBERG

It is a classical observation that a based continuous functor X from the category of
finite CW–complexes to the category of based spaces that takes homotopy pushouts
to homotopy pullbacks “represents” a homology theory—the collection of spaces
fX.Sn/g obtained by evaluating X on spheres yields an �–prespectrum. Such
functors are sometimes referred to as linear or excisive. The main theorem of
this paper provides an equivariant analogue of this result. We show that a based
continuous functor from finite G –CW–complexes to based G –spaces represents a
genuine equivariant homology theory if and only if it takes G –homotopy pushouts to
G –homotopy pullbacks and satisfies an additional condition requiring compatibility
with Atiyah duality for orbit spaces G=H .

Our motivation for this work is the development of a recognition principle for equi-
variant infinite loop spaces. In order to make the connection to infinite loop space
theory precise, we reinterpret the main theorem as providing a fibrancy condition
in an appropriate model category of spectra. Specifically, we situate this result in
the context of the study of equivariant diagram spectra indexed on the category WG

of based G –spaces homeomorphic to finite G –CW–complexes for a compact Lie
group G . Using the machinery of Mandell–May–Schwede–Shipley, we show that
there is a stable model structure on this category of diagram spectra which admits a
monoidal Quillen equivalence to the category of orthogonal G –spectra. We construct
a second “absolute” stable model structure which is Quillen equivalent to the stable
model structure. There is a model-theoretic identification of the fibrant continuous
functors in the absolute stable model structure as functors Z such that for A 2WG

the collection fZ.A ^ SW /g forms an �–G –prespectrum as W varies over the
universe U . Thus, our main result provides a concrete identification of the fibrant
objects in the absolute stable model structure.

This description of fibrant objects in the absolute stable model structure makes it clear
that in the equivariant setting we cannot hope for a comparison between the category
of equivariant continuous functors and equivariant � –spaces, except when G is finite.
We provide an explicit analysis of the failure of the category of equivariant � –spaces
to model connective G –spectra, even for G D S1 .
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1 Introduction

One of the striking successes in the development of stable homotopy theory was the
characterization of infinite loop spaces, spaces that arise as the zero space of a spectrum.
Following Boardman and Vogt [2], the approaches of May via E1–operads [11] and
Segal via � –spaces [15] provided characterizations of space-level data guaranteeing
that a space possessed arbitrary deloopings. However, while in general the development
of stable homotopy theory in the equivariant setting has been successful as in Lewis,
May and Steinberger [7], the area of equivariant infinite loop space theory has remained
mysterious.

In the nonequivariant setting, an infinite loop space is a space equipped with a mul-
tiplication which is commutative and associative up to all higher homotopies. The
recognition principles explicitly encode this information—both E1–operad actions
and � –space structures are evidently devices for packaging up the coherent homotopies
describing such a multiplication. Unfortunately, in the equivariant setting the structure
carried by an infinite loop space is harder to understand. The additional complexity
arises from the representation theory of the group G .

For certain applications, one can work with equivariant spectra which consist of a
sequence of G–spaces Xn and equivariant structure maps S1 ^Xn! XnC1 which
induce G–equivalences Xn ! �X nC1 . However, in order to have an equivariant
version of Spanier–Whitehead duality, one has no choice but to work with spectra
indexed on the collection of all finite-dimensional real representations of the group G

and equipped with structure maps for suspensions along such representations.

For a finite-dimensional real representation V , let SV denote the one-point com-
pactification. A “genuine” equivariant spectrum X has compatible structure maps
SW �V ^X.V /! X.W / which induce adjoint equivalences X.V /!�W �V X.W /

for all pairs of finite-dimensional representations V � W , where W � V is the
orthogonal complement of V in W . The zero space of such a spectrum carries a
tremendous amount of structure inherited from the group G—it is a “V –fold” loop
space for all finite-dimensional representations V .

Nonetheless, when G is a finite group, straightforward generalizations of the nonequiv-
ariant recognition principles continue to apply. In the operadic setting, there is a
notion of a G –operad and one can demonstrate that spaces that admit the action of an
E1–G –operad admit deloopings by arbitrary representation spheres; see Costenoble
and Waner [3]. The equivariant argument follows the nonequivariant argument closely,
and in particular depends on equivariant versions of the “approximation theorem”,
which describes models for the free loop spaces �V SV X . Similarly, one can define an
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equivariant version of a � –space, and it can be shown that a “very special” equivariant
� –space gives rise to a genuine G –spectrum; see Shimakawa [17] and Segal [16].

Unfortunately, serious difficulties arise in trying to generalize to the situation in which
G is an infinite compact Lie group. There is a simple counterexample due to Segal
which demonstrates that the equivariant version of the approximation theorem fails,
even for GDS1 [16]. There are problems in trying to generalize the � –space approach
as well. In the appendix, we will recall the counterexample of Segal and also analyze
the failure of equivariant � –spaces to be a model for the equivariant stable homotopy
category for any infinite compact Lie group G .

The intent of this paper is to begin to characterize the kind of structure that arises on the
zero spaces of genuine equivariant spectra by studying the closely related category of
equivariant continuous functors. This approach is suggested by the strategy of Segal’s
analysis of �–spaces. Recall that Segal proved that � –spaces describe infinite loop
spaces by showing that a � –space gives rise via prolongation to a continuous functor
from finite CW–complexes to based spaces which takes (most) homotopy pushouts to
homotopy pullbacks [15]. Let T denote the category of compactly generated based
spaces and W denotes the full subcategory of T consisting of spaces homeomorphic to
finite CW–complexes. A continuous functor X W W ! T is one for which the induced
map of hom spaces

W.A;B/
D // T .A;B/

X // T .X.A/;X.B//

is continuous. A continuous functor X between pointed categories is based if X.�/D�.
We will assume herein that all continuous functors are based. It is reasonable to think of
a continuous functor as a kind of spectrum because continuity implies the existence of a
“structure map” X.A/^B!X.A^B/. Indeed, in the nonequivariant setting Lydakis
showed that a simplicial version of this category was a convenient symmetric monoidal
category of spectra [8]. When a continuous functor X takes homotopy pushouts to
homotopy pullbacks, then the prespectrum fX.Sn/g is an �–prespectrum. Applying
X to the diagram

A //

��

�

��
� // S1 ^A

induces a weak equivalence between X.A/ and �X.†A/. Therefore, we are led to
seek the equivariant generalization of this property. In order to make this question
precise, we need to specify exactly what we mean by an equivariant prespectrum.
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Fix a universe U , by which we mean an infinite (countable) dimensional real vector
space U on which G acts by isometries and which is the direct sum of its finite-
dimensional G–invariant subspaces. We will assume that U contains a trivial repre-
sentation and each of its finite-dimensional subrepresentations infinitely often. The
universe U is complete if it contains all irreducible representations of G .

Remark 1.1 In the body of the paper, for simplicity we will assume that the universes
we work with are complete. The results of the paper, suitably modified, remain true
for incomplete universes. The specific modifications necessary and related subtleties
which arise in the context of incomplete universes are discussed in Section 3.4.

A G–prespectrum is a collection of spaces X.V / for finite-dimensional V 2 U

equipped with compatible structure maps SW �V ^ X.V / ! X.W /. An �–G–
prespectrum is a G –prespectrum X with adjoint structure maps X.V /!�W �V X.W /

which are G –equivalences.

Thus, for a compact Lie group G we wish to know when a continuous functor Z from
finite G –CW–complexes to G –spaces yields a collection of spaces fZ.V /g for Z 2U

which specifies a genuine equivariant �–prespectrum indexed on the universe U . It is
not sufficient for such a Z to take G –homotopy pullbacks to G –homotopy pushouts,
as the structure maps for nontrivial representations V cannot be constructed in the
above fashion.

Denote the category of based G–spaces that are homeomorphic to finite G–CW–
complexes by WG . Note that we include all maps as morphisms, not just the equivariant
maps. As a consequence, WG is enriched over based G –spaces with the action on the
morphism spaces given by conjugation. In analogy with the nonequivariant terminology,
we say a functor from WG to based G–spaces as continuous if the induced map of
enriched hom G–spaces is a continuous map of G–spaces. We will refer to a based
continuous functor from WG to based G –spaces as a WG –space.

The main result of this paper is the following theorem, which implies that the additional
sufficient condition for a WG –space Z to represent an �–G–prespectrum is a kind
of compatibility with Spanier–Whitehead duality for the orbit spectra †1G=HC . Let
G=H be embedded in a real G–representation V , with normal bundle � . Denote by
T � the Thom space of � . Recall that there is a stable equivalence between †1G=HC
and †1

V
T � (S�V ^T � ) as a consequence of Spanier–Whitehead duality. This stable

duality is exhibited on the space level by a V –duality map G=HC ^T �! SV .

Theorem 1.2 Let G be a compact Lie group, U a complete universe of G –represent-
ations, and Z a WG –space. Let A be any finite G –CW–complex. Then the collection
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fZ.A^ SV / jV � U g is an �–G–prespectrum if and only if .1/ and either of the
equivalent conditions .2/ or .20/ hold.

(1) Z takes G –homotopy pushout squares to G –homotopy pullback squares.

(2) Let G=H be an orbit space embedded in a G–representation V � U , with
normal bundle � . Let T � denote the Thom space of � . For any X 2 WG , a
certain map

Z.T � ^X /!Map0.G=HC;Z.S
V
^X //

is an equivalence. Here Map0 denotes the G–space of nonequivariant based
maps, with G acting by conjugation.

.20/ Let G=H be an orbit space embedded in a G–representation V � U . Let L

denote the tangent H –representation at the identity coset. For any X 2WH , a
certain map

Z.GC ^H X /!MapH .GC;Z.S
L
^X //

is an equivalence.

The maps in conditions .2/ and .20/ are induced from the V –duality T �^G=HC!SV

and will be described precisely in Hypothesis 3.3. The second version of the orbit
condition arises from the generalized Wirthmuller isomorphism [13; 7].

A based continuous functor Z which satisfies either of the equivalent conditions above
will be said to be “equivariantly linear with respect to U ”. This terminology is motivated
by the fact that our notion of equivariantly linear provides a precise generalization
of the linearity conditions of Mandell, May, Schwede and Shipley [10]. One might
also describe such a functor Z as “genuinely” equivariantly excisive, in line with the
language of Goodwillie’s calculus of functors. It is interesting to wonder if this notion
is relevant to possible equivariant generalizations of the calculus of functors.

Before we move on, it is worth attempting to provide some intuition about why this
compatibility with Atiyah duality for orbit spectra is a reasonable condition to expect,
beyond what is provided by the details of the proof of the theorem. A related problem
to the one we consider herein is to determine when a Z–graded cohomology theory
on G–spaces with coefficients in a coefficient system M extends to an RO.G/–
graded cohomology theory. Such an extension exists if and only if M extends to a
Mackey functor [12, IX.5.2]. It is illuminating to recall the data that is required for
such an extension. Essentially, the key observation is that the stable transfer maps
�.G=H /W SV ! .G=H /C ^SV and �.�/W .G=K/C ^SV ! .G=H /C ^SV (where
� is the projection G=H ! G=K , H � K � G ) yield transfer homomorphisms in
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the cohomology theory, and these in turn give rise to transfers M.G=H /!M.G=K/

and M.G=H /!M.G=G/ respectively. The construction of these transfer maps is
intimately connected to Atiyah duality for the orbit spectra †1G=HC ; this relationship
can be seen via an explicit construction in terms of Pontryagin–Thom maps [12, IX.3]
or from the perspective of formal categorical duality [12, XVII.1].

There is a model theoretic interpretation of Theorem 1.2, obtained by situating the
theorem in the context of the study of diagram spectra. The work of Lydakis [8] and
Mandell, May, Schwede and Shipley [10] permits the following modern reinterpretation
of the � –space approach to infinite loop space theory. Denote by P the category of
prespectra and FT the category of � –spaces. Let WT be the category of continuous
functors from W to based spaces. Our interest in WT is its intermediate position
between � –spaces and prespectra. These various categories of spectra are linked by
adjoint pairs .P;U/, where we regard the left adjoint P as prolongation and the right
adjoint U is the restriction:

P
P //

WT
U

oo
U //

FT
P

oo

With suitable stable model structures, the first adjoint pair induces a Quillen equivalence
and the second adjoint pair is a Quillen adjunction which induces an equivalence of
the respective homotopy categories of connective objects (a “connective” Quillen
equivalence [10]). From this standpoint, the work of Segal [15] amounts to the proof
that for a “very special” � –space E , the W –space PE is fibrant and therefore the
prespectrum UPE is fibrant and hence an �–prespectrum.

To understand the situation equivariantly, it is natural to ask how much of this analysis
can be generalized. When G is finite, one can obtain an identical version of this
diagram. The homotopical analysis of equivariant � –spaces is known [16; 17] and we
intend to discuss the model theoretic aspects of this elsewhere. When G is an infinite
compact Lie group, even though we cannot hope to have a “connective” equivalence
of the equivariant analogues of W –spaces and �–spaces, a concrete understanding
of the lefthand terms in the comparison diagram should indicate the nature of the
generalization of � –spaces that will be needed.

We begin by carrying out an essentially formal reworking of the model category theory
associated to W –spaces [10] in the equivariant setting. Let GWT denote the category of
WG –spaces with morphisms the G –equivariant natural transformations. Fix a complete
universe U of real G –representations.

We have an adjoint pair of functors .P;U/ connecting the category of G–prespectra
indexed on U and the category of WG –spaces, where the left adjoint P is a prolongation
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and the right adjoint U is a restriction:

GP
P //

GWT
U

oo

This allows us to define the homotopy groups of a WG –space Z as the equivariant
homotopy groups of the associated prespectrum UZ . That is, ��.Z/D ��UZ , where
the homotopy groups run over fixed-point spaces corresponding to all closed subgroups
of G [9, 3.3.2]. In addition, GWT is symmetric monoidal with a smash product
constructed by Kan extension [9, 2.3.1]. The comparison to G–prespectra factors
through the category of orthogonal G –spectra (denoted GIS) via another adjoint pair
.P;U/

GIS
P //

GWT
U

oo

where P and U are respectively strong and lax symmetric monoidal. With this frame-
work, we prove the following theorem recapitulating the nonequivariant theory of
W –spaces [10, 17.1–17.6] in the equivariant setting. Note that a “G–topological”
model structure satisfies an appropriate analogue of Quillen’s axiom SM7 reflecting
compatibility with the G –enrichment [9, 3.1.4].

Theorem 1.3 Fix a complete G –universe U .

(1) There is a cofibrantly generated G –topological model structure on the category
GWT in which the weak equivalences are the ��–equivalences, the “stable
model structure”.

(2) The fibrant objects in the stable model structure on GWT are the WG –spaces Z

such that UZ is an �–G –prespectrum.

(3) The stable model structures satisfies the monoid and pushout-product axioms
with respect to the smash product, and hence can be lifted to a model structure
on categories of rings and modules.

(4) The adjoint pair .P;U/ connecting GWT to GIS is a Quillen equivalence.

(5) There is a different model structure on GWT which is a cofibrantly generated
G–topological model structure in which the weak equivalences are the ��–
equivalences, the “absolute stable model structure”. The identity functor is the
left adjoint of a Quillen equivalence between the stable model structure and the
absolute stable model structure.

(6) The fibrant objects in the absolute stable model structure on GWT are the
WG –spaces Z such that the collection fZ.A^SV /g as V varies over U is an
�–G –prespectrum for any A 2WG .
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By itself, this formal analysis has not bought us very much new information. However,
let us again recall the nonequivariant situation. There, one proves that the prolongation
of a “very special” � –space X yields a W –space zX which is fibrant in the absolute
stable model structure. A W –space which is fibrant in the absolute stable model
structure is clearly fibrant in the stable model structure as well, and then the restriction
U zX is a fibrant prespectrum. It is important to be clear about the roles of the two stable
model structures on W –spaces. Although at the end of the day we are interested in
fibrant objects in the stable model structure on W –spaces, the absolute stable model
structure is essential in order to compare W –spaces to � –spaces. In addition, it turns
out that the fibrant objects in the absolute stable model structure admit a concise intrinsic
description in the nonequivariant setting—they are precisely the linear functors.

Thus, we are led to the question of determining a similar intrinsic description of the
WG –spaces Z which are fibrant in the absolute stable model structure. Explicitly, we
want conditions which are necessary and sufficient for the prespectra fZ.A^SV /g to
be �–G –prespectra. Such conditions are provided by Theorem 1.2.

Corollary 1.4 A WG –space is fibrant in the absolute stable model structure on GWT
if and only if it is equivariantly linear.

The concrete characterization of equivariantly linear functors provides an indication
of the information that must be captured by a space-level recognition principle for
equivariant infinite loop spaces. For instance, it suggests that the appropriate equivariant
analogue of � –spaces involve an enlarged domain category which contains all the orbit
spaces G=H . In future work, we intend to exploit this perspective.

The paper is organized as follows. In section 2, we briefly state the definitions and
model theoretic results we will refer to in the course of proving the main theorem. We
relegate proofs to the appendix. In section 3, we prove Theorem 1.2. In the first section
of the appendix, we carry out the model theoretic analysis of the category of WG –
spaces. This is very similar to the analysis of [10], and our primary purpose is to record
results and the proofs of supporting lemmas which do not follow immediately from the
nonequivariant results. In the second part of the appendix, we analyze � –S1 –spaces.
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2 Basic definitions and a rapid overview of model theoretic
results

In this section, we will present the basic definitions and summarize the model theoretic
results. The proofs of these results appears in the first section of the appendix.

2.1 Categories of WG –spaces

The categories we will be working with are enriched over based G –spaces. Thus, our
discussion could be cast entirely in terms of enriched category theory. However, we
follow the convention of Mandell and May [9] and instead consider ordinary functors
with additional conditions in order to emphasize the analogies to the nonequivariant
case and to minimize overhead. As a consequence, we will work with pairs CG and
GC D .CG/

G , where CG is a category of G –objects and nonequivariant maps between
them, and GC is obtained by restricting to the G–maps. The hom spaces of CG are
given a G –action via conjugation, and regarded as based via the addition of a G –fixed
basepoint as necessary. Therefore, we can obtain the space of G–maps by taking
fixed points. For instance, let TG be the category of based G –spaces with morphisms
all maps of nonequivariant spaces. Then homTG

.X;Y / has a G–action given by
conjugation. The category GT is obtained by passage to G –fixed points on the hom
spaces, and is the category of G –spaces and G –maps. All of the model structures we
consider are compatible with this enrichment; we will refer to such model categories as
G –topological. The precise definition of this compatibility is discussed in the appendix.

With this in mind, we can now define the categories of WG –spaces we will be working
with. Recall that WG denotes the category of based G –spaces homeomorphic to finite
G–CW–complexes, with morphisms all continuous (but not necessarily equivariant)
maps. This is a full subcategory of TG . Although WG is not small, it is skeletally
small and throughout we will tacitly assume that we have chosen a small skeleton of
WG and are working relative to that skeleton.

Definition 2.1 The category WGT has as objects the based continuous G–functors
from WG to TG . The morphisms are the natural transformations between functors.
We can topologize the morphisms as a subspace of the product of the function spaces
Map0.X.A/;Y .A// over A 2WG , which has a G –action by conjugation.

The category GWT of WG –spaces is obtained by passage to G–fixed points from
WGT . That is, the objects are again the continuous G –functors from WG to TG and
the morphisms are the natural G –maps.

Just as in the case of orthogonal G –spectra [9, 2.3.1], we have the following theorem.
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Theorem 2.2 The categories WGT and GWT have smash product and function
spectrum functors which make them closed symmetric monoidal categories. The unit is
the identity functor.

The smash product is constructed in the usual way as an internalization of the obvious
external smash product via left Kan extension. Some care has to be taken to verify that
the Kan extension exists [9, 2.6.7].

2.2 The stable model structure

Throughout, fix a complete universe U . The first model structure we consider is the
relative level model structure on GWT , where by relative we mean that the fibrations
and weak equivalences are detected only on the spheres fSV g for V 2 U .

Definition 2.3 The relative level model structure on this category is defined as follows.
A map Y !Z is

(1) a fibration if each Y .SV /!Z.SV / is an equivariant Serre fibration,

(2) a weak equivalence if each Y .SV /!Z.SV / is an equivariant weak equivalence,

(3) a cofibration if it has the left-lifting property with respect to the acyclic fibrations.

Proposition 2.4 The relative level model structure on GWT is a cofibrantly generated
G –topological model structure.

There is an associated stable model structure. We define ��Z for a WG –space Z by
passing to the G–prespectrum UZ and specifying ��Z D ��UZ . Recall that for a
subgroup H of G and an integer q , for q � 0 we define

�H
q .UZ/D colimV �

H
q .�V Z.V //

and for q > 0 we define

�H
�q.UZ/D colimV�Rq �H

0 .�V�Rq

Z.V //:

These equivariant homotopy groups capture stable equivalences.

Definition 2.5 Let Z1 and Z2 be WG –spaces. A map f W X1 ! X2 is a ��–
isomorphism if the induced maps f�W �H

q .X1/ ! �H
q .X2/ are isomorphisms for

all closed subgroups H �G .
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Definition 2.6 In the stable model structure, a map is

(1) a cofibration if it is a cofibration in the relative level model structure,

(2) a weak equivalence if it is a ��–equivalence,

(3) a fibration if it has the right-lifting property with respect to the acyclic cofibrations
(maps which are both level cofibrations and ��–equivalences).

Proposition 2.7 The stable model structure is a G –topological model structure on the
category GWT .

There is a pair of adjoint functors (P, U) connecting GWT and the category GIS of
orthogonal G –spectra [9; 10]. U is the forgetful functor from WG –spaces to orthogonal
G–spectra, and P is the prolongation constructed as a left Kan extension along the
inclusion of domain categories [10, 23.1]. We have the expected comparison result.

Theorem 2.8 The pair .P;U/ specifies a Quillen equivalence between the stable
model category structure on GWT and the stable model category structure on GIS .

2.3 The absolute stable model structure

The level model structure used to construct the stable model structure in the previous
section depends on evaluation at the spheres. This makes it inconvenient to compare to
diagram categories where the domain does not include an embedding of the spheres, for
instance � –G–spaces. As in the nonequivariant case, we rectify this by considering
an “absolute” model structure.

Definition 2.9 The absolute level model structure on GWT is defined as follows. A
map Y !Z is

(1) a fibration if each Y .A/!Z.A/ for A 2WG is an equivariant Serre fibration,

(2) a weak equivalence if each Y .A/!Z.A/ for A 2WG is an equivariant weak
equivalence,

(3) a cofibration if it has the left-lifting property with respect to the acyclic fibrations.

There is an associated absolute stable model structure.
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Definition 2.10 In the absolute stable model structure, a map is

(1) a cofibration if it is a cofibration in the absolute level model structure,

(2) a weak equivalence if it is a ��–equivalence,

(3) a fibration if it has the right-lifting property with respect to the acyclic cofibra-
tions.

Proposition 2.11 The stable model structure is a G–topological model structure on
the category GWT .

In the course of proving the previous proposition, we obtain an identification of the
fibrant objects in the absolute stable model structure.

Proposition 2.12 A WG –space Z is fibrant in the absolute stable model structure if
and only if for all A 2WG and W 2 U the structure map

Z.A/!�W Z.SW
^A/

is a weak equivalence.

There is a Quillen equivalence between the relative stable model structure and the
absolute stable model structure.

Theorem 2.13 The identify functor is the left adjoint of a Quillen equivalence between
the category of WG –spaces with the relative stable model structure and the category of
WG –spaces with the absolute stable model structure.

2.4 Ring and module spectra

Just as in the nonequivariant setting, we can lift the stable model structure to categories
of ring and module WG –spaces. While we do not require this in the paper, it is a useful
feature of this perspective on the equivariant stable category.

Theorem 2.14 Let R be a ring WG –space.

(1) The category of R–module WG –spaces is a cofibrantly generated proper G–
topological model category, with weak equivalences and fibrations created in the
stable model structure on the category of WG –spaces.

(2) If R is commutative, the category of R–algebra WG –spaces is a cofibrantly
generated right proper G–topological model category with weak equivalences
and fibrations created in the stable model structure on the category of WG –spaces.

Remark 2.15 The obvious variant of this theorem starting from the absolute stable
model structure also holds.
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3 Continuous G –functors and �–G –prespectra

In this section we will provide concrete conditions which describe the fibrant objects
in the absolute stable model structure on WG –spaces. That is, we specify conditions
on a WG –space Z which guarantee that for any A 2WG , the prespectrum obtained as
the collection of spaces fZ.SV ^A/g is a genuine �–G –spectrum. These conditions
amount to enforcing a suitable interaction with equivariant Spanier–Whitehead duality
(or more precisely equivariant Atiyah duality) for orbit spectra. This connection to
duality highlights the difficulty of generalizing recognition principles from the case of
G finite to the case of G a compact Lie group, for only when G is finite are the orbit
spectra self dual.

3.1 Linearity in the nonequivariant setting

First, we recall the nonequivariant situation. Let Z be a continuous functor from W to
spaces. There is a structure map � W Z.A/^B!Z.A^B/ [10, 4.9] which arises as
a consequence of continuity. The map � is the adjoint of the composite

B
˛ // T .A;A^B/

D // W.A;A^B/
Z // T .X.A/;X.A^B//;

where ˛.b/.a/ D a ^ b . Setting B D Sn , this gives us the structure maps of a
prespectrum when we consider the collection fZ.Sn/g. We will denote this prespectrum
by ZŒS0�, and write ZŒA� for the prespectrum fZ.Sn ^A/g. Observe that ZŒS0�D

UZ . Also, note that the structure maps Z.A/ ^ IC ! Z.A ^ IC/ imply that any
W –space preserves homotopies and hence weak equivalences on W [10, 17.4].

It is well known that there is a simple condition on Z which guarantees that ZŒA�

is an �–prespectrum. For this to be true, it must be the case that Z takes homotopy
pushout squares to homotopy pullback squares. This is sometimes stated as Z is linear.
Given such a Z , for any A 2W we have the homotopy pushout

A ����! �??y ??y
� ����! S1 ^A

which constructs the suspension, and when we apply Z to this diagram there is an
induced weak equivalence between Z.A/ and �Z.†A/.

We now wish to generalize this to describe similar conditions in the case of a WG –space
Z which will guarantee that the collection fZ.SV ^A/g forms an �–G–spectrum.
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Denote the prespectrum fZ.SV ^A/g by ZU ŒA�. Again, note that ZU ŒS
0� D UZ .

The structure maps arise via an adjunction analogous to the nonequivariant case:

B
˛ // TG.A;A^B/

D // WG.A;A^B/
Z // TG.Z.A/;Z.A^B//

Once again, the existence of these structure maps implies that WG –spaces preserve
weak equivalences in WG . Next, observe that taking homotopy pushout squares to
homotopy pullback squares (in the category of G–spaces) is insufficient to handle
desuspension by arbitrary representations. We cannot construct �V Z.SV / for arbitrary
representations V in the fashion above. This condition is however enough to construct
a naive �–G spectrum (indexed on a trivial universe).

Following [10, 17.9], we obtain the following characterization of continuous functors
which generate naive �–G –prespectra.

Proposition 3.1 Let Z be a WG –space. The following are equivalent:

(1) Z takes G –homotopy pushout squares to G –homotopy pullback squares.

(2) For any A 2WG , the prespectrum ZŒA� is a naive �–G –prespectrum.

(3) For any A2WG , the adjoint structure map Z.A/!�Z.†A/ is an equivalence.

We will call such WG –spaces “naively equivariantly linear”. In order to handle sus-
pensions at arbitrary representations, we need to specify more data about the functor
Z .

3.2 Compatibility with equivariant Spanier–Whitehead duality

Fix a complete universe U . Let V be a G–representation in U and let G=H be
an orbit G–space which is embedded in V . Denote by T � the Thom space of the
normal bundle � of the embedding, and note that this is G–homeomorphic to the
compactification of a tubular neighborhood of G=H because G=H is compact. More
concretely, for sufficiently small � we can describe the tubular neighborhood of G=H

in V as .G=H /� , the �–neighborhood of G=H . Then T � is G–homeomorphic
to .G=H /c� , the one-point compactification of .G=H /� . We know that G=HC and
.G=H /c� are equivariantly V –dual.

This duality can be exhibited by the following map. There is a map

G=H !Map.D.�/; .G=H /�/

taking each m 2G=H to the map which takes an element x of the �–ball D.�/ about
the origin to mCx . This induces a based map

.G=H /C!Map0..G=H /c� ;D.�/
c/ŠMap0..G=H /c� ;S

V /
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by taking an element of .G=H /c� to the basepoint if it is not within � of m and to
x�m otherwise. The adjoint of this is the duality map

G=H c
� ^ .G=H /C! SV :

This is the classical Atiyah duality map. Note that we don’t actually use the fact that
G=H is a submanifold of V . This map makes sense whenever we have a compact
G –subset of V , and is the duality map when � is sufficiently small.

Now assume that we have a WG –space Z . Given the map

.G=H /C!Map0..G=H /c� ;S
V /

by functoriality we obtain a map

.G=H /C!Map0.Z..G=H /c�/;Z.S
V //

and by adjunction we have a map

�W Z..G=H /c�/!Map0..G=H /C;Z.S
V //:

Now, if we have a space X 2WG and smash the duality map on both sides by X , by
the same process we obtain a map

�W Z..G=H /c� ^X /!Map0..G=H /C;Z.S
V
^X //:

Remark 3.2 One subtlety of the duality theory developed by Lewis, May and Stein-
berger [7, 3.1–3.8] is that for given V –duals X and Y there are many possible choices
of space-level maps exhibiting the V –duality. In the specific case of G=H (and more
generally for embedded submanifolds), there is another very explicit description of
the duality between G=HC and T � , the Thom space of the normal bundle of the
embedding.

Specifically, we can construct a map

T � ^G=HC!G=HC ^SV
! SV

where the first map is a Pontryagin–Thom map associated with a tubular neighborhood
of the composite

G=H !G=H �G=H ! � �G=H

and the second is the collapse map of G=HC onto S0 [7, 3.5.1]. By functoriality and
manipulation of adjoints we can obtain a map

�2W Z.T �/!Map0.G=HC;Z.S
V //

analogously to the construction of � .
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Under the homeomorphism given by the tubular neighborhood theorem T �!G=H c
� ,

the maps � and �2 coincide [7, 3.5.1]. As a consequence, our conditions below could
be phrased in terms of the map �2 rather than � , and in general, we could phrase them
abstractly in terms of any system of duality maps which are suitably functorial.

We are now ready to formulate the first version of the additional conditions required
for a WG –space to represent a genuine �–G –prespectrum. We refer to the condition
below as “hypothesis (A)”.

Hypothesis 3.3 A WG –space Z satisfies hypothesis (A) for the universe U if the
following two conditions hold.

(1) Z takes G –homotopy pushout squares to G –homotopy pullback squares.

(2) For all X 2WG and any smooth embedding G=H ,�! V , V 2 U , there exists
� > 0 such that the map

�W Z..G=H /c�/^X /!Map0.G=HC;Z.S
V
^X //

is a G –equivalence.

We will need a lemma extending this condition slightly.

Lemma 3.4 If Z satisfies hypothesis (A) and G=H embeds in U , then for any smooth
embedding G=H �Dn ,�! V , there exists � > 0 such that the map

�W Z..G=H �Dn/c�/^X /!Map0.G=HC;Z.S
V
^X //

is a G –equivalence.

First, we show that this condition is sufficient. The argument below is an adaptation
of the argument due to Segal [16] (and corrected by Shimakawa [17]) for the case
when G is a finite group. Recall that we wrote ZU ŒA� to refer to the prespectrum
fZ.SV ^A/g.

Theorem 3.5 Let Z be a WG –space which satisfies hypothesis (A) for the universe
U . Then ZU ŒA� is an �–G –prespectrum.

Proof Fix an arbitrary representation V . By naive linearity, without loss of generality
we can assume that V contains a trivial representation R. This assumption allows us
to provide G–fixed basepoints to subspaces of V . Let D.1/ denote the unit disk in
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V , and S.1/ the unit sphere which is the boundary, and in general let D.r/ and S.r/

be the disk and its boundary of radius r . There is a commutative diagram

Z.D.1C �/=S.1C �// ����! Map0.D.1/C;Z.S
V //??y ??y

Z.D.1C �/=.D.1� �/[S.1C �/// ����! Map0.S.1/C;Z.S
V //

where the horizontal maps are defined analogously to the map � .

The top horizontal map is clearly an equivalence, and temporarily assume the bottom
horizontal map is an equivalence. The right vertical map is a fibration induced from
the inclusion S.1/C ,�!D.1/C , and the fiber is �V Z.SV /. There is a cofibration
sequence

.D.1��/[S.1C�//=S.1C�/!D.1C�/=S.1C�/!D.1C�/=.D.1��/[S.1C�//:

Since .D.1 � �/ [ S.1C �//=S.1C �/ ' S0 and Z takes cofibration sequences
to fibration sequences by hypothesis, we know that the homotopy fiber of the left
vertical map is Z.S0/. Therefore, we can conclude that there is an equivalence
Z.S0/'�V Z.SV /. The induced map of fibers from Z.S0/!�V Z.SV / is indeed
the adjoint of the structure map, as it is obtained from the embedding of 0 in V . Since
Z.A^ SW ^�/ is also a functor satisfying our hypotheses, we obtain the desired
equivalence Z.SW ^A/'�V Z.SV˚W ^A/ for every A 2WG .

Therefore, to complete the proof of the theorem it will suffice to verify that the bottom
map is indeed a weak equivalence. As an aside, note that the bottom map can be
described as the map �2W Z.T �/!Map0.S.1/C;Z.S

V //, where T � here is Thom
space of the normal bundle of the embedding of S.1/ in V .

Since S.1/ is a finite G –CW–complex, we proceed by induction. We can decompose
S.1/ as a regular G –CW–complex [5]. That is, we can regard it as comprised of cells
G=H �Dn (for varying H ) where the attaching maps are homeomorphisms and the
images of the boundary G=H �Sn�1 are equal to unions of cells of lower dimension.
Moreover, by subdividing if necessary, we can assume that the closed cells G=H �Dn

are subcomplexes. We will fix a choice of homeomorphic embedding of S.1/ in V .
Recall that Dn has trivial G –action.

Let X be a subcomplex of S.1/, a union of some of the cells of S.1/. We have maps

�X W Z.X
c
� /!Map0.XC;Z.S

V //

which we can regard as induced by restriction of the map

S.1/!Map0.D.�/;S.1/�/
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used to construct � .

We will induct downward over the number of cells in X . The base cases therefore
involve X consisting of a single cell G=H �Dn . In this situation, the map �X is an
equivalence by Lemma 3.4.

Let the number of cells in X be m, and assume that � is an equivalence for subcom-
plexes with m� 1 cells or fewer. Let G=H �Dn be a cell of highest dimension in X ,
and let Y be the union of the remaining cells, so that X D Y [ .G=H �Dn/.

There is a commutative diagram

..Y[.G=H�Dn//��.G=H�Dn/�/
c //

��

.Y[.G=H�Dn//c�
//

��

.G=H�Dn/c�

��
.Y� � .Y \ .G=H�Dn//�/

c // Y c
�

// .Y\.G=H�Dn//c�

where each row is a cofibration. The map

..Y [ .G=H �Dn//� � .G=H �Dn/�/
c
! .Y� � .Y \ .G=H �Dn//�/

c

is a weak equivalence, as follows. Recall that for � sufficiently small we can naturally
replace the diagram above with the corresponding diagram of cones [7, 2.4.13]:

C.V�.G=H�Dn/;V�X / //

��

C.V;V�X / //

��

C.V;V�.G=H�Dn//

��
C.V�..G=H�Dn/\Y /;V�Y / // C.V;V�Y / // C.V;V�.Y\.G=H�Dn///

Now consider the set U D .G=H �Dn/� ..G=H �Dn/\Y /. The closure of U in
V �..G=H �Dn/\Y / is contained in the interior of V �Y , and so excision [7, 2.4.3]
implies that the leftmost map is a weak equivalence.

Therefore, upon application of Z we obtain a homotopy pullback square:

Z..Y [ .G=H �Dn//c�/
//

��

Z..G=H �Dn/c�/

��
Z.Y c

� /
// Z..Y \ .G=H �Dn//c�/
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In addition, applying the mapping space functor Map0.�;Z.S
V // and recalling that

it also takes cofibrations to fibrations, we have a homotopy pullback square

Map0..Y [ .G=H �Dn//C;Z.S
V // //

��

Map0..G=H �Dn/C;Z.S
V //

��
Map0.YC;Z.S

V // // Map0..Y \ .G=H �Dn//C;Z.S
V //

and one checks that the cube induced by the maps �X is commutative. Since S.1/ is
regular, Y \ .G=H �Dn/ is a subcomplex consisting of strictly fewer cells (of lower
dimension) and so the inductive hypothesis implies that we have equivalences at the
three nonterminal corners of the cube, and therefore there is an equivalence at the
terminal corner.

We now wish to show that in fact hypothesis (A) is necessary. In order to do so, we
must first recall the following equivariant version of a theorem of Lydakis [8].

Proposition 3.6 Let Z be a WG –space and A 2WG . Then the maps ZU .X /^A!

ZU .X ^A/ induce a ��–equivalence ZU ŒS
0�^A'ZU ŒA�.

Proof The proof follows the nonequivariant proof given in [10, 17.6]. In order to
perform the induction, we substitute the equivariant theorems [9, 3.3.5] for [10, 7.4].
Note that we depend on the fact that all A 2WG are stably dualizable when U is a
complete universe (as we are assuming here). See Section 3.4 for discussion of the
situation when U is not complete.

This result allows us to pass between ��–equivalences of fibrant WG –spaces and weak
equivalences of the “zero spaces” of the WG –spaces. We will employ this observation
to deduce information about our space-level maps � from stable dualities.

Notation 3.7 For a prespectrum Z , we will sometimes write �1Z in place of
Z.S0/.

Corollary 3.8 Let Y and Z be WG –spaces which are fibrant in the absolute stable
model structure. Denote the fibrant replacement of a prespectrum D by fD .

(1) The spaces �1f .ZU ŒS
0�^A/ and Z.A/ are weakly equivalent.

(2) Given a map of prespectra YU ŒS
0�!ZU ŒS

0� induced from a natural transfor-
mation Y !Z and a map A! B for A;B 2WG , if the induced map

YU ŒS
0�^A!ZU ŒS

0�^B
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is a ��–equivalence then the induced map

Y .A/!Z.B/

is a weak equivalence.

(3) Given a map of prespectra YU ŒS
0�! ZU ŒS

0� arising from a natural transfor-
mation Y ! Z and a map A ^ B ! C for A;B;C 2 WG , if the induced
map

YU ŒS
0�^A! F.B;ZU ŒS

0�^C /

is a ��–equivalence then the induced map

Y .A/!Map0.B;Z.C //

is a weak equivalence.

Proof The first part is an immediate consequence of the preceding proposition. Take
any A 2 WG . Since there is a ��–equivalence ZU ŒS

0� ^ A ! ZŒA�, there is a
��–equivalence f .ZU ŒS

0�^A/! f .ZŒA�/. As these are �–G–prespectra, a ��–
equivalence is the same as a level equivalence [9, 3.3.4], and so there is a weak
equivalence �1f .ZU ŒS

0� ^ A/ ! �1f .ZŒA�/. But since there is also a level
equivalence ZŒA�! f .ZŒA�/, the result follows.

For the second claim, the given maps induce a commutative diagram

YU ŒS
0�^A ����! ZU ŒS

0�^B??y ??y
YU ŒA� ����! ZU ŒB�

in which the vertical maps are ��–equivalences. Therefore, if the top horizontal map is
a ��–equivalence, the bottom map must also be a ��–equivalence. Since YU ŒA� and
ZU ŒB� are �–G–prespectra by hypothesis, a ��–equivalence is a level equivalence
and therefore we have a weak equivalence Y .A/D�1YU ŒA�!�1ZU ŒA�DZ.A/.
Using the naturality of the structure maps, we can see that this induced weak equivalence
coincides with the map Y .A/!Z.B/ induced from the natural transformation Y !Z

and the map A! B .

Finally, the last part follows from an argument similar to the second part. There is a
commutative diagram

YU ŒS
0�^A ����! F.B;ZU ŒS

0�^C /??y ??y
YU ŒA� ����! F.B;ZU ŒC �/
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which arises as the adjoint of the commutative diagram

YU ŒS
0�^A^B ����! ZU ŒS

0�^C??y ??y
YU ŒA�^B ����! ZU ŒC �

where the bottom vertical map is the composite of the structure map and the given
map A^B! C . Now we argue as above, using the fact that for any space B and
prespectrum Z , �1F.B;Z/DMap0.B; �

1Z/.

With this in hand, we can complete the proof that our condition on WG –spaces is
necessary and sufficient for the prespectra ZU ŒA� to be �–G –prespectra.

Theorem 3.9 For a WG –space Z , the following are equivalent.

(1) Z satisfies hypothesis (A).

(2) For any finite G –CW–complex A, ZU ŒA� forms an �–G –prespectrum.

(3) For any finite G –CW–complex A, for any W in the universe U , the adjoint of
the structure map Z.A/^SW !Z.SW ^A/ is a weak equivalence

Z.A/'�W Z.†W A/:

Proof We have already shown that if Z satisfies hypothesis .A/, then ZU ŒA� forms
an �–G–prespectrum for all A 2 WG . By definition this is equivalent to the third
condition. Now assume that ZŒA� is an �–G–prespectrum for every A 2WG . The
“naive” version of this result, Proposition 3.1, implies that Z takes G–homotopy
pushout squares to G –homotopy pullback squares.

Thus, we need to show that the map � is an equivalence for all G=H which embed
in V for any V in the universe U . Let E denote ZU ŒS

0�, and recall this is an �–G

prespectrum by hypothesis. By the third part of Corollary 3.8,

�W Z.T � ^X /!Map0.G=HC;Z.S
V
^X //

will be a weak equivalence if the map

z�W E ^X ^ .G=H /c�! F.G=HC;E ^SV
^X /

is a ��–equivalence. Here z� is obtained by adjunction from the map

E ^X ^ .G=H /c� ^G=HC
id^ id^�// E ^X ^SV :
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One consequence of Spanier–Whitehead duality is that we can factor z� as the composite

E ^X ^ .G=H /c�! F.G=HC;S
V /^E ^X ! F.G=HC;S

V
^E ^X /:

Since G=HC is dualizable, the second map is a ��–equivalence. The first map is
obtained from the duality equivalence

†1.G=H /c�! F.G=HC;S
V /

by smashing with E ^X on both sides.

Though E^X is not necessarily cofibrant, †1.G=H /c� is cofibrant and F.G=HC;S
V /

is homotopy equivalent to a cofibrant WG –space, so the map is a ��–equivalence.

Remark 3.10 One could also explicitly construct a homotopy inverse to the space-
level map Z.T �^X /!Map0.G=HC;F.S

V ^X // using V –duality. In our treatment,
this is packaged up inside the machinery of Corollary 3.8.

We will refer to WG –spaces satisfying these equivalent conditions as “genuinely equiv-
ariantly linear”.

3.3 Refinement via the Wirthmuller isomorphism

Using the ideas that lead to the generalized Wirthmuller isomorphism, we can replace
hypothesis (A) with a condition which does not explicitly involve T � . To do so, we
must first digress and discuss the passage from WG –spaces to WH –spaces induced
by an inclusion H !G . There is a forgetful functor ��W TG!TH . Since ��.G=K/
admits a triangulation as a finite H –CW–complex [9, 5.2.2], this restricts to a forgetful
functor ��W WG!WH .

Definition 3.11 Given H ,�!G , define ��Z as .��Z/.��A/D ��.Z.A//.

Of course, not all A2WH are in the image of �� , and thus what we have really produced
is a continuous functor from ��WG to H –spaces. To obtain an WH –space, we apply the
prolongation functor along the inclusion of ��WG in WH . This process is completely
analogous to the construction of the change-of-group functors for classical prespectra,
where restriction to indexing sequences and a change-of-universe are necessary. More
precisely, �� on WG –spaces is compatible under the passage to prespectra with the usual
change-of-group functor there, essentially by construction. That is, ��UZ Š U��Z .

Remark 3.12 One can show that there is a Quillen equivalence between the stable
model structures on ��WG –spaces and WH –spaces, by comparing each category to an
appropriately indexed category of orthogonal spectra and using the observation that the
change of universe functors are compatible.
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Henceforth, given a WG –space we will tacitly apply it to H –spaces and mean the
corresponding WH –space produced in the fashion above. With this in hand, we proceed
to revise hypothesis (A) using the Wirthmuller isomorphism.

The “neo-classical” construction of the Wirthmuller isomorphism given in [7] depends
on a space-level H –map

uW G ^H X ! SL
^X;

where G=H is embedded in a representation V , L is the associated tangent H –
representation at the identity, and X is an arbitrary H –space. Applying Z to both
sides, we get an H –map

Z.G ^H X /!Z.SL
^X /:

Using the fact that Z.G ^H X / is regarded as an H –space by forgetting down from
the G–space structure and the adjunction between the forgetful functor and MapH ,
we get an induced G –map

�3W Z.G ^H X /!MapH .GC;Z.S
L
^X //:

Now, if we let X be SW where W ˚LD V as an H –space, we get an H –map

Z.G ^H SW /!MapH .GC;Z.S
V //

which corresponds to a G –map

�3W Z.G ^H SW /!Map0.G=HC;Z.S
V //:

Since G ^H SW is precisely T � in this setting, we can compare �3 to �2 (which was
defined in Remark 3.2).

Lemma 3.13 Under the identification of G^H SW with T � , the maps �3 and �2 are
G –homotopic.

Proof This is essentially a consequence of the observation [7, 2.5.9] that the Pontrya-
gin–Thom map SV !G ^H SW and the Wirthmuller map uW G ^H SW ! SV are
compatible. That is, the composite

SV
!G ^H SW

! SV

is H –homotopic to the identity. By inspection, this permits the desired comparison of
�3 and �2 .
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Hypothesis 3.14 A WG –space Z satisfies hypothesis (B) for the universe U if the
following two conditions hold.

(1) Z takes G –homotopy pushout squares to G –homotopy pullback squares.

(2) Let G=H embed in a representation V in the universe U . Let L be the tangent
H –representation at the identity coset. Then for all X 2WH , the map

�3W Z.G ^H X /!MapH .GC;Z.S
L
^X //

is a G –equivalence.

As one would hope, it turns out that this is equivalent to the previous condition. To
prove this, we need a specialization of Corollary 3.8.

Lemma 3.15 Let Y and Z be WG –spaces such that for all A 2WG the prespectra
YU ŒA� and ZU ŒA� are �–G–prespectrum. Take B;C 2 WH . Then given a map of
prespectra YU ŒS

0�!ZU ŒS
0� arising from a natural transformation Y !Z and a map

of H –spaces G ^H B! C ^B , if the induced map of G –prespectra

YU ŒS
0�^ .G ^H B/! FH .GC;ZU ŒS

0�^C ^B/

is a ��–equivalence then the induced map of G –spaces

Y .G ^H B/!MapH .GC;Z.C ^B//

is a weak equivalence.

Proof The argument is similar to the third part of Corollary 3.8. There is a commutative
diagram of G –prespectra

YU ŒS
0�^ .G ^H B/ ����! FH .GC;ZU ŒS

0�^C ^B/??y ??y
YU ŒG ^H B� ����! FH .GC;ZU ŒC ^B�/

which arises as the adjoint of the commutative diagram of H –prespectra:

YU ŒS
0�^ .G ^H B/ ����! ZU ŒS

0�^C ^B??y ??y
YU ŒG ^H B� ����! ZU ŒC ^B�

Now the result follows from the fact that for any H –prespectrum X ,

�1FH .GC;X /DMapH .GC; �
1X /:
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Theorem 3.16 A WG –space Z satisfies hypothesis (A) if and only if it satisfies
hypothesis (B).

Proof We will prove that hypothesis (B) implies hypothesis (A), and that if ZU ŒA�

is an �–G–spectrum for all A 2WG then Z satisfies hypothesis (B). The fact that
hypothesis (B) implies hypothesis (A) is an immediate consequence of Lemma 3.13,
which identifies �3 with � .

On the other hand, if ZU ŒA� is an �–G –prespectrum for all A 2WG then hypothesis
(B) holds as a consequence of the Wirthmuller isomorphism. Once again, let E denote
ZU ŒS

0�. Using Lemma 3.15, the map

�3W Z.G ^H X /!MapH .GC;Z.S
L
^X //

is a weak equivalence if the map

z�3W E ^ .G ^H X /! FH .GC;E ^ .S
L
^X //

is a ��–equivalence. The map z�3 is constructed as follows. Via application of †1 , u

induces a map of H –prespectra

�W G ËH †1X !†L†1X

and this induces a map of G –prespectra

G ËH †1X ! FH .GC; †
L†1X /

which is in fact the Wirthmuller map [7, 2.6.10]. Now smashing � by E (regarded as
an H –prespectrum) on both sides prior to inducing to a map of G –prespectra yields a
map

G ËH .X ^E/! FH .GC; †
L.E ^X //

and using the fact that E is actually a G –prespectrum, this simplifies to

z�3W E ^ .G ^H X /! FH .GC;E ^ .S
L
^X //:

The Wirthmuller isomorphism tells us this is ��–equivalence.

This provides the connection to the model-theoretic discussion.

Corollary 3.17 A WG –space Z is fibrant in the absolute stable model structure if and
only if Z is genuinely equivariantly linear (satisfies the conditions of Theorem 3.9).
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3.4 Incomplete universes

In the previous sections (and in the proofs of the model structures given in the appendix),
we assume that the universe U is complete. This assumption enters into our arguments
when we employ Spanier–Whitehead duality. In a complete universe, all finite G–
CW–complexes are stably dualizable. However, this is no longer true in incomplete
universes; as we briefly mentioned in the introduction, the failure of Spanier–Whitehead
duality in the trivial universe is one of the motivating factors for the use of G –spectra
indexed on a complete universe.

Nonetheless, variants of our main results are valid when U is not complete. Duality
in incomplete universes has been carefully studied by Lewis [6]. For our purposes,
an essential result of Lewis is that an orbit spectrum †1.G=H /C is dualizable in the
stable category with respect to an incomplete universe U if and only if G=H embeds
in U . Lewis has also carefully verified the existence of the Wirthmuller map we use in
the context of incomplete universes. Therefore, we can obtain variants of hypotheses
(A) and (B) which are valid in incomplete universes by restricting to orbits G=H which
embed in the universe.

The other essential modification is forced by the partial failure of the equivariant
version of Lydakis’ Proposition 3.6, which states that for a WG –space Z and any finite
G–CW–complex A, there is a ��–equivalence ZU ŒS

0�^A'ZU ŒA�. The proof of
this proposition relies on A being stably dualizable, and so when working over an
incomplete universe we must restrict to A 2WG which are dualizable. We employ this
proposition to prove both the existence of the absolute stable model structure (and the
associated characterization of fibrant objects) as well as to show the sufficiency of our
hypotheses. Therefore, when working over an incomplete universe we need to restrict
the quantification to stably dualizable A.

3.5 Remarks on equivariant infinite loop space theory

These fibrancy criteria provide a conceptual understanding of the marked difference
between equivariant infinite loop space theory for G finite and for G an infinite compact
Lie group. To be precise, we will first review the � –space approach to equivariant
infinite loop space theory for a finite group G . There are two obvious approaches
to generalizing the nonequivariant theory of �–spaces. A direct generalization is
to consider � –G–spaces, which are functors from finite pointed sets to G–spaces.
Alternatively, one could consider �G –spaces, continuous functors from the category of
finite pointed G –sets to G –spaces. It turns out that these categories are equivalent. This
comparison was observed by Shimakawa [18], and is an example of a general fact about
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diagram spectra which (in the context of orthogonal G–spectra) is comprehensively
discussed as part of the treatment of change-of-universe functors in [9, 5.1].

A �G –space X is “special” if the natural map

X.G=H /!Map0.G=HC;X.1//

is an equivariant weak equivalence. This condition is equivalent to the usual condition
on � –G –spaces [18]. Associated to a �G –space X via prolongation is a WG –space
PX . The main theorem in this setting is that a “very special” �G –space gives rise
to an WG –space which almost satisfies our hypothesis (A). Specifically, it only takes
some homotopy pushouts squares to homotopy pushout squares. However, it turns out
that enough of hypothesis (A) is satisfied for the prespectrum UPX to be identifiable
as a positive �–G–prespectra. Recall that a positive �–G–prespectrum is a G–
prespectrum Y such that the adjoint structure maps Y .V /!�W Y .V ˚W / are weak
equivalences for W such that W G ¤ 0.

Remark 3.18 Analogous to the positive stable model structure on orthogonal G–
spectra there is a positive stable model structure on WG –spaces, obtained using identical
arguments to those presented above to construct the stable model structure.

Consider hypothesis (B) in the case when G is finite. Then we know that †1G=HC
is self-dual or equivalently †1T � is the same as †1G=HC . Therefore, hypothesis
(B) amounts to requiring that the map

Z.G ^H X /!MapH .G=HC;Z.X //

be a G–equivalence. Plugging in S0 , we recover the “special” condition on the
underlying �G –space.

Now let G be an infinite compact Lie group. In this setting, we can only consider
� –G –spaces, as finite sets do not admit interesting G –actions. The dual of †1G=HC
is G ËS�L , and the representation sphere S�L is often nontrivial. Even restricting to
X D S0 in hypothesis (B), we must consider the map

Z.G=H /!MapH .GC;Z.S
L//:

It is difficult to imagine how this equivalence could be encoded by entirely discrete
data.

Instead, these requirements strongly suggests that a reasonable domain category for
the correct analogue of � –spaces must contain enough information to encode these
dualities, and therefore most likely should contain the orbit spectra G=H . Finally, it is
worth pointing out that in general when H has finite index in G , then L is also trivial.
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Amongst other things, this suggests that infinite loop space theory for profinite groups
when restricting the universe to finite index subgroups should be tractable.

Appendix A Model category structures on GWT

In this section we will analyze WG –spaces as equivariant diagram spectra. Closely
following [9], we will construct stable model structures on GWT , compare these
model structures to the stable model structure on orthogonal G –spectra, and provide a
model-theoretic characterization of the fibrant objects.

A.1 A rapid review of G –topological model categories

The model structures we construct on GWT are compatible with the enrichment in
based G –spaces. This is expressed by an appropriate variant of Quillen’s SM7 axiom,
as follows. We briefly recall from [9, 3.1.4] the following definition. Assume that we
have a G –category CG , and its associated category of G –maps GC . Let i W A!X

and pW E! B be maps in GC and consider the map

CG.i
�;p�/W CG.X;E/! CG.A;E/�CG.A;B/ CG.X;B/

induced by CG.i; id/ and CG.id;p/ by passage to pullbacks.

Definition A.1 A model category is G –topological if the map CG.i
�;p�/ is a Serre

fibration (of G–spaces) when i is a cofibration and p is a fibration and is a weak
equivalence when in addition either map is a weak equivalence.

A.2 The stable model structure

The construction of the various model structures on GWT is mostly formal, using the
technology developed in [9] and [10]. In the remainder of this section the predominant
emphasis is on recording results along with carefully verifying the specific variant
technical lemmas necessary for this situation. The interested reader should refer to the
cited sources to reconstruct full arguments.

Remark A.2 Note that we will provide model structures only for GWT ; it isn’t very
useful to talk about such structure on WGT . Nonetheless, WGT is an important device
for encoding the compatibility of the model structure on GWT with the enrichment.

Throughout, fix a complete universe U . The first model structure we consider is the
relative level model structure on GWT , where by relative we mean that the fibrations
and weak equivalences are detected only on the spheres fSV g for V 2 U .
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Definition A.3 The relative level model structure on this category is defined as follows.
A map Y !Z is

(1) a fibration if each Y .SV /!Z.SV / is an equivariant Serre fibration,
(2) a weak equivalence if each Y .SV /!Z.SV / is an equivariant weak equivalence,
(3) a cofibration if it has the left-lifting property with respect to the acyclic fibrations.

Proposition A.4 The relative level model structure on GWT is a cofibrantly generated
G –topological model structure.

Proof The arguments are the same as [9, 3.2.4].

There is an associated stable model structure. We define ��Z for a WG –space Z by
passing to the G–prespectrum UZ and specifying ��Z D ��UZ . Recall that for a
subgroup H of G and an integer q , for q � 0 we define

�H
q .UZ/D colimV �

H
q .�V Z.V //

and for q > 0 we define

�H
�q.UZ/D colimV�Rq �H

0 .�V�Rq

Z.V //:

Definition A.5 In the stable model structure, a map is
(1) a cofibration if it is a cofibration in the relative level model structure,
(2) a weak equivalence if it is a ��–equivalence,
(3) a fibration if it has the right-lifting property with respect to the acyclic cofibrations

(maps which are both level cofibrations and ��–equivalences).

We can employ the argument of [9, 3.4.2] to prove that this is a model structure, but
we need to specialize a lemma to the current situation. Recall that A 7! FBA as a
functor from G –spaces to WG –spaces is defined to be left adjoint to the functor which
is evaluation at B . Concretely, we have .FBA/.C /DMap0.B;C /^A.

There is a map
�V;AW F†V ASV

! FAS0

defined to be map such that

��V;AW WGT .FAS0;X /!WGT .F†V ASV ;X /

corresponds under adjunction to

X.A/!�V X.†V A/:

The functors �V;A play a key role in constructing the stable model structures, as they
allow us to provide explicit descriptions of the generating cofibrations.
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Lemma A.6 For all based G –CW–complexes B , the maps

�V;A ^ idW F†V A.†
V B/Š F†V ASV

^B! FAS0
^B Š FAB

are ��–equivalences.

Proof We can write the specified map at a sphere SZ as

Map0.S
V
^A;SZ /^SV

^B!Map0.A;S
Z /^B:

Rewriting, this is

.†V�V Map0.A;S
Z //^B!Map0.A;S

Z /^B

and the map is the evaluation map. First, we can assume that B D S0 . It will suffice to
show that the map is a ��–equivalence in this case, since B is a G –CW–complex and
hence smashing with B preserves ��–equivalences. But observe that Map0.A;S

Z /

is describing the Z–th space of the cotensor prespectrum F.A;S/, and the map in
question is a stable equivalence because the unit †V�V X !X is a stable equivalence
of prespectra.

Remark A.7 Note that we could also prove this directly by induction over cell
decompositions, as is done in [10, 17.1], if a self-contained proof was desired that did
not require the prior work on prespectra.

We need the following corollary, which trivially follows by setting A D SW in the
lemma.

Corollary A.8 For all based G –C W complexes B , the maps

�V;SW ^ idW FSV ˚W †V B Š FSV ˚W SV
^B! FSW S0

^B Š FSW B

are ��–isomorphisms.

We define the generating cofibrations as follows. First, recall the sets I and J from [9,
3.1.1]; I is the set of cell cofibrations

i W .G=H �Sn�1/C! .G=H �Dn/C

and J is the set of cofibrations

i0W .G=H �Dn/C! .G=H �Dn
� Œ0; 1�/C:

Here H runs through the closed subgroups of G and n� 0.
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Definition A.9 The set FI is the set of all maps FSV i for i 2 I and V � U . The
set FJ is the set of all maps FSV j for j 2 J and V � U .

We need to define the operation f�g for maps f and g in order to specify the
generating acyclic cofibrations. If i W X ! Y and j W W !Z are cofibrations, then
there is a cofibration

i�j W .Y ^W /[X^W .X ^Z/! Y ^Z:

Definition A.10 Let M�V;SW be the mapping cylinder of �V;SW . Then �V;SW

factors as the composite of a cofibration kV;W W FSV ˚W SW !M�V;SW and a defor-
mation retraction rV;W W M�V;SW ! FSV S0 . Let K be the union of FJ and maps
of the form i�kV;W ; i 2 I .

Using Corollary A.8, the arguments of [9, 3.4.2] then imply the following result.

Proposition A.11 The stable model structure is a G–topological model structure on
the category GWT with generating cofibrations FI and generating acyclic cofibrations
K .

A.3 Comparison to orthogonal G –spectra

There is a pair of adjoint functors (P, U) connecting GWT and the category GIS of
orthogonal G –spectra [9; 10]. U is the forgetful functor from WG –spaces to orthogonal
G–spectra, and P is the prolongation constructed as a left Kan extension along the
inclusion of domain categories [10, 23.1]. As an immediate consequence of [9, 2.14],
we find that these functors preserve the symmetric monoidal structures.

Lemma A.12 P is a strong symmetric monoidal functor and U is a lax symmetric
monoidal functor.

Moreover, we have the expected comparison result.

Theorem A.13 The pair .P;U/ specifies a Quillen equivalence between the stable
model category structure on GWT and the stable model category structure on GIS .

Proof This is virtually identical to the comparison between orthogonal G–spectra
and G –prespectra [9, 4.16].
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A.4 The absolute stable model structure

The level model structure used to construct the stable model structure in the previous
section depends on evaluation at the spheres. This makes it inconvenient to compare to
diagram categories where the domain does not include an embedding of the spheres, for
instance � –G–spaces. As in the nonequivariant case, we rectify this by considering
an “absolute” model structure.

Definition A.14 The absolute level model structure on GWT is defined as follows. A
map Y !Z is

(1) a fibration if each Y .A/!Z.A/ for A 2WG is an equivariant Serre fibration,

(2) a weak equivalence if each Y .A/!Z.A/ for A 2WG is an equivariant weak
equivalence,

(3) a cofibration if it has the left-lifting property with respect to the acyclic fibrations.

Proposition A.15 The absolute level model structure on GWT is a cofibrantly gener-
ated G –topological model structure.

Proof Again, the arguments are the same as [9, 3.2.4].

There is an associated absolute stable model structure.

Definition A.16 In the absolute stable model structure, a map is

(1) a cofibration if it is a cofibration in the absolute level model structure,

(2) a weak equivalence if it is a ��–equivalence,

(3) a fibration if it has the right-lifting property with respect to the acyclic cofibra-
tions.

In order to prove that these definitions yield a model structure on the category of WG –
spaces, we require the full strength of Lemma A.6, which tells us that the maps �V;A

are ��–equivalences. To obtain the generating cofibrations and acyclic cofibrations,
we enlarge FI and FJ by defining F 0I to be the set of all maps FAi for i 2 I and
A 2 WG and F 0J to be the set of all maps FAj for j 2 J . We then construct K0

analogously to K , taking mapping cylinders for all maps �V;A .

Proposition A.17 The stable model structure is a G–topological model structure on
the category GWT with generating cofibrations F 0I and generating acyclic cofibrations
K0 .
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Proof This follows the proof of [10, 17.2], modified slightly in light of the proof of
[9, 3.4.2].

In the course of this proof we obtain the following analogue of [9, 3.4.8].

Proposition A.18 A WG –space Z is fibrant in the absolute stable model structure if
and only if for all A 2WG and W 2 U the structure map

Z.A/!�W Z.SW
^A/

is a weak equivalence.

Finally, we can compare the absolute and relative stable model structures. It is clear
that the identity functor is the left adjoint in a Quillen pair relating the two model
structures.

Theorem A.19 The identify functor is the left adjoint of a Quillen equivalence between
the category of WG –spaces with the relative stable model structure and the category of
WG –spaces with the absolute stable model structure.

A.5 Ring and module spectra

We can leverage the results of [9; 10] to lift the stable model structure to categories
of ring and module WG –spaces. The key ingredient in these lifting results is the
verification of the monoid axiom and the pushout-product axiom.

To verify these, we need the following technical lemma.

Lemma A.20 Let Y be a WG –space such that ��.Y /D 0. Then ��.FV SV ^Y /D 0

for any V .

Proof The conclusion follows immediately from the counterpart for orthogonal G–
spectra [9, 3.7.2] upon applying the prolongation functor P to WG –spaces, just as in
[10, 12.3].

Now, the same chain of arguments given in [9, 3.7] allows us to verify the following
two results.

Proposition A.21 (Monoid axiom) For any acyclic cofibration i W X ! Y of WG –
spaces and any WG –space Z , the map i ^ idW X ^Z! Y ^Z is a ��–isomorphism
and an h–cofibration. This holds for cobase changes and sequential colimits of such
maps as well.
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Note that by h–cofibration we mean a map satisfying the homotopy extension property
as opposed to a model theoretic cofibration.

Proposition A.22 (Pushout-product axiom) If i W X ! Y and j W W !Z are cofi-
brations of WG –spaces and i is a ��–isomorphism, then the cofibration

i�j W .Y ^W /[X^W .X ^Z/! Y ^Z

is a ��–isomorphism.

As an immediate consequence, we have the following version of [9, 3.7.6].

Theorem A.23 Let R be a ring WG –space.

(1) The category of R–module WG –spaces is a cofibrantly generated proper G–
topological model category, with weak equivalences and fibrations created in the
stable model structure on the category of WG –spaces.

(2) If R is commutative, the category of R–algebra WG –spaces is a cofibrantly
generated right proper G–topological model category with weak equivalences
and fibrations created in the stable model structure on the category of WG –spaces.

Remark A.24 Following the outline above, one can also obtain a version of this
theorem by lifting the absolute stable model structure. This variant of the theorem
requires a slightly stronger version of Lemma A.20, obtained by an equivariant version
of the argument for [10, 17.6].

Appendix B The failure of the approximation theorem for
G D S 1

An equivariant approximation theorem would purport to show that an appropriate map
C.V /!�V SV was a group completion, where C.V / is the configuration space of
points of V . Note that this formulation would actually be correct only for V such that
V G is nonzero. The statement is somewhat more complicated when V G D 0, as then
there is no addition.

This counterexample is due to Segal [16]. Let G D S1 and let V D R3 where G acts
by rotation around the z–axis. The inclusion of the axis gives a cofibration S1! SV

of G –spaces, and the cofiber SV =S1 is G –homeomorphic to †2GC . To see this, let
G be the unit circle in the .x;y/–plane with the disjoint basepoint at the origin, and
parameterize R3 as S1 � Œ0;1/�R=.t; 0; s/� .t 0; 0; s/.
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Choose a particular G –space X . There results a G –fibration sequence

Map0.†
2GC;X /!Map0.S

V ;X /!Map0.S
1;X /:

Passing to fixed-points, this remains a fibration sequence. Evaluating the fixed-points
of the terms in the sequence, we find

Map0.S
1;X /G '�.X G/

Map0.†
2GC;X /

G
ŠMap0.GC; �

2X /G Š�2X:and

Thus, we have the fibration sequence

�2X ! .�V X /G!�.X G/:

Finally, take X D SV . Then X G D S1 and �S1 ' Z. The sequence splits and so we
have .�V SV /G ' Z��2S3 . But G –fixed points of the configuration space C.V /G

are the same as the configuration space C.R1/, and the usual group completion theorem
tells us that the group completion of this is �S1 . Therefore, we have a contradiction.

Appendix C The trouble with � –S 1–spaces

In naive analogy with the situation for G finite, one might hope that there is some
condition on a � –S1 –space F which would guarantee that the WS1 –space PF

obtained by prolongation would be a positive �–S1 –spectrum [16; 17]. However,
we will show that no such condition can exist by studying the counit of the .P;U/
adjunction.

Any satisfactory condition would certainly be satisfied by a � –S1 –space obtained
by forgetting from a genuinely equivariantly linear WS1 –space. Consider the case
in which we begin with a fibrant WS1 –space X such that the prespectrum UX is
connective. Let Y be the �–S1 –space obtained from X via the forgetful functor,
and denote by zX the prolongation PY . The counit of the adjunction gives us a map
zX ! X . We will compare zX and X , and show that in fact they will almost never

be stably equivalent. As a consequence, there can be no condition on a � –S1 –space
which will guarantee that its prolongation is a positive �–S1 –spectrum.

We will proceed by comparing the associated G–prespectra U zX and UX . Abusing
notation, we will also refer to these G–prespectra as zX and X . First, let H � S1

be a finite subgroup. Y determines a � –H –space YH via the forgetful functor, and
there is an associated �H –space which we will also denote YH . Now, know that X

satisfies hypothesis (B) and therefore YH is very special. Therefore, PYH is fibrant
and there is an equivalence zX .SV /H 'X.SV /H .
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Remark C.1 The previous observation is the starting point for a comparison of
cyclic � –spaces and the F–model structure on connective S1 –spectra. Here the weak
equivalences on S1 –spectra are taken to be the F–equivalences [9, 4.6.5], where F
denotes the family of finite subgroups of S1 . We intend to discuss this comparison
elsewhere.

Now consider the S1 fixed-points of zX .SV /.

Lemma C.2 There is a weak equivalence zX .SV /S
1

'X.SV S1

/S
1

.

Proof By definition, zX .SV / is the coendZ
�

X.n/� .SV /n:

Since S1 is infinite, observe that zX .SV /S
1

is in fact the same asZ
�

X.n/S
1

� .SV S1

/n:

This implies that zX .SV /S
1

'X.SV S1

/S
1

.

As an consequence, observe that there is a levelwise weak equivalence of prespectra
zX S1

! X S1

. This observation allows us to obtain a precise description of the G–
prespectrum zX . Recall that EF is the classifying space of the family of finite subgroups
of S1 , so that .EFC/H ' S0 and .EFC/S

1

contractible.

Proposition C.3 There is a zig-zag of levelwise weak equivalences of G –prespectra
between zX and the following homotopy pushout:

��X
S1

^EFC ����! X ^EFC??y ??y
��X

S1

����! xX

Proof Since ��X S1

.V /ŠX.V S1

/^SV�V S1

, the structure maps of X induce the
map in the top righthand corner. To compute the homotopy pushout, since the level
model structure on P is left proper we can take the actual pushout in the diagram
obtained by replacing ��X S1

^EFC by a cofibrant G–prespectrum and the map
��X

S1

^EFC ! X ^EFC by a cofibration. The fixed-point functor commutes
with this pushout, since one leg of the diagram is a cofibration and hence a closed
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inclusion [9, 3.1.6]. When we apply .�/S
1

, the top row is contractible and so there is
an equivalence .��X S1

/S
1

' xX S1

. When we apply .�/H for H a finite subgroup of
S1 , the left column becomes an equivalence and so we have X H ' xX H . To obtain
the connection between zX to xX , we consider the analogous homotopy pushout:

�� zX
S1

^EFC ����! zX ^EFC??y ??y
�� zX

S1

����! zX 0

The map zX !X induces a map of homotopy pushouts, which is a weak equivalence
at each corner by previous discussion. Therefore there is an equivalence zX 0 ! xX .
There is also a map from zX 0! zX obtained from the natural maps �� zX S1

! zX and
zX ^EFC! zX . This map clearly becomes an equivalence upon application of .�/H

for H � S1 finite. Applying .�/S
1

to the associated pushout diagram, the top row is
contractible and on the bottom we obtain the composite

.�� zX
S1

/S
1

! . zX 0/S
1

! zX S1

;

which is a weak equivalence. Since .�� zX S1

/! . zX 0/S
1

is also a weak equivalence,
the map . zX 0/S

1

! zX S1

must be a weak equivalence.

Applying the spectrification functor L we can use this description to compute the
S1 –fixed points of L zX . Recall that L is the left adjoint in a Quillen equivalence
between P with the stable model structure and S with the generalized cellular model
structure [9, 4.2.9].

Lemma C.4 The spectrum .L zX /S
1

is weakly equivalent to .L.��X S1

//S
1

.

Proof The pushout square describing xX as a G –prespectrum is taken to a pushout of
G –spectra by L. For this calculation, it is convenient to assume that we have replaced
both maps in the original square by cofibrations when computing xX . Then since the
maps in the pushout are levelwise cofibrations and hence stable cofibrations, L takes
them to cofibrations of G –spectra. This implies that the resulting square of G –spectra
is in fact a homotopy pushout. Therefore it is also a homotopy pullback square. The
homotopy pullback can be computed by taking the actual pullback in the square

Q ����! Y??y ??y
Y 0 ����! L xX

Algebraic & Geometric Topology, Volume 6 (2006)
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where Y ! L xX and Y 0! L xX are fibrations, Y ' L.X ^EF/, Y 0 ' L.��X
S1

/,
and Q ' L..��X /

S1

^EF/. Applying .�/S
1

, we observe that QS1

and Y S1

are
contractible. Therefore, we obtain an equivalence .L.��X S1

//S
1

' .L xX /S
1

, and this
implies the result.

However, it is rarely the case that such an equivalence holds for an arbitrary S1 –
spectrum X . For instance, the equivariant tom-Dieck splitting [7, 5.11.1] tells us that
such an equivalence does not hold for suspension spectra.

Remark C.5 In the unstable setting, it is possible to obtain a model category structure
which captures equivariant S1 –homotopy theory by gluing together a simplicial set
and a cyclic set [1]. The previous discussion can be interpreted as a demonstration that
the stable analogue of this gluing argument fails. The natural approach would be to
attempt to decompose an S1 –spectrum X into the nonequivariant S1 –fixed points
X S1

and the “cyclic” part X ^EFC . To recover X , one would then glue X ^EFC
to the S1 –spectrum induced from X S1

, ��X S1

. But the argument above shows that
we cannot recapture the S1 –fixed points in this fashion. This is perhaps not surprising
in light of the significant difference in complexity between the diagrams representing
unstable equivariant spaces [4] and the diagrams representing stable equivariant objects
[14].
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