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THE DERIVATIVES OF HOMOTOPY THEORY

BRENDA JOHNSON

Abstract. We construct a functor of spaces, M„ , and show that its multilin-

earization is equivalent to the nth layer of the Taylor tower of the identity

functor of spaces. This allows us to identify the derivatives of the identity

functor and determine their homotopy type.

The calculus of homotopy functors, developed by Goodwillie ([GI], [G2],

[G3]), establishes that a homotopy functor, F, satisfying certain connectivity

conditions, has associated to it a tower of functors, ... -> PnF -» P„-XF ->... .

These functors act like a Taylor series approximation to F in the sense that

for a space, X, there is a map, pnF(X) : F(X) —> PnF(X), for each n , and

the connectivity of this map increases with n . This theory has been applied to

the study of the functor A , Waldhausen's algebraic AT-theory of spaces.

In this paper, we turn our attention to the Taylor tower of the identity functor

of spaces, I. The ultimate goal is to identify the Taylor tower of I and use it
to study homotopy theory. In this paper, we construct a collection of symmetric

functors, {Mn} , and show that the multilinearization of Mn is equivalent to

the «th layer, fiber (PnI -* Pn-\I), of the Taylor tower of I. This construction

also allows us to identify the «th derivative of I. This is a spectrum with En-

action which is equivalent to the functor fiber (P„I —> Pn-\I) •

The paper is organized as follows. In section 1 we summarize the basic results

and terminology of calculus that will be used throughout the paper. In section

2 we describe the problem of finding the Taylor tower of I in more detail and
state the main results. In section 3 we outline the method by which the «th

derivative of a functor is determined. In section 4 we construct the functor M„
and a natural transformation, T„ , used to establish the equivalence between the

multilinearization of Mn and fiber~(PnF -» P„-XF). In section 5 we determine

the homotopy type of the derivatives, and in section 6 we show that Tn is

sufficiently connected to induce an equivalence between the multilinearization

of M„ and fiber(P„F -* Pn-\F).
The results in this paper come from the author's thesis, written under the

direction of Tom Goodwillie at Brown University. The author wishes to thank

him for his guidance and for many insightful discussions. The author also

wishes to thank Randy McCarthy for his helpful suggestions during the writing

of this paper.
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1. The Taylor tower of a functor

To start, we need to describe the context in which we will be working. We

need both to establish some notation and terminology and to describe (in brief)

the language and main results of Goodwillie's calculus of homotopy functors

which will be used throughout this paper. We will not give a complete exposition

of the theory of calculus of homotopy functors. Instead we will outline the terms

and results needed in this work. For further detail, explanation and examples

the reader is referred to Goodwillie's papers ([GI], [G2], and [G3]). Specifically,

[G2] contains results about n-cubes of spaces, excision, and analytic functors,

while [G3] contains results about the Taylor tower of a functor.

We start with the conventions. By a space (generally denoted X) we will

mean an object in one of two categories. For the general results from Good-

willie's works, a space X will be an object in the category of compactly gener-

ated topological spaces. For the specific results concerning the derivatives of the
identity functor, a space will be a topological space having the homotopy type of

a finite CW-complex. Moreover, we will assume that all the spaces considered

have non-degenerate basepoints. When we say that two spaces are equivalent,

we will mean that they are weakly homotopy equivalent. By the suspension of

a space, _X, we will mean the reduced suspension, Sx A X .

By an n-cube of spaces we will mean the following. Let n denote the set

{1,2, ... , n} . Let N he the category whose objects are the subsets of n and

whose morphisms are the inclusion maps among the subsets. An H-cube of

spaces is a covariant functor from the category 7Y to the category of spaces.

Goodwillie defines and uses particular n-cubes of spaces, namely Cartesian

and co-Cartesian diagrams. Cartesian can be defined in several ways. One way

is the following. Let X be an «-cube of spaces. Let

MX) =   holim  (X(K)),
KCn,K^0

where holim means the homotopy inverse limit (as in [B-K]). There is a map

a(X) defined as the composition a(X) : X(0) = limX -=-+ holimX —► ho{X) . If

a(X) is an equivalence then we say that X is Cartesian. If a(X) is k-connected,

we say that X is rc-Cartesian.

Dually, we define co-Cartesian. Let Y be an «-cube. Let

Ai(Y)=      hocolim     Y(A"),
KCn, K Ml, ■■■,"}

where hocolim denotes the homotopy colimit (as in [B-K]). There is again a map

b{Y) : hx(\) —> Y({1, ... , «}). If b(Y) is an equivalence, then we say that Y

is a co-Cartesian «-cube. If b(Y) : hx (Y) —> Y({ 1, ... , «}) is A:-connected then

we say that b(Y) is A:-co-Cartesian. An «-cube is strongly co-Cartesian if each

of its 2-faces is co-Cartesian.

Cartesianness and co-Cartesianness are related to a certain extent. A classical

result, the Blakers-Massey theorem, estimates the degree to which a co-Cartesian

square is Cartesian as a function of the connectivity of the maps X(0) —> X({ 1})

and X(0) —> X({2}). The Blakers-Massey theorem has been generalized in

various forms to w-cubes by Barratt and Whitehead ([B-W]), Ellis and Steiner

([E-S]), and Goodwillie ([G2]).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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By a homotopy functor we will mean a functor from spaces to spaces which

preserves weak homotopy equivalences. As a generalization to homotopy func-

tors of the connectivity estimate provided by the Blakers-Massey theorem,

Goodwillie defines what it means for a homotopy functor to satisfy stable

nth-order excision. Let X be an n-cube of spaces, and let F bea homo-

topy functor. By F(X) we mean the n-cube for which (F(X))(S) = F(X(S)),

for Sen.

Definition 1.1. F is stably n-excisive with constants c and k , if, for every

strongly co-Cartesian (n + l)-cube of spaces such that the connectivity, ks,

of X(0) -► X(s) is at least k for every 5 £ {l,...,n + l}, then F(X) is

(—c + 2~Z"=i fcs)-Cartesian. We will say that F satisfies E„ic, k) .

For example, the generalized form of the Blakers-Massey theorem ([G2], The-

orem 2.3) states that a strongly co-Cartesian (n + l)-cube X where X(0) -*

X({s}) is fcj-connected for each jg{l.n+1} is A>Cartesian with k =

-n + _lg_i ks. In other words, applying the identity functor to X yields a

{-n + _l"=x ^)-Cartesian (n + l)-cube. It follows that the identity functor sat-

isfies E„(n, k) for any k , and hence is stably n-excisive. If a functor satisfies

E„ic, k) for all c and k , we say that it is n-excisive. That is,

Definition 1.2. F is n-excisive if F{X) is Cartesian for every strongly co-
Cartesian (n + l)-cube X.

We also have the notion of analytic functors, which are stably n-excisive for
all n.

Definition 1.3. A homotopy functor F is p-analytic if there is some number q
such that F satisfies En(np - q , p + I) for all n .

By the above, the identity functor satisfies E„(np - q, p + 1) when p = 1

and q = 0. Thus, the identity functor is 1-analytic. Other examples of analytic

functors include the stable homotopy functor, Q, Waldhausen's functor, A,

and the functor X *-> Q(Map(K, X)) where K is a fixed finite CW-complex

and Map(Af, X) is the space of all continuous maps from Af to Af. For

details, see section 4 of [G2]. An example of a functor which is not analytic

is the functor X i-» Q°°(E A X[nX) where E is a spectrum that is not bounded

below and XlnX denotes the n-fold smash product of X with itself (see [G3],
Remark 1.16).

Finally, there is a sense in which functors can be approximated by other
functors.

Definition 1.4. Let F and G be homotopy functors. We say that F and G

agree to order n via a map  u : F -* G if there exist constants c and k

such that for every ^-connected space X, the map u\ : F(X) -* G(X) is

(-c + (n+ l)/c)-connected. We say that u: F —► G satisfies 0„(c, k) .

In [G3], Goodwillie provides a method by which an analytic functor can

be approximated by a tower of excisive functors. The idea is that a stably n-

excisive functor F can be approximated by an n-excisive functor P„F . PnF

can be constructed along with a transformation p„F : F —> P„F such that

P„F is n-excisive and F agrees with P„F to order n via p„F. PnF is

regarded as an " nth degree Taylor polynomial" approximation to F. If F is
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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p-analytic, then it follows that there is an entire sequence of functors PqF =

F(*), PXF, ... , Pn-XF, P„F, ... such that each P^F is A>excisive and agrees

with F to order k. Furthermore, there are maps qnF : P„F -> Pn~xF such

that these functors fit together into a tower of functors. This tower is called the

Taylor tower of F . More formally, we have the following results.

Theorem 1.5 (Goodwillie). Let F be a p-analytic functor. To any basepointed

space X there are naturally associated objects PnF(X) and maps p„F and q„F
which fit together in a tower:

i

F(X)    *£>    PnF(X)

Qn-\F

9,F

PoF(X)    ^   Fi*)

which satisfies iqnF) ° ipnF) = pn-\F. P„F is an n-excisive functor. If X is

ip+ l)-connected then the connectivity of the map p„F : F{X) —> PnFiX) tends

to +00 with n. FiX) is equivalent to the homotopy limit ,PooF{X), of the

tower.

For the construction of P„F , p„F , and qnF see section 1 of [G3].

The nth layer of the Taylor tower of an analytic functor F is

DnF = fiberiPnF -^Pn-XF).

Here and elsewhere, fiber will mean the homotopy fiber. Each layer of the

Taylor tower is a functor of a special form, resembling a monomial of degree

n . Specifically, it is a homogeneous functor of degree n , as we state below.

Definition 1.6. A homotopy functor F is homogeneous of degree n if it is

n-excisive and Pn-\F ~ * .

Goodwillie provides a classification of all such functors in [G3]. The result is

stated below. By homotopy orbit spectrum we mean the spectrum obtained from

a spectrum with G-action (for some finite group G) by taking the homotopy

orbit space {X„ Ag EG+) of each space, Xn , in the spectrum.

Theorem 1.7. If F is homogeneous of degree n and X is a space, then

F(I)S0»(CAlI"l)ft

where C is a spectrum with _„-action, _„ is the symmetric group on n letters,

Af["l is the n-fold smash product of X with itself, and KLn denotes the homotopy

orbit spectrum.

As claimed, we have the following result.

Proposition 1.8. If F is an analytic functor, then DnF is homogeneous of degree

n.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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It follows that D„FiX) has the form il°°(C A X^nX) for some spectrum, C,

with X„-action. C is regarded as the "coefficient" of DnF . As we will see later,

it is also the nth derivative of F at a point.

2. The identity functor

In this section, we describe the problem motivating this paper, and outline

the results obtained thus far. Our object of study is the identity functor of

topological spaces: the functor from the category of topological spaces to itself

which takes a space to itself. This functor will be denoted by I. The goal is
to determine the Taylor tower of I. As we saw in section 1, the generalized

Blakers-Massey theorem tells us that I is a 1 -analytic functor. I does not have

finite degree, i.e., it is not homogeneous of degree n , nor does its Taylor tower

split as a product of functors .

The Taylor tower of I is of interest because of the information it will provide

about homotopy theory. The fact that I is 1-analytic means that its Taylor

tower converges on 2-connected spaces. That is, each finite stage of the tower

yields, for a &-connected space X, another space P„I{X) whose first (n + l)k

homotopy groups are the same as those of X. Hence, as n increases, P„IiX)

approximates the homotopy of X in a greater and greater range. Goodwillie has

also pointed out that there is a spectral sequence that converges to the homotopy

groups of X in which the E2 terms are given by the homotopy groups of the

D„IiX) 's . Before this spectral sequence can be utilized, the maps between the

D„Fs must be determined, i.e., we need to know how the individual layers of

the Taylor tower fit together within the tower.

If we look at convergence on the level of functors rather than spaces then we

see that the Taylor tower is a sequence of functors which link stable and unstable

homotopy theory. Specifically, the first layer of the tower is the stable homotopy

functor Q. Considering the tower as converging to the "unstable homotopy

functor" /, we see that each stage of the tower, P„I, recovers increasingly

more information about unstable homotopy theory, information which was lost

when Q was applied. This tower should yield new ideas about the relationship
between stable and unstable homotopy theory.

At this time, the Taylor tower of I has not been determined. In this paper,

we complete a first step in the problem, that of determining the derivatives of

I at a point. Goodwillie has previously determined the first two derivatives of

I and the homogeneous degree n functors in [GI] and [G3]. Specifically, he
has shown the following

Proposition 2.1.

(a) The first derivative of I is the sphere spectrum S° .

(b) The second derivative of I is the i~l)-sphere spectrum, S-1, with trivial

_2-action.

(c) DiliX) _ Q(X) for any 2-connected space X.

(d) D2IiX) _ QQiiX A X)hll) for any 2-connected space X.

The homotopy type of the derivatives have also been known for a while. The

homotopy types can be determined by the Hilton-Milnor theorem (see section

5). The elusive part of the problem has been to determine the E„-action on

the spectrum. One solution is given by John Rognes in his dissertation [R]. InLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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it he computes the first nontrivial homotopy group of the cross effect functor

of Q1-1. From this the homotopy of the derivatives of / with _„ -action can

be recovered. He accomplishes this by identifying the homotopy group as the

kernel of a map from n*(Q'-'(Xx V X2 V • • • V X„)) to

«

Y[ 7t.(Qfl!(Xi vi2v---vftv-.vl„))
k=i

where each component of the map is a collapsing map V"=i Af, -» (Xx \/X2 V- • V

Afj. V- • -VX„). He then compares the kernel of the map of homotopy groups with

the kernel of the same map in homology, and uses the Snaith splitting to identify

the kernel in homology as the homology of a configuration space smashed with

Xx A X2 A • • ■ A X„ . The final step is to show that the Hurewicz map between

the kernel in homology and the kernel in homotopy is a Z„-isomorphism. This

is done by means of the Browder operations on homology. The homology of

the configuration space in the kernel is calculated by finding the homology of a

related quotient complex of the standard (")-simplex.

This paper computes the derivatives in a more direct fashion, working with

spaces rather than homotopy and homology groups, and avoids the need for

the Snaith splitting or the Browder operations. We construct a new symmetric

functor on n spaces defined by

Mn(Xx ,X2,...,X„) = Map»(A„ , Xx A X2 A • • • A X„)

where Map, denotes basepointed maps and A„ is a quotient space of the

product of n copies of the (n - 1 )-cube. A„ has the same homotopy type as the

wedge of (n-1)! copies of the (n - l)-sphere. M„ will be related by Theorem

2.2 below to the nth cross effect of I, Xnl, a symmetric functor of n variables

defined in section 3 (Definition 3.4). As will be shown in Proposition 4.1 and
its corollary, Theorem 2.2 guarantees that M„ satisfies conditions necessary for

its multilinearization to be equivalent to that of Xnl . In turn, Proposition 3.13

will establish the relationship between the multilinearization of Xnl and the

nth derivative of /. The main result is the following.

Theorem 2.2. There is a natural transformation of symmetric functors:

T : XnI(Xx ,X2,...,X„)^ Map,(A„ , Xx A X2 A • • • A Xn)

which satisfies the following properties:

(a) T is -„-equivariant, that is, it preserves the _n-symmetry of Xnl and

M„ which permutes the spaces Xx , X2, ... , Xn and images of the

(n - lfcubes in A„.
(b) If Xx , X2, ...  , Xn are k-connected then

ClTn : Q.XnI(^Xx ,_X2,..., _X„) - QMap,(A„ , _X. A ZX2 A • • • A _Xn)

is (n + l)(k + 1) - l-connected.

From Theorem 2.2 it easily follows that:

Corollary 2.3.

(a) The nth derivative of I, denoted 7(n), is the spectrum whose kth term

is Map„(A„, _k). This spectrum has the obvious "Ln-action given by

permuting the (n - l)-cubes of A„.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(b)  The homotopy type of Pn) is the same as that of the wedge of (n - l)\

copies of the (1 - nfsphere spectrum.

The proofs of Theorem 2.2 and Corollary 2.3 will be given in the subsequent

sections. In section 3 we will describe the general method for calculating deriva-

tives of homotopy functors. In section 4 we will construct the quotient space A„

and the transformation Tn and establish the £„-equivariance of T. In section

5 we will determine the homotopy type of the A„ (and consequently, of 7(n)),

and section 6 will be devoted to proving Theorem 2.2b.

3. The nTH derivative of a functor

In this section we will define the nth derivative of a homotopy functor and

show how it can be calculated in general. In the traditional calculus of real-

valued functions one first defines the derivatives of a function and then uses

these to construct the Taylor series of the function. In the case of homotopy

functors, the opposite is true. It is more natural to define the Taylor tower of a

functor first and then define the derivatives of the functor as the coefficients of

its Taylor tower. Recall, the nth layer of the Taylor tower of a functor F is

DnF = fiber (P„F —> P„-XF). By Proposition 1.8, if F is analytic, DnF is a
homogeneous functor of degree n . We saw in Theorem 1.7 that such a functor

is naturally equivalent to a functor of the form

G(X) = Q°°(CAX["V

where C is a spectrum with X„-action, AfM is the n-fold smash product of X

and h_„ denotes the homotopy orbit spectrum. It is the spectrum that is the

coefficient of the homogeneous degree n functor that Goodwillie defines to be

the nth derivative of X.

One does not need to know PnI and P„-XI to determine the nth derivative

of I. We will work with another category of functors which are equivalent

to homogeneous functors of degree n , namely symmetric multilinear functors.

These functors will be defined and discussed in this section. Symmetric multi-

linear functors are functors of several variables and, as we will see in Proposition
3.11, are also equivalent to functors of the form

G(Xi,...,Xn) = Cl°°(CAXiA---AXn)

where C is a spectrum with _n -action. In defining the nth derivative we will

identify, without needing to know P„I or P„-XI, a symmetric multilinear

functor which is naturally equivalent to Dn I and determine the nth derivative

from this functor. This symmetric multilinear functor is the multilinearization

of the nth cross effect functor of I and is called the nth differential of I.

This section will be devoted to explicitly defining the derivative as outlined

above. The treatment will consist of three parts: defining the cross effect functor,

discussing multilinearization and symmetric multilinear functors, and defining

the derivative. This process is the way in which the derivative is originally

defined by Goodwillie. Most of the material can be found in section 1 of [GI]

and sections 3 and 4 of [G3].
To begin, we will let F bea homotopy functor from the category of based

spaces to itself. We will construct its nth cross effect. The nth cross effect is

the total fiber of a particular n-cube of spaces. The first step in defining the

nth cross effect of F is to define the total fiber of an n-cube of spaces.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Definition 3.1. The total fiber of an n-cube of spaces X, denoted fiX, is the

homotopy fiber of the map y : X(0) —> holimUeN^Ult0(X(U)).

We may also define the total fiber of an n-cube of spaces inductively.

Remark 3.2. For a 1-cube (i.e., a map of spaces)

fi:X^Y

the total fiber is just the homotopy fiber of /.

For an n-cube of spaces, X,we can consider X as a map of (n - l)-cubes:

Y^Z.

We can then define the total fiber of X inductively as

fiX = fiber(fiY - fiZ).

That this inductive definition of the iterated homotopy fiber is equivalent to

Definition 3.1 follows from properties of the homotopy inverse limit. (See

[G2].)
We will need the following n-cube of spaces associated to F in order to

define the nth cross effect of F .

Definition 3.3. Given a collection of n spaces X = {Xx , ... , X„}, F\ is the

n-cube of spaces defined by F\({1, ... , n}) = F(*) and Fx(U) = F(\Ji * v Xj)
when U ^ {1, ... , n}. If U c V then the morphism FX(U — V) is F(gUtV)

where gu <v is the retraction of V, g u %i t0 V7- g v %i > collapsing any Xj such

that i £ V and i ^ U to the basepoint.

For example, if we have X = {Xx, X2} then Fx lS the square below.

F(XiWX2) -> F(XX)

F(X2)      -►   Fi*).

Now we can define the cross effect.

Definition 3.4. The nth cross effect of a functor F evaluated at the spaces

{Xx, ... , X„} is a functor of n variables defined as the total fiber of the n-

cube F\ with X = {Xx, ... , Xn}. The cross effect will be denoted XnF.

XnF is a symmetric functor, where a symmetric functor is defined as follows.

Definition 3.5. A homotopy functor F is called symmetric if for each n £ I„

and spaces Xx, ... , Xn there is an isomorphism

Fn '■ F(XX , ... , X„) —► F(Xn(X) , ... , Xn(„))

and for every n, a £ _„
p     _ p 0 p1 don — 1 n " 1 a-

That XnF is symmetric is clear from the symmetry of the n-cube with respect

to the spaces Xx , ... , Xn.
Now that we have defined the cross effect of F, we must explain what it

means to multilinearize the cross effect, or to linearize a functor in general. The
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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multilinearization of XnF will be the symmetric multilinear functor equivalent

to D„F mentioned at the beginning of the section. First, we review the concept

of linear functors. The process of linearization of a functor F is basically that

of finding the linear functor which most closely agrees with F .

Definition 3.6. A homotopy functor F is called linear if it satisfies the proper-

ties below.

(a) F is reduced, i.e., F(*) is contractible.

(b) F is 1-excisive.

For a discussion of linear functors see section 1 of [GI] or chapter 4 of [J].

To any functor F satisfying stable first order excision (recall Definition 1.1)

we may also associate a linear functor. As stated in section 1, Pi F is the degree

one (or excisive) functor which most closely approximates F . We make PXF

a linear functor by reducing it, i.e., by taking the homotopy fiber of PXF(X) —>

PXF(*). If the functor is already reduced, then the process of linearizing it can

be made even more explicit. PXF is reduced and hence is already linear. We

have:

Proposition 3.7. If F is a reduced homotopy functor satisfying stable first order

excision then the linearization of F is simply Px F and is given by

PXF(X) = hocolimQ'!.F(X',A0.
n

Proof. The proof of this proposition follows directly from the definition of Pi F

that Goodwillie gives in [GI]. Specifically, PXF is defined as the homotopy
colimit of the diagram

F(X) -» TF(X) -> T(TF(X)) - ...

where

TF(X) = holim(F(CAf) -» F(_X) «- F(CX)).

CX is the cone on X . When F is reduced, we see that TF(X) is equivalent

to £IF_X, and the result follows.

Proposition 3.7 will be sufficient for our purposes since we will only need to
linearize reduced functors.

If we have a functor of n variables, G, we may speak of its multilineariza-

tion. The multilinearization of G is simply the linearization of G with respect

to each of its variables. That is, we hold all but one variable fixed and linearize

G with respect to the unfixed variable and then repeat this process for each

variable. As in the case of functors of one variable, if G is a reduced functor

with respect to each of its variables, then we can give the multilinearization of

G explicitly. This is a direct consequence of Proposition 3.7.

Corollary 3.8. If G is a homotopy functor of n variables which satisfies first

order excision and is reduced with respect to each of its variables, then the mul-

tilinearization of G is given by

G(XX ,...,X„) = hocolim Qkl+~+k"(G)(_k>Xx, ... , _k"Xn).
/c, ,... ,k„

A functor which has been multilinearized or is linear in each of its variables

is called a multilinear functor.

With the preceding definitions, we are now able to define the nth differential
of a homotopy functor .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Definition 3.9. The nth differential of a homotopy functor F, denoted D(n)F,

is the functor of n variables defined by

D^F(Xx,...,Xn) = Xn~F(Xx,...,Xn).

That is, D^F is the multilinearization of the nth cross effect of F .

D^F is an example of a symmetric multilinear functor.

Definition 3.10. A symmetric multilinear functor of n variables is a symmetric

functor which is linear in each of its variables.

That D^F is a symmetric functor follows from the symmetry of the cross

effect already established. Its multilinearity follows from the definition.

As stated at the beginning of the section, symmetric multilinear functors are

naturally equivalent to spectra with _n -action. Precisely, Goodwillie has shown

(in [G3])

Proposition 3.11. If G is a symmetric multilinear functor of n variables then it

has the following form:

G(Xx,...,Xn) = Q°°(CAXx A-AI„)

where C is a spectrum with _n-action.

With this proposition we are now able to define the nth derivative of the

functor F.

Definition 3.12. The nth derivative of the homotopy functor F is the spectrum

with _n -action associated with the symmetric multilinear functor D^F, that

is, the spectrum C such that

D(n)F(Xx ,...,X„)~ ft°°(C A Xi A ■ ■ ■ A Xn).

We write F^ = C.

We should note here that the definition of the derivative given above is the

nth derivative of the functor F at a point. A more general definition can be

given for derivatives at any space X . (See [G3].) For examples of derivatives,

see [GI] and [G3].
We conclude this section by justifying the analogy drawn at the beginning

of the section between the nth derivative of F as we have defined it and the

coefficient of the nth term in the Taylor tower of F . The nth layer of the

Taylor tower of F, DnF , is a homogeneous functor of degree n . We stated

that a homogeneous functor of degree n such as D„F was naturally equivalent

to a symmetric multilinear functor and could be written in the form

Q°°(CAAfW)AIn

where C is a spectrum with _n -action. Under the equivalence that Goodwillie

establishes between homogeneous functors of degree n , symmetric multilinear

functors and spectra with Z„-action, D^F is the symmetric multilinear func-

tor equivalent to DnF and F(/I) is the spectra with _n-action equivalent to

D„F . This is summarized below.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proposition 3.13.

(a) The symmetric multilinear functor equivalent to DnF is the cross effect

of DnF, XnF>nF. Furthermore, this functor is naturally equivalent to

the multilinearization of XnF.

(b) D„F can be recovered from F("> :

DnF(X) = (F^AXW)hZn.

This process can be extended to all homogeneous functors of degree n to give

an explicit means of constructing the equivalences between the three categories.

See [G3], section 3 for details.
We are now ready to construct the derivatives of /.

4. The functor M„

This section will be devoted to the construction of the functor Mn and the

transformation T between Xnl and Mn, first mentioned in section 2. We

will show later that the multilinearization of Mn is equivalent to the multilin-

earization of Xnl, and from that determine the nth derivative of /.

Recall Theorem 2.2. Conditions (a) and (b) are sufficient to conclude that

XnI and M„ have the same multilinearization. Specifically, we have

Proposition 4.1. Let F and G be reduced functors of n variables. Let S : F —►

G bea natural transformation such that when Xx, X2, ... , X„ are k-connected,

then the resulting map

S : F(XX, X2, ... , X„) —> G(XX, X2, ... , X„)

is ((n + l)k - c)-connected, where c is a constant which does not depend on k.

(F and G agree to nth order via S.) If such a transformation exists, then the

multilinearization of F is equivalent to the multilinearization of G.

Proof. The multilinearizations of F and G evaluated at the spaces Xx, ... ,

X„ are equivalent to hocolim/_>coQ/"F(Z/Afi, _1X2, ... , _'X„) and
hocolim/^00Q/"C7(5:/Af1, _lX2, ... , ZlXn), respectively. If Xx, ... , X„ are re-

connected then _lXx, _'X2, ... , ~LlXn are (k + /)-connected. Hence, the map

Q.l"S : Q!"F(_lXx,..., _lX„) -> QlnGCLlXx,..., _lXn)

is ((n + l)(k + I) - c - In) = nk + k + I - c-connected. As / goes to infin-

ity, so does the connectivity. Hence, in the limit, QlnFi_lXx, ... , llx„) and

OfnG(l.'Xi,...,_'Xn) are equivalent.

Corollary 4.2. If QTn : cixj(_xx ,...,_XH)-> QMap,(A„ , _Xi A ■ ■ ■ A _Xn)
is (n + l)k - c-connected then

XnI(Xx ,X2,...,X„)^ M„(XX ,X2,...,Xn)

is an equivalence after multilinearization.

Proof. The hypothesis implies that the map

nnT„ : QnXnI(ZXi ,...,£*„)-» Q"Map»(A„ , _XX A • • • A_X„)

is ((n + l)k - {n - 1) - c)-connected. Proposition 4.1 implies that the multi-

linearizations of each side above are equivalent.   But the multilinearizationsLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1306 BRENDA JOHNSON

of Xn I and Mn are equivalent to those of £lnXnI(ZXX, ... , ~LXn) and

£2"Map»(A„ , ZXX A • • • A XAf„) respectively. Hence, the multilinearizations of

Xn I   and  M„    are equivalent.

Hence, condition (b) of Theorem 2.2 guarantees that the spectra associated

to the multilinearizations of Xnl and M„ have the same homotopy type.

Condition (a) of Theorem 2.2 ensures that the spectra have the same X„-action.

Thus, if we can prove Theorem 2.2, we will be able to recover the derivatives

of I from the multilinearization of M„ . In this section we will define T and

A„ . We will also verify condition (a) of Theorem 2.2.

If we use the inductive definition (Remark 3.2) to construct the total fiber of

an n-cubical diagram, we see that the resulting space is equivalent to a collection

of maps with certain compatibility properties. For example, the iterated fiber

of a 1-cube, /: X —> Y, is, by definition,

{(x,y)£XxY'\y(0) = f(x),y(l)=yo}

where y0 is the basepoint in Y . The exact description for any n-cube is given

below in Definition 4.3, following remarks in section 0 of [G2]. This property

of the total fiber will be used in constructing T and A„ .

Definition 4.3. Let X be an n-cube of spaces. For a subset U of n, let Iu =

{(fi, t2, ... , tn) £ I"\ti = 0 if i' i U}. A point in the total fiber of X is a
collection of maps, <I> = {Q>u}uc_, where O^ : Iu -» X(U). Furthermore,

these maps must satisfy the compatibility properties below:

(a) For V cU

0>v\iv — 7v,u ° Q>v

where yv,u  is the map X(iv,u) ' X(F) —* X(U), and  iv,u  is the
inclusion  V <—► U .

(b) Q>u(tx, ... , tn) is the basepoint in X(C7) if t, = 1  for some /'.

Using 4.3 we will begin constructing T. First we show how to construct a

map Tn : XnI(Xx ,X2,...,Xn)^ Map^/"*""" , EI?=i X,). Then we compose

with the quotient map from the product Y\"=x Xj to the smash product /\"=l Xj.

This gives us a map from XnI(Xx, X2, ... , X„) to Map„(//"("-'>, /\"=1 Xj).

Finally, we will identify a subspace of /"("-') which is always mapped to the

basepoint in the smash product. Taking the quotient of /"<"-') over this sub-

space yields the space we will call A„ and allows us to define the functor M„

as Map *(A„ , /\"=i Xi). Furthermore, this yields the desired map from the cross

effect to Mn , T„ : XnI(Xx, X2, ... , Xn) -» Map,(A„, AJL, Xf).
If we apply Definition 4.3 to Xr,I(Xx , X2, ... , X„) then we see that a point

<P in Xnl   consists of maps {®u}uc{\,...,n} such that

ii u

and conditions (a) and (b) of 4.3 are satisfied.

Consider the set U, = {1, 2,...,/,..., n}. We have

&U, : Iu> -* Xi.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Note that IUi is an (n - 1 )-cube. Let

n

T'n : xJ(Xx ,X2,...,Xn)^ Map^/"*"-1', Jjx,)
i=i

be defined by

T>(<!>) = f[*ur.f[lu<-*flXi.
(=i (=i i=i

If we compose with the quotient map from T["=l Xi to /\"=1 AT,, then we have

n

T„': XnI(Xx , X2, ... , Xn) -> Mapt(I"{n-l), A *')
i=i

defined by

r;(<D) = /\r,,
i=\

Since we have now passed to the smash product, there will be many more

points in /"f"-1) mapped by Tn'(<5>) to the basepoint in the new target /\"=xXj.

Specifically, if Tn(<^)(t) £ (Xj V Xk) x (Uti,i&,k xi) for some j and A:, then

T„'(<J>)(t) is the basepoint in /\"=i Af,. With this in mind, recall properties (a)

and (b) of Definition 4.3. These properties tell us that if we restrict <Pt/; to the

boundary of IUi then either a point on the boundary is mapped by <!>{/,. to the

basepoint in Af, (if one of the coordinates of the point is 1) or its image under

<&ut is the image under the retraction Af, V Af, —> Af, of a point in Af, V Xj,

for some j (if one of the coordinates of the boundary point is 0). Knowing

this, we can identify a collection of subspaces of 7"("_1) which will always be

mapped to the basepoint in /\"=i Af, by T'n'.

Let f = [tij]x<ij<n where f„ = 0 for all i denote a point in ft"-1), so that

r"(0>) maps the (n - 1 )-cube, {(tn , tl2,ti3, ..., f,,-i, 0, tiM , ... , f,„)}, to

Xj. We wish to consider the following subspaces of P'"-1).

Definition 4.4. For 1 < / < j < n, let  Wtj = {t £ In(n~x)\tik = tjk for 1 < k <

n}.

As indicated, if one of the coordinates, f,y, of f e /"(«-') is 0, then

Q>u:(tii, ••• , tin) is the retraction to X, of a point in Af, V Xj . The conditions

placed on a point in Wtj guarantee that <!>{/,. (f/i , ... , f/«) and <&Uj(tji , ■■■ , tj„)

are retractions to Xi and Xj respectively of the same point in Xj V Xj. Hence,

we state the following.

Lemma 4.5. // f £ Wi}, then Tn'(<t>)(t) = e, the basepoint in A"=i xi.

Proof. Let f = [tk/] £ Wtj. The essence of the proof was described before the

statement of the lemma. By property (a) of Definition 4.3 we have

®u,\iy = 7v,u,°Q>v

and

Q>U,\lv = yv,Uj 0<&V

where V = {1,...,/,..., j,...,«} . For a point f £ Wu , we see that

<!>(.,, xO(/j((f;1, ... , tin), (tji, ... , 0«))License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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is equal to

(yv,u,°®v(tiX, ... ,tin), Yv.UjoQvitn, ■■■, tin))

since (tiX, ... , t,„) = (tjX, ... , tjn). That is,

<t>U, xQUjiiUl,... ,tln), (tjX, ...tjn))

is the retraction of the same point in Af, V Xj to both Xt and Xj . It follows
that T„'(<V)(t) = e.

There is another collection of subspaces of /"("-') which will be mapped by

Tn'((J>) to the basepoint in /\"=i Xj. These are the points in /"("-') for which

one of the coordinates is 1. We have the following result.

Lemma 4.6. Let Z = {t £ /"<"-')\tu = 1 for some I < i, j < n} . If t £ Z, and

O g Xn 1 (Xx, X2, ... , Xn), then T„'(<S>)(t) is the basepoint in /\"=l Xt.

Proof. The proof follows immediately from property (b) of Definition 4.3.

Now we may define A„ , M„ , and Tn .

Definition 4.7. Let An = In{-n~xf{Z u \Jt<J Wu}, the quotient of /"("-" over

{ZUlJi^rVij}.

Definition 4.8.  M„ is a functor of n spaces defined as

Mn(Xx,X2,..., Xn) = Map,(A„ , Xx A X2 A ■ ■ • A Xn).

Definition 4.9. Let T„ : xJ(Xx, X2, ..., Xn) -» M„(Xx, X2, ... , Xn) be the
map T„' defined above. For 4> G XnT(Xx, X2, ... , X„), T^'(O) is a well-defined
map by the previous lemmas.

We conclude this section by noting that Tn is a _„ -equivariant transforma-

tion.

Theorem 2.2a. The transformation T„ is T.n-equivariant, that is, it preserves the

_n-symmetry of Xnl and M„ which permutes the spaces Xx, X2, ... , X„ and

images of the (n - I)-cubes in A„ .

The proof follows from the definitions involved and is left to the reader.

5. The homotopy type of the derivatives

In this section, we determine the homotopy type of Qx„(Z)(Afi, ... , X„)
and A„ , and consequently, the homotopy type of the derivatives.

In proving Theorem 2.2b, we will be working with the cross effect of the

functor QI.. Note that

Xn(ni)(Xx ,X2,...,Xn)~ *„fi(IAf, A • • • A _Xn) ~ QxnI(Xx ,X2,...,X„).

The latter equivalence comes from the fact that the loop space functor is a

homotopy fiber and as such commutes with the homotopy fibers of Xn ■

It suffices to study the cross effect of QX because the multilinearizations

of Xnl and #„(QZ) are equivalent, by Proposition 4.1. The convenience of

this approach is that the Hilton-Milnor theorem will allow us to determine the

homotopy type of ^„(QX)(Afi, X2, ... , Xn) in the range we need. Specifically,

we have the following.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proposition 5.1. If Xx, ... , X„ are k-connectedspaces, then

(n-\)\   n

nm(  J]   A X') ~ *m(Xn(OZ)(Xi ,...,Xn))
7=1   (=1

for 0<m<(n + l)(k + 1) - 1.

To prove Proposition 5.1, we recall the Hilton-Milnor theorem and the defi-

nitions needed to state it. The subsequent discussion follows that of Whitehead

([Wh], pp. 511-517). Hall ([Ha]) has shown that the free Lie algebra generated
by the elements xx, x2, ... , xn has an additive basis consisting of certain "ba-

sic products". The basic products are defined in terms of three numbers assigned

to each product: the serial number, 5, the rank, r, and the weight, w . The

basic products are defined inductively by weight. The basic products of weight

1 are xx, x2, ... , x„ with s(xf) = i and r(xt) = 0 for i = 1,2, ... , n.

Suppose that the basic products of weight < m - 1 have been defined, along

with their serial numbers and rank, in such a way that if w(u) < w(v), then

s(u) < s(v). Then, the basic products of weight m are all products, uv , where

u and v are basic products satisfying the following conditions:

(i)   w(u) + w(v) = m ,

(ii)   s(v) <s(u),

(iii)   r(u) < s(v).

For such a product, r(uv) = s(v). If k is the largest serial number assigned

to the products of weight less than or equal to m - 1, then the products of

weight m can be assigned serial numbers in any order beginning with k + 1 .

A formula due to Witt [Wi] tells us that the number of basic products involv-

ing Xj exactly kj times is

,-,. lr   ,~_(k/d)\
(5"2) k^d\kx/dy....(kn/d)r

where  k — kx + ■ ■ ■ + k„ ,   p   is the Mobius function, and  ko   is the greatest

common divisor of kx, ... ,k„.
Given spaces Xx , X2, ... , X„ , one can define the basic products of these

spaces by using the smash product. Let wkiXx, ... , X„) denote the kth basic

product of the spaces Xx, X2, ... , X„ . For a space X, recall that the space

JiX) is the reduced product space defined by James ([Ja]) . One can define a

map h : UZ\ Jw,(Xx ,...,*„)-» /(Af, V- ■ • V Af„) (see [Wh] for details). With
this we can state the Hilton-Milnor theorem ([Hi], [M]).

Theorem 5.3 (Hilton-Milnor). The map

oo

h : [] JiwtiXx ,...,X„))^ JiXx V • • • V X„)
/=i

is a homotopy equivalence.

Recall that for any space X, there is a weak homotopy equivalence, JiX) —>

QLX. This weak equivalence leads to the corollary of the Hilton-Milnor theo-
rem stated below.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Corollary 5.4. The spaces rj^i &Z(Wi(Xx, ... , Xn))  and Q.1(XX V • • • V Xn)
have the same homotopy type.

Proof of Proposition 5.1. Applying Corollary 5.4 we see that

X„(fiZ)(Af, , ... , Xn) ~n_\_(Wi(Xx, ... , Xn)).

The product on the right is taken over all basic products ii7,-(Afi, ... , Xn) which

include each Af, at least once. Clearly, the first basic products to satisfy this

condition are those involving each space exactly once. By formula (5.2) the

number of such products is (n - 1)!. Note also that if Wj(Xx, ... , X„) is a

basic product of weight f then Q._Wj(Xx, ... , X„) is (t(k+ 1) - 1)-connected.

Since \[{"JX{)-0._(/\nl=x X,) and Xn(&Z)(Xx.Xn) differ by basic products

of weight n + 1 and greater, it follows that

nm ( ]J &_ ( A X) ) ~ *m(ZniG£)(Xi ,---,X„))

for 0 < m < ((n + l)(k + 1) - 1). Consequently,

"* (   II    (AX'))  =*m(Xn(GZ)(Xx,...,Xn))

in the same range.

It should be noted here that, although the Hilton-Milnor theorem gives us

the homotopy type of the nth cross effect in the range we need, the map in-

volved does not respect the £„-symmetry of x„(£2X)(Afi, X2, ... , X„). Hence,

we have no way of recovering the _„ -action after the multilinearization of

#„(QX)(Afi, X2, ... , Xn) from the information yielded by Hilton-Milnor. This
is what first motivated the construction of the functor Mn ■

We now turn our attention to the complex A„ . For the purpose of proving

the connectivity of T„ , we will use an equivalent subcomplex of A„ , which we

call A„ .

Definition 5.5. A„ is the subspace of A„ consisting of all points [tij]i<ij<n in

A„ such that f,; = 0 when j ^ 1.

The homotopy type of A„ is easily determined.

Proposition 5.6.  A„ is homotopy equivalent to y^„_XySn~x .

To prove Proposition 5.6 we will construct maps labelled by elements of the

following set, G„. We will refer to this set throughout the remainder of this

paper.

Definition 5.7. G„ is the set of all bijections, g : n —> n, such that g(l) = 1 .

i £ Gn will always denote the identity.

Proof of 5.6. Let g £ G„ . Define hg : In~x -> /"<"-') as follows.

/ 0    0   ...    0\
f2)    0   ...    0

hg:(si,s2,...,sn-i)^     '3i    0   ...    0

\f„,    0   ...    0/License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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where

tjX(sx,s2, ... ,sn-x) = max{si\l < g-x(j)}.

Specifically, the image of hg in ft"-1) is the (n - l)-cell in which tg{2)X <

tg(3)\ < ••■ < tg(n)\ ■ As a map of I"~x into /"("_1), hg maps the boundary

of In~x to the subspaces rVXg(2), rVg^g^), ... , Wg(n-i)g(n) > and Z of 7"("-1'.

That is, we have

hg\Si=o : /""   —► wg(i)g(i+\)

and

hg\Sj=i:I"-l^Z.

Furthermore, if s, > Sj for some / < j then hg takes the point to Wg{j)gu+i) •

To see these facts, note that in A„ , Wkl has the form

Wkl = {t£ In("-V\tij = 0 for jjtl, and tkx = tlx}.

If s,■ = 0, then

f*(i+i)iCsi, ••• , V-i) = max{s/|/ < i+ 1} = max{si\l < i}

= tg(i)i(Si , ... , Sn-i).

Thus, /?^(5i, ... , sn-x) £ Wg{i)g(i+X) when s, = 0.

Furthermore, if Sj = 1, then

^0+i)i =max{5/|/<;-r-l}= 1.

So, hg(si, ... , sn-i) £ Z when any of the Sj 's are 1. Let L be the set of all
the points just identified above, whose images are in (U,<, Wif) U ̂  • That is,

L = {(si, ... , s„-i) £ I"~x\Sj = 0 or 1 for some /' or s, > Sj for some i < j}.

From the above we can see that if we compose with the quotient map q :

jn(n-i) _> £n ^ tjjgj, xg = q o hg maps In~x/L in a one-to-one manner to A„ .

Note also that In~x/L is homotopy equivalent to S"~x since L is equivalent

to dl"~x . Hence, the map

V Ag:  \/ 5"-'-,A„
geGn        geGn

is a homotopy equivalence.

As claimed we also have the following proposition and its corollaries.

Proposition 5.8.  A„ and A„ are weakly homotopy equivalent.

Corollary 5.9.  A„ is equivalent to V(n-i)!^("_1) •

Corollary 5.10.

Map»(IA„ , _Xi A _X2 A ■ ■ ■ A _Xn) ~ Map»(IA„ , _Xx A 1X2 A ■ ■ ■ A _Xn).

And, both of these spaces are equivalent to FIo-i)! ^n^n(Xx A Af2 A • • • A Af„).

The proof of Proposition 5.8 is broken up into several lemmas. Basically, we

show that the space (U,-<> Wij) U Z is equivalent to its intersection with A„ .

We will rely on a nice relationship between graphs and the Wtj 's in order to

better understand the structure of (U,<, ^u) u Z .License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Lemma 5.11. The intersection, f)sk=x ̂ ikjk m /"("-'), for some collection of

pairs, {(ik , jk)}k=l, consists of one point, the zero matrix [0], if and only if the

graph, T, consisting of vertices 1, 2, ... , n and edges ik - jk for each pair

(k , Jk) e {(ik, Jk)Yk=x is connected.

Proof. We will first consider the case where, for each 1 < I < s, the graphs con-

sisting of vertices ik , jk , and edges ik-jk for each pair (ik , jk) £ {(ik , jk)}lk=x

is connected, and for each 1 < q < s, iq £ {ik , jk}\Z\ , and jq $ {ik, jk}qkz\ .
That is, adding the edge ik - jk connects one new point, jk , to the graph built
out of the previous k - 1 pairs. In this case we claim that for any point in the

corresponding intersection, f)sk=x Wikjk, at least n + s(s + 1) of the coordinates

must be equal to 0. To show that this is the case, we proceed inductively. If we

have the graph i — j, then the claim holds since txx, t22, ... , tnn, tjj, and f,-,

must equal 0 in Wjj. Adding the edge is - js to the graph corresponding to the

pairs {(ik, Jk)}kZ\ means that for a point in f]k=x Wikjk , 25 more coordinates
must be zero in addition to the n + (s - l)s coordinates which must be zero

for points in f|£~, Wikjk . Specifically, these new coordinates are {tjsik}k=l and

{tjkjs}k=i .  Thus, n + 2s + s(s - 1) = n + s(s + 1) coordinates of a point in

fU=l WikJk  must be zero-
In general, we consider the connected components of T  and label them

Ti, T2, ... , Ta . Furthermore, let W-ca denote the intersection of the Wtj 's

corresponding to the edges in T„ . Without loss of generality, we may assume

that each T„ contains a minimal number of edges, i.e., if Ta has ra vertices,

then it has (ra - 1) edges. (Adding an extra edge to T„ imposes no new

conditions on the coordinates of a point in Wra.) Then, by the above, a point

in W-xa must have n+ra(ra-l) coordinates equal to 0. Furthermore, a point in

Cfk=i Wikjk = f)a=i ^r,, must have at least n + Yfa=x ra(ra-l) coordinates equal

to 0 and can have as many as Y.x<a<p<a ^rarp non-zero coordinates. Thus, if

T has only one connected component , then n + YTa=x ra(ra - 1) = n2 and

D/Li Wikjk contains only the zero matrix. If T has more than one connected

component, then _lx<a<^<a2rarp > 0 so f]sk=x Wikjk contains points with non-

zero coordinates. With this we have proved the lemma.

Lemma 5.12. The intersection, f)sk=x Wikjk , in /"<"-') for some collection of

pairs, {(ik , jk)}k=l , is the zero matrix if and only if the graph, T, consisting

of points 1,2, ... , n and edges ik - jk for each (ik , jk) £ {(ik , jk)}sk=x is

connected.

Proof. Let t = [ttJ] be a point in p|/Li ^kh ■ ̂  is easy to see mat ?'*' = 0 if

and only if the point ik is part of the connected component of T containing 1.

Hence, all the f,i 's are equal to zero if and only if T is connected, otherwise

iXk=x WikJk will contain points with nonzero coordinates.

Lemma 5.13. If the graph, T, associated to the collection of pairs {(ik,jk)}k=x

is not connected then f]sk=x WikJk and Cfk=l WlkJk are contractible to points in Z

and Z respectively.

Proof. By Lemma 5.12, if T is not connected then for a point in WT , there is

at least one coordinate which does not have to be 0. Let tx , ... , tm be those

coordinates which do not have to be 0. Let H : f|^=i Wikjk x / -* f|I=i wikjk  0QLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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the homotopy which takes each ti £ {tx, ... , tm} and t £ I, to f(l - f/) + f/.

The argument is similar for f|/Li ^W* •

As easy consequences of these lemmas, we have the following corollaries.

Corollary 5.14. Let   T   be the graph associated to the collection of pairs

{(lk > A)}i=i.   ^t be the corresponding intersection ffJLi **«*/*, and Wr be

the corresponding intersection f]sk=] Wikik. If T is connected then Wrr\Z and

Wr n Z are empty.

Corollary  5.15. For  any  collection  of pairs   {(ik, Jk)Yk=x •   the  inclusions

ffi-i »U ^ fl=i Wikjk and (f]Li »U) HZm (f]sk=x Whik) n Z are Ao-
motopy equivalences.

The corollaries allow us to prove the next proposition.

Proposition 5.16. The inclusion W i) Z ^> W li Z is a weak homotopy equiva-

lence.

For the proof of this proposition we need the following version of the gluing

lemma found in [Wa].

Lemma 5.17. 7n the commutative diagram

Xx    <—    Xo    —>    Af2

i i I
Ti    «-    T0 ■ -    Y2

let the two left horizontal maps be cofibrations and suppose that all the vertical

maps are weak equivalences. Then the map of pushouts Xx UXo X2 —> Yx Uy0 Y2

is also a weak equivalence.

Proof of 5.16. With repeated applications of the gluing lemma to diagrams of

the form

f\k=l,k^m^ikh     *~     C\k=lWikjk     ~+     (\ = i ,Jfc// Wikk

I I I
\\k=l .k^m^kh      <-     fljfc=l Wikjk      ~*     r\k=\,k^lWikh

and _ __
z   <-   wrnz   -»   w-t
I i I
Z    «-       1FT       -»    H^

we are able to show that H7 u Z <—> W \JZ is a homotopy equivalence.

Since /"("-') c_>/n(»-i) is also an equivalence, the quotients A„ and A„ are

equivalent and the proof of Proposition 5.8 is complete.

The proof of the second statement of Corollary 5.10 is as follows.

Proof of 5.10. As a consequence of 5.6, each of the spaces is equivalent to

Map»(S(V(„_i)!5'("-1»),IAf, A---AlAf„) . Furthermore,

Map,(S(\/(/i_1), S"~x), _Xx A ■ ■ • A _Xn)

is equivalent to I~I(n-i)i Map.(5" , S" A (Xx A ■ ■ ■ A X„)), and this is equivalent

to n(n-i). OT_n(Xi A X2 A ■■■ A Xn).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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6. The connectivity of QF„

We have shown that for m < (n+l)(k+l)-l, TE^dl^-i)! A"=i Xi) is isomor-

phic to nm(Xn(Q£)(Xi, X2,..., X„)) when XX,X2, ... ,Xn are ^-connected

spaces. From Corollary 5.10 it follows that 7rm(x„(QX)(Afi, X2, ... , Xn)) and
7rm(Map»(ZA„, Afi AAf2 A- ■ ■ AXn)) are isomorphic for m <(n+ l)(k+ 1) - 1.

Now it remains to show that (QF„). induces this isomorphism. To do so, we
will set up the commutative diagram below

(6.1)

H*(yg€Gn(YlLx Xi))     mT")oD)%    7/.(Map.(IA„ , _XX A ■ • • A _Xn))

I /Y.(n|"T1)!(""2:"(^iA---AAfn)))

tf.(V*6G„(A?=i Xt)) — 0^eG„ Ht(il"_"(Xx A • • • A Xn))

The first step will be to define the maps in the diagram and compute the degree

of those maps.
For each g £ Gn we will construct a map Cg that maps rj?=i Xi to

Xn(CiZ)(Xx, ... , X„). Like the map used to prove the Hilton-Milnor theorem

(see [Hi], [M]), Cg will be defined via commutators. In order to construct Cg ,

we will need a few basic maps. These maps, A, B, C, and P, will provide

standard homotopies from commutator loops to constant loops, and will allow

us to build elements of Xni&Z) from elements of ^(QX) for k < n .

Definition 6.2. C : QX x Q.Y -» Q(X V Y) is the commutator. That is, for
a e QAf, and /J e QT ,  C(a , p) is the commutator loop a/ia.-x/J-1 .

Definition 6.3.  A : I2 -> I is defined by

' -£j., for 0 < 5 < ^ and 0 < f < (\ + \s)

1, for 0 < 5 < i and (i + i5) < f < (i - \s)

^, for0<5<iand(i-|5)<f<|

0, for 0 < 5 < i and 1 < f < 1
AiS    t) = < —      —  2 4—     —

) 0, for i <5< 1 and0<f < |(5-i)

8<~^+3, for i <5< 1 and |(5-i) <f < |

"8'-3fa+9, for i < 5 < 1 and | < f < | - |s

,0, for ^ <s< 1 and | - |5 < f < 1.

Note that, if e is the constant loop at the basepoint in X, and a G QX, then

aiAis, t)) is a homotopy from the commutator loop C(a, e) to e . See Figure

1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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'       » -—V

I \ / ■     ■»-.-.       ^      ■ LULL..

\   4 — 1 / 'X/V  • • kvXvSvNvN \ J
\ / ,x  x  x   N *  \  \ \ \ \ B = 1 /

^_ ll _M t J 1 J f fc \ \ \ \ \J

^^* * ^U    j    j   j   s   * *   x   x   x   x   ^fc ^^K X

»   xv /^   x   x   x   x   x lVvvvvX ,/v

v v'N xv v.    4 — fl v v. x x x   \ x x x\ yx x x
xW\ /XxNx/*7UVx xXB=0,WX /xNxNx
'   '   '   '\ yfxXXXXXXX X   X    X   X   x    x   x    x   V /j    s    j\.\   »    »    vV «\.v\.\.v.>.*v\. *.*.'. X   X   X   X   X   XV xxxxx
X     4   —  fl   A. /*X    X    X    X    X    X    X    X    X >\\<k\\\N\\ /\    \    \    \

vA.-«Vv   %V />.   K   \.   \\\   \.   \   S XXXXXXXXXX /V'XXX
XX/XXA /XXXXXXXXXX X   x   X   X   x   xx   xx   j\ /x   x    B=0*,

x  /  x x x  x>[^  x'x  /  x x  x  x x x  x| rxVxVxVxVVNxS>l/xVxNxVx

Figure 1 Figure 2

Definition 6.4.  5 : f2 -> 7 is defined by

'0, for0<5< i and0< f < i

^r1, for 0 < s < ± and ± < f < ± + ±s

1, for 0 < 5 < | and £ + |s < f < | - ^s

*(,>0 J  fef' forO<5<Iand|-i5<f<l
0, for \ < s < 1 and 0 < f < \s - \

St=f±i, for \ < s < 1 and |s - | < f < f

-8'-3fa+" , for i < s < 1 and f < f < ^ - |5

.0, for i < 5 < 1 and ^ - %s < t < 1.

Note that, if e is the constant loop at the basepoint in X, and ft £ D.X, then

/3(t3(s, f)) is a homotopy from the commutator loop C(e, /J) to e. See Figure
2.

Finally, we define a map

P : *„_iQ(Af,, Af2, ... , X„.i) x XiQiXn) - ^^(xV,, Af2, ... , Xn).

Essentially, P builds an element of /„Q(Afi, X2, ... , X„) out of the commu-

tator of a pair of elements from #„_!Q(Afi ,X2, ... , Af„_i) and /iQ(Afn). In
the following e will always denote the constant loop at the basepoint.

Definition 6.5. For d> e Xn-x&(Xi, X2,... , X„_i) and p £ ZiQ(Af„),

P : Xn-x£l(Xx,X2,..., Xn-X) x xito(X„) - XnQiXx,X2, ...,Xn) is the ele-
ment Pi<&,p) = {Pi^,P)v}ueN in /„Q(Afi,Af2,...,Af„). The maps
F(<I), P)v : Iu -* Q(V,-^ u Xj) are defined as below, t will denote the loop
coordinate.

(a) If n i U,

P(<p   B)   _iC(^v(2tx,...,2tn^x),p0)(t),        0<f,,...,f„_, < 1/2,

I /30(73(max(2fi - 1, ... , 2f„ - 1), f)),        otherwise.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(b) If n G U,

P(d>   fi)u = { °v-{n}((2h, ...,2tn-X))(A(tn,t)),     0<f,,...,f„_i < 1/2,
\ e, otherwise.

We leave it to the reader to check that P(<J>, P) as defined above satisfies all

conditions necessary to be an element of ^„Q(Afi, X2, ... , Xn).

Now we may define Cg .

Definition 6.6. For g£6„,we define Cg: Ul=x xi -» *n(QX)(Afi ,X2, ... ,Xn).
The definition for any g will depend on the definition of C, where / again

denotes the identity function.  C, is defined inductively. For n = 1, C, : X —>

XX£IZX is the function such that

(C,(x))0 :10 -> x(t)

where x(t) is the loop in _X which takes f to x At. And,

(C,(x)){x} =e.

For i £ G„ , where n > 1 , C, : n"=i Xt -» /„(QX)(Afi, ... , Xn) is defined as

C,{xx, ... , x„) = P(C,(xi, x2,... , x„-\), C,ix„)).

Finally, for any g £ G„ , Cg : Yl"=l Xj -> /„(QX)(Afi, ... , X„) is defined as

Cg{xx, ... , x„) = C,(Xg-i(i), xg-i(2), ... , xg-\(„)).

The maps Cg, though not explicitly the same, were inspired by the map of

the Hilton-Milnor theorem. The Hilton-Milnor map takes a point in QXT,, for

some basic product Yj , to a nested commutator of loops in Q\_{XX VX2V- • -vAf„)

determined by the grouping and ordering of the Xi's in Yj. Essentially, Cg

takes a point {xx, ... , x„) to the point in x„Q(XAfi, _X2, ... , I.Xn) consisting
of the nested commutator loop,

C(.Xg-i(i) , . . . , C(X?-i(n_2)(C(xs-i(„_i) , Xg-!(„)))) ...)

in Q(XAf] V XAf2 V • • • V l.X„), determined by the surjection g, and homotopies

from that loop to e in Q(V, <t u ^X,) .
We now wish to determine the connectivity of the composition QT„ o Cg , as

indicated in the commutative diagram at the beginning of this section. To do so,

first note that for a point (*i, ... , x„) in rj"=i X,, (QT„)°Cg(xx , ... , x„)oAA

{A„ is the suspension of the map Xn defined in the proof of Proposition 5.6)

is a map from S" to X"(A"=i Af,). From the definition of Cg one can see

that the image of a point s £ Sn under this map will always have the form

Tghis) A (jci A ■ • ■ A xn), where Tgn £ Q"X" is a map determined by the choice

of g and h . In other words, we can make the following definition.

Definition 6.7.  Tgh : S" —► S"  is the map which makes the diagram below

commutative. ( q is the quotient map.)

n"=xX,   ("7"">oQ.  Map.(ZA„, _XX A •■•AXA'„)

•1 1a:

A^Af, —-—► n»X"(A?=,Af,)
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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The advantage of considering the maps Tgn is that we can determine their

degree for any choice of g and h in Gn ■

Proposition 6.8. For g, h £ G„, the map Tg„ : Sn —> S" has degree one if

h = g. Otherwise, it is null-homotopic.

The proof of Proposition 6.8 will proceed by induction on n . The heart of

the proof will be defining a map p* that makes the following diagram commute.

*„-iQ(Af,,...,AV,)x*,Q(Af„) —*U   Xn£l(Xi,X2,...,Xn)

(6.9) Qjv.AiTr, iiT„

Map.(XA„_! A XAi, 1XX A ZX„)   —^ Map.(XA„ , _XX A _Xn).

This diagram will allow us to compute the degree of the map in question by

means of an equivalent map in Map,(XA„_i A Ax, Xx A X2 A ■■ ■ A X„), hence

allowing us to set up an inductive argument to prove^Proposition 6.8.

To define p*, we will define a map p : XA„ —> XA„_i A Ax. p necessitates

the use of the complex An , since it wasn't possible to construct such a map on

A„ which was well-defined. (On the other hand, A„ does not suffice for our

purposes because the equivalence A„ -»A„ does not preserve the X„-symmetry.)

Definition 6.10. Let (s, t2i, t$i, ... , tnX) be a point in XA„ , where 5 denotes

the suspension coordinate and t2x, /31, ... , tnX denote the (possibly) non-zero

coordinates of a point in A„ .  p : XA„ —» XA„_i A XAi is defined by

pis, t2i, tn, ... , f„i) = («A (521, 531, ... , S(„.1)|))Ab

where (521, ... , S(n-X)X) are the coordinates of a point in A„_] , u is the sus-

pension coordinate of XA„_i , and v is a point in XAi . They are defined

as
Sn =min(l,2f,i),

u = AiO, s),

v = 73(max(0, 2f„i - 1), s).

The map

p* : Map.(XA„_, A ZA, , Xx A X2 A ■ ■ ■ A X„) — Map.(XA„ , Xx A X2 A ■ ■ ■ A X„)

is defined as

p* : 9 .-> G o p       for 6 G Map.(XA„_, A XAi, Xx A X2 A ■■■ A Xn).

With these definitions, it is easily shown that (6.9) is commutative. We omit

the details.
The next step is to study the maps p o Ag .

Lemma 6.11. Let g £ Gn. Consider the map p°Ag : S" —> XA„_i AXA!. When
gin) = n, let fi denote the restriction of g to {n - 1}. Then,

fA/Aid^i    ifg{n) = n,
p o A„ ~ <
P      g     \e ifigin)?n.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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-= a - = b

Figure 3

Proof. Let f A sx A • • • A sn-X be a point in S" where S" is considered as the

smash product of n copies of Sx . If gin) = n , then

poAg(t Asx A---As„-i) = (min(l, 2f2i), ... , min(l, 2f(„_1)1))

A .4(0, f)A7?(max(0, 2f„, - 1), t)

where

t]X =max{j/|/<^-'(/)}.

If g(n) = n , then

t„x =max{5!, ... , s„-X}

and 5„_i £ {Si\l < g~x(j)} for any j ^ n . (Thus, the image in A„_i does not

depend on 5„_i .) Also note that if max(0, 2f„i - 1) > 0 then Sj > 1/2 for

some j. If j' ^ n - 1 , then min(l , 2f,i) = 1 for all i with j < g~x(i), and

hence po Ag(t Asx A ■ ■ ■ sn-i) = e. It follows that

P o Ag(t ASX A 52 A • ■ • Ajj-i)

is equal to

(min(l,2f2i), ... , min(l, 2t(„-X)X)) AA(0, t)AB(max(0, 2sn-X - 1), f).

The map (min(l, 2f2i), min(l, 2f3,), ... , min(l, 2f(„_1),)) is homotopic to

kf via the homotopy

(min(l, (2-q)tlx), min(l, (2-^)f3i), ... ,min(l, (2-q)t(n-\)\))-

To see that A(0, t) A #5(max(0, 25„_i - 1), f) is homotopic to the identity map

on S2 = I2/dI2, consider a point (a, b) £ I2 such that a, b ^ 0, 1. The

inverse image of {a} x I in I2 has the form {a/4, (a + 3)/4} x / . The inverse

image of I x {b} in I2 under B(ma\(0, 2s„-X - I), t) is a path in I2 from

(0, (b + I)/4) to (0, (b + 4)/4). It is easy to see that the inverse images of

I x {b} and {a} x I intersect in a single point (see Figure 3). Hence the map

has degree one and is homotopic to the identity map as claimed.
If g(n) ^ n , then tg(n)\ = max(sx, s2, ... , s„-X). In order to have a non-

trivial point in the image of p ° Ag we must have min(l, 2tg{n)i) ¥" 1» i.e.,License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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5, < 1/2 for all i. If this is the case then f„i < 1/2,and max(0, 2f„i - 1) = 0.
Thus, if Si < 1/2 for all i, then

po Ag(t Asx A • •• A5„_i)

is equal to

(min(l, 2f2i), ... , min(l, 2f(„_1)1)) A A(0, t) A 73(0, f).

But, ,4(0, f) A B(0, t) will always be the basepoint in S2 . Hence, p o Ag is
null homotopic.

With this we are now ready to prove Proposition 6.8.

Proof of Proposition 6.8. When n = 1, we need only consider one case, i £ Gx.
One can easily see that T„ is the identity map on Sx, and hence the proposition

holds here. Furthermore, for i £ G2,

r„(f A 5,) = A(0, t)AB(max(0, 2sx - 1), t)

since

ilT2 o Q(xx, x2) o Ag(t A sx) = A(0, t)Axx A(B(max(0, 2sx - 1), t))Ax2.

We saw in the proof of Lemma 6.11 that this has degree one.

For g, h £ G„ , it follows from the definitions of Cg , Tn and Ag that

(QF„ o Cg(xx ,x2, ... , xn)) °Ah = (QT„ o C,(xx ,x2, ... , xn)) ° Ag-loh.

Furthermore,

(QF„ o C,(x,, ... , xn)) o Ag-ioh = (QT„ o P(C,(xx, ... ,xn), C,(x„))) o Ag-ion

= CiTn.x(Cl(xx,...,xn-X))AnTx(Cl(xn))o(poAg-loh).

If g = h , then p o Ag-\oh ~ A, A id^i by Lemma 6.11. So,

(QTn oCg(xx, ... , x„)) o An

is equivalent to

(QT„.x(Ct(xx, ... , xn-x)) o A,) A QF,(C,(x„)) ° id5,

which is equivalent to

r„ A Xi A • • • A X„_i A r„ A x„.

Therefore Ygg has degree one, by induction.

If g / h , and g~xoh(n) ^ n , then poAg-\0„ is null homotopic, so Ygn is as

well. If g~x oh(n) = n , then (QF„_!oC,(xi, x2, ... , x„))oAy (where fi is the

restriction of g~x o h to {n - 1}) can be reduced as above to a smash product

of maps, one of which will have the form QTn-k(C,(xx, ... , x„-k)) ° (P ° A,-)

where j(n - k) ^ n-k . This is guaranteed by the fact that g'x oh ^ i. Then

Lemma 6.11 can be applied as above to determine that this component is null

homotopic. Hence, we can conclude that Ygn is null homotopic when g ^ h .

With this we are able to prove Theorem 2.2b.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof of Theorem 2.2b. We will work with the commutative diagram of reduced

homology groups (6.1) .

Hmi\lgeGnil\U *<))     mT"]°D)*>    //m(Map.(XA„ , _Xi A ■ ■ ■ A ZXn))

VA6G„AA

"[ HmiY[heG„(Q"^iXxA---AXn)))

r

Hm(VgeGn(Mi X-)) -y ®neGn Hm(W_«(Xx A ... A Xn)).

The map q is induced by the quotient map from Y[1=x Xi —> /\"=x Xi and D

denotes the map iyg€Gn Cg).

We will determine the range in which the side and bottom arrows are injective

and/or surjective. From there we will be able to deduce the connectivity of

O.Tn.
Let Y'gh : A"=1 Xi -» n"£B(A?=i Xt) he the map that takes x g AL Xt to

the map Yg„ Ax . By Proposition 6.8 and the Freudenthal suspension theorem,

T'. is 2n{k + 1) - 2-connected when g = h and is null homotopic otherwise.

The map Y can be represented by the (n-l)!x(n-l)! matrix

[(J"gh)*\g,hdGn-

By the Whitehead theorem and the preceding, it follows that Y is an isomor-

phism for m < 2nik + 1) - 2.
By the Kunneth theorem, r is an isomorphism for m < 2n(A: + 1) - 2, and

q is a surjection. Therefore, Yoq is a surjection for m < 2n(A: + 1) - 2. Since

the right arrows are both isomorphisms for m < 2n(fc + 1) - 2, (QF„ o \JgeGn)*

is a surjection for m < 2n(/c + 1) — 2. In particular, Q.Tn is a surjection for

m < 2n(A: + 1) -2.
Since nm(xn(SXL)(Xx, X2, ... , X„)) and 7im(Map.(XA„ , Xx AAf2A-- -AAf„))

are isomorphic to ftrndlfn-i)! A?=i ^i") f°r m < in + l)ik + 1) - 1, we know

that Hm(x„(ttZ)(Xx ,X2,...,X„)) and 7Ym(Map.(XA„, Xx A X2 A ■■■ A Xn))
are isomorphic in the same range. Furthermore, the finiteness condition on

the spaces Xx, X2, ... , X„ guarantees that these homology groups are finitely

generated abelian groups. Hence, the surjection QF„ must be an isomorphism

for m<in+l)ik + i)-l. By the Whitehead theorem, QF„ is {n + l)ik+l)-l-
connected.
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