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Homotopical combinatorics is an emerging field that stud-
ies combinatorial structures encoding aspects of equivari-
ant homotopy theory, equivariant algebra, and abstract ho-
motopy theory. Its methods—a pleasant mix of enumer-
ative combinatorics, algebraic combinatorics, and order
theory—are relatively elementary, but its theorems have
deep implications in homotopy theory. The youth and ac-
cessibility of homotopical combinatorics shouldmake the
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field especially attractive to early career researchers, and we
hope that this article and the 2024 Mathematics Research
Community by the same name welcome mathematicians
from many backgrounds into the field.

The central object in homotopical combinatorics is the
transfer system. These combinatorial gadgets were origi-
nally defined in order to encode the homotopy theory
of 𝑁∞ operads, which control multiplicative structures in
equivariant stable homotopy theory. Special pairs of trans-
fer systems control the structure of bi-incomplete Tambara
functors, basic objects of equivariant algebra. In a seem-
ingly unrelated direction, pairs of transfer systems also en-
code model structures (presentations of (∞, 1)-categories)
on posets. Below, we introduce transfer systems in purely
combinatorial terms, and then explore their applications.

Transfer Systems
Suppose (𝑃, ≤) is a finite partially ordered set (poset). A
(categorical) transfer system on (𝑃, ≤) is a partial order→ on
the set 𝑃 such that

⋄ → refines ≤: 𝑥 → 𝑦 implies 𝑥 ≤ 𝑦, and
⋄ → is closed under restriction: 𝑥 → 𝑦, 𝑧 ≤ 𝑦, and 𝑤

maximal among 𝑤′ ≤ 𝑥, 𝑧 implies 𝑤 → 𝑧.

In most cases, we restrict attention to finite posets admit-
ting greatest lower bounds (so-calledmeet-semilattices). We
write 𝑥 ∧ 𝑦 for the greatest lower bound (or meet) of 𝑥, 𝑦
when it exists. When 𝑃 is a meet-semilattice, the restriction
condition becomes simpler:

⋄ 𝑥 → 𝑦 and 𝑧 ≤ 𝑦 implies 𝑥 ∧ 𝑧 → 𝑧.

Categorically inclined readers will recognize this condi-
tion as closure under pullbacks, and it is pleasant to record
diagramatically, where solid arrows are relations in the
transfer system, dashed arrows represent≤, and the double
arrow indicates logical implication; we draw the diagram
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“oriented upwards” so it is also reminiscent of a Hasse di-
agram, see below.

𝑦

𝑧 𝑥

𝑥 ∧ 𝑧
We write Tr 𝑃 for the collection of all transfer systems

on 𝑃. The set Tr 𝑃 admits a natural partial order by refine-
ment: → ≤ ⇝ if and only if 𝑥 → 𝑦 implies 𝑥 ⇝ 𝑦. If
𝑃 is a finite lattice (admits least upper and greatest lower
bounds), then Tr 𝑃 is a finite lattice as well.

One of the fundamental problems of transfer systems
is to determine the structure of the lattice Tr 𝑃 for a given
lattice 𝑃 or family of lattices. In [BBR21], Balchin–Barnes–
Roitzheim achieve this for 𝑃 = [𝑛] = {0 < 1 < ⋯ < 𝑛} a fi-
nite chain. They prove that Tr 𝑃 is isomorphic to the famed
Tamari lattice𝒜𝑛+1 of planar rooted binary trees with 𝑛+2
leaves; see Figure 1. In particular, transfer systems on [𝑛]
are counted by Catalan numbers, with

| Tr[𝑛]| = Cat(𝑛 + 1) = 1
2𝑛 + 3(

2𝑛 + 3
𝑛 + 1 ).

[ ]

[ ]

[ ]

[ ]

[ ]

Figure 1. In brackets, we display the five elements of Tr[2].
The elements of [2] are arranged vertically as dots (0 lowest, 2
highest), and each transfer system is depicted by lines
indicating relations present in the transfer system, omitting
reflexive loops 𝑥 → 𝑥. The black arrows represent the
covering (i.e., minimal) relations of Tr[2]; they assemble into a
pentagon isomorphic to 𝒜3. The rest of the diagram should
be interpreted after the reader engages with theModel
structures on posets section. The blue arrows correspond to
≼, and the magenta arrows are the covering relations of ⊑.
Counting black, blue, and magenta intervals, we see that
| Pre[2]| = 13, | Pre𝑐𝑐[2]| = 12, and |MS([2])| = 10.

There are also some general structural results on trans-
fer systems. In Construction 2.9 of [BMO23], Balchin–
MacBrough–Ormsby give a recursion for | Tr 𝑃| in terms
of transfer systems on certain induced subposets. The re-
cursion is based on the notion of the minimal fibrant ele-
ment of a transfer system →, i.e., the (necessarily unique)

minimal element 𝑚 of 𝑃 such that 𝑚 → ⊤, where ⊤ de-
notes the maximum of 𝑃. In [BHK+23], the participants
in the 2023 Electronic Computational Homotopy Theory
REU follow an idea of Hill to relativize minimal fibrancy,
resulting in a characteristic function 𝜒→ ∶ 𝑃 → 𝑃 defined by
𝜒→(𝑥) = min{𝑦 ∈ 𝑃 ∣ 𝑦 → 𝑥}. This ultimately provides a
strong (but far from tight) lower bound on the cardinality
of transfer systems. To state the theorem, let End∘ 𝑃 denote
the set of interior operators on 𝑃, that is, order-preserving
functions 𝑓∶ 𝑃 → 𝑃 that are contractive (𝑓(𝑥) ≤ 𝑥) and
idempotent (𝑓(𝑓(𝑥)) = 𝑓(𝑥)). We give End∘ 𝑃 the pointwise
ordering 𝑓 ≤ 𝑔 ⟺ 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ 𝑃.
Theorem 1 (Theorems 2.8 and 2.12 of [BHK+23]). The
assignment

𝜒∶ Tr 𝑃 ⟶ End(𝑃)
→⟼ 𝜒→

is an order-reversing map with image End∘ 𝑃.
While interior operators are hard to enumerate, their

asymptotic behavior is understood, and Kleitman [Kle76]
proves that the base-2 logarithm of | End∘([1]𝑛)| grows like
( 𝑛
⌊𝑛/2⌋

) (see OEIS A102896).

In order to prepare for applications in equivariant ho-
motopy theory, let 𝐺 be a finite group. We will take partic-
ular interest in the case 𝑃 = Sub𝐺, the lattice of subgroups
of𝐺 ordered under inclusion. (Note: If 𝐺 = 𝐶𝑝𝑛 , the cyclic
group of order 𝑝𝑛, 𝑝 prime, then Sub𝐺 ≅ [𝑛]. This is the
orginal context of [BBR21].) We will need, though, to in-
troduce one additional axiom in this context: A 𝐺-transfer
system is a categorical transfer system→ on Sub𝐺 such that

⋄ → is closed under conjugation: 𝐻 → 𝐾 implies 𝑔𝐻 →
𝑔𝐾,

where 𝑔𝐻 ≔ 𝑔𝐻𝑔−1 is the 𝑔-conjugate of 𝐻. We write Tr𝐺
for the lattice of 𝐺-transfer systems under refinement. Of
course, if 𝐺 is Abelian, then 𝐺-transfer systems and cate-
gorical transfer systems on Sub𝐺 are identical.

Despite their elementary and relatively natural defini-
tion, the authors are not aware of any appearance of such
structures on posets prior to [Rub21,BBR21]. If any reader
has encountered objects isomorphic to transfer systems in
older (presumably combinatorial or order-theoretic) liter-
ature, we invite them to contact us.

𝑁∞ Operads
Transfer systems first arose through the work of Blumberg–
Hill [BH15] on 𝑁∞ operads. These are equivariant gener-
alizations of 𝐸∞ operads, and their algebras are equipped
with both an operation that is associative and commuta-
tive up to coherent homotopies (coming from an 𝐸∞ struc-
ture) and homotopy coherent multiplicative norm maps
(encoded by the fixed points of the spaces in the operad).
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Ever since their appearance in the Hill–Hopkins–Ravenel
[HHR16] solution of the Kervaire invariant one problem,
norms have become a critical component of contemporary
equivariant homotopy theory. Each 𝑁∞ operad encodes
potentially different classes of norms, and thus we need to
classify 𝑁∞ operads if we hope to understand what norms
might appear in applications.

Let 𝐺 be a finite group and let 𝔖𝑛 denote the symmetric
group on 𝑛 letters. A 𝐺-operad O is a sequence of 𝐺 × 𝔖𝑛-
spacesO(𝑛), 𝑛 ≥ 0 alongwith an identity element 1 ∈ O(1)
fixed by 𝐺 = 𝐺×𝔖1 and a 𝐺-equivariant composition map

O(𝑘) × O(𝑛1) ×⋯ × O(𝑛𝑘) → O(𝑛1 +⋯+ 𝑛𝑘)
satisfying the standard compatibility conditions for an op-
erad. A map of 𝐺-operads is a morphism of operads in
𝐺-spaces; in particular, at level 𝑛 it is 𝐺 × 𝔖𝑛-equivariant.

A 𝐺-𝑁∞ operad (or just 𝑁∞ operad if 𝐺 is clear from con-
text) is a 𝐺-operad such that

⋄ O(0) is 𝐺-contractible,
⋄ the action of 𝔖𝑛 = 𝑒 × 𝔖𝑛 on O(𝑛) is free,
⋄ for all Γ ≤ 𝐺 × 𝔖𝑛, the Γ-fixed point space O(𝑛)Γ is

either contractible or empty, and
⋄ for each 𝑛, the collection of Γ ≤ 𝐺 × 𝔖𝑛 such that

O(𝑛)Γ ≃ ∗ is closed under conjugacy and under pas-
sage to subgroups1 and contains all subgroups of the
form 𝐻 × 𝑒.

The category of 𝐺-𝑁∞ operads is denoted 𝑁∞-𝐎𝐩𝐺.
A 𝐺-operad map 𝜑∶ O1 → O2 of 𝑁∞ operads is a weak

equivalence when it induces a weak homotopy equivalence
O1(𝑛)Γ → O2(𝑛)Γ for all 𝑛 ≥ 0 and all Γ ≤ 𝐺 × 𝔖𝑛. Invert-
ing weak equivalences in 𝑁∞-𝐎𝐩𝐺 produces the homotopy
category of 𝐺-𝑁∞ opeards Ho(𝑁∞-𝐎𝐩𝐺).

If𝐻 ≤ 𝐺 and𝑇 is a finite𝐻-set, we say that an𝑁∞ operad
O admits a 𝑇-norm when O(|𝑇|)Γ(𝑇) ≃ ∗, where Γ(𝑇) ≤
𝐺 × 𝔖|𝑇| is the graph of some permutation representation
𝐻 → 𝔖|𝑇| of 𝑇. If 𝑋 is an O-algebra2 (say in 𝐺-spaces) and
O admits 𝑇-norms, then we get a 𝐺-equivariant map

𝐺 ×𝐻 𝑋𝑇 ⟶𝑋,
where 𝑋𝑇 is the𝐻-space of all functions 𝑓∶ 𝑇 → 𝑋 with𝐻
acting via ℎ ⋅𝑓∶ 𝑡 ↦ ℎ𝑓(ℎ−1𝑡). In particular, if 𝐾 ≤ 𝐻 ≤ 𝐺,
then an 𝐻/𝐾-norm induces a ‘wrong-way’ map

𝑋𝐾 → 𝑋𝐻

between fixed point spaces. In an additive setting, these
maps are called transfers instead of norms, leading to the
nomenclature for transfer systems.

1Such a collection F is called a family for the group 𝐺 × 𝔖𝑛; combining the
third and fourth criteria implies that O(𝑛) is a universal space for F .
2For the operadically uninitiated, the 𝑛-th space O(𝑛) of an operad O
parametrizes 𝑛-ary operations. An algebra 𝑋 over O comes equipped with maps
O(𝑛) × 𝑋𝑛 → 𝑋. Thus for each point of O(𝑛) we get an 𝑛-ary operation on 𝑋.

To draw out this connection further, let O denote a 𝐺-
𝑁∞ operad and define a binary relation

O−→ on Sub𝐺 by the
rule

𝐾 O−→ 𝐻 ⟺ 𝐾 ≤ 𝐻 and O([𝐻 ∶ 𝐾])Γ(𝐻/𝐾) ≃ ∗.

In other words, 𝐾 O−→ 𝐻 if and only if O admits 𝐻/𝐾-
norms. Of course,

O−→ turns out to be a 𝐺-transfer system,
and this assignment is part of a functor from 𝐺-𝑁∞ oper-
ads to (the category induced by) the lattie Tr𝐺. The work
of many authors [BH15,GW18,BP21,Rub21,BBR21] gives
the following theorem:

Theorem 2. The assignment O ↦ O−→ induces an equivalence
of categories

Ho(𝑁∞-𝐎𝐩𝐺)
≃−−→ Tr𝐺,

where Tr𝐺 is viewed as the category with objects 𝐺-transfer
systems and a unique morphism between transfer systems if and
only if the source refines the target.

This provides a first and pressing motivation for study-
ing transfer systems: by determining the structure of Tr𝐺,
we solve a classification problem for 𝐺-𝑁∞ operads; if we
know all the 𝐺-transfer systems, then we know exactly
which collections of norms are induced by 𝑁∞ operads.

At the time of writing, the full structure of Tr𝐺 is
known for the following finite groups 𝐺 (𝑝, 𝑞, 𝑟 distinct
primes): 𝐶𝑝𝑛 [BBR21], 𝐶𝑝𝑞, 𝐶2 × 𝐶2, 𝑄8, 𝔖3 [Rub21], 𝐶𝑝𝑞𝑟
[BBPR20], and 𝐶𝑝 × 𝐶𝑝 [BHK+23]. Additionally, Balchin–
MacBrough–Ormsby [BMO23] determine elaborate inter-
leaved recurrenceswhich effectively compute | Tr 𝐶𝑞𝑝𝑛 | and
| Tr 𝐷𝑝𝑛 | but do not give closed forms.

Another motivation for acquiring structural and enu-
merative knowledge of Tr𝐺 is understanding and describ-
ing the complicated behavior of𝑁∞ structures with respect
to localization. While Bousfield and finite localizations of
topological spectra preserve 𝐸∞ structures, it is not the case
that such localizations preserve 𝑁∞ structures. Rather, lo-
calization can destroy norms. In [Hil19], Hill has studied
certain chromatic localizations of equivariant ring spectra
and deduced conditions under which thick subcategories
preserve O-algebras (see Theorem 5.2 of loc. cit.). Despite
this significant progress, much work remains if we are to
fully understand how localizations act on Tr𝐺.

Equivariant Algebra
Each equivariant commutative ring spectrum 𝑅 (i.e., repre-
senting object for a generalized Bredon-style cohomology
on 𝐺-spaces) carries a wealth of algebraic data on the level
of 𝜋0𝑅. Here 𝜋0𝑅 may be viewed as a functor

(Sub𝐺)op ⟶CRing
𝐻 ⟼ 𝜋0𝑅𝐻 ,
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where 𝑅𝐻 denotes the 𝐻-fixed points of 𝑅 (viewed as a
nonequivariant spectrum). The induced homomorphism
𝜋0𝑅(𝐾 ≤ 𝐻) ≕ 𝑟𝐻𝐾 ∶ 𝜋0𝑅𝐻 → 𝜋0𝑅𝐾 is called restric-
tion along 𝐾 ≤ 𝐻. The 𝐺-universe over which 𝑅 is
defined (a technical condition regarding which represen-
tation spheres 𝑅 has suspension isomorphisms with re-
spect to) further endows 𝜋0𝑅 with additive transfer maps

𝑡𝐻𝐾 ∶ 𝜋0𝑅𝐾 → 𝜋0𝑅𝐻 . These assemble into the data of an
𝑎

99K-Mackey functor, where
𝑎

99K ∈ Tr𝐺 is a transfer system
encoding which transfers are allowed in the Mackey func-
tor. (There are also maps 𝑐𝑔 induced by conjugation by
group elements, but we omit these from our discussion.)
The transfer and restriction maps satisfy compatibility ax-
ioms, including an elaborate double coset formula.

Now supposeO𝑚 is an𝑁∞ operad with associated trans-

fer system
𝑚−→, and that 𝑅 is an O𝑚-algebra. Then the

𝑎
99K-

Mackey functor 𝜋0𝑅 also admits multiplicative normmaps

𝑛𝐻𝐾 ∶ 𝜋0𝑅𝐾 → 𝜋0𝑅𝐻 for each 𝐾 𝑚−→ 𝐻. These maps satisfy
further compatibilities involving so-called exponential di-
agrams which we omit from this discussion. This makes

𝜋0𝑅 a bi-incomplete (
𝑎

99K, 𝑚−→)-Tambara functor in the sense

of Blumberg–Hill [BH21].3

In order to phrase all of the compatibilities between re-
strictions, transfers, and norms, certain compatibilities are

necessary between
𝑎

99K and
𝑚−→. These are codified in the

following theorem of Chan:

Theorem 3 (Theorem 4.10 of [Cha22]). Bi-incomplete Tam-

bara functors with respect to 𝐺-transfer systems (
𝑎

99K, 𝑚−→) are
well-defined if and only if

𝑚−→ ≤
𝑎

99K and the following condition
holds:

⋄ if 𝐾, 𝐿 ≤ 𝐻 ≤ 𝐺 such that 𝐾 𝑚−→ 𝐻 and 𝐾 ∩ 𝐿
𝑎

99K 𝐾,
then 𝐿

𝑎
99K 𝐻.

We call a pair of transfer systems (
𝑎

99K, 𝑚−→) satisfying the
conditions of the theorem a compatible pair. We can record
the final compatibility axiom diagrammatically, where the
double arrow is logical implication, see below.

𝐻

𝐿 𝐾

𝐾 ∩ 𝐿

𝑚

𝑎𝑚

𝑎

3Tambara functors were originally introduced by Tambara in [Tam93], where
they were referred to as TNR-functors for “transfer, norm, restriction.” We note
that equivariant ring spectra are not the only source of Tambara functors. They
also appear naturally when considering representation rings and other equivari-
ant algebraic structures.

(Note that 𝐾 ∩ 𝐿 𝑚−→ 𝐿 is forced by the restriction ax-

iom for
𝑚−→.) Loosely speaking, we are looking for inter-

vals
𝑚−→ ≤

𝑎
99K in Tr𝐺 where

𝑎
99K satisfies a type of “relative

saturation” condition with respect to
𝑚−→.

Several authors have undertaken the challenge of enu-
merating compatible pairs of transfer systems. We high-
light the work of Hill–Meng–Li which enumerates com-
patible pairs for 𝐺 = 𝐶𝑝𝑛 (a cyclic group of order 𝑝𝑛, 𝑝
prime).

Theorem 4 (Theorem 1.7 of [HML24]). For 𝐺 = 𝐶𝑝𝑛 , there
are exactly

1
3𝑛 + 4(

3𝑛 + 4
𝑛 + 1 )

compatible pairs of transfer systems.

The bivariate sequences 𝐴𝑛(𝑝, 𝑟) ≔ 𝑟
𝑛𝑝+𝑟

(𝑛𝑝+𝑟
𝑛
) are

known as Fuss–Catalan numbers. By [BBR21], we have
| Tr 𝐶𝑝𝑛 | = Cat(𝑛 + 1) = 𝐴𝑛+1(2, 1), while Theorem 4 says
that compatible pairs of transfer systems for 𝐶𝑝𝑛 are enu-
merated by 𝐴𝑛+1(3, 1). We will enounter the (3, 1)-Fuss–
Catalan numbers once more when considering composi-
tion closed premodel structures on [𝑛] ≅ Sub𝐶𝑝𝑛 .

Model Structures on Posets
Thus far, our applications of transfer systems have been
equivariant in nature, but these structures also parametrize
weak factorization systems on (categories associated with)
poset lattices. Compatible pairs of weak factorization sys-
tems give rise to model structures, and this provides a link
between intervals in Tr 𝑃 and abstract homotopy theory.

The role of a weak factorization system is to axioma-
tize the relationship between acyclic cofibrations and fi-
brations (or cofibrations and acyclic fibrations) in topol-
ogy. This is phrased in terms of lifting properties, which
we presently define. Given morphisms 𝑖 ∶ 𝑎 → 𝑏 and
𝑝∶ 𝑥 → 𝑦 in a category C , we say that 𝑖 has the left lift-
ing property with respect to 𝑝, or that 𝑝 has the right lifting
propertywith respect to 𝑖, when for all commutative squares
of the form

𝑎 𝑥

𝑏 𝑦

𝑝𝑖 ∃ℎ

in C , there exists a morphism ℎ∶ 𝑏 → 𝑥 making the dia-
gram commute. In this situation, we write 𝑖 � 𝑝. Given a
class𝑀 of morphisms in C , we further define

𝑀� ≔ {𝑔 ∈ MorC ∣ 𝑓 � 𝑔 for all 𝑓 ∈ 𝑀},�𝑀 ≔ {𝑓 ∈ MorC ∣ 𝑓 � 𝑔 for all 𝑔 ∈ 𝑀}.
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A weak factorization system on C is a pair (𝐿, 𝑅) of sub-
classes ofMorC such that

⋄ 𝑅 ∘ 𝐿 = MorC , and
⋄ 𝐿 = �𝑅 and 𝑅 = 𝐿�.
A premodel structure on C is now a pair of weak factor-

ization systems (𝐿, 𝑅), (𝐿′, 𝑅′) such that 𝑅 ⊆ 𝑅′ (or equiv-
alently 𝐿′ ⊆ 𝐿). A premodel structure is a model structure
when the morphism set 𝑊 ≔ 𝑅 ∘ 𝐿′ satisfies the two-out-
of-three property:

⋄ if 𝑓 and 𝑔 are composable morphisms in C and two
of 𝑓, 𝑔, and 𝑔 ∘ 𝑓 are in𝑊 , then so is the third.

In [JT07], Joyal–Tierney prove that this presentation of a
model structure is equivalent to Quillen’s, with 𝑅′ playing
the role of fibrations, 𝐿 cofibrations, and 𝑊 weak equiva-
lences. The principal role of a model structure is to pro-
duce a nice model for the homotopy category HoC =
C [𝑊−1] in which weak equivalences are inverted.

By astounding coincidence, a weak factorization system
on a finite lattice 𝑃 (viewed as a category) is the same thing
as a transfer system on 𝑃. Let us write WFS(𝑃) for the col-
lection of weak factorization systems on 𝑃 ordered by in-
clusion of right morphism sets.

Theorem 5 (Theorem 4.13 of [FOO+22]). Let 𝑃 be a finite
poset lattice. Then the assignment

WFS(𝑃)⟶ Tr𝑃

(𝐿, 𝑅)⟼ 𝑅−→

is an isomorphism of posets, where
𝑅−→ ∈ Tr 𝑃 is the relation

given by

𝑥 𝑅−→ 𝑦 ⟺ (𝑥 → 𝑦) ∈ 𝑅.
Before considering the ramifications of this theorem for

model structures, we note an important corollary regard-
ing self-duality of transfer systems. Suppose that 𝑃 is a
self-dual lattice, i.e., 𝑃 admits an order-reversing bijection
∇∶ 𝑃 → 𝑃, or, phrased categorically, ∇ is an isomorphism
of categories 𝑃op → 𝑃. Importantly, if 𝐺 is Abelian, then
Sub𝐺 is non-canonically self-dual via Pontryagin duality,
so this is a case of significant interest in equivariant appli-
cations.

Theorem 6 (Theorem 4.21 of [FOO+22]). If 𝑃 is a lattice
with self-duality ∇, then Tr 𝑃 is self-dual with duality

𝜙∶ Tr 𝑃 ⟶ Tr𝑃
→⟼→𝜙 ≔ ((� →)op)∇.

Moreover, if ∇ is an involution, then so is 𝜙.
The proof hinges on the fact that the assignment

(�𝑅, 𝑅) ↦ (𝑅op, (�𝑅)op) is an isomorphism WFS(𝑃) →
WFS(𝑃op). While it is ultimately possible to construct the

duality 𝜙 without reference to weak factorization systems
(see Corollary 4.22 of [FOO+22]), discovering and pre-
senting this duality is much simpler when working with
weak factorization systems.

We now turn to the connection between transfer sys-
tems and model structures. Any lattice 𝑃 has an interval
lattice Int 𝑃 whose elements are intervals

[𝑥, 𝑦] = {𝑧 ∈ 𝑃 ∣ 𝑥 ≤ 𝑧 ≤ 𝑦}
with 𝑥 ≤ 𝑦; the partial order is defined by [𝑥, 𝑦] ≤ [𝑥′, 𝑦′]
if and only if 𝑥 ≤ 𝑥′ and 𝑦 ≤ 𝑦′. (In categorical language,
this is the arrow category associated with 𝑃.) If Pre 𝑃 de-
notes the collection of premodel structures on 𝑃, then it
follows from Theorem 5 that Pre 𝑃 ≅ Int(Tr 𝑃); further-
more, the class 𝑊 = 𝑅 ∘ 𝐿′ associated with a premodel

structure (𝐿, 𝑅) ≤ (𝐿′, 𝑅′)may be identifiedwith
𝑅−→∘� 𝑅′−→, a

formula only involving transfer systems. Thus, in order to
enumerate model structures on a finite lattice 𝑃, it suffices
to find intervals [→, 99K] ∈ Int(Tr 𝑃) such that → ∘ �99K
satisfies the two-out-of-three property.

Balchin–Ormsby–Osorno–Roitzheim solve this prob-
lem for 𝑃 = [𝑛]. Let MS(𝑃) denote the set of model
structures on 𝑃 considered as an induced subposet inside
Pre 𝑃 ≅ Int(Tr 𝑃).
Theorem 7 (Theorems 4.10 and 4.13 of [BOOR23]). For
𝑛 ≥ 0,

|MS([𝑛])| = (2𝑛 + 1
𝑛 ).

Each model structure on [𝑛] has homotopy category isomorphic
to [𝑘] for some 0 ≤ 𝑘 ≤ 𝑛, and the number of model structures
on [𝑛] with homotopy category isomorphic to [𝑘] is exactly

2(𝑘 + 1)
𝑛 + 𝑘 + 2(

2𝑛 + 1
𝑛 − 𝑘 ).

Despite the simple form of this enumeration, the proof
in [BOOR23] passes through a convolution of Catalan
numbers and enumeration in terms of north/east paths
on an (𝑛 + 1) × (𝑛 + 1) grid with first step north. A more
conceptual bijection between model structures on [𝑛] and
a certain flavor of tricolored tree is given by Balchin–
MacBrough–Ormsby in [BMO24].

The authors of [BMO24] achieve their results by con-
sidering an intermediate structure between premodel and
model structures, which they dub composition closed pre-
model structures. These are pairs of weak factorization sys-
tems (𝐿, 𝑅), (𝐿′, 𝑅′) with 𝑅 ⊆ 𝑅′ and 𝑅 ∘ 𝐿′—the putative
weak equivalences—closed under composition, but not
necessarily fulfilling the full two-out-of-three property re-
quired of model structures. It turns out (Theorem 3.8 of
[BMO24]) that for 𝑃 a finite lattice, there is a refinement
≼ of the usual order onWFS(𝑃) such that (WFS(𝑃), ≼) is a
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lattice and intervals with respect≼ are exactly the composi-
tion closed premodel structures on 𝑃. There is also a partial
ordering⊑ onWFS(𝑃) further refining≼ such that intervals
with respect to ⊑ are model structures, but (WFS(𝑃), ⊑) is
not a lattice. The relations ≼ and ⊑ on Tr[2] are depicted
in Figure 1 in blue and magenta, respectively.

Returning to the case 𝑃 = [𝑛], where the standard or-
dering on WFS(𝑃) ≅ Tr 𝑃 gives the Tamari lattice, we find
(Theorem 4.6 of [BMO24]) that (Tr[𝑛], ≼) is isomorphic
to the Kreweras lattice of noncrossing partitions on the set
[𝑛], ordered by refinement of partitions. Since Kreweras
intervals have already been enumerated, we find there are
exactly

1
3𝑛 + 4(

3𝑛 + 4
𝑛 + 1 )

composition closed premodel structures on [𝑛]—the (3, 1)-
Fuss–Catalan numbers appear again! We rush to note,
though, that the intervals encoding composition closed
premodel structures on [𝑛] ≅ Sub𝐶𝑝𝑛 are distinct from
the intervals encoding compatible pairs for bi-incomplete
Tambara functors for 𝐶𝑝𝑛 , and thus far no one has con-
structed a principled bijection between the two structures.
For most finite groups 𝐺, composition closed premodel
structures on Sub𝐺 are not equinumerous with compati-
ble pairs of 𝐺-transfer systems.

Since Tamari intervals have also been enumerated
[Cha05], we find that the sequences |MS([𝑛])| ≤
| Pre𝑐𝑐 [𝑛]| ≤ | Pre [𝑛]| (where Pre𝑐𝑐 denotes composition
closed premodel structures) take the form

(2𝑛+1
𝑛
) ≤ 1

3𝑛+4
(3𝑛+4
𝑛+1

) ≤ 2
(𝑛+1)(𝑛+2)

(4𝑛+5
𝑛
).

Asymptotic analysis reveals that model structures on [𝑛]
are vanishingly rare among composition closed premodel
structures on [𝑛], which are in turn vanishingly rare among
premodel structures on [𝑛].

Conclusion
While we have touched on a number of recent advances
in homotopical combinatorics, it is not possible in this
limited space to cover the entirety of this rapidly growing
field. We hope we have conveyed a flavor of work in the
area, and want to emphasize that much terrain remains
unexplored and there are many ways that researchers from
various backgrounds can contribute. (In fact, much of the
combinatorial work on transfer systems has been under-
taken in collaboration with undergraduates.) To whet the
reader’s appetite, we provide the following short list of
open problems:

1. Explore the combinatorics of the recursive construc-
tion of transfer systems from [BMO23] for new fami-
lies of lattices/groups.

2. Use multivariable generating functions to convert the
recursions of [BMO23] for | Tr 𝐷𝑝𝑛 | and | Tr 𝐶𝑞𝑝𝑛 | into
closed formulæ.

3. Enumerate compatible pairs of transfer systems (in the
sense of [Cha22]) for new families of groups.

4. After identifying the lattice of transfer systems for a
(family of) poset(s) 𝑃, use the methods of [BOOR23,
BMO24] to enumerate Pre 𝑃, Pre𝑐𝑐 𝑃, andMS(𝑃).

5. Leverage new structural results on transfer systems to
extend the work of [Hil19] on the interaction between
localizations and norms.

6. Lift the duality on transfer systems discovered in
[FOO+22] to the level of 𝑁∞ operads.

The authors—whose backgrounds are primarily in ho-
motopy theory—are especially eager to see how more ad-
vanced tools from algebraic and analytic combinatorics
might apply to these problems. We look forward to ex-
ploring these topics with participants in our 2024 Mathe-
matics Research Community, and welcome inquiries from
potential applicants.
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