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Abstract 

We review Quillen’s concept of a model category as the proper setting for defining derived 
functors in non-abelian settings, explain how one can transport a model structure from one 
category to another by mean of adjoint functors (under suitable assumptions), and define such 
structures for categories of cosimplicial coalgebras. 
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1. Introduction 

Model categories, first introduced by Quillen [30], have proved useful in a number 

of areas - most notably in his treatment of rational homotopy in [31], and in defining 

homology and other derived functors in non-abelian categories (see [32]; also [S, 5, 

15517,21, 331). From a homotopy theorist’s point of view, one interesting example of 

such non-abelian derived functors is the Ez-term of the modp unstable Adams spectral 

sequence of Bousfield and Kan. They identify this E2-term as a sort of Ext in the 

category ?&I of unstable coalgebras over the modp Steenrod algebra (see Section 7.4). 

The original purpose of this note was to provide an element in this identification 

which appears to be missing from the literature: namely, an explicit model category 

structure for the category C%QZ of cosimplicial coalgebras as above. What one would 

really like is a model category for arbitrary categories of cosimplicial universal 

coalgebras, analogous to Quillen’s treatment of simplicial universal algebras in 

[30, Section 41. This treatment is based on Quillen’s “small object argument” (see 
Proposition 4.8 below), and implicitly uses a procedure for transfering model category 
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structures by means of adjoint functors (in the direction of the left adjoint). The 

procedure is made explicit in Theorem 4.15 below. 

Unfortunately, Quillen’s procedure cannot be dualized, in the categorical sense. The 

reason is essentially set-theoretic: more can be said about maps into a sequential 

colimit of sets than about maps out ofa sequential limit (and thus, for example, colim 

is exact, for R-modules, while lim is not). 

Therefore, for our purposes we describe, in Theorem 4.14, alternative (and less 

elegant) conditions for using adjoint functors to create new model category structures. 

The dual version, Theorem 7.6, then allows us to define model category structures for 

certain categories of cosimplicial universal coalgebras - including c%.d (see Proposi- 

tion 7.7). 

1.1. Notation and conventions. For any category %, we denote by gr% the category of 

non-negatively graded objects over %, by gr+% the category of positively graded 

objects, by s%? the category of simplicial objects over %? (cf. [28, Section 2]), and by CV 

the category of cosimplicial objects over %?. For an abelian category Jz’, we let c,J&! 

denote the category of chain complexes over Jz’ (in non-negative degrees); similarly 

c*.&’ is the category of cochain complexes. 

The category of sets will be denoted by Yet, that of topological spaces by Top, that 

of groups by Yp, and that of simplicial sets by 9’ (rather than s9’et). For any ring R, 

the categories of left (respectively, right) R-modules are denoted by R-Mod (resp. 

Mod-R). [F, denotes the field with p elements. We have tried to be consistent in using 

z&’ for a category of universal algebras (Section 3.6 below), 9 for a category of 

universal coalgebras (Section 7.3), and JZ for an abelian category. 

Throughout we shall use “dual” to refer to the categorical dual (cf. [27, II, Section 

11); other duals (such as the vector space dual) will be called by other names (e.g., 

“conjugate”). 

For any functor F : I + %? we denote the (inverse) limit of F simply by lim F or lim, F, 

(rather than lim,), and the colimit (i.e., direct limit) by colim F. In particular, 

sequential limits of type K are limits indexed by an (infinite) ordinal K: lim Y<K X,, and 

similarly for colimits. An initial object (in any category %‘) will be denoted by *I, and 

a terminal object by *T. 

1.2. Organization. In Section 2 we review the definition of model categories and some 

related concepts, as well as their relevance to derived functors. In Section 3 we make 

explicit the relation between adjoint functors and limits, and in Section 4 we explain 

their relation to defining new model category structures. In Section 5 and 6, respec- 

tively, we discuss simplicial and cosimplicial objects over abelian categories. Finally, 

in Section 7 we describe the “universal coalgebras” we are interested in, and apply our 

results to define a model category structure on such categories of cosimplicial 

coalgebras. 

I understand that in [l l] Cabello and Garz6n have also given conditions for 

defining model category structures by means of adjoint functors. 
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2. Model categories 

We begin with an exposition of Quillen’s theory of model categories, in a form 

suited to our (algebraic) purposes. 

Definition 2.1. A class TB of morphisms in a category g will be called a class oj 

quasi-isomorphisms if there is a functor y :V + 9 such that f~ !DJ o y(f) is an 

isomorphism in 9. 

Definition 2.2. A map f: X + Y is called a retract of a map g : K --f L if there are maps 

k, t, r, s making the following diagram (Fig. 1) commute: 

Fig. 1 

Note that any class of quasi-isomorphisms is closed under retracts (i.e., 

gE!II!*~~EinFig. 1). 

2.3. Axioms for model categories. Let w be a category with three distinguished classes 

of morphisms: !lD, 6, and 5. Consider the following two axioms. 

Axiom 1. For any morphism f: A + B in % 

(i) there is a factorization A ~CC1;((f=poi)withi~~n~aandp~5; 

(ii) Moreover, if alsof = p’ 0 i’ with i’ E (5. n ZB and p’ E 5 for A 5 C’ E’+ B, then there 

is a map h: C + C’ making the following diagram (Fig. 2) commute: 

Fig. 2. 

Note that if ‘EI is a class of quasi-isomorphisms, necessarily h E ‘!I0 ~ so that (ii) says 

the factorization in (i) is unique up to quasi-isomorphism. 
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Axiom 2. For any morphism f: A + B in % 

(i) there is a factorization A ~CCBwithi~~aandp~~n2lJ; 

(ii) if f = p’ 0 i' is another such factorization, there is an h making the diagram in 

Fig. 2 commute. 

Definition 2.4. Let %? be a category and !8J, Q and 5 classes of morphisms in %?. Assume 

that ?XJ is a class of quasi-isomorphisms and (X and 3 are each closed under 

compositions. Then: 

(i) If V has all finite limits, and (V; ‘93, c:, 3) satisfy Axiom 1, we call this a right 

model category (RMC) structure on %?, or say that %? is an RMC. 

(ii) If %? has all finite colimits, and (%‘; 2l3, K, 3) satisfy Axiom 2, we call this a left 

mode/ category (LMC) structure on %‘. 

(iii) If both hold, (%‘; %IJ, Q, 3) is called a model category. 

Remark 2.5. In order to “do homotopy theory” in %? one requires the full forces of 

a model category; in fact, it is often convenient to have additional structure, such as 

simplicial Horn-objects (cf. [30, II, Section l]), properness (cf. [S, Definition 1.2]), and 

so on (see [3, I] and [22, II] for more general treatments). However, for the purposes 

of “homotopical algebra” ~ i.e., homological algebra in non-abelian categories - it is 

enough to have an RMC or an LMC (see Sections 2.14-2.16 below). 

Example 2.6. The original motivating example of a model category is the category 

fip of topological spaces, with m the class of homotopy equivalences, K the class of 

cofibrations, and 5 the class of (Hurewicz) fibrations (cf. [34]). An alternative model 

category structure on Fop is given in [30, II, Section 31. 

However, for our purposes the basic example of a model category will be the 

category Y of simplicial sets, with ‘9X the class of weak equivalences (maps inducing an 

isomorphism in n*(-)), 6 the class of one-to-one maps, and 3 the class of Kan 

fibrations (cf. [27, Section 71). See Sections 5 and 6 below for further examples. 

Remark 2.7. Given (%‘; !!I$& 5) satisfying Axioms 1 and 2, in order for m to be 

a class of quasi-isomorphisms it suffices that: 

(a) ?I3 include all isomorphisms, 

(b) 2X be closed under retracts, and 

(c) Given A f B !+ C with two out of {f, g, g 0 f } in m2), the third is, too. 

In this situation Quillen constructs in [30, I, Section l] a localization of %? with 

respect to ‘9B, which comes with a functor y : 9? +Ho%‘suchthatfEEJ~o(f)isan 

isomorphism in H 0 %‘. However, in almost all known examples of model categories 

\rU is given to begin with as a class of quasi-isomorphisms. 

Definition 2.8. We call the closure of 5 under retracts (Section 2.2) the class of$brations 

in V; similarly, the closure of 6 under retracts is called the class of co$brations. 
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A fibration which is in 2B will be called a trivialjbration, and a cofibration in 2I3 will 

be called a trivial cojibration. 

Remark 2.9. In Quillen’s definition no distinguished subclasses 3, (2 of the classes of 

(co)fibrations appear (nor are right or left model categories mentioned). But such 

classes occur naturally in many examples (just asfree R-modules form a distinguished 

subclass of projective R-modules), and allow a convenient simplification of the 

axioms. 

There is in fact no loss of generality in our definition, in light of the following facts. 

Definition 2.10. Given any commutative square 

we say that f has the right lifting property (RLP) with respect to i - or equivalently, 

that i has the left lifting property (LLP) with respect to f- if a dotted arrow exists 

making the diagram commute. 

Lemma 2.11. If (%?; ‘%I, 6, 3) is an RMC, anyjbration in g has the RLP with respect 

to any trivial cofibration; dually, if (59; ‘zu, Q, 3) is an LMC, any trivial Jibration in 

+Z has the RLP with respect to any cojibration. 

Proof. Let %? be a right model category, and assume given a diagram as in Fig. 1. First, 

iff E $J and i E ‘%I n Q, one can factor CI and /? using Axiom 1 (i). 

Thus we have h’ : B’ + X’ by Axiom l(ii) (since 6 and 5 are closed under composi- 

tions, and (fop)0 k and qo(jo i) are two factorizations of fo a = p 0 i), and h = p 0 h’ ; j 

is the required lifting. 
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Next, assume that f is a fibration ~ i.e., a retract of a map g E 5 - so we have 

a commutative diagram: 

and by the first case (for g E 8) there is a lifting 

so r 0 h: B + X is the required lifting for the i with respect to the fibration The case 

where i is any trivial cofibration is dealt with similarly; and the case of a left model 

category is of course dual. 0 

Fact 2.12. (Quillen [31, II, Proposition 1.11). Thejbrations ofa right model category 

are precisely those morphisms having the RLP with respect to all i E Qn2I3, and 

conversely, the trivial cojibrations are those morphisms which have the LLP with respect 

to all f E 5. The cofibrations of a left model category are characterized by having the 

LLP with respect to all f E Sn2l3, and the trivialjbrations are those morphisms which 

have the RLP with respect to all i E 6. 

Proof. Iff: A + B has the RLP with respect to all i E (5 n ‘%I, use Axiom 1 to factorfas 

A ~CCBwithi~KnYIJ;theliftingr:X -+ A which exists by hypothesis shows that 

fis a retract of p E 3, so a fibration. Similarly for the other cases. 0 

Corollary 2.13. The (trivial)jbrations of an RMC (resp. LMC) are preserved under 

base change, products, and sequential limits, that is, 

(a) ifp : X + Y is a (trivial) jbration, f: X + Z is any map, and W is the pushout of 

(q, f ), with structure maps q : Z + W, g : Y + W, then q is a (trivial) jbration; 

(b) if (p,:X, + Ya}aeA are all (trivial),fibrations, so is nopa: &XN + &Y,; 

(c) tf (P~:X,~+I -Xv),<, is a sequence of (trivial) jibrations, the map 

qy:X = lim,,,X, -+ X, is a (trivial)$bration for each v < IC. 
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Similarly, the (trivial) cojibrations of a LMC (resp., RMC) are preserved under cobase 
change, coproducts, and sequential colimits. 

Proof. The constructions (a)-(c) all preserve the lifting property with respect to any 

(fixed) map. 0 

We now recall how model categories are used to define derived functors in 

non-abelian categories. Let (V; 2B, 6, 3) be a model category. 

Definition 2.14. The homotopy category Ho% of any model category 5 is obtained 

from it by localizing with respect to the weak equivalences, with y:Y + Ho3 the 

localization functor. Quillen shows that HoX is equivalent to the category n(Jcf), 

whose objects are those objects X E !Z which are both fibrant (i.e., X -+ *r is a fibra- 

tion) and cofibrant (i.e., *i + X is a cofibration), and whose morphisms are homotopy 

classes of maps (cf. [36, I, Section 11). 

Under this equivalence of Ho% and n(ZFcf), the localization functor is determined 

by the choice, for each object X E 3, of a cofibrant and fibrant object A with a weak 

equivalence A -+ X. This is called a resolution of X, and all such are homotopy 

equivalent. However, we can sometimes make do with less. 

Definition 2.15. If H : 3 + 94 is a functor between model categories which preserves 

weak equivalences between cofibrant objects, the total left derivedfinctor of H is the 

functor LH = A 0 y : 55” + HoV, where I? : Ho% + Ho03 is induced by H on Fc (the sub- 

category of cofibrant objects in 55”). 

Remark 2.16. In fact, we need only a left model category structure on ?Z in order for 

L to be defined. Of course, right derived functors are defined analogously in any right 

model category. 

In the particular case where OY = & is a category of simplicial objects over some 

concrete category ?Z, the usual nth derived jiunctor of any T : ii? + A?, denoted L,T, 
assigns to an object X E V the object (L,T)X = q,(LT)X = q,TA, where A + X is 

any resolution. 

If also F = ~9 for some 9, and T : %T + 9 is prolonged to a functor 5T : A? + .d2 (by 

applying it dimensionwise to simplicial objects), then for C E 59 we have 

(L,T)C = x,(oT)A., where A. is a resolution of the constant simplicial object which is 

equal to C in each dimension. When T is an additive functor between abelian 

categories with enough projectives, this reduces to the usual definition of derived 

functors (see also [7, Section 7; 14, 17, 231). 

We have avoided the question of when a functor will in fact preserve weak 

equivalences between cofibrant objects. This depends on the specific model categories 

in question (see Remark 7.8 below). 
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3. Adjoint functors and limits 

We next recall some general facts about limits and adjoint functors: let %?z$ 9 be 

a pair of adjoint functors (i.e., F is (left) adjoint to U), with the natural adjlnction 

isomorphism 9: Hom%,(FD, C) s Homv(D, UC). We denote 9-‘(i&.): FUD + D by Ed. 

Remark 3.1. It is not hard to see that U preserves all limits which exist in $9, and 

dually, F preserves all colimits which exist in 9 (cf. [26, V, Section 63). 

F evidently preserves projectivity, so if 9 is a category in which all objects are 

projective (e.g., 9 = yet) and Ed is always an epimorphism, then im(F) consists of 

projectives and Ed: FUD + D is a functorial projective cover. 

Definition 3.2. Given a diagram S : I --f $7, we say that a functor T : ~22 + 9 creates the 

limit lim, S in +Z (cf. [26, V, 11) if lim,(T 0 S) exists in 9, limI S exists in %?, and 

T (lim, S) = lim,(TS). Similarly for creation of colimits. 

Definition 3.3. Given adjoint functors %‘& 9 and a diagram S : I + %?, we say the pair 

(U, F) produces the colimit colim S E q if lolim,( US) E 9 exists, and colim, S E %? exists 

and is obtained as follows. 

Let Lo = colim,(US), and L, = colim,(UFUS). There are two natural morphisms 

FL, + FL,, namely: do, induced by the natural transformation EFu(j) for everyj E I, 

and dl, induced by FU(Ej). We require that colim S be the coequalizer (in $5’) of do and 

d1 (see [24] or [26, X, Section 11; there seems to be no accepted name for this 

procedure). 

In order for this construction to be of use, we need some information on co- 

equalizers in %? - at least for those which appear here. Such coequalizers, called split 

(or contractible), have a map o : FL0 + FL, such that d,,s = id, dlsdo = dlsdl. In the 

cases of interest to us split coequalizers are created by U, so the definition makes sense 

(cf. [2, 3.3, Proposition 31). 

Remark 3.4. Since we know that F preserves all colimits ~ so that the colimit of 

a diagram in %? which factors through F is determined by the corresponding colimit in 

9 - in our situation (see Section 3.6) the left model category structure we shall define 

on a$? will allow us to identify any colimit in g as the 0th left derived functor (Section 

2.16) of the same colimit defined on the image of F. 
This is analogous to viewing the usual tensor product of R-modules, say, as the 0th 

derived functor of the more naturally defined functor of tensor product of free 

R-modules on specified sets of generators X, Y: 

One may dually define “the pair (F, U) produces the limit 1imS in 9” (with 

equalizers replacing coequalizers, etc.). 
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Example 3.5. Let $+$yeel denote the adjoint “underlying set” and “free group” 

functors between the &tegories of groups and sets, respectively. Then U creates all 
limits in 99~ ~ i.e., an inverse limit of a diagram of groups in just the corresponding 
limit for the underlying sets, endowed with a natural group structure. Likewise, the 
adjoint pair (U, F) produces all colimits in 9~. For instance, the coproduct (“free 
product”) GLIH of two groups is obtained by choosing sets of generators X, Y for G, 
H respectively - say, X = U(G), Y = U(H) - and setting 

GIIH = F(Xu Y)/- , 

where [~][a’] - [aa’], [a]-’ - [a- ‘1 for a, a’ both in X or both in Y - which is 
precisely the coequalizer of the two obvious homomorphisms 

F(UFU(G)u UFU(H)) = F(U(G)u U(H)). 

Definition 3.6. Recall that in a category of uniuersal algebras (or variety of algebras) 
the objects are sets X, together with an action of a fixed set of n-ary operators 
W = U ,“= O {o : X” --f X}, satisfying a set of identities E; the morphisms are functions 
on the sets which commute with the operators. 

(We can slightly modify the definition to cover the case where the set X is pointed, 

non-negatively graded, and so on.) 

Example 3.7. Categories of universal algebras include: the category Yp of groups; the 
category R-Mod of left R-modules for any ring R, as well as that of (commutative or 
associative) algebras over R; the category of lFp-algebras over the mod-p Steenrod 
algebra; and the categories of Lie rings, or of restricted Lie algebras over Ep. 

All the above examples, and many others (though not the categories of monoids, 
semigroups, and semirings), have another convenient feature: their objects have the 
underlying structure of a (possibly graded) group. 

Remark 3.8. For each category %? of universal algebras there is a pair of adjoint 

functors %? $ yet, with U(A) the underlying set of A E %‘, and F(X) thefvee algebra on 

the set of ginerators X (cf. [12, 111.5, IV.21 

Thus, in particular every category of universal algebras has enough projectives 
(Section 3.1). In fact, the functor U : %2 -+ Yet is monadic in the sense that the category 
% can be reconstructed from the monad (= triple) UF : Yet + Yet (compare Section 7.1 
below; cf. [2, 3.3, Proposition 41 or [12, VIII.31 for the precise statement). Moreover: 

Proposition 3.9. For any category of universal algebras %?, the jiinctor F creates u/l 

limits and sequential colimits ofmonomorphisms in %, and the pair (U, F) produces all 

colimits in %T. 
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Proof. Just as in example 3.5 above. The statement on colimits is due to Linton ([24]; 

see also [2, 9.31). 0 

4. Adjoint functors and model categories 

We now explain how adjoint functor %?$ 9 can be used to transfer an existing 

model category structure on k?? to the categ&y V. 

Convention 4.1. To simplify the statements of our results, we assume that in all (left or 

right) model categories discussed in this section, all cofibrations are in particular 

monomorphisms. This need not hold in general (see Proposition 6.4 below), but it will 

hold in all situation we are interested in. It should be clear from the proofs how the 

statements must be modified without this assumption. 

First, we require the following somewhat ad hoc 

Definition 4.2. We say that a left model category (%‘; 2B%, Q, 3%) has canonical 

fuctorizntions of type ti for Axiom 2 (for some ordinal K) if the factorization 

X & 2 -1; Y of Axiom 2(i) for any f: X --, Y in %? is obtained as follows. 

(a) There is a sequence of commuting diagrams 

for v < K, such that Z = colim ,, cKZ(y) and p and j are induced by the maps (p’“‘)c. <K 

and ( j(“))Y < K respectively. 

(b) For each v 2 - 1, the object Z (‘+I) is constructed as a pushout: 

(c) i: V --+ W is in turn constructed functorially as a coproduct: 

where the set of maps {ia}as.X; depends functorially on p(\‘) (i.e., this is a functor on the 

comma category of maps in %7), and each i, is in Kg. 
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(d) There is a set of maps h, : W, + Y (IX E X,,), also depending functorially on p”“, 

such that p’“+ ‘): Z’“+ ‘) + Y is induced by p’“‘: Z(\‘) + Y and (UZE,IYVhl): W + Y. 

(e) For each limit ordinal v we have Z’“’ = colims<VZ’p). 

Remark 4.3. Note that because each i, is a cofibration, the maps jcV): ZcV) + Z“‘+ ‘I, as 

well as the structure maps Z(“) --+ Z (and thus j: X + Z itself) are cofibrations by 

Corollary 2.13. 

Note also that canonical factorization implies in particularfunctoriality in Axiom 

2(i) - that is, anyf: X + Y may be factored X !!, Z, 1 Y (withj, E 6 and pf E iJ n’Y!J), 

in such a way that, given maps f’ :X’ + Y’, x:X+X’ and 4’: Y + Y’ such that 
y,-f=f’-x, there is a map z : Z, + Z,, such that z 0 if = if, 2 x and J’ 7 pf = ps, 1. 

While this functoriality is not part of Quillen’s original definition, it is a useful 

property (which is in fact enjoyed by almost all model categories). 

For examples of canonical factorizations, see Example 4.6 and Remark 5.3(ii) below. 

The most common situation is when K = co. 

The above is of course simply a partial axiomatization of Quillen’s “small object 

argument” construction (see [30, II, 3.3-3.41). Were we not interested in a dualizable 

version (see Sections 6 and 7 below) - we could have started with a full axiomatization 

of Quillen’s construction, as follows: 

Definition 4.4. If (V; !J&, Q%, &) is a left model category, we say that a set of 

cofibrations (i,. : V, + WyjyEJ. is a collection of K-compact test cojbrations for % if: 

(a) any map f: X -+ Y in V which has the RLP with respect to each i;, (7 E I-) is 

a trivial fibration, and 

(b) the domain V, of each test cofibration is K-compact in %? - that is, Hom,6 (V;.. -) 

commutes with sequential colimits of monomorphisms of type K. (When K = co. such 

objects are called (sequentially) small - cf. [29, II, Section 163). 

Remark 4.5. Note that if V is a concrete category, any object C is K-compact for any 

ordinal K of cofinality greater than the cardinality ICI of C (cf. [36, lO.Sl]), so (b) 

above is automatically satisfied for K = (sup,,r( 1 V,I))+, the successor cardinal of the 

supremum of the cardinalities of (the underlying sets of) all objects V,. (The idea of 

thus eliminating the requirement of “smallness” in Quillen’s construction is due to 

Bousfield - cf. [6, Section 111.) 

It will also hold in other cases - for example, any finite simplicial set (i.e., one 

with finitely many non-degenerate simplices), or finitely generated R-module, is (o- 

compact. 

Example 4.6. The motivating example of test cofibrations is the model category of 

simplicial sets 9 (Section 6): by [30, II, Section 2, Proposition 11, a mapf: X + Y is 

a trivial fibration it it has the RLP with respect to all the cofibrations ik: d [k] + A [k] 
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(k 2 0), where A [k] is the standard simplicial k-simplex, and ik : d[k] L, A [k] is the 

inclusion of its (k - 1)-skeleton. 

Definition 4.7. If {i, : V, -+ WP}IEr is a set of morphisms in some category %?, the 

associated Quillen construction of type K is a functorial factorization X 3 Z 1; Y of 

any morphism f: X + Y in V, constructed as in Section 4.2, where for each v < K, the 

set of-X, (in 4.2(c)) is XV = IIaEA9V,a, with a’,,, = the set of all commutative diagrams 

(d) of the form: 

with i, in the given collection (iy}yer. We set h, = hd in 4.2(d). 

This is the ingredient needed to make Quillen’s small object argument [30, II, 3.41 work. 

Proposition 4.8. Zf (@; 2&, Q, 3%) is a left model category with a collection of 

Ic-compact test cojibrations {i, : V, -+ Wy}yEr, then the associated Quillen construction 

of type K yields canonicalfactorizations (which we shall call canonical Quillen factoriz- 

ations) for Axiom 2. 

Proof. For any f: X + Y in %?, let X i Z 1; Y be the Quillen construction associated 

with the set of test cofibrations; thenj is a cofibration by Corollary 2.13.To see that p is 

a trivial fibration, we must show that it has the RLP with respect to all test 

cofibrations i,: V, -+ W, - i.e., we must produce liftings 6 for any h, g as below: 

But by the k--compactness of V,, any map g : V, --) Z = colim,,, Z@) factors 

through a: V, + Z(“) for some v < K, and the diagram 
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is one of the diagrams (d) used to construct Z’“+ I’ in Section 4.7, so the structure map 
W, --f Z@+i’ defines the required lifting for the original g and h. [7 

Remark 4.9. The same definitions are possible for a right model category - although 
contrary to what one might expect, the construction is not dual to the above. 

We say that a right model category (‘%; Y&, &, &) has canonicalfactorizations if 
the factorization f = p 0 j (j E K n 93, E p E 3) of Axiom 1 (i) is obtained functorially 
precisely as in Definition 4.2, except that the maps i, of 4.2(c) are required to be tricial 

cofibrations. Of course, Proposition 4.8 also holds for right model categories, with the 
Quillen construction using test trivial cofibrations. 

Example 4.10. Let V(n, k) c A[n] (0 I k I n) denote the simplicial set generated by 
all the (n - 1)-dimensional faces of A[n], except for the kth one. The inclusions 
I,,~: V(lz, k) -+ A[n] are the test trivial cofibrations for 9 (cf. [30, II, Section 2, 
Proposition 23) so 9’ has canonical Quillen factorizations (of type o) for Axiom 1, 
too. 

Definition 4.11. Let C&9 be adjoint functors, and 9 a left model category with 

canonical factorizationsr(of type JC) as in Definition 4.2. The derioed factorization of 
anyf: A + B in % is A ?+ C Y!+ B, where C = colim, < K C”‘, and the maps i : A + C and 
y : C -+ B, are obtained from a commutative diagram: 

defined as follows: apply the construction in 9 to the map U(f) : U(A) + U(B) to get 
the pushout diagram PO 

diugram 6%? 

‘-I’ of Section 4.2; then C”’ is the pushout of the adjoint 

Fi 

1 I 

ilO’ v 

lpol 
pol-” 

FW - %“’ 

in which 4: F(V) --f A is the adjoint of g : V --) UA, and q”‘: C”’ --+ B is induced by 
j’and the adjoint fi : F( W ) + B of the coproduct of the maps h, : W, + UB (see Section 
4.2). 

More generally, for each v < ti, since the diagram PO”’ depends functorially only 

on the map Up’“’ : UC’“’ --f UB, we may define its adjoint *precisely as for PO’- “, 
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and let C”+ ‘) be its pushout. Setting C(“) = colim,,,, C’“’ for each limit ordinal r < K 

completes the construction. 

Note that if the pair (U, F) produces the colimits in % (Section 3.3), applying U to 

the above factorization yields, for any map of the form Uq : U/A -+ UB, a construction 

ofUA?UC!$’ UB in g which can be described purely in terms of colimits in 9 and 

the monad (or triple) UF: 9 -+ 9 (which in fact determines the category %?; see [26, VI, 

Section 23). 

Example 4.12. If dg Y are adjoint functors, with .d a category of universal algebras 

(Section 3.6) the de?ived factorization A + C + B of any cp: A --t B in .d is con- 

structed as in [36, II, Section 4, Proposition 31. 

Definition 4.13. Let (93; !I&,,, (X9, R9) be a left model category with canonical factor- 

izations, and %Ys 9 a pair of adjoint functors. We say that the pair (U, F) creates a left 

model category\tructure (+Z; !I&, Kc,, & ) if 

(i) f 6 5% 0 USE 39; 
(ii) fE!& 0 UfE2&; 

(iii) K% = {i = iI@ ... o&leach ik is the first factor of some derived factorizationi_. 

Theorem 4.14. Let (22; 2B2,, cY, &) b e a left model category with canonical factoriz- 

ations of type K, and %?$9 a pair of adjointfunctors. Assume that U creates sequential 

colimits of monomorphigms of type K, that G9 has all finite colimits, and that 

(*) the derived factorization A ?+ C 5 B for any f in 2 satisfies Up E ~Vn2%_,. 

Then (U, F) creates a left model category structure with canonical factorizations. 

Proof. For axiom 2(i) use the derived factorization of Section 4.11. For Axiom 2(ii), it 

suffices to show that any i: A + C constructed by the derived factorization of some 

f: A + B has the LLP with request to any trivial fibration in %?; but if j: I/ + W is 

a cofibration in 9, then Fj: FV + FW has the LLP with respect to any trivial 

fibration in G?, by Definition 4.13(i)-(ii). We then see that the i’s constructed in Section 

4.11 have the LLP by Corollary 2.13. 0 

Hypothesis (*) of Theorem 4.14 may seem hard to verify, but it seems unavoidable 

for our purpose (that is, for categorical dualizing). However, for other purposes the 

following version of the theorem, using the Quillen construction, may be more useful. 

Theorem 4.15. Let (2; 2&, cr/, 82) be a left model category with a set (i,j,,r of 

K-compact test cojibrations (and thus canonical Quillen factorizations), let V7 + be 

a pair of adjoint functors, and assume that U creates sequential colimits of monomor- 

phisms of type K, and that V has all finite colimits. Then (U, F) create a left model 

category structure on V with a set (Fi,},,r of u-compact test cofibrations (and thus 

canonical Quillen factorizations). 
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Proof. Since U creates sequential colimits of monomorphisms of type K, its left 

adjoint F preserves Ic-compactness, and by Definition 4.13, F preserves the property 

of being test cofibrations. Thus, {Fi,),,r is a set of k-compact test cofibrations 

for %. 

Alternatively, one could show directly (as in the proof of Proposition 4.8) that for 

any derived factorization A 5 C i: B, the map Up: UC + UB has the RLP with 

respect to all test cofibrations - and then apply Theorem 4.14. Of course, the derived 

factorizations are just the canonical Quillen factorizations with respect to the new set 

of test cofibrations. 0 

Again, the analogous theorem holds for right model categories, so that in fact we 

have a way to transport full model category structures using adjoint functors. 

Exayple 4.16. When % = 3& for some category of universal algebra d, the functors 

I /d$TY allow us to transfer the left model category structure of Y to Jd, 

by Theorem 4.15. This yields the left model category structure on V described in 

[30, II, Section 41, in which EC6 is the class of free maps of simplicial algebras 

(ibid.). This is actually a full model category structure on cid, with the derived 

factorization obtained from the construction of Section 4.10 serving for 

Axiom l(i). 

5. Simplicial object over abelian categories 

If ;N is any abelian category, there are adjoint functors &Z’$c,,& which are 

equivalences between the categories of (respectively) the simpliciz objects and the 

chain complexes over JY (cf. [13, Theorem 1.91). In order to define a model category 

structure on >,:& it thus suffices to do so for the more familiar category of chain 

complexes, as Quillen does in [30, II, 4.1 l-4.121. 

Definition 5.1. Let JH be an abelian category. Define YB,*,ll to be the class of 

homology isomorphisms, Br,.# the class of mapsf: A, -+ B, which are surjective in 

positive degrees, and tX;r*.l the class of one-to-one maps whose cokernel is projective 

in each dimension (if JZ? = R-Mod, we may require the cokernel to be dimensionwise 

free). 

Proposition 5.2. Zf A’ is an abelian category with enough projectives, then 

(c*%“‘;2l3,*~, K,*.ff, %,,.ff> is a model category. 

Proof. For notational simplicity we consider the case where every A, E c,_,& has 

a functorial projective cover EA, : FA, -+ A,. 
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For Axiom l(i), let L: grk’ + c,A’ denote the left adjoint of the forgetful functor 

I/ : c,.k -+ grAf’, with natural transformation $2: LVB, + B,, and use the factorization 

A* i** 
-+ A* LIFLV(B*) 

(“L Q CL”S*) B* . 

For Axiom 2(i), we wish to construct a sequence of commuting diagrams: 

where 

(i) each j@) is a cofibration; 

(ii) each p@’ is a fibration; 

(iii) p(*) induces an epimorphism p* . ‘n) ’ HiC’*“‘-” HiB* for all i; 

(iv) (n) p’*“’ : HiC’,“’ --f HiB* is a monomorphism for i < n; 

and then set C, = colimc’,“‘. 

To get a factorization A, JT C(,o) pT B, of the given f satisfying conditions (i), (ii), 

& (iii), let T : gr&t’ --f c,A&’ be the left adjoint of the functor Z: C,J& + gr,& defined 

Z(A,), = Z~~fKer{d,:A, + A,_1), and set C(,o’ = A,LIFTZ(B,)LIFLV(B,). 

For the inductive step, assume given f: A, + B, satisfying conditions (ii), (iii) and 

(iv) (n) above; we wish to construct a factorization A, L C, !+ B, off satisfying 

conditions (i)-(iv) (n + 1): 

Let K, = Ker{f,: A,, + B,} nZ,” & A, and K,,&Qn = K,/(Zm 

let 9 denote the set of liftings i:FQ, + K, in 

), and 

Let E, equal A, in degrees I n, E,+ r = LI,,,(FQJA, and Ei = 0 for i > II + 1, with 

a;+I:&+I + A, equal to i 0 3, on (FQn)j,. We have a map g : E, --+ B, equal to f in 

dimensions I n and 0 elsewhere, and define C, to be the pushout of 

A, += z,A*- E, (where z,A* is A, truncated above degree n). 

The lifting properties of Axioms l(ii) and 2(ii) follow from those of projective objects 

in ~8’ in a straightforward manner. 0 

Remark 5.3. We have given the proof because we have not seen it elsewhere; 

furthermore, it provides an illustration of the various types of model categories and 

factorizations which may occur: 
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(i) If _k has enough projectives, we merely get a model category structure on c,J&‘, 
as stated. 

(ii) If J& hasfunctorial projective covers, the construction given in the proof shows 
the (left and right) model categories. c,J&’ have canonical factorizations as in Defini- 

tion 4.2. Thus, if %?s & are adjoint functors satisfying suitable hypotheses, then the 

(left) model categor{structure for c,&, and thus for CL&, can be used to define a (left) 
model category structure for a%? (in addition to the existence of suitable colimits in V?, 
we require that UFX be projective in JH for any X E A). 

(iii) Of course, if JL’ = R-Mod then C,JH z OM has canonical Quillen factoriz- 
ations ~ by 4.16, since then JZ is a category of universal algebras. 

Note however that for categories of universal algebras over R-Mod (in which the 
objects have the underlying structure of a R-module, and all operations are R-linear), 
the construction given in the proof above, combined with Theorem 4.14, yields 
a simpler description of the factorization of Axiom 2 ~ and thus of “projective 
resolutions” - than that provided for arbitrary universal algebras by Theorem 4.15 
and Section 4.16. 

(iv) The situation is of course greatly simplified when all objects in J&Y are projec- 
tive, (e.g., for J&’ = F-mod where F is a field), since then the fibrations are just 
epimorphisms. In that case, if we let B, denote the (shifted) cone on B, - i.e., 

&=R,+1 @ B,, with 8,,(b, b’) = (~3~ ,,+ ib’ - b, afb) - and p the projection fi, -H B,, 
then a functorial factorization off for Axiom 2(i) is then given by 

Nevertheless, this is not a canonical factorization in the sense of Definition 4.2, so it 
will not be suitable for the purposes of Theorem 4.14. 

6. Cosimplicial object over abelian categories 

The definitions and results of Section 5 are readily dualized to cosimplicial objects, 
as follows. 

Definition 6.1. Recall that a cosimplicial object X* over any category %? is a sequence 
of objects X0,X’, . . . ,X”, . . in % equipped with coface and codegeneracy maps 
di:Xn+Xn+l,sj:Xn+l + X” (0 I i, j I n) satisfying the cosimplicial identities (cf. [9, 
X, Section 2.11). 

We denote the category of cosimplicial objects over %? by c%?. If _k! is an abelian 
category, we denote by C*J& the category of cochain complexes over .,4r?. 
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Dual to [13, Theorem 1.91 (noted in the beginning of Section 5) we have: 

Proposition 6.2. For any ahelian category ~2’ there is a natural isomorphism of catego- 

ries c.,M Z c*A?‘. 

Proof. Given C’ E CJ?, the functor N : CA’ + C*A? is defined by N” = (NC*)’ = fisZ(: 

Ker{sj:C”+ Cn-l), with (Sn:N”+N”+l equal to CT=,( - 1)’ (diI,II;,,,,,). 

Given A* E c%&‘, the inverse functor L: c*&’ + C./H is defined LA* = C’, where 

C’ may be described explicitly in a manner dual to [27, p. 951 or [4, 5.2.11. 

For each n 2 0 and 0 < j, I n, let Xi denote the set of all sequences I = (iI, . , i,J 

of (II = i integers such that 0 5 it < i2 < ... < in 5 n; let s’ = silo ... osi, be the 

corresponding n-fold codegeneracy map. (We allow 1, = 0, with the corresponding 

do = 0.) Then 

We write 7rcl, : c” ++ A (,) n-‘li for the projection onto the copy of A”-“’ indexed by I. 

For each 0 <i < II and 0 I k I n - 1 there is a one-to-one function 

2:: .$:I: -+ JJL, where Zi (I) = J is defined by the requirement that jr 0 dk = nJ under 

the cosimplicial identities. The codegeneracy map :jk : c” -+ c”- ’ is then defined to be 

the composite: 

““-,<v<_ ,,,, !-f; I A;;;= fl n A;;‘= C”-‘. 
I/ i O</L<n- 1 IE /I’- n I 

The coface map dj: C” -+ Cnfl is determined by the requirement that 

qa,Od’ =jin:A”-+Anfl and rc(0, 3 dj = 0 for j > 0, and by the cosimplicial identities 
_ that is, given J E X,“+ 1, use the cosimplicial identities to write X’ 0 dj = 4 0 S’ (where 

)I1 = IJI + E - 1, and either 4 = id, E = 0 or 4 = d’, E = 1). Then 7~~~) ‘J dj: C” 

+ A;;: ’ -IJ’ is the composite 

One thus has a model category structure on c.fl, induced by the following dual of 

Proposition 5.2: 

Proposition 6.4. If ~2’ is an abelian category with enough injectives, there is a model 

category structure on C*JZ with 2u,*.J, the class of cohomology isomorphisms, E,*.ii the 

maps which are one-to-one in positive degrees, and 3,.k,if the surjective maps with 

injective kernel. 

Proof. The proof is precisely dual to the case of chain complexes. For convenience of 

reference below we briefly recapitulate the factorization for Axiom l(i). 
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Given f: A* + B* in c*&, we want A* ?+ C* .!!+ B* with i E C;,*,41nTB,.*,4 and 

p E i$r*,l# (f = p 0 i), again under the assumption that every A* E c*J&’ has a functorial 

injective envelope Ed* : A* i* IA*. As in Section 4.2 we wish to construct a sequence of 

commuting diagrams: 

where each p(,,, is a fibration, and each j,n, is a cofibration which is manic in 

cohomology (in all dimensions), and epic in cohomology through dimension n - 1. 

We then set C* = limC* (n). 
In this case the forgetful functor V:c*& -+ gr& has a right adjoint 

R : gr_&!’ --t c*J$‘, and the functor C : c*.,@ + grh!, defined by: CA,* = Coker(G:- ‘), has 

a right adjoint T: grh! -+ c*J~‘. Thus if we set C;C0,D2fB* x ITC(A*) x ZRV(A*), we 

find that the map&, : A* L, C&, is a cofibration which is manic in cohomology, and 

the projection 7cg+ : C$,+ B* is a fibration. 

For the inductive step, assume given a cofibration f: A* + B* which is manic in 

cohomology, and epic in cohomology through dimension y1 - 1. Let 

P” = Z”,u A” G B”) and Q” = P”/(A”ulm(6’f-‘)), with t”: P” + IQ” the obvious 

composite map. 

Let _V denote the set of extensions v : B” + IQ” (vc i” = t”), and define the cochain 

complex E* to be equal to B* in dimensions I n, zero above dimension n + 1, 

with E”+l = n,,.4-IQ~v, and &+’ : B” + E”+l determined by the v’s Finally, let C* 

be the pullback of B* -+ r”B* +- E* (where ?‘B* is again the truncated complex), 

so C’ = B’ for i I n. The obvious maps A* _!+ C* 1; B* give a factorization with 

j a cofibration which is manic in cohomology, and epic in cohomology through 

dimension n. 

Note that since the maps pc, are isomorphisms in degrees < ~1, there is no lim’ in 

calculating H’C* = H’(lim C;“,,) (cf. [28]). This problem did not arise in the dual case 

(Section 4.2 and Proposition 5.2), since colim is exact. 0 

Note that J%! = R-Mod has functorial injective envelopes (constructed as in [25, III, 

7.41). The construction given here is of course an example of dual canonicalfactoriz- 

ations (defined dually to Definition 4.2). 

Remark 6.5. The explicit factorization of any f: A* --, B* in the category CJ+! of 

cosimplicial objects over JV is easily obtained from the proof of Proposition 6.4 using 

Proposition 6.2. It should be pointed out that in place of the truncated cochain 

complex ?A*, which vanished above dimension n, we must use the nth coskeleton 
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c.&“A*~~~ L(t”NA*), which is defined in cosimplicial dimensions > n by (6.3) (com- 

pare the dual description in [4, 5.3.43). Similarly for the construction of E* from ?A* 

(cf. [4, 53.21). 

7. Cosimplicial coalgebras 

In order to define right derived functors over a category of coalgebras, one would 

obviously like to dualize the constructions of Section 4. However, there seems to be no 

reasonable (right) model category structure on the category of cosimplicial sets. Thus 

our approach here is more restricted. First, we recall the definition of a category of 

coalgebras. 

Definition 7.1. (i) A comonad (or cotriple) 6 on a category %? consists of a functor 

S : G? -+ V equipped with two natural transformations: E : S + id% and v : S + S2 satisfy- 

ing: S&Ov = eSOv = id% and vS”v = Svov:S3 -rS (cf. [S, Section 21). 

(ii) A coalgebra over a command 6 = (S: %? -+ %Y, v, E) is an object C E % to- 

gether with a morphism q: C + SC such that Sq 0 ec = idc and Sq 0 cp = v 0 cp: 

C + S3C. The category of coalgebras over 6 (with the obvious morphisms) will be 

denoted by g6. 

Remark 7.2. For every comonad 6 = (S: W -+ %, v, E) there is a pair of adjoint 

functors W< $?G such that S = T/G (and conversely, every pair of adjoint functors 

yield a comonad). I/: QT6 + Gf is the faithful “underlying g-object” functor, and 

GC = (C, v). 

The relation between the categorical definition and the more concrete analogue of 

Definition 3.6 is more problematic, since we need the underlying q-object to be an 

object in an abelian category, and not just a set. (This is in order to make use of the 

model category structure on CA defined in Section 6, since we do not have one on 

&Pet, as noted above). Thus, we specialize to the case where 9? is a monoidal abelian 

category (A, 0) (see [26, VII, l] for the definition; the only example we shall 

actually need being _&’ = R-Mod and 0 = - OR-): 

Definition 7.3. A category of universal coalgebras over (.,N, 0) is a category 9, whose 

objects are objects A E J?‘, together with an action of a fixed set of n-ary co-operators 

w = U;Zo{O:A +A@“}, satisfying a set of identities E; the morphisms are functions 

on the sets which commute with the co-operators. 

Example 7.4. Categories of universal coalgebras include: the category +ZR of coalgeb- 

ras over a ring R ([SW, 1.01); the category WZR of cocommutative coalgebras over 

R [35, 3.21; and for each prime p, the category %‘dP of (graded) unstable coalgebras 

over the modp Steenrod algebra (see [lo, Section 11.31). 
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More generally, let d be a category of universal algebras (see Section 3.7), in which 

U : d + Yet factors through U’ : d t R-Mod, for some ring R. We may then define 

a conjugate category d* of universal coalgebras as follows. 

Since the n-ary operators of d are in one-to-one correspondence with the elements 

of the set UFX,, where X, is a set with n elements, we let A, = U’FX,, and define the 

n-ary co-operators of &* to be the elements of the R-module conjugate (or R-dual): 

AzDZf HomR(A,, R) E Mod-R. We assume that A,, is a finitely generated R-module for 

each n (of finite type, if R is a graded ring). 

The relations among the co-operators correspond to the elements of 

HomR(A,*, A E), just as the relations in d are determined by Hom,ipet( UFX,, UFX,). 

In some cases the functor G: A! + 98, which is right adjoint to the “underlying 

object” functor I/ : 39 -+ A, has a description as a “cofree coalgebra” functor. This is 

true for B = %‘E, where IF is a field; see [35,6.4.1] for an explicit description. Similarly 

for .@ = %%?[F, (see [35, 6.4.1, 6.4.4]), For 9J = K&P, we have 

GH, = H, 

where JZ = gr+lF,-Mod (see [lo, 11.41). 

It is clear that Proposition 6.2 and Theorem 4.14 (as well as their proofs, and 

Sections 4.1, 4.2, 4.7, 4.11, and 4.13) may be dualized to yield: 

Proposition 7.5. For any category of universal coalgebras 49 over ~2’ = R-Mod, the 

functor G creates all colimits and sequential colimits of epimorpkisms in a’, and the pair 

(G, V) produces all limits in 29. 

Theorem 7.6. Let (%?; ‘Iuq;, Q, 5~) be a right model category with dual canonical 

factorizations of type K, and %?&9 a pair of adjoint functors. Assume that V creates 

sequential limits of epimorpkisml of type K, that 9 has all finite limits, and that 

(*) the direct factorization A > C 5 B for any f in 9 satisfies Vi E (5% n !&.Tken 

(G, V) create a right model category structure (9; 2I3~,&, 59). 

In order to see when hypothesis (*) of the Theorem applies, let us consider the case 

where %? = CL%? and 9 = eA are both categories of cosimplicial objects, over a 

category @ of universal coalgebras and an abelian category A’, respectively, 

and the adjoint functors V+9 have been prolonged (Section 2.16) from some pair 

.A&~. 
V 

Now the derived factorization of a map f: A’ + B’ in %? = c$#, as given by the proof 

of Proposition 6.4, may be described as follows. 

We start with C;,,Ef A’ x GZTC(B’) x GIRV(B’), where G : C& + &I is as 

above, I : CA --f CA is the (prolonged) injective envelope functor, and gr&s c*& 

are the adjoint pair of Proposition 6.4. (Here we identity CA&’ with c*_& by PrLposi- 

tion 6.2.) 
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In general, CY, is the pullback of 

(see Remark 6.5) so we see that C;,, agrees with C&i, through dimension n, 
cn+l 

(n) = C;nt_ll, x GE”+ I, and C{,,, (i > n) is determined by (6.3). Thus, it is clear that 

A’ -+ C’ will be a cofibration. To verify that the inductive cohomology conditions 

hold for the derived construction in cB, note that they hold in c*& z CA’ because the 

composite map 

is a monomorphism. Here H E H”B*/Zm(f,) z H”(VC;,_,,)/Zm(j,,~ r))*. In the de- 

rived factorization we need to know that the composite: 

is manic, where ($:C;,_lJ-+GE”+l 1s adjoint to (v). This follows because for any 

f: VX + Y in JZ we have y10 Vf”=f(for q: I’GY -+ Y the adjoint of i&r). 

Thus even though Proposition 4.8, and thus Theorem 4.15, do not dualize usefully 

to our situation (because Quillen’s small object argument does not dualize to limits), 

we have the following simplified situation where (*) of Theorem 7.6 holds. 

Proposition 1.7. Let C.AZ be the category of cosimplicial objects over an abelian category 

A with functorial injective envelopes, e;dowed with the model category structure given 

by Propositions 6.2 and 6.4, and let A? B be a pair of adjoint jiunctors such that V is 

faithful, Then the factorization given in the proof of Proposition 6.4 satisfies hypothesis 

(*) of Theorem 7.6. 

Remark 7.8. Theorem 7.6 provides a right model category structure on CB for any 

category of universal coalgebras B over an abelian category 1, since the hypotheses of 

Proposition 7.7 will in fact hold for such a .B (compare [2,3.3, Theorem 91). However, 

for the purposes of “homotopical algebra”, further assumptions may be needed. 

In particular, in order for the “triple derived functors” (cf. [l]) of T to coincide with 

the right derived functors (as defined in Section 4.1 l), we would want GA to be an 

injective in B for any A E A. This will be true, for example, if all objects in JZ are 

injective (e.g., if &Z = F-Mod for some field E). 

For any B E g one has a cosimplicial coalgebra C’ E CB obtained by the “dual 

standard construction” (cf. [l] or [20, Appendix, Section 3]), with C” = (GV)“+ ‘B 
and the coface and codegeneracy maps determined by the comonad structure maps 

E and v of Section 7.1. Moreover, the coaugmentation E: B -+ Co defines a map 

i: c(B)’ + C’ (where c(B)’ is the constant cosimplicial object which is B in each 

dimension). 
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Under the hypothesis that GA is always an injective, it is readily verified that 

i : c(B)’ + C’ is a trivial cofibration: it is always a weak equivalence, and it is a cofibra- 

tion by Fact 2.12 and the extension properties of injective objects. A similar argument 

shows that if T : B + 93’ is a functor between such categories of universal algebras 

(possibly trivial - that is, simply abelian categories), its prolongation cT : CB -+ 3’ will 

preserve weak equivalences between cofibrant objects (compare [26, III, Theorem 

3.11) so that its right derived functors are defined (Section 2.16). Thus, in particular we 

have the following. 

Fact 1.9. In the right model category structure on ~%?_a?~ dejined by Theorem 7.6 and 

Proposition 6.4, we may identfjj the E,-term of the mod p Bousjeld-Kan spectral 

sequence as the right derived finctors ofHomw,dO(B,-), as in [lo, Theorem 12.11. 

Remark 7.10. It should perhaps be observed that the situation for an abelian category 

.&, in which both left and right derived functors may be defined, is anomalous: it arises 

because ./Z’ may be viewed either as a category of universal algebras or as a category of 

universal coalgebras, over itself. In general, most algebraic categories will support 

either left or right derived functors, but not both. 

Moreover, the situations are not precisely dual, because categories of simplicial 

universal algebras derive their left model category structure from 9, while cosim- 

plicial universal coalgebras get their right model category structure only from 

the underlying abelian category (which will usually be A = IF-Mod, for some 

field 5). 

Finally, as noted above, the failure of Quillen’s small object argument for limits, 

even in abelian categories (see [28]), implies that some of the pleasant properties of 

adjoint functors with respect to model categories do not dualize. 
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