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THE DERIVATIVES OF HOMOTOPY THEORY

BRENDA JOHNSON

ABSTRACT. We construct a functor of spaces, M, , and show that its multilin-
earization is equivalent to the nth layer of the Taylor tower of the identity
functor of spaces. This allows us to identify the derivatives of the identity
functor and determine their homotopy type.

The calculus of homotopy functors, developed by Goodwillie ([G1], [G2],
[G3]), establishes that a homotopy functor, F, satisfying certain connectivity
conditions, has associated to it a tower of functors, ... - P,F — P,_1F — ..
These functors act like a Taylor series approximation to F in the sense that
for a space, X, there is a map, p,F(X) : F(X) - P,F(X), for each n, and
the connectivity of this map increases with n. This theory has been applied to
the study of the functor 4, Waldhausen’s algebraic K-theory of spaces.

In this paper, we turn our attention to the Taylor tower of the identity functor
of spaces, I. The ultimate goal is to identify the Taylor tower of I and use it
to study homotopy theory. In this paper, we construct a collection of symmetric
functors, {M,}, and show that the multilinearization of M, is equivalent to
the nth layer, fiber (P,I — P,_;I), of the Taylor tower of /. This construction
also allows us to identify the nth derivative of /. This is a spectrum with X,-
action which is equivalent to the functor fiber (P,I — P,_I).

The paper is organized as follows. In section 1 we summarize the basic results
and terminology of calculus that will be used throughout the paper. In section
2 we describe the problem of finding the Taylor tower of I in more detail and
state the main results. In section 3 we outline the method by which the nth
derivative of a functor is determined. In section 4 we construct the functor M,
and a natural transformation, T, , used to establish the equivalence between the
multilinearization of M, and fiber(P,F — P,_F). In section 5 we determine
the homotopy type of the derivatives, and in section 6 we show that 7, is
sufficiertly connected to induce an equivalence between the multilinearization
of M, and fiber(P,F — P,_F).

The results in this paper come from the author’s thesis, written under the
direction of Tom Goodwillie at Brown University. The author wishes to thank
him for his guidance and for many insightful discussions. The author also
wishes to thank Randy McCarthy for his helpful suggestions during the writing
of this paper.
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1296 BRENDA JOHNSON

1. THE TAYLOR TOWER OF A FUNCTOR

To start, we need to describe the context in which we will be working. We
need both to establish some notation and terminology and to describe (in brief)
the language and main results of Goodwillie’s calculus of homotopy functors
which will be used throughout this paper. We will not give a complete exposition
of the theory of calculus of homotopy functors. Instead we will outline the terms
and results needed in this work. For further detail, explanation and examples
the reader is referred to Goodwillie’s papers ([G1], [G2], and [G3]). Specifically,
[G2] contains results about n-cubes of spaces, excision, and analytic functors,
while [G3] contains results about the Taylor tower of a functor.

We start with the conventions. By a space (generally denoted X ) we will
mean an object in one of two categories. For the general results from Good-
willie’s works, a space X will be an object in the category of compactly gener-
ated topological spaces. For the specific results concerning the derivatives of the
identity functor, a space will be a topological space having the homotopy type of
a finite CW-complex. Moreover, we will assume that all the spaces considered
have non-degenerate basepoints. When we say that two spaces are equivalent,
we will mean that they are weakly homotopy equivalent. By the suspension of
a space, XX , we will mean the reduced suspension, S' A X .

By an n-cube of spaces we will mean the following. Let n denote the set
{1,2,...,n}. Let N be the category whose objects are the subsets of n and
whose morphisms are the inclusion maps among the subsets. An n-cube of
spaces is a covariant functor from the category N to the category of spaces.

Goodwillie defines and uses particular n-cubes of spaces, namely Cartesian
and co-Cartesian diagrams. Cartesian can be defined in several ways. One way
is the following. Let X be an n-cube of spaces. Let

ho(X) = KEEO};H;Q(X(K)),
where holim means the homotopy inverse limit (as in [B-K]). There is a map
a(X) defined as the composition a(X) : X(@) = lim X = holimX — hy(X). If

a(X) is an equivalence then we say that X is Cartesian. If a(X) is k-connected,
we say that X is k-Cartesian.
Dually, we define co-Cartesian. Let Y be an n-cube. Let

Y)= hocolim _Y(K
M) = roim |,y Y,

where hocolim denotes the homotopy colimit (as in [B-K]). There is again a map
b(Y) : h(Y) = Y({1, ..., n}). If b(Y) is an equivalence, then we say that Y
is a co-Cartesian n-cube. If b(Y): h(Y) - Y({1, ..., n}) is k-connected then
we say that b(Y) is k-co-Cartesian. An n-cube is strongly co-Cartesian if each
of its 2-faces is co-Cartesian.

Cartesianness and co-Cartesianness are related to a certain extent. A classical
result, the Blakers-Massey theorem, estimates the degree to which a co-Cartesian
square is Cartesian as a function of the connectivity of the maps X(@) — X({1})
and X(2) — X({2}). The Blakers-Massey theorem has been generalized in
various forms to n-cubes by Barratt and Whitehead ([B-W]), Ellis and Steiner
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By a homotopy functor we will mean a functor from spaces to spaces which
preserves weak homotopy equivalences. As a generalization to homotopy func-
tors of the connectivity estimate provided by the Blakers-Massey theorem,
Goodwillie defines what it means for a homotopy functor to satisfy stable
nth-order excision. Let X be an n-cube of spaces, and let F be a homo-
topy functor. By F(X) we mean the n-cube for which (F(X))(S) = F(X(S)),
for SCn.

Definition 1.1. F is stably n-excisive with constants ¢ and k, if, for every
strongly co-Cartesian (n + 1)-cube of spaces such that the connectivity, k;,
of X(@) — X(s) is at least x for every s € {1,...,n+ 1}, then F(X) is
(—¢ + ! ky)-Cartesian. We will say that F satisfies E,(c, k).

For example, the generalized form of the Blakers-Massey theorem ([G2], The-
orem 2.3) states that a strongly co-Cartesian (n + 1)-cube X where X(2) —
X({s}) is ks-connected for each s € {1,..., n+ 1} is k-Cartesian with k =
—-n + E"“ ks . In other words, applying the identity functor to X yields a

—n+ E"“ ks)-Cartesian (n + 1)-cube. It follows that the identity functor sat-
1sﬁes E,(n, k) for any x, and hence is stably n-excisive. If a functor satisfies
E,(c, k) for all ¢ and k, we say that it is n-excisive. That is,

Definition 1.2. F is n-excisive if F(X) is Cartesian for every strongly co-
Cartesian (n + 1)-cube X.

We also have the notion of analytic functors, which are stably n-excisive for
all n.

Definition 1.3. A homotopy functor F is p-analytic if there is some number ¢
such that F satisfies E,(np—q, p+ 1) forall n.

By the above, the identity functor satisfies E,(np —q, p+ 1) when p =1
and g = 0. Thus, the identity functor is 1-analytic. Other examples of analytic
functors include the stable homotopy functor, Q, Waldhausen’s functor, 4,
and the functor X — Q(Map(K, X)) where K is a fixed finite CW-complex
and Map(K, X) is the space of all continuous maps from K to X. For
details, see section 4 of [G2]. An example of a functor which is not analytic
is the functor X — Q>(E A X["]) where E is a spectrum that is not bounded
below and X" denotes the n-fold smash product of X with itself (see [G3],
Remark 1.16).

Finally, there is a sense in which functors can be approximated by other
functors.

Definition 1.4. Let F and G be homotopy functors. We say that F and G
agree to order n via a map u : F — G if there exist constants ¢ and k
such that for every k-connected space X, the map uy : F(X) — G(X) is
(=¢+ (n + 1)k)-connected. We say that u: F — G satisfies O,(c, k).

In [G3], Goodwillie provides a method by which an analytic functor can
be approximated by a tower of excisive functors. The idea is that a stably n-
excisive functor F can be approximated by an n-excisive functor P,F. P,F
can be constructed along with a transformation p,F : F — P,F such that
P,F is n-excisive and F agrees with P,F to order n via p,F. P,F is
regarded as an “ nth de§ree Ta Wﬁo;gnomlal” apgroximation to F.If F is

ibution; see ttps I org/journal-terms-of



1298 BRENDA JOHNSON

p-analytic, then it follows that there is an entire sequence of functors Py F =
F(x), AF,..., P, F, P,F,... suchthateach P, F is k-excisive and agrees
with F to order k. Furthermore, there are maps g,F : P,F — P,_1F such
that these functors fit together into a tower of functors. This tower is called the
Taylor tower of F . More formally, we have the following results.

Theorem 1.5 (Goodwillie). Let F be a p-analytic functor. To any basepointed
space X there are naturally associated objects P,F(X) and maps p,F and q,F
which fit together in a tower:

!
Fx) 25 p.Fx)
qn—lFl

qul

RF(X) = F(x)
which satisfies (qnF) o (ppF) = ppo_1F. P,F is an n-excisive functor. If X is
(p + 1)-connected then the connectivity of the map p,F : F(X) — P,F(X) tends

to +oo with n. F(X) is equivalent to the homotopy limit , Po.F(X), of the
tower.

For the construction of P,F, p,F, and g,F see section 1 of [G3].
The nth layer of the Taylor tower of an analytic functor F is

D, F = fiber(P,F — P,_,F).

Here and elsewhere, fiber will mean the homotopy fiber. Each layer of the
Taylor tower is a functor of a special form, resembling a monomial of degree
n . Specifically, it is a homogeneous functor of degree n, as we state below.

Definition 1.6. A homotopy functor F is homogeneous of degree n if it is
n-excisive and P,_|F ~ x.

Goodwillie provides a classification of all such functors in [G3]. The result is
stated below. By homotopy orbit spectrum we mean the spectrum obtained from
a spectrum with G-action (for some finite group G) by taking the homotopy
orbit space (X, Ag EG,) of each space, X, , in the spectrum.

Theorem 1.7. If F is homogeneous of degree n and X is a space, then
F(X)~Q®(CAX"),5

where C is a spectrum with X,-action, X, is the symmetric group on n letters,
X" js the n-fold smash product of X with itself, and hX, denotes the homotopy
orbit spectrum.

As claimed, we have the following result.

Proposition 1.8. If F is an analytic functor, then D, F is homogeneous of degree

n. ) - )
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It follows that D, F(X) has the form Q>(C A X["}) for some spectrum, C,
with X,-action. C isregarded as the “coefficient” of D,F . As we will see later,
it is also the nth derivative of F at a point.

2. THE IDENTITY FUNCTOR

In this section, we describe the problem motivating this paper, and outline
the results obtained thus far. Our object of study is the identity functor of
topological spaces: the functor from the category of topological spaces to itself
which takes a space to itself. This functor will be denoted by I. The goal is
to determine the Taylor tower of I. As we saw in section 1, the generalized
Blakers-Massey theorem tells us that 7 is a 1-analytic functor. / does not have
finite degree, i.e., it is not homogeneous of degree n, nor does its Taylor tower
split as a product of functors .

The Taylor tower of I is of interest because of the information it will provide
about homotopy theory. The fact that I is l-analytic means that its Taylor
tower converges on 2-connected spaces. That is, each finite stage of the tower
yields, for a k-connected space X , another space P,I(X) whose first (n+ 1)k
homotopy groups are the same as those of X . Hence, as n increases, P,I(X)
approximates the homotopy of X in a greater and greater range. Goodwillie has
also pointed out that there is a spectral sequence that converges to the homotopy
groups of X in which the E2 terms are given by the homotopy groups of the
D,I(X)’s . Before this spectral sequence can be utilized, the maps between the
D,I’s must be determined, i.e., we need to know how the individual layers of
the Taylor tower fit together within the tower.

If we look at convergence on the level of functors rather than spaces then we
see that the Taylor tower is a sequence of functors which link stable and unstable
homotopy theory. Specifically, the first layer of the tower is the stable homotopy
functor Q. Considering the tower as converging to the “unstable homotopy
functor” I, we see that each stage of the tower, P,I, recovers increasingly
more information about unstable homotopy theory, information which was lost
when Q was applied. This tower should yield new ideas about the relationship
between stable and unstable homotopy theory.

At this time, the Taylor tower of I has not been determined. In this paper,
we complete a first step in the problem, that of determining the derivatives of
I at a point. Goodwillie has previously determined the first two derivatives of
I and the homogeneous degree n functors in [G1] and [G3]. Specifically, he
has shown the following

Proposition 2.1.

(a) The first derivative of I is the sphere spectrum S°.

(b) The second derivative of I is the (—1)-sphere spectrum, S~ , with trivial
2,-action.

(¢) DyI(X)=~Q(X) for any 2-connected space X .

(d) DI(X) ~QO((X A X)pg,) for any 2-connected space X .

The homotopy type of the derivatives have also been known for a while. The
homotopy types can be determined by the Hilton-Milnor theorem (see section
5). The elusive part of the problem has been to determine the X,-action on

Lthe SPERHmOne solutionds.gven.by-John.Rognes.in his dissertation [R]. In



1300 BRENDA JOHNSON

it he computes the first nontrivial homotopy group of the cross effect functor
of QX! From this the homotopy of the derivatives of I with X,-action can
be recovered. He accomplishes this by identifying the homotopy group as the
kernel of a map from =, (Q/Z/(X; VX,V---V X,)) to

n
[[r (@ X VXV VXV VX))
k=1

where each component of the map is a collapsing map \/;'=l Xi — (XivXyV---v

X’; V---VX,). He then compares the kernel of the map of homotopy groups with
the kernel of the same map in homology, and uses the Snaith splitting to identify
the kernel in homology as the homology of a configuration space smashed with
X1 AXyA---AX,. The final step is to show that the Hurewicz map between
the kernel in homology and the kernel in homotopy is a X,-isomorphism. This
is done by means of the Browder operations on homology. The homology of
the configuration space in the kernel is calculated by finding the homology of a
related quotient complex of the standard (%)-simplex.

This paper computes the derivatives in a more direct fashion, working with
spaces rather than homotopy and homology groups, and avoids the need for
the Snaith splitting or the Browder operations. We construct a new symmetric
functor on n spaces defined by

MH(X17X2"-~,X")=Map*(An7XIAXZA.H/\X")

where Map, denotes basepointed maps and A, is a quotient space of the
product of n copies of the (n—1)-cube. A, has the same homotopy type as the
wedge of (n—1)! copies of the (n— 1)-sphere. M, will be related by Theorem
2.2 below to the nth cross effect of I, x,I, a symmetric functor of n variables
defined in section 3 (Definition 3.4). As will be shown in Proposition 4.1 and
its corollary, Theorem 2.2 guarantees that M, satisfies conditions necessary for
its multilinearization to be equivalent to that of x,/. In turn, Proposition 3.13
will establish the relationship between the multilinearization of x,/ and the
nth derivative of I. The main result is the following.

Theorem 2.2. There is a natural transformation of symmetric functors:
T:x.I( Xy, Xa, ..., Xy) = Map,(Ay, XKi ANXa A AN Xy)
which satisfies the following properties:
(a) T is Z,-equivariant, that is, it preserves the L,-symmetry of xnI and

M, which permutes the spaces X\, X, ..., X, and images of the
(n — 1)-cubes in A, .

(b) If X\, X3, ... , X, are k-connected then

QT, : Qynl (X, ZX5, ..., ZX,) — QMap, (A, ZX; AZX) A--- ANZXy)

is (n+ 1)(k + 1) — l-connected.
From Theorem 2.2 it easily follows that:

Corollary 2.3.
(a) The nth derivative of I, denoted 1™, is the spectrum whose kth term
is Map, (A, , ZX). This spectrum has the obvious X,-action given by
License or copyrigpep’iﬂu{ir’quph@ re(j'nribu:iol;)sg‘u{bgyv\@fmﬁwljpurnal»terms-of-use



THE DERIVATIVES OF HOMOTOPY THEORY 1301

(b) The homotopy type of I\") is the same as that of the wedge of (n — 1)!
copies of the (1 — n)-sphere spectrum.

The proofs of Theorem 2.2 and Corollary 2.3 will be given in the subsequent
sections. In section 3 we will describe the general method for calculating deriva-
tives of homotopy functors. In section 4 we will construct the quotient space A,
and the transformation 7, and establish the X,-equivariance of T . In section
5 we will determine the homotopy type of the A, (and consequently, of I(")),
and section 6 will be devoted to proving Theorem 2.2b.

3. THE nTH DERIVATIVE OF A FUNCTOR

In this section we will define the nth derivative of a homotopy functor and
show how it can be calculated in general. In the traditional calculus of real-
valued functions one first defines the derivatives of a function and then uses
these to construct the Taylor series of the function. In the case of homotopy
functors, the opposite is true. It is more natural to define the Taylor tower of a
functor first and then define the derivatives of the functor as the coefficients of
its Taylor tower. Recall, the nth layer of the Taylor tower of a functor F is
D,F = fiber (P,F — P,_F). By Proposition 1.8, if F is analytic, D,F is a
homogeneous functor of degree n. We saw in Theorem 1.7 that such a functor
is naturally equivalent to a functor of the form

G(X) = Q®°(C A XMy,

where C is a spectrum with X,-action, X" is the n-fold smash product of X
and hX, denotes the homotopy orbit spectrum. It is the spectrum that is the
coefficient of the homogeneous degree n functor that Goodwillie defines to be
the nth derivative of X .

One does not need to know P,I and P,_;I to determine the nth derivative
of I. We will work with another category of functors which are equivalent
to homogeneous functors of degree n, namely symmetric multilinear functors.
These functors will be defined and discussed in this section. Symmetric multi-
linear functors are functors of several variables and, as we will see in Proposition
3.11, are also equivalent to functors of the form

G(Xi,y ..., X)) =QX(CAX{ A AXp)

where C is a spectrum with X,-action. In defining the nth derivative we will
identify, without needing to know P,I or P,_;I, a symmetric multilinear
functor which is naturally equivalent to D, I and determine the nth derivative
from this functor. This symmetric multilinear functor is the multilinearization
of the nth cross effect functor of I and is called the nth differential of I.
This section will be devoted to explicitly defining the derivative as outlined
above. The treatment will consist of three parts: defining the cross effect functor,
discussing multilinearization and symmetric multilinear functors, and defining
the derivative. This process is the way in which the derivative is originally
defined by Goodwillie. Most of the material can be found in section 1 of [G1]
and sections 3 and 4 of [G3].

To begin, we will let F be a homotopy functor from the category of based
spaces to itself. We will construct its nth cross effect. The nth cross effect is
the total fiber of a particular n-cube of spaces. The first step in defining the

Lctidh: sxass-affect 9l dstadefingthe satal.fiberof an n-cube of spaces.



1302 BRENDA JOHNSON
Definition 3.1. The total fiber of an n-cube of spaces X, denoted f~X, is the
homotopy fiber of the map y : X(@) — holimyen, v2o(X(U)).
We may also define the total fiber of an n-cube of spaces inductively.
Remark 3.2. For a l-cube (i.e., a map of spaces)
f:X-Y

the total fiber is just the homotopy fiber of f.
For an n-cube of spaces, X ,we can consider X as a map of (n — 1)-cubes:

Y- Z.
We can then define the total fiber of X inductively as

X = fiber(fY — [Z).

That this inductive definition of the iterated homotopy fiber is equivalent to
Definition 3.1 follows from properties of the homotopy inverse limit. (See
[G2])

We will need the following r-cube of spaces associated to F in order to
define the nth cross effect of F .

Definition 3.3. Given a collection of n spaces X = {Xi, ..., X,}, Fx is the
n-cube of spaces defined by Fx({l, ..., n})=F(x) and Ix(U) = F(V,; ¢y Xi)
when U # {1, ..., n}. If UCV then the morphism Fx(U — V) is ngu,y)
where gy v is the retraction of \/; ¢uXito V; ¢V X, collapsing any X; such
that i€ V and i ¢ U to the basepoint.

For example, if we have X = {X,, X»} then Fx is the square below.
F(Xi VX)) — F(X))

l l

F(Xa) —— F(%).
Now we can define the cross effect.
Definition 3.4. The nth cross effect of a functor F evaluated at the spaces

{Xy, ..., X,} is a functor of n variables defined as the total fiber of the n-
cube Fx with X = {X,, ..., X,}. The cross effect will be denoted x,F .

xnF is a symmetric functor, where a symmetric functor is defined as follows.

Definition 3.5. A homotopy functor F is called symmetric if for each n € Z,
and spaces X, ..., X, there is an isomorphism

Fn:F(X|,...,X,,)—>F(X,,(]),...,Xn(n))

and for every m, 0 € X,
Foon = Fy o F5.

That x,F is symmetric is clear from the symmetry of the n-cube with respect
to the spaces X, ..., X,.

Now that we have defined the cross effect of F, we must explain what it
means to multilinearize the cross effect. or to linearize a functor in general. The

, eff
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THE DERIVATIVES OF HOMOTOPY THEORY 1303

multilinearization of x,F will be the symmetric multilinear functor equivalent
to D,F mentioned at the beginning of the section. First, we review the concept
of linear functors. The process of linearization of a functor F is basically that
of finding the linear functor which most closely agrees with F .

Definition 3.6. A homotopy functor F is called linear if it satisfies the proper-
ties below.

(a) F isreduced, i.e., F(x) is contractible.
(b) F is l-excisive.

For a discussion of linear functors see section 1 of [G1] or chapter 4 of [J].

To any functor F satisfying stable first order excision (recall Definition 1.1)
we may also associate a linear functor. As stated in section 1, P F is the degree
one (or excisive) functor which most closely approximates F. We make P F
a linear functor by reducing it, i.e., by taking the homotopy fiber of P F(X) —
P, F(*). If the functor is already reduced, then the process of linearizing it can
be made even more explicit. P F is reduced and hence is already linear. We
have:

Proposition 3.7. If F is a reduced homotopy functor satisfying stable first order
excision then the linearization of F is simply P\F and is given by

P F(X)= hocglimQ”F(Z"X).

Proof. The proof of this proposition follows directly from the definition of P, F
that Goodwillie gives in [G1]. Specifically, P,F is defined as the homotopy
colimit of the diagram

F(X)->TF(X) > T(TF(X))— ...
where
TF(X) = holim(F(CX) —» F(ZX) « F(CX)).
CX 1is the cone on X. When F is reduced, we see that TF(X) is equivalent
to QFXX, and the result follows.

Proposition 3.7 will be sufficient for our purposes since we will only need to
linearize reduced functors.

If we have a functor of n variables, G, we may speak of its multilineariza-
tion. The multilinearization of G is simply the linearization of G with respect
to each of its variables. That is, we hold all but one variable fixed and linearize
G with respect to the unfixed variable and then repeat this process for each
variable. As in the case of functors of one variable, if G is a reduced functor
with respect to each of its variables, then we can give the multilinearization of
G explicitly. This is a direct consequence of Proposition 3.7.

Corollary 3.8. If G is a homotopy functor of n variables which satisfies first
order excision and is reduced with respect to each of its variables, then the mul-
tilinearization of G is given by

G(Xy,..., Xy = hkocolikm Qhttha(GyZh Xy, ..., TR X,).
1yeeesn

A functor which has been multilinearized or is linear in each of its variables
is called a multilinear functor.

With the preceding definitions, we are now able to define the nth differential
of a homotopy functor .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1304 BRENDA JOHNSON

Definition 3.9. The nth differential of a homotopy functor F , denoted D"WF |
is the functor of n variables defined by

DWF(Xy, ..., Xy) = xnF (X1, ..., Xn).
That is, D F is the multilinearization of the nth cross effect of F .
D(™F is an example of a symmetric multilinear functor.

Definition 3.10. A symmetric multilinear functor of n variables is a symmetric
functor which is linear in each of its variables.

That DWF is a symmetric functor follows from the symmetry of the cross
effect already established. Its multilinearity follows from the definition.

As stated at the beginning of the section, symmetric multilinear functors are
naturally equivalent to spectra with X,-action. Precisely, Goodwillie has shown
(in [G3)])

Proposition 3.11. If G is a symmetric multilinear functor of n variables then it
has the following form:

G(X1, ..., Xn) = Q°(CAX; A A Xy)
where C is a spectrum with X,-action.

With this proposition we are now able to define the nth derivative of the
functor F.

Definition 3.12. The nth derivative of the homotopy functor F is the spectrum
with X,-action associated with the symmetric multilinear functor D" F , that
is, the spectrum C such that

DMEXy, ..., X))~ Q®CAX A AXp).
We write F(" =C.

We should note here that the definition of the derivative given above is the
nth derivative of the functor F at a point. A more general definition can be
given for derivatives at any space X . (See [G3].) For examples of derivatives,
see [G1] and [G3].

We conclude this section by justifying the analogy drawn at the beginning
of the section between the nth derivative of F as we have defined it and the
coefficient of the nth term in the Taylor tower of F. The nth layer of the
Taylor tower of F, D,F, is a homogeneous functor of degree n. We stated
that a homogeneous functor of degree n such as D,F was naturally equivalent
to a symmetric multilinear functor and could be written in the form

Q®(CA Xy,s

where C is a spectrum with X,-action. Under the equivalence that Goodwillie
establishes between homogeneous functors of degree », symmetric multilinear
functors and spectra with X,-action, D" F is the symmetric multilinear func-
tor equivalent to D,F and F(® is the spectra with X,-action equivalent to
Li;@p@E wpm&i&td&ommﬁﬁiﬁﬁdmlﬁﬂhps://www.ams.org/journal»terms-of-use



THE DERIVATIVES OF HOMOTOPY THEORY 1305

Proposition 3.13.

(a) The symmetric multilinear functor equivalent to D,F is the cross effect
of D,F, x,D,F . Furthermore, this functor is naturally equivalent to
the multilinearization of x,F .

(b) D,F can be recovered from F™ :

D,F(X) = (F™ A X)), 5 .

This process can be extended to all homogeneous functors of degree n to give
an explicit means of constructing the equivalences between the three categories.
See [G3], section 3 for details.

We are now ready to construct the derivatives of 1.

4. THE FUNCTOR M,

This section will be devoted to the construction of the functor M, and the
transformation 7 between yx,I and M, , first mentioned in section 2. We
will show later that the multilinearization of M, is equivalent to the multilin-
earization of y,I, and from that determine the nth derivative of 1.

Recall Theorem 2.2. Conditions (a) and (b) are sufficient to conclude that
xnI and M, have the same multilinearization. Specifically, we have

Proposition 4.1. Let F and G be reduced functors of n variables. Let S : F —
G be a natural transformation such that when X, X,, ..., X, are k-connected,
then the resulting map

S:F(X\, X, ..., X)) = G(X1, X2, ..., Xn)

is ((n+ 1)k — c)-connected, where c is a constant which does not depend on k .
(F and G agree to nth order via S.) If such a transformation exists, then the
multilinearization of F is equivalent to the multilinearization of G .

Proof. The multilinearizations of F and G evaluated at the spaces X, ...,

X, are equivalent to hocolim,_ Q"F(Z/X,,2'X,,...,Z'X,) and
hocolim;_, Q" G(Z' X, £'X,, ..., £'X,), respectively. If X, ..., X, are k-
connected then X/ X, X/X,, ..., X/ X, are (k + [)-connected. Hence, the map
Qs Q"F(EX,, ..., 2 X,) - Q"GEl X, ..., X))

is (n+1)(k+1)—c—1In) = nk + k + [ — c-connected. As [/ goes to infin-
ity, so does the connectivity. Hence, in the limit, Q" F(Z!X,, ..., ¥'X,) and
QnG(E!X,, ..., ZlX,) are equivalent.

Corollary 4.2. If QT, : Q. I(ZX,, ..., ZX,) - QMap,(A,, ZX; A--- A ZX,)
is (n+ 1)k — c-connected then

X'II(XlaX29°"’Xn)_‘ n(XlaX2,~-~,Xn)

is an equivalence after multilinearization.
Proof. The hypothesis implies that the map

Q'T,: Q" x,I(ZX), ..., ZX,) — Q"Map,(A,, ZX; A--- AZX,,)

is ((n + 1)k — (n — 1) — ¢)-connected. Proposition 4.1 implies that the multi-
LJDEARIZALIONS.Of, £ach. Side.AROYE Arc.cayivalent..But the multilinearizations
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of x»I and M, are equivalent to those of Q"yx,I(XX,,...,2X,) and
Q"Map, (A,, ZX; A--- AN EX,) respectively. Hence, the multilinearizations of
xnI and M, are equivalent.

Hence, condition (b) of Theorem 2.2 guarantees that the spectra associated
to the multilinearizations of y,/ and M, have the same homotopy type.
Condition (a) of Theorem 2.2 ensures that the spectra have the same X,-action.
Thus, if we can prove Theorem 2.2, we will be able to recover the derivatives
of I from the multilinearization of M, . In this section we will define 7" and
A, . We will also verify condition (a) of Theorem 2.2.

If we use the inductive definition (Remark 3.2) to construct the total fiber of
an n-cubical diagram, we see that the resulting space is equivalent to a collection
of maps with certain compatibility properties. For example, the iterated fiber
of a l-cube, f: X — Y, is, by definition,

{(x, 7)€ X x Y!|y(0) = f(x), ¥(1) = yo}

where yq is the basepoint in Y . The exact description for any n-cube is given
below in Definition 4.3, following remarks in section 0 of [G2]. This property
of the total fiber will be used in constructing 7 and A, .

Definition 4.3. Let X be an n-cube of spaces. For a subset U of n,let IV =
{(tista, ..., th) €I"|t; =0 if i ¢ U}. A point in the total fiber of X is a
collection of maps, ® = {®y}uc,, where Oy : I U - X(U). Furthermore,
these maps must satisfy the compatibility properties below:

(@) For V CcU
(DUII" = '}7[/,UO¢)V

where yp y is the map X(iy y) : X(V) — X(U), and iy, y is the
inclusion V — U.
(b) ®y(ty, ..., ty) is the basepoint in X(U) if ¢t; =1 for some i.

Using 4.3 we will begin constructing 7. First we show how to construct a
map T, : x.I(X1, X2, ..., Xn) — Map,(I""=1 H, ; Xi). Then we compose
with the quotient map from the product H1=1 X, tothe smash product /\,  Xi.
This gives us a map from x,/(X;, X5, ..., X,) to Map,(/""~V /\, | Xi) .
Finally, we will identify a subspace of I""=!) which is always mapped to the
basepoint in the smash product. Taking the quotient of /"(*~! over this sub-
space yields the space we will call A, and allows us to define the functor M,
as Map .(A,, A/, X;). Furthermore, this yields the desired map from the cross
effect to M, , T, : x.I(Xi, X2, ..., Xn) — Map,(An, A1) X))

If we apply Definition 4.3 to x,/(X;, X2, ..., X,) then we see that a point
® in x,/ consists of maps {®y}ycqi,.. » such that

Dy 1V -\ X
i¢u
and conditions (a) and (b) of 4.3 are Asatisﬁed.
Consider the set U; ={1,2,...,i,...,n}. We have

.U
License or copyright restrictions may apply to redistribution; see hmﬂlf‘vww.lmsforgndurr&iterms-of-use
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Note that IY is an (n — 1)-cube. Let

n
T xal (X1, X2, ...y Xa) = Map, ("D T] X))
i=1

be defined by
n n n
T,@) =[] ®uv: []1¥ - [] X
i=1 i=1 i=1
If we compose with the quotient map from [];_, X; to A}, Xi, then we have

n
Tl,l/ : XﬂI(Xl ) X27 ] Xn) - Map*(ln(ﬂ'—l), /\Xl)
i=1

defined by
n
T/(®) = \ .
i=1

Since we have now passed to the smash product, there will be many more
points in I""=1) mapped by 7/(®) to the basepoint in the new target A]_, X;.
Specifically, if T,(®)(r) € (X;V Xy) x (IT.Z; iz & Xi) for some j and k, then
T!(®)(¢) is the basepoint in A}, X;. With this in mind, recall properties (a)
and (b) of Definition 4.3. These properties tell us that if we restrict @y, to the
boundary of IUi then either a point on the boundary is mapped by @y, to the
basepoint in X; (if one of the coordinates of the point is 1) or its image under
®y, is the image under the retraction X; V X; — X; of a point in X; V Xj,
for some j (if one of the coordinates of the boundary point is 0). Knowing
this, we can identify a collection of subspaces of I""~1) which will always be
mapped to the basepoint in A7, X; by T,/ .

Let ¢ = [tij]i<i, j<n Where t;; =0 forall i denote a pointin I""~1  so that
T"(q)) maps the (n — 1)-cube, {(l,’[ stins tizs ooy tiic1, 0, tiigr sy o nn s t,‘,,)} , to
X;. We wish to consider the following subspaces of I""~1 |
Definition 4.4. For 1 <i<j<n,let Wj={te "™ Dty =ty for1 <k <
n}.

As indicated, if one of the coordinates, f;;, of ¢t € I""=D is 0, then
@y, (ti1, ..., tin) is the retraction to X; of a point in X; vV X;. The conditions
placed on a point in Wj; guarantee that ®y, (¢, ..., tin) and Py (¢, ..., Ljn)
are retractions to X; and X, respectively of the same point in X;V X;. Hence,
we state the following.

Lemma 4.5. If t € W;;, then T, (®)(t) = e, the basepoint in \_, X;.

Proof. Let t = [t;;] € Wi;. The essence of the proof was described before the
statement of the lemma. By property (a) of Definition 4.3 we have

Dyl =yv, v, 0Py
and
Dy, |y =yv v oDy

where V={l,...,7,...,f,...,n}. For a point ¢ € W};, we see that

License or copyright restrictions may applyq)réé;isl%um(,épé (l\‘p‘sj;//www.ams.otg‘lm)mal-(&yl;-uf-use .y tjn ))
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is equal to
v uo®Pr(tin, -« s tin), vv v, o Pr(tin, .-, tin))
since (1, ..., tin) = (tj1, ..., tjn). Thatis,
Dy, x Py, ((tirs -+ 5 tin) s (Lj1s - Ljn))

is the retraction of the same point in X; V X; to both X; and X;. It follows
that 7,/ (®)(t) =e.

There is another collection of subspaces of I""~1) which will be mapped by
T,/(®) to the basepoint in A/_, X;. These are the points in /"("=1 for which
one of the coordinates is 1. We have the following result.

Lemma 4.6. Let Z = {t € I"""V|t;; = 1 for some 1 < i, j<n}.IfteZ, and
Dey I (X1, Xa, ..., Xn), then T, (®)(t) is the basepoint in \i_, X;.
Proof. The proof follows immediately from property (b) of Definition 4.3.
Now we may define A, , M,,and T,.

Definition 4.7. Let A, = """V /{Z u |
{Zu Ui<j VVU}
Definition 4.8. M, is a functor of n spaces defined as

My(Xy, Xa, ..., Xp) = Map,(An, X, AXs A+ A Xy).

Definition 4.9. Let T, : x,I(X(, X2, ..., X») = My(X,, X5, ..., X,) be the
map T, defined above. For ® € x,I(X\, X2, ..., Xy), T;}(®) is a well-defined
map by the previous lemmas.

W.;}, the quotient of I""=1) over

i<j

We conclude this section by noting that 7, is a X,-equivariant transforma-
tion.

Theorem 2.2a. The transformation T, is L,-equivariant, that is, it preserves the
X.-symmetry of y.I and M, which permutes the spaces X\, X5, ..., X, and
images of the (n — 1)-cubes in A, .

The proof follows from the definitions involved and is left to the reader.

5. THE HOMOTOPY TYPE OF THE DERIVATIVES

In this section, we determine the homotopy type of Qy,(Z)(Xi, ..., Xn)
and A, , and consequently, the homotopy type of the derivatives.

In proving Theorem 2.2b, we will be working with the cross effect of the
functor QX . Note that

In( Q)X Xasoor s X)) = xnQEX LA - ANZXy) = Qual (X1, Xa\ ..., Xp).

The latter equivalence comes from the fact that the loop space functor is a
homotopy fiber and as such commutes with the homotopy fibers of x, .

It suffices to study the cross effect of QX because the multilinearizations
of x,I and x,(QX) are equivalent, by Proposition 4.1. The convenience of
this approach is that the Hilton-Milnor theorem will allow us to determine the
homotopy type of x,(QX)(X;, X, ..., X,) in the range we need. Specifically,

Licéﬂéeoh&y&tmﬁcti‘ﬂuﬂ\fﬁim:edistribulion; see https://www.ams.org/journal-terms-of-use
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Proposition 5.1. If X, ..., X, are k-connected spaces, then
n
/\ X)) = m(xn(QE) (X1, ..., Xn))

Jor 0O<m<(n+1)(k+1)-

To prove Proposition 5.1, we recall the Hilton-Milnor theorem and the defi-
nitions needed to state it. The subsequent discussion follows that of Whitehead
([Wh], pp. 511-517). Hall ([Ha]) has shown that the free Lie algebra generated
by the elements Xx;, x;, ..., X, has an additive basis consisting of certain “ba-
sic products”. The basic products are defined in terms of three numbers assigned
to each product: the serial number, s, the rank, r, and the weight, w. The
basic products are defined inductively by weight. The basic products of weight
1 are xy,x3,..., X, with s(x;) =i and r(x;) =0 for i =1,2,...,n
Suppose that the basic products of weight < m — 1 have been defined, along
with their serial numbers and rank, in such a way that if w(u) < w(v), then
s(u) < s(v) . Then, the basic products of weight m are all products, uv, where
u and v are basic products satisfying the following conditions:

(1) w(u)+w(v)=m,
(i) s(v) <s(u),

(iit) r(u) <s().

For such a product, r(uv) = s(v). If k is the largest serial number assigned
to the products of weight less than or equal to m — 1, then the products of
weight m can be assigned serial numbers in any order beginning with k + 1.

A formula due to Witt [Wi] tells us that the number of basic products involv-
ing x; exactly k; times is

k/d)'
(3-2) 3 d% T/d) - (kujd)’

where kK = k| + --- + k,, pu is the Mobius function, and k( is the greatest
common divisor of k;, ..., k,.

Given spaces X;, X2, ..., X,, one can define the basic products of these
spaces by using the smash product. Let wy(X;, ..., X,) denote the kth basic
product of the spaces X,, X,, ..., X,. For a space X, recall that the space
J(X) is the reduced product space defined by James ([Ja]) . One can define a
map h: [[2, Jwi(Xy, ..., Xy) = J(X1V---VX,) (see [Wh] for details). With
this we can state the Hilton-Milnor theorem ([Hi], [M]).

Theorem 5.3 (Hilton-Milnor). The map

h:ﬁj(wi(xl,...,x,,))qJ(X.vmvx,,)

i=1
is a homotopy equivalence.

Recall that for any space X, there is a weak homotopy equivalence, J(X) —
QXX . This weak equivalence leads to the corollary of the Hilton-Milnor theo-

Licé ?e or c§§/§§1§gstrp§A9‘nay'apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Corollary 5.4. The spaces [[;2, QZ(wi(X, ..., X)) and QZ(X, V -V X,)
have the same homotopy type.
Proof of Proposition 5.1. Applying Corollary 5.4 we see that

Xn(QE)(X1, ..., Xy) = [[QE(wi( Xy, ..., Xa).

The product on the right is taken over all basic products w;(Xi, ..., X,) which
include each X; at least once. Clearly, the first basic products to satisfy this
condition are those involving each space exactly once. By formula (5.2) the

number of such products is (n — 1)!. Note also that if w;(X,, ..., X,) isa
basic product of weight ¢ then QXw;(X,, ..., X,) is (¢2(k+ 1) — 1)-connected.
Since ]'[(" nt "QE(AL; X)) and x,(QZ)(Xy, ..., X,) differ by basic products

of welght n + 1 and greater, it follows that

(n—1)! n
(H QZ(/\ )) Xn(QZ)(Xla---,Xn))

i=1

for 0<m < ((n+1)(k+1)—1). Consequently,

(n=1)! / n
(H (/\ )) m(Xn(QE)(X1 5 ..., X))

Jj=1 i=1
in the same range.

It should be noted here that, although the Hilton-Milnor theorem gives us
the homotopy type of the nth cross effect in the range we need, the map in-
volved does not respect the X,-symmetry of x,(QX)(X,, X,, ..., X,). Hence,
we have no way of recovering the XZ,-action after the multilinearization of
xn(QX)( Xy, X3, ..., X,) from the information yielded by Hilton-Milnor. This
is what first motivated the construction of the functor M, .

We now turn our attention to the complex A, . For the purpose of proving
the cgnnectivity of T, , we will use an equivalent subcomplex of A, , which we
call A,.

Definition 5.5. Z,, is the subspace of A, consisting of all points [#;]i<;, j<» in
Ay such that 7;; =0 when j # 1.

The homotopy type of Zn is easily determined.
Proposition 5.6. A, is homotopy equivalent to Vin-1y s,

To prove Proposition 5.6 we will construct maps labelled by elements of the
following set, G,. We will refer to this set throughout the remainder of this
paper.

Definition 5.7. G, is the set of all bijections, g : n — n, such that g(1) =
1 € G, will always denote the identity.

Proof of 5.6. Let g € G, . Define hg: I"! — I""=1) as follows.

0 0 ... 0
thy 0 ... O
hg i (S15 82, ey Snmg) — | 131 0 ... 0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/jour I&wms-of-&e “ee 0
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where
tj1(s1, 82, ... 5 Spm1) = max{s|l < g7'())}.
Specifically, the image of h, in I""~1) is the (n — l)-cell in which fz;) <
tgn < -+ < tgmn - As a map of I"~! into I""=1  h, maps the boundary
of I"! to the subspaces Wig2), We(2)6(3)» - - - » We(n-1)g(n) » and Z of I"=1
That is, we have
helsi—o t 1" ™" — We(iyg(inn)
and
hg|51=1 3 (o —
Furthermore, if s; > s; for some i < j then A, takes the point to Wp(j)g(j+1) -
To see these facts, note that in Z,, , W, has the form

Wiy ={teI"™ V; =0for j# 1, and ty, = t;,}.
If 5; =0, then

tg(,'+1)1(S1 yeee s Spoy) = max{s;ll <i+1}= max{s,ll < l}
= Ig(,')l(Sl s eee s Sn—1)
Thus, hg(sy, ..., Sa—1) € We(igi+1) When 5, =0.

Furthermore, if s; = 1, then

le(ji+1 = max{s/|/ < j+ 1} =1.

So, hg(s1, ..., Sp—1) € Z when any of the s;’s are 1. Let L be the set of all
the points just identified above, whose images are in (U,; Wi;) U Z . That is,
L= {(s1,...,8—-1) € I""!ls; = 0 or 1 for some i or 5; > s; for some i < j}.

From the above we can see that if we compose with the quotient map g :
I"n=1) — A, , then A, = goh, maps I"!/L in a one-to-one manner to A, .
Note also that I*~!/L is homotopy equivalent to $"~! since L is equivalent
to 8I""!. Hence, the map

\/ Ag: V sn-1 —>Z,,
8€Gn 8€G,

is a homotopy equivalence.

As claimed we also have the following proposition and its corollaries.
Proposition 5.8. A, and Z,, are weakly homotopy equivalent.
Corollary 5.9. A, is equivalent to \/(,_;,, S"~V.
Corollary 5.10.

Map, (ZA,, ZX; AZXy A--- AZX,) ~ Map, (ZA,, ZX; AZXy A« AZX,).
And, both of these spaces are equivalent to ]'[(,,_l)! QZNXIAX2 A AN Xy).

The proof of Proposition 5.8 is broken up into several lemmas. Basically,~we
show that the space (J,. j Wij) U Z is equivalent to its intersection with A, .
We will rely on a nice relationship between graphs and the W;;’s in order to

Licehcm&rmgﬁ§§mprmresjm&%@hgf://w WiihkdnLoruse
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Lemma 5.11. The intersection, (\;_; W, in I""=V, for some collection of
pairs, {(ix, Jk)}yr_, consists of one point, the zero matrix [0], if and only if the
graph, T, consisting of vertices 1,2, ..., n and edges i, — ji for each pair

(i > Ji) € {Uik» Ji)}i_, is connected.

Proof. We will first consider the case where, for each 1 </ < s, the graphs con-
sisting of vertices iy, ji , and edges iy —j; foreach pair (iy, ji) € {(ix, jk)}f(=1
is coonecteq, and for each 1 < ¢ <s, i, € {ix, jk}z;‘} ,and j, ¢ {i, jk}Z;ll )
That is, adding the edge i, — j, connects one new point, jj , to the graph built
out of the previous k — 1 pairs. In this case we claim that for any point in the
corresponding intersection, (;_, W, ji» atleast n+s(s+1) of the coordinates
must be equal to 0. To show that this is the case, we proceed inductively. If we
have the graph i — j , then the claim holds since #;1, t22, ..., tan, tij, and ¢j;
must equal 0 in W;; . Adding the edge i; — j; to the graph corresponding to the
pairs {(ix, ji)}i_ 1 means that for a point in (,_, W,,, , 2s more coordinates
must be zero m addmon to the n + (s — 1)s coordinates which must be zero
for points in (,_, W, . Specifically, these new coordinates are {;, }3_ ; and
{t’kh}k - Thus, n +2s+5s(s—1) = n+s(s+ 1) coordinates of a point in
Mi=; Wi, j, must be zero.

In general, we consider the connected components of T and label them
Yy, Y,,...,Y,. Furthermore, let Wy  denote the intersection of the W;’s
corresponding to the edges in YT, . Without loss of generality, we may assume
that each Y, contains a minimal number of edges, i.e., if T, has r, vertices,
then it has (r, — 1) edges. (Adding an extra edge to T, imposes no new
conditions on the coordinates of a point in Wx_.) Then, by the above, a point
in WT must have n+r,(r,—1) coordinates equal to O Furthermore, a point in
Mi Wi = Na_, Wy, must have atleast n+Y o _, ro(ro,—1) coordinates equal
to 0 and can have as many as - ., <, 2falg NON- zero coordinates. Thus, if
T has only one connected component , then n + Y2 —1) = n? and

al

k=1 Wi, contains only the zero matrix. If T has more than one connected
component, then <a<f<a 2rorg >0 so ﬂk , Wi.j, contains points with non-
zero coordinates. With this we have proved the lemma.

Lemma 5.12. The intersection, (Y,_, Wi ., in 1"~V for some collection of
pairs, {(ix, jk)};_, s the zero matrix if and only if the graph, Y, consisting
of points 1,2, ..., n and edges iy — ji for each (i, jx) € {(ix, JK)}iey
connected.

Proof. Let t = [t;;] be a point in (\,_, W,,j, . It is easy to see that ¢;,; =0 if
and only if the point i; is part of the connected component of T containing 1.
Hence, all the #;, ’s are equal to zero if and only if T is connected, otherwise

Nk Wi,j, will contain points with nonzero coordinates.

Lemma 5.13. If the graph, Y, associated to the collection of pairs {(ix, ji)}i_,
is not connected then (\,_, W, j, and (,_, Wi, are contractible to points in Z
and Z respectively.

Proof. By Lemma 5.12, if T is not connected then for a point in Wry, there is

at least one coordinate which does not have to be 0. Let ¢, ..., ¢, be those
Lecordinateswihich-doonothavedorbedarbetorh efpae W, ;, x I — _, Wi, be
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the homotopy which takes each u € {ti,-...,tm} and tel, to t(1 —¢)+1¢.

The argument is similar for (,_, W, -

As easy consequences of these lemmas, we have the following corollaries.

Corollary 5.14. Let Y be the graph associated to the collection of pairs
{(ik» Ji)}oey» Wr be the correspondmg intersection (\;_; Wi, and Wy be
the corresponding intersection Mi<i Wiijo - If T is connected then Wy NZ and
WT NZ are empty. '

Corollary 5.15. For any collection of pairs {(ix, i)}, the inclusions

nk 1 ’k./k - nk 1 lka and (nk 1 lklk) ﬂZ - (nk 1 Iklk)nZ are ho-
motopy equzvalences

The corollaries allow us to prove the next proposition.

Proposition 5.16. The inclusion WUZ - WUZ isa weak homotopy equiva-
lence.

For the proof of this proposition we need the following version of the gluing
lemma found in [Wal.

Lemma 5.17. In the commutative diagram

X1« Xo — Xy

! ! !

Y « Yo - 1
let the two left horizontal maps be cofibrations and suppose that all the vertical
maps are weak equivalences. Then the map of pushouts X, Ux, X2 — Y, Uy, Y»
is also a weak equivalence.

Proof of 5.16. With repeated applications of the gluing lemma to diagrams of
the form

s —
ﬂk:l,k;ém Wiie < nk 1 Wiie — nk 1, k#l W;m
!
ﬂi(:l,k;ém Wi < nk Wiie — nic:l,k;él Wicie
and __ _ ~
— WyrnZ - Wy
! !

we are able to show that WUZ - WUZ isa homotopy equivalence.

N— N

Since I™n—1) < ["n=1) is also an equivalence, the quotients A, and A, are
equivalent and the proof of Proposition 5.8 is complete.
The proof of the second statement of Corollary 5.10 is as follows.

Proof of 5.10. As a consequence of 5.6, each of the spaces is equivalent to
Map. (Z(V 1y S”"~Y), ZX; A--- AZX,) . Furthermore,

Map.(Z(V(n_l)! SN, EX A AZX,)

is equivalent to H(n_,), Map.(S", S" A (X, A--- A Xy)), and this is equivalent
Lic}ge Dll)bangl‘l )ésg%goénmgyxypbly/h) f&%xr{t}nbﬁ H 'sJe\ hﬁgﬂ/)vww.ams.org/journal»terms-of-use



1314 BRENDA JOHNSON

6. THE CONNECTIVITY OF QT,

We have shown that for m < (n+1)(k+1)=1, mm(I](,—;y Aiz; Xi) is isomor-
phic to 7, (¥, (QX)(X;, X2, ..., X)) when X, X,, ..., X, are k-connected
spaces. From Corollary 5.10 it follows that 7, (x,(QX)(X;, X5, ..., X)) and
m(Map.(ZA,, XiAX2A---AX,)) are isomorphic for m < (n+1)(k+1)—1.
Now it remains to show that (Q7,). induces this isomorphism. To do so, we
will set up the commutative diagram below

(6.1)
T ((QT,,)OD)‘
—_—

H.(V geg, (IT1, X)) H.(Map.(ZA,, X, A--- AEX,))

o~

l H (T QP2 (X A - A X))

ﬁ*(vgeGn(A;l:lXi)) - @geG,, ﬁ*(Q”Z"(Xl /\"'/\Xn))

The first step will be to define the maps in the diagram and compute the degree
of those maps.

For each g € G, we will construct a map C, that maps []._, X; to
xn(QX)( Xy, ..., Xn). Like the map used to prove the Hilton-Milnor theorem
(see [Hi], [M]), C, will be defined via commutators. In order to construct Cg,
we will need a few basic maps. These maps, 4, B, C, and P, will provide
standard homotopies from commutator loops to constant loops, and will allow
us to build elements of x,(QZX) from elements of y,(QZX) for k < n.

Definition 6.2. C : QX x QY — Q(X V Y) is the commutator. That is, for
a€QX,and B €QY, C(a, B) is the commutator loop afa~!g~1.

Definition 6.3. A :1? — I is defined by

4t 1 1,1
rm, forOgsSEand0§t§(3+zs)
1, forO<s<land ({+4s)<r<(3-19)
- 11 3
A for0<s<iland(3-4s)<r<3
A5, D) ] o for0<s<j}and3<r<l
S =
’ 0, forl<s<land0<t<3(s—3)
8643 fori<s<land3(s-4) <1<}
=B=bs49 - for i <s<land <t<{-3s
I 9 _ 3
L 0, for3<s<land g—3s<t¢<1

Note that, if e is the constant loop at the basepoint in X, and a € QX , then
a(A(s, t)) is a homotopy from the commutator loop C(a, ) to e. See Figure
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702077 AN AN (4020 PN
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FIGURE 1 FIGURE 2
Definition 6.4. B :I?> — I is defined by
(0, for0<s<land0<t<}
41 1 1 1 1
ST forOSssiandZ§t§7+zs
1 1,1 3_1
1, forO0<s<sand 5+ z5<t<5—3S
B(s, 1 4 for0<s<jand3-is<t<l1
s, t)=4(
0, fori<s<land0<t<3s-1}
8i=gstl | forf<s<land3s—-{<r<}
—81—6s5+11 1 5 1 _3
=l fors;<s<land g <t<F— 3
1 11 3
( 0, for;<s<land §y -3s<t< 1.
Note that, if e is the constant loop at the basepoint in X, and f € QX , then
B(B(s, t)) is a homotopy from the commutator loop C(e, f) to e. See Figure
2.
Finally, we define a map
P:n—1QX1, Xoy ooy Xn1) X x1Q(Xn) = 22Xy, X2y ooy Xp).

Essentially, P builds an element of x,Q(X;, Xa, ..

tator of a pair of elements from x,_Q(X;, X2, ..
the following e will always denote the constant loop at the basepoint.

Definition 6.5. For ® € yx,_Q(X;, X», .

P xn—1QXy, Xa, ...

., Xn) out of the commu-
., Xn—1) and 1 Q(Xy). In

.» Xn-1) and B € x1Q(Xy),
] X'l—]) X XIQ(XH) - X”Q(Xl > XZ’ ..
ment P(®, B) = {P(P, Blutven in xaQX1, Xz,

., Xn) is the ele-.
..., X,). The maps

P(®, By : IV — Q(V,.65 v Xi) are defined as below. ¢ will denote the loop

coordinate.
(a) If n ¢ U,

C(®dy(2ty, ..

P((D U={ ‘,2tn—l)’ BZ)(t),
License or copi/right restriction: maﬂag{yB (qut(oa §Te hnpsl//\;vw.w..afns,.oalpﬂmakteln)s-’of-p}% 5

Ostla'~~atn—l S 1/2,

otherwise.
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b) Ifnel,
P((D ﬂ) ={(DU—{n}((ztls---,2tn—l))(A(lnst))> Ogtly'“’tn—l < 1/2a
U e, otherwise.

We leave it to the reader to check that P(®, #) as defined above satisfies all
conditions necessary to be an element of x,Q(X;, X3, ..., X,).
Now we may define Cg.

Definition 6.6. For g € G, , we define C,: [\ Xi = x(QZ)(X1, X2, ..., Xu).
The definition for any g will depend on the definition of C, where : again
denotes the identity function. C, is defined inductively. For n=1, C,: X —
x1QZX is the function such that

(Ci(x)e : 1% — x(1)
where x(¢) is the loop in £X which takes ¢t to x A¢. And,
(G(x))q1y =e.
For 1€ G,,where n> 1, C, : [, X; = xn(QZ)(Xy, ..., X,) is defined as
Cixry .o, xn)=P(Ci(x1, X2, ..., Xn—1), Ci(xn)).
Finally, for any g € G,, Cg: I\, Xi = xa(QZ)(X1, ..., X,) is defined as

Cg(x1 s ey x,,) = C,(Xg—l(l) . Xg—l(z) s ey xg—l(n)).

The maps C,, though not explicitly the same, were inspired by the map of
the Hilton-Milnor theorem. The Hilton-Milnor map takes a point in QXY;, for
some basic product Y;, to a nested commutator of loops in QZ(X,VX,V---VX,)
determined by the grouping and ordering of the X;’s in Y;. Essentially, C,
takes a point (x;, ..., X,) tothe pointin x,Q(ZX,, XX;, ..., ZX,) consisting
of the nested commutator loop,

C(xg"(l) s ey C(ngI(n_Z)(C(Xg—I(n_I) , Xg—l(n)))) “e )
in Q(ZX, VEX,V---VZIX,), determined by the surjection g, and homotopies
from that loop to e in Q(V, ¢, ZX;) .

We now wish to determine the connectivity of the composition Q7, 0C,, as
indicated in the commutative diagram at the beginning of this section. To do so,
first note that for a point (x|, ..., x,) in [[[_, Xi, (QT,)oCg(xy, ..., Xn)oAy
( Ay is the suspension of the map A, defined in the proof of Proposition 5.6)
is a map from S" to Z"(A._, X;). From the definition of C, one can see
that the image of a point s € S$” under this map will always have the form
Cen(s) A(xy A= AXy), where Ty, € Q"E" is a map determined by the choice
of g and h. In other words, we can make the following definition.

Definition 6.7. I'y, : S” — S” is the map which makes the diagram below
commutative. (g is the quotient map.)

I, X {81)°C, Map, (A, EX A+ AEX,)

| Is

Nizy Xi Q"I"(Ai_ Xi)
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The advantage of considering the maps I'g, is that we can determine their
degree for any choice of g and 4 in G,.

Proposition 6.8. For g, h € G,, the map Ty, : S* — S" has degree one if
h = g. Otherwise, it is null-homotopic.

The proof of Proposition 6.8 will proceed by induction on n. The heart of
the proof will be defining a map p* that makes the following diagram commute.

Xno1QX1, o Xost) X 01QK) —E—  2.Q(X1, Xas .., Xy)
(6.9) QT,,_./\QTll QTnl

Map.(ZA,_1 AZA;, X, AZX,) —2— Map.(ZA,, ZX; A ZX,).

This diagram will allow us to compute the degree of the map in question by
means of an equivalent map in Map*(ZA,, 1 A Al , Xi ANXa A--- A X,), hence
allowing us to set up an inductive argument to prove~Propo§1t10n 6.8.

To define p*, we will~ define a map p : XA, — ZA,_1 AA;. p necessitates
the use of the complex A, , since it wasn’t possible to construct such a map on
A, which was well-defined. (On the other hand, A, does not suffice for our
purposes because the equivalence Z,, — A, does not preserve the X,-symmetry.)

Definition 6.10. Let (s, t5,, t31, ..., t,1) be a point in ZZ,, , where s denotes
the suspension coordinate and t21, 131 , ..., ty1 denote the (possibly) non-zero

coordinates of a point in A p: ZA — EA,, 1A ZA. is defined by
P(S, a1, 8315 o s tn1) = (UA(S21, 8315 -+ 5 Sn=1)1)) AV

where ($21, ..., S(n—1)1) are the coordinates of a point in A,,_l , U is the sus-

pension coordinate of ZA,, 1, and v is a point in ZAI They are defined

as .
Si1 = mln(l ) 2lil) ’

u=A(,s),
v = B(max(0, 2¢,; — 1), s).
The map
pr: Map*(ZZ,,_, /\EZI S, XIAXG A A Xy) — Map,.(ZZ,,, XiANXoA---ANXy)
is defined as
p*:0—80p for O c Map,(ZA,_| AZA;, X, AXs A A X,).

With these definitions, it is easily shown that (6.9) is commutative. We omit
the details.
The next step is to study the maps poAg.

Lemma 6.11. Let g € G,. Consider the map poAg:S" — ):Z,,_, /\ZZl . When
g(n)=n, let f denote the restriction of g to {n—1}. Then,
A { Arnidg ifg(n)=n,
[o]
ttp@//www.ams. orgljourrg‘gr(snf-)l# n.

License or copyright restrictions may apply to redlsmbué)n see
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FIGURE 3

Proof. Let t As; A---As,_; be apoint in S” where S” is considered as the
smash product of n copies of S!. If g(n) =n, then

poAg(tASI A~ Asy_y) = (min(1, 212,), ..., min(1, 2t(_1y1))
A A0, 1) A B(max(0, 2tn — 1), 1)

where

tj1 = max{s;|/ < g ')
If g(n)=n, then

ty) = max{sy, ..., Sp—1}

and s,_; ¢ {s;|// < g7'(j)} forany j # n. (Thus, the image in A,_, does not
depend on s,_;.) Also note that if max(0, 2¢,; — 1) > 0 then s; > 1/2 for
some j. If j #n—1,then min(l, 2t;) =1 forall i with j < g~!(i), and
hence poAg(tAsiA---s,-1) = e. It follows that

poAg(l/\Sl /\Sz/\"'/\S,,_l)
is equal to
(min(1, 2t31), ..., min(1, 2t,_1y1)) A A0, £) A B(max(0, 25,1 — 1), 1).

The map (min(1, 2¢5;), min(1l, 2t3;), ..., min(1, 2¢,,_;);)) is homotopic to
Ay via the homotopy

(min(1, (2 - g)t21), min(l, (2 —¢g)t31), ..., min(l, (2 = q)t(n—1)1))-

To see that A(0, t) A B(max(0, 2s,_; — 1), ) is homotopic to the identity map
on S = I?/8I*, consider a point (a, b) € I? such that a, b # 0, 1. The
inverse image of {a} x I in I? has the form {a/4, (a+3)/4} xI. The inverse
image of I x {b} in I? under B(max(0, 2s,_, — 1), ¢) is a path in I* from
(0, (b +1)/4) to (0, (b+4)/4). It is easy to see that the inverse images of
I x {b} and {a} x I intersect in a single point (see Figure 3). Hence the map
has degree one and is homotopic to the identity map as claimed.
If g(n) # n, then ty, = max(s;, sz, ..., S,—1). In order to have a non-
Litrisciabypointiin rtherimage.of; sprmsAyw awvedgnustehavee min(1, 2t5,) # 1, i€,
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s; < 1/2 forall i. If this is the case then ¢,; < 1/2, and max(0, 2z,;—1)=0.
Thus, if s; < 1/2 for all i, then

pOAg(t/\Sl/\"'/\Sn_l)
is equal to
(min(1, 2¢51), ..., min(1, 2t(,,_1)|)) ANA0, t) AB(O, ).

But, A(0, ¢) A B(0, t) will always be the basepoint in S?. Hence, po A, is
null homotopic.

With this we are now ready to prove Proposition 6.8.

Proof of Proposition 6.8. When n = 1, we need only consider one case, 1 € G, .
One can easily see that I, is the identity map on S!, and hence the proposition
holds here. Furthermore, for 1 € G, ,

(¢ As)) = A0, t) A B(max(0, 25, — 1), 1)
since
QT 0 Ci(x1, x2) o Ag(t Asy) = A0, t) A x; A (B(max(0, 2s; — 1), ¢)) A x3.

We saw in the proof of Lemma 6.11 that this has degree one.
For g, h € G,, it follows from the definitions of C,, T, and A, that

(QT, 0 Cg(x1, X2, ... s Xn)) 0 Ay = (QT 0 Cy(x1, X2, ... , Xn)) © Ag-1oh-
Furthermore,
(QTn 0 Ci(x1, ..., Xn)) 0 Agoiop = (QTy 0 P(Ci(X1, ..., Xn), Ci(Xn))) 0 Ag-iop
= QT 1(C(x15 - .o s Xn—1)) AQT(Cy(xn)) 0 (p 0 Ag-16p)-

If g=h,then poA, i, ~ A Aidsi by Lemma 6.11. So,

(QT, 0 Cg(x15 ..., Xn)) 0 Ay
is equivalent to

QT 1(Ci(x1, ..., Xn—1)) 0 A) AQT(Ci(xn)) 0 idg

which is equivalent to

FuAxi A Axp_ AT A X,

Therefore I'y, has degree one, by induction.

If g#h,and g~ 'oh(n) # n, then poAg-1,, is null homotopic, so I'y, is as
well. If g='oh(n) = n, then (QT,_10Ci(x;, X2, ..., xn))oAs (where f isthe
restriction of g=!'oh to {n—1}) can be reduced as above to a smash product
of maps, one of which will have the form QT,_x(Ci(x;, ..., Xy—x)) o (po Aj)
where j(n —k) # n— k. This is guaranteed by the fact that g='oh # 1. Then
Lemma 6.11 can be applied as above to determine that this component is null
homotopic. Hence, we can conclude that Iy is null homotopic when g # h.

LicenseWcimg &mﬁcﬁcr‘r&;&pab]&istrgnmgyﬁtp;l?/mﬁgmmgn;b(ms-of-use
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Proof of Theorem 2.2b. We will work with the commutative diagram of reduced
homology groups (6.1) .

5 ((QT,)oD).
Hu(Vgeg, ([Ti2) Xi)) ———

Hp(Map. (ZA,, TX, A--- AZX,))
lvheGnAh

"l Hu(TTjeq, (QUZM(X1 A+ A Xp)))

lr

Hm(VgEG,,(/\;;lXi)) _l:) @hEG,, ﬁm(QnZn(Xl A« A Xp)).

The map ¢ is induced by the quotient map from [];_, X; — A, X; and D
denotes the map (V g, Ce) -

We will determine the range in which the side and bottom arrows are injective
and/or surjective. From there we will be able to deduce the connectivity of
QT, .

Let I, : A, Xi — Q"Z(A_; X;) be the map that takes x € A\}_, X; to
the map I'p, A x . By Proposition 6.8 and the Freudenthal suspension theorem,
| A 2n(k + 1) — 2-connected when g = 4 and is null homotopic otherwise.
The map I' can be represented by the (n — 1)! x (n — 1)! matrix

[(Tgn)s1g. heG,-

By the Whitehead theorem and the preceding, it follows that I" is an isomor-
phism for m < 2n(k+1)-2.

By the Kiinneth theorem, r is an isomorphism for m < 2n(k + 1) — 2, and
q is a surjection. Therefore, "o g is a surjection for m < 2n(k + 1)~ 2. Since
the right arrows are both isomorphisms for m < 2n(k+1) =2, (QT,0V g, )+
is a surjection for m < 2n(k + 1) — 2. In particular, Q7,, is a surjection for
m<2nk+1)-2.

Since 7 (xn(QX)(Xy, X2, ..., Xp)) and m,(Map.(ZA,, Xy AXoA---AXy))
are isomorphic to 7, ([](,_; Aiz; Xi) for m < (n+ 1)(k +1) — 1, we know
that H,,(x,(QX)(Xy, X2, ..., X,)) and H,(Map.(ZA,, Xi AXa A= N X))
are isomorphic in the same range. Furthermore, the finiteness condition on
the spaces X, X,, ..., X, guarantees that these homology groups are finitely
generated abelian groups. Hence, the surjection Q7,, must be an isomorphism
for m < (n+1)(k+1)—1. By the Whitehead theorem, QT,, is (n+1)(k+1)—1-
connected.
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