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§1. INTRODUCTION

IN THIS paper we start the investigation of a spectral sequence {£,(X; R)} defined for every
space X (with base point) and ring R, which, very roughly speaking, goes from R-homology
to R-homotopy. Before trying to explain its construction we list its

1.1. Main properties
(i) Convergence. Under suitable hypotheses (a.0. 7, X = 0)
{EX; 2} =>mp X
{EX; Dl=m XQ®Q
{E(X; Z,); = ny X/(torsion prime to p).

(i) The E,-term. If R is a field, then the E;-term depends functorially on H,(X; R)
(H, denotes reduced homology) and the differential d, (and hence the E,-term) depends
on only primary operations. In particular, for R = Z,, the E,-term is an “ unstable Ext”
depending only on the structure of H,(X; Z,) as a coalgebra over the Steenrod algebra.

(iii) {EAX; Z,)} is an unstable Adams spectral sequence; i.e. for R = Z, our spectra
sequence coincides, in the stable range, with the Adams spectral sequence.

(iv) Comparison with other unstable Adams spectral sequences. These are:

(a) The Massey—Peterson spectral sequence (see [15] for p =2, §13 for p odd),
which has the right E,-term (i.e. the unstable Ext mentioned above), but is only
defined for “ very nice” (see 13.1) spaces.

(b) The accelerated 2-lower central series spectral sequence [6, 20], whose E,-term
depends in general on higher order operations, but is ““right”* for “ nice”” spaces (these
include loop spaces, but not wedges of spheres).

(c) The p-derived spectral sequence (1.3), whose E,-term also depends, in general,
on higher order operations, but is ““right” for *“ nice” spaces.

(d) The Hopf tower spectral sequence [21] which is defined for various pseudo Hopf
spaces and has the “right” E,-term in the case where it is known.

+ This research wa§ bartially supported by the NSF and U.S. Army Research Office (Durham).
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As mentioned above our spectral sequence is defined for all spaces and always has the
“right” E,-term. In a future note we expect to show for * nice” spaces that it coincides from
E, on with (b) and (c). Presumably for ““very nice’’ spaces it coincides from E, on with all
the above spectral sequences.

(v) Generalization to function complexes. As usual there is such a generalization.

(vi) Pairings and products. The spectral sequence admits smash and composition pair-
ings as well as Whitehead products.

We now try to explain the

1.2. Construction of the spectral sequence.
This is based on the following homotopy version of the Hurewicz homomorphism:

For any ring R and space X with base point * one can (if one works in a suitable category
of topological spaces [23]) define a topological left R-module RX as the left R-module with
a generator for every point of X and one relation 1 . » = 0, topologized by the requirement that
the inclusion ¢: X — RX be continuous and open. The usefulness of this construction lies in
the fact that:

(1) There is a natural isomorphism

nx RX = H, (X; R).

(ii) As RX is abelian it has trivial k-invariants and hence its homotopy type depends only
on its homotopy groups and therefore on Hy(X ; R); if R is a field, this dependence is functorial.

(iii) The homomorphism

Mo X —2 s 1, RX ~ A (X; R)
is the Hurewicz homomorphism.

Our spectral sequence then is the homotopy spectral sequence of the natural tower of
fibre maps

oD X — D X o DX — DX =X
obtained by defining §: D,,;X — D, X as the fibre map induced by the map D,¢: D, X —
D,RX (from the path fibration over D; RX). Observe that:

(@) The n, D,RX, and hence the E,-term, depends only on H.(X; R), although not
Sunctorially (unless R is a field), and

(b) as always the images of the ny D, X filter 1y, X and the associated graded group is
naturally isomorphic with the E -term or a subgroup thereof.

This is what we meant by our statement in the beginning that the spectral sequence
goes from R-homology to R-homotopy.

Remark 1.3. The homotopy spectral sequence of the more obvious tower

---—»D;HX—"'-—’D;X—» "'—>D’1X——i’-—'D6X=X
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obtained by defining 6': D,,,X — Dy X as the fibre map induced by the map ¢: DX —
RD.X is nothing but the derived spectral sequence (which, for R = Z,, coincides with the
p-derived series spectral sequence). It has, of course, the just mentioned property (b), but
not property (a), as in general n, RD/X does not depend only on H.(X; R).

The paper is written semi-simplicially and freely uses the notation and results of
[11], [14], [16]. This is, of course, not essential and a more topologically oriented reader
should have no problems translating the results into for him more understandable language.
There are two chapters and an appendix.

In §2 and §3 we lay the foundations for the definition of the spectral sequence (§4).
In §5 we show that our spectral sequence, for R = Z,,, is an unstable Adams spectral sequence
(by comparing it with the derived spectral sequence), while §6 contains a more precise
formulation of the above convergence statements as well as their proofs; the latter rely
heavily on the Curtis—Rector and Curtis convergence theorems [10}, [20] for the (p)-lower
central series spectral sequences. And in §7 we show how all this can be generalized to
function complexes. We end the first chapter with the observation (§8) that the spectral
sequence for arbitrary commutative R is completely determined by the spectral sequences
for R=2Z and R = Z,; (p prime).

Chapter II deals with the E,-term, mainly for R = Z,. In §9 and §10 we give a cosim-
plicial description of E,(X; R) which we use in §11 to show that E,(X; Z,) depends only
on H,(X; Z,) as an unstable coalgebra over the Steenrod algebra. (We state our results in
terms of homology as this seems the natural thing to do. However a reader who prefers a
cohomological approach should have no problem translating our results into cohomological
terms, if he is willing to impose suitable finiteness conditions on X.) In §12 E,(X; Z,) is
described as an unstable Ext which (§13) for *“ very nice” spaces coincides with the Massey—
Peterson Ext. And in §14 we give, for ““ very nice”” spaces and p odd, a convenient E;-term
(the case p = 2 was done in [6]).

An appendix contains the calculation of E,(K(G, n); R) for abelian G and commutative R.

The construction of the various pairings and products requires completely different
techniques and will be published separately [8].

CHAPTER 1. THE SPECTRAL SEQUENCE

§2. PRELIMINARIES

We start with a quick review of some well known constructions in the category &,
of simplicial sets with base point * and its full subcategory & ,x of Kan complexes with
base point.

2.1. Simplicial modules generated by simplicial sets

Let X € &, and let R be a ring (with unit). Then RX € & . will denote the simplicial
R-module (with 0 as base point) generated by the simplices of X, with the base point of X
(and its degeneracies) put equal to 0, and we will write
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X —" ,RX and RRX ——RX

for the map given by ¢x = 1 - x for all x € X and the (left) R-module homomorphism given
by ¥(1 - y) = y for all y € RX.

The usefulness of this construction is due to the following two properties:

(i) (R, ¢, ) is a triple in the sense of [12].
(ii) There is a natural isomorphism

1.RX ~ H(X; R)
(where H , denotes reduced homology) such that
7o X —2 1, RX ~ A (X; R)
is the Hurewicz map.

We also need:

2.2. The (standard) path fibration
For X € &, we mean by the (standard) path fibration over X the map

AX — X € Pux
where AX is the (standard) path complex, i.e. the simplicial set of which an n-simplex is
any x € X,,,, such that d, --- d, ,;x = * and of which the face and degeneracy maps
AX, —% 5 AX,_, AX,— > AX,,, O<i<n

are the functions induced by the maps

di+y Si+1 .
Xps1 — X, Xpr1 — Xpi2 O<i<n

and where A is the map induced by the 0-face operator
AXn < Xn+1 _fo—’ Xn'

Clearly A is a fibre map with contractible total complex.

§3. DERIVATION OF A FUNCTOR WITH RESPECT TO A RING

For an efficient definition of our spectral sequence and proof of its convergence (under
suitable hypotheses, of course) we need the notion of

3.1. Derivation of a functor with respect to a ring

Let R be a ring (with unit) and let T: &, — &, be a covariant functor which respects
Py (6. X € Py implies TX € &,x). Then we define a functor
DT: Sy Fs
(the derivation of T with respect to R) and a natural transformation
6:D\T->T
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by requiring that for each X € &, the map 6X: (D, T)X — TX is the fibre map induced by
the map T¢: TX —» TRX from the path fibration (2.2) over TRX, i.e., D, T and J are deter-
mined by the pull back diagram

D, T ——— ATR
Te
T —— TR.

This definition is natural with respect to T, i.e. a natural transformation y: T - T’ induces
a natural transformation D,y: D,T - D,T’.

One readily verifies

ProposITION 3.2, If T respects & yx, then so does D, T.
Therefore we can make the following:

3.3. Notational convention
() If Xe&,and 1d: ¥, — &, denotes the identity, then we write
DX for (Dy--(Dd)--)X.
() f XeFyrand Ty, ..., T,: &, — 4 are functors which respect &,k , then we write
DT, T,X for (D (DT, Tp))  )X.
Note that this implies that in general
D(TX)+# D, TX.

Other obvious properties of the derivation are:

3.4. Preservation of weak homotopy equivalences

If y: T » T’ is a natural weak homotopy equivalence, then so is D,y: D,T — D, T'.

3.5. Preservation of fibrations

If
Tt 2

is a natural fibration (i.c. for every X € &, , pX: TX — T"X is a fibre map with iX: T'X —
TX as fibre), then so is
PT' —= DT -2, DT".
For later reference we also state (a).
TwisTING LEMMA 3.6. Let s > 0. Then the natural transformations
D;é6: D, ,T -» D, T 0<i<s

are weakly homotopic.
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Proof. For X € &, let j: X - Sin|X| denote the natural map of X into the singular
complex of its realization [16]. Then one readily verifies that the compositions

D;

] Dy j .
D, T »D,T » D, Sin|T| i=0,1

are naturally homotopic, which proves the lemma for s = 1. The general case now follows
from 3.4.

§4. THE SPECTRAL SEQUENCE

Now we can define the homotopy spectral sequence of a space X € &, with coefficients
in a ring R and discuss some of the immediate consequences of this definition.

4.1. The spectral sequence

Let X e &, and let R be a ring. The homotopy spectral sequence {E, (X ; R)} (or short

{E, X}) of X with coefficients in R is the homotopy spectral sequence of the sequence of fibre
maps

[

s D, X ——sD,_ X — DX ——DyX =X
fringed in dimension 1. By this we mean that
E>'X =mn,_ D(RX) t—1=25s20

=0 otherwise

and that
ES'X =kerd,_/imd,_, t—-1>52>0
but in dimension 1
E "X c E%5P'X[imd,., s20
as we define E,%**1X by
Ex P X =200 'X/imd,., 520

where Z,%3"' X < E~ 5! X consists of what would have been the cycles, i.e. the elements
for which the image under the boundary map d: n, D(RX) — ng D, X lifts to n, Dy, X.

One has of course, to verify that Z,%3*' X is indeed a group; but this readily follows, by
induction on r, from the observation that:

(@) A spherical 1-simplex y € D(RX) can be considered as an (s + 1)-simplex v € R°*1 X
(R**! denotes the (s + 1)-fold iteration of R) such that d,v lies in the image of the map
Rip: RRX >R X for0<i<sand dv =d,, v =%, and

(i) the simplex y represents an element of Z&*7'X if and only if there is an (s + r)-
simplex w € R°*"X such that d; w lies in the image of the map R'¢: R°*"7'X - R**’X for
O<i<s+r,d,,w==and

digy " ldgppy W = (Rs+'_1¢) (Rs+1¢)v-



THE HOMOTOPY SPECTRAL SEQUENCE OF A SPACE WITH COEFFICIENTS IN A RING 85

4.2. Why the fringe and not an edge

We fringed the above spectral sequence (i.e. defined E, in the bottom dimension in the
most natural way without worrying whether in this dimension also E, = H(E,_,, d,_,))
instead of edging it (i.e. defining E, in the bottom dimension in such a manner that in this
dimension also E, = H(E,_,, d,_,)) because:

(i) The edging can be done in several different ways, each of which has some advantages
as well as disadvantages which seems to suggest that edging may not be the * right ” thing to do.

(i1) There will no longer be any need for special statements about the bottom dimension.

An immediate consequence of the definition of the spectral sequence is

4.3. Dependence of E, X on H.(X; R)

The E,-term E, X depends only on the homotopy type of RX, i.e. on H, (X ; R) as a graded
abelian group. Moreover, if R is a field, then this dependence is functorial.
For simplicial R-modules we have the following

4.4. Collapsing lemma

Let X € & be a simplicial (left) R-module. Then
ES'X =E S'X=0 fors>0
E'X=E.>X~n X fort>0
Proof. Let ' : RX — X be the (unique) R-module homomorphism such that
Y'o=id: X-X.
Then for all s > 0
(DY) Ds¢9) =id: D,X > D, X
and the lemma readily follows.

We end with:

4.5, Some trivialities about £, X and E_ X

(1) dr . Ers"X—* Ers+r, t+r—1X.
(i) EX\X < ES'X  forr>s.
(i) E,>'X = (E>'X.

r>s

(iv) for t — 1 = s = 0 there is a natural short exact sequence

0— (F/F** Ym,_ X —— E_.>'X — F*n,_,_,D,,,X nker§,—0
where F*rn, D, X = im(ny Dy, , X — 1, D, X)
and F*n,D; X = (| F*n, D, X.
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Remark 4.6. The only property of the functor R : &, —» &, that was used (except in
4.2) was that (R, ¢, ) is a triple in the sense of [12]. Similar results thus hold for other
triples such as, for instance, Milnor’s free group functor F [11].

§5. COMPARISON WITH THE ADAMS SPECTRAL SEQUENCE

We will show in this section that our spectral sequence coincides in the stable range with
the well known derived spectral sequence and hence, for R = Z,, with the Adams spectral
sequence.

First we recall the definition of":

5.1. The derived spectral sequence
For Xe &, and R a ring let
D X s D)X — > DX ——s DX = X
be the tower of fibrations where each &' is the fibre map induced by themap ¢: D', X - RD', X
from the path fibration over RD' X, i.e. ¢’ is given by the pull back diagram

D,,,X—— ARD/X
D/X —® > RD'X.
The derived spectral sequence of X with coefficients in R then is the homotopy spectral se-
quence of this tower, fringed and indexed as in §4.

For R = Z, and in the stable range this clearly is the Adams spectral sequence

In order to compare the derived spectral sequence with ours we need the fact that
D,(RX) can be turned into a simplicial R-module. To be precise
LemMA 5.2. For s = 0 there is a natural isomorphism

hy: (D,R)X =~ D(RX).
Proof. Let
RRX ——» RRX
denote the natural twisting map given by
tu=QYyu— u+ (Rou
for all u € RRX. Then one readily verifies that ¢ = id and that the diagram

RX
¢/// \\\Rw
\(/ N \\
RRX ~ RRX
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commutes. Now let A, = id and inductively define A, as induced by the diagram

hs

(D,R)X > D(RX)

(DsR)o D¢

(D, R)RX —= D(RRX) =% D(RRX).

5.3. Comparison of the spectral sequences
In order to compare the derived spectral sequence with ours we construct a commuta-

tive ladder
~"—>D;+1X~—L>DS'X—+--'—+X
jfa*1 lf. lfo
..._.,Dsﬂx__"__,sz__,...__,X

by putting f, =id and inductively defining f,,, as the map induced by the diagram

fl
D/X D, X

P Dy

RD,/X X RD, X 2 (D, R)X —> D(RX)

where g, is the extension of the (obvious) map D, X — (D,R)X to a homomorphism of
simplicial R-modules. This ladder induces a map from the derived spectral sequence to
ours which, according to the following lemma, is an isomorphism in the *““stable range”.
We leave to the reader the task of interpreting the term ““ stable range”” precisely.

LeMMA 5.4. The maps
p/x—Tspx
RD;X —~ (D,R)X
induce isomorphisms of the homotopy groups in the ** stable range’.
The proof is straightforward using induction on s first for g, and then for f;.

COROLLARY 5.5 The homotopy spectral sequence with coefficients in Z, coincides, in the
““ stable range”’, with the Adams spectral sequence.

§6. CONVERGENCE STATEMENTS

Tt is clear from 4.4 (iv) that, in order that our spectral sequence has some use, one needs
more information about F*n D  X. In general there is, of course, not much one can say,
but for simply connected X € &, we can make the following convergence statements.
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6.1. The integral case.
Let R = Z, the ring of the integers. Then fort — 1 >s5>0
Fen,_,D,X=0.
COROLLARY 6.2. Fort — s> 1

Forn,_ X=0

(FS|Fs*Yn, _ X X E_“'X.
It is not hard to show that this implies

6.3. The case of subrings of the rationals

Let J be a set of primes and let R = Z{J '] the ring of those rationals whose denominators
involve only primes in J. Then the above isomorphisms hold when tensored with Z[J ~1].

Furthermore we can state (still assuming that X e &, is simply connected)

6.4. The mod-# case

Let h be an integer > 1 and let R = Z,,, the ring of the integers modulo h. Then for t — 1
z2s5s>0

Fom_ D, X = (\h'm,_, D, X.

COROLLARY 6.5. If n, X is finitely generated for all g (and X is simply connected, of course),
then fort —s>1

Fom_ X =(\Fm_ X

(F/F**Ym,_ X R E ' X.
Remark 6.6. These convergence statements are rot best possible. For instance the con-

dition imposed on X in 6.5 can be somewhat relaxed. And it seems likely (see [19]) that the
simple connectivity of X can be replaced by some weaker condition.

We first give a proof of 6.4 and then indicate what changes should be made therein to
obtain a proof of 6.1.
Proof of 6.4. Obviously for t — s =g >0
Fern,D,X > (\h'rn,D, X

The proof of the inclusion in the other direction essentially consists in constructing (for
every prime p that divides /) a map from our spectral sequence to the p-lower central series
one and then using the following slight generalization of the Curtis—Rector convergence
theorem:

Let X € &, be simply connected, let s > 0, let p be a prime, let
oo Ty =T » - =1d
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be the p-lower central series functors [20] and let G be the loop group functor [16]. Then, for
g 20, an element of n, D,GX is in the image of n, D, I"; GX for all i if and only if it is divisible
by p' for all i.

Proof. The *“if ”” part is obvious. For the “ only if”” part we need the following property
of the pth power map &: I, GX — I',, GX [20, §4]: There exists an integer N (depending on
g + s) such that ,: n; I, GX - ;T ,, GX is an isomorphism whenever r > Nand j < g + s
This implies that

(D g, D, I, GX >, DT ,,GX
is an isomorphism for r > N and the “ only if ” part follows as in [20].
We now return to the proof of 6.4. In view of 3.5 it suffices to show that for g > 0
F*n,D,GX < (\h'n, DGX.
Thus, by Curtis—Rector, all one has to do is, construct for every prime p that divides A, every
s = 0and g > 0 and every reduced X € &, (i.e. X has only one vertex) a commutative ladder

=D, GX — n, D GX — - 7,D,GX

w T

-, DT 6X 5>, DI,GX — -+ -, D GX.
And for this it suffices to construct natural commutative ladders in &,

= D;GX—D,_GX > -+ > Dy, GX =GX

w Lk

"_’Ci+1X—’ CiX_') "'_’C1X=GX
and

oM 6X -5 T,GX — -+ = GX

w T

> G X — CX - GX

such that in (6.10) the vertical maps are homotopy equivalences, because then (6.8) is
readily obtained by applying n, D, to (6.9) and (6.10} using the twisting lemma (3.6).
It thus remains to construct the ladders (6.9) and (6.10). To construct (6.9) we assume

that there exist functors N; from simplicial Z,-modules to &, and natural transformations
C;— N;Z, such that
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is a pull back diagram. The map D;GX — C;,, X then can be defined as the one induced by
the composition ’

D, 1GZ,X — D, \GZ,X — C;Z,X = N,Z,Z,X ~%> N, Z, X.
And finally to construct a ladder (6.10) satisfying the above extra assumption we observe
[11] that there exist functors M; from simplicial Z,-modules to &, such that

FiGX/ri+1GX = MinX.

Supposing inductively that I'; GX - C, X is a trivial cofibration (i.e. a I-1 weak homotopy
equivalence), it will suffice to construct N; together with a natural diagram in & .,

I[GX —— G, X

|

M, Z,X — N,Z,X

such that the bottom map is also a trivial cofibration, which is not hard to do since the map
on the left factors through I';GZ, X and since trivial cofibrations are preserved under co-
base extensions, i.e. push-outs, in & .

Proof of 6.1. This is essentially the same as the above proof of 6.4 except that one uses.
(i) Z instead of Z, and Z,

(ii) the integral lower central series functors [10], and

(iii) the following slight variation on the Curtis convergence theorem:

Let X € &, be simply connected and let s > 0. Then for g >0, no non-zero element of
n,D;GX is in the image of =, D;T";GX for all i.
For s = 0 this is the main result of {10]. The rest is an easy induction on s.

Remark 6.7. Using similar arguments it is not hard to show that the homotopy spectral
sequence that resulted from Milnor’s free group functor F (4.5) has the same convergence
properties (6.1 and 6.2) as the integral homotopy spectral sequence.

§7. GENERALIZATION TO FUNCTION COMPLEXES

The results of the preceeding sections will now be generalized to function complexes.
We start with recalling the notion of

7.1. Function complexes with base point
For W, X e &, the function complex with base point
hom(W, X)e &
has as #-simplices the maps
ARl AW > Xe &,

where A[n] A W is obtained from Aln] x W by collapsing Aln] x {*}, and has face and de-
generacy operators induced by the standard maps [16]
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Aln—1]—2 Aln]  Aln + 1] ——— Afn].

Its main property is:

If Xe %k, then hom(W, X)e Lo (ie. hom(W, ) respects & .x and the elements
of nyhom(W, X) are in 1-1 correspondence with the homotopy classes (rel ) of maps S°W — X
(where S?W denotes the g-fold suspension of W).

Now we can define

7.2. The spectral sequence for function complexes

Let W, X € &, and let R be a ring. The homotopy spectral sequence {E(W, X; R)} (or
short {E(W, X)}) of hom(W, X) with coefficients in R is the homotopy spectral sequence of
the sequence of fibre maps

cor o D hom(W, X) ——— D,_ hom(W, X ) - -+ — hom(W, X)
again indexed and fringed as in §4. Thus
E (W, X) = n,_, Dhom(W,RX) t-1252>0
=0 otherwise.

The results of §4 and §5 readily generalize to function complexes. The same holds for
§6 except that

(1) for the generalizations of 6.1, 6.2, 6.3 and 6.4 one has to assume that X e &4«
(otherwise hom(W, X) may have the ““ wrong” homotopy type), that X is simply connected
and that W has the weak homotopy type of a finite dimensional complex.

(ii) for the generalization of 6.5 one has to assume that X € &, that X is simply
connected, that n, X is finitely generated for all g, and that ¥ has the weak homotopy type
of a finite complex.

The proofs use the same arguments.

§8. THE COEFFICIENT RING

We end this chapter with some results which imply that the spectral sequences
{E(X; Z)}and {E(X; Z,))}(p prime) determine all the spectral sequences {E,(X; R)} with
commutative R.

Throughout this section all rings will be commutative and ® will denote ®,. The
proofs (of 8.2 and 8.6) will be given in [9).

8.1. The core of a ring
The core of a ring R is the subring

R={x|1®x=x®1eR®R}.



92 A. K. BOUSFIELD and D. M, KAN

The usefulness of this notion is due to

RepucTiON THEOREM 8.2. For Xe€ &, and R a ring, the inclusion cR = R induces
isomorphisms

E{(X;cRy~E(X ;R) forr>2.
Moreover
E,>"(K(Z,n); R)y = cR forr>2
i.e. this reduction is best possible.
COROLLARY 8.3. ccR = cR.

To find out which rings can serve as cores we therefore define

8.4. Solid rings

A ring R is called sofid if cR = R.

8.5. Examples of solid rings

(i) The cyclic rings Z, for 1 > 2.
(ii) The subrings of the rationals, i.e. the rings Z[J ~'] where J is any set of primes (6.3).
(iii) The product rings Z[J '] x Z, where each prime factor of 4 is in J.

Moieover we have

8.6. Description of all solid rings

(i) Aring R is solid if and only if the multiplication map R ® R — R is an isomorphism.
(ii) Every solid ring is isomorphic to a direct limit (over a directed system) of the rings
of 8.5.

The statement at the beginning of this section now follows immediately from the
following proposition (of which the verification is straightforward).

PROPOSITION 8.7. Let X € Py and r 2 2.

(i) if R = lim R, is a direct limit over a directed system, then
E(X; R)~ lim E(X; R).

(ii) If R = Z[J '], then
E(X;R\~E(X;Z)®R.

(iii) If either R x R’ = Z,, x Z, with (m, n) =1 or R x R' = Z[J '] x Z, with h and J
as in 8.5 (iil), then

E(X; R x R) = E(X; R)® E(X; R').
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CHAPTER 1. THE E,-TERM FOR R=2,

§9. COSIMPLICIAL OBJECTS

We will investigate E,(X; R) using cosimplicial methods and therefore start with
recalling the notion of an (augmented) cosimplicial object and (following Godement [13] and
Eilenberg-Moore [12]) giving our prime example: the resolution of a space with respect to
a ring. For the moment we will not yet assume that R=Z7,.

9.1. Cosimplicial objects

A cosimplicial object X (over a category %) consists of

(i) for every integer n > 0 an object X" € €.
(ii) for every pair of integers (i, n) with 0 < i/ < n coface and codegeneracy maps

dx}xn—l_,xn SiZX"+1—’X"
in € satisfying the identities
dd' =dd? fori<j

sldi = dlsi™? fori<;j
= id fori=j,j+1
=di~ls)  fori>j+1
sist = st lg) fori>j.

A cosimplicial map f: X — Y consists of maps
[ X'-Y'e¥

which commute with all the cofaces and codegeneracies. A4 cosimplicial object (map) over
% thus corresponds to a simplicial object (map) over the dual category €*.

9.2. Augmentations
An augmentation of a cosimplicial object X (over €) consists of a map
d°: X' sXe¥%
such that
d'd® = d°°: X' - X!

We now turn to our prime example.

9.3. The resolution of a space with respect to a ring

Let X e &, and let R be a ring (with unit). Then the resolution of X with respect to R
is the augmented cosimplicial object RX over &, given by
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RX"=R""'X n>-1
RX" ' %, rx" = Rix RPRUL, gty
RX" 1! S, Rx" = Rrt2y RWR! | patiy
Clearly RX is natural in X as well as in R.
Remark 9.4. In verifying that R X is indeed an augmented cosimplicial object, one only
has to use the fact that (R, ¢, ¥) is a triple in the sense of [12]. The same construction thus

can be made using other triples.
A way of constructing more cosimplicial objects is by

9.5. Applying a functor

Let X be an (augmented) cosimplicial object over a category € and let T: ¥ > €’ be a
covariant functor. Application of T to X then yields an (augmented) cosimplicial object
TX over ¢’ with

(TX)" = T(X™) for all n.
In particular for RX as above, n;RX(i > 1) is an (augmented) cosimplicial abelian
group.

§10. A COSIMPLICIAL DESCRIPTION OF E.(X; R)

We now give a very useful cosimplicial description of E,(X; R) valid for all R. For this
we need

10.1. The cohomotopy groups of a cosimplicial abelian group

These are dual to ‘‘the homotopy groups of a simplicial abelian group”: for an
(augmented or not) cosimplicial abelian group A we denote by ch A its cochain complex
given by

(ch A)" = A" nz0
=0 n<0

=Y (—1)d": A"t > A"
i=0
and define its cohomotopy groups w’A by

n°A = H%(ch A).
Then we have

10.2. Cosimplicial description of E,(X; R)
Let X € &, and let R be a ring. Then there are natural isomorphisms

ES'(X;R)~n'n,RX fort>s5s=0
=0 otherwise

and similarly:
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10.3. The function complex case

Let W, X € &, and let R be a ring. Then there are natural isomorphisms
ESNW, X; R) = nn, hom(W,RX)  fort>s2>0
=0 otherwise.
Remark 10.4. These statements, as well as their proof, only use the fact that (R, ¢, )
is a triple (4.6). The above description of the E,-term thus remains valid for arbitrary triples.

Remark 10.5. For arbitrary triples, and even for arbitrary rings, there is not much one
can do to improve on the above description of E,. However considerable simplifications are
possible if R is a field and the remainder of this chapter will be devoted to the case R = Z,,.

For R = Q, the rationals, our spectral sequence is closely related to the rational cobar
spectral sequence [1]; our E,-term consists of the primitive elements in the E,-term of the
latter. As this involves *“ the Whitehead productin E,”, we postpone a full account of this
case till [8].

To prove 10.2 and 10.3 we need a
CoLLAPSE LEMMA 10.6. Let X € &y, let R be a ring and let
B: &, — (abelian groups)
be a functor such that the natural transformation B$: B — BR has a left inverse. Then
m'BRX ~ BX  fors=0
=0 otherwise.

This is proved by constructing a contracting homotopy for ch(BRX)

Proof of 10.2 (the proof of 10.3 is similar). Consider, for each k¥ > 1, the double
(cochain) complex C with

C""=m_,D,RRX) kz=2m=0,n>0
=0 otherwise

and the obvious coboundary maps. By 4.4 and 10.6 both spectral sequences for computing

the total cohomology of C collapse and hence, in the required range this total cohomology
is isomorphic to E,(X; R) as well as to n*n, RX.

Remark 10.7. The above determination of E,(X; R) uses only two general properties
of our spectral sequence, namely

(i) The E,-term collapses to n, X whenever X is a simplicial R-module,
(ii) The E\-term depends functorially on RX.

§11. UNSTABLE COALGEBRAS OVER THE STEENROD ALGEBRA

- In this section we consider the category €</ of unstable coalgebras over the Steenrod
algebra < and observe that the Z,-homology functor is actually a functor

Hy( 1Z): Faem bl
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where &, © &, is the full subcategory of connected complexes. Moreover this functor has
some nice properties which imply that E,(X; Z,) depends only on Hy(X; Z,) as an unstable
coalgebra over the Steenrod algebra sf. First we consider

11.1. Unstable «/-modules

Let o denote the mod-p Steenrod algebra graded with upper indices; so o' = 0 for
i < 0. An wunstable right-s/-module then consists of

(i) a graded Z,-module M (with M, =0 for n < 0).
(ii) a multiplication map M ® & — M (with M, ® &' — M, _,) which, in addition to
the usual module properties, has the unstable property

xSq"=0 p=2,degx <2n
xP'=0 podd, degx < 2pn
xpP"=0 podd, deg x =2pn + 1.

Note that, for X € &y, H(X; Z,) is an unstable right of/-module, if the right o/ action on
H,(X; Z,) is defined as in [6].

11.2, A tensor product

For unstable right «/-modules M and N one can turn M ® N into an unstable right
&/-module by defining the right .o/-action with the Cartan formula

(x®y)Sq" = 3, xS¢'® ySq"™! =2
(x®y)P"= Y xP'@ yP""! p odd
i=0

x@YB=x@y+(=D***x@yf  podd
For X, Y € &, there then clearly is a natural isomorphism of unstable right sf-modules
H(X; Z)® Hy(Y: Z,) ~ HyX x Y; Z,).

11.3. The category ¥« of unstable .«/-coalgebras

An object C in this category is both an unstable right of-module and a connected co-
commutative Z ,~coalgebra (see [17]) where these two structures are compatible in the sense
that

(1) the comultiplication map C - C ® C is a right &/-module map

(ii) the p-th root map ( )¢: C, — C; (dual to the p-th power map for commutative
Z,-algebras) satisfies

x& = xSq" p=2degx=2n
xt = xP" p odd, deg x = 2pn.
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Note that, for X € &, (i.e. X connected) we have
Ho(X;Z))ebA

where the comultiplication map is induced by the diagonal X — X x X.

11.4 A triple on ¢/
Let .#% , denote the category of connected graded Z, modules (i.e. trivial in degrees
< 0). Then the forgetful functor
J CA > MY,
(with (JC), = C, for n > 1) has a right adjoint
V:tZ,>€A

siven by
VM = H*(H K(M,, n); Zp)
n=1
and as usual [12] such a pair of adjoint functors gives rise to a triple (T, ¢, ) on €/ with

T=VJ.

In view of 9.4 we can, for an object C € €.« form a cosimplicial object TC (over €.5/).
Using this functor we now state the result mentioned at the beginning of this section.

THEOREM 11.5. Let X € Py, and We Py . Then, for t > 5 >0, there are natural iso-
morphisms
E;»(X; Z,) = n*Homg ,(H\(S"; Z,), THW(X; Z,))
E (W, X; Z,) ~ 7°Homg ,(H(S'W; Z,), THW(X; Z,)).
To prove this we first observe that the triple (T, ¢, ) on €.« is closely related to the
triple (R, ¢, ¥) on &, . In fact

y*c H,( ;2Zp) Cof
F e s MZ.

LemMA 11.6. The diagram (where &, .is the category of connected simplicial Z,-modules
and the unnamed functor is the forgetful one) commutes in the obvious sense.
This immediately implies
COROLLARY 11.7. Let X e F,.. Then there is a natural isomorphism of cosimplicial
objects over €/
HW(Z,X;Z,) =~ TH(X; Z)).
In view of 10.2 and 10.3 it thus remains to prove the following lemma which readily

follows from our knowledge of H(K(Z,, n); Z,) and the fact that each Ye &, , (11.6)
is a product of K(Z,, n)’s.



98 A. K. BOUSFIELD and D. M. KAN

LeMMA 11.8. Let Ye &, . (11.6) and W e & .. Then for t > 1, the functor H( ; Z,)
induces isomorphisms

7, Y =[S, Y1~ Home (H(S"; Z,), H(Y; Z,))
n, hom(W,0) = [S'W, Y] = Home (H(S'W; Z,), H(Y; Z,))

where [ , ] denotes homotopy classes of maps (rel.*).

§12. Ey(X; Z,) AS AN UNSTABLE Ext

In this section we define the ““ unstable Ext” functors Exty * (s = 0) which are, roughly
speaking, the right derived functors of the functor Homg .. Their definition (12.3), together
with 11.5, immediately implies

THEOREM 12.1. Let X € . and We &, . Then, for t > s =0, there are natural iso-
morphisms

E;"(X; Z,) m Exte(HW(S"; Z,), H(X; Z,))
E)>'(W, X; Z,) = Exte  (H(S'W; Z,), H(X; Z,)).

First we consider:

12.2. Right derived function on €</

The theory of derived functors of non-additive functors is presented at length in [2,
3, 18], but for a brief account the reader may consult [4]. In view of these sources one can
for a covariant functor

F: € — (abelian groups)
define its right derived functors #°F as the functors
R°F = n°FT: € — (abelian groups) s=0
where T is as in 11.4.
One can also use a more flexible approach by putting, for C € €./
(#°F)C = 7n°C s>0

where C is any so-called cosimplicial resolution of C, i.e. augmented cosimplicial object
over ¥/ such that (in the notation of 11.4)
i cC'=cC
C* = VG* for some G* € A%, (s 20)
(i) =%JC =JC
7°JC =0 (s > 0).
Note that TC is such a resolution.

Now we define:
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12.3. The functors Ext,

If Be®@s/ has trivial comultiplication (for instance if B = H(S'W; Z,) for some
We %, and t > 0), then the functor Home (B, ) is actually a functor

Homyg B, ): 6 — (Z,modules).

For such B we thus can (and will) apply the above and define the ‘‘ unstable Ext”’ functors
Exr‘@ds(Bs ) by
Exty (B, )= R'Homg (B, ).

§13. THE E,-TERM IN THE MASSEY-PETERSON CASE

In [15] Massey and Peterson constructed for ““very nice’ spaces an unstable Adams
spectral sequence and succeeded in describing their E,-term as an ordinary Ext in a category
of unstable modules over the Steenrod algebra. We now apply Theorem 12.1 to show that
for “very nice” spaces our E,-term (which is an Ext, ) reduces to the Massey—Peterson Ext.

We start by recalling the notion of:

13.1. “Very nice” spaces

Let .# =/ denote the category of comnected (i.e. trivial in degrees < 0) unstable right
&/-modules, let (see 11.1)

J CA - MA
be the forgetful functor (with (J'C), = C, for n > 1) and let
U: Mt >CA

be its right adjoint (if M € 4 </ is of finite type, then UM is just dual to the free unstable
o/ -algebra generated by M* ([24], p. 29)). A complex X € &, then is called very nice (mod p)
if

H (X;Z)~ UM ecbsd for some M € M /.
For example the sphere S", n > 1, is very nice if p = 2 or if p odd, n odd.

13.2. The Massey—Peterson Ex;

The category .# .o/ of connected unstable right «/-modules is an abelian category
with enough injectives. Thus for N e .#.«/ we may define Ext, (N, ) (s =0) as the
usual s-th right derived functor of Hom 4, (N, ).

The Massey—Peterson result [15] then becomes in our framework

THEOREM 13.3. Let X, We &, and let M € M o4 be such that H (X;Z,) ~ UM e 4.
Then, for t > s > 0, there are natural isomorphisms

E)_s"(X; ZP) = EXtﬂds(H*(St; Zp)= M)
E," W, X; Z,) ® Ext 4 (H(S'W; Z,), M).
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This follows immediately from 12.1 and

AN ALGEBRAIC LEMMA 13.4. Let Be 4/ have trivial comultiplication andlet M € # </ .
Then, for s = 0, there is a natural isomorphism

Exty. (B, UM} & Ext .,/ (J'B, M).
To prove this observe that (as in 11.4) the forgetful functor
JMA > ME,
and its right adjoint
VM, A

give rise to a triple (T”, ¢, ) on M 4 with T = V"J” and hence to a cosimplicial object
T"M over M of. Consequently [2, 3, 4, 18] there exists, for s > 0, a natural isomorphism

Ext ,.;'(J'B, M) = n*Hom 4, ,(J'B, T"M)
and in view of the adjunction isomorphism
n*Hom 4 (J'B, T"M) = n*Hom (B, UT"M)

it thus remains to show that UT”M is a cosimplicial resolution in the sense of 12.2. Part (i)
of this is easy, and part (i) also not hard to prove using the fact that the map Jd°: J'"M —
J*T"M has a left inverse together with the following.

LEMMA 13.5. Let M € M# /. Then there is a natural filtration
UM = F°UM > F'UM > F*UM = -+~
such that, for every k > 0, there is a natural isomorphism
Sym* "M ~ J(FFUMIF* Y UM)
where
Sme=kZoSym"X XeHZ,
p-d
denotes the quotient of the tensor algebra on X by the ideal generated by all x* abd xx'—

(=1)™x'x for xe X,,, x' € X,, and Sym*x < SymX is generated by the k-fold products of
elements of X

Proof. For M, N € # s/ there is a natural isomorphism
UM@®@ N~ UM ® UNeb«

since U, as a right adjoint, preserves (categorical) direct products. We therefore can rurn
the coalgebra UM into a Hopf algebra by defining a multiplication by
u(+)

UM ® UM ~ UM & M) —=2 UM
and take as filtration the augmentation filtration [17, p. 252]
UM =F°UM > F*\UM > F?UM > ---
where F'UM is the augmentation ideal and
FYUM = (F'UM)* k2 1.
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It is not hard to show for the Hopf algebra UM that PUM — QUM is a monomor-
phism and that QUM =~ M. Thus the associated bigraded Hopf algebra

E°UM = Y. FFUM[F**'UM

k=0
has the property
PE°UM ~ QE°UM =~ M.
The lemma now follows since [17, 6.11] E°UM is the universal enveloping algebra of the
restricted Lie algebra PE°UM ~ M, and the Lie operations in PE°UM are trivial.
Remark 13.6. The natural isomorphism
Exty (B, UM) ~ Ext ,,'(J'B, M)
of 13.4 can be constructed explicitly as the composite
n*Homg (B, TUM) =~ n*Homg (B, UT"M) = n°Hom 4 ,(J'B, T"M)
where the first isomorphism is induced by the cosimplicial map
TUM - UT'M

which sends (UV"J"J'Y'UM into U(V"J"Y’M by the iterated adjunction map J'U — id, and
where the second isomorphism is as in 13.4.

§14. A CONVENIENT E,-TERM FOR VERY NICE SPACES

In [7] an E,-term (much smaller than that from the bar resolution) was constructed
for the mod-p Adams spectral sequence; and subsequently in [6] a similar unstable E,-term
was obtained for very nice spaces in case p = 2. Using theorem 13.3 this result of [6] will
now be extended to odd p, thereby making possible mod-p computations of the sort done
mod-2 in [11], e.g. computing E,(S?"*'; Z,) in a range. Throughout this section p will
thus be odd.

We first recall from [7], with a slight change in sign,

14.1. The algebra A

This will be the differential graded associative algebra with unit (over Z,) having:

(1) A generator J; of degree 2i(p — 1) — 1 for each i > 0.
(ii) A generator u; of degree 2i(p — 1) for each i > 0.
(iii) For every i > 0 and k > 0 the relations

(p— k=) -1

Jidpirs = Z(—l)f“(
jzo0 J

Visescshuies
: - DWk-)—-1
Aifyivg = Z (—1)”1((17 )(] 7 )A'H—k—jupi-'—j

Jj=0

+ Y (_l)j((p — 1)k —j)) Meon b

jz0
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and for every i > 0 and k = 0 the relations

—DYk~-N~-1 '
:ui’lpi+k+1 = Zo(“l)jﬂ((p X ; 7 ).ui+k~j)“pi+j+1
iz y

J
; - Dk-NH-1
Hillpitg+1 = j;o(“l)”l((l) )(j 7 )/"i+k~j”pi+j+1'

(iv) A differential § given by

=Y. (—1)"“((”_1)(". “’j)”l)ﬂ.kw,.zj k=1

ji=0 J

= vl =Dk -N—-1 ‘
Oy = jgo( 1) ( j )lk—jﬂj

n Z(—w‘((p" li.(k"j)),uk_,.zj k>0

jz1
Axy) = @x)y + (= D"E*x(@y)  x,yeA.

A monomial vy = v, *-+ v, of generators (with each v =4 or p) is called allowable
if 44y S<pip whenever v, =, (1<k<s—1) and if i, <pi— 1 whenever v, = 4,
(I <k<s—1). Then A has a Z,basis given by all allowable monomials (including the
empty monomial 1). Note that

A=@N

520
where A°® is generated by the monomials of length s.

Remark 14.2. Actually there is a slight difference between A and the E*S of [7, p. 340]
since the latter has
d'(xy) = (= D)*®(d %)y + x(d'y).
To be precise, there is an isomorphism (E'S)* ~ A of differential graded algebras, where
(E'S)* equals E'S as a differential graded Z,-module but has a new multiplication #
defined by
X#y={(— 1)(deg x)(degy)xy_

We have also expressed our formulae in allowable form and used v, instead of v,_,. Finally,

we confess that the right side of the formula for d'y,_; in [7, p. 340] should have been
multiplied by —1.

14.3. The cochain complex M ® A

For M e #s/ let M &® A® denote the subspace of M ® A® generated by all x® v,
with v; = v;, - -+ v;, allowable, deg x > 2/, if v;, = 4;, and deg x = 2/, + 1 if v; = ;. Then
M & A will be the cochain complex with

MEAY=MEAN 520
Hx®vy) = (=1 ¥ xP'® v,
(i>0)
+ Y XBP'® pvy + (=D *x @ dvy

iz0

bigraded by giving x ® v; € M & A® bidegree (s, t) with 1 = + deg x + deg v,.
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The main result of this section then is
THEOREM 14.4, For M € Ao/ and p odd, there is a natural isomorphism
Exts, JH(S"; Z,), M) = H*'(M & A).
And this together with 13.3 yields

COROLLARY 14.5. Let X € ¥, and M e Mo be such that H(X;Z,)~ UM e Cof
Then, for t > s = 0, there is a natural isomorphism

E (X5 Z) ~ HY' (M & A).

The mod-2 version of 14.4 was proved in [6, 3.3] using functors Q and Q! of Massey-
Peterson. A similar proof works in our case using mod-p functors Q and Q' defined as
follows:

For p odd and M e .#.o/ let SM € .# s/ be given by (SM); = M;_, with the same
sf-action as M. This suspension functor has a right adjoint, the loop functor Q, and this
functor Q has a first derived functor Q. A more explicit description of QM and Q'M is
by means of the exact sequence

0 SQM » M —2— DM - SQ'M -0
where DM € # s is given by
(DM), = M,, for g = 2pn
=M;,41 forg=2pn+2
=0 otherwise
with right operators PP* and PP**! corresponding to
P5: Moy nno-1y — M, mkz=0
BP*: Mypiako-1)+2 = Mayss nkz20
and B and all other P' vanishing, and {: M - DM e .# &/ is the map corresponding to
P':M,,,— M, n=0
BP": Myppia=> Mayyiq n=0

As in the mod-2 case one then obtains an algebraic EHP sequence [6, 3.5] involving
HQM &® A), HM & A) and HQ'M & A) and this readily leads to a proof of 14.4.

Remark 14.6. One often writes
Extiyb(Z,, M) for Ext ./ (H(S"; Z,), M).

Remark 14.7. Actual computation of H(M & A) is greatly facilitated by ‘separating
off the towers”’ [5, 2.3]. For M e # .o/ and p odd, let OM =« M & A be the subcomplex
generated by all x®v;e M ® A® with vy =v, --- v, allowable and v;, = 4,;, and let TM
be the quotient complex of M & A such that
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(TM° =M
(TM)I =M® o
(TMY =M@ (1o ® ¥ My, @A)~ 522

Then one has a long exact sequence
o> H " 'TM - HOM - H((M & A) - H'TM -+

§15. APPENDIX: E,-TERM FOR A K(G, n)

For the computation of E,(K(G, n); R) for G abelian and R any commutative ring, it
suffices, in view of §8, to calculate E,(K(G, n); Z) (which was done in 4.4) and E,(K(G, n); Z,)
for A > 2. This will be done below.

Let ker(G, Z,) and coker(G, Z,) denote the kernel and cokernel of the obvious composi-
tion
Tor(G,Z,) - G—-GQ® Z,.
Then we have
THEOREM. 15.1 For G an abelian group, n > 1 and h = 2 there are natural isomorphisms
E»YK(G, n);Z)~G® Z, fors=0, t=n
~ coker(G,Z,) fors>0, t—s=n
~ ker(G, Z,) fors>20, t—s=n+1
=0 otherwise.

Our proof of this theorem will depend on the following result which is of interest in its

own right. Let M denote the Moore space given by the mapping cone of S'_*_ S’ and
for X € &, let

(X ; Zy) = 7,_ 5 hom(M, X) nx=2
Then we have

LemMa 15.2. For X e &, connected, h>2, t =3 and s =0, the ring homomorphism
Z — Z , induces on isomorphism
wn(ZX; Z,) = w'n(Z,X; Z,).
Proof of 15.1. Let Y = K(G, n) and ¢t > 3. Then by 15.2 and the function complex
version of 4.4
w°n{Z,Y; Z,) =~ n(Y; Z,) fors=0
~0 otherwise.
Moreover
7(Y;Z)~ G® Z, fort=n
~ Tor(G, Z,) fort=n+1
~0 otherwise
and the theorem now follows readily from 10.2 and the cohomotopy long exact sequence
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of the short exact sequence of cosimplicial abelian groups
0-nZ,Yonll,Y,Z)>7n,L,Y—>0.
To prove 15.2 we need in turn
LemMA 15.3. For X € &, connected, m > 1 and t > 3 the map
1(Z"X: Z,) > n(Z"Z, X ; Z))
induced by the map ¢: X — Z, X has a natural left inverse r,, .

Proof of 15.2. The function complex version of 4.4 and the collapse lemma 10.6
together with 15.3 show that for 71 >3 and j > 1

”snr(z(zh)jxi Zy) = "r((zh)jx§ Zy) s=0

=0 s>0
' Z/Z, X; Z) R n(Z'X; Z,) s=0
~0 s> 0.

Hence both spectral sequences of the double cosimplicial abelian groups n(ZZ, X; Z;)
collapse. This readily implies the desired result.

Finally, to prove 15.3 we need

15.4. The functor Z*

For X € &, let Z7™ X be the free abelian monoid generated by X with the base point
(and its degeneracies) put equal to 0 and let ¢: X — Z* X be the usual inclusion. Then
[22] for X € &, connected, the natural map

e Z X > n,ZX
is an isomorphism.
Another useful property is:

PROPOSITION 15.5. For X € & there is a natural map ©: Z*Z, X - Z, Z* X such that

the following diagram commutes
Z*X
+
z / \P‘

FAVID (LY A AD ¢

Proof. Replace the usual functor Z, by the equivalent functor
Z,X = {Z nxinez,, x;€e X,y n = 1}.

Now Z,Z*X is an abelian monoid with monoid multiplication induced by that of the
mod-# group ring on Z* X. The map

Z,d: Zy X > Z, 2% X
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of pointed sets extends to a unique map t of abelian monoids and this t has the desired
properties.

Proof of 15.3. For any X € &, there is a natural ismorphism #n(ZX; Z,) ~ n,Z, X
given (for example) by the composition

n(ZX;Z)y>H(ZX;,Z,) =n,Z2,ZY > n,Z,Y
where the first map is the Hurewicz map. This easily implies the case m = 1 and we proceed

inductively. Given r,,_, for some m > 2, it will suffice to construct a natural left inverse to
the map

n(Z" 2 X; Z) > nZ" 12V Z,X; Z,)
induced by ¢: X — Z, X. Such an inverse is given by the composition
n(Z" 1 ZYZ, X Z) — nlZ" V2,2V X Z,) s (22X Z,)
where the first map is induced by 1: Z*Z, X - Z,Z7 X.
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