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Sl. INTRODUCTION 

IN THIS paper we start the investigation of a spectral sequence (E,(X; R)} defined for every 

space X (with base point) and ring R, which, very roughly speaking, goes from R-homology 
to R-homotopy. Before trying to explain its construction we list its 

1 .l. Main properties 

(i) Convergence. Under suitable hypotheses (a-o. x,X = 0) 

UGG; Q>>*=*x@ Q 
(E,(X; Z,)} * n, X/(torsion prime to p). 

(ii) The E,-term. If R is a field, then the Er-term depends functorially on R,(X; R) 
(I?, denotes reduced homology) and the differential dI (and hence the E,-term) depends 

on only primary operations. In particular, for R = 2, , the E,-term is an “ unstable Ext ” 

depending only on the structure of H,(X; Z,) as a coalgebra over the Steenrod algebra. 

(iii) {E,(X; Z,)} is an unstable Adams spectral sequence; i.e. for R = Z, our spectra 

sequence coincides, in the stable range, with the Adams spectral sequence. 

(iv) Comparison with other unstable Adams spectral sequences. These are: 

(a) The Massey-Peterson spectral sequence (see (151 for p = 2, $13 for p odd), 

which has the right E,-term (i.e. the unstable Ext mentioned above), but is only 

defined for “ very nice ” (see 13.1) spaces. 

(b) The accelerated 2-lower central series spectrul sequence [6, 201, whose E,-term 

depends in general on higher order operations, but is “ right ” for “ nice ” spaces (these 

include loop spaces, but not wedges of spheres). 

(c) The p-derived spectral sequence (1.3), whose E,-term also depends, in general, 

on higher order operations, but is “ right” for “ nice ” spaces. 

(d) The Hopf tower spectral sequence [21] which is defined for various pseudo Hopf 

spaces and has the “right” E,-term in the case where it is known. 

7 This research was partially supported by the NSF and U.S. Army Research Office (Durham). 
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As mentioned above our spectral sequence is defined for all spaces and always has the 

“right” &-term. In a future note we expect to show for “ nice” spaces that it coincides from 

E2 on with (b) and (c). Presumably for “very nice” spaces it coincides from E, on with all 

the above spectral sequences. 

(v) Generalization to function complexes. As usual there is such a generalization. 

(vi) Pairings andproducts. The spectral sequence admits smash and composition pair- 

ings as well as Whitehead products. 

We now try to explain the 

1.2. Construction of the spectral sequence. 

This is based on the following homotopy version of the Hurewicz homomorphism: 

For any ring R and space X with base point * one can (if one works in a suitable category 
of topological spaces [23]) define a topological left R-module RX as the left R-module with 
a generator for every point of X and one relation 1 . * = 0, topologized by the requirement that 
the inclusion 6: X -+ RX be continuous and open. The usefulness of this construction lies in 

the fact that: 

(i) There is a natural isomorphism 

Z, RX z i?*(X; R). 

(ii) As RX is abelian it has trivial k-invariants and hence its homotopy type depends only 
on its homotopygroups and therefore on H,(X; R); if R is afield, this dependence is functorial. 

(iii) The homomorphism 

4% 
7t,X - rt* RX w &.(X; R) 

is the Hurewicz homomorphism. 

Our spectral sequence then is the homotopy spectral sequence of the natural tower of 

fibre maps 

Cl 
. . . 

-+ L&+,X - D,X+-..-+ D,X 
d 

--+D,X=X 

obtained by defining 6: D,,lX -+ D,X as the fibre map induced by the map D, 4: D,X -+ 
D, RX (from the path fibration over D, RX). Observe that: 

(a) The IZ* D, RX, and hence the El-term, depends only on B,(X; R), although not 
functorially (unless R is a$eld), and 

(b) as always the images of the 7c* D,X filter Z+ X and the associated graded group is 
naturally isomorphic with the Em-term or a subgroup thereof. 

This is what we meant by our statement in the beginning that the spectral sequence 

goes from R-homology to R-homotopy. 

Remark 1.3. The homotopy spectral sequence of the more obvious tower 

d’ d’ 
. . . 

-‘DL+IX - D;X+ *a. -r&X- D;X= X 
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obtained by defining 6’: D,i+lX + D,‘X as the fibre map induced by the map 4: DiX -+ 

RDiX is nothing but the derived spectral sequence (which, for R = Z, , coincides with the 

p-derived series spectral sequence). It has, of course, the just mentioned property (b), but 

not property (a), as in general n, RD,‘X does not depend only on H,(X; R). 

The paper is written semi-simplicially and freely uses the notation and results of 

[I 11, [14], [16]. This is, of course, not essential and a more topologically oriented reader 

should have no problems translating the results into for him more understandable language. 

There are two chapters and an appendix. 

In $2 and $3 we lay the foundations for the definition of the spectral sequence ($4). 

In $5 we show that our spectral sequence, for R = Z, , is an unstable Adams spectral sequence 

(by comparing it with the derived spectral sequence), while $6 contains a more precise 

formulation of the above convergence statements as well as their proofs; the latter rely 

heavily on the Curtis-Rector and Curtis convergence theorems [lo], 1201 for the (p)-lower 

central series spectral sequences. And in $7 we show how all this can be generalized to 

function complexes. We end the first chapter with the observation ($8) that the spectral 

sequence for arbitrary commutative R is completely determined by the spectral sequences 

for R = 2 and R = Z,j (p prime). 

Chapter II deals with the &-term, mainly for R = Z, . In $9 and $10 we give a cosim- 

plicial description of &(X; R) which we use in $11 to show that E,(X; Zp) depends only 

on H,(X; Z,) as an unstable coalgebra over the Steenrod algebra. (We state our results in 

terms of homology as this seems the natural thing to do. However a reader who prefers a 

cohomological approach should have no problem translating our results into cohomological 

terms, if he is willing to impose suitable jiniteness conditions on X.) In $12 E,(X; ZP) is 

described as an unstable Ext which ($13) for “ very nice” spaces coincides with the Massey- 

Peterson Ext. And in $14 we give, for “very nice” spaces and p odd, a convenient &-term 

(the case p = 2 was done in [6]). 

An appendix contains the calculation of E,(K(G, n); R) for abelian Gandcommutative R. 

The construction of the various pairings and products requires completely different 

techniques and will be published separately [8]. 

CHAPTER 1. THE SPECTRAL SEQUENCE 

92. PRELIMINARIES 

We start with a quick review of some well known constructions in the category 9, 

of simplicial sets with base point * and its full subcategory .Y,, of Kan complexes with 

base point. 

2.1. Simplicial modules generated by simplicial sets 

Let X E 9, and let R be a ring (with unit). Then RX E 9’,K will denote the simplicial 
R-module (with 0 as base point) generated by the simplices of X, with the base point of X 

(and its degeneracies) put equal to 0, and we will write 
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X-RX and RRX’RX 
4 

for the map given by 4x = 1 * x for all x E X and the (left) R-module homomorphism given 

byt,G(l+y)=yforallyoRX. 

The usefulness of this construction is due to the following two properties: 

(i) (R, 4, t+k) is a triple in the sense of [12]. 
(ii) There is a natural isomorphism 

Z* RX FZ t?,(X; R) 

(where R, denotes reduced homology) such that 

+* 

is the Hurewicz map. 

We also need: 

x,X - 71~ RX z I&(X; R) 

2.2. The (standard) path fibration 

For X E ,40*K we mean by the (standard) pathjibration over X the map 

I 
AX-XEY*K 

where AX is the (standard) path complex, i.e. the simplicial set of which an n-simplex is 

any x E Xn+r such that dl - - * d, + 1x = * and of which the face and degeneracy maps 

dr 
AX, - AX”_, 

si 
AX,, - AX,.1 Oliln 

are the functions induced by the maps 

X 
di+l St+, 

II+1 - xn X n+1- Xn+2 OSiSn 

and where I is the map induced by the O-face operator 
do 

AX,, c Xn+r - X,. 

Clearly 1 is ajibre map with contractible total complex. 

93. DERIVATION OF A FUNCTOR WITH RESPECT TO A RING 

For an efficient definition of our spectral sequence and proof of its convergence (under 

suitable hypotheses, of course) we need the notion of 

3.1. Derivation of a functor with respect to a ring 

Let R be a ring (with unit) and let T: Y, -+ 9, be a covariant functor which respects 

,40,, (i.e. X E YeK implies TX E Y,,). Then we define a functor 

DIT:Y,+Y, 

(the derivation of T with respect to R) and a natural transformation 

6: D,T + T 
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by requiring that for each X E 9, the map 6X: (DIT)X -+ TX is thefibre map induced by 
the map TI$: TX + TRX from the pathjbration (2.2) over TRX, i.e., D,T and 6 are deter- 

mined by the pull back diagram 

D,T- ATR 

This definition is natural with respect to T, i.e. a natural transformation y: T -rT’ induces 

a natural transformation D,y: D1 T + D,T’. 

One readily verifies 

PROPOSITION 3.2. If T respects 9’,, , then so does D, T 
Therefore we can make the following: 

3.3. Notational convention 

(i) If X E Y, and Id: 9, --+ Y, denotes the identity, then we write 

0,X for (Dl . - - (D,Zd) . - .)X. 

(ii) If X E 9, and T,, . . . , T, : 9, -+ 9, are functors which respect L%‘,~, then we write 

D, T1 . . - T, X for (Dl . * .(D,(T, . . * T.)) * * *)X. 

Note that this implies that in general 

D,(TX) # D,TX. 

Other obvious properties of the derivation are: 

3.4. Preservation of weak homotopy equivalences 

If y : T -+ T’ is a natural weak homotopy equivalence, then so is D,y : D, T + D, T’. 

3.5. Preservation of fibrations 

rf 
I P 

T’ - T - T” 

is a naturalfibration (i.e. for every X E 9,) pX: TX --+ T”X is a fibre map with ix: T’X + 
TX as fibre), then so is 

Di DP 
DT’ - DT - DT”. 

For later reference we also state (a). 

TWISTING LEMMA 3.6. Let s > 0. Then the natural transformations 

Did: D,,,T -+ D,T Oli<s 

are weakly homotopic. 
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Proof. For X E 9, let j: X + Sin/X\ denote the natural map of X into the singular 

complex of its realization [16]. Then one readily verifies that the compositions 

DiS 
D,T- D,T --% D, SinIT i=O,l 

are naturally homotopic, which proves the lemma for s = 1. The general case now follows 

from 3.4. 

54. THE SPECTFtALs SEQUENCE 

Now we can define the homotopy spectral sequence of a space X E Lf’* with coefficients 

in a ring R and discuss some of the immediate consequences of this definition. 

4.1. The spectral sequence 

Let X E 9, and let R be a ring. The homotopy spectral sequence {E,(X; R)} (or short 

{I?, X>) of X with coefficients in R is the homotopy spectral sequence of the sequence of fibre 

maps 
d d d 

se.- D,X- D,_,X-+...-+D,X - D,X=X 

fringed in dimension 1. By this we mean that 

E,“,‘X = n,_, D,(RX) t-12sTO 

= 0 otherwise 

and that 

E:s’X = ker d,_Jim d,._, t-l>s20 

but in dimension 1 

E,“, ’ + ’ X c E:_“: ‘X/in1 d,_ 1 S20 

as we define E:“‘lXby 

E :,‘+lX = Z~Y:‘X/im d,_, s 2;o 

where Z,? “1’ ’ X c EF::“X consists of what would have been the cycles, i.e. the elements 

for which the image under the boundary map 8: I~,D,(RX) --t x0 D,+,X lifts to x0 D,,, X. 

One has of course, to verify that 2,“: “1’ ’ X is indeed a group; but this readily follows, by 

induction on r, from the observation that: 

(i) A spherical l-simplex y E D,(RX) can be considered as an (s + 1)-simplex v E R’+‘X 

(R’+’ denotes the (s + 1)-fold iteration of R) such that di u lies in the image of the map 

Ri~:R”X-+Rst’XforOIi<sandd,v=d,,,v=*,and 

(ii) the simplex y represents an element of Z:Z:’ X if and only if there is an (s + r)- 
simplex w E R’+‘X such that di w lies in the image of the map R’+: RSt’-lX+ R’+‘X for 

O<i<s+r,d,+,w=*and 

d s+1 .-- dSt,_l w = (R’+“-‘c$) *.* (Rs+‘~)u. 
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4.2. Why the fringe and not an edge 

We fringed the above spectral sequence (i.e. defined E, in the bottom dimension in the 

most natural way without worrying whether in this dimension also E, = H(E,_l, d,_,)) 
instead of edging it (i.e. defining E,. in the bottom dimension in such a manner that in this 

dimension also I?, = H(E,._ 1, d,_ 1)) because : 

(i) The edging can be done in several different ways, each of which has some advantages 

as well as disadvantages which seems to suggest that edging may not be the “ right” thing to do. 

4.3. Dependence of E, X on I?,(X; R) 

(ii) There will no longer be any need for special statements about the bottom dimension. 

An immediate consequence of the definition of the spectral sequence is 

The E,-term E, X depends only on the homotopy type of RX, i.e. on B,(X; R) as a graded 
abelian group. Moreover, if R is ajeld, then this dependence is functorial. 

For simplicial R-modules we have the following 

4.4. Collapsing lemma 

Let X E 9, be a simplicial (left) R-module. Then 

E2”g’X zz &“*‘X = 0 ,for s > 0 

EzoS’X = E,‘,‘X z 71, X ,for t > 0 

Proof: Let 3’ : RX -+ X be the (unique) R-module homomorphism such that 

$‘& = id: X+X. 

Then for all s > 0 

(D,t,V)(D,$) = id: D,X+ D,X 

and the lemma readily follows. 

We end with: 

4.5. Some trivialities about E, X and E, X 

(i) d, : E: ‘X -+ E,S+‘r *+r-lJ/. 

(ii) E,.“;iX c Er”*‘X for r > s. 

(iii) E,“* f X = n E,“, f X. 
rts 

(iv) for t - 1 2 s 2 0 there is a natural short exact sequence 

0 + (FS/FS+‘)n,_,X e EmS3’X -+ F”Tc-~._ 1DS+ ,X n ker 6, + 0 

where FYza D, X = im(rc, D, + u X -+ 7~~ D, X) 

and Fwn9 D, X = n FYc, D, X. 
Y 
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Remark 4.6. The only property of the functor R : Y, + 9, that was used (except in 
4.2) was that (R, 4, $) is a triple in the sense of [12]. Similar results thus hold for other 
triples such as, for instance, Milnor’s free group functor F [l 11. 

$5. COMPARISON WITH THE ADAMS SPECTRAL SEQUENCE 

We will show in this section that our spectral sequence coincides in the stable range with 
the well known derived spectral sequence and hence, for R = Z, , with the Adams spectral 
sequence. 

First we recall the definition of: 

5.1. The derived spectral sequence 

For X E Y, and R a ring let 

e.0 + D;,lX 
d’ 

- D,‘X -_* -. . + D,‘X 
d’ 

- D,‘X = X 

be the tower of fibrations where each 6’ is thefibre map induced by the map C$ : D’, X -+ RD’, X 
from thepathfibration over RD’,X, i.e. 6’ is given by the pull back diagram 

D;+ ,X - ARD,‘X 

I 
6’ 

I 

A 

D,‘X Q + RD,‘X. 

The derived spectral sequence of X with coefficients in R then is the homotopy spectral se- 
quence of this tower, fringed and indexed as in $4. 

For R = Z, and in the stable range this clearly is the Adams spectral sequence 

In order to compare the derived spectral sequence with ours we need the fact that 
D,(RX) can be turned into a simplicial R-module. To be precise 

LEMMA 5.2. For s 2 0 there is a natural isomorphism 

h, : (D, R)X z D&RX). 

Proof. Let 
f 

RRX- RRX 

denote the natural twisting map given by 

tu = &,h - u + (Rc$)$u 

for all u E RRX. Then one readily verifies that tt = id and that the diagram 

RX 

/’ \ 
\ 

Q/ 
/ 

\t 

R:X k R;;X 
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commutes. Now let h, = id and inductively define h,+I as induced by the diagram 

(D, RP 
hS 

’ Q(RX) 

(&R)Q 

I 

DV 

(D, R)RX -f-f+ D,(RRX) D.f D,(RRX). 

5.3. Comparison of the spectral sequences 

In order to compare the derived spectral sequence with ours we construct a commuta- 

tive ladder 

6’ 
. . . 

+ D:+I X----+D,‘X-+~~~--+X 

by putting f. = id and inductively defining fs+l as the map induced by the diagram 

D,‘X 
/. 

D,X 

I rp D.Q 

RD,‘X -=+ RD, X --% 
I 

(D, R)X h. D,(RX) 

where g, is the extension of the (obvious) map D, X-t (D, R)X to a homomorphism of 

simplicial R-modules. This ladder induces a map from the derived spectral sequence to 

ours which, according to the following lemma, is an isomorphism in the “stable range”. 

We leave to the reader the task of interpreting the term “ stable range” precisely. 

LEMMA 5.4. The maps 

f. 
D,‘X- D,X 

RD,v’X 2 (0, R)X 

induce isomorphisms of the homotopy groups in the “stable range”. 

The proof is straightforward using induction on s first for gS and then forf, . 

COROLLARY 5.5 The homotopy spectral sequence with coeficients in 2, coincides, in the 
“ stable range”, with the Adams spectral sequence. 

06. CONVERGENCE STATEMENTS 

It is clear from 4.4 (iv) that, in order that our spectral sequence has some use, one needs 

more information about Fmrc 9 D, X. In general there is, of course, not much one can say, 

but for simply connected X E 9, we can make the following convergence statements. 



88 A. K. BOUSFIELD And D. M. KAN 

6.1. The integral case. 

Let R = Z, the ring of the integers. Then for t - 1 2 s 2 0 

F%,_, D, X= 0. 

COROLLARY 6.2. For t - s > 1 

F”n,_,X=O 

(FS/FS+‘)n,_, X & E,‘,‘X. 

It is not hard to show that this implies 

6.3. The case of subrings of the rationals 

Let Jbe a set ofprimes and let R = Z[J-‘1 the ring of those rationals whose denominators 

involve only primes in J. Then the above isomorphisms hold when tensored with Z[J-‘1. 

Furthermore we can state (still assuming that X E 5“, is simply connected) 

6.4. The mod-h case 

Let h be an integer > 1 and let R = Z, , the ring of the integers module h. Then for t - 1 

>S20 

F”n,_,D,X= ~h”n,_,D,X. 
” 

COROLLARY 6.5. If n,X isfinitely generatedfor all g (and X is simply connected, qf course), 

then for t - s > 1 

Fmnt_ s X = n hUx,-s X 

(FS,FS+l)zt_,; & E,“,‘X. 

Remark 6.6. These convergence statements are not best possible. For instance the con- 

dition imposed on X in 6.5 can be somewhat relaxed. And it seems likely (see [19]) that the 

simple connectivity of X can be replaced by some weaker condition. 

We first give a proof of 6.4 and then indicate what changes should be made therein to 

obtain a proof of 6.1. 

Proof of 6.4. Obviously for t - s = g > 0 

F”n,D+ nh%,D,X 
” 

The proof of the inclusion in the other direction essentially consists in constructing (for 

every prime p that divides h) a map from our spectral sequence to the p-lower central series 

one and then using the following slight generalization of the Curtis-Rector convergence 

theorem : 

Let X E 9, be simply connected, let s 2 0, let p be a prime, let 

- - . --f l-i+l + Ti --+ . . . -+ rl = Id 
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be the p-lower cent4 series functors [20] and let G be the loop group functor [16]. Then, for 

g 2 0, an element of ng D, GX is in the image of zg D, Ti GX.for all i ifand only ifit is divisible 
by pi for all i. 

Proof. The “if” part is obvious. For the “only if” part we need the following property 

of the pth power map 5: r,. GX-, rPr GX [20, $41: There exists an integer N (depending on 

g + s) such that 5 *: nj r* GX -+ rcj I-,,,. GX is an isomorphism whenever r 2 N andj I g + s 

This implies that 

(D,& : rcg D,l-,GX+ zg D,I-,,GX 

is an isomorphism for r 2 N and the “ only if” part follows as in [20]. 

We now return to the proof of 6.4. In view of 3.5 it suffices to show that for g 2 0 

Fmq, D, GX c fl I~“Tc~ D,GX. 
” 

Thus, by Curtis-Rector, all one has to do is, construct for every prime p that divides h, every 

s 2 0 and g 2 0 and every reduced X E Y, (i.e. X has only onevertex) a commutative ladder 

..*---,~c~D~+~GX -+ n,D,+i_,GX-+...-,n,D,GX 

(6.8) 
I I I 

id 

~~~--rIr,D,~~i+,GX--,n,D,~~iGX--*~~~--*n,D,~GX. 

And for this it suffices to construct natural commutative ladders in P’,, 

(6.9) 

. ..+DiGX+Di_.GX-+...+ D,GX =GX 

I I I 
id 

*.* + c,+,x - c,x-+ “.--* C,X = GX 

and 

(6.10) 

‘*-l-l+1 GX-+r,GX--+..*-+GX 

I I lid 
‘** + c,+,x - CiX -+.-.--+ GX 

such that in (6.10) the vertical maps are homotopy equivalences, because then (6.8) is 

readily obtained by applying rr9 D, to (6.9) and (6.10) using the twisting lemma (3.6). 

It thus remains to construct the ladders (6.9) and (6.10). To construct (6.9) we assume 

that there exist functors N, from simplicial Z,-modules to Y,, and natural transformations 

Ci -+ N, Z, such that 

ci+l - ANiZ P 

I A 
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is a pull back diagram. The map Di GX -+ Ci+l X then can be defined as the one induced by 

the composition 

Di_,GZ,X--t Di_,GZ,X --* CiZ,X 3 NiZ,Z,X ~ NiZ,X. 

And finally to construct a ladder (6.10) satisfying the above extra assumption we observe 

[l 1] that there exist functors Mi from simplicial Z,-modules to ,40,K such that 

TiGX/Ti+,GX= MiZ,X. 

Supposing inductively that T,GX+ Ci X is a trivial cofibration (i.e. a l-1 weak homotopy 

equivalence), it will suffice to construct Ni together with a natural diagram in Y,, 

TiGX ~ CiX 

I I 
MiZ,X - NiZ,X 

such that the bottom map is also a trivial cofibration, which is not hard to do since the map 

on the left factors through r,GZ, X and since trivial cofibrations are preserved under co- 

base extensions, i.e. push-outs, in Y,. 

Proofof6.1. This is essentially the same as the above proof of 6.4 except that one uses. 

(i) Z instead of Z,, and Z, 

(ii) the integral lower central series functors [lo], and 

(iii) the following slight variation on the Curtis convergence theorem: 

Let X E 9’* be simply connected and let s 2 0. Then for g 2 0, no non-zero element of 
7~~ D, G X is in the image of rtg D, Ti GX for all i. 

For s = 0 this is the main result of [lo]. The rest is an easy induction on s. 

Remark 6.7. Using similar arguments it is not hard to show that the homotopy spectral 

sequence that resulted from Milnor’s free group functor F (4.5) has the same convergence 

properties (6.1 and 6.2) as the integral homotopy spectral sequence. 

57. GENERALIZATION TO FUNCTION COMPLEXES 

The results of the preceeding sections will now be generalized to function complexes. 

We start with recalling the notion of 

7.1. Function complexes with base point 

For W, X E Y* the function complex with base point 

hom( W, X) E 9, 

has as rz-simplices the maps 

A[n] A W-+ XE~‘* 

where A[n] A W is obtained from A[n] x W by collapsing A[n] x {*}, and has face and de- 

generacy operators induced by the standard maps [16] 
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A[n - 11 A A[nl A[n + 11 A AIn]. 

Its main property is: 

If X E 9’,, , then hom( W, X) E Y,, (i.e. hom(W, ) respects Y,, and the elements 

of zg hom( W, X) are in l-l correspondence with the homotopy classes (rel *) of maps Sg W -+ X 

(where Sg W denotes the g-fold suspension of W). 

Now we can define 

7.2. The spectral sequence for function complexes 

Let W, X E Y, and let R be a ring. The homotopy spectral sequence {E,( W, X; R)} (or 

short {E,.( W, X))) of hom( W, X) with coejicients in R is the homotopy spectral sequence of 

the sequence of fibre maps 

***-+ D,hom(W, X) d - D,_,hom(W, X) --+a** -+ hom(W, X) 

again indexed and fringed as in $4. Thus 

EIS,‘( W,X) = IC~_# D,hom( W, RX) t-l 2s20 

= 0 otherwise. 

The results of $4 and $5 readily generalize to function complexes. The same holds for 

$6 except that 

(i) for the generalizations of 6.1, 6.2, 6.3 and 6.4 one has to assume that X E Y,, 

(otherwise Itonz( W, X) may have the “ wrong” homotopy type), that X is simply connected 

and that W has the weak homotopy type of a finite dimensional complex. 

(ii) for the generalization of 6.5 one has to assume that X E P’,, , that X is simply 

connected, that 7cg X is finitely generated for all g, and that W has the weak homotopy type 

of a finite complex. 

The proofs use the same arguments. 

$8. THE COEFFICIENT RING 

We end this chapter with some results which imply that the spectral sequences 

{E,(X; 2)) and {I&(X; Z,,)}(p prime) determine all the spectral sequences (E,.(X; R)} with 

commutative R. 

Throughout this section all rings will be commutative and @J will denote OI. The 

proofs (of 8.2 and 8.6) will be given in [9]. 

8.1. The core of a ring 

The core of a ring R is the subring 

cR={x~l~x=x~l~R@R}. 
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The usefulness of this notion is due to 

REDUCTION THEOREM 8.2. For X E Y, and R a ring, the inclusion CR c R induces 

isomorphisms 

E,(X; CR) z E,(X ; R) for r 2 2. 

Moreover 

Er”,“(K(Z, n); R) x CR for r 2 2 

i.e. this reduction is best possible. 

COROLLARY 8.3. ccR = CR. 

To find out which rings can serve as cores we therefore define 

8.4. Solid rings 

A ring R is called solid if CR = R. 

8.5. Examples of solid rings 

(i) The cyclic rings Z,, for h 2 2. 

(ii) The subrings of the rationals, i.e. the rings Z[J- ‘1 where J is any set of primes (6.3). 

(iii) The product rings Z[J-‘1 x Z,, where each prime factor of h is in J. 

MOI eover we have 

8.6. Description of all solid rings 

(i) A ring R is solid if and only if the multiplication map R @ R + R is an isomorphism. 

(ii) Every solid ring is isomorphic to a direct limit (over a directed system) of the rings 

of 8.5. 

The statement at the beginning of this section now follows immediately from the 

following proposition (of which the verification is straightforward). 

PROPOSITION 8.7. Let X E Y* and r 2 2. 

(i) if R = lim Ri is a direct limit over a directed system, then 

E,(X; R) z lim E,(X; R,). 

(ii) If R = Z[J-‘I, then 

E,(X; R) w E,(X; Z) @ R. 

(iii) [feither R x R’ = Z,,, x Z, with (m, n) = 1 or R x R’ = Z[J-‘1 x Z, with h and .I 

as in 8.5 (iii), then 

E,(X; R x R’) w Er(X; R)@ Er(X; R’). 
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CHAPTER II. THE &TERM FOR R = Z, 

$9. COSIMPLICIAL OBJECTS 

We will investigate E,(X; R) using cosimplicial methods and therefore start with 

recalling the notion of an (augmented) cosimpliciul object and (following Godement [ 131 and 

Eilenberg-Moore [12]) giving our prime example: the resolution of a space with respect to 

a ring. For the moment we will nof yet assume that R = 2,. 

9.1. Cosimplicial objects 

A cosimplicial object X (over a category U) consists of 

(i) for every integer n 2 0 an object X” E 55’. 

(ii) for every pair of integers (i, n) with 0 2 i I II coface and codegeneracy maps 

8: X”_’ +X” Si: Xntl --t X” 

in 48 satisfying the identities 

djjdi = did.i - 1 for i <,j 
sid’ = d’s’- 1 for i <,j 

z id for i = .j, .j + 1 
= di-lS.i fori>f+ 1 

SjSi = Si-l$ for i > j. 

A cosimplicial map f: X + Y consists of maps 

f: X” +Y” E k? 

which commute with all the cofaces and codegeneracies. A cosimplicial object (map) over 
%? thus corresponds to a simplicial object (map) over the dual category %T*. 

9.2. Augmentations 

An augmentation of a cosimplicial object X (over 59) consists of a map 

d’:X-‘-+X”E’6 

such that 

&do = dodo : X- 1 + X1 

We now turn to our prime example. 

9.3. The resolution of a space with respect to a ring 

Let XE 9, and let R be a ring (with unit). Then the resolution of X with respect to R 
is the augmented cosimplicial object RX over Y, given by 
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RX” = R”+‘X 722 -1 

RX”- 1 d’ RX” = R”X R’qR”-’ ) R”+ ‘X 

RX”+ 1 &RX" = R"tzX R'W'-' ,Rn+l,y. 

Clearly RX is natural in X as well as in R. 

Remark 9.4. In verifying that RX is indeed an augmented cosimplicial object, one only 

has to use the fact that (R, 4, $) is a triple in the sense of [12]. The same construction thus 

can be made using other triples. 

A way of constructing more cosimplicial objects is by 

9.5. Applying a functor 

Let X be an (augmented) cosimplicial object over a category ‘37 and let T: g + W be a 

covariant functor. Application of T to X then yields an (augmented) cosimplicial object 

TX over %?’ with 

(7’X>n = T(X”) for all n. 

In particular for RX as above, x,RX(i 2 1) is an (augmented) cosimplicial abelian 

group. 

$10. A COSIMPLICIAL DESCRIPTION OF &(X; R) 

We now give a very useful cosimplicial description of&(X; R) valid for all R. For this 

we need 

10.1. The cohomotopy groups of a cosimplicial abelian group 

These are dual to “the homotopy groups of a simplicial abelian group “: for an 

(augmented or not) cosimplicial abelian group A we denote by ch A its cochain complex 

given by 

(ch A)” = A” n20 
= 0 n<O 

and define its cohomotopy groups n’A by 

zSA = H”(ch A). 

Then we have 

10.2. Cosimplicial description of E,(X; R) 

Let X E Sf’, and let R be a ring. Then there are natural isomorphisms 

E,“*‘(X; R) z ?r”z,RX for t > s 2 0 
= 0 otherwise 

and similarly : 
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10.3. The function complex case 

Let W, X E 9, and let R be a ring. Then there are natural isomorphisms 

EzSTf( W, X; R) z nsxt hom( W, RX) for t > s 2 0 
= 0 otherwise. 

Remark 10.4. These statements, as well as their proof, only use the fact that (R, 4, Ic/) 

is a triple (4.6). The above description of the E,-term thus remains validfor arbitrary triples. 

Remark 10.5. For arbitrary triples, and even for arbitrary rings, there is not much one 

can do to improve on the above description of E, . However considerable simplifications are 

possible ifR is afield and the remainder of this chapter will be devoted to the case R = 2,. 

For R = Q, the rationals, our spectral sequence is closely related to the rational cobar 

spectral sequence [l]; our E,-term consists of the primitive elements in the E,-term of the 

latter. As this involves “the Whitehead product in E, “, we postpone a full account of this 

case till [8]. 

To prove 10.2 and 10.3 we need a 

COLLAPSE LEMMA 10.6. Let X E 9’,, let R be a ring and let 

B: Y, -+ (abelian groups) 

be a functor such that the natural transformation B+: B + BR has a left inverse. Then 

7c’BRX z BX for s = 0 
= 0 otherwise. 

This is proved by constructing a contracting homotopy for ch(BRX) 

Proof of 10.2 (the proof of 10.3 is similar). Consider, for each k 2 1, the double 

(cochain) complex C with 

c 7m9 ’ = 7cI, -“, D, R(RX)” k>m>O,n>O 

=o otherwise 

and the obvious coboundary maps. By 4.4 and 10.6 both spectral sequences for computing 

the total cohomology of C collapse and hence, in the required range this total cohomology 

is isomorphic to E,(X; R) as well as to n*n,RX. 

Remark 10.7. The above determination of E,(X; R) uses only two general properties 

of our spectral sequence, namely 

(i) The E,-term collapses to x*X whenever X is a simplicial R-module, 

(ii) The E,-term depends flmctorially on RX. 

$11. UNSTABLE COALGEBRAS OVER THE STEENROD ALGEBRA 

In this section we consider the category Vd of unstable coalgebras over the Steenrod 

algebra d and observe that the Z,-homology functor is actually a functor 

H,( ; z&J : 9,, + w&4 
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where 9,, c 9, is the full subcategory of connected complexes. Moreover this functor has 

some nice properties which imply that E2(X; ZP) depends only on H&X’; Zp) as an unstable 

coa[qebra over the Steenrod algebra .sc?. First we consider 

11.1. Unstable d-modules 

Let d denote the mod-p Steenrod algebra graded with upper indices; so d’ = 0 for 

i < 0. An unstable right-d-module then consists of 

(i) a graded Z,-module M (with M,, = 0 for n < 0). 

(ii) a multiplication map M @ d -+ M (with M, @I s4’ + M,_i) which, in addition to 

the usual module properties, has the unstable property 

xsq” = 0 p = 2, deg x < 212 

XP” = 0 p odd, deg x < 2pn 

XfiP” = 0 podd,degx=2prz+ 1. 

Note that, for X E 9,) H,(X; ZJ is an unstable right d-module, if the right & action on 

H,(X; Z,) is defined as in [6]. 

11.2. A tensor product 

For unstable right &-modules M and N one can turn M @N into an unstable right 

&‘-module by defining the right &‘-action with the Cartan formula 

(x 8 y)Sq” = &xSq’ 0 YS4”_’ 

(x @ y)p” = i xpio ypn-i 
i=O 

p odd 

(XOY)P=XBOy+(-l)degXx~,yB p odd 

For X, YE 9, there then clearly is a natural isomorphism of unstable right d-modules 

H*(X; Zp) 63 H*(Y; Z,) = H*(X x y; Z,). 

11.3. The category %‘zz? of unstable s8-coalgebras 

An object C in this category is both an unstable right d-module and a connected co- 

commutative Z,-coalgebra (see [17]) where these two structures are compatible in the sense 

that 

(i) the comultiplication map C --f C 0 C is a right d-module map 

(ii) the p-th root map ( )[: Cpk -+ C, (dual to the p-th power map for commutative 

Z,-algebras) satisfies 

x5 = xSq” p = 2, deg x = 2n 

XT = XP” p odd, deg x = 2pn. 
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Note that, for X E Y,, (i.e. X connected) we have 

H*(X; Z,) E +I?.& 

where the comultiplication map is induced by the diagonal X-t X x X. 

11.4 A triple on %JZJ 

Let .KSP denote the category of connected graded Z, modules (i.e. trivial in degrees 

< 0). Then the forgetfulfunctor 

J: %?d+.43=“, 

(with (JC), = C, for n 2 1) has a right adjoint 

v: “A!“b, + Vd 

jiven by 

VM = H, fi K(M,, n); Z, 
i n=l 

and as usual [12] such a pair of adjoint functors gives rise to a triple (T, 4, $) on %‘& with 

T= VJ. 

In view of 9.4 we can, for an object C E Vd form a cosimplicial object TC (over Ud). 

Using this functor we now state the result mentioned at the beginning of this section. 

THEOREM 11.5. Let X E Y,, and WE 9,. Then, for t > s 2 0, there are natural iso- 
morphisms 

E,‘* ‘(X; Z,) = rPHomwg (HAS’; Z,), TH,(X; Z,)) 

EzS* ‘( W, X; ZP) z x”Hom,~(H,(S’W; Z,), TH,(X; Z,)). 

To prove this we first observe that the triple (T, 4, $) on %?d is closely related to the 

triple (R, 4, ti) on Y,, . In fact 

and 

ync H*( ;Z,) , y& 

Z? II 3 Y IT 
Y 

)I* 

P. c ------+A9 P' 

LEMMA 11.6. The diagram (where P,,, c is the category of connected simplicial Z,-modules 

the unnamed functor is the forgetful one) commutes in the obvious sense. 

This immediately implies 

COROLLARY 11.7. Let x E Y,, . Then there is a natural isomorphism of cosimplicial 
objects over %?& 

H,(Z, X; Z,) x TH,(X; Z,). 

In view of 10.2 and 10.3 it thus remains to prove the following lemma which readily 

follows from our knowledge of H,(K(Z,, n); Z,) and the fact that each YE Y,,. (11.6) 

is a product of K(Z, , n)‘s. 
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LEMMA 11.8. Let YE 9’,, c (11.6) and WE 9,. Then for t 2 1, the functor H,( ; Z,) 
induces isomorphisms 

71, Y = [S’, Y] z Homw~(H&3’; Zr), H,(Y; 2,)) 

n, hom(W, 0) = [SW, Y] w Homy~(H,(S’W; Z,), H,(Y; Z,)) 

where [ , ] denotes homotopy classes of maps (rel.*). 

$12. E,(X; Z,) AS AN UNSTABLE Ext 

In this section we define the “ unstable Ext ” functors Ext,,S (s 2 0) which are, roughly 
speaking, the right derivedfunctors of the functor Horn,, . Their definition (12.3), together 
with 11.5, immediately implies 

THEOREM 12.1. Let XE 9’,, and WE 9,. Then, for t > s 2 0, there are natural iso- 
morphisms 

E;“(X; Zr) x ExtysrS(H,(S’; Z,), H,(X; Z,)) 

E;*‘(W, X; Z,) z Ext,,“(H,(S’W, Z,), H,(X; Z,)). 

First we consider: 

12.2. Right derived function on %‘ss’ 

The theory of derived functors of non-additive functors is presented at length in [2, 
3, 181, but for a brief account the reader may consult [4]. In view of these sources one can 
for a covariant functor 

F: %‘.& -P (abelian groups) 

define its right derivedfunctors 9°F as the functors 

92°F = nSFT: %sd + (abelian groups) ST0 

where T is as in 11.4. 

One can also use a more flexible approach by putting, for C E Vd 

@PF)C = 71% ST0 

where C is any so-called cosimplicial resolution of C, i.e. augmented cosimplicial object 
over %JZZ such that (in the notation of 11.4) 

(i) C-‘=C 
C” ?z VG” for some G” E ASP (s 20) 

(ii) x0X! = JC 
7c”JC = 0 (s > 0). 

Note that TC is such a resolution. 

Now we define: 
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12.3. The functors ExtVds 

If BE %7& has trivial comultiplication (for instance if B = H,(S’W; 2,) for some 

WE Yp* and t > 0), then the functor Hom,,(B, ) is actually a functor 

Hom.,,(B, ) : V& -+ (Z,-modules). 

For such B we thus can (and will) apply the above and define the “unstable Ext” functors 

Ext,,“(R ) by 

Ext,,“(B, ) = W”Hom,,(B, ). 

913. THE &-TERM IN THE MASSEY-PETERSON CASE 

In [ 151 Massey and Peterson constructed for “very nice ” spaces an unstable Adams 

spectral sequence and succeeded in describing their E,-term as an ordinary Ext in a category 

of unstable modules over the Steenrod algebra. We now apply Theorem 12.1 to show that 

for “very nice” spaces our E,-term (which is an Ext,,)reduces to the Massey-Peterson Ext. 

We start by recalling the notion of: 

13.1. “ Very nice ” spaces 

Let 4~2 denote the category of connected (i.e. trivial in degrees I 0) unstable right 

&-modules, let (see 1 I. 1) 

J’: %&-+A& 

be the forgetjiilfinctor (with (J’C), = C, for 11 2 1) and let 

u: J&4!.& -+%.!zz 

be its right aa’joint (if M E A!& is of finite type, then UM is just dual to the free unstable 

d-algebra generated by M* ([24], p. 29)). A complex X E 9, then is called uerynice(modp) 

if 

H,(X; Z,) x UM E Vd for some M E A&. 

For example the sphere S”, n 2 I, is very nice ifp = 2 or ifp odd, n odd. 

13.2. The Massey-Peterson Ext 

The category .#Vd of connected unstable right d-modules is an abelian category 

with enough injectives. Thus for NE &JZZ we may define Ext,,“(N, ) (s 20) as the 
usual s-th right derived functor of Horn&& (N, ). 

The Massey-Peterson result [15] then becomes in our framework 

THEOREM 13.3. Let X, WE 9, and let M E A& be such that H,(X; 2,) z UM E %‘.tzl. 
Then, for t > s 2 0, there are natural isomorphisms 

EzsP’(X; Z,) z ExtAAIBS(tl*(Sf; ZP), M) 

EZS*‘( W, X; Z,) z Ext&&&(S’W; Z,), M). 
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This follows immediately from 12.1 and 

AN ALGEBRAIC LEMMA 13.4. Let B E %‘.zZ have trivial comultiplication andlet M E ,ti&. 
Then, for s 2 0, there is a natural isomorphism 

Ext,,“(B, L/M) fi: E.ut,,“(J’B, M). 

TO prove this observe that (as in 11.4) the forget@ functor 

J” : Ad --f e4l2’, 

and its right adjoint 

V” : A!b, -+ J@d 

give rise to a triple (T”: #, $) on A!&’ with T” = V”J” and hence to a cosimplicial object 
T”M over ,Nd. Consequently [2, 3, 4, 181 there exists, for s z 0. a natural isomorphism 

Ext,,“(J’B, M) =: $Hom,,(J’B, T”M) 

and in view of the adjunction isomorphism 

n”Hom_&&(J’B, T”M) z ?Homrgd(B, UT”M) 

it thus remains to show that VT”M is a cosimplicial resolution in the sense of 12.2. Part (i) 

of this is easy, and part (ii) also not hard to prove using the fact that the map J”d’: J”M -+ 
J”T”M has a left inverse together with the following. 

LEMMA 13.5. Let M E Ad. Then there is a naturuljiltration 

VM=F”VM~F’UM~F2UM~~*~ 

such that, for every k 2 0, there is a natural isomorphism 

SymkJ”M NN J”(FkUAI/Fk’ ’ VM) 

where 

SymX = C SymkX XEA’I, 
k>O 

denotes the quotient of the tensor algebra on X by the ideal generated by all xp abd xx’- 
(- 1)““x’x for x E X,,, , x’ E X, , and Symkx t Sym X is generated by the k-fold products of 
elements of X 

Proof. For M, NE Atsl there is a natural isomorphism 

U(M@N)ZUM@UNE’&~ 

since U, as a right adjoint, preserves (categorical) direct products. We therefore can turn 
the coalgebra VM ilpto a Hopf algebra by defining a multiplication by 

UM@UMxV(M@M)Uo-I/M 

and take as filtration the augmentation filtration [17, p. 2521 

UM=F”VMr>F’VM~F2UM~~~~ 

where F’VM is the augmentation ideal and 

FkVM = (F’ UM)k kz 1. 
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It is not hard to show for the Hopf algebra UM that PUM + QUM is a monomor- 

phism and that QUM z M. Thus the associated bigraded Hopf algebra 

E’UM = c FkUMIFk+‘UM 
k20 

has the property 

PE’UM z QE’UM x M. 

The lemma now follows since [17, 6.1 l] E’UM is the universal enveloping algebra of the 

restricted Lie algebra PE’UM = M, and the Lie operations in PE’UM are trivial. 

Remark 13.6. The natural isomorphism 

Ext,,“(B, UM) z E<yt,,“(J’B, M) 

of 13.4 can be constructed explicitly as the composite 

nSHomred(B, TUM) z ?Homq,d(B, UT”M) = rc”Hom,,(J’B, T”M) 

where the first isomorphism is induced by the cosimplicial map 

TUM --f UT”M 

which sends (UV”J”J’)“UM into U(V”J”>nM by the iterated adjunction map J’U + id, and 

where the second isomorphism is as in 13.4. 

914. A CONVENIENT El-TERM FOR VERY NICE SPACES 

In [7] an E,-term (much smaller than that from the bar resolution) was constructed 

for the mod-p Adams spectral sequence; and subsequently in [6] a similar unstable E,-term 

was obtained for very nice spaces in case p = 2. Using theorem 13.3 this result of [6] will 

now be extended to odd p, thereby making possible mod-p computations of the sort done 

mod-2 in [ll], e.g. computing E,(S2”+‘; Z,) in a range. Throughout this section p will 

thus be odd. 

We first recall from [7], with a slight change in sign, 

14.1. The algebra A 

This will be the d$Grential graded associative algebra with unit (over Z,,) having: 

(i) A generator Ai of degree 2i@ - 1) - 1 for each i > 0. 

(ii) A generator ,ui of degree 2i(p - 1) for each i 2 0. 

(iii) For every i > 0 and k 2 0 the relations 

Ailpifk = c (- l)j+l I*i+k_j&i+j 
j20 ( 

(p - 1)(:-j) - l 
) 

i*,upifk = c(-l)j+l 
j>O f 

(p - ')(r-.i)- 1)ii+k_j8,i+j 

+ j;o(_l)j 

f 

(P - lXk -3 

) 
Pi+k-jApi+j 
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and for every i 2 0 and k 2 0 the relations 

(iv) A differential 8 given by 

a(xy) = (ax)y -+ (-- l)d=gx~(ay) x, y E A. 

A monomial vI = vi1 ** * vi, of generators (with each v = d or p) is called athable 
if ih+1 lpik whenever Yh = pi, (1 I k 5 s - 1) and if &.1 < pik - 1 whenever vi* = &, 
(1 s k I s - 1). Then A has a Zdbasis g&en by all allowable rno~ornia~~ (~~cll~di~g the 
empty rn~~~rniai 1). Note that 

A=QBnS 
St0 

where AS is generated by the monomials of length s. 

remark 14.2. Actuatly there is a slight difference between A and the E’S of 17, p. 3401 
since the latter has 

I’ = (- ~)de8y(d~x)y + x(d’y). 

To be precise, there is an isomo~hism (E’S)* M A of di~erentiai graded algebras, where 
(E’s)R equaIs E’S as a differential graded Zdmodule but has a new multip~icatior~ # 
defined by 

X # y = (_ j)fdeg x)fdegY)Xy. 

We have also expressed our formulae in allowable form and used vi instead of vi-r. Finally, 
we confess that the right side of the formula for d’g,_t in [7, p. 3401 shouId have been 
multiplied by - 1. 

14.3. The cochain complex M &I A 

For ME A& let M @ A” denote the subspace of M @ A” generated by all x @ vr 
with v, = vi* * + - vi, allowable, deg x 2 2il if vi* = &, and deg x 2: 2ii + 1 if vi, = .IQ, . Then 
M ~$3 A will be the cochain complex with 

(M@Ay=M@AS szo 

6(x @ v*) = ( - l)de** (,J,xP 18 a, VI 

f &XBP’ 8 pi VI -t- (I l)degxX 8 dv, 

bigraded by giving x @ vI E M @ A” bidegree (s, t.) with t = s + deg x + deg vI I 
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The main result of this section then is 

THEOREM 14.4. For M E Ad andp odd, there is a natural isomorphism 

_&t&,(&S’; Z,), M) w H”#‘(M @ A). 

And this together with 13.3 yields 

COROLLARY 14.5. Let X E 9, and M E .&I’d be such that H,(X; Z,) w UM E %J?I 
Then, for t > s 2 0, there is a natural isomorphism 

E,“,‘(X; Z,) % HSst(M &I A). 

The mod-2 version of 14.4 was proved in [6, 3.31 using functors n and Zz’ of Massey- 
Peterson. A similar proof works in our case using mod-p functors CI and Sz’ defined as 
follows : 

For p odd and ME _A!& let SM E .&‘d be given by (SM), = ML-1 with the same 
d-action as M. This suspension functor has a right adjoint, the loop functor R, and this 
functor R has a first derived functor Q’. A more explicit description of fiM and R’M is 
by means of the exact sequence 

O-+SLRM-+M c DM--+SQ’M-+O 

where DM E &d is given by 

(DM), = M,, for q = 2pn 

= Mz,+l for q = 2pn + 2 

= 0 otherwise 

with right operators PPk and Ppk’l corresponding to 

Pk: M,+zk(p-r)‘Mn m,k>O 

jPk: M 2n+2k(p-1)+2--+"2~+1 n,krO 

and p and all other P’ vanishing, and c: M + DM E A& is the map corresponding to 

P”: MZpn -+ M, n20 

BP”: Mzpn+z-+Mzn+~ n 2 0. 

As in the mod-2 case one then obtains an algebraic EHP sequence [6, 3.51 involving 
H(RM &I A), H(M 6 A) and H(S1’M@ A) and this readily leads to a proof of 14.4. 

Remark 14.6. One often writes 

Ext%ir$(Z, , M) for E~t~~‘(fi(S~; Z,), M). 

Remark 14.7. Actual computation of H(M ~$3 A) is greatly facilitated by “separating 
off the towers” [5, 2.31. For M E A‘& and p odd, let OM c M&I A be the subcomplex 
generated by all x Q vI E M @ As with vI = vi, *. . vi, allowable and vi, = ,I,, and let TM 
be the quotient complex of M 6 A such that 
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(TM)’ = M 

(TM)‘=MCWo 

(TM)” = M 6 Go)5 CB tTo Mzt 0 hbo>s - 1 s 2 2. 

Then one has a long exact sequence 

. ..-rH”-lTM_.H”OM_,H”(M~?)-rH”TM-,... 

$15. APPENDIX: &TERM FOR A K(G, n) 

For the computation of E,(K(G, n); R) for G abelian and R any commutative ring, it 

suffices, in view of $8, to calculate E,(K(G, n); Z) (which was done in 4.4) and E,(K(G, n); Z,) 
for h 2 2. This will be done below. 

Let ker(G, ZJ and coker(G, Z,) denote the kernel and cokernel of the obvious composi- 

tion 

Tor(G, Z,) -+ G --) G @I Z, . 

Then we have 

THEOREM. 15.1 For G an abelian group, n 2 1 and h 2 2 there are natural isomorphisms 

E,“l ‘(K(G, n); Z,) x G @I Z, for s = 0, t=n 

= coker(G, Z,) for s > 0, t--s=n 

x ker(G, Z,) forsr0, t-s=n+l 

S50 otherwise. 

Our proof of this theorem will depend on the following result which is of interest in its 

own right. Let M denote the Moore space given by the mapping cone of S’ h + S’ and 

for X E sP* let 

Then we have 

n,(X; Z,) = x,-~ hom(M, X) n r 2. 

LEMMA 15.2. For XE Y’, connected, h 2 2, t 2 3 and s 2 0, the ring homomorphism 
Z + Z, induces on isomorphism 

n”z,(ZX; 2,) x 7?7c,(Z,* x; Z,). 

Proof of 15.1. Let Y = K(G, n) and t 2 3. Then by 15.2 and the function complex 

version of 4.4 

7zS7ct(z~ Y; Z,) z n,( Y; Z,) for s = 0 

%O otherwise. 

Moreover 

n&Y; Z,) = G @ Z,, for t = n 

x Tor(G, Z,) for t = n + 1 

X0 otherwise 

and the theorem now follows readily from 10.2 and the cohomotopy long exact sequence 
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of the short exact sequence of cosimplicial abelian groups 

O-,n*Z,Y~n,(Z,Y; Z,)+n,_,Z, YdO. 

To prove 15.2 we need in turn 

LEMMA 15.3. For X E 9, connected, m 2 1 and t 2 3 the map 

Ir,(Z”X; Z,J + nt(ZrnZ,, x ; -a 

induced by the map 4: X --, Z,, X has a natural kft inrerse r,, . 

Proqf of 15.2. The function complex version of 4.4 and the collapse lemma 10.6 

together with 15.3 show that for f 2 3 and ,j 2 1 

rr”n,(Z(Z,)jX; Z,) % n,((Z,)jX; Z,) .I’ = 0 

=O s > 0 

7&c*(Z’Z, x; Z,) W n,(Z’X; Z,) s=o 

CO s > 0. 

Hence both spectral sequences of the double cosimplicial ahelian groups n,(Z& X; Z,,) 

collapse. This readily implies the desired result. 

Finally, to prove 15.3 we need 

15.4. The functor Z’ 

For X E 9, let Z+ X be the free abelian monoid generated by X with the base point 

(and its degeneracies) put equal to 0 and let 4): X --$Z+X be the usual inclusion. Then 

[22] for X E 9’* connected, the natural map 

n*z+x+n,zx 

is an isomorphism. 

Another useful property is: 

PROPOSITION 15.5. For X E 9, there is a natural map t: Z+Z,, X + Z,,Z+X such that 

the following diagram commutes 

2+X 

Proof. Replace the usual functor Z,, by the equivalent functor 

z,x= CniXilniEZh, XiEX, Cni= 1 . li ‘ 1 
Now Z,Z+X is an abelian monoid with monoid multiplication induced by that of the 

mod-h group ring on 2+X. The map 

z,f$: 2,x + z,,z+x 
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of pointed sets extends to a unique map r of abelian monoids and this T has the desired 

properties. 

Proof of 15.3. For any X E 9’,,, there is a natural ismorphism n,(ZX; Z,) w n,Z, X 

given (for example) by the composition 

n,(ZX; Z,) -+ H,(ZX; Z,,) = n,Z,ZY-+ n,Z,Y 

where the first map is the Hurewicz map. This easily implies the case m = I and we proceed 

inductively. Given r,,, _ 1 for some m 2 2, it will suffice to construct a natural left inverse to 

the map 

n,(Z”‘_ l z+x; Z,) + nt(Zm-lZ+ZJ; Z,) 

induced by 4 : X -+ Z,, X. Such an inverse is given by the composition 

7r1(Zrn_ 1 z+z,x; Z,) -+ 7cn,(Z”_‘z,z+x; Z,) I,-1 7c,(Z’“-‘zfx; Z,) 

where the first map is induced by t: Z+Z,, X -+ Z,, Z+X. 
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