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ABSTRACT. We give a new definition of the derived category of constructibleQℓ-sheaves on a scheme, which
is as simple as the geometric intuition behind them. Moreover, we define a refined fundamental group of
schemes, which is large enough to see all lisseQℓ-sheaves, even on non-normal schemes. To accomplish these
tasks, we define and study the pro-étale topology, which is aGrothendieck topology on schemes that is closely
related to the étale topology, and yet better suited for infinite constructions typically encountered inℓ-adic
cohomology. An essential foundational result is that this site is locally contractible in a well-defined sense.
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1. INTRODUCTION

LetX be a variety over an algebraically closed fieldk. The étale cohomology groupsH i(Xét,Qℓ), where
ℓ is a prime different from the characteristic ofk, are of fundamental importance in algebraic geometry.
Unfortunately, the standard definition of these groups is somewhat indirect. Indeed, contrary to what the
notation suggests, these groups are not obtained as the cohomology of a sheafQℓ on the étale siteXét. The
étale site gives the correct answer only with torsion coefficients, so the correct definition is

H i(Xét,Qℓ) := (lim
←−
n

H i(Xét,Z/ℓ
nZ))⊗Zℓ

Qℓ .

In this simple situation, this technical point is often unproblematic1. However, even here, it takes effort to
construct a natural commutative differential gradedQℓ-algebra giving rise to these cohomology groups. This
so-calledQℓ-homotopy type was constructed by Deligne in [Del80], usingcertain subtle integral aspects of
homotopy theory due independently to Miller [Mil78] and Grothendieck.

For more sophisticated applications, however, it is important to work in a relative setup (i.e., study con-
structible sheaves), and keep track of the objects in the derived category, instead of merely the cohomology
groups. In other words, one wants a well-behaved derived categoryDb

c(X,Qℓ) of constructibleQℓ-sheaves.
Deligne, [Del80], and in greater generality Ekedahl, [Eke90], showed that it is possible to define such a
category along the lines of the definition ofH i(Xét,Qℓ). Essentially, one replacesH i(Xét,Z/ℓ

nZ) with
the derived categoryDb

c(X,Z/ℓ
nZ) of constructibleZ/ℓnZ-sheaves, and then performs all operations on

the level of categories:2

Db
c(X,Qℓ) := (lim←−

n

Db
c(X,Z/ℓ

nZ))⊗Zℓ
Qℓ .

Needless to say, this presentation is oversimplified, and veils substantial technical difficulties.
Nonetheless, in daily life, one pretends (without getting into much trouble) thatDb

c(X,Qℓ) is simply
the full subcategory of some hypothetical derived categoryD(X,Qℓ) of all Qℓ-sheaves spanned by those
bounded complexes whose cohomology sheaves are locally constant along a stratification. Our goal in this
paper to justify this intuition, by showing that the following definitions recover the classical notions. To
state them, we need the pro-étale siteXproét, which is introduced below. For any topological spaceT , one
has a ‘constant’ sheaf onXproét associated withT ; in particular, there is a sheaf of (abstract) ringsQℓ on
Xproét associated with the topological ringQℓ.

Definition 1.1. LetX be a scheme whose underlying topological space is noetherian.

(1) A sheafL of Qℓ-modules onXproét is lisseif it is locally free of finite rank.
(2) A sheafC of Qℓ-modules onXproét is constructibleif there is a finite stratification{Xi → X} into

locally closed subsetsXi ⊂ X such thatC|Xi
is lisse.

(3) An objectK ∈ D(Xproét,Qℓ) is constructibleif it is bounded, and all cohomology sheaves are
constructible. LetDb

c(X,Qℓ) ⊂ D(Xproét,Qℓ) be the corresponding full triangulated subcategory.

The formalism of the six functors is easily described in thissetup. In particular, in the setup above,with
the naive interpretation of the right-hand side, one has

H i(Xét,Qℓ) = H i(Xproét,Qℓ) ;

for generalX, one recovers Jannsen’s continuous étale cohomology, [Jan88]. Similarly, the complex
RΓ(Xproét,Qℓ) is obtained by literally applying the derived functorRΓ(Xproét,−) to a sheaf ofQ-algebras,
and hence naturally has the structure of a commutative differential graded algebra by general nonsense (see
[Ols11,§2] for example); this gives a direct construction of theQℓ-homotopy type in complete generality.

A version of the pro-étale site was defined in [Sch13] in the context of adic spaces. The definition given
there was somewhat artificial, mostly because non-noetherian adic spaces are not in general well-behaved.
This is not a concern in the world of schemes, so one can give a very simple and natural definition ofXproét.
Until further notice,X is allowed to be an arbitrary scheme.

1It becomes a problem as soon as one relaxes the assumptions onk, though. For example, even fork = Q, this definition is not
correct: there is no Hochschild-Serre spectral sequence linking these naively defined cohomology groups ofX with those ofXk.
One must account for the higher derived functors of inverse limits to get a theory linked to the geometry ofXk, see [Jan88].

2In fact, Ekedahl only defines the derived category of constructibleZℓ-sheaves, not performing the final⊗Zℓ
Qℓ-step.
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Definition 1.2.

(1) A mapf : Y → X of schemes isweakly étaleif f is flat and∆f : Y → Y ×X Y is flat.
(2) Thepro-étale siteXproét is the site of weaklýetaleX-schemes, with covers given by fpqc covers.

Any map between weakly étaleX-schemes is itself weakly étale, and the resulting topos has good cate-
gorical properties, like coherence (ifX is qcqs) and (hence) existence of enough points. For this definition
to be useful, however, we need to control the class of weakly ´etale morphisms. In this regard, we prove the
following theorem.

Theorem 1.3. Letf : A→ B be a map of rings.

(1) f is étale if and only iff is weaklyétale and finitely presented.
(2) If f is ind-́etale, i.e.B is a filtered colimit of́etaleA-algebras, thenf is weaklyétale.
(3) If f is weaklyétale, then there exists a faithfully flat ind-étaleg : B → C such thatg ◦f is ind-́etale.

In other words, for a ringA, the sites defined by weakly étaleA-algebras and by ind-étaleA-algebras are
equivalent, which justifies the name pro-étale site for thesiteXproét defined above. We prefer using weakly
étale morphisms to defineXproét as the property of being weakly étale is clearly étale local on the source
and target, while that of being ind-étale is not even Zariski local on the target.

One might worry that the pro-étale site is huge in an uncontrolled way (e.g., covers might be too large,
introducing set-theoretic problems). However, this does not happen. To see this, we need a definition:

Definition 1.4. An affine schemeU is w-contractibleif any faithfully flat weaklýetale mapV → U admits
a section.

A w-contractible objectU ∈ Xproét is somewhat analogous to a point in the topos theoretic sense: the
functorΓ(U,−) is exact and commutes with all limits, rather than colimits.In fact, a geometric point of
X defines a w-contractible object inXproét via the strict henselisation. However, there are many more
w-contractible objects, which is the key to the control alluded to above:

Theorem 1.5. Any schemeX admits a cover inXproét by w-contractible affine schemes.

Despite the analogy between w-contractible objects and points, Theorem 1.5 has stronger consequences
than the mere existence of points. For example, the inverse limit functor on systems

. . .→ Fn → Fn−1 → . . .→ F1 → F0

of sheaves onXproét is well-behaved, the derived category of abelian sheaves onXproét is left-complete and
compactly generated, unbounded cohomological descent holds in the derived category, and Postnikov towers
converge in the hypercomplete∞-topos associated withXproét. This shows that the pro-étale site is useful
even when working with torsion coefficients, as the derived category ofXét is left-complete (and unbounded
cohomological descent holds) only under finiteness assumptions on the cohomological dimension ofX, cf.
[LO08].

We note that one can ‘cut off’Xproét by only allowing weakly étaleX-schemesY of cardinality< κ
for some uncountable strong limit cardinalκ > |X|, and all results above, especially the existence of w-
contractible covers, remain true. In particular, the resulting truncated siteXproét forms a set, rather than a
proper class, so we can avoid universes in this paper.

Let us explain the local structure of a scheme in the pro-étale site.

Definition 1.6.

(1) A ringA is w-local if the subset(SpecA)c ⊂ SpecA of closed points is closed, and any connected
component ofSpecA has a unique closed point.

(2) A mapf : A → B of w-local rings isw-local if Specf : SpecB → SpecA maps closed points to
closed points.

The next result shows that every scheme is covered by w-localaffines in the pro-Zariski topology, and
hence in the pro-étale topology. In particular, as noetherian schemes have finitely many connected compo-
nents, this shows that non-noetherian schemes are unavoidable when studyingXproét, even forX noetherian.
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Theorem 1.7. The inclusion of the category of w-local rings with w-local maps in the category of all
rings admits a left adjointA 7→ AZ . The unitA → AZ of the adjunction is faithfully flat and an ind-
(Zariski localisation), soSpecAZ → SpecA is a cover inSpec(A)proét. Moreover, the subset(SpecAZ)c ⊂
SpecAZ of closed points maps homeomorphically toSpecA, equipped with its constructible topology.

In other words,SpecAZ is roughly the disjoint union of the local rings ofA. However, the union is not
exactly disjoint; rather, the set of connected componentsπ0(SpecA

Z) is naturally a profinite set, which is
SpecA with its constructible topology. Thus, the study of w-localrings splits into the study of its local rings
at closed points, and the study of profinite sets. It turns outin practice that these two aspects interact little.
In particular, this leads to the following characterization of w-contractible schemes.

Theorem 1.8. An affine schemeX = SpecA is w-contractible if and only ifA is w-local, all local rings at
closed points are strictly henselian, andπ0(X) is extremally disconnected.

Recall that a profinite setS is extremally disconnected if the closure of any open subsetU ⊂ S is still
open. By a theorem of Gleason,S is extremally disconnected if and only ifS is projective in the category
of compact Hausdorff spaces, i.e., any surjective mapT → S from a compact Hausdorff spaceT admits a
section. In particular, the Stone-Cech compactification ofany discrete set is extremally disconnected, which
proves the existence of enough such spaces. Using this construction, ifA is w-local, it is relatively easy to
construct a faithfully flat ind-étaleA-algebraB satisfying the conditions of the theorem, which proves the
existence of enough w-contractible schemes.

As a final topic, we study the fundamental group. In SGA1, a profinite groupπét1 (X,x) is defined for
any connected schemeX with a geometric pointx. It has the property that the category of lisseZℓ-sheaves
on X is equivalent to the category of continuous representations of πét1 (X,x) on finite freeZℓ-modules.
However, the analogue for lisseQℓ-sheaves fails (unlessX is geometrically unibranch) asQℓ-local systems
admitZℓ-lattices only étale locally. For example, ifX is P1 with 0 and∞ identified (over an algebraically
closed field), thenX admits a coverf : Y → X whereY is an infinite chain ofP1’s. One can descend
the trivial Qℓ-local system onY to X by identifying the fibres at0 and∞ using any unit inQℓ, e.g.
ℓ ∈ Q×

ℓ . However, representations ofπét1 (X,x) = Ẑ with values inGL1(Qℓ) will have image inGL1(Zℓ)

by compactness. This suggests that the ’true’π1 of X should beZ ⊂ Ẑ = πét1 (X,x). In fact, in SGA3 X6,
a prodiscrete groupπSGA3

1 (X,x) is defined, which gives the desired answer in this example. Its defining
property is thatHom(πSGA3

1 (X,x),Γ) is in bijection withΓ-torsors trivialized atx, for any discrete group
Γ. However, in general,πSGA3

1 (X,x) is still too small to detect allQℓ-local systems through its finite
dimensional continuousQℓ-representations: the failure is visible already forX a high-genus curve with two
points identified (this example is due to Deligne, and recalled in Example 7.4.9).

We circumvent the issues raised above by working with a larger category of “coverings” than the ones
used in constructingπét1 (X,x) andπSGA3

1 (X,x). To recover groups from such categories, we study some
general infinite Galois theory. The formalism leads to the following kind of groups.

Definition 1.9. A topological groupG is called aNoohi groupif G is complete, and admits a basis of open
neighborhoods of1 given by open subgroups.

The word “complete” above refers to the two-sided uniform structure onG determined by its open sub-
groups. For example, locally profinite groups, such asGLn(Qℓ), are Noohi groups. Somewhat more sur-
prisingly,GLn(Qℓ) is also a Noohi group. The main result is:

Theorem 1.10. LetX be a connected scheme whose underlying topological space islocally noetherian.
The following categories are equivalent.

(1) The categoryLocX of sheaves onXproét which are locally constant.
(2) The categoryCovX of étaleX-schemesY which satisfy the valuative criterion of properness.

For any geometric pointx of X, the infinite Galois theory formalism applies toLocX equipped with the
fibre functor atx, giving rise to a Noohi groupπproét1 (X,x). The pro-finite completion ofπproét1 (X,x) is
πét1 (X,x), and the pro-discrete completion ofπproét1 (X,x) is πSGA3

1 (X,x). Moreover,Qℓ-local systems on
X are equivalent to continuous representations ofπproét1 (X,x) on finite-dimensionalQℓ-vector spaces, and
similarly for Qℓ replaced byQℓ.
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Informally, the difference betweenπproét1 (X,x) and the classical fundamental groups stems from the
existence of pro-étale locally constant sheaves that are not étale locally constant. This difference manifests
itself mathematically in the lack of enough Galois objects,i.e., πproét1 (X,x) does not have enough open
normal subgroups (and thus is not prodiscrete). It is important to note that the construction ofπproét1 (X,x)

is not completely formal. Indeed, as withπSGA3
1 (X,x), it is not clear a priori thatπproét1 (X,x) contains

even a single non-identity element: a cofiltered limit of discrete groups along surjective transition maps can
be the trivial group. Thus, one must directly construct elements to showπproét1 (X,x) is big enough. This
is done by choosing actual paths onX, thus reuniting the classical point of view from topology with the
abstract approach of SGA1.

Finally, let us give a short summary of the different sections. In Section 2, we study w-local rings and
the like. In Section 3, we study a general topos-theoretic notion (namely, repleteness) which implies left-
completeness of the derived category etc. . We also include some discussions on complete sheaves, which
are again well-behaved under the assumption of repleteness. In Section 4, we introduce the pro-étale site,
and study its basic properties. The relation with the étalesite is studied in detail in Section 5. In Section 6, we
introduce constructible sheaves (recalling first the theory for torsion coefficients on the étale site), showing
that for schemes whose underlying topological space is noetherian, one gets the very simple definition stated
above. Finally, in Section 7, we define the pro-étale fundamental group.

Acknowledgments. The vague idea that such a formalism should exist was in the air since the paper
[Sch13], and the second-named author received constant encouragement from Michael Rapoport, Luc Illusie
and many others to work this out. Martin Olsson’s question onthe direct construction of theQℓ-homotopy
type led to the birth of this collaboration, which soon led tomuch finer results than initially expected.
Ofer Gabber suggested that weakly étale morphisms could berelated to ind-étale morphisms. Johan de
Jong lectured on some parts of this paper in Stockholm, and provided numerous useful and enlightening
comments. Conversations with Brian Conrad also clarified some arguments.

Hélène Esnault urged us to think about fundamental groupsof non-normal schemes from the perspective
of the pro-étale topology, which led to§7. Moreover, Pierre Deligne generously shared his notes on fun-
damental groups, which had an important influence on the material in §7, especially in relation to Noohi
groups and abstract infinite Galois theory. Deligne’s results were slightly weaker: in the language intro-
duced in§7.2, he first proves that any countably generated (in a suitable sense) infinite Galois category is
automatically tame, and then specializes this result to schemes to obtain, using purely abstract arguments,
a pro-(Noohi group) from a certain category of “coverings” that turns out to be equivalent toCovX ; here
the pro-structure is dual to the ind-structure describing this category of coverings as a filtered colimit of
countably generated infinite Galois categories. After we realized that this pro-group is realized by its limit
by using geometric paths, Gabber explained to us his different perspective on fundamental groups, which
we explain in Remark 7.4.12 below.

This work was done while Bhargav Bhatt was supported by NSF grants DMS 1340424 and DMS 1128155,
and Peter Scholze was a Clay Research Fellow.
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2. LOCAL STRUCTURE

The goal of this section is to study some algebra relevant to the pro-étale topology. Specifically, we show:
(a) weakly étale and pro-étale maps define the same Grothendieck topology on rings in§2.3, and (b) this
Grothendieck topology has enough “weakly contractible” objects in§2.4.

2.1. Spectral spaces.LetS be the category of spectral spaces with spectral maps, and let Sf ⊂ S be the full
subcategory of finite spectral spaces (= finiteT0 spaces), soS = Pro(Sf ), cf. [Hoc69]. Our main goal is to
show that eachX ∈ S admits a pro-(open cover)XZ → X such thatXZ admits no further non-split open
covers. This goal is eventually realized in Lemma 2.1.10. Before constructingXZ , however, we introduce
and study the subcategory ofS where spaces of the formXZ live:

Definition 2.1.1. A spectral spaceX is w-local if it satisfies:

(1) All open covers split, i.e., for every open cover{Ui →֒ X}, the map⊔iUi → X has a section.
(2) The subspaceXc ⊂ X of closed points is closed.

A mapf : X → Y of w-local spaces is w-local iff is spectral andf(Xc) ⊂ Y c. Let i : Swl →֒ S be the
subcategory of w-local spaces with w-local maps.

The first condition in Definition 2.1.1 is obviously necessary for the promised application. The second
condition turns out to be particularly convenient for applications.

Example 2.1.2.Any profinite set is a w-local space. Any local scheme has a w-local topological space. The
collection of w-local spaces is closed under finite disjointunions.

The property of w-locality passes to closed subspaces:

Lemma 2.1.3. If X ∈ Swl, andZ ⊂ X is closed, thenZ ∈ Swl.

Proof. Open covers ofZ split as any open cover ofZ extends to one ofX (by extending opens and adding
X − Z). Moreover, it is clear thatZc = Xc ∩ Z, so the claim follows. �

Recall that the inclusionPro(Setf ) ⊂ Pro(Sf ) = S has a left-adjointX 7→ π0(X), i.e., the counitX →
π0(X) is the universal spectral map fromX to a profinite set. Given a cofiltered presentationX = limiXi

withXi ∈ Sf , we haveπ0(X) = limi π0(Xi). We use this to give an intrinsic description of w-local spaces:

Lemma 2.1.4. A spectral spaceX is w-local if and only ifXc ⊂ X is closed, and every connected compo-
nent ofX has a unique closed point. For suchX, the compositionXc → X → π0(X) is a homeomorphism.

Proof. The second part follows immediately from the first asXc is profinite whenX is w-local. For the
first, assume thatX is w-local; it suffices to show that each connected componenthas a unique closed point.
Then Lemma 2.1.3 shows that any connected component is also w-local, so we may assumeX is connected.
If X has two distinct closed pointsx1, x2 ∈ Xc, then the open cover(X − {x1}) ⊔ (X − {x2}) → X has
no section, which contradicts w-locality.

Conversely, assumeXc ⊂ X is closed, and that each connected component has a unique closed point.
ThenXc is profinite, and henceXc → π0(X) is a homeomorphism. Now fix a finite open cover{Ui →֒ X}
with Ui quasicompact. We must show thatπ : Y := ⊔iUi → X has a section. AsXc is profinite, there
is a maps : Xc → Y lifting the inclusionXc →֒ X. Let Z ⊂ π0(Y ) be the image of the composite
Xc s
→ Y → π0(Y ). ThenZ is a closed subset ofπ0(Y ), and the canonical mapsXc → Z → π0(X) are all

homeomorphisms. In particularZ →֒ π0(Y ) is a pro-(open immersion). LetY ′ := Y ×π0(Y )Z →֒ Y be the
inverse image. ThenY ′ is a spectral space withπ0(Y ′) = Z. The mapY ′ → Y is pro-(open immersion),
so the mapφ : Y ′ → X is pro-open. One checks from the constructionφ induces a homeomorphism
π0(Y

′) → π0(X). Moreover, the fibres ofY ′ → π0(Y
′) identify with the fibres ofY → π0(Y ). As the

image ofπ0(Y ′) → π0(Y ) only contains connected components ofY that contain a point lifting a closed
point ofX, it follows that the fibres ofY ′ → π0(Y

′) map homeomorphically onto the fibres ofX → π0(X).
Thusφ is a continuous pro-open bijection of spectral spaces. Any such map is a homeomorphism by a
compactness argument. Indeed, ifU ⊂ Y ′ is a quasicompact open, thenφ(U) is pro-(quasi-compact open),
soφ(U) = ∩iVi, where the intersection is indexed by all quasi-compact opens containingφ(U). Pulling
back toY ′ showsU = ∩iφ

−1(Vi). AsY ′−U is compact in the constructible topology and eachφ−1(Vi) is
constructible, it follows thatU = φ−1(Vi) for somei, and henceφ(U) = Vi. �
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Remark 2.1.5. Lemma 2.1.4 shows that each w-local spaceX comes equipped with a canonical “special-
ization” maps : X → Xc, defined as the compositionX → π0(X) ≃ Xc. Concretely, anyx ∈ X admits
a unique closed specializations(x) ∈ Xc ⊂ X; in fact, the connected component spanned byx hass(x) as
its unique closed point. Any map inSwl preserves specializations and closed points, and is thus compatible
with the specialization maps.

Definition 2.1.6. Given a closed subspaceZ ⊂ X of a spectral spaceX, we sayX is local alongZ if
Xc ⊂ Z, or equivalently, if everyx ∈ X specializes to a point ofZ. The (pro-open) subspace ofX
comprising all points that specialize to a point ofZ is called thelocalization ofX alongZ.

Lemma 2.1.7. A spectral spaceX that is local along a w-local closed subspaceZ ⊂ X with π0(Z) ∼=
π0(X) is also w-local.

Proof. It suffices to show thatXc ⊂ X is closed, and that the compositionXc → X → π0(X) is a
homeomorphism. SinceXc = Zc, the first claim is clear. The second follows from the w-locality of Z: one
hasXc = Zc as before, andπ0(X) = π0(Z) by assumption. �

We recall the structure of limits inS:

Lemma 2.1.8.S admits all small limits, and the forgetful functorS→ Set preserves these limits.

Proof. SinceS = Pro(Sf ), it suffices to show thatSf admits fibre products. Given mapsX → Z ←
Y in Sf , one simply checks that a fibre productX ×Z Y in Sf is computed by the usual fibre product
X ×Z Y in Setf with the topology induced from the product topology onX × Y under the inclusion
X ×Z Y ⊂ X × Y . The second claim is then clear. Alternatively, observe that there is a factorization

S
a
→ Pro(Setf )

b
→ Set, wherea(X) is X with the constructible topology, andb(Y ) = Y . Both functors

a andb admit left adjointsα andβ respectively:β is the Stone-Cech compactification functor, whileα is
the natural inclusionPro(Setf ) ⊂ Pro(Sf ) = S. In particular, the forgetful functorS → Set preserves
limits. �

The category of w-local spaces also admits small limits:

Lemma 2.1.9.Swl admits all small limits, and the inclusioni : Swl → S preserves these limits.

Proof. We first checkSwl admits fibre products. Given mapsX → Z ← Y in Swl, the fibre product
X ×Z Y in S is local along the (profinite) closed subsetXc ×Zc Y c ⊂ X ×Z Y : a point(x, y) ∈ X ×Z Y
specializes to the point(s(x), s(y)) ∈ Xc ×Zc Y c, wheres is the specialization map from Remark 2.1.5.
ThenX ×Z Y ∈ Swl by Lemma 2.1.7. Moreover, this also shows(X ×Z Y )c = Xc ×Zc Y c, and that
the projection mapsX ← X ×Z Y → Y preserve closed points, which proves thatX ×Z Y is a fibre
product onSwl. For cofiltered limits, fix a cofiltered diagram{Xi} in Swl. LetX := limiXi be the limit
(computed inS). We claim thatX ∈ Swl, and the mapsX → Xi are w-local. As any open cover of
X can be refined by one pulled back from someXi, one checks that all open covers ofX split. For the
rest, it suffices to showXc = limiX

c
i ; note that{Xc

i } is a well-defined diagram as all transition maps
Xi → Xj are w-local. It is clear thatlimiX

c
i ⊂ X

c. Conversely, choosex ∈ Xc ⊂ X with imagexi ∈ Xi.
Let Yi = {xi} ⊂ Xi. Then{Yi} forms a cofiltered diagram inSwl with limi Yi ⊂ X by Lemma 2.1.3.
Moreover, one haslimi Yi = {x} = {x} ⊂ X by the compatibility of closures and cofiltered limits. Now
consider the cofiltered diagram{Y c

i }. As eachY c
i ⊂ Yi is a subset, we getlimi Y

c
i ⊂ limi Yi = {x}. Then

eitherx ∈ limi Y
c
i or limi Y

c
i = ∅; the latter possibility does not occur as a cofiltered limit of non-empty

compact Hausdorff spaces is non-empty, sox ∈ limi Y
c
i ⊂ limiX

c
i . �

The adjoint functor theorem and Lemma 2.1.9 show thati : Swl → S admits a left adjoint; this adjoint
is characterized as the unique functor that preserves cofiltered limits and finite disjoint unions, and carries a
connected finiteT0 spaceX toX ⊔ {∗}, where∗ is declared to be a specialization of all points ofX. This
adjoint is not used in the sequel since it does not lift to the world of schemes. However, it turns out that
i : Swl →֒ S also has a right adjoint which can be described via open covers, passes to the world of schemes,
and will be quite useful:
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Lemma 2.1.10. The inclusioni : Swl → S admits a right adjointX 7→ XZ . The counitXZ → X is
a pro-(open cover) for allX, and the composite(XZ)c → X is a homeomorphism for the constructible
topology onX.

Proof. We first construct the functorX 7→ XZ and the counit mapXZ → X. As the notions of w-local
spaces and w-local maps are well-behaved under cofiltered limits by Lemma 2.1.9, it suffices to construct,
for eachX ∈ Sf , a functorial open coverXZ → X with XZ w-local such that: (a) the functorX 7→ XZ

carries maps to w-local maps, (b)(XZ)c → X is a bijection, and (c)(XZ)c ⊂ XZ is discrete.
LetX be a finiteT0 space. We define

XZ =
⊔

x∈X

Xx ,

whereXx ⊂ X is the subset of generalizations ofx, which is an open subset ofX. ThenXZ ∈ Sf .
Moreover, eachXx is w-local as the only open ofXx containingx isXx itself. Stability of w-locality under
finite disjoint unions shows thatXZ is w-local. If f : X → Y is a map of finiteT0 spaces, one gets an
induced map

fZ : XZ =
⊔

x∈X

Xx → Y Z =
⊔

y∈Y

Yy ,

by mappingXx intoYf(x). In particular, this sends the closed pointx ∈ Xx to the closed pointf(x) ∈ Yf(x),
so that this map is w-local. Moreover, there is a natural mapXZ → X for anyX, by embedding eachXx

into X. Clearly, this is an open cover ofX. The definition also shows(XZ)c = X with the discrete
topology (which is the also the constructible topology for finiteT0 spaces).

To show this defines an adjoint, we must check: givenX ∈ S, Y ∈ Swl, and a spectral maph : Y → X,
there exists a unique w-local maph′ : Y → XZ factoringh. We may assumeX ∈ Sf as before. As
Y c → Y is closed, the compositeg : Y c →֒ Y → X is a spectral map from a profinite set to a finite
T0 space. One then checks thatg−1(x) is clopen inY c for all x ∈ X (the preimage of any open ofX is
a quasicompact open, and thus clopen, in the Hausdorff spaceY c; one deduces the claim by induction on
#X by excising one closed point at a time). Picking anx ∈ X with g−1(x) 6= ∅ and replacingY with the
clopen subsets−1(g−1(x)) wheres : Y → π0(Y ) ≃ Y c is the specialization map from Remark 2.1.5, we
may assume thath(Y c) = {x} ⊂ X; here we use Lemma 2.1.3 to ensureY remains w-local. As each point
of Y specialises to a point ofY c, the maph factors throughXx ⊂ X, which gives the desired w-local lift
h′ : Y → Xx ⊂ X

Z ; the w-locality requirement forces uniqueness ofh′. �

Remark 2.1.11. The spaceXZ can be alternatively described as:

XZ = lim
{Xi →֒X}

⊔iX̃i,

where the limit is indexed by the cofiltered category of constructible stratifications{Xi →֒ X}, andX̃i

denotes the set of all points ofX specializing to a point ofXi. One then has a corresponding description of
closed subspaces

(XZ)c = lim
{Xi →֒X}

⊔iXi ⊂ X
Z ,

so it is clear that(XZ)c → X is a homeomorphism for the constructible topology on the target. This
description and the cofinality of affine stratifications inside all constructible stratifications show that ifX

is an affine scheme, then the maps(XZ)c
a
→֒ XZ b

→ X lift to maps of affine schemes, witha a closed
immersion, andb a pro-(open cover).

Definition 2.1.12. A mapf : W → V of spectral spaces is aZariski localizationif W = ⊔iUi withUi → V
a quasicompact open immersion. Apro-(Zariski localization)is a cofiltered limit of such maps.

Both these notions are stable under base change. A key example is:

Lemma 2.1.13.Any mapf : S → T of profinite sets is a pro-(Zariski localization). In fact, we can write
S = limi Si as a cofiltered limit of mapsSi → T , each of which is the base change toT of a map from a
profinite set to a finite set.
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Proof. Choose a profinite presentationT = limi Ti, and setSi = S×Ti T . ThenSi → T is the base change
of S → Ti, andS ≃ limi Si, which proves the claim. �

We use this notion to split a w-local map into a pro-(Zariski localization), and one that is entirely “local:”

Lemma 2.1.14.Any mapf : X → Y in Swl admits a canonical factorizationX → Z → Y in Swl with
Z → Y a pro-(Zariski localization) andX → Z inducing a homeomorphismXc ≃ Zc.

Proof. We have a diagram

Xc //

fc

��

X //

f

��

π0(X) =: S

π0(f)
��

Y c // Y // π0(Y ) =: T.

SetZ = Y ×T S. Then by Lemma 2.1.9,Z is w-local andZc = Y c ×T S ≃ Xc. Moreover, the map
S → T is a pro-(Zariski localization), and hence so isZ → Y . The induced mapX → Z sendsXc to
Y c ×T S = Zc, and is thus w-local; asXc → Zc is a homeomorphism, this proves the claim. �

2.2. Rings. We now adapt the notions of§2.1 to the world of rings via the Zariski topology, and also discuss
variants for the étale topology:

Definition 2.2.1. Fix a ringA.

(1) A is w-local if Spec(A) is w-local.
(2) A is w-strictly local if A is w-local, and every faithfully flat́etale mapA→ B has a section.
(3) A mapf : A→ B of w-local rings is w-local ifSpec(f) is w-local.
(4) A mapf : A→ B is called aZariski localizationif B =

∏n
i=1A[

1
fi
] for somef1, . . . , fn ∈ A. An

ind-(Zariski localization)is a filtered colimit of Zariski localizations.
(5) A mapf : A→ B is calledind-étaleif it is a filtered colimit ofétaleA-algebras.

Example 2.2.2. For any ringA, there is an ind-(Zariski localization)A → AZ such thatSpec(AZ) =
Spec(A)Z , see Lemma 2.2.4. In particular,AZ is w-local. Any strictly henselian local ringA is w-strictly
local. Moreover, any cofiltered limit of w-strictly local rings along w-local maps is w-strictly local.

Our goal in this section is to explain why every ring admits anind-étale faithfully flat w-strictly local
algebra. The construction of this extension, very roughly,mirrors the classical construction of the strict
henselisations at a geometric point: first one Zariski localizes at the point, and then one passes up along
all étale neighbourhoods of the point. The first step is accomplished using the functorA 7→ AZ ; the next
lemma describes the structure of the resulting ring.

Lemma 2.2.3. If A is w-local, then the Jacobson radicalIA cuts outSpec(A)c ⊂ Spec(A) with its reduced
structure. The quotientA/IA is an absolutely flat ring.

Recall that a ringB is called absolutely flat ifB is reduced with Krull dimension0 (or, equivalently, that
B is reduced withSpec(B) Hausdorff).

Proof. Let J ⊂ A be the (radical) ideal cutting outSpec(A)c ⊂ Spec(A) with the reduced structure. Then
J ⊂ m for eachm ∈ Spec(A)c, soJ ⊂ IA. Hence,Spec(A/IA) ⊂ Spec(A)c is a closed subspace; we
want the two spaces to coincide. If they are not equal, then there exists a maximal idealm such thatIA 6⊂ m,
which is impossible. �

The study of w-local spectral spaces has a direct bearing on w-local rings:

Lemma 2.2.4. The inclusion of the category w-local rings and maps inside all rings admits a left adjoint
A 7→ AZ . The unitA→ AZ is a faithfully flat ind-(Zariski localization), andSpec(A)Z = Spec(AZ) over
Spec(A).

Proof. This follows from Remark 2.1.11. In more details, letX = SpecA, and define a ringed space
XZ → X by equipping(SpecA)Z with the pullback of the structure sheaf fromX. Then Remark 2.1.11
presentsXZ as an inverse limit of affine schemes, so thatXZ = Spec(AZ) is itself affine. �
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Example 2.2.5. For a ringA, the mapA → AZ/IAZ is the universal map fromA to an absolutely flat
ring. Indeed, this follows by the universal property ofAZ , the w-locality of absolutely flat rings, and the
observation that any w-local mapAZ → B with B absolutely flat factors through a mapAZ/IAZ → B.

Lemma 2.2.6.Any w-local mapf : A→ B of w-local rings admits a canonical factorizationA
a
→ C

b
→ B

with C w-local, a a w-local ind-(Zariski localization), andb a w-local map inducingπ0(Spec(B)) ≃
π0(Spec(C)).

Proof. This follows from Lemma 2.1.14 and the observation that any mapS → π0(Spec(A)) of profinite
sets is induced by an ind-(Zariski localization)A → C by applyingπ0(Spec(−)) thanks to Lemma 2.1.13.

�

Due to the w-locality ofAZ and Lemma 2.2.3, absolutely flat rings play an important rolein this section.
The next lemma explains the construction of w-strictly local ind-étale covers of absolutely flat rings.

Lemma 2.2.7. For any absolutely flat ringA, there is an ind-́etale faithfully flat mapA → A with A w-
strictly local and absolutely flat. For a mapA → B of absolutely flat rings, we can choose such maps
A→ A andB → B together with a mapA→ B ofA-algebras.

Proof. The following fact is used without further comment below: any ind-étale algebra over an absolutely
flat ring is also absolutely flat. Choose a setI of isomorphism classes of faithfully flat étaleA-algebras, and
setA = ⊗IAi, where the tensor product takes place overAi ∈ I, i.e.,A = colimJ⊂I ⊗j∈JAj , where the
(filtered) colimit is indexed by the poset of finite subsets ofI. Then one checks thatA is absolutely flat, and
that any faithfully flat étaleA-algebra has a section, soA is w-strictly local asSpec(A) is profinite. For the
second part, simply setB to be a w-strictly local faithfully flat ind-étale algebra overA⊗A B. �

To decouple topological problems from algebraic ones, we consistently use:

Lemma 2.2.8. For any ringA and a mapT → π0(Spec(A)) of profinite sets, there is an ind-(Zariski
localization)A → B such thatSpec(B) → Spec(A) gives rise to the given mapT → π0(Spec(A)) on
applyingπ0. Moreover, the associationT 7→ Spec(B) is a limit-preserving functor.

One may make the following more precise statement: for any affine schemeX, the functorY 7→ π0(Y )
from affineX-schemes to profiniteπ0(X)-sets has a fully faithful right adjointS 7→ S ×π0(X) X, the
fibre product in the category of topological spaces ringed using the pullback of the structure sheaf onX.
Moreover, the natural mapS ×π0(X) X → X is a pro-(Zariski localisation) and pro-finite.

Proof. GivenT as in the lemma, one may writeT = lim Ti as a cofiltered limit of profiniteπ0(Spec(A))-
setsTi with Ti → π0(Spec(A)) being the base change of a map of finite sets, see Lemma 2.1.13.For each
Ti, there is an obvious ringBi that satisfies the required properties. We then setB := colimBi, and observe
thatπ0(Spec(B)) = limπ0(Spec(Bi)) = limTi = T as aπ0(Spec(A))-set. �

One can characterize w-strictly local rings in terms of their topology and local algebra:

Lemma 2.2.9. A w-local ringA is w-strictly local if and only if all local rings ofA at closed points are
strictly henselian.

Proof. For the forward direction, fix a w-strictly local ringA and choose a closed pointx ∈ Spec(A)c.
Any faithfully flat étale mapAx → B′ is the localization atx of a faithfully flat étale mapA[ 1f ] → B

for somef invertible atx. As x is a closed point, we may findf1, . . . , fn ∈ A vanishing atx such that
C = B ×

∏n
i=1A[f

−1
i ] is a faithfully flat étaleA-algebra. This implies that there is a sectionC → A, and

henceC ⊗A Ax → Ax. As fi vanishes atx, one hasC ⊗A Ax = Bx ×A
′, whereA′ has no point abovex.

The (algebra) sectionBx×A′ → Ax then necessarily factors through the projection on the firstfactor, which
gives us the desired section. For the converse direction, assumeA is a w-strictly local ring whose local rings
at closed points are strictly henselian. Fix a faithfully flat étaleA-algebraB. ThenA → B has a section
over each closed point ofSpec(A) by the assumption on the local rings. Spreading out, which ispossible
by finite presentation constraints, there is a Zariski coverof Spec(A) over whichSpec(B)→ Spec(A) has
a section; by w-locality ofSpec(A), one finds the desired sectionB → A. �
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To pass from w-strictly local covers of absolutely flat ringsto arbitrary rings, we use henselizations:

Definition 2.2.10. Given a map of ringsA → B, let HensA(−) : Ind(Bét) → Ind(Aét) be the functor
right adjoint to the base change functorInd(Aét) → Ind(Bét). Explicitly, forB0 ∈ Ind(Bét), we have
HensA(B0) = colimA′, where the colimit is indexed by diagramsA → A′ → B0 of A-algebras with
A→ A′ étale.

Remark 2.2.11. The notation of Definition 2.2.10 isnot ambiguous, i.e., for any mapA → B andC ∈
Ind(Bét), the ringHensA(C) depends only on theA-algebraC, and not onB. It follows that ifA→ A′ →
C is a factorization withA→ A′ ind-étale, thenHensA(C) ≃ HensA′(C).

Henselization is particularly well-behaved for quotient maps:

Lemma 2.2.12.For surjective mapsA → A/I, the functorHensA(−) is fully faithful, soHensA(−) ⊗A
A/I ≃ id as functors onInd((A/I)ét).

Proof. Fix someB0 ∈ Ind((A/I)ét) and setB = HensA(B0). By adjointness, it suffices to checkB/IB ≃
B0. As any étaleA/I-algebraC0 lifts to some étaleA-algebraC, one immediately checks thatB → B0 is
surjective. Choosef ∈ ker(B → B0). Thenf lifts to some étaleA-algebraC along some mapC → B.
If f ∈ IC, we are done. If not,f gives an element of the kernel ofC/IC → B0. Hence, there is some
diagramC/IC → D0 → B0 in Ind((A/I)ét) with C/IC → D0 étale such thatf maps to0 in D0. Choose
an étaleC-algebraD lifting D0, sof ∈ ID. The mapD → D/ID = D0 → B0 of A-algebras then gives
a factorizationC → D → B, which shows thatf ∈ IB. �

The étale analogue of Lemmas 2.1.3 and 2.1.7 is:

Lemma 2.2.13.LetA be a ring henselian along an idealI. ThenA is w-strictly local if and only ifA/I is
so.

Proof. First assumeA/I is w-strictly local. AsA is henselian alongI, the spaceSpec(A) is local along
Spec(A/I), soA is w-local by Lemma 2.1.7. Pick a faithfully flat étaleA-algebraB. ThenA/I → B/IB
has a section. By the adjunctionHomA(B,HensA(A/I)) ≃ HomA(B/IB,A/I) and the identification
HensA(A/I) = A, one finds the desired sectionB → A. Conversely, assumeA is w-strictly local. Then
Spec(A/I)c = Spec(A)c by the henselian property, soSpec(A/I)c ⊂ Spec(A/I) is closed. Moreover, any
faithfully flat étaleA/I-algebraB0 is the reduction modulo ofI of a faithfully flat étaleA-algebraB, so the
w-strict locality ofA immediately implies that forA/I. �

Henselizing along w-strictly local covers of absolutely flat rings gives w-strictly local covers in general:

Corollary 2.2.14. Any ringA admits an ind-́etale faithfully flat mapA→ A′ withA′ w-strictly local.

Proof. SetA′ := HensAZ (AZ/IAZ ), whereAZ/IAZ is a w-strictly local ind-étale faithfully flatAZ/IAZ -
algebra; thenA′ satisfies the required property by Lemma 2.2.13. �

We end by noting that the property of w-strictly locality passes to quotients:

Lemma 2.2.15.LetA be a ring with an idealI. If A is w-strictly local, so isA/I.

Proof. The spaceSpec(A/I) is w-local by Lemma 2.1.3. The local rings ofA/I at maximal ideals are
quotients of those ofA, and hence strictly henselian. The claim follows from Lemma2.2.9. �

2.3. Weakly étale versus pro-́etale. In this section, we study the following notion:

Definition 2.3.1. A morphismA → B of commutative rings is calledweakly étaleif bothA → B and the
multiplication morphismB ⊗A B → B are flat.

Remark 2.3.2. Weakly étale morphisms have been studied previously in theliterature under the name of
absolutely flat morphisms, see [Oli72]. Here, we follow the terminology introduced in [GR03, Definition
3.1.1].

Our goal in this section is to show that weakly étale maps andind-étale maps generate the same Grothendieck
topology, see Theorem 2.3.4 below. We begin by recording basic properties of weakly étale maps.
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Proposition 2.3.3. Fix mapsf : A→ B, g : B → C, andh : A→ D of rings.

(1) If f is ind-́etale, thenf is weaklyétale.
(2) If f is weaklyétale, then the cotangent complexLB/A vanishes. In particular,f is formally étale.
(3) If f is weaklyétale and finitely presented, thenf is étale.
(4) If f andg are weaklýetale (resp. ind-́etale), theng ◦ f is weaklyétale (resp. ind-́etale). Ifg ◦ f and

f are weaklýetale (resp. ind-́etale), theng is weaklyétale (resp. ind-́etale).
(5) If h is faithfully flat, thenf is weaklyétale if and only iff ⊗A D : D → B ⊗A D is weaklyétale.

Proof. These are well-known, so we mostly give references.

(1) As flatness and tensor products are preserved under filtered colimits, one reduces to the case of étale
morphisms. Clearly,f is flat in that case; moreover,B⊗AB → B is an open immersion on spectra,
and in particular flat.

(2) See [GR03, Theorem 2.5.36] and [GR03, Proposition 3.2.16].
(3) Sincef is weakly étale and finitely presented, it is formally étale and finitely presented by (2), hence

étale.
(4) The first part is clear. For the second part in the weakly étale case, see [GR03, Lemma 3.1.2 (iv)].

For the ind-étale case, observe that the category of ind-étale algebras is equivalent to the ind-category
of étale algebras by finite presentation constraints.

(5) This is clear, as flatness can be checked after a faithfully flat base change. �

The analogue of (5) fails for ind-étale morphisms. Our mainresult in this section is:

Theorem 2.3.4. Let f : A → B be weaklyétale. Then there exists a faithfully flat ind-étale morphism
g : B → C such thatg ◦ f : A→ C is ind-́etale.

The local version of Theorem 2.3.4 follows from the following result of Olivier, [Oli72]:

Theorem 2.3.5(Olivier). Let A be a strictly henselian local ring, and letB be a weaklýetale localA-
algebra. Thenf : A→ B is an isomorphism.

Remark 2.3.6. One might hope to use Theorem 2.3.5 for a direct proof of Theorem 2.3.4: Assume that
f : A→ B is weakly étale. LetC =

∏
xAf∗x, wherex runs over a set of representatives for the geometric

points ofSpec(B), andAf∗x denotes the strict henselization ofA at f∗x. Then Theorem 2.3.5 gives maps
B → Bx ≃ Af∗x for eachx, which combine to give a mapB → C inducing a section ofC → B ⊗A C.
However, although eachAx is ind-étale overA, C is not even weakly étale overA, as infinite products do
not preserve flatness. In order to make the argument work, onewould have to replace the infinite product
by a finite product; however, such aC will not be faithfully flat. If one could make the sectionsB → Ax
factor over a finitely presentedA-subalgebra ofAx, one could also make the argument work. However, in
the absence of any finiteness conditions, this is not possible.

Our proof of Theorem 2.3.4 circumvents the problem raised inRemark 2.3.6 using the construction of
w-strictly local extensions given in§2.2 to eventually reduce to Olivier’s result. We begin by recording the
following relative version of the construction of such extensions:

Lemma 2.3.7. Letf : A→ B be a map of rings. Then there exists a diagram

A //

f

��

A′

f ′

��

B // B′

withA→ A′ andB → B′ faithfully flat and ind-́etale,A′ andB′ w-strictly local, andA′ → B′ w-local.

Proof. Choose compatible w-strictly local covers to get a diagram

AZ/IAZ
//

��

AZ/IAZ =: A0

��

BZ/IBZ
// BZ/IBZ =: B0
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of absolutely flat rings with horizontal maps being faithfully flat and ind-étale, andA0 andB0 being w-
strictly local. Henselizing then gives a diagram

A //

f

��

AZ

fZ

��

// HensAZ (A0) =: A′

f ′

��

B // BZ // HensBZ (B0) =: B′

Then all horizontal maps are ind-étale faithfully flat. Moreover, bothA′ andB′ are w-strictly local by
Lemma 2.2.13. The mapf ′ is w-local sinceSpec(A′)c = Spec(A0), andSpec(B′)c = Spec(B0), so the
claim follows. �

We now explain how to prove an analogue of Olivier’s theorem for w-strictly local rings:

Lemma 2.3.8.Letf : A→ B be a w-local weaklýetale map of w-local rings withA w-strictly local. Then
f is a ind-(Zariski localization).

Proof. First consider the canonical factorizationA → A′ → B provided by Lemma 2.2.6. AsA → A′

is w-local withA′ w-local, Lemma 2.2.9 shows thatA′ is w-strictly local. ReplacingA with A′, we may
assumef induces a homeomorphismSpec(B)c ≃ Spec(A)c. Then for each maximal idealm ⊂ A, the ring
B/mB has a unique maximal ideal and is absolutely flat (as it is weakly étale over the fieldA/m). Then
B/mB must be a field, somB is a maximal ideal. The mapAm → BmB is an isomorphism by Theorem
2.3.5 asAm is strictly henselian, soA ≃ B. �

The promised proof is:

Proof of Theorem 2.3.4.Lemma 2.3.7 gives a diagram

A //

f

��

A′

f ′

��

B // B′

with f ′ a w-local map of w-strictly local rings, and both horizontalmaps being ind-étale and faithfully flat.
The mapf ′ is also weakly étale since all other maps in the square are so. Lemma 2.3.8 shows thatf ′ is a
ind-(Zariski localization). SettingC = B′ then proves the claim. �

2.4. Local contractibility. In this section, we study the following notion:

Definition 2.4.1. A ringA is w-contractibleif every faithfully flat ind-́etale mapA→ B has a section.

The name “w-contractible” is inspired by the connection with the pro-étale topology: ifA is w-contractible,
thenSpec(A) admits no non-split pro-étale covers, and is hence a “weakly contractible” object of the cor-
responding topos. Our goal is to prove that every ring admitsa w-contractible ind-étale faithfully flat cover.
We begin by observing that w-contractible rings are alreadyw-local:

Lemma 2.4.2. A w-contractible ringA is w-local (and thus w-strictly local).

Proof. The mapπ : Spec(AZ) → Spec(A) has a sections by the assumption onA. The sections is a
closed immersion sinceπ is separated, andSpec(AZ) = Spec(A)Z is w-local, so we are done by Lemma
2.1.3. �

The notion of w-contractibility is local along a henselian ideal:

Lemma 2.4.3. LetA be a ring henselian along an idealI. ThenA is w-contractible if and only ifA/I is
so.

Proof. This is proven exactly like Lemma 2.2.13 using thatInd(Aét)→ Ind((A/I)ét) is essentially surjec-
tive, and preserves and reflects faithfully flat maps. �

The main difference between w-contractible and w-strictlylocal rings lies in the topology. To give mean-
ing to this phrase, recall the following definition:
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Definition 2.4.4. A compact Hausdorff space isextremally disconnectedif the closure of every open is open.

One has the following result characterizing such spaces, see [Gle58]:

Theorem 2.4.5(Gleason). Extremally disconnected spaces are exactly the projectiveobjects in the category
of all compact Hausdorff spaces, i.e., thoseX for which every continuous surjectionY → X splits.

It is fairly easy to prove the existence of “enough” extremally disconnected spaces:

Example 2.4.6.For any setX, given the discrete topology, the Stone-Cech compactification β(X) is ex-
tremally disconnected: the universal property shows thatβ(X) is a projective object in the category of com-
pact Hausdorff spaces. IfX itself comes from a compact Hausdorff space, then the counitmapβ(X)→ X
is a continuous surjection, which shows that all compact Hausdorff spaces can be covered by extremally
disconnected spaces. In fact, the same argument shows that any extremally disconnected space is a retract
of β(X) for some setX.

Extremally disconnected spaces tend to be quite large, as the next example shows:

Example 2.4.7. An elementary argument due to Gleason shows that any convergent sequence in an ex-
tremally disconnected space is eventually constant. It follows that standard profinite sets, such asZp (or the
Cantor set) arenot extremally disconnected.

The relevance of extremally disconnected spaces for us is:

Lemma 2.4.8. A w-strictly local ringA is w-contractible if and only ifπ0(Spec(A)) is extremally discon-
nected.

Proof. As Spec(A)c → Spec(A) gives a section ofSpec(A) → π0(Spec(A)), if A is w-contractible, then
every continuous surjectionT → π0(Spec(A)) of profinite sets has a section, soπ0(Spec(A)) is extremally
disconnected. Conversely, assumeA is w-strictly local andπ0(Spec(A)) is extremally disconnected. By
Lemma 2.4.3, we may assumeA = A/IA. Thus, we must show: ifA is an absolutely flat ring whose local
rings are separably closed fields, andSpec(A) is extremally disconnected, thenA is w-contractible. Pick
an ind-étale faithfully flatA-algebraB. ThenA → B induces an isomorphism on local rings. Lemma
2.2.6 gives a factorizationA → C → B with A → C a ind-(Zariski localization) induced by a map of
profinite setsT → Spec(A), andB → C a w-local map inducing an isomorphism on spectra. ThenC ≃ B
as the local rings ofC andB coincide with those ofA. As Spec(A) is extremally disconnected, the map
T → Spec(A) of profinite sets has a sections. The closed subschemeSpec(C ′) ⊂ Spec(C) realizing
s(Spec(A)) ⊂ T maps isomorphically toSpec(A), which gives the desired section. �

We now show the promised covers exist:

Lemma 2.4.9. For any ringA, there is an ind-́etale faithfully flatA-algebraA′ withA′ w-contractible.

Proof. Choose an ind-étale faithfully flatAZ/IAZ -algebraA0 with A0 w-strictly local andSpec(A0) an
extremally disconnected profinite set; this is possible by Example 2.4.6, Lemma 2.2.7, and Lemma 2.2.8.
LetA′ = HensAZ (A0). ThenA′ is w-contractible by Lemma 2.4.3 and Lemma 2.4.8, and the mapA→ A′

is faithfully flat and ind-étale since bothA→ AZ andAZ → A′ are so individually. �

Lemma 2.4.10.LetA be a w-contractible ring, and letf : A→ B be a finite ring map of finite presentation.
ThenB is w-contractible.

Proof. We can writeA = colimiAi as a filtered colimit of finite typeZ-algebras such thatA → B is the
base change of a finite ring mapA0 → B0 of some index0, assumed to be initial; setBi = B0 ⊗A0

Ai,
soB = colimiBi. ThenSpec(A) = limi Spec(Ai) andSpec(B) = limi Spec(Bi) as affine schemes and
as spectral spaces, soπ0(Spec(B)) = π0(Spec(B0)) ×π0(Spec(A0)) π0(Spec(A)). As π0(Spec(A0)) and
π0(Spec(B0)) are both finite sets, it follows thatπ0(Spec(B)) is extremally disconnected asπ0(Spec(A))
is such. Moreover, the local rings ofB are strictly henselian as they are finite over those ofA. It remains
to checkSpec(B) is w-local. By finiteness, the subspaceSpec(B)c ⊂ Spec(B) is exactly the inverse
image ofSpec(A)c ⊂ Spec(A), and hence closed. Now pick a connected componentZ ⊂ Spec(B). The
image ofZ in Spec(A) lies in some connected componentW ⊂ Spec(A). The structure ofA shows that
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W = Spec(Ax) for some closed pointx ∈ Spec(A)c, soW is a strictly henselian local scheme. Then
Z → W is a finite map of schemes withZ connected, soZ is also a strictly henselian local scheme, and
hence must have a unique closed point, which proves w-locality of Spec(B). �

Remark 2.4.11. The finite presentation assumption is necessary. Indeed, there are extremally disconnected
spacesX with a closed subsetZ ⊂ X such thatZ is not extremally disconnected. As an example, letX
be the Stone-Cech compactification ofN, and letZ = X \N. As any element ofN is an open and closed
point ofX, Z ⊂ X is closed. Consider the following open subsetŨ of X:

Ũ =
⋃

n≥1

{x ∈ X | x 6≡ 0 mod 2n} .

Here, we use that the mapN→ Z/nZ extends to a unique continuous mapX → Z/nZ. LetU = Ũ ∩ Z,
which is an open subset ofZ. We claim that the closureU of U in Z is not open. If not, thenZ admits a
disconnection with one of the terms beingU . It is not hard to see that any disconnection ofZ extends to a
disconnection ofX, and all of these are given byM ⊔ (X \M) for some subsetM ⊂ N. It follows that
U = M ∩ Z for some subsetM ⊂ N. Thus,U ⊂ M , which implies that for alln ≥ 0, almost all integers
not divisible by2n are inM . In particular, there is a subsetA ⊂ M such thatA = {a0, a1, . . .} with 2i|ai.
Take any pointx ∈ A \ N ⊂ Z. Thus,x ∈ M ∩ Z = U . On the other hand,x lies in the open subset
V = A ∩ Z ⊂ Z, andV ∩ U = ∅: Indeed, for anyn ≥ 0,

A ∩ {x ∈ X | x 6≡ 0 mod 2n} ⊂ {a0, . . . , an−1} ⊂ N .

This contradictsx ∈ U , finally showing thatU is not open.
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3. ON REPLETE TOPOI

A topos is the category of sheaves on a site, up to equivalence, as in [SGA72a]. We will study in§3.1 a
general property of topoi that implies good behaviour for the lim andR lim functors, as well as unbounded
cohomological descent, as discussed in§3.3. A special subclass of such topoi with even better completeness
properties is isolated in§3.2; this class is large enough for all applications later inthe paper. In§3.4 and
§3.5, with a view towards studying complexes ofℓ-adic sheaves on the pro-étale site, we study derived
completions of rings and modules in a replete topos; the repleteness ensures no interference from higher
derived limits while performing completions, so the resulting theory is as good as in the punctual case.

3.1. Definition and first consequences.The key definition is:

Definition 3.1.1. A toposX is repleteif surjections inX are closed under sequential limits, i.e., ifF :
Nop → X is a diagram withFn+1 → Fn surjective for alln, thenlimF → Fn is surjective for eachn.

Before giving examples, we mention two recogition mechanisms for replete topoi:

Lemma 3.1.2. If X is a replete topos andX ∈ X, thenX/X is replete.

Proof. This follows from the fact that the forgetful functorX/X → X commutes with connected limits and
preserves surjections. �

Lemma 3.1.3. A toposX is replete if and only if there exists a surjectionX → 1 andX/X is replete.

Proof. This follows from two facts: (a) limits commute with limits,and (b) a mapF → G in X is a
surjection if and only if it is so after base changing toX. �

Example 3.1.4. The topos of sets is replete, and hence so is the topos of presheaves on a small category.
As a special case, the classifying topos of a finite groupG (which is simply the category of presheaves on
B(G)) is replete.

Example 3.1.5.Let k be a field with a fixed separable closurek. ThenX = Shv(Spec(k)ét) is replete if
and only if k is a finite extension ofk.3 One direction is clear: ifk/k is finite, thenSpec(k) covers the
final object ofX andX/Spec(k) ≃ Set, soX is replete by Lemma 3.1.3. Conversely, assume thatX is replete

with k/k infinite. Then there is a towerk = k0 →֒ k1 →֒ k2 →֒ . . . of strictly increasing finite separable
extensions ofk. The associated diagram· · · → Spec(k2) → Spec(k1) → Spec(k0) of surjections has an
empty limit inX, contradicting repleteness.

Remark 3.1.6. ReplacingNop with an arbitrary small cofiltered category in the definitionof replete topoi
leads to an empty theory: there are cofiltered diagrams of sets with surjective transition maps and empty
limits. For example, consider the posetI of finite subsets of an uncountable setT ordered by inclusion, and
F : Iop → Set defined by

F (S) = {f ∈ Hom(S,Z) | f injective}.

ThenF is a cofiltered diagram of sets with surjective transition maps, andlimF = ∅.

Example 3.1.5 shows more generally that the Zariski (or étale, Nisnevich, smooth, fppf) topoi of most
schemes fail repleteness due to “finite presentation” constraints. Nevertheless, there is an interesting geo-
metric source of examples:

Example 3.1.7. The toposX of fpqc sheaves on the category of schemes4 is replete. Given a diagram
· · · → Fn+1 → Fn → · · · → F1 → F0 of fpqc sheaves withFn → Fn−1 surjective, we wantlimFn → F0

to be surjective. For any affineSpec(A) and a sections0 ∈ F0(Spec(A)), there is a faithfully flat map
A → B1 such thats0 lifts to an s1 ∈ F1(Spec(B1)). Inductively, for eachn ≥ 0, there exist faithfully
flat mapsA → Bn compatible inn and sectionssn ∈ Fn(Spec(Bn)) such thatsn lifts sn−1. Then
B = colimnBn is a faithfully flatA-algebra withs0 ∈ F0(Spec(A)) lifting to an s ∈ limFn(Spec(B)),
which proves repleteness asSpec(B)→ Spec(A) is an fpqc cover.

3Recall that this happens only ifk is algebraically closed or real closed; in the latter case,k(
√
−1) is an algebraic closure ofk.

4To avoid set-theoretic problems, one may work with countably generated affine schemes over a fixed affine base scheme.
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The next lemma records a closure property enjoyed by surjections in a replete topos.

Lemma 3.1.8.LetX be a replete topos, and letF → G be a map inFun(Nop,X). Assume that the induced
mapsFi → Gi andFi+1 → Fi ×Gi

Gi+1 are surjective for eachi. ThenlimF → limG is surjective.

Proof. Fix anX ∈ X and a maps : X → limG determined by a compatible sequence{sn : X → Gn}
of maps. By induction, one can show that there exists a tower of surjections· · · → Xn → Xn−1 → · · · →
X1 → X0 → X and mapstn : Xn → Fn compatible inn such thattn lifts sn. In fact, one may take
X0 = X ×G0

F0, and
Xn+1 = Xn ×Fn×GnGn+1

Fn+1.

The mapX ′ := limiXi → X is surjective by repleteness ofX. Moreover, the compatibility of thetn’s
gives a mapt : X ′ → limF lifting s, which proves the claim. �

We now see some of the benefits of working in a replete topos. First, products behave well:

Proposition 3.1.9. Countable products are exact in a replete topos.

Proof. Given surjective mapsfn : Fn → Gn in X for eachn ∈ N, we wantf :
∏
n Fn →

∏
nGn to be

surjective. This follows from Lemma 3.1.8 asf = lim
∏
i<n fi; the condition from the lemma is trivial to

check in this case. �

In a similar vein, inverse limits behave like in sets:

Proposition 3.1.10.If X is a replete topos andF : Nop → Ab(X) is a diagram withFn+1 → Fn surjective
for all n, thenlimFn ≃ R limFn.

Proof. By Proposition 3.1.9, the product
∏
n Fn ∈ X computes the derived product inD(X). This gives an

exact triangle

R limFn →
∏

n

Fn
t−id
→

∏

n

Fn,

wheret : Fn+1 → Fn is the transition map. It thus suffices to show thats := t − id is surjective. Set
Gn =

∏
i≤n Fn, Hn = Gn+1, and letsn : Hn → Gn be the map induced byt − id. The surjectivity of

t shows thatsn is surjective. Moreover, the surjectivity oft also shows thatHn+1 → Gn+1 ×Gn Hn is
surjective, where the fibre product is computed usingsn : Hn → Gn and the projectionGn+1 → Gn. In
fact, the fibre product isHn × Fn+1 andHn+1 → Hn × Fn+1 is (pr, t − id). By Lemma 3.1.8, it follows
thats = lim sn is also surjective. �

Proposition 3.1.11. If X is a replete topos, then the functor ofNop-indexed limits has cohomological di-
mension1.

Proof. For a diagramF : Nop → Ab(X), we wantR limFn ∈ D
[0,1](X). By definition, there is an exact

triangle

R limFn →
∏

n

Fn →
∏

n

Fn

with the last map being the difference of the identity and transition maps, and the products being derived.
By Proposition 3.1.9, we can work with naive products instead, whence the claim is clear by long exact
sequences. �

Question 3.1.12.Do Postnikov towers converge in the hypercomplete∞-topos of sheaves of spaces (as in
[Lur09, §6.5]) on a replete topos?

3.2. Locally weakly contractible topoi. We briefly study an exceptionally well-behaved subclass of re-
plete topoi:

Definition 3.2.1. An objectF of a toposX is calledweakly contractibleif every surjectionG → F has a
section. We say thatX is locally weakly contractibleif it has enough weakly contractible coherent objects,
i.e., eachX ∈ X admits a surjection∪iYi → X with Yi a coherent weakly contractible object.

The pro-étale topology will give rise to such topoi. A more elementary example is:
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Example 3.2.2.The toposX = Set is locally weakly contractible: the singleton setS is weakly contractible
coherent, and every set is covered by a disjoint union of copies ofS.

The main completeness and finiteness properties of such topoi are:

Proposition 3.2.3. LetX be a locally weakly contractible topos. Then

(1) X is replete.
(2) The derived categoryD(X) = D(X,Z) is compactly generated.
(3) Postnikov towers converge in the associated hypercomplete∞-topos. (Cf.[Lur09].)

Proof. For (1), note that a mapF → G in X is surjective if and only ifF (Y )→ G(Y ) is so for each weakly
contractibleY ; the repleteness condition is then immediately deduced. For (2), givenj : Y → 1X in X with
Y weakly contractible coherent, one checks thatHom(j!Z,−) = H0(Y,−) commutes with arbitrary direct
sums inD(X), so j!Z is compact; asY varies, this gives a generating set ofD(X) by assumption onX,
proving the claim. For (3), first note that the functorF 7→ F (Y ) is exact on sheaves of spaces wheneverY
is weakly contractible. Hence, given such anF and point∗ ∈ F (Y ) with Y weakly contractible, one has
πi(F (Y ), ∗) = πi(F, ∗)(Y ). This shows thatF ≃ limn τ≤nF onX, which proves hypercompleteness. (Cf.
[Lur09, Proposition 7.2.1.10].) �

3.3. Derived categories, Postnikov towers, and cohomological descent. We first recall the following
definition:

Definition 3.3.1. Given a toposX, we define theleft-completionD̂(X) ofD(X) as the full subcategory of
D(XN) spanned by projective systems{Kn} satisfying:

(1) Kn ∈ D
≥−n(X).

(2) The mapτ≥−nKn+1 → Kn induced by the transition mapKn+1 → Kn and (1) is an equivalence.

We say thatD(X) is left-completeif the mapτ : D(X) → D̂(X) defined byK 7→ {τ≥−nK} is an
equivalence.

Left-completeness is extremely useful in accessing an unbounded derived category as Postnikov towers
converge:

Lemma 3.3.2. The functorR lim : D̂(X) →֒ D(XN)→ D(X) provides a right adjoint toτ . In particular,
if D(X) is left-complete, thenK ≃ R lim τ≥−nK for anyK ∈ D(X).

Proof. Fix K ∈ D(X) and{Ln} ∈ D̂(X). Then we claim that

RHomD(X)(K,R limLn) ≃ R limRHomD(X)(K,Ln) ≃ R limRHomD(X)(τ
≥−nK,Ln)

≃ RHom
D̂(X)

(τ(K), {Ln}).

This clearly suffices to prove the lemma. Moreover, the first two equalities are formal. For the last one,
recall that ifF,G ∈ Ab(XN), then there is an exact sequence

1→ Hom(F,G)→
∏

n

Hom(Fn, Gn)→
∏

n

Hom(Fn+1, Gn),

where the first map is the obvious one, while the second map is the difference of the two mapsFn+1 →
Fn → Gn andFn+1 → Gn+1 → Gn. One can check that ifF,G ∈ Ch(XN), andG is chosen to be
K-injective, then the above sequence gives an exact triangle

RHom(F,G)→
∏

n

RHom(Fn, Gn)→
∏

n

RHom(Fn+1, Gn).

In the special case whereF,G ∈ D̂(X), one hasRHom(Fn+1, Gn) = RHom(Fn, Gn) by adjointness of
truncations, which gives the desired equality. �

Classically studied topoi have left-complete derived categories only under (local) finite cohomological
dimension constraints; see Proposition 3.3.7 for a criterion, and Example 3.3.5 for a typical example of the
failure of left-completeness for the simplest infinite-dimensional objects. The situation for replete topoi is
much better:
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Proposition 3.3.3. If X is a replete topos, thenD(X) is left-complete.

Proof. We repeatedly use the following fact: limits and colimits inthe abelian categoryCh(Ab(X)) are
computed termwise. First, we show thatτ : D(X)→ D̂(X) is fully faithful. By the adjunction from Lemma
3.3.2, it suffices to show thatK ≃ R lim τ≥−nK for anyK ∈ D(X). Choose a complexI ∈ Ch(Ab(X))
lifting K ∈ D(X). Then

∏
n τ

≥−nI ∈ Ch(Ab(X)) lifts the derived product
∏
n τ

≥−nK ∈ D(X) by
Proposition 3.1.9. SinceI ≃ lim τ≥−nI ∈ Ch(Ab(X)), it suffices as in Proposition 3.1.10 to show that

∏

n

τ≥−nI
t−id
→

∏

n

τ≥−nI

is surjective inCh(Ab(X)), where we writet for the transition maps. Since surjectivity inCh(Ab(X))

can be checked termwise, this follows from the proof of Proposition 3.1.10 asτ≥−nI
t−id
→ τ≥−(n−1)I is

termwise surjective.
For essential surjectivity ofτ , it suffices to show: given{Kn} ∈ D̂(X), one hasKn ≃ τ≥−nR limKn.

Choose aK-injective complex{In} ∈ Ch(Ab(XN)) representing{Kn}. Then
∏
n In ∈ Ch(Ab(X)) lifts∏

nKn (the derived product). Moreover, byK-injectivity, the transition mapsIn+1 → In are (termwise)
surjective. Hence, the map ∏

n

In
t−id
→

∏

n

In

in Ch(Ab(X)) is surjective by the argument in the proof of Proposition 3.1.10, and its kernel complexK
computesR limKn. We must show thatH i(K) ≃ H i(Ki) for eachi ∈ N. Calculating cohomology and
using the assumption{Kn} ∈ D̂(X) ⊂ D(XN) shows that

H i(
∏

n

In) =
∏

n

H i(In) =
∏

n≥i

H i(In) =
∏

n≥i

H i(Ki)

for eachi ∈ N; here we crucially use Proposition 3.1.9 to distributeH i over
∏

. The mapH i(t − id) is
then easily seen to be split surjective with kernellimH i(Kn) ≃ limH i(Ki) ≃ H i(Ki), which proves the
claim. �

If repleteness is dropped, it is easy to give examples whereD(X) is not left-complete.

Example 3.3.4.LetG =
∏
n≥1Zp, and letX be the topos associated to the categoryB(G) of finiteG-sets

(topologized in the usual way). We will show thatD(X) is not left-complete. More precisely, we will show
thatK → K̂ := R lim τ≥−nK does not have a section forK = ⊕n≥1Z/p

n[n] ∈ D(X); hereZ/pn is given
the trivialG-action.

For each open subgroupH ⊂ G, we writeXH ∈ B(G) for theG-setG/H given the leftG-action, and let
Iop ⊂ B(G) be the (cofiltered) full subcategory spanned by theXH ’s. The functorp∗(F) = colimI F(XH )
commutes with finite limits and all small colimits, and hencecomes from a pointp : ∗ → X. Deriving gives
p∗L = colimI RΓ(XH , L) for anyL ∈ D(X), and soH0(p∗L) = colimI H

0(XH , L). In particular, if
L1 → L2 has a section, so does

colim
I

H0(XH , L1)→ colim
I

H0(XH , L2).

If π : X→ Set denotes the constant map, thenK = π∗K ′ whereK ′ = ⊕n≥1Z/p
n[n] ∈ D(Ab), so

colim
I

H0(XH ,K) = H0(p∗K) = H0(p∗π∗K ′) = H0(K ′) = 0.

Sinceτ≥−nK ≃ ⊕i≤nZ/p
i[i] ≃

∏
i≤n Z/p

i[i], commuting limits shows that̂K ≃
∏
n≥1Z/p

n[n] (where

the product is derived), and soRΓ(XH , K̂) ≃
∏
n≥1 RΓ(XH ,Z/p

n[n]). In particular, it suffices to show
that

H0(p∗K̂) = colim
I

∏

n≥1

Hn(XH ,Z/p
n)

is not0. Letαn ∈ Hn(XG,Z/p
n) = Hn(X,Z/pn) be the pullback of a generator ofHn(B(

∏n
i=1Zp),Z/p

n) ≃
⊗ni=1H

1(B(Zp),Z/p
n) under the projectionfn : G →

∏n
i=1 Zp. Thenαn has exact orderpn asfn has a

section, soα := (αn) ∈
∏
n≥1H

n(X,Z/pn) has infinite order. Its imageα′ in H0(p∗K̂) is 0 if and only
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if there exists an open normal subgroupH ⊂ G such thatα restricts to0 in
∏
nH

n(XH ,Z/p
n). Since

XH → XG is a finite cover of degree[G : H], a transfer argument then implies thatα is annihilated by
[G : H], which is impossible, whenceα′ 6= 0.

Remark 3.3.5. The argument of Example 3.3.4 is fairly robust: it also applies to the étale topos ofX =
Spec(k) with k a field provided there existMn ∈ Ab(Xét) for infinitely manyn ≥ 1 such thatHn(X,Mn)
admits a classαn with lim ord(αn) = ∞. In particular, this shows thatD(Spec(k)ét) is not left-complete
for k = C(x1, x2, x3, . . . ).

Thanks to left-completeness, cohomological descent in a replete topos is particularly straightforward:

Proposition 3.3.6. Letf : X• → X be a hypercover in a replete toposX. Then

(1) The adjunctionid→ f∗f
∗ is an equivalence onD(X).

(2) The adjunctionf!f∗ → id is an equivalence onD(X).
(3) f∗ induces an equivalenceD(X) ≃ Dcart(X•).

Here we writeD(Y ) = D(Ab(X/Y )) for any Y ∈ X. ThenD(X•) is the derived category of the
simplicial topos defined byX•, andDcart(X•) is the full subcategory spanned by complexesK which are
Cartesian, i.e., for any maps : [n] → [m] in ∆, the transition mapss∗(K|Xn) → K|Xm are equivalences.
The usual pushforward then givesf∗ : D(X•) → D(X) right adjoint to the pullbackf∗ : D(X) →
D(X•) given informally via(f∗K)|Xn = K|Xn . By the adjoint functor theorem, there is a left adjoint
f! : D(X•) → D(X) as well. When restricted toDcart(X•), one may describef! informally as follows.
For each CartesianK and any maps : [n] → [m] in ∆, the equivalences∗(K|Xn) ≃ K|Xm has an adjoint
mapK|Xm → s!(K|Xn). Applying !-pushforward along eachXn → X then defines a simplicial object in
D(X) whose homotopy-colimit computesf!K.

Proof. We freely use that homotopy-limits and homotopy-colimits in D(X•) are computed “termwise.”
Moreover, for any mapg : Y → X in X, the pullbackg∗ is exact and commutes with such limits and
colimits (as it has a left adjointg! and a right adjointg∗). Hencef∗ : D(X)→ D(X•) also commutes with
such limits and colimits.

(1) For anyK ∈ Ab(X), one hasK ≃ f∗f∗K by the hypercover condition. Passing to filtered colimits
shows the same forK ∈ D+(X). For generalK ∈ D(X), we haveK ≃ R lim τ≥−nK by
repleteness. By exactness off∗ and repleteness of eachXn, one hasf∗K ≃ R lim f∗τ≥−nK.
Pushing forward then proves the claim.

(2) This follows formally from (1) by adjunction.
(3) The functorf∗ : D(X) → Dcart(X•) is fully faithful by (1) and adjunction. Hence, it suffices to

show that anyK ∈ Dcart(X•) comes fromD(X). The claim is well-known forK ∈ D+
cart(X•)

(without assuming repleteness). For generalK, by repleteness, we haveK ≃ R lim τ≥−nK. Since
the condition of being Cartesian on a complex is a condition on cohomology sheaves, the truncations
τ≥−nK are Cartesian, and hence come fromD(X). The claim follows asD(X) ⊂ D(X•) is closed
under homotopy-limits. �

We end by recording a finite dimensionality criterion for left-completeness:

Proposition 3.3.7. LetX be a topos, and fixK ∈ D(X).

(1) GivenU ∈ X with Γ(U,−) exact, one hasRΓ(U,K) ≃ R limRΓ(U, τ≥−nK).
(2) If there existsd ∈ N such thatHi(K) has cohomological dimension≤ d locally onX for all i, then

D(X) is left-complete.

Proof. For (1), by exactness,RΓ(U,K) is computed byI(U) whereI ∈ Ch(X) is anychain complex rep-
resentingK. NowD(Ab) is left-complete, soI(U) ≃ R lim τ≥−nI(U). AsΓ(U,−) is exact, it commutes
with truncations, so the claim follows. (2) follows from [Sta, Tag 0719]. �

3.4. Derived completions of f-adic rings in a replete topos.In this section, we fix a replete toposX, and
a ringR ∈ X with an idealI ⊂ R that is locally finitely generated, i.e., there exists a cover {Ui → 1X} such
that I|Ui

is generated by finitely many sections ofI(Ui). GivenU ∈ X, x ∈ R(U) andK ∈ D(X/U , R),

we writeT (K,x) := R lim(· · ·
x
→ K

x
→ K

x
→ K) ∈ D(X/U , R).
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Definition 3.4.1. We say thatM ∈ ModR isclassicallyI-completeif M ≃ limM/InM ; writeModR,comp ⊂
ModR for the full subcategory of suchM . We say thatK ∈ D(X, R) is derivedI-completeif for each
U ∈ X andx ∈ I(U), we haveT (K|U , x) = 0; write Dcomp(X, R) ⊂ D(X, R) for the full subcategory of
suchK.

It is easy to see thatDcomp(X, R) is a triangulated subcategory ofD(X, R). Moreover, for anyU ∈ X, the
restrictionD(X, R) → D(X/U , R) commutes with homotopy-limits, and likewise forR-modules. Hence,
both the above notions of completeness localise onX. Our goal is to compare these completeness conditions
for modules, and relate completeness of a complex to that of its cohomology groups. The main result for
modules is:

Proposition 3.4.2. AnR-moduleM ∈ ModR is classicallyI-complete if and only if it isI-adically sepa-
rated and derivedI-complete.

Remark 3.4.3. The conditions of Proposition 3.4.2 are not redundant: there exist derivedI-completeR-
modulesM which are notI-adically separated, and hence not classically complete. In fact, there exists a
ring R with principal idealsI andJ such thatR is classicallyI-complete while the quotientR/J is not
I-adically separated; note thatR/J = cok(R→ R) is derivedI-complete by Lemma 3.4.14.

The result for complexes is:

Proposition 3.4.4. AnR-complexK ∈ D(X, R) is derivedI-complete if and only if eachH i(K) is so.

Remark 3.4.5. ForX = Set, one can find Proposition 3.4.4 in [Lur11].

Lemma 3.4.6. Givenx, y ∈ R(X), the sequence

0→ R[
1

x+ y
]→ R[

1

x · (x+ y)
]⊕R[

1

y · (x+ y)
]→ R[

1

x · y · (x+ y)
]→ 0

is exact.

Proof. Using the Mayer-Vietoris sequence forSpec(R(U)[ 1
x+y ]) for eachU ∈ X, one finds that the corre-

sponding sequence of presheaves is exact, as(x, y) = (1) ∈ R(U)[ 1
x+y ]; the claim follows by exactness of

sheafification. �

The main relevant consequence is thatR[ 1
x+y ] ∈ D(X, R) is represented by a finite complex whose terms

are direct sums of filtered colimits of freeR[ 1x ]-modules andR[ 1y ]-modules.

Lemma 3.4.7. Fix K ∈ D(X, R) andx ∈ R(X). ThenT (K,x) = 0 if and only ifRHomR(M,K) = 0 for
M ∈ D(X, R[ 1x ]).

Proof. The backwards direction follows by settingM = R[ 1x ] and usingR[ 1x ] = colim
(
R

x
→ R

x
→ R →

. . .
)

. For the forward direction, letC ⊂ D(X, R[ 1x ]) be the triangulated subcategory of allM for which

RHomR(M,K) = 0. ThenC is closed under arbitrary direct sums, andR[ 1x ] ∈ C by assumption. Since
T (K|U , x) = T (K,x)|U = 0, one also hasj!(R[ 1x ]|U ) ∈ C for anyj : U → 1X. The claim now follows:
for any ringed topos(X, A), the smallest triangulated subcategory ofD(X, A) closed under arbitrary direct
sums and containingj!(A|U ) for j : U → 1X variable isD(X, A) itself. �

Lemma 3.4.8.FixK ∈ D(X, R) andx ∈ I(X). ThenT (K,x) lies in the essential image ofD(X, R[ 1x ])→
D(X, R).

Proof. We may representK by aK-injective complex ofR-modules. ThenT (K,x) ≃ RHomR(R[
1
x ],K) ≃

HomR(R[
1
x ],K) is a complex ofR[ 1x ]-modules, which proves the claim. �

Lemma 3.4.9. The inclusionDcomp(X, R) →֒ D(X, R) admits a left adjointK 7→ K̂. The natural map

K̂ →
̂̂
K is an equivalence.
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Proof. The second part is a formal consequence of the first part as theinclusionDcomp(X, R) ⊂ D(X, R)
is fully faithful. For the first part, we first assumeI is generated by global sectionsx1, . . . , xr ∈ I(X). For
0 ≤ i ≤ r, define functorsFi : D(X, R)→ D(X, R) with mapsFi → Fi+1 as follows: setF0 = id, and

Fi+1(K) := cok
(
T (Fi(K), xi+1)→ Fi(K)

)
≃ R lim

(
Fi(K)

xni+1
→ Fi(K)

)

≃ R lim
(
Fi(K)⊗L

Z[xi+1]
Z[xi+1]/(x

n
i+1)

)
,

where the transition maps
(
Fi(K)

xn+1
i+1
→ Fi(K)

)
→

(
Fi(K)

xni+1
→ Fi(K)

)
are given byxi+1 on the source,

and the identity on the target. One then checks using induction and lemmas 3.4.7 and 3.4.8 thatFi(K) is
derived(x1, . . . , xi)-complete, and that

RHom(Fi+1(K), L) = RHom(Fi(K), L)

if L is (x1, . . . , xi+1)-complete. It follows thatK → Fr(K) provides the desired left adjoint; we rewrite
K̂ := Fr(K) and call it the completion ofK. The construction shows that completion commutes with
restriction. In general, this argument shows that there is ahypercoverf : X• → 1X such that the inclu-
sionDcomp(X

n, R) → D(Xn, R) admits a left adjoint, also called completion. As completion commtues
with restriction, the inclusionDcart,comp(X

•, R) ⊂ Dcart(X
•, R) of derivedI-complete cartesian com-

plexes inside all cartesian complexes admits a left-adjoint Dcart(X
•, R) → Dcart,comp(X

•, R). The co-
homological descent equivalencef∗ : D(X, R) → D(X•, R) restricts to an equivalenceDcomp(X, R) →
Dcart,comp(X

•, R), so the claim follows. �

Lemma 3.4.9 leads to a tensor structure onDcomp(X, R):

Definition 3.4.10. For K,L ∈ D(X, R), we define the completed tensor product viaK⊗̂RL := K̂ ⊗LR L ∈
Dcomp(X, R).

The completed tensor product satisfies the expected adjointness:

Lemma 3.4.11. For K ∈ D(X, R) and L ∈ Dcomp(X, R), we haveRHomR(K,L) ∈ Dcomp(X, R).
Moreover, there is an adjunction

Hom(K ′,RHomR(K,L)) ≃ Hom(K ′⊗̂RK,L)

for anyK ′ ∈ Dcomp(X, R).

Proof. For anyx ∈ I(X), we haveT (RHomR(K,L), x) ≃ RHomR(K,T (L, x)) ≃ 0. Repeating this
argument for a slice toposX/U then proves the first part. The second part is a formal consequence of the
adjunction between⊗ andRHom in D(X, R), together with the completeness ofL. �

Lemma 3.4.12.Fix K ∈ D(X, R). The following are equivalent

(1) For eachU ∈ X andx ∈ I(U), the natural mapK → R lim
(
K

xn
→ K

)
is an isomorphism.

(2) K is derivedI-complete.
(3) There exists a cover{Ui → 1X} and generatorsx1, . . . , xr ∈ I(Ui) such thatT (K|Ui

, xi) = 0.
(4) There exists a cover{Ui → 1X} and generatorsx1, . . . , xr ∈ I(Ui) such that

K|Ui
≃ R lim(K|Ui

⊗L
Z[x1,...,xr]

Z[x1, . . . , xr]/(x
n
1 , . . . , x

n
r ))

via the natural map.

Proof. The equivalence of (1) and (2) follows from the observation that the transition map
(
K

xn+1

→ K
)
→

(
K

xn
→ K

)

is given byx on the first factor, and the identity on the second factor. Also, (2) clearly implies (3). For the
converse, fix aU ∈ X andx ∈ I(U). To showT (K|U , x) = 0, we are free to replaceU with a cover. Hence,
we may assumex =

∑
i aixi with T (K|U , xi) = 0. Lemma 3.4.7 showsT (K|U , aixi) = 0, and Lemma

3.4.6 does the rest. Finally, since eachxj acts nilpotently onK|Ui
⊗L

Z[x1,...,xr]
Z[x1, . . . , xr]/(x

n
1 , . . . , x

n
r ), it

is clear that (4) implies (3). Conversely, assume (3) holds.ReplacingX with a suitableUi, we may assume
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I is generated by global sectionsx1, . . . , xr ∈ I(X). Consider the sequence of functorsF0, . . . , Fr :
D(X, R) → D(X, R) defined in the proof of Lemma 3.4.9. As eachZ[xi]/(x

n
i ) is a perfectZ[xi]-module,

the functor−⊗L
Z[xi]

Z[xi]/(x
n
i ) commutes with homotopy-limits. Hence, we can write

K ≃ Fr(K) ≃ R lim(K ⊗L
Z[x1]

Z[x1]/(x
n
1 )⊗

L
Z[x2]

Z[x2]/(x
n
2 )⊗ · · · ⊗

L
Z[xr]

Z[xr]/(x
n
r )),

which implies (4). �

Lemma 3.4.13. If M ∈ ModR is classicallyI-complete, thenM is derivedI-complete.

Proof. Commuting limits shows that the collection of all derivedI-complete objectsK ∈ D(X, R) is
closed under homotopy-limits. Hence, writingM = limM/InM ≃ R limM/InM (where the second
isomorphism uses repleteness), it suffices to show thatM is derivedI-complete ifInM = 0. For suchM ,
any local sectionx ∈ I(U) for someU ∈ X acts nilpotently onM |U , soT (M |U , x) = 0. �

The cokernel of a map of classicallyI-completeR-modules need not beI-complete, and one can even
show thatModR,comp is not an abelian category in general. In contrast, derivedI-complete modules behave
much better:

Lemma 3.4.14. The collection of all derivedI-completeM ∈ ModR is an abelian Serre subcategory of
ModR.

Proof. Fix a mapf :M → N of derivedI-completeR-modules. Then there is an exact triangle

ker(f)[1]→
(
M → N

)
→ cok(f)

For anyx ∈ I(X), there is an exact triangle

T (ker(f)[1], x)→ 0→ T (cok(f), x)

where we use the assumption onM andN to get the middle term to be0. The right hand side lies in
D≥0(X, R), while the left hand side lies inD≤0(X, R) asR lim has cohomological dimension≤ 1 (asX
is replete). Chasing sequences shows that the left and rightterms are also0. Repeating the argument for a
slice toposX/U (and varyingx ∈ I(U)) proves thatker(f) andcok(f) are derivedI-complete. It is then
immediate thatim(f) = M/ker(f) is also derivedI-complete. Since closure of derivedI-completeness
under extensions is clear, the claim follows. �

Proof of Proposition 3.4.4.Assume first that eachH i(K) is derivedI-complete. Then each finite truncation
τ≤nτ≥mK is derivedI-complete. Hence,τ≤mK ≃ R lim τ≥−nτ≤mK is also derivedI-complete for each
m; here we use thatD(X) is left-complete sinceX is replete. For anyx ∈ I(X), applyingT (−, x) to

τ≤mK → K → τ≥m+1(K).

shows thatT (K,x) ≃ T (τ≥m+1K,x) ∈ D≥m+1(X, R). Since this is true for allm, one hasT (K,x) = 0.
Repeating the argument forx ∈ I(U) for U ∈ X then proves the claim.

Conversely, assume thatK is derivedI-complete. By shifting, it suffices to show thatH0(K) is derived
I-complete. Assume first thatK ∈ D≤0(X, R). Then there is an exact triangle

τ≤−1K → K → H0(K).

Fixing anx ∈ I(X) and applyingT (−, x) gives

T (τ≤−1K,x)→ T (K,x)→ T (H0(K), x).

The left term lives inD≤0(X, R), the middle term vanishes by assumption onK, and the right term lives
in D≥0(X, R), so the claim follows by chasing sequences (and replacingX with X/U ). Now applying the
same argument to the triangle

τ≤0K → K → τ≥1K

shows that eachτ≤0K andτ≥1K are derivedI-complete. ReplacingK by τ≤0K then proves the claim.�
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Proof of Proposition 3.4.2.The forward direction follows from Lemma 3.4.13. Conversely, assumeM is
derivedI-complete andI-adically separated. To showM is classicallyI-complete, we may pass to slice
topoi and assume thatI is generated by global sectionsx1, . . . , xr ∈ I(X). Then derivedI-completeness of
M gives

M ≃ R lim(M ⊗L
Z[x1,...,xr]

Z[x1, . . . , xr]/(x
n
i )).

CalculatingH0(M) ≃M via the Milnor exact sequence (which exists by repleteness)gives

1→ R1 limH−1(M ⊗L
Z[x1,...,xr]

Z[x1 . . . , xr]/(x
n
i ))→M → limM/(xn1 , . . . , x

n
r )M → 1.

By I-adic separatedness, the last map is injective, and hence anisomorphism. �

3.5. Derived completions of noetherian rings in a replete topos.In this section, we specialize the dis-
cussion of§3.4 to the noetherian constant case. More precisely, we fix a replete toposX, a noetherian ring
R, and an idealm ⊂ R. We also writem ⊂ R for the corresponding constant sheaves onX. Our goal is to
understandm-adic completeness forR-complexes onX.

Proposition 3.5.1. Fix K ∈ D(X, R). Then

(1) K is derivedm-complete if and only ifK ≃ R lim(K ⊗LR R/m
n) via the natural map.

(2) R lim(K ⊗LR R/m
n) is derivedm-complete.

(3) The functorK 7→ R lim(K ⊗LR R/mn) defines a left adjointD(X, R) → Dcomp(X, R) to the
inclusion.

Proof. (2) is clear as eachK ⊗LR R/m
n is derivedm-complete. For the rest, fix generatorsf1, .., fr ⊂ m.

SetP = Z[x1, . . . , xr], andJ = (x1, . . . , xr) ⊂ P . Consider the mapP → R defined viaxi 7→ fi (both in
Set andX). By Lemma 3.4.12,K is derivedm-complete precisely whenK ≃ R lim(K ⊗LP P/J

n) via the
natural map. For (1), it thus suffices to check that

a : {P/Jn ⊗LP R} → {R/m
n}

is a strict pro-isomorphism. There is an evident identification

{P/Jn ⊗LP R} = {P/J
n ⊗LP (P ⊗Z R)⊗

L
P⊗ZR

R},

whereP ⊗ZR is viewed as aP -algebra via the first factor. AsP/Jn andP ⊗ZR areTor-independent over
P , we reduce to checking that

{R[x1, . . . , xr]/(x1, . . . , xr)
n ⊗LR[x1,...,xr] R} → {R/m

n}

is a strict pro-isomorphism. This follows from the Artin-Rees lemma. Finally, (3) follows froma being a
pro-isomorphism as the construction of Lemma 3.4.9 realises them-adic completion ofK asR lim(K ⊗LP
P/Jn). �

Proposition 3.5.1 gives a good description of the categoryDcomp(X, R) of derivedm-complete com-
plexes. Using this description, one can check thatR itself is not derivedm-complete inX in general. To
rectify this, we study them-adic completionR̂ of R onX, and some related categories.

Definition 3.5.2. DefineR̂ := limR/mn ∈ X. In particular, R̂ is anR-algebra equipped withR-algebra
mapsR̂ → R/mn. An objectK ∈ D(X, R̂) is calledm-adically completeif the natural mapK →

R lim(K ⊗L
R̂
R/mn) is an equivalence. Leti : Dcomp(X, R̂) →֒ D(X, R̂) be the full subcategory of such

complexes.

Our immediate goal is to describem-adically complete complexes in terms of their truncations. To this
end, we introduce the following category of compatible systems:

Definition 3.5.3. Let C = Fun(Nop,X) be the topos ofNop-indexed projective systems{Fn} in X. Let
R• = {R/mn} ∈ C be the displayed sheaf of rings, and letDcomp(C, R•) ⊂ D(C, R•) be the full subcate-
gory spanned by complexes{Kn} such that the induced mapsKn⊗

L
R/mnR/mn−1 → Kn−1 are equivalences

for all n.
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Lemma 3.5.4. For {Kn} ∈ D−(C, R•), one has an identification of pro-objects{Kn ⊗
L
R R/m} ≃

{Kn ⊗
L
R/mn R/m}, and hence a limiting isomorphismR lim(Kn ⊗

L
R R/m) ≃ R lim(Kn ⊗

L
R/mn R/m).

If m is regular, this extends to unbounded complexes.

Proof. Change of rings gives{Kn ⊗
L
R R/m} ≃ {Kn ⊗

L
R/mn R/mn ⊗LR R/m}. The Artin-Rees lemma

shows that{R/mn ⊗LR R/m} → {R/m} is a pro-isomorphism. Since{Kn} is bounded above, the spectral
sequence forTor has only finitely many contributing terms to a givenE∞-term, and hence

{Kn ⊗
L
R R/m} ≃ {Kn ⊗

L
R/mn R/mn ⊗LR R/m} → {Kn ⊗

L
R/mn R/m}

is also a pro-isomorphism. ApplyingR lim and using repleteness then gives the claim. Finally, ifm

is generated by a regular sequence(f1, . . . , fr), then{R/mn} is pro-isomorphic to{R/(fn1 , . . . , f
n
r )}.

Each quotientR/(fn1 , . . . , f
n
r ) is R-perfect, and hence theTor-spectral sequence calculatingHi(K ⊗LR

R/(fn1 , . . . , f
n
r )) has only finitely many non-zero terms even whenK is unbounded, so the preceding argu-

ment applies. �

Lemma 3.5.5. For {Kn} ∈ D
−
comp(C, R•), the natural map gives(R limKn) ⊗

L
R R/m

k ≃ Kk for k ≥ 0.
If m is regular, this extends to unbounded complexes.

Proof. By devissage and the completeness of{Kn}, we may assumek = 1. By shifting, we can also assume
{Kn} ∈ D

≤0(C), i.e.,Kn ∈ D
≤0(X) for all n. Fix an integeri ≥ 0, and anR-perfect complexPi with a

mapPi → R/m whose cone lies inD≤−i(R). Then there is a commutative diagram

(R limKn)⊗
L
R Pi

a //

b
��

R lim(Kn ⊗R Pi)

d
��

(R limKn)⊗
L
R R/m

c // R lim(Kn ⊗R R/m) ≃ K1.

The isomorphism on the bottom right is due to Lemma 3.5.4. AsPi is perfect,a is an isomorphism.
Moreover,cok(b) ∈ D≤−i+1(X) asR limKn ∈ D

≤1(X) by repleteness. A similar argument also shows
cok(d) ∈ D≤−i+1(X). Hence,cok(c) ∈ D≤−i+1(X). Thenc must be an isomorphism as this is true for all
i. �

We can now show that the two notions of completeness coincide:

Lemma 3.5.6.For eachm, the natural map induceŝR⊗LRR/m
m ≃ R/mm. In particular,Dcomp(X, R̂) ≃

Dcomp(X, R).

Proof. The first part follows from Lemma 3.5.5. The second part follows formally from this and Proposition
3.5.1. �

We now show that anm-adically complete complex is determined by its reductionsmodulo powers ofm;
this will be used later to compare complexes on the pro-étale site to Ekedahl’s category of adic complexes.

Lemma 3.5.7. With notation as above, we have:

(1) There is a mapπ : (C, R•)→ (X, R̂) of ringed topoi given byπ∗({Fn}) = limFn withπ−1R̂→ R•

the natural map.
(2) Pullback underπ induces a fully faithful functorπ∗ : Dcomp(X, R̂)→ Dcomp(C, R•).
(3) Pushforward underπ induces a fully faithful functorπ∗ : D−

comp(C, R•)→ D−
comp(X, R̂).

(4) π induces an equivalenceD−
comp(X, R̂) ≃ D

−
comp(C, R•).

(5) If m is regular, then (3) and (4) extend to the unbounded case.

Proof. (1) is clear. The functorπ∗ : D(X, R̂) → D(C, R•) is given byK 7→ {K ⊗R̂ R/m
n}, while

π∗ : D(C, R•) → D(X, R̂) is given byπ∗({Kn}) ≃ R limKn. It is then clear thatπ∗ carries com-
plete complexes to complete ones. Given{Kn} ∈ Dcomp(C, R•), eachKn ∈ D(X, R/mn) is derived
m-complete, and henceπ∗ preserves completeness as well (sinceπ∗{Kn} := R limKn is m-adically com-
plete). For (2), it then suffices to check thatK ≃ R lim(K ⊗L

R̂
R/mn) for anyK ∈ Dcomp(X, R̂), which is

true by Proposition 3.5.1. Lemma 3.5.5 and (2) immediately give (3), and hence (4). Finally, (5) follows by
25



the same argument as (3) as all the ingredients in the proof ofthe latter extend to the unbounded setting ifm

is regular. �
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4. THE PRO-ÉTALE TOPOLOGY

We define the pro-étale site of a scheme in§4.1, and study the associated topos in§4.2. In§4.3, we use
these ideas to construct a variant of Tate’s continuous cohomology of profinite groups that behaves better in
some functorial respects.

4.1. The site.

Definition 4.1.1. A mapf : Y → X of schemes is calledweakly étaleif f is flat and∆f : Y → Y ×X Y
is flat. WriteXproét for the category of weaklýetaleX-schemes, which we give the structure of a site by
declaring a cover to be one that is a cover in the fpqc topology, i.e. a family{Yi → Y } of maps inXproét is
a covering family if any open affine inY is mapped onto by an open affine in⊔iYi.

Remark 4.1.2. To avoid set-theoretic issues, it suffices for our purposes to define the siteXproét using
weakly étale mapsY → X with |Y | < κ, whereκ is a fixed uncountable strong limit cardinal larger
than |X|.5 The choice ofκ is dictated by the desire to haveShv(Xproét) be locally weakly contractible.
Increasingκ results in a different topos, but cohomology remains the same, as it can be calculated by a
simplicial covering with w-contractible schemes.

Remark 4.1.3. We do not directly work with pro-étale morphisms of schemesto defineXproét as the
property of being pro-étale is not geometric: Example 4.1.12 shows its failure to localise on the target.
Nonetheless, we callXproét the pro-étale site, as by Theorem 2.3.4 any weakly étale map f : Y → X is
Zariski locally onX and locally inYproét of the formSpecB → SpecA with A→ B ind-étale.

Some elementary examples of weakly étale maps:

Example 4.1.4.For a fieldk, a mapSpec(R)→ Spec(k) is weakly étale if and only ifk → R is ind-étale.
Indeed,R embeds into some ind-étalek-algebraS; but one checks easily that ask is a field, any subalgebra
of an ind-étalek-algebra is again ind-étale.

Example 4.1.5. For a schemeX and a geometric pointx, the mapSpec(OshX,x) → X from the strict
henselization is weakly étale; similarly, the henselization and Zariski localizations are also weakly étale.

We begin by recording some basic generalities on pro-étalemaps.

Lemma 4.1.6. Compositions and base changes of weaklyétale maps are weaklýetale.

Proof. Clear. �

Lemma 4.1.7. Any map inXproét is weaklyétale.

Proof. This follows from Proposition 2.3.3 (iv). �

The previous observations give good categorical properties forXproét:

Lemma 4.1.8. The categoryXproét has finite limits, while the full subcategory spanned by affine weakly
étale mapsY → X has all small limits. All limits in question agree with thosein Sch/X .

Proof. For the first part, it suffices to show thatXproét has a final object and arbitrary fibre products. Clearly
X is a final object. Moreover, ifY1 → Y2 ← Y3 is a diagram inXproét, then both maps in the composition
Y1×Y2 Y3 → Yi → X are weakly étale for anyi ∈ {1, 2, 3} by the previous lemmas, proving the claim. For
the second part, the same argument as above shows finite limits exist. Hence, it suffices to check that small
cofiltered limits exist, but this is clear: the limit of a cofiltered diagram of affine weakly étaleX-schemes is
an affineX-scheme that is weakly étale overX as flatness is preserved under filtered colimits of rings.�

We record an example of a typical “new” object inXproét:

Example 4.1.9.The categoryXproét is “tensored over” profinite sets, i.e., given a profinite setS andY ∈
Xproét, one can defineY ⊗ S ∈ Xproét as follows. GivenS = limi Si as a cofiltered limit of finite sets, we
obtain constantX-schemesSi ∈ Xét ⊂ Xproét with valueSi. SetS = limi Si, andY ⊗ S := Y ×X S. If
X is qcqs, then for any finitely presentedX-schemeU , one hasHomX(Y ⊗ S,U) = colimiHomX(Y ⊗

5Recall that a cardinalκ is a strong limit cardinal if for anyγ < κ, 2γ < κ.
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Si, U) = colimi
∏
Si
HomX(Y,U). The associationS 7→ S defines a limit preserving functor from profinite

sets toXproét.

Using these objects, we can describe the pro-étale site of afield explicitly:

Example 4.1.10.Fix a fieldk. If k is a separable closure, then the qcqs objects inSpec(k)proét identify with
the category of profinite sets via the functorY 7→ Y (k) with inverseS 7→ S (in the notation of Example
4.1.9). The mapSpec(k)→ Spec(k) is a weakly étaleG-torsor, so the qcqs objects inSpec(k)proét identify
with pro-objects in the category of finite discreteG-sets, i.e., with the category of profinite continuousG-
sets. Under this identification, a family{Si → S} of continuousG-equivariant map of such sets is a covering
family if there exists a finite subsetJ of the indices such that⊔j∈JSj → S is surjective. To see this, we may
assumek = k. Given such a family{Si → S}, the corresponding map⊔j∈JSj → S is a surjective weakly

étale map of affines, so{Si → S} is a covering family inSpec(k)proét; the converse is clear. Evaluation on
S is exact precisely whenS is extremally disconnected; note that this functor is not a topos-theoretic point
as it does not commute with finite coproducts (though it does commute with filtered colimits and all limits).

Remark 4.1.11. The siteXproét introduced in this paper differs from the one in [Sch13], temporarily de-
notedX ′

proét. More precisely, there is a natural mapµX : Shv(Xproét) → Shv(X ′
proét) of topoi, butµX

is not an equivalence:µX,∗ is fully faithful, but there are more objects inShv(X ′
proét). This is evident

from the definition, and can be seen directly in Example 4.1.10 whenX = Spec(k) with k an algebraically
closed field. Indeed, both the categoriesXproét andX ′

proét are identified with the category of profinite sets,
but Xproét has more covers thanX ′

proét: all objects ofX ′
proét are weakly contractible, while the weakly

contractible ones inXproét are exactly the ones corresponding to extremally disconnected profinite sets.

The following example (due to de Jong) shows that the property of being pro-étale is not Zariski local on
the target, and hence explains why weakly étale maps give a more geometric notion:

Example 4.1.12.Let S′ be an infinite set with an automorphismT ′ : S′ → S′ which does not stabilize any
finite subset; for example,S′ = Z, andT ′(n) = n+1. Write (S, 0) for the one point compactification ofS′

andT : S → S for the induced automorphism (which has a unique fixed point at 0); note thatS is profinite,
and the unique non-empty clopen subset ofS stable underT is S itself. LetX ⊂ A2

C
be the union of

two irreducible smooth curvesX1 andX2 meeting transversely at pointsp andq; note thatX is connected.
GlueingS ⊗X1 ∈ X1,proét to S ⊗X2 ∈ X2,proét using the identity atp andT at q givesY ∈ Xproét. We
claim thatY is not pro-étale overX. Assume otherwise thatY = limi Yi → X with fi : Yi → X étale. Let
0 : X → Y be the zero section, defined using0 ∈ S. Then the assumption onY shows that0(X) = ∩Ui
with Ui ⊂ Y a clopen subset (pulled back from a clopen ofYi). Now any clopen subsetU ⊂ Y defines a
clopen subsetUp ⊂ S that is stable underT , soUp = S is the only possibility by choice ofS andT ; this
gives{0} = 0(X)p = ∩iS = S, which is absurd.

We end by giving examples of covers inXproét.

Example 4.1.13.Given a schemeX and closed geometric pointsx1, . . . , xn, the map
(
⊔i Spec(O

sh
X,xi)

)
⊔
(
X − {x1, . . . , xn}

)
→ X

is a weakly étale cover. However, one cannot add infinitely points. For example, the map

⊔pSpec(Z
sh
(p))→ Spec(Z)

is not a weakly étale cover as the target is not covered by a quasicompact open in the source.

4.2. The topos. To effectively studyShv(Xproét), we single out a special class of weakly étale morphisms
to serve as generators:

Definition 4.2.1. Fix a schemeX. An objectU ∈ Xproét is called apro-étale affineif we can write
U = limi Ui for a small cofiltered diagrami 7→ Ui of affine schemes inXét; the expressionU = limi Ui is
called apresentationfor U , and we often implicitly assume that the indexing category has a final object0.
The full subcategory ofXproét spanned by pro-étale affines is denotedXaff

proét.
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We remark that eachU ∈ Xaff
proét is, in particular, an affine scheme pro-étale overX.

Lemma 4.2.2. Any map inXaff
proét is pro-(affineétale).

Proof. Fix a maph : U → V inXaff
proét, and presentationsU = limi Ui andV = limj Vj as pro-étale affines.

Then, after changing the presentation forU , we may assume thatX = V0 is an affine schemeSpec(A). The
claim now follows from the observation that a map between ind-étaleA-algebras is also ind-étale. �

Remark 4.2.3. By Lemma 4.2.2, the categoryXaff
proét admits limits indexed by a connected diagram, and

these agree with those inSch/X . However, this category does not have a final object (unlessX is affine) or
non-empty finite products (unlessX has an affine diagonal).

The reason to introduce pro-étale affines is:

Lemma 4.2.4. The siteXproét is subcanonical, and the toposShv(Xproét) is generated byXaff
proét.

Proof. The first part comes from fpqc descent. The second assertion means that anyY ∈ Xproét admits a
surjection⊔iUi → Y in Xproét with Ui ∈ Xaff

proét, which follows from Theorem 2.3.4. �

We record some consequences of the above observations on pro-étale maps for the pro-étale site:

Remark 4.2.5. AssumeX is an affine scheme. ThenXaff
proét is simply the category of all affine schemes

pro-étale overX; this category admits all small limits, and becomes a site with covers defined to be fpqc
covers. Lemma 4.2.4 then shows thatShv(Xproét) ≃ Shv(Xaff

proét).

Lemma 4.2.6. A presheafF onXproét is a sheaf if and only if:

(1) For any surjectionV → U in Xaff
proét, the sequenceF (U)→ F (V ) //

// F (V ×U V ) is exact.
(2) The presheafF is a Zariski sheaf.

Proof. The forward direction is clear. Conversely, assumeF is a presheaf satisfying (1) and (2), and fix a
coverZ → Y in Xproét. Using (1) and (2), one readily checks the sheaf axiom in the special case where
Y ∈ Xaff

proét, andZ = ⊔iWi with Wi ∈ X
aff
proét. In the case of a general cover, Lemma 4.2.4 shows that we

can find a diagram

⊔j∈JUj
a //

b
��

Z

c

��

⊔i∈IVi
d // Y

whered is a Zariski cover,a andb are covers inXproét, andUj , Vi ∈ Xaff
proét with b determined by a map

h : J → I of index sets together with mapsUj → Vh(j) in Xaff
proét. The previous reduction and (2) give the

sheaf axiom forb andd, and henced ◦ b as well. It formally follows thatF (Y ) → F (Z) is injective, and
hence thatF (Z) →

∏
i F (Ui) is also injective by (2) asa is a cover. A diagram chase then shows that the

sheaf axiom forc follows from that forc ◦ a. �

Lemma 4.2.7. For anyY ∈ Xproét, pullback induces an identificationShv(Xproét)/Y ≃ Shv(Yproét).

Proof. A composition of weakly étale maps is weakly étale, and anymap between weakly étale maps is
weakly étale. �

The pro-étale topos is locally weakly contractible in the sense of Definition 3.2.1.

Proposition 4.2.8. For any schemeX, the toposShv(Xproét) is locally weakly contractible.

Proof. This follows immediately from Lemma 2.4.9 since any affineU ∈ Xproét is coherent. �

Remark 4.2.9. Proposition 4.2.8 gives a recipe for calculating the pro-étale homotopy type|X| of a qcqs
schemeX. Namely, if f : X• → X is a hypercover inXproét with eachXn being w-contractible, then
|X| = |π0(X

•)|; any two such choices off are homotopic, and hence|X| is well-defined in the category of
simplicial profinite sets up to continuous homotopy.

We give an example illustrating the behaviour of constant sheaves on the pro-étale site:
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Example 4.2.10.Fix a connected affine schemeX, and a profinite setS = limi Si with Si finite. By the
formula in Example 4.1.9, the constant sheafA ∈ Shv(Xproét) associated to a setA satisfies

A(X ⊗ S) = colim
i

(
ASi

)
.

In particular, the functorA 7→ A is not compatible with inverse limits.

The following example shows classical points do not detect non-triviality in Shv(Xproét).

Example 4.2.11.Fix an algebraically closed fieldk, and setX = Spec(k). ThenShv(Xproét) identifies
with the topos of sheaves on the category of profinite setsS as explained in Example 4.1.10. Consider the
presheafG (resp. F ) which associates to such anS the group of all locally constant (resp. all) functions
S → Λ for some abelian groupΛ. Then bothF andG are sheaves: this is obvious forG, and follows from
the compatibility of limits in profinite sets and sets forF . Moreover,G ⊂ F , andQ := F/G ∈ Ab(Xproét)
satisfiesQ(X) = 0, butQ(S) 6= 0 for S not discrete.

In fact, more generally, one can define ’constant sheaves’ associated with topological spaces. Indeed, let
X be any scheme, and letT be some topological space.

Lemma 4.2.12. The association mapping anyU ∈ Xproét to Mapcont(U, T ) is a sheafFT onXproét. If
T is totally disconnected andU is qcqs, thenFT (U) = Mapcont(π0(U), T ). In particular, if T is discrete,
thenFT is the constant sheaf associated withT .

Proof. To show thatFT is a sheaf, one reduces to proving that iff : A → B is a faithfully flat ind-étale
morphism of rings, thenM ⊂ SpecA is open if and only if(Specf)−1(M) ⊂ SpecB is open. Only the
converse is nontrivial, so assume(Specf)−1(M) ⊂ SpecB is open. First, we claim thatM is open in
the constructible topology. Indeed, the mapSpecf : SpecB → SpecA is a continuous map of compact
Hausdorff spaces when considering the constructible topologies. In particular, it is closed, so

SpecA \M = (Specf)(SpecB \ (Specf)−1(M))

is closed, and thusM is open (in the constructible topology). To check thatM is actually open, it is enough
to verify thatM is closed under generalizations. This is clear, asSpecf is generalizing, and(Specf)−1(M)
is open (and thus closed under generalizations).

If T is totally disconnected andU is qcqs, then any continuous mapU → T will necessarily factor
through the projectionU → π0(U), so thatFT (U) = Mapcont(π0(U), T ). �

We relate sheaves onX with sheaves on its spaceπ0(X) of connected components. Recall that ifX is a
qcqs scheme, thenπ0(X) is a profinite set. Ifπ0(X)proét denotes the site of profiniteπ0(X)-sets as in Ex-
ample 4.1.10, then the construction of Lemma 2.2.8 defines a limit-preserving functorπ−1 : π0(X)proét →
Xproét which respects coverings. Hence, one has an induced mapπ : Shv(Xproét) → Shv(π0(X)proét) of
topoi. This map satisfies:

Lemma 4.2.13.AssumeX is qcqs, and letπ : Shv(Xproét)→ Shv(π0(X)proét) be as above. Then

(1) π∗F (U) = F (π0(U)) for any qcqsU ∈ Xproét andF ∈ Shv(π0(X)proét).
(2) π∗ commutes with limits.
(3) π∗ is fully faithful, soπ∗π∗ ≃ id.
(4) π∗ identifiesShv(π0(X)proét) with the full subcategory of thoseG ∈ Shv(Xproét) such thatG(U) =

G(V ) for any mapU → V of qcqs objects inXproét inducing an isomorphism onπ0.

Proof. All schemes appearing in this proof are assumed qcqs. (2) is automatic from (1). For (1), fix some
F ∈ Shv(π0(X)proét). As any continuousπ0(X)-mapU → S with U ∈ Xproét andS ∈ π0(X)proét
factors canonically throughπ0(U), the sheafπ∗F is the sheafification of the presheafU 7→ F (π0(U))
on U ∈ Xproét. As F is itself a sheaf onπ0(X)proét, it is enough to check: for a surjectionU → V
in Xproét, the mapπ0(U) → π0(V ) is the coequalizer of the two mapsπ0(U ×V U) → π0(U) in the
category of profinite sets (induced by the two projection maps U ×V U → U ). For any profinite setS,
one has(S ⊗ X)(U) = Mapcont(π0(U), S) with notation as in Example 4.1.9, so the claim follows from
the representability ofS ⊗ X and fpqc descent. For (3), it suffices to check thatπ∗π

∗F ≃ F for any
F ∈ Shv(π0(X)proét), which is immediate from Lemma 2.2.8 and (2). For (4), by (2),it remains to
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check that anyG with the property of (4) satisfiesG ≃ π∗π∗G. GivenU ∈ Xproét, we have a canonical
factorizationU → π−1(π0(U)) → X, whereπ−1(π0(U)) → X is a pro-(finite étale) map inducing
π0(U) → π0(X) on connected components, whileU → π−1(π0(U)) is an isomorphism onπ0. Then
G(U) = G(π−1(π0(U))) by assumption onG, which provesG = π∗π∗G by (2). �

Remark 4.2.14. The conclusion of Lemma 4.2.13 fails forπ : Shv(Xét) → Shv(π0(X)ét). Indeed, ifX
is connected, thenShv(π0(X)ét) = Set, andπ∗ coincides with the “constant sheaf” functor, which is not
always limit-preserving.

4.3. The case of a point.Fix a profinite groupG. We indicate how the definition of the pro-étale site
can be adapted to give a siteBGproét of profiniteG-sets. In particular, each topologicalG-moduleM
defines a sheafFM onBGproét, and the resulting functor from topologicalG-modules to abelian sheaves on
BGproét is an embedding with dense image (in the sense of colimits). We use this construction to study the
cohomology theoryM 7→ RΓ(BGproét,FM ) onG-modules: this theory is equal to continuous cohomology
in many cases of interest, and yet better behaved in some functorial respects. The definition is:

Definition 4.3.1. LetBGproét be thepro-étale site ofG, defined as the site of profinite continuousG-sets
with covers given by continuous surjections.

ForS ∈ BGproét, we usehS ∈ Shv(BGproét) to denote the associated sheaf. LetG-Spc be the category
of topological spaces with a continuousG-action; recall thatG-Spc admits limits and colimits, and the
formation of these commutes with passage to the underlying spaces (and thus the underlying sets). Let
G-Spccg ⊂ G-Spc be the full subcategory ofX ∈ G-Spc whose underlying space may be written as a
quotient of a disjoint union of compact Hausdorff spaces; wecall these spaces compactly generated. There
is a tight connection between these categories andShv(BGproét):

Lemma 4.3.2. Let notation be as above.

(1) The associationX 7→ Mapcont,G(−,X) gives a functorF(−) : G-Spc→ Shv(BGproét).
(2) The functorF(−) is limit-preserving and faithful.
(3) F(−) admits left adjointL.
(4) F(−) is fully faithful onG-Spccg.
(5) The essential image ofG-Spccg generatesShv(BGproét) under colimits.

Proof. The argument of Lemma 4.2.12 shows that any continuous surjection of profinite sets is a quotient
map, which gives the sheaf property required in (1). It is clear that the resulting functorF(−) is limit-
preserving. For anyX ∈ G-Spc, one hasFX(G) = X whereG ∈ BGproét is the group itself, viewed as a
left G-set via translation; this immediately gives (2). The adjoint functor theorem gives the existence ofL
as in (3), but one can also construct it explicitly: the functor hS 7→ S extends to a unique colimit preserving
functorShv(BGproét)→ G-Spc by the universal property of the presheaf category (as a freecocompletion
of BGproét) and the fact that covers inBGproét give quotient maps. In particular, ifF ∈ Shv(BGproét),
thenF = colimIF hS , whereIF is the category of pairs(S, s) with S ∈ BGproét ands ∈ F (S), which
givesL(F ) = colimIF S. For (4), it is enough to show thatL(FX) ≃ X for any compactly generatedX.
By the previous construction, one hasL(FX) = colimIFX

S, so we must check that there exists a setI of
spacesSi ∈ BGproét andG-mapssi : Si → X such that⊔iSi → X is a quotient map. Choose a setI of
compact Hausdorff spacesTi and a quotient map⊔iTi → X. Then the map⊔iTi × G → X induced by
theG-action is also a quotient, so we reduce to the case whereX is a compact HausdorffG-space. Now
considerY := G × β(X) ∈ BGproét, where theG-action is defined viag · (h, η) = (gh, η). There is an
induced continuous mapf : Y → X via G × β(X) → G × X → X, where the last map is the action.
One checks thatf isG-equivariant and surjective. AsY is profinite, this proves (4). Lastly, (5) is formal as
FS = hS for S ∈ BGproét. �

LetG-Mod denote the category of continuousG-modules, i.e., topological abelian groups equipped with
a continuousG-action, and letG-Modcg ⊂ G-Mod be the full subcategory of topologicalG-modules
whose underlying space is compactly generated. The functorF(−) restricts to a functorF(−) : G-Mod →
Ab(BGproét), and Lemma 4.3.2 (1) - (4) apply formally to this functor as well. The main non-formal
statement is:
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Proposition 4.3.3. With notation as above, one has:

(1) The essential image ofF(−) : G-Modcg → Ab(BGproét) generates the target under colimits.
(2) EveryN ∈ Ab(BGproét) has a resolution whose terms come fromG-Modcg.

To prove Proposition 4.3.3, we review some topological group theory. For a topological spaceX, write
AX for the free topological abelian group onX, defined by the obvious universal property. One may show
thatAX is abstractly isomorphic to the free abelian group on the setX, see [AT08, Theorem 7.1.7]. In
particular, one has areduced lengthassociated to eachf ∈ AX, defined as the sum of the absolute values of
the coefficients. LetA≤NX ⊂ AX be the subset of words of length≤ N ; one checks that this is a closed
subspace, see [AT08, Theorem 7.1.13]. Moreover:

Theorem 4.3.4(Graev). If X is a compact topological space, thenAX = colimA≤NX as spaces.

Proof. See Theorem [AT08, Theorem 7.4.1]. �

We use this to prove.

Lemma 4.3.5. Fix a compact Hausdorff spaceS, an extremally disconnected profinite setT , and a contin-
uous mapf : T → AS. Then there exists a clopen decompositionT = ⊔iTi such thatf |Ti is aZ-linear
combination of continuous mapsTi → S.

Proof. Lemma 4.3.7 and Theorem 4.3.4 imply thatf factors through someA≤NS. Now consider the
profinite setS̃ = S ⊔ {0} ⊔ S and the induced mapφ : S̃N → A≤N defined by viewingS̃ as the subspace(
1 · S

)
⊔ {0} ⊔

(
− 1 · S

)
⊂ AS and using the group law. This map is continuous and surjective, and all

spaces in sight are compact Hausdorff. By extremal disconnectedness, there is a liftT → S̃N ; one checks
that this implies the desired claim. �

We can now identify the free abelian sheafZhS for anyS ∈ BGproét:

Lemma 4.3.6. If S ∈ BGproét, thenZhS ≃ FAS .

Proof. One clearly hasFS = hS , so there is a natural mapψ : ZhS → FAS of abelian sheaves induced by
FS → FAS . We will checkψ(T ) is an isomorphism forT coveringBGproét. Let F : ∗proét → BGproét

be a left adjoint to the forgetful functorBGproét → ∗proét. Then it is enough to checkψ(F (T )) is an
isomorphism forT extremally disconnected. Unwinding definitions, this is exactly Lemma 4.3.5. �

Proposition 4.3.3 falls out quickly:

Proof of Proposition 4.3.3.Theorem 4.3.4 shows thatAS is compactly generated for anyS ∈ BGproét.
Now Lemma 4.3.6 gives (1) as the collection{ZhS} generatesAb(BGproét) under colimits. Finally, (2) is
formal from (1). �

The next lemma was used above, and will be useful later.

Lemma 4.3.7. Fix a countable towerX1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ . . . of closed immersions of Hausdorff
topological spaces, and letX = colimiXi. ThenMapcont(S,X) = colimMapcont(S,Xi).

Proof. We must show eachf : S → X factors through someXi. Towards contradiction, assume there
exists a mapf : S → X with f(S) 6⊂ Xi for all i. After reindexing, we may assume that there existxi ∈ S
such thatf(xi) ∈ Xi − Xi−1. These points give a mapπ : βN → S via i 7→ xi. After replacingf with
f ◦ π, we may assumeS = βN; setT = {f(i)|i ∈ N}. Now pick anyx ∈ X − T . Thenx ∈ Xj for some
j. For i > j, we may inductively construct open neighourhoodsx ∈ Ui ⊂ Xi such thatUi ∩ T = ∅, and
Ui+1 ∩Xi = Ui; here we use thatXi ∩ T is finite. The unionU = ∪iUi ⊂ X is an open neighbourhood
of x ∈ X that missesT . Hence,f−1(U) ∩N = ∅, sof−1(U) = ∅ by density ofN ⊂ S. Varying over all
x ∈ X − T then shows thatf(S) = T . Now one checks thatT ⊂ X is discrete: any open neighbourhood
1 ∈ U1 ⊂ X1 can be inductively extended to open neighbourhoodsx1 ∈ Ui ⊂ Xi such thatUi+1∩Xi = Ui
andxi /∈ Ui. ThenT must be finite asS is compact, which is a contradiction. �

We now study the cohomology theoryM 7→ RΓ(BGproét,FM ) onG-Mod. There is a natural transfor-
mation connecting it to continuous cohomology:
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Lemma 4.3.8. For anyM ∈ G-Mod, there is a natural mapΦM : RΓcont(G,M)→ RΓ(BGproét,FM ).

Proof. By [Sch13, Proposition 3.7], one hasRΓcont(G,M) = RΓ(BG′
proét, µ∗FM ), whereBG′

proét is
defined as in Remark 4.1.11, andµ : Shv(BGproét) → Shv(BG′

proét) the natural map; one then defines
φM via pullback asµ∗µ∗ ≃ id onD(BGproét) (simply becauseBGproét is finer topology thanBG′

proét on
the same category). �

The mapΦM is an isomorphism for a fairly large collection of modules:

Lemma 4.3.9. LetC ⊂ G-Mod be the full subcategory of allM ∈ G-Mod for whichRiµ∗FM = 0 for all
i > 0, whereµ : Shv(BGproét)→ Shv(BG′

proét) is the natural map.

(1) For all M ∈ C, the mapΦM : RΓcont(G,M)→ RΓ(BGproét,FM ) is an isomorphism.
(2) If M ∈ G-Mod is discrete, thenM ∈ C.
(3) If M = colimMi is a sequential colimit of HausdorffMi ∈ C along closed immersions, then

M ∈ C.
(4) If M = limMi is a sequential limit ofMi ∈ C along profinitely splitMi+1 →Mi, thenM ∈ C.
(5) If M = limMi is a sequential limit ofMi ∈ C alongβ-epimorphismsMi+1 → Mi with kernel

Ki = ker(Mi+1 →Mi) ∈ C, thenM ∈ C.

Here a quotient mapM → N of topological spaces is said to beprofinitely split if it admits sections
over any mapK → N with K profinite. It is said to be aβ-epimorphismif for every mapg : K → N
with K compact Hausdorff, there is a surjectionK ′ → K with K ′ compact Hausdorff, and a liftK ′ →M ;
equivalently, for any mapβ(X) → N whereX is discrete, there is a liftβ(X) → M . This property is
automatic ifM → N is a quotient map, and the kernel is compact Hausdorff.

Proof. Parts (1) and (2) are clear. For (3), note thatFM = colimFMi
by Lemma 4.3.7, so the result follows

asRµ∗ commutes with filtered colimits. For parts (4) and (5), note that ifMi+1 →Mi is aβ-epimorphism,
thenFMi+1

→ FMi
is surjective onBGproét. By repleteness, we getFM = limFMi

= R limFMi
.

Applying Rµ∗ and using repleteness ofBG′
proét, we have to show thatR1 lim(µ∗FMi

) = 0. If all Mi+1 →
Mi are profinitely split, then allµ∗FMi+1

→ µ∗FMi
are surjective, so the result follows from repleteness of

BG′
proét. If Ki = ker(Mi+1 →Mi) ∈ C, then on applyingRµ∗ to the sequence

0→ FKi
→ FMi+1

→ FMi
→ 0,

we find thatµ∗FMi+1
→ µ∗FMi

is surjective, so again the result follows from repletenessof BG′
proét. �

Remark 4.3.10. The categoryC of Lemma 4.3.9 includes many standard Galois modules occurring in
arithmetic geometry obtained by iterations of completionsand localisations applied to discrete modules.
For example, whenG = Gal(Qp/Qp), theG-moduleBdR is such an object.

We now indicate one respect in whichRΓ(BGproét,F(−)) behaves better than continuous cohomology:
one gets long exact sequences in cohomology with fewer constraints.

Lemma 4.3.11.Fix an algebraically short exact sequence0→M ′ a
→M

b
→M ′′ → 0 in G-Mod. Assume

b is aβ-epimorphism, anda realisesM ′ as a subspace ofM . Then there is an induced long exact sequence
on applyingH∗(BGproét,F(−)).

Proof. It is enough to show that
0→ FM ′ → FM → FM ′′ → 0

is exact. Exactness on the right results from the assumptionon b, exactness on the left is obvious from the
injectivity of M ′ →֒M , and exactness in the middle comes from the assumption ona. �

Remark 4.3.12. Considerations of the discrete topology show thatsomehypothesis must be imposed in
Lemma 4.3.11. The assumption used above is fairly weak: it isautomatic ifM ′ is compact Hausdorff. In
contrast, in continuous cohomology, one demands existenceof sections after base change toall profinite
sets overM ′′.
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5. RELATIONS WITH THE ÉTALE TOPOLOGY

Fix a schemeX. Since an étale map is also a weakly étale map, we obtain a morphism of topoi

ν : Shv(Xproét)→ Shv(Xét).

The main goal of this section is to describe its behaviour at the level of derived categories. The pullback and
pushforward alongν, together with the resulting semiorthogonal decompositions of complexes onXproét,
are discussed in§5.1 and§5.2. This is used to describe the left-completion ofD(Xét) in terms ofD(Xproét)
in §5.3. Some elementary remarks on the functoriality ofν in X are recorded in§5.4. Finally, we describe
Ekedahl’s category of “adic” complexes [Eke90] in terms ofD(Xproét) in §5.5. We rigorously adhere to the
derived convention: the functorsν∗ andν∗, when applied to complexes, are understood to be derived.

5.1. The pullback. We begin with the pullback at the level of sheaves of sets:

Lemma 5.1.1. For F ∈ Shv(Xét) andU ∈ Xaff
proét with a presentationU = limi Ui, one hasν∗F (U) =

colimi F (Ui).

Proof. The problem is local onX, so we may assume thatX = Spec(A) is affine. In that case, by Remark
4.2.5, the siteXproét is equivalent to the siteS given by ind-étaleA-algebrasB = colimBi, with covers
given by faithfully flat maps. The pullbackF ′ of F to S as a presheaf is given byF ′(B) = colimF (Bi). It
thus suffices to check thatF ′ is a sheaf; we will do this using Lemma 4.2.6. First, note thatF ′ is a Zariski
sheaf since any finite collection of quasicompact open subschemes ofSpecB come via pullback from some
SpecBi. It remains to show thatF ′ satisfies the sheaf axiom for every faithfully flat ind-étale mapB → C
of ind-étaleA-algebras. IfB → C is actually étale, then it arises via base change from some faithfully
flat étale mapBi → Ci, so the claim follows asF is a sheaf. In general, writeC = colimCj as a filtered
colimit of étaleB-algebrasCj , necessarily faithfully flat. ThenF ′(C) = colimj F

′(Cj). The sheaf axiom
for B → C now follows by taking filtered colimits. �

A first consequence of the above formula is thatν∗ is fully faithful. In fact, we have:

Lemma 5.1.2. The pullbackν∗ : Shv(Xét) → Shv(Xproét) is fully faithful. Its essential image consists
exactly of those sheavesF withF (U) = colimi F (Ui) for anyU ∈ Xaff

proét with presentationU = limi Ui.

Proof. Lemma 5.1.1 shows thatF ≃ ν∗ν
∗F for anyF ∈ Shv(Xét), which formally implies thatν∗ is

fully faithful. For the second part, fix someG ∈ Shv(Xproét) satisfying the condition of the lemma. Then
Lemma 5.1.1 (together with Lemma 4.2.4) shows thatν∗ν∗G → G is an isomorphism, which proves the
claim. �

Definition 5.1.3. A sheafF ∈ Shv(Xproét) is called classicalif it lies in the essential image ofν∗ :
Shv(Xét)→ Shv(Xproét).

In particular,F is classical if and only ifν∗ν∗F → F is an isomorphism. We need a simple lemma on
recognizing classical sheaves.

Lemma 5.1.4. Let F be a sheaf onXproét. Assume that for some pro-étale cover{Yi → X}, F |Yi is
classical. ThenF is classical.

Proof. We may assume thatX = SpecA is affine, that there is only oneY = Yi = SpecB, withA→ B ind-
étale,B = colimiBi, withA→ Bi étale. We need to check that for any ind-étaleA-algebraC = colimj Cj,
we haveF (C) = colimj F (Cj). Now consider the following diagram, expressing the sheaf property for
C → B ⊗ C, resp.Cj → B ⊗ Cj .

F (C) //

��

F (C ⊗B) //
//

��

F (C ⊗B ⊗B)

��

colimF (Cj) // colimj F (Cj ⊗B) //
// colimj F (Cj ⊗B ⊗B)

The second and third vertical arrows are isomorphisms asF |SpecB is classical. Thus, the first vertical arrow
is an isomorphism as well, as desired. �
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As an example, let us show how this implies that the category of local systems does not change under
passage fromXét toXproét.

Corollary 5.1.5. Let R be a discrete ring. LetLocXét
(R) be the category ofR-modulesLét on Xét

which are locally free of finite rank. Similarly, letLocXproét
(R) be the category ofR-modulesLproét on

Xproét which are locally free of finite rank. Thenν∗ defines an equivalence of categoriesLocXét
(R) ∼=

LocXproét
(R).

In the following, we denote either category byLocX(R).

Proof. If Lét ∈ LocXét
(R), then clearlyLproét = ν∗Lét ∈ LocXproét

(R); asν∗ is fully faithful, it remains
to verify essential surjectivity. Thus, takeLproét ∈ LocXproét

(R). AsLproét is locally free of finite rank, it
is in particular locally classical, thus classical by Lemma5.1.4. Thus,Lproét = ν∗Lét for some sheafLét of
R-modules onXét. Assume thatU ∈ Xaff

proét with presentationU = limUi is such thatLproét|U ∼= Rn|U .
The isomorphism is given byn elements of(Lproét)(U) = colimi Lét(Ui). This shows that the isomorphism
Lproét|U ∼= Rn|U is already defined over someUi, thusLét ∈ LocXét

(R), as desired. �

Next, we pass to derived categories.

Corollary 5.1.6. For anyK ∈ D+(Xét), the adjunction mapK → ν∗ν
∗K is an equivalence. Moreover, if

U ∈ Xaff
proét with presentationU = limi Ui, thenRΓ(U, ν∗K) = colimiRΓ(Ui,K).

Proof. The first part follows from the second part by checking it on sections using Lemma 4.2.4, i.e., by
applyingRΓ(V,−) to the mapK → ν∗ν

∗K for each affineV ∈ Xét. For the second part, the collection
of all K ∈ D+(Xét) for which the claim is true forms a triangulated category stable under filtered colimits.
Hence, it suffices to prove the claim forK ∈ Ab(Xét) ⊂ D

+(Xét). For suchK, since we already know the
result onH0 by Lemma 5.1.1, it suffices to prove:Hp(U, ν∗I) = 0 for I ∈ Ab(Xét) injective,p > 0, and
U ∈ Xaff

proét. By [SGA72b, Proposition V.4.3], it suffices to prove thatȞp(U, ν∗I) = 0 for the same data.
Choose a presentationU = limi Ui for some cofiltered categoryI. By Theorem 2.3.4, a cofinal collection of
covers ofU in Xproét is obtained by taking cofiltered limits of affine étale covers obtained via base change
from someUi. Using Lemma 5.1.1 again, we can write

Ȟp(U,F ) = colimHp
(
I(V ) //

// I(V ×Ui
V )

//
//
// I(V ×Ui

V ×Ui
V )

//
//
//
// · · ·

)

where the colimit is computed over (the opposite of) the category of pairs(i, V ) wherei ∈ I, andV → Ui is
an affine étale cover. For a fixedi, the corresponding colimit has vanishing higher cohomology sinceI|Ui

is
injective inAb(Ui,ét), and hence has trivial higher Cech cohomology. The claim follows as filtered colimits
are exact. �

Again, we will refer to objects in the essential image ofν∗ as classical, and Lemma 5.1.4 extends to
bounded-below derived categories with the same proof.

Remark 5.1.7. The argument used to prove Corollary 5.1.6 also shows: ifU ∈ Xaff
proét is w-strictly local,

thenHp(U, ν∗F ) = 0 for all F ∈ Ab(Xét) andp > 0. Indeed, for suchU , any affine étale coverV → U
has a section, so the corresponding Cech nerve is homotopy-equivalent toU as a simplicial scheme.

Remark 5.1.8. If K ∈ D(Xét) is an unbounded complex, then the formula in Corollary 5.1.6is not true.
Instead, to describeν∗K, first observe thatν∗K ≃ R lim ν∗τ≥−nK as Shv(Xproét) is replete andν∗

commutes with Postnikov truncations. Hence,RΓ(Y, ν∗K) ≃ R lim colimiRΓ(Yi, τ
≥−nK) for anyY ∈

Xaff
proét with a presentationY = lim Yi. Moreover, sinceν∗ commutes with arbitrary limits, we also see that

ν∗ν
∗K ≃ R lim τ≥−nK. For an explicit example, we remark that Example 3.3.4 can beadapted to exhibit

the failure ofid→ ν∗ν
∗ being an equivalence.

An abelian consequence is:

Corollary 5.1.9. The pullbackν∗ : Ab(Xét) → Ab(Xproét) induces an equivalence onExti for all i. In
particular, ν∗(Ab(Xét)) ⊂ Ab(Xproét) is a Serre subcategory.
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Proof. LetC ⊂ Ab(Xét) be the full subcategory of sheavesF for whichExti(F,−) ≃ Exti(ν∗(F ), ν∗(−))
for all i. ThenC contains all direct sums of sheaves of the formZU for U ∈ Xét by Corollary 5.1.6. Since
anyF ∈ Ab(Xét) admits a surjection from such a direct sum, the claim followsby dimension shifting. �

5.2. The pushforward. Our goal is to describe the pushforwardν∗ : D(Xproét)→ D(Xét) and the result-
ing decomposition ofD(Xproét). To do so, it is convenient to isolate the kernel ofν∗:

Definition 5.2.1. A complexL ∈ D(Xproét) is parasiticif RΓ(ν−1U,L) = 0 for anyU ∈ Xét. Write
Dp(Xproét) ⊂ D(Xproét) for the full subcategory of parasitic complexes,D+

p (Xproét) for bounded below
parasitics, etc.

The key example is:

Example 5.2.2.Let {Fn} ∈ Fun(Nop,Ab(Xét)) be a projective system of sheaves with surjective transi-
tion maps. SetK = R limFn ∈ D(Xét), andK ′ = R lim ν∗(Fn) ∈ D(Xproét). ThenK ′ ≃ lim ν∗(Fn)
asXproét is replete. The natural mapν∗K → K ′ has a parasitic cone sinceν∗ν∗K ≃ K = R limFn ≃
R lim ν∗ν

∗Fn ≃ ν∗K
′. For example, whenX = Spec(Q), the cone of the mapν∗(R limµn) → limµn is

non-zero and parasitic.

The basic structural properties ofDp(Xproét) are:

Lemma 5.2.3. The following are true:

(1) Dp(Xproét) is the kernel ofν∗ : D(Xproét)→ D(Xét).
(2) Dp(Xproét) is a thick triangulated subcategory ofD(Xproét).
(3) The inclusioni : Dp(Xproét)→ D(Xproét) has a left adjointL.
(4) The adjunctionL ◦ i→ id is an equivalence.

Proof. Sketches:

(1) This follows from the adjunction betweenν∗ andν∗ together with the fact thatD(Xét) is generated
under homotopy-colimits by sheaves of the formZU for U ∈ Xét.

(2) Clear.
(3) Consider the functorM : D(Xproét) → D(Xproét) defined viaM(K) = cok(ν∗ν∗K → K).

There is a mapid → M , and hence a towerid → M → M2 → M3 → . . . , whereMn is the
n-fold composition ofM with itself. We setL : D(Xproét)→ D(Xproét) to be the (filtered) colimit
of this tower, i.e.,L(K) = M∞(K) := colimnM

n(K). We will show thatL(K) is parasitic for
anyK, and that the induced functorL : D(Xproét)→ Dp(Xproét) is a left adjoint toi. Choose any
U ∈ Xét. AsU is qcqs, we have

RΓ(ν−1U,L(K)) ≃ RΓ(ν−1U, colim
n

Mn(K)) = colim
n

RΓ(ν−1U,Mn(K)).

Hence, to show thatL takes on parasitic values, it suffices to show that

RΓ(ν−1U,K)→ RΓ(ν−1U,M(K))

is the0 map for anyK ∈ D(Xproét). Sinceν is a map of a topoi, we have a factorisation

RΓ(ν−1U,K) ≃ RΓ(U, ν∗K)
ν−1

→ RΓ(ν−1U, ν∗ν∗K)→ RΓ(ν−1U,K)

of the identity map onRΓ(ν−1U,K). The compositionRΓ(ν−1U,K) → RΓ(ν−1U,M(K)) is
then 0 by definition ofM(K), which proves thatL(K) is parasitic. To show that the induced
functor L : D(Xproét) → Dp(Xproét) is a left adjoint to the inclusion, note first that for any
K,P ∈ D(Xproét) with P parasitic, one hasHom(ν∗ν∗K,P ) = Hom(ν∗K, ν∗P ) = 0 by (1). The
exact triangle definingM(K) shows

Hom(K,P ) ≃ Hom(M(K), P ) ≃ Hom(M2(K), P ) ≃ · · · ≃ Hom(Mn(K), P )

for anyn ≥ 0. Taking limits then shows

Hom(K,P ) = limHom(Mn(K), P ) = Hom(colim
n

Mn(K), P ) = Hom(L(K), P ),

which is the desired adjointness.
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(4) This follows from (1) and the construction ofL given in (3): for any parasiticP ∈ D(Xproét), one
hasP ≃M(P ) ≃Mn(P ) ≃ colimnM

n(P ) ≃ L(P ) sinceν∗P = 0. �

Remark 5.2.4. In Lemma 5.2.3, it is important to work at the derived level: the full subcategoryAbp(Xproét)
of all F ∈ Ab(Xproét) with F (ν−1U) = 0 for anyU ∈ Xét is not a Serre subcategory ofAb(Xproét). For
example, letX = Spec(Q) and set̂Zℓ(1) := limµℓn ∈ Ab(Xproét). Then there is an exact sequence

1→ Ẑℓ(1)
ℓ
→ Ẑℓ(1)→ µℓ → 1

in Ab(Xproét). One easily checks that̂Zℓ(1) ∈ Abp(Xproét), whileµℓ 6∈ Abp(Xproét).

Remark 5.2.5. The localisation functorL : D(Xproét) → Dp(Xproét) from Lemma 5.2.3 admits a partic-
ularly simple description when restricted to bounded belowcomplexes:L(K) ≃ cok(ν∗ν∗K → K) for
anyK ∈ D+(Xproét). Indeed, by the proof of Lemma 5.2.3 (3), it suffices to show thatM(K) ≃ M2(K)
for such a complexK; this follows from the formulaν∗ν∗ν∗ν∗K ≃ ν∗ν∗K, which comes from Corollary
5.1.6.

We can now show thatD+(Xét) andD+
p (Xproét) give a semiorthogonal decomposition forD+(Xproét).

Proposition 5.2.6.Consider the adjointsD+(Xproét) ν∗
// D+(Xét)

ν∗oo andD+
p (Xproét)

i
// D+(Xproét)

Loo .

(1) ν∗ is fully faithful.
(2) The adjunctionid→ ν∗ν

∗ is an equivalence.
(3) The essential image ofν∗ is exactly thoseK ∈ D+(Xproét) whose cohomology sheaves are in

ν∗(Ab(Xét)).
(4) The pushforwardν∗ realisesD+(Xét) as the Verdier quotient ofD+(Xproét) byD+

p (Xproét).
(5) The mapL realisesD+

p (Xproét) as the Verdier quotient ofD+(Xproét) byν∗(D+(Xét)).

Proof. Sketches:
(1) This follows formally from Corollary 5.1.6.
(2) This follows from (1) by Yoneda.
(3) Let C ⊂ D+(Xproét) be the full subcategory of complexes whose cohomology sheaves lie in

ν∗(Ab(Xét)); by Corollary 5.1.9, this is a triangulated subcategory ofD+(Xproét) closed under
filtered colimits. Moreover, chasing triangles and truncations characterisesC as the smallest tri-
angulated subcategory ofD+(Xproét) closed under filtered colimits that containsν∗(Ab(Xét)).
Now ν∗(D+(Xét)) ⊂ C asν∗ is exact. Moreover, by (1) and left-adjointness ofν∗, we see that
ν∗(D+(Xét)) is a triangulated subcategory ofD+(Xproét) closed under filtered colimits. Since
ν∗(D+(Xét)) clearly containsν∗(Ab(Xét)), the claim follows.

(4) By Lemma 5.2.7, we wantν∗ to admit a fully faithful left adjoint; this is what (1) says.
(5) This follows from Lemma 5.2.3 and Lemma 5.2.7 providedν∗(D+(Xét)) is the kernel ofL. By

Remark 5.2.5, the kernel ofL is exactly thoseK with ν∗ν∗K ≃ K, so the claim follows using
Corollary 5.1.6. �

The following observation was used above:

Lemma 5.2.7. LetL : C1 → C2 be a triangulated functor between triangulated categories. If L admits a
fully faithful left or right adjointi, thenL is a Verdier quotient ofC1 byker(L).

Proof. By symmetry, we may assumeL is a left adjoint. Given a triangulated functorF : C1 → D which
carriesker(L) to 0, we will show that the natural mapF → F ◦ i ◦ L is an equivalence. First, adjunction
showsL ◦ i ≃ id via the natural map asi is fully faithful. Hence, for eachK ∈ C1, we get a triangle
K ′ → K → (i ◦ L)(K) such thatL(K ′) = 0. This shows thatF (K) ≃ (F ◦ i ◦ L)(K) for all suchF ,
proving the claim. �

Remark 5.2.8. If we assume thatXét is locally of finite cohomological dimension, thenD(Xét) is left-
complete. SinceD(Xproét) is also left-complete, one can show thatν∗ : D(Xét) → D(Xproét) is fully
faithful by reduction to the bounded below case. In fact, every statement in Proposition 5.2.6 extends to the
unbounded setting in this case.
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At the unbounded level, the pullbackν∗ : D(Xét) → D(Xproét) is not fully faithful in general, as
explained in Remark 5.1.8, so none of the arguments in Proposition 5.2.6 apply. Nevertheless, we can still
prove a semiorthogonal decomposition as in Proposition 5.2.6 at the expense of replacingD(Xét) with the
smallest triangulated subcategoryD′ ⊂ D(Xproét) that containsν∗(D(Xét)) and is closed under filtered
colimits:

Proposition 5.2.9. LetD′ ⊂ D(Xproét) be as above. Then

(1) If ν∗ is fully faithful, thenν∗ induces an equivalenceD(Xét) ≃ D
′.

(2) GivenK ∈ D(Xproét), one hasK ∈ D′ if and only ifHom(K,K ′) = 0 for anyK ′ ∈ Dp(Xproét).
(3) The inclusioni : D′ →֒ D admits a right adjointN : D(Xproét)→ D′ such thatN ◦ i ≃ id.
(4) The localisationL realisesDp(Xproét) as the Verdier quotient ofD(Xproét) byD′.
(5) The mapN realisesD′ as the Verdier quotient ofD(Xproét) byDp(Xproét).

Proof. Sketches:
(1) If ν∗ is fully faithful, thenK ≃ ν∗ν

∗K ≃ R lim τ≥−nK (where the last isomorphism is from
Remark 5.1.8). The claim now follows by reduction to the bounded case, as in Remark 5.2.8.

(2) Sinceν∗(D(Xét)) is left-orthogonal toDp(Xproét), so isD′. For the converse direction, con-
sider the functorsNi : D(Xproét) → D(Xproét) defined viaNi(K) = ker(K → M i(K)) where
M(K) = cok(ν∗ν∗K → K) (as in the proof of Lemma 5.2.3). The towerid → M → M2 →
M3 → . . . gives rise to a towerN1 → N2 → N3 → · · · → id with Ni+1 being an extension of
ν∗ν∗M

i byNi; setN = colimiNi. The description in terms of extensions showsNi(K) ∈ D′ for
all i, and henceN ∈ D′ asD′ is closed under filtered colimits. Moreover, settingL = colimiM

i

gives an exact triangleN → id → L of functors. As in Lemma 5.2.3,L realises the parasitic
localisationD(Xproét) → Dp(Xproét). Hence, ifHom(K,K ′) = 0 for every parasiticK ′, then
K ≃ N(K) ∈ D′ by the previous triangle.

(3) One checks that the functorN : D(Xproét) → D′ constructed in (2) does the job (using the exact
triangleN → id→ L and the fact thatHom(D′, L(K)) = 0 for all K by (2)).

(4) This follows from Lemma 5.2.7 if we could show thatD′ is the kernel ofL. For this, one simply
uses the exact triangleN → id→ L as in (2).

(5) This is proven exactly like (4). �

5.3. Realising the left-completion ofD(Xét) via the pro-étale site. Our goal is to identify the left-
completionD̂(Xét) with a certain subcategory ofD(Xproét) using the analysis of the previous sections. The
starting point is the following observation: by Proposition 3.3.3, the pullbackν∗ : D(Xét) → D(Xproét)

factors throughτ : D(Xét) → D̂(Xét). To go further, we isolate a subcategory ofD(Xproét) that contains
the image ofν∗:

Definition 5.3.1. LetDcc(Xproét) be the full subcategory ofD(Xproét) spanned by complexes whose coho-
mology sheaves lie inν∗(Ab(Xét)); we writeD+

cc(Xproét) for the bounded below objects, etc.

Sinceν∗ : D(Xét) → D(Xproét) is exact, it factors throughDcc(Xproét), and hence we get a functor
D̂(Xét)→ Dcc(Xproét). Our main observation is that this functor is an equivalence. More precisely:

Proposition 5.3.2. There is an adjunctionDcc(Xproét) νcc,∗
// D(Xét)

ν∗ccoo induced byν∗ andν∗. This adjunc-

tion is isomorphic to the left-completion adjunction̂D(Xét)
R lim

// D(Xét)
τoo . In particular,Dcc(Xproét) ≃

D̂(Xét).

Proof. The existence of the adjunction is formal from the following: (a) ν∗ carriesD(Xét) toDcc(Xproét),
and (b)Dcc(Xproét) →֒ D(Xproét) is fully faithful. Proposition 5.2.6 immediately implies that ν∗cc in-
duces an equivalenceD+(Xét) ≃ D+

cc(Xproét). To extend to the unbounded setting, observe thatK ∈
Dcc(Xproét) if and only if τ≥−nK ∈ Dcc(Xproét) by the left-completeness ofD(Xproét) and the exact-
ness ofν∗. This lets us define functorsµ : D̂(Xét) → Dcc(Xproét) and γ : Dcc(Xproét) → D̂(Xét)
via µ({Kn}) = R lim ν∗(Kn) andγ(K) = {ν∗τ

≥−nK}; one can check thatµ andγ realise the desired
mutually inverse equivalences. �

38



SinceD′ is the smallest subcategory ofD(Xproét) that containsν∗D(Xét) and is closed under filtered
colimits, one hasD′ ⊂ Dcc(Xproét). It is natural to ask how close this functor is to being an equivalence.
One can show that ifD(Xét) is left-complete, thenD(Xét) ≃ D′ ≃ Dcc(Xproét); we expect thatD′ ≃
Dcc(Xproét) fails without left-completeness, but do not have an example.

5.4. Functoriality. We study the variation ofν : Shv(Xproét)→ Shv(Xét) with X. For notational clarity,
we often writeνX instead ofν.

Lemma 5.4.1. A morphismf : X → Y of schemes induces a mapfproét : Shv(Xproét) → Shv(Yproét) of
topoi withf∗ given by pullback on representable objects. The induced diagram

Shv(Xproét)

fproét
��

νX // Shv(Xét)

fét
��

Shv(Yproét)
νY // Shv(Yét)

commutes. In particular, forF either inShv(Yét) or D(Yét), there is an isomorphismf∗proét ◦ ν
∗
Y (F ) ≃

ν∗X ◦ f
∗
ét(F ).

Proof. Since all maps in sight are induced by morphisms of sites, this follows simply by the definition of
pullback. �

Lemma 5.4.2. Let f : X → Y be a universal homeomorphism of schemes, i.e.,f is universally bijective
and integral. Thenf∗ : Shv(Xproét)→ Shv(Yproét) is an equivalence.

Proof. The claim is local onY , so we mayY andX are affine. By Theorem 2.3.4, we can identify
Shv(Yproét) with the topos of sheaves on the site opposite to the categoryof ind-étaleO(Y )-algebras with
covers generated by faithfully flat maps and Zariski covers,and likewise forX. Sincef−1 identifiesXét

with Yét while preserving affine objects (by integrality) and covers, the claim follows from the topological
invariance of the usual étale site. �

Lemma 5.4.3. Fix a qcqs mapf : Y → X of schemes andF either inShv(Yét) or D+(Yét). Then the
natural map

ν∗Y ◦ fét,∗(F )→ fproét,∗ ◦ ν
∗
X(F )

is an equivalence.

Proof. We first handleF ∈ Shv(Yét). The claim is local onX, so we may assumeX is affine. First,
consider the case whereY is also affine. Choose someU ∈ Y aff

proét with presentationU = limi Ui. Then
Lemma 5.1.1 shows

ν∗Y ◦ fét,∗(F )(U) = colim
i

F (f−1Ui).

As f−1U ∈ Y aff
proét with presentationf−1U = limi f

−1Ui, one concludes by reapplying Lemma 5.1.1. For
not necessarily affine but separated and quasicompactY , the same argument shows that the claim is true for
all F ∈ Shv(Yét) obtained as pushforwards from an affine open ofY . Since the collection of allF satisfying
the above conclusion is stable under finite limits, a Mayer-Vietoris argument shows that the claim is true
for all F ∈ Shv(Y ) with Y quasicompact and separated. Repeating the argument (and using the separated
case) then gives the claim for all qcqsY . ForF ∈ D+(Xét), the same argument applies using Corollary
5.1.6 instead of Lemma 5.1.1 (with finite limits replaced by finite homotopy-limits). �

Remark 5.4.4. Lemma 5.4.3 doesnot apply to unbounded complexes. Any schemeX ′ with D(X ′
ét) not

left-complete (see Remark 3.3.5) gives a counterexample asfollows. ChooseK ∈ D(X ′
ét) for which

K 6≃ R lim τ≥−nK. Then there is anX ∈ X ′
ét for which RΓ(X,K) 6≃ RΓ(X,R lim τ≥−nK) ≃

RΓ(Xproét, ν
∗K) (here we use Remark 5.1.8). The mapX → Spec(Z) with F = K|X gives the de-

sired counterexample.

Remark 5.4.5. One reason to prefer the pro-étale topology to the fpqc topology is that the analogue of
Lemma 5.4.3 fails for the latter: étale pushforwards do notcommute with arbitrary base change.
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Lemma 5.4.3 and the repleteness of the pro-étale topology let us access pushforwards of unbounded
complexes quite easily; as pointed out by Brian Conrad, a similar statement can also be shown forD(Xét)
using Hartshorne’s formalism of “way-out” functors.

Lemma 5.4.6. Let f : X → Y be a map of qcqs schemes. Assumef∗ : Mod(Xét, F )→ Mod(Yét, F ) has
cohomological dimension≤ d for a ringF . Thenf∗ : D(Xproét, F )→ D(Yproét, F ) carriesD≤k

cc (Xproét, F )

toD≤k+d+1
cc (Yproét, F ).

Proof. Fix K ∈ D≤k
cc (Xproét). ThenK ≃ R lim τ≥−nK by repleteness, sof∗K ≃ R lim f∗τ

≥−nK.
Lemma 5.4.3 and the assumption onf showf∗τ≥−nK ∈ D≤k+d

cc (Yproét). As R lim has cohomological
dimension≤ 1 by repleteness, half of the claim follows. It remains to check thatHi(f∗K) ∈ ν∗Ab(Yét).
For this, observe that, for fixedi, the projective system{Hi(f∗τ

≥−nK)} is essentially constant: forn≫ 0,
the mapf∗τ≥−(n+1)K → f∗τ

≥−nK induces an isomorphism onHi by assumption onf . By repleteness,
this provesHi(f∗K) ≃ Hi(f∗τ

≥−nK) for n≫ 0, which is enough by Lemma 5.4.3. �

5.5. Relation with Ekedahl’s theory. In this section, we fix a noetherian ringR complete for the topology
defined by an idealm ⊂ R. For this data, we follow the notation of§3.4 withX = Shv(Xproét). We use
here the following (slight variations on) assumptions introduced by Ekedahl, [Eke90].

Definition 5.5.1.
(A) There is an integerN and a set of generatorsYi, Yi ∈ Xét, ofXét, such that for allR/m-modules

M onXét,Hn(Yi,M) = 0 for n > N .
(B) The idealm is regular, and theR/m-modulemn/mn+1 has finite flat dimension bounded indepen-

dently ofn.

Here, condition (A) agrees with Ekedahl’s condition (A), but condition (B) may be slightly stronger than
Ekedahl’s condition (B). By Proposition 3.3.7 (2), condition (A) ensures thatD(Xét, R/m) is left-complete,
as are allD(Xét, R/m

n). Ekedahl considers the following category.

Definition 5.5.2. If condition (A) is fulfilled, let∗ = −, if condition (B) is fulfilled, let∗ = +, and if condition
(A) and (B) are fulfilled, let∗ be empty. DefineD∗

Ek(X,R) as the full subcategory ofD∗(XN
op

ét , R•) spanned
by projective systems{Mn} whose transition mapsMn ⊗R/mn R/mn−1 →Mn−1 are isomorphisms for all
n.

In the pro-étale world, limits behave better, so we can define the following analogue:

Definition 5.5.3. DefineDEk(Xproét, R̂) ⊂ Dcomp(Xproét, R̂) as the full subcategory of complexesK
satisfyingK ⊗R̂ R/m ∈ Dcc(Xproét), i.e.,H i(K ⊗R̂ R/m) ∈ ν∗Ab(Xét) for all i. If ∗ ∈ {+,−, b}, let

D∗
Ek(Xproét, R̂) ⊂ DEk(Xproét, R̂) be the full subcategory with corresponding boundedness assumptions.

The main comparison is:

Proposition 5.5.4. If condition (A) is fulfilled, let∗ = −, if condition (B) is fulfilled, let∗ = +, and
if condition (A) and (B) are fulfilled, let∗ be empty. There is a natural equivalenceD∗

Ek(Xproét, R̂) ≃
D∗
Ek(Xét, R).

Proof. Assume first that condition (A) is satisfied. By Lemma 3.5.7 (iv), we haveD−
comp(Xproét, R̂) ≃

D−
comp(X

Nop

proét, R•). The full subcategoryD−
Ek(Xproét, R̂) consists of those{Kn} ∈ D−

comp(X
Nop

proét, R•)

for whichKn ∈ D
−
cc(Xproét, R/m

n) for all n, as follows easily by induction onn. Under condition (A),
D(Xét, R/m

n) is left-complete, soD−(Xét, R/m
n) ∼= D−

cc(Xproét, R/m
n). This gives the result.

Now assume condition (B). Thus, there existsN ∈ N such that ifK ∈ D≥k
Ek(Xproét, R̂) for somek,

thenK ⊗
R̂
R/mn ∈ D≥k−N

cc (Xproét) for all n. Hence, by Lemma 3.5.7, we may viewD+
Ek(Xproét, R̂)

as the full subcategory ofD+
comp(X

N
op

proét, R•) spanned by those{Kn} with Kn ∈ D
+
cc(Xproét). Moreover,

by Proposition 5.2.6,ν∗ induces an equivalenceD+(Xét) ≃ D+
cc(Xproét). The desired equivalence is then

induced by{Mn} 7→ {ν
∗Mn} and{Kn} 7→ {ν∗Kn}.

If condition (A) and (B) are satisfied, simply combine the twoarguments. �
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5.6. Relation with Jannsen’s theory. Fix a schemeX. In [Jan88,§3], one finds the following definition:

Definition 5.6.1. Thecontinuous étale cohomologyH i
cont(Xét, {Fn}) ofX with coefficients in a pro-system

{Fn} of abelian sheaves onXét is the value of thei-th derived functor of the functorAb(Xét)
N → Ab given

by{Fn} 7→ H0(Xét, limFn).

In general, the groupsH i
cont(Xét, {Fn}) andH i(Xét, limFn) are distinct, even for the projective system

{Z/ℓn}; the difference is explained by the derivatives of the inverse limit functor. As inverse limits are
well-behaved in the pro-étale world, this problem disappears, and we obtain:

Proposition 5.6.2. Let {Fn} is a pro-system of abelian sheaves onXét with surjective transition maps.
Then there is a canonical identification

H i
cont(Xét, {Fn}) ≃ H

i(Xproét, lim ν∗Fn).

Proof. Write RΓcont(Xét, {Fn}) := RΓ(Xét,R limFn), soH i(RΓcont(Xét, {Fn})) ≃ H i
cont(Xét, {Fn})

as defined above by the Grothendieck spectral sequence for composition of derived functors. We then have

RΓcont(Xét, {Fn}) ≃ R limRΓ(Xét, Fn) ≃ R limRΓ(Xproét, ν
∗Fn) ≃ RΓ(Xproét,R lim ν∗Fn);

here the first and last equality use the commutation ofRΓ andR lim, while the second equality comes
from the boundedness ofFn ∈ D(Xét). The assumption on{Fn} ensures thatR limFn ≃ limFn by the
repleteness ofXproét, which proves the claim. �
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6. CONSTRUCTIBLE SHEAVES

This long section studies constructible sheaves, with the ultimate goal of giving a different perspective on
the notion of aQℓ-sheaf. We begin by studying in§6.1 and§6.2 the basic functoriality of pushforward and
pullback along locally closed immersions; the main noveltyhere is that pullback along a closed immersion
is limit- and colimit-preserving, contrary to the classical story. Next, we recall the theory of constructible
complexes in the étale topology in§6.3. We alert the reader that our definition of constructibility is more
natural from the derived perspective, but not the usual one:a constructible complex on a geometric point is
the same thing as aperfectcomplex, see Remark 6.3.2. In particular, the truncation operatorsτ≥n, τ≤n do
not in general preserve constructibility. As a globalisation of this remark, we detour in§6.4 to prove that
constructible complexes are the same as compact objects under a suitable finiteness constraint; this material
is surely standard, but not easy to find in the literature. We then introduce constructible complexes in the
pro-étale world in§6.5 with coefficients in a complete noetherian local ring(R,m) as thoseR-complexes
onXproét which are complete (in the sense of§3.4), and classically constructible modulom. This definition
is well-suited for comparison with the classical picture, but, as we explain in§6.6, also coincides with the
more intuitive definition on a noetherian scheme: a constructible complex is simply anR-complex that is
locally constant and perfect along a stratification. This perspective leads in§6.8 to a direct construction of
the category of constructible complexes over coefficient rings that do not satisfy the above constraints, like
Zℓ andQℓ. Along the way, we establish that the formalism of the6 functors “works” in this setting in§6.7.

6.1. Functoriality for closed immersions. Fix a qcqs schemeX, and a qcqs openj : U →֒ X with closed
complementi : Z → X. We use the subscript “0” to indicate passage fromX to Z. First, we show
“henselizations” can be realised as pro-étale maps.

Lemma 6.1.1. AssumeX is affine. Theni−1 : Xaff
proét → Zaff

proét admits a fully faithful left adjointV 7→ Ṽ .

In particular, we havei−1(Ṽ ) ≃ V .

Proof. See Definition 2.2.10 and Lemma 2.2.12. �

Henselization defines a limit-preserving functor between sites:

Lemma 6.1.2. AssumeX is affine. Then the functorV 7→ Ṽ from Lemma 6.1.1 preserves surjections.

Proof. Fix V = Spec(A0) with Ṽ = Spec(A) for a ringA that is henselian alongI = ker(A → A0). It
suffices to show that any étale mapW → Ṽ whose image containsV ⊂ Ṽ is surjective. The complement of
the image gives a closed subset ofṼ that missesV , but such sets are empty asI lies in the Jacobson radical
of A by assumption. �

Contrary to the étale topology, we can realisei∗ simply by evaluation in the pro-étale world:

Lemma 6.1.3.If X is affine, theni∗F (V ) = F (Ṽ ) for any w-contractibleV ∈ Zaff
proét andF ∈ Shv(Xproét).

Proof. Clearly,i∗F is the sheafification ofV 7→ F (Ṽ ) onZaff
proét. On w-contractible objects, sheafification

is trivial, giving the result. �

Remark 6.1.4. It follows from the affine analogue of proper base change, [Gab94], [Hub93], that for clas-
sical torsion sheavesF , i∗F (V ) = F (Ṽ ) for all V ∈ Zaff

proét; in fact, the affine analogue of proper base
change says precisely that

RΓ(V, i∗F ) = RΓ(Ṽ , F ) .

As i∗ is realised by evaluation, it commutes with limits (which fails for Xét, see Example 6.1.6):

Corollary 6.1.5. The pullbacki∗ : Shv(Xproét)→ Shv(Zproét) commutes with all small limits and colimits.

Proof. The claim about colimits is clear by adjunction. For limits,we must show that the natural map
i∗ limi Fi → limi i

∗Fi is an isomorphism for any small diagramF : I → Shv(Xproét). As this is a local
statement, we may assumeX is affine. The claim now follows from Lemma 6.1.3 by evaluating either side
on w-contractible objects inZaff

proét. �
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The next example illustrates howi∗ fails to be limit-preserving on the étale site:

Example 6.1.6.ConsiderX = Spec(k[x]) with k an algebraically closed field, and seti : Z →֒ X to be
the closed immersion defined byI = (x). Let R = k[x], and setS to be the strict henselisation ofR at
I, soS = colimi Si where the colimit runs over all étale neighbourhoodsR → Si → k of Z → X. Now
consider the projective system{OX/In} in Shv(Xét). Theni∗(OX/In) = S/ISn, solim i∗(OX/I

n) is the
I-adic completion ofS. On the other hand,i∗(limOX/I

n) = colimi limSi/I
n is the colimit of theI-adic

completions of eachSi; one can check that this colimit is notI-adically complete.

Remark 6.1.7. Corollary 6.1.5 shows thati∗ has a right adjointi∗ as well as a left-adjointi#. The latter
is described as the unique colimit-preserving functor sending V ∈ Zaff

proét to Ṽ ∈ Xaff
proét. Note thati#

is not left-exact in general, so there is no easy formula computing RΓ(V, i∗F ) in terms ofRΓ(Ṽ , F ) for
V ∈ Zproét (except in the torsion case, as in Remark 6.1.4).

Lemma 6.1.8. The pushforwardi∗ : Shv(Zproét)→ Shv(Xproét) is exact.

Proof. Fix a surjectionF → G in Shv(Zproét). We must showi∗F → i∗G is surjective. As the claim is
local, we may work with affines. FixY ∈ Xaff

proét andg ∈ i∗G(Y ) = G(Y0). Then there is a coverW → Y0

in Zproét and a sectionf ∈ F (W ) lifting g. The map̃W ⊔ Y |U → Y is then a cover by Lemma 6.1.1; here
we use thatU ⊂ X is quasicompact, soY |U is also quasicompact. One hasi∗F (Y |U ) = F (∅) = ∗, and
i∗F (W̃ ) = F (W̃0) = F (W ), sof gives a section ini∗F (W̃ ⊔ Y |U ) lifting g. �

We can now show thati∗ andj! behave in the expected way.

Lemma 6.1.9. For any pointed sheafF ∈ Shv(Xproét), the adjunction mapF → i∗i
∗F is surjective.

Proof. Since the statement is local, we may assumeX is affine. FixV ∈ Xaff
proét. Then i∗i∗F (V ) =

i∗F (V0) = F (Ṽ0). Now observe that̃V0 ⊔ V |U → V is a pro-étale cover. SinceF (V |U ) 6= ∅ (asF is
pointed), one easily checks that any section ini∗i

∗F (V ) lifts to a section ofF overṼ0 ⊔ V |U , which proves
surjectivity. �

Remark 6.1.10. Lemma 6.1.9 needsF to be pointed. For a counterexample without this hypothesis, take:
X = U ⊔ Z a disjoint union of two non-empty schemesU andZ, andF = i!Z, wherei : Z → X is the
clopen immersion with complementj : U → X.

Lemma 6.1.11.For any pointed sheafF ∈ Shv(Xproét), we havej!j∗F ≃ ker(F → i∗i
∗F ).

Proof. We may assumeX is affine. For anyV ∈ Xaff
proét, we first observe that the sheaf axiom for the cover

Ṽ0 ⊔ V |U → V gives a fibre square of pointed sets

F (V ) //

��

F (V |U )

��

F (Ṽ0) // F (Ṽ0|U ).

In particular,ker(F (V ) → F (Ṽ0)) ≃ ker(F (V |U ) → F (Ṽ0|U )). Now i∗i
∗F (V ) = F (Ṽ0), so we must

show thatj!j∗F (U) = ker(F (V )→ F (Ṽ0)) ≃ ker(F (V |U )→ F (Ṽ0|U )). By definition,j!j∗F is the sheaf
associated to the presheafF ′ defined via:F ′(V ) = F (V ) if V → X factors throughU , andF ′(V ) = 0

otherwise. The sheaf axiom for the cover̃V0 ⊔ V |U → V then shows thatj!j∗F is also the sheaf associated
to the presheafF ′′ given byF ′′(V ) = ker(F (V |U )→ F (Ṽ0|U )), which proves the claim. �

Lemma 6.1.12. One has the following identification of functors at the levelof unbounded derived cate-
gories:

(1) i∗i∗ ≃ id andj∗j! ≃ j∗j∗ ≃ id.
(2) j∗i∗ ≃ 0, andi∗j! ≃ 0.
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Proof. By deriving Lemma 6.1.11, there is an exact trianglej!j
∗ → id→ i∗i

∗ of endofunctors onD(Xproét).
Then (2) follows from (1) by applyingi∗ andj∗ to this triangle. The second part of (1) is a general fact
about monomorphismsU →֒ X in a topos. Fori∗i∗ ≃ id, we use that both functors are exact to reduce to
the claim at the level of abelian categories, where it follows from Ṽ0 ≃ V for anyV ∈ Zaff

proét. �

Lemma 6.1.13.The pushforwardj! : D(Uproét)→ D(Xproét) commutes with homotopy-limits.

Proof. By Lemma 6.1.11, for anyK ∈ D(Uproét), we have the following exact triangle:

j!K → j∗K → i∗i
∗j∗K.

Sincej∗, i∗ andi∗ all commute with homotopy-limits, the same is true forj!. �

Remark 6.1.14. One can show a more precise result than Lemma 6.1.13. Namely,the pushforwardj! :
D(Uproét)→ D(Xproét) admits a left-adjointj# : D(Xproét)→ D(Uproét) which is defined at the level of
free abelian sheaves as follows: givenV ∈ Xproét, we havej#(ZV ) = cok(Z

Ṽ0|U
→ ZV |U ) ≃ cok(Z

Ṽ0
→

ZV ).

We record some special cases of the proper base change theorem:

Lemma 6.1.15.Consider the diagram

f−1Z
i //

f
��

Y

f

��

f−1U

f
��

j
oo

Z
i // X U

j
oo

For anyK ∈ D(Uproét) andL ∈ D(Zproét), we have

i∗f
∗L ≃ f∗i∗L and j!f

∗K ≃ f∗j!K.

Proof. Note thati∗f∗i∗L ≃ f∗i∗i∗L ≃ f∗L. Hence, using the sequencej!j∗ → id → i∗i
∗ of functors, to

prove the claim forL, it suffices to showj∗f∗i∗L ≃ 0; this is clear asj∗f∗i∗ ≃ f∗j∗i∗ ≃ 0, sincej∗i∗ ≃ 0.
The second claim follows by an analogous argument usingi∗j! ≃ 0. �

We end by noting thati∗ also admits a right adjoint:

Lemma 6.1.16. The functori∗ : D(Zproét) → D(Xproét) admits a right adjointi! : D(Xproét) →
D(Zproét). For anyK ∈ D(Xproét), there is an exact triangle

i∗i
!K → K → j∗j

∗K.

Proof. The functori∗ : D(Zproét) → D(Xproét) commutes with arbitrary direct sums. As all triangu-
lated categories in sight are compactly generated, one formally deduces the existence ofi!. For the exact
triangle, writeL for the homotopy-kernel ofK → j∗j

∗K. One has a natural mapη : i∗i
!K → L since

RHom(i∗i
!K, j∗j

∗K) = 0. We first showη is an isomorphism through its functor of points. For this, note
that for anyM ∈ D(Zproét), one has

RHom(i∗M, i∗i
!K) = RHom(M, i!K) = RHom(i∗M,K) = RHom(i∗M,L),

where the first equality uses the full faithfulness ofi∗, the second comes from the definition ofi!, and the
last one usesRHom(i∗M, j∗j

∗K) = 0. This proves thatη is an isomorphism. One also hasL = i∗i
∗L as

j∗L = 0, so the claim follows by full faithfulness ofi∗. �

Finite morphisms are acyclic under finite presentation constraints:

Lemma 6.1.17. If f : X → Y is finitely presented and finite, thenf∗ : Ab(Xproét)→ Ab(Yproét) is exact.

Proof. This follows from Lemma 2.4.10. �
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6.2. Functoriality for locally closed immersions. We fix a qcqs schemeX, a locally closed constructible
subsetk : W →֒ X. We writeDW (Xproét) for the full subcategory spanned byK ∈ D(Xproét) with
K|X−W ≃ 0; we refer to such objects as “complexes supported onW .”

Lemma 6.2.1. Fix i : Z →֒ X a constructible closed immersion with complementj : U →֒ X. Then one
has:

(1) The functorj! establishes an equivalenceD(Uproét) ≃ DU (Xproét) with inversej∗.
(2) The functori∗ establishes an equivalenceD(Zproét) ≃ DZ(Xproét) with inversei∗.
(3) The functork∗ establishes an equivalenceDW (Xproét) ≃ D(Wproét).

Proof. For (1), we know thatj∗j! ≃ id, soj! is fully faithful. Also, an objectK ∈ D(Xproét) is supported on
U if and only if i∗K ≃ 0 if and only if j!j∗K ≃ K, which proves (1). The proof of (2) is analogous. For (3),

fix a factorizationW
f
→W

g
→ X with f an open immersion, andg a constructible closed immersion. Then

g∗ induces an equivalenceD(W proét) ≃ DW (Xproét) with inverseg∗ by (2), and hence restricts to an equiv-
alenceDW (W proét) ≃ DW (Xproét). Similarly,f! induces an equivalenceD(Wproét) ≃ DW (W proét) with
inversef∗ by (1). Hence, the compositionk! := g∗ ◦ f! induces an equivalenceD(Wproét) ≃ DW (Xproét)
with inversek∗. �

Definition 6.2.2. The functork! : D(Wproét) → D(Xproét) is defined as the compositionD(Wproét)
a
→

DW (Xproét)
b
→ D(Xproét), wherea is the equivalence of Lemma 6.2.1 (inverse tok∗), andb is the defining

inclusion.

Lemma 6.2.3. One has:

(1) The functork! is fully faithful, preserves homotopy-limits, and has a left inverse given byk∗.
(2) For any mapf : Y → X of qcqs schemes, one hask! ◦ f∗ ≃ f∗ ◦ k! as functorsD(Wproét) →

D(Yproét).
(3) For anyK ∈ D(Wproét) andL ∈ D(Xproét), we havek!K ⊗ L ≃ k!(K ⊗ i∗L).
(4) One hask! ◦ ν∗ ≃ ν∗ ◦ k! as functorsD(Wét)→ D(Xproét).
(5) The functork! admits a right adjointk! : D(Xproét)→ D(Wproét).

Proof. (1) follows from the proof of Lemma 6.2.1 as bothf! andg∗ have the same properties. (2) follows
by two applications of Lemma 6.1.15. For (3), it suffices to separately handle the cases wherek is an open
immersion andk is a closed immersion. The case of an open immersion (or, moregenerally, any weakly
étale mapk : W → X) follows by general topos theory and adjunction. Hence, we may assumek is a
closed immersion with open complementj : U →֒ X, sok! ≃ k∗. For anyK ′ ∈ D(Xproét), we have the
triangle

j!j
∗K ′ → K ′ → k∗k

∗K ′.

Tensoring this triangle withL and using the projection formula forj showsk∗k∗K ′⊗L ≃ k∗
(
k∗K ′⊗k∗L).

SettingK ′ = k∗K then proves the claim ask∗k∗ ≃ id. For (4), assume first thatk is an open immersion.
Thenν∗ ◦ k∗ ≃ k∗ ◦ ν∗ as functorsD(Xproét) → D(Uét) (which is true for anyU → X in Xét). Passing
to adjoints then provesk! ◦ ν∗ ≃ ν∗ ◦ k!. Now assumek is a constructible closed immersion with open
complementj : U →֒ X. Then for anyK ∈ D(Xét), there is a triangle

j!j
∗K → K → i∗i

∗K

in D(Xét). Applying ν∗ and using the commutativity ofν∗ with j!, j∗ andi∗ then proves the claim. (5)
follows by considering the case of open and constructible closed immersions separately, and using Lemma
6.1.16. �

All the results in this section, except the continuity ofk!, are also valid in the étale topology.

6.3. Constructible complexes in theétale topology. The material of this section is standard, but we in-
clude it for completeness. We fix a qcqs schemeX, and a ringF . Given anF -complexL ∈ D(F ), we
writeL for the associated constant complex, i.e., its image under the pullbackD(F )→ D(Xét, F ).

Definition 6.3.1. A complexK ∈ D(Xét, F ) is called constructibleif there exists a finite stratification
{Xi → X} by constructible locally closedXi ⊂ X such thatK|Xi

is locally constant with perfect values
onXét.
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Remark 6.3.2. One classically replaces the perfectness hypothesis in Definition 6.3.1 with a weaker finite-
ness constraint. However, imposing perfectness is more natural from the derived point of view: under mild
conditions onX, our definition picks out the compact objects ofD(Xét, F ) (see Proposition 6.4.8), and is
stable under the six operations. Moreover, the two approaches coincide whenF is a field.

Lemma 6.3.3. AnyK ∈ Dcons(Xét, F ) admits a finite filtration with graded pieces of the formi!L with
i : Y →֒ X ranging through a stratification ofX, andL ∈ D(Yét, F ) locally constant with perfect values.

Proof. Same as in the classical case, see [SGA73, Proposition IX.2.5]. �

Lemma 6.3.4. EachK ∈ Dcons(Xét, F ) has finite flat dimension.

Proof. By Lemma 6.3.3, we may assumeK = i!L for i : Y →֒ X locally closed constructible, and
L ∈ D(Yét, F ) locally constant with perfect values. By the projection formula, it suffices to showL has
finite flat dimension. As we are free to localize, we may assumeL = K ′ with K ′ ∈ Dperf(F ), whence the
claim is clear. �

Lemma 6.3.5.Dcons(Xét, F ) ⊂ D(Xét, F ) is closed under tensor products.

Proof. Clear. �

Lemma 6.3.6. GivenK ∈ D(R) and s ∈ H0(Xét,K), there exists ańetale cover{Ui → X} such that
s|Ui

comes fromsi ∈ H0(K).

Proof. Fix a geometric pointx : Spec(k) → X, and consider the cofiltered categoryI of factorizations
Spec(k) → U → X of x with U → X étale. ThenK ≃ colimRΓ(Uét,K) where the colimit is indexed
by Iop: the exact functorx∗(F ) = colimI F (U) gives a pointx : Set → Xét, and the composition
(Set, F )

x
→ (Xét, F )

can
→ (Set, F ) is the identity. This gives a sectionsi ∈ H0(K) by passage to the limit.

As filtered colimits are exact, one checks thats agrees with the pullback ofsi over some neighbourhood
U → X in I. Performing this construction for each geometric point then gives the desired étale cover.�

Lemma 6.3.7. If K ∈ Db(Xét, F ) has locally constant cohomology sheaves, then there is anétale cover
{Ui → X} such thatK|Ui

is constant.

Proof. We may assume all cohomology sheaves ofK are constant. IfK has only one non-zero coho-
mology sheaf, there is nothing to prove. Otherwise, choose the maximali such thatHi(K) 6= 0. Then
K ≃ ker(Hi(K)[−i]

s
→ τ<iK[1]). By induction, bothHi(K) andτ<iK can be assumed to be constant.

The claim now follows by Lemma 6.3.6 applied toRHom(Hi(K)[−i], τ<iK[1]) with global sections;
here we use that the pullbackG : D(F ) → D(Xét, F ) preservesRHom betweenA,B ∈ Db(F ) since
G(R limCi) = R limG(Ci) if {Ci →֒ C} is the stupid filtration onC ∈ D+(R) (with C = RHom(A,B)
calculated by a projective resolution ofA). �

Lemma 6.3.8. A complexK ∈ D(Xét, F ) is constructible if and only if for any finite stratification{Yi →
X}, the restrictionK|Yi is constructible.

Proof. The forward direction is clear as constructible sheaves areclosed under pullback. For the reverse, it
suffices to observek! preserves constructibility fork : W →֒ X locally closed constructible ask identifies
constructible subsets ofW with those ofX contained inW . �

Lemma 6.3.9.Dcons(Xét, F ) is a triangulated idempotent complete subcategory ofD(Xét, F ). It can be
characterized as the minimal such subcategory that contains all objects of the formk!L with k : Y →֒ X
locally closed constructible, andL ∈ D(Yét, F ) locally constant with perfect values.

Proof. To showDcons(Xét, F ) is closed under triangles, by refining stratifications, it suffices to check: if
K,L ∈ D(Xét, F ) are locally constant with perfect values, then the cone of any mapK → L has the same
property. ReplacingX by a cover, we may assumeK = K ′ andL = L′ with K ′, L′ ∈ Dperf(R). The
claim now follows from Lemma 6.3.6 applied toRHom(K ′, L′). The idempotent completeness is proven
similarly. The last part follows from Lemma 6.3.3 and the observation that eachk!L (as in the statement) is
indeed constructible. �
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Lemma 6.3.10. Constructibility is local onXét, i.e., givenK ∈ D(Xét, F ), if there exists a cover{fi :
Xi → X} in Xét with f∗i K constructible, thenK is constructible.

Proof. We may assumef : Y → X is a surjective étale map, andf∗K is constructible. First assume thatf
is a finite étale cover. Passing to Galois closures (and a clopen cover ofX if necessary), we may assumef
is finite Galois with groupG. By refining strata, we can assumef∗K is locally constant along aG-invariant
stratification ofY . Such a stratification is pulled back fromX, so the claim is clear. In general, there is a
stratification ofX over whichf is finite étale, so one simply applies the previous argumentto the strata. �

Lemma 6.3.11. If j : U → X is qcqsétale, thenj! : D(Uét, F )→ D(Xét, F ) preserves constructibility.

Proof. If j is finite étale, then the claim follows by Lemma 6.3.10 as anyfinite étale cover ofX is, locally
on Xét, of the form⊔ni=1X → X. In general, there is a stratification ofX over which this argument
applies. �

Lemma 6.3.12.If K ∈ D(Xét, F ), andI ⊂ F is a nilpotent ideal such thatK⊗F F/I ∈ Dcons(Xét, F/I),
thenK ∈ Dcons(Xét, F ).

Proof. We may assumeI2 = 0. By devissage, we may assumeK1 = K ⊗F F/I is locally constant with
perfect valueL1 ∈ Dperf(F/I). By passage to an étale cover, we may assumeK1 ≃ L1. After further
coverings, Lemma 6.3.7 showsK ≃ L for someL ∈ D(F ). SinceL⊗F F/I ≃ L1 is perfect, so isL (by
the characterization of perfect complexes as compact objects ofD(F ) and the5 lemma). �

Lemma 6.3.13.Constructibility is local in the pro-́etale topology onX, i.e., givenK ∈ D(Xét, F ), if there
exists a cover{fi : Xi → X} in Xproét with f∗i K constructible, thenK is constructible.

Proof. We may assumeX is affine, and that there exists a pro-étale affinef : Y = limi Yi → X covering
X with f∗K constructible. The stratification onY witnessing the constructibility off∗K is defined over
someYi. Hence, after replacingX by an étale cover, we may assume that there exists a stratification
{Xi →֒ X} such thatf∗K is constant with perfect values overf−1(Xi). ReplacingX by Xi, we may
assumef∗K ≃ f∗L with L ∈ Dperf(F ). Then the isomorphismf∗L → f∗K is defined over someYi
(sinceL is perfect), soK|Yi is constant. �

Lemma 6.3.14. If K ∈ Dcons(Xét, F ), thenRHom(K,−) commutes with all direct sums with terms in
D≥0(Xét, F ).

Proof. Let CX ⊂ Db(Xét, F ) denote the full (triangulated) subcategory spanned by those M for which
RHom(M,−) commutes with all direct sums inD≥0(Xét, F ). Then one checks:

(1) For anyM ∈ Dperf(F ), one hasM ∈ CX .
(2) For any qcqs étale mapj : U → X, the functorj! carriesCU to CX .
(3) The property of lying inCX can be detected locally onXét.
(4) M ∈ D(Xét, F ) lies inCX if and only ifRHom(M |U ,−) commutes with direct sums inD≥0(Uét, F )

for each qcqsU ∈ Xét.

By (4), it suffices to show that a constructible complexK lies in CX . By Lemma 6.3.3, we may assume
K = k!L with k : Y →֒ X locally closed constructible, andL ∈ D(Yét, F ) locally constant with perfect
values. Choose a qcqs openj : U →֒ X with i : Y →֒ U a constructible closed subset. ThenK = k!L ≃
(j! ◦ i∗)L. By (2), it suffices to show thati∗K ∈ CU , i.e., we reduce to the case wherek is a constructible
closed immersion with open complementh : V →֒ X. The assumption onK gives a qcqs étale cover
g : Y ′ → Y with g∗L ≃ M for M ∈ Dperf(F ). By passing to a cover ofX refiningg overY , using (3),
we may assume thatL =M . Then the exact triangle

h!M →M → K

and (1) and (2) above show thatK ∈ CX , as wanted. �

Remark 6.3.15. It is crucial to impose the boundedness condition in Lemma 6.3.14: if the cohomological
dimension ofX is unbounded, thenRHom(F,−) ≃ RΓ(Xét,−) does not commute with arbitrary direct
sums inD(Xét, F ).
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Lemma 6.3.16.For K ∈ Dcons(Xét, F ) andL ∈ D+(Xét, F ), one has

ν∗RHom(K,L) ≃ RHom(ν∗K, ν∗L) .

Proof. Fix U = limi Ui ∈ Xaff
proét, and writej : U → X andji : Ui → X for the structure maps. By

evaluating on pro-étale affines, it suffices to checkRHom(j∗K, j∗L) ≃ colimiRHom(j∗iK, j
∗
i L). By ad-

junction, this is equivalent to requiringRHom(K, j∗j
∗L) ≃ colimiRHom(K, ji,∗j

∗
i L). If L ∈ D≥k(Xét),

thenji,∗j∗i L ∈ D
≥k(Xét) for all i, so the claim follows from Lemma 6.3.14. �

6.4. Constructible complexes as compact objects.The material of this section is not used in the sequel.
However, these results do not seem to be recorded in the literature, so we include them here. We fix a qcqs
schemeX, and a ringF . We assume that all affineU ∈ Xét haveF -cohomological dimension≤ d for
some fixedd ∈ N. The main source of examples is:

Example 6.4.1. If X is a variety over a separably closed fieldk andF is torsion, then it satisfies the above
assumption. Indeed, Artin proved thatH i(Uét, F ) = 0 for i > dim(U) if U is an affinek-variety.

Recall thatK ∈ D(Xét, F ) is compact ifRHom(K,−) commutes with arbitrary direct sums. Let
Dc(Xét, F ) ⊂ D(Xét, F ) be the full subcategory of compact objects. Our goal is to identify Dc(Xét, F )
with the category of constructible complexes. We start by recording a completeness property ofD(Xét, F ):

Lemma 6.4.2. For any qcqsU ∈ Xét, the functorRΓ(Uét,−) has finiteF -cohomological dimension.

Proof. Assume first thatU = V1 ∪V2 with Vi ⊂ U open affines, andW := V1 ∩V2 affine. Then one has an
exact triangle

RΓ(Uét,−)→ RΓ(V1,ét,−)⊕ RΓ(V2,ét,−)→ RΓ(Wét,−)

which gives the desired finiteness. The general case is handled by induction using a similar argument, by
passing through the separated case first. �

Lemma 6.4.3. The categoryD(Xét, F ) is left-complete.

Proof. This follows from Proposition 3.3.7. �

Lemma 6.4.4. For any j : U → X in Xét, the pushforwardj! : D(Uét, F ) → D(Xét, F ) preserves
compact objects.

Proof. Formal by adjunction sincej∗ preserves all direct sums. �

Lemma 6.4.5. For each qcqsj : U → X in Xét, we have:

(1) The objectj!F ∈ D(Xét, F ) is compact.
(2) The functorj∗ : D(Uét, F )→ D(Xét, F ) commutes with all direct sums.

Proof. For (1), by Lemma 6.4.4, we may assumej = id, so we wantRΓ(X,−) to preserve all direct sums.
We first observe that the finiteness assumption onX and the corresponding left-completeness ofD(Xét, F )
give: for anyK ∈ D(Xét, F ), one hasH i(X,K) ≃ H i(X, τ≥−nK) for n > NX − i, whereNX is the
F -cohomological dimension ofX. One then immediately reduces to the bounded below case, which is
true for any qcqs scheme. For (2), fix some qcqsV ∈ Xét, and letW = U ×X V . Then (1) shows that
RΓ(Vét,−) commutes with direct sums. Hence, given any set{Ks} of objects inD(Uét, F ), we have

RΓ(Vét,⊕sj∗Ks) ≃ ⊕sRΓ(Vét, j∗Ks) ≃ ⊕sRΓ(Wét,Ks|W ) ≃ RΓ(Wét, (⊕sKs)|W ) ≃ RΓ(Vét, j∗⊕sKs).

As this is true for allV , the claim follows. �

Lemma 6.4.6. Fix a closed constructible subseti : Z →֒ X andK ∈ D(Zét, F ) that is locally constant
with perfect valueL ∈ Dperf(F ). Theni∗K ∈ D(Xét, F ) is compact.

Proof. By Lemma 6.4.5 (2), it suffices to show the following statement: the functorRHom(i∗K,−) :
D(Xét, F ) → D(Xét, F ) commutes with direct sums. To check this, we may freely replaceX with an
étale cover. By passing to a suitable cover (see the proof ofLemma 6.3.14), we may assumeK = L for
L ∈ Dperf(F ). If j : U → X denotes the qcqs open complement ofi, then the exact triangle

j!L→ L→ i∗L

finishes the proof by Lemma 6.4.5 (1) �
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Remark 6.4.7. The constructibility ofZ in Lemma 6.4.6 is necessary. For a counterexample without this
hypothesis, choose an infinite profinite setS and a closed pointi : {s} →֒ S. ThenS − {s} is not
quasi-compact, soZ is not constructible. Using stalks, one checks thati∗F ≃ colim j∗F , where the col-
imit is indexed by clopen neighbourhoodsj : U →֒ S of s ∈ S. For suchj, one hasH0(S, j∗F ) =
H0(U,F ) = Mapconts(U,F ). As any continuous mapf : U → F is locally constant, each non-zero sec-
tion of H0(S, j∗F ) is supported on some clopenV ⊂ U . As 1 ∈ H0(S, i∗F ) is supported only ats, all
mapsi∗F → j∗F are constant, soi∗F is not compact inD(S,F ). To get an example with schemes, one
simply tensors this example with a geometric point, in the sense of Example 4.1.9.

Proposition 6.4.8.D(Xét, F ) is compactly generated, andDc(Xét, F ) = Dcons(Xét, F ).

Proof. We temporarily use the word “coherent” to refer to objects ofthe formj!F for qcqs mapsj : U → X
in Xét. Lemma 6.4.5 shows that coherent objects are compact. General topos theory shows that all objects
in D(Xét, F ) can be represented by complexes whose terms are direct sums of coherent objects, so it
follows thatD(Xét, F ) is compactly generated. Furthermore, one formally checks that the subcategory
Dc(Xét, F ) ⊂ D(Xét, F ) of compact objects is the smallest idempotent complete triangulated subcategory
that contains the coherent objects. Then Lemma 6.3.11 showsDc(Xét, F ) ⊂ Dcons(Xét, F ). For the reverse
inclusionDcons(Xét, F ) ⊂ Dc(Xét, F ), it suffices to show: for anyk :W →֒ X locally closed constructible
andL ∈ D(Wét, F ) locally constant with perfect values, the pushforwardK := k!L is compact. Choose

W
f
→ U

g
→ X with f a constructible closed immersion, andg a qcqs open immersion. Thenf∗K is

compact inD(Uét, F ) by Lemma 6.4.6, sok!K ≃ g!f∗K is compact by Lemma 6.4.4. �

6.5. Constructible complexes in the pro-́etale topology. Fix a qcqs schemeX, and a noetherian ring
R complete for the topology defined by an idealm ⊂ R. Set R̂X := limR/mn ∈ Shv(Xproét); we
often simply writeR̂ for R̂X . In fact, in the notation of Lemma 4.2.12,̂R = R̂X is the sheafFR on
Xproét associated with the topological ringR. We writeL for the image ofL ∈ D(R) under the pullback
D(R) → D(Xproét, R), andL̂ ∈ D(Xproét, R̂) for them-adic completion ofL. WhenL = R or R/mn,
we drop the underline. The key definition is:

Definition 6.5.1. We say thatK ∈ D(Xproét, R̂) is constructibleif K is m-adically complete, andK ⊗L
R̂

R/m is obtained via pullback of a constructibleR/m-complex underν : Xproét → Xét. Write

Dcons(Xproét, R̂) ⊂ D(Xproét, R̂)

for the full subcategory spanned by constructible complexes.

It is immediate thatDcons(Xproét, R̂) is a triangulated subcategory ofD(Xproét, R̂). Applying the same
definition to(R/mn,m), we getDcons(Xproét, R/m

n) ≃ Dcons(Xét, R/m
n) via ν; note that the two evident

definitions ofDcons(Xét, R/m
n) coincide by Lemma 6.3.12.

Example 6.5.2.WhenX is a geometric point, pullback induces an equivalenceDperf(R) ≃ Dcons(Xproét, R̂).

Lemma 6.5.3. EachK ∈ Dcons(Xproét, R̂) is bounded.

Proof. Completeness givesK ≃ R lim(K ⊗LR R/m
n). As R lim has cohomological dimension≤ 1 by

repleteness, it suffices to showKn := K ⊗LR R/m
n has amplitude bounded independent ofn. This follows

from standard sequences asK1 has finite flat dimension. �

Lemma 6.5.4. If K ∈ Dcons(Xproét, R̂), thenK ⊗R̂ R/m
n ∈ Dcons(Xproét, R/m

n) for eachn.

Proof. This is immediate fromK ⊗
R̂
R/mn ⊗R/mn R/m ≃ K ⊗

R̂
R/m. �

Lemma 6.5.5.Dcons(Xproét, R̂) ⊂ Dcomp(Xproét, R̂) is closed under tensor products. In fact, ifK,L ∈
Dcons(Xproét, R̂), thenK ⊗

R̂
L is already complete.

Proof. The assertion is local onXproét. By filteringK andL, and replacingX by a cover, we may assume:

X is w-contractible and henselian along a constructible closed subseti : Z →֒ X, andK = i∗M̂ and
L = i∗N̂ for M,N ∈ Dperf(R). By realisingM andN as direct summands of finite freeR-complexes, we
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reduce toM = N = R. Let j : U → X be the open complement ofi. We claim the more precise statement
thati∗R̂⊗R̂ i∗R̂ ≃ i∗R̂. For this, using the sequence

j!R̂→ R̂→ i∗R̂,

we are reduced to checking thatj!R̂ ⊗R̂ i∗R̂ = 0, which is automatic by adjunction: for anyK ∈

D(Uproét, R̂) andL ∈ D(Zproét, R̂), one has

RHom(j!K ⊗R̂ i∗L,−) = RHom(j!K,RHom(i∗L,−)) = RHom(K,RHom(j∗i∗L, j
∗(−))) = 0,

where the last equality usesj∗i∗ = 0. �

Lemma 6.5.6. Fix K ∈ Dcons(Xproét, R̂) withK ⊗R̂ R/m constant locally onXét. ThenK ⊗R̂ R/m
n is

also constant locally onXét.

Proof. Since the question concerns only complexes pulled back fromXét, we can étale localize to assume
that (X,x) is a local strictly henselian scheme. Then the assumption implies K ⊗R̂ R/m is constant.
Moreover, one easily checks thatD(R/mn) → D(Xét, R/m

n) is fully faithful (as RΓ(Xét,−) ≃ x∗).
Chasing triangles shows that eachK ⊗R̂ R/m

n is in the essential image ofD(R/mn) → D(Xét, R/m
n),

as wanted. �

Corollary 6.5.7. AssumeX is a strictly henselian local scheme. Then pullback

Dperf(R)→ Dcons(Xproét, R̂)

is fully faithful with essential image thoseK withK ⊗R̂ R/m locally constant.

Proof. The full faithfulness is automatic sinceRΓ(X, R̂) ≃ R limRΓ(X,R/mn) ≃ R limR/mn ≃ R.
The rest follows by Lemma 6.5.6. �

Lemma 6.5.8. Fix a locally closed constructible subsetk :W →֒ X.

(1) One hask∗(R̂X) = R̂W .
(2) The functork∗ : D(Xproét, R̂X)→ D(Wproét, R̂W ) preserves constructible complexes.
(3) The functork! : D(Wproét, R̂W )→ D(Xproét, R̂X) preserves constructible complexes.

Proof. (1) follows from the fact thatk∗ : Shv(Xproét) → Shv(Wproét) commutes with limits (as this is
true for constructible open and closed immersions). This also impliesk∗(K ⊗R̂X

R/m) ≃ k∗K ⊗R̂W
R/m

for anyK ∈ D(Xproét, R̂X), which gives (2). The projection formula fork! showsk!K ⊗R̂X
R/m ≃

k!(K ⊗R̂W
R/m), which gives (3). �

Lemma 6.5.9. Let f : X → Y be a map of qcqs schemes, and letf∗ : D(Xproét, R̂) → D(Yproét, R̂) be
the pushforward. Then we have:

(1) For K ∈ D(Xproét, R̂), we have an identification{f∗K ⊗R̂ R/mn} ≃ {f∗(K ⊗R̂ R/mn)} of
pro-objects.

(2) For K ∈ D(Xproét, R̂), we havef∗K̂ ≃ f̂∗K. In particular, f∗ preservesm-adically complete
complexes, and hence inducesf∗ : Dcomp(Xproét, R̂)→ Dcomp(Yproét, R̂).

(3) For any perfect complexL ∈ D(R), we havef∗K ⊗R̂ L̂ ≃ f∗(K ⊗R̂ L̂).

(4) Pullback followed by completion givesf∗comp : Dcomp(Xproét, R̂) → Dcomp(Yproét, R̂) left adjoint
to f∗.

(5) f∗comp preserves constructible complexes, and hence defines

f∗comp : Dcons(Yproét, R̂)→ Dcons(Xproét, R̂) .

Proof. (1) would be clear if eachR/mn is R-perfect. To get around this, chooseP andJ as in the proof
of Proposition 3.5.1. Then{R ⊗P P/Jn} ≃ {R/mn} is a strict pro-isomorphism, so{K ⊗R R/mn} ≃
{K ⊗P P/J

n} as pro-objects as well, and similarly forf∗K. The claim now follows asP/Jn is P -perfect.
(2) immediately follows from (1) (or simply becauseT (f∗K,x) ≃ f∗T (K,x) ≃ 0 for x ∈ m andK is
complete asf∗ commutes withR lim). (3) immediately follows from the caseL = R by devissage, while
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(4) follows from (2) by adjointness of completion. For (5), as f∗ commutes with tensor products, we have
f∗comp(K)⊗R̂Y

R/m ≃ f∗(K ⊗R̂X
R/m), so the claim follows from preservation of constructibility under

pullbacks in the classical sense. �

Remark 6.5.10. Whenf : X → Y is a finite composition of qcqs weakly étale maps and constructible
closed immersion, we havef∗comp = f∗, i.e., thatf∗K is complete ifK is so; this follows from Lemma
6.5.8.

Lemma 6.5.9 shows that pushforwards in the pro-étale topology commute with takingm-adic truncations
in the sense of pro-objects. To get strict commutation, we need a further assumption:

Lemma 6.5.11. Let f : X → Y be a map of qcqs schemes. Assume thatf∗ : Mod(Xét, R/m) →
Mod(Yét, R/m) has cohomological dimension≤ d for some integerd. Then:

(1) If P ∈ D≤k(R) andK ∈ D≤m
cons(Xproét, R̂), thenf∗(K⊗̂R̂P̂ ) ∈ D

≤k+m+d+2(Yproét, R̂).

(2) If K ∈ Dcons(Xproét, R̂) andM ∈ D−(R), thenf∗(K⊗̂R̂M̂) ≃ f∗K⊗̂R̂M̂ .

(3) If K ∈ Dcons(Xproét, R̂), thenf∗K ⊗R̂ R/m
n ≃ f∗(K ⊗R̂ R/m

n) for all n.

Proof. For (1), observe that

f∗(K⊗̂R̂P̂ ) ≃ f∗R lim(Kn ⊗R/mn Pn) ≃ R lim f∗(Kn ⊗R/mn Pn) ∈ D
≤k+m+d+2(Yproét, R̂),

where the last inclusion follows from Lemma 5.4.6 and repleteness. For (2), we may assume by shifting
thatK ∈ D≤0

cons(Xproét, R̂). First observe that ifM is a freeR-module, then the claim is clear. For general
M , fix an integeri and choose ani-close approximationPi →M in D(R) with Pi a finite complex of free
R-modules, i.e., the homotopy-kernelLi lies inD≤−i(R). ThenP̂i → M̂ is ani-close approximation in

D(Xproét, R̂). Moreover,f∗(K⊗̂R̂P̂i) ≃ f∗K⊗̂R̂P̂i asP̂i is a finite complex of freêR-modules. We then
get a commutative diagram

f∗K⊗̂R̂P̂i
a //

b
��

f∗K⊗̂R̂M̂

c

��

f∗(K⊗̂R̂P̂i)
d // f∗(K⊗̂R̂M̂).

Then b is an equivalence as explained above. The homotopy-kernelf∗(K⊗̂R̂L̂i) of d is (−i + d + 2)-

connected by (1), and the homotopy-kernelf∗K⊗̂R̂L̂i of a is (−i + d + 2)-connected sincef∗K ≃

R lim f∗Kn ∈ D≤d+1(Yproét). Thus, the homotopy-kernel ofc is also (−i + d + 2)-connected. Let-
ting i→∞ showsc is an isomorphism. (3) follows from (2) by settingM = R/mn, observing thatR/mn

is already derivedm-complete, and using−⊗̂
R̂
R/m ≃ − ⊗

R̂
R/m as anyR/m-complex is automatically

derivedm-complete. �

Remark 6.5.12. Unlike pullbacks, the pushforward along a map of qcqs schemes does not preserve con-
structibility: if it did, thenH0(X,Z/2) would be finite dimensional for any qcqs schemeX over an alge-
braically closed fieldk, which is false forX = Spec(

∏∞
i=1 k). We will see later that there is no finite type

counterexample.

6.6. Constructible complexes on noetherian schemes.FixX andR as in§6.5. Our goal in this section is
to prove that the notion of a constructible complexes onX coincides with the classical one from topology if
X is noetherian:K ∈ D(Xproét, R̂) is constructible if and only if it is locally constant along astratification,
see Proposition 6.6.11. In fact, it will be enough to assume that the topological space underlyingX is
noetherian. The proof uses the notion of w-strictly local spaces, though a direct proof can be given for
varieties, see Remark 6.6.13.

For any affine schemeY , there is a natural morphismπ : Yét → π0(Y ) of sites. Our first observation is
thatπ is relatively contractible whenY is w-strictly local.

Lemma 6.6.1. If Y is a w-strictly local affine scheme, then pullbackD(π0(Y ))→ D(Yét) is fully faithful.
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Proof. Fix K ∈ D(π0(Y ), F ). Choose a pointy ∈ π0(Y ), and lety ∈ Y be its unique preimage that is
closed. Then the projective system{π−1U} of open neighbourhoods ofy obtained via pullback of open
neighbourhoodsy ∈ U in π0(Y ) is cofinal in the projective system{V } of all open neighbourhoodsy ∈ V
in Y . Hence,

colim
y∈U

RΓ(U, π∗π
∗K) ≃ colim

y∈U
RΓ(π−1U, π∗K) ≃ colim

y∈V
RΓ(V, π∗K) ≃ (π∗K)y ≃ Ky.

Here the penultimate isomorphism uses that the Zariski and ´etale localizations ofY at y coincide. This
shows thatK → π∗π

∗K induces an isomorphism on stalks, so must be an isomorphism.The rest follows
by adjunction. �

For a profinite setS, we defineSproét := Sproét, with ∗ some fixed geometric point, andS ∈ Shv(∗proét)
the corresponding scheme. Alternatively, it is the site defined by profinite sets overS with covers determined
by finite families of continuous and jointly surjective maps, see Example 4.1.10. Using repleteness of
Shv(Sproét), we show that a compatible system of constant perfectR/mn-complexesLn onS has a constant
perfect limit L in Sproét; the non-trivial point is that we do nota priori require the transition maps be
compatible with trivializations.

Lemma 6.6.2. LetS be a profinite set. FixL ∈ Dcomp(Sproét, R̂) with L ⊗R R/mn constant with perfect
valueCn ∈ D(R/mn) for all n. ThenL is constant with perfect values.

Proof. Fix a points ∈ S. Passing to the stalks ats shows that there existsC ∈ Dperf(R) withC⊗RR/mn ≃

Cn. Write Ĉ ∈ D(Sproét, R̂) andCn ∈ D(Sproét, R/m
n) for the corresponding constant complexes. We

will show IsomR̂(L, Ĉ) 6= ∅. First observe thatExtiR/mn(Cn, Cn) ≃ Mapconts(S,Ext
i
R/mn(Cn, Cn)). By

Lemma 6.6.3 and Lemma 6.6.6, the system{ExtiR/mn(Cn, Cn)} satisfies ML. As a mapf : Cn → Cn
is an automorphism if and only if it is so modulom, it follows that {AutR/mn(Cn)} also satisfies ML.
Lemma 6.6.4 and the assumption onLn shows that{IsomR/mn(Ln, Cn)} satisfies ML. As the evident
mapIsomR/mn(Ln, Cn) × ExtiR/mn(Cn, Cn) → ExtiR/mn(Ln, Cn) is surjective, Lemma 6.6.5 shows that

{ExtiR/mn(Ln, Cn)} satisfies ML. On the other hand, completeness gives

RHomR̂(L, Ĉ) ≃ R limRHomR/mn(Ln, Cn),

so
HomR̂(L, Ĉ) ≃ lim

n
HomR/mn(Ln, Cn).

By completeness, a mapf : L → Ĉ is an isomorphism if and onlyf ⊗
R̂
R/m is one, soIsom

R̂
(L, Ĉ) ≃

limn IsomR/mn(Ln, Cn). As {IsomR/mn(Ln, Cn)} satisfies ML with non-empty terms, the limit is non-
empty. �

The next few lemmas record elementary facts about projective systems{Xn} of sets; for such a system,
we writeX◦

n := ∩kim(Xn+k → Xn) ⊂ Xn for the stable image.

Lemma 6.6.3. Fix a topological spaceS and a projective system{Xn} of sets satisfying the ML condition.
Then{Mapconts(S,Xn)} also satisfies the ML condition.

Proof. Fix n andN such thatX◦
n = im(XN → Xn). Fix a continuous mapf : S → Xn that lifts to

XN . Thenf factors through a continuous mapS → X◦
n. As {X◦

n} has surjective transition maps, the claim
follows. �

Lemma 6.6.4. Let{Gn} be a projective system of groups, and let{Xn} be a compatible projective system
of transitiveG-sets. Assume{Gn} satisfies ML andXn 6= ∅ for all n. Then{Xn} satisfies ML, and
limXn 6= ∅.

Proof. Note that anyNop-indexed system of non-empty sets satisfying the ML condition has a non-empty
inverse limit: the associated stable system has non-empty terms and surjective transition maps. Hence, it
suffices to show{Xn} satisfies ML. Writehij : Gi → Gj andfij : Xi → Xj for the transition maps. Fixn
andN such thatG◦

n = im(GN → Gn). Fix somexn ∈ Xn that lifts to anxN ∈ XN . Form ≥ N , choose
somexm ∈ Xm, andgN ∈ GN with gN · fmN (xm) = xN ; this is possible by transitivity. Then there exists
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a gm ∈ Gm with hmn(gm) = hNn(gn), soxm := g−1
m · xm ∈ Xm lifts xn ∈ Xn, which proves the ML

property. �

Lemma 6.6.5. Letf : {Wn} → {Yn} be a map of projective systems. Assume that{Wn} satisfies ML, and
that fn :Wn → Yn is surjective. Then{Yn} satisfies ML.

Proof. Fix n, and chooseN such thatW ◦
n = im(WN → Wn). Then anyyn ∈ Yn that lifts to some

yN ∈ YN further lifts to somewN ∈ WN with imagewn ∈ Wn lifting yn. By choice ofN , there is a
wn+k ∈ Wn+k for all k lifting wn ∈ Wn. The imagesyn+k := fn+k(wn+k) ∈ Yn+k then lift yn ∈ Yn for
all k, which proves the claim. �

A version of the Artin-Rees lemma shows:

Lemma 6.6.6. For K ∈ Dperf(R), the natural map gives pro-isomorphisms{H i(K)/mn} ≃ {H i(K ⊗R
R/mn)}.

Proof. Let C be the category of pro-(R-modules), and consider the functorF : ModfR → C given by
M 7→ {M/mnM}. ThenF is exact by the Artin-Rees lemma, so for any finite complexK of finitely
generatedR-modules, one hasF (H i(K)) ≃ H i(F (K)). Applying this to a perfectK then proves the
claim. �

Lemma 6.6.7. LetY be a w-strictly local affine scheme. Then anyM ∈ D(Yét) that is locally constant on
Yét is constant over a finite clopen cover, and hence comes fromD(π0(Y )) via pullback.

Proof. For the first part, we may assume that there exist finitely manyqcqs étale mapsfi : Ui → Y with
f : ⊔iUi → Y surjective such thatf∗iM ≃ Ai for someAi ∈ D(Ab). By w-strict locality, there is a section
s : Y → ⊔iUi of f . Then{Vi := s−1Ui} is a finite clopen cover ofY with M |Vi ≃ Ai ∈ D(Vi,ét). Now
any finite clopen cover ofY is the pullback of a finite clopen cover ofπ0(Y ), so the second part follows.�

Lemma 6.6.8. Let X = Spec(A) be connected. FixK ∈ Dcons(Xproét, R̂) with K ⊗R̂ R/m locally
constant onXét with perfect values. Then there exists a pro-étale coverf : Y → X with f∗K ≃ C with
C ∈ Dperf(R).

Proof. First observe that, by connectedness and examination of stalks inXét, eachKn := K ⊗
R̂
R/mn is

locally constant onXét with the same perfect valueCn. Now choose a pro-étale coverf : Y → X with
Y w-strictly local, and letπ : Y → π0(Y ) be the natural map. Then Lemma 6.6.7 and Lemma 6.6.1 show
f∗Kn ≃ π∗Ln ≃ π∗Cn, whereLn := π∗f

∗Kn ∈ D(π0(Y ), R/mn), and the isomorphismLn ≃ Cn is
non-canonical. Lemma 6.6.1 shows that

Ln+1 ⊗R/mn+1 R/mn ≃ π∗π
∗(Ln+1 ⊗R/mn+1 R/mn) ≃ π∗

(
f∗Kn+1 ⊗R/mn+1 R/mn

)
≃ π∗f

∗Kn = Ln

via the natural mapLn+1 → Ln. Applying Lemma 3.5.5 to{Ln} shows thatL := π∗K ≃ R limLn ∈

D(π0(Y )proét, R̂) satisfiesL ⊗R̂ R/m
n ≃ Ln. Lemma 6.6.2 then showsL ≃ Ĉ ∈ D(π0(Y )proét, R̂),

whereC := R limCn ∈ Dperf(R) is a stalk ofK. �

To state our result, we need the following definition.

Definition 6.6.9. A schemeX is said to be topologically noetherian if its underlying topological space is
noetherian, i.e. any descending sequence of closed subsetsis eventually constant.

Lemma 6.6.10.LetT be a topological space.

(1) If T is noetherian, thenT is qcqs and has only finitely many connected components. Moreover, any
locally closed subset ofT is constructible, and noetherian itself.

(2) If T admits a finite stratification with noetherian strata, thenT is noetherian.
(3) Assume thatX is a topologically noetherian scheme, andY → X étale. ThenY is topologically

noetherian.

Proof. (1) Quasicompacity ofT is clear. Also, the property of being noetherian passes to closed subsets,
as well as to open subsets. Thus, all open subsets are quasicompact; this implies that all locally
closed subsets are constructible, and thatT is quasiseparated. Every connected component is an
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intersection of open and closed subsets; this intersectionhas to be eventually constant, so that every
connected component is open and closed. By quasicompacity,there are only finitely many.

(2) Under this assumption, any descending sequence of closed subsets becomes eventually constant on
any stratum, and thus constant itself.

(3) There is a stratification ofX over whichY → X is finite étale. By (2), we may assume thatY → X
is finite étale. Any closedZ ⊂ Y gives rise to a functionfZ : X → N, mapping anyx ∈ X to
the cardinality of the fibre ofZ above a geometric point abovex. AsZ → X is finite, the function
fZ is upper semicontinuous, i.e. for alln, {x | fZ(x) ≥ n} ⊂ X is closed. Moreover, allfZ are
bounded independently ofZ (by the degree ofY → X). Given a descending sequence ofZ ’s, one
gets a descending sequence offZ ’s. Thus, for anyn, {x | fZ(x) ≥ n} forms a descending sequence
of closed subsets ofX, which becomes eventually constant. As there are only finitely manyn of
interest, all these subsets are eventually constant. This implies thatfZ is eventually constant, which
shows thatZ is eventually constant, as desired.

�

Here is the promised result.

Proposition 6.6.11. LetX be a topologically noetherian scheme. A complexK ∈ D(Xproét, R̂) is con-
structible if and only if there exists a finite stratification{Xi →֒ X} withK|Xi

locally constant with perfect
values onXi,proét.

The phrase “locally constant with perfect values” means locally isomorphic toL̂ ≃ L ⊗R R̂ for some
L ∈ Dperf(R).

Proof. For the forward direction, fixK ∈ Dcons(Xproét, R̂). By noetherian induction, it suffices to find a
dense openU ⊂ X such thatK|U is locally constant with perfect values inD(Uproét, R̂). By assumption,
there exists aU ⊂ X such thatK|U ⊗R̂ R/m ∈ D(Uét, R/m) is locally constant with perfect values. Any
topologically noetherian scheme has only finitely many (clopen) connected components. Thus, by passing
to connected components, we may assumeU is connected. Lemma 6.6.8 then proves the claim. For the
reverse, fixK ∈ D(Xproét, R̂), and assume there exists a finite stratification{Xi →֒ X} such thatK|Xi

is, locally onXi,proét, the constant̂R-complex associated to a perfectR-complex. ThenK is complete
by Lemmas 6.5.8 and standard sequences (as completeness is apro-étale local property). For the rest, by
similar reasoning, we may assume thatX is affine and there exists a pro-étale coverf : Y → X such that
K|Y ≃ L̂ for a perfectR-complexL. ThenK1 is locally constant with perfect valueL1 onXproét. Lemma
6.3.13 then shows thatK1 is étale locally constant with perfect valueL1, as wanted. �

The next example shows the necessity of the noetherian hypothesis in Proposition 6.6.11:

Example 6.6.12.Fix an algebraically closed fieldk, a prime numberℓ. SetXn = Z/ℓn, andX = limXn =

Zℓ ∈ Spec(k)proét following the notation of Example 4.1.9, soX is qcqs. Consider the sheaf of rings

R̂ = limZ/ℓn ∈ Shv(Spec(k)proét); X representŝR, but we ignore this. We will construct a complex
K ∈ D(Xproét, R̂) satisfying:

(1) K⊗L
R̂
Z/ℓ is constant with perfect values over a finite clopen cover ofX, soK ∈ Dcons(Xproét, R̂).

(2) K is constant on the connected components ofX with perfect values.
(3) There does not exist a finite stratification{Xi →֒ X} with K|Xi

locally constant onXi,proét.

For eachn, letK ′
n ∈ D(Xn,proét,Z/ℓ

n) be the locally constant complex whose value over the connected

component ofXn determined byα ∈ Z/ℓn is
(
Z/ℓn

α
→ Z/ℓn

)
. SetKn ∈ D(Xproét,Z/ℓ

n) to be

its pullback toX. Then there is a coherent system of quasi-isomorphismsKn+1 ⊗
L
Z/ℓn+1 Z/ℓn ≃ Kn.

Patching along these isomorphisms gives a complexK := R limKn ∈ D(Xproét, R̂) satisfying: for each

map fα : Spec(k) → X determined by anα ∈ Zℓ, we havef∗αK ≃
(
Zℓ

α
→ Zℓ

)
. As X is totally

disconnected, (2) is clear. SinceK ⊗
R̂
Z/ℓ ≃ K1, one easily checks (1). Finally, as the stalksf∗αK over

α ∈ X(k) take on infinitely many disinct values, (3) follows.
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Remark 6.6.13. WhenX is a variety over an algebraically closed fieldk, it is easy to give a direct proof
that anyK ∈ Dcons(Xproét, R̂) is locally constant along a stratification, together with anexplicit description
of the trivializing cover over each stratum. Indeed, as in Proposition 6.6.11, it suffices to find a dense open
U ⊂ X such thatK|U is locally constant inD(Uproét, R̂). ReplacingX by a suitable open, we may assume
(by Artin’s theorem [SGA73,§XI.3]) that:

(1) X is smooth, affine, connected, and aK(π, 1), i.e., pullback along the canonical mapShv(Xét)→
Shv(Xf ét) induces a fully faithful functorD+(Xf ét, R/m

n)→ D+(Xét, R/m
n)6.

(2) ν∗K1 is locally constant onXét, i.e., pulled back fromXf ét.

The normalization ofX in the maximal unramified extension of its fraction field within a fixed separable
closure gives a pro-(finite étale) coverf : Y → X. We will show f∗K is constant. Note thatY is
affine, connected, normal, and all finitely presented locally constant sheaves ofR/mn-modules onYét are
constant by construction. In particular, eachHi(Kn) is constant overY . Moreover, sinceX was aK(π, 1),
we haveRΓ(Yét,M) ≃ M for anyM ∈ ModR/mn . Then the left-completeness ofD(Yproét) formally
showsD(R/mn) → D(Yproét, R/m

n) is fully faithful. Induction on the amplitude ofKn then shows
f∗Kn ≃ Cn for Cn := RΓ(Yproét,Kn) ∈ D(R/mn). As K is constructible, eachCn is perfect (since
Cn = x∗f∗Kn for any geometric pointx of Y ), andCn+1⊗R/mn+1 R/mn ≃ Cn via the natural map. Then

C := R limCn ∈ D(R) is perfect, andf∗K ≃ R lim f∗Kn ≃ R limCn =: Ĉ ∈ D(Yproét, R̂), which
proves the claim.

6.7. The 6 functors. We fix a complete noetherian local ring(R,m) with finite residue field of character-
istic ℓ. We say that a schemeX is ℓ-coprime ifℓ is invertible onX.

Theorem 6.7.1(Grothendieck, Gabber). Let f : X → Y be a finitely presented map of qcqs schemes.
Assume either thatf is proper, or thatY is quasi-excellent andℓ-coprime. Thenf∗ : D(Xét, R/m) →
D(Yét, R/m) has finite cohomological dimension and preserves constructibility.

Lemma 6.7.2 (Pushforward). Let f : X → Y be a finitely presented map of qcqs schemes. Assume
either that f is proper, or thatY is quasi-excellent andℓ-coprime. Thenf∗ : Dcomp(Xproét, R̂) →

Dcomp(Yproét, R̂) preserves constructibility. The induced functorf∗ : Dcons(Xproét, R̂)→ Dcons(Yproét, R̂)
is right adjoint tof∗comp.

Proof. Fix K ∈ Dcons(Xproét, R̂). Thenf∗K is complete by Lemma 6.5.9. Lemma 6.5.11 showsf∗K ⊗R̂
R/m ≃ f∗(K ⊗R̂ R/m), so constructibility follows Lemma 5.4.3 and Theorem 6.7.1; the adjunction is
automatic. �

Remark 6.7.3. The ℓ-coprimality assumption in Lemma 6.7.2 isnecessary: H1(A1
Fp
,Fp) is infinite di-

mensional.

Lemma 6.7.4(Smooth base change). Fix a cartesian square ofℓ-coprime qcqs schemes

X ′ g
//

f
��

X

f

��

Y ′ g
// Y

with f qcqs andg smooth. Then for anyK ∈ Dcons(Xproét, R̂), the natural map induces an isomorphism

g∗comp ◦ f∗K ≃ f∗ ◦ g
∗
compK ∈ Dcomp(Y

′
proét, R̂).

If Y is quasi-excellent andf finitely presented, the preceding equality takes place inDcons(Y
′
proét, R̂).

6By the Leray spectral sequence forΦ : (Shv(Xét), R/mn) → (Shv(Xf ét), R/mn) and devissage to reducen, it suffices
to check thatHi(Yét, R/m) ≃ Hi(Yf ét, R/m) for all i and allY ∈ Xf ét. By passage to suitable filtered colimits, we may
assumeR/m = Fℓ or R/m = Q. If R/m = Fℓ with ℓ ∈ k∗, then the equality is due to Artin. IfR/m = Fp with p zero in
k, then the Artin-Schreier sequence and the affineness ofY show thatRΦ∗Fp ≃ Fp, which clearly suffices. IfR/m = Q, then
Hi(Yf ét,Q) = 0 by a trace argument; the normality ofY combined with examination at stalks shows thatQ ≃ Rη∗Q, where
η : Spec(K) → Y is the finite disjoint union of generic points ofY , which proves the claim by reduction to Galois cohomology.
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Proof. Lemma 6.5.9 shows that{f∗K ⊗R̂ R/mn} ≃ {f∗(K ⊗R̂ R/mn)} as pro-objects. By the con-
structibility assumption onK, eachK ⊗R̂ R/m

n is the pullback underν of a constructible complex in
Db(Xét, R/m

n), sof∗(K ⊗R̂ R/m
n) is a pullback fromD+(Xét, R/m

n) by Lemma 5.4.3. The claim now
follows by definition ofg∗comp and classical smooth base change (which applies toD+(Xét, R/m

n)). �

Lemma 6.7.5(Proper base change I). Fix a cartesian square of qcqs schemes

X ′ g
//

f
��

X

f

��

Y ′ g
// Y

with f proper. Then for anyK ∈ Dcons(Xproét, R̂), the natural map induces an isomorphism

g∗comp ◦ f∗K ≃ f∗ ◦ g
∗
compK ∈ Dcons(Y

′
proét, R̂).

Proof. This reduces to the corresponding assertion in étale cohomology as all functors in sight commute
with application of−⊗R̂ R/m by Lemma 6.5.9 and Lemma 6.5.11. �

Definition 6.7.6. Let f : X → Y be a separated finitely presented map of qcqs schemes. Then wedefine

f! : Dcons(Xproét, R̂)→ Dcons(Yproét, R̂) asf∗ ◦ j! whereX
j
→֒ X

f
→ Y be a factorization withj an open

immersion, andf proper. IfY is a geometric point, we writeRΓc(Xproét,K) := RΓ(Yproét, f!K).

Lemma 6.7.7. Definition 6.7.6 is well-defined, i.e.,f! is independent of choice ofj and preserves con-
structibility.

Proof. This follows by the same argument used in the classical case thanks to Lemma 6.1.12. �

Remark 6.7.8. Both j! andf∗ are right adjoints at the level of abelian categories. However, the functorf!
from Definition 6.7.6 isnot the derived functor of the compositionf∗ ◦ j! : Ab(Xproét)→ Ab(Yproét), i.e.,
of H0(f!). To see this, takeX → Y to beA1 → Spec(k) with k algebraically closed. Then we choose
j : X →֒ X to beA1 ⊂ P1. It suffices to check that the derived functors ofF 7→ Γ(X, j!F ) fail to compute
RΓ(Y, f!F ). Lemma 6.1.9 showsΓ(X, j!F ) = ker(F (X)→ F (η̃)) whereη → X is the generic point, and
η̃ → η → X is the restriction of the henselization at∞ onP1 to A1. The map̃η → η is a pro-étale cover,
so we can writeΓ(X, j!F ) = ker(F (X) → F (η)) for anyF ∈ Ab(Xproét). As η → X is a subobject in
Xproét, the mapF (X) → F (η) is surjective forF injective. The derived functors ofF 7→ Γ(X, j!F ) are
thus computed by the homotopy-kernel of the map

RΓ(X,F )→ RΓ(η, F ).

TakingF = Z/n for n ∈ k∗ showsH0(Yproét, R
2H0(f!)F ) ≃ H

1(η,Z/n) 6= H2
c (A

1,Z/n).

Remark 6.7.9. The phenomenon of Remark 6.7.8 also occurs in classical étale cohomology, i.e.,f! does
not compute the derived functors ofH0(f!). However, the reason is different. In the example considered in
Remark 6.7.8, ifX0 ⊂ X is the set of closed points, then

Γ(X, j!F ) = ⊕x∈X0Γx(X,F ),

for F ∈ Ab(Xét) torsion; one checks this directly for constructible sheaves, and then observes that the
constructible ones generate all torsion sheaves onXét under filtered colimits. The derived functors of
F 7→ Γ(X, j!F ) are thus calculated by the homotopy-kernel of

⊕x∈X0RΓ(X,F )→ ⊕x∈X0RΓ(X − {x}, F ).

TakingF = Z/n for n ∈ k∗ showsH0(Yét, R
2H0(f!)F ) ≃ ⊕x∈X0H1(X − {x},Z/n) 6= H2

c (A
1,Z/n).

Lemma 6.7.10(Proper base change II). The conclusion of Lemma 6.7.5 is valid for any separated finitely
presented mapf providedf∗ is replaced byf!.

Proof. This follows from Lemma 6.7.5 and Lemma 6.2.3. �
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Lemma 6.7.11. Let i : Z →֒ X be a constructible locally closed immersion withX quasi-excellent
and ℓ-coprime. Theni! : D(Xproét, R̂) → D(Zproét, R̂) preserves constructible complexes, and the re-
sulting functori! : Dcons(Xproét, R̂) → Dcons(Zproét, R̂) is a right adjoint toi! : Dcons(Zproét, R̂) →

Dcons(Xproét, R̂).

Proof. If i is an open immersion, theni! = i∗, so Lemma 6.5.8 settles the claim. Thus, we may assumei

is a closed immersion with open comelementj : U →֒ X. Fix K ∈ Dcons(Xproét, R̂). There is an exact
triangle

i∗i
!K → K → j∗j

∗K.

Lemma 6.5.8 and Lemma 6.7.2 imply thatj∗j∗K is constructible, and hencei∗i!K is also constructible.
Another application of Lemma 6.5.8 shows thati!K = i∗i∗i

!K is also constructible. �

Lemma 6.7.12(⊗-products). LetX be a qcqs scheme. ThenDcons(Xproét, R̂) ⊂ D(Xproét, R̂) is closed
under⊗-products.

Proof. This is Lemma 6.5.5. �

Lemma 6.7.13(InternalHom). LetX be a quasi-excellentℓ-coprime scheme. IfK,L ∈ Dcons(Xproét, R̂),
thenRHomR(K,L) ∈ Dcons(Xproét, R̂). Moreover, for anyn ≥ 0, one hasRHomR(K,L) ⊗R̂ R/m

n ≃
RHomR/mn(K ⊗R̂ R/m

n, L⊗R̂ R/m
n).

Proof. The assertion is local onX. By filtering K, we may assumeK = i!R̂ for i : Z →֒ X a con-
structible closed immersions. By adjointness, we haveRHom(K,L) = i∗RHom(R̂, i!L) ≃ i∗i

!L, which is
constructible by Lemma 6.7.11 and Lemma 6.7.2. The second assertion is proved similarly. �

Lemma 6.7.14(Projection Formula). Letf : X → Y be a separated finitely presented map of qcqs schemes.
For anyL ∈ Dcons(Yproét, R̂) andK ∈ Dcons(Xproét, R̂), we havef!K⊗̂R̂L ≃ f!(K⊗̂R̂f

∗
compL) via the

natural map.

Proof. The assertion is local onY . By filteringL, we may assumeL = i∗R̂ for i : Z →֒ Y a constructible
closed immersion. Letj : U →֒ X be the open complement ofZ. For anyR̂-complexL, we have
L ⊗R̂ j!j

∗R̂ ≃ j!j
∗L, and henceL ⊗R̂ i∗R̂ ≃ i∗i

∗L. Using this formula, the assertion now follows from
Lemma 6.7.10 asi∗ = i∗comp. �

Remark 6.7.15. The analogue of Lemma 6.7.14 forf∗ is false, even for quasiexcellentℓ-coprime schemes.
Indeed, the projection formula for the special caseL = i∗R̂ for i : Z →֒ X is equivalent to the base change
theorem as in Lemma 6.7.10, which fails forf∗.

Lemma 6.7.16. Let f : X → Y be a separated finitely presented map of qcqs schemes. For anyK ∈
Dcons(Xét, R/m

n) andM ∈ Db(R), we havef!K ⊗R/mn M ≃ f!(K ⊗R/mn M) ∈ Db(Yét, R/m
n).

Proof. Lemma 6.5.11 (applied witĥR = R/mn) proves the corresponding statement in the pro-étale world,
i.e., after applyingν∗. It remains to observe that both sides of the desired equality lie in Db(Yét, R/m

n−1)
by Lemma 6.7.2 and the finite flat dimensionality of constructible complexes, so we can applyν∗ to get the
claim. �

Lemma 6.7.17. Let f : X → Y be a finitely presented map of quasi-excellentℓ-coprime schemes. For
any K ∈ Dcons(Xét, R/m

n) and M ∈ Db(R/mn), we havef∗K ⊗R/mn M ≃ f∗(K ⊗R/mn M) ∈

Db(Yét, R/m
n).

Proof. This is proven exactly like Lemma 6.7.16. �

Lemma 6.7.18.Letf : X → Y be a separated finitely presented map of quasiexcellentℓ-coprime schemes.
Thenf! : D+(Xét, R/m

n) → D+(Yét, R/m
n) has a right adjointf !n. This adjoint preserves constructibil-

ity, and the following two diagrams commute forn ≤ m:

D+(Yét, R/m
n) //

f !n
��

D+(Yét, R/m
m)

f !m
��

Dcons(Yét, R/m
m) //

f !m
��

Dcons(Yét, R/m
n)

f !n
��

D+(Xét, R/m
n) // D+(Xét, R/m

m) Dcons(Xét, R/m
m) // Dcons(Xét, R/m

n).
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Here the horizontal maps are induced by restriction and extension of scalars alongR/mm → R/mn re-
spectively.

Proof. The existence off !n and preservation of constructibility is classical. For therest, we writeRn =
R/mn. The commutativity of the square on the left is equivalent tothe commutativity of the corresponding
square of left adjoints, which follows from the projection formula in étale cohomology. For the square on
the right, fixKm ∈ Dcons(Yét, Rm), and writeKn = Km ⊗Rm Rn ∈ Dcons(Yét, Rn). We must show
that f !mKm ⊗Rm Rn ≃ f !nKn via the natural mapf !mKm → f !mKm ≃ f !nKn. This assertion is local on

X, so we can factorf asX
i
→֒ P

g
→ S with i a constructible closed immersion, andg smooth of relative

dimensiond. Sincef !m = i!m ◦ g
!
m, it suffices to prove the analogous claim fori andg separately. Since

g!m = g∗m(d)[2d], the assertion is immediate. Fori, let j : U →֒ P be the open complement ofi. Using
the trianglei∗i!m → id → j∗j

∗, it suffices to show thatj∗j∗Km ⊗Rm Rn ≃ j∗j
∗Kn, which follows from

Lemma 6.7.17. �

Lemma 6.7.19(!-pullback). Let f : X → Y be a separated finitely presented map of quasiexcellentℓ-
coprime schemes. Thenf! : Dcons(Xproét, R̂) → Dcons(Yproét, R̂) has a right adjointf ! with f !K ⊗R̂
R/mn ≃ f !n(K ⊗R̂ R/m

n).

Proof. Fix K ∈ Dcons(Yproét, R̂), and letKn = K ⊗R R/mn ∈ Dcons(Yét, R/m
n) be its truncation.

Lemma 6.7.18 gives a projective system{f !nKn} inDcomp(Xproét, R̂), and we writef !K := R lim f !nKn ∈

Dcomp(Xproét, R̂). By completeness and Lemma 6.7.18, one immediately checks that f !K has the right
adjointness properties. It remains to showf !K ⊗R̂ R/m ≃ f !1K1, which also impliesf !K is constructible.
This follows from the second half of Lemma 6.7.18 and Lemma 3.5.5. �

Lemma 6.7.20(Duality). Let X be an excellentℓ-coprime scheme equipped with a dimension function
δ. Then there exists a dualizing complexΩX ∈ Dcons(Xproét, R̂), i.e., ifDX := RHomX(−,ΩX), then
id ≃ D2

X onDcons(Xproét, R̂).

Proof. First consider the caseR = Zℓ, and setRn = Z/ℓn. Then for eachn, there exists a unique
(up to unique isomorphism) potential dualising complexωn ∈ Dcons(Xproét,Z/ℓ

n), see [ILO, XVII.2.1.2,
XVII.5.1.1, XVII 6.1.1]. By [ILO, XVII.7.1.3] and uniqueness, one may choose isomorphismsωn+1⊗Z/ℓn+1

Z/ℓn for eachn. SetωX = limΩn ∈ D(Xproét, Ẑℓ). ThenωX is ℓ-adically complete, andωX ⊗Zℓ
Z/ℓn ≃

ωn (by a slight modification of Lemma 3.5.5). Lemma 6.7.13 then gives the duality isomorphismid ≃ D2
X

in this case by reduction moduloℓ. For general ringsR, setRn := R/mn, so eachRn is aZ/ℓn-algebra.
Then [ILO, XVII.7.1.3] shows thatΩn := ωn ⊗Z/ℓn Rn ∈ Dcons(Xproét, Rn) is dualizing. A repeat of

the argument for the previous case then shows thatΩX := limΩn ∈ Dcons(Xproét, R̂) has the required
properties. �

Remark 6.7.21. The dualizing complex constructed in Lemma 6.7.20 isnot the traditional dualizing com-
plexes (as in [ILO,§XVII.7]) unlessR is Gorenstein. For example, whenX is a geometric point, the
dualizing complex above is simply the ringR itself, rather than the dualizing complexω•

R coming from
local duality theory. This is a reflection of our choice of working with a more restrictive class of complexes
in Dcons(Xproét, R̂): whenX is a point,Dcons(X, R̂) ≃ Dperf(R).

6.8. Zℓ-,Qℓ-,Z̄ℓ- and Q̄ℓ-sheaves.Let us start by defining the relevant categories. For the moment, letX
be any scheme.

Definition 6.8.1. Let E be an algebraic extension ofQℓ with ring of integersOE . LetEX = FE and
OE,X = FOE

be the sheaves associated with the topological ringsE andOE onXproét as in Lemma 4.2.12.

We first identify these sheaves in terms of the familiar algebraic definitions directly onXproét:

Lemma 6.8.2.

(1) If E is a finite extension ofQℓ with uniformizer̟, thenOE,X = ÔE = limnOE/̟
nOE , with

notation as in Subsection 6.5.
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(2) In general,OE,X = colimF⊂E OF,X , whereF runs through finite extensions ofQℓ contained inE.
Moreover,EX = OE,X [ℓ

−1].

Proof. (1) This follows from Lemma 4.2.12 and the identity

Mapcont(S,OE) = lim
n

Mapcont(S,OE/̟
n
OE)

for any profinite setS.
(2) This follows from Lemma 4.2.12 and the identities

Mapcont(S,OE) = colim
F⊂E

Mapcont(S,OF ) ,

Mapcont(S,E) = Mapcont(S,OE)[ℓ
−1]

for any profinite setS, which result from the compactness ofS and Lemma 4.3.7. �

In this section, we abbreviateE = EX andOE = OE,X if no confusion is likely to arise. First, we define
lisseE-sheaves.

Definition 6.8.3. A lisseE-sheaf (orE-local system) is a sheafL of E-modules onXproét such thatL is
locally free of finite rank. Similarly, a lisseOE-sheaf, orOE-local system, is a sheafM of OE-modules
on Xproét such thatM is locally free of finite rank overOE . Let LocX(E), resp. LocX(OE), be the
corresponding categories.

For any discrete ringR, we also have the categoryLocX(R) consisting of sheaves ofR-modules on
Xproét which are locally free of finite rank overR. In fact, this category is just the classical one defined
usingXét, cf. Corollary 5.1.5. Our first aim is to show that our definitions coincide with the usual definitions
of lisse sheaves. This amounts to the following proposition.

Proposition 6.8.4.
(1) If E is a finite extension ofQℓ, with uniformizer̟ , then the functor

M 7→ (M/̟nM)n : LocX(OE)→ lim
n

LocX(OE/̟
n
OE)

is an equivalence of categories.
(2) For generalE, lisseOE-sheaves satisfy descent for pro-étale covers.
(3) If X is qcqs, the functor

colim
F⊂E

LocX(OF )→ LocX(OE)

is an equivalence of categories, whereF runs through finite extensions ofQℓ contained inE.
(4) If X is qcqs, the functor

M 7→ L =M [ℓ−1] : LocX(OE)[ℓ
−1]→ LocX(E)

is fully faithful.
(5) LisseE-sheaves satisfy descent for pro-étale covers.
(6) LetL be a lisseE-sheaf onX. Then there is ańetale coverY → X such thatL|Y lies in the

essential image of the functor from (4).

Proof. (1) Easy and left to the reader.
(2) This is clear.
(3) For fully faithfulness, observe that one has obvious internal Hom’s, which are compatible with

extension of scalars. Thus, fully faithfulness follows from the observation that for anOF -local
systemMF with base extensionsME , MF ′ for F ′ ⊂ E finite overF , ME = colimMF ′ and
ME(X) = colimMF ′(X) asX is qcqs.

Now fix a qcqs w-contractible coverY ∈ Xproét, and describeLocX(OE) in terms of descent
data forY → X. Any lisseOE-sheaf overY is necessarily trivial (and hence already defined over
Zℓ), so that the categories of descent data are equivalent by fully faithfulness, using thatY is still
qcqs.

(4) Both categories admit obvious internal Hom’s, which arecompatible with the functorM 7→M [ℓ−1].
Thus the result follows fromM [ℓ−1](X) =M(X)[ℓ−1], which is true asX is qcqs.
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(5) This is clear.
(6) Consider the sheafF onXproét taking anyU ∈ Xproét to the set ofM ∈ LocU (OE) with M ⊗OE

E = L. We claim thatF is locally constant onXproét. To prove this, we can assume thatL = En is
trivial. We show more precisely that in this case,F is represented by (the constant sheaf associated
with) the discrete setS = GLn(E)/GLn(OE), via mappingg ∈ S toMg = gOnE . Clearly, the map
S → F is injective. Letx ∈ X be any point. For anyM ∈ LocX(OE) with M ⊗OE

E = L, the
fibreMx is aOE-lattice inLx = En. Thus, by applying an element ofGLn(E), we may assume
thatMx = OnE . This givesn sectionsm1,x, . . . ,mn,x ∈ Mx, which are defined over an open
neighborhood ofx; upon replacingX by a neighborhood ofx, we may assume that they are (the
images of) global sectionsm1, . . . ,mn ∈ M . Similarly, one can assume that there aren sections
m∗

1, . . . ,m
∗
n ∈ M

∗ = HomOE
(M,OE) whose images inM∗

x are the dual basis tom1,x, . . . ,mn,x.
This extends to an open neighborhood, so thatM = OnE in a neighborhood ofx, proving surjectivity
of S → F .

Thus,F is locally constant onXproét. In particular, it is locally classical, and therefore classical
itself by Lemma 5.1.4. As there is a pro-étale coverY → X with F (Y ) 6= ∅, it follows that there is
also an étale such cover, finishing the proof. �

Corollary 6.8.5. If X is topologically noetherian, then for any morphismf : L → L′ in LocX(E), the
kernel and cokernel off are again inLocX(E). In particular,LocX(E) is abelian.

Proof. After passage to an étale cover, we may assume that there arelisseOE-sheavesM , M ′ and a map
g :M →M ′ giving rise tof : L→ L′ by invertingℓ. Moreover, we may assume thatX is connected; fix a
geometric base point̄x ∈ X. ThenLocX(OE) is equivalent to the category of representations ofπ1(X, x̄)
on finite freeOE-modules. It follows thatf : L → L′ is classified by a morphism of representations of
π1(X, x̄) on finite-dimensionalE-vector spaces. The latter category obviously admits kernels and cokernels,
from which one easily deduces the claim. �

Next, we consider constructible sheaves. For this, we restrict to the case of topologically noetherian
X. Note that the construction ofEX is compatible with pullback under locally closed immersions, i.e.
EY = EX |Y for Y ⊂ X locally closed. In the topologically noetherian case, any locally closed immersion
is constructible.

Definition 6.8.6. A sheafF ofE-modules onXproét is called constructible if there exists a finite stratifica-
tion {Xi → X} such thatF |Xi

is lisse.

Lemma 6.8.7. For any morphismf : F → F ′ of constructibleE-sheaves, the kernel and cokernel off are
again constructible. In particular, the category of constructibleE-sheaves is abelian.

Proof. After passing to a suitable stratification, this follows from Corollary 6.8.5. �

In particular, the following definition is sensible.

Definition 6.8.8. A complexK ∈ D(Xproét, E) is called constructible if it is bounded and all cohomology
sheaves are constructible. LetDcons(Xproét, E) denote the corresponding full subcategory ofD(Xproét, E).

Corollary 6.8.9. The categoryDcons(Xproét, E) is triangulated.

Proof. This follows from Lemma 6.8.7, also observing stability of constructibility under extensions. �

Also recall the full triangulated subcategoriesDcons(Xproét,OE) ⊂ D(Xproét,OE) for E/Qℓ finite
defined in Subsection 6.5. Under our assumption thatX is topologically noetherian, these can be defined
similarly toDcons(Xproét, E), cf. Proposition 6.6.11. More precisely, we have the following proposition.

Definition 6.8.10. For generalE, a constructibleOE-sheaf on the topologically noetherian schemeX is
a sheafC of OE-modules such that there exists a finite stratification{Xi → X} such thatC|Xi

is locally
isomorphic toΛ ⊗OE

OE,X for a finitely presentedOE-moduleΛ. LetConsX(OE) be the corresponding
category.

Proposition 6.8.11.
(1) The category of constructibleOE-sheaves is closed under kernels, cokernels, and extensions.
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(2) The functor
colim
F⊂E

ConsX(OF )→ ConsX(OE)

is an equivalence of categories, whereF runs through finite extensions ofQℓ.
(3) If E is a finite extension ofQℓ, then an objectK ∈ D(Xproét,OE) is constructible if and only if it

is bounded and all cohomology sheaves are constructible.

Proof. (1) The proof is similar to the proof of Lemma 6.8.7.
(2) The proof is similar to the proof of Proposition 6.8.4 (3).
(3) By (1), the setD′

cons(Xproét,OE) of K ∈ D(Xproét,OE) which are bounded with all cohomol-
ogy sheaves constructible forms a full triangulated subcategory. To showD′

cons(Xproét,OE) ⊂
Dcons(Xproét,OE), using thatDcons(Xproét,OE) ⊂ D(Xproét,OE) is a full triangulated subcat-
egory, it suffices to prove that a constructibleOE-sheafC concentrated in degree0 belongs to
Dcons(Xproét,OE). Passing to a stratification, we can assume thatC is locally isomorphic to
Λ ⊗OE

OE,X for a finitely presentedOE-moduleΛ. In this case,Λ has a finite projective reso-
lution, giving the result.

For the converse, we argue by induction onq − p thatD[p,q]
cons(Xproét,OE) ⊂ D′

cons(Xproét,OE).

Thus, ifK ∈ D[p,q]
cons(Xproét,OE), it is enough to show thatHq(X) is a constructibleOE-sheaf. This

follows easily from Proposition 6.6.11.
�

In particular, for generalE, we can defineDcons(Xproét,OE) ⊂ D(Xproét,OE) as the full triangulated
subcategory of bounded objects whose cohomology sheaves are constructibleOE-sheaves.

Lemma 6.8.12.For anyK ∈ Dcons(Xproét,OE), the functorRHom(K,−) commutes with arbitrary direct
sums inD≥0(Xproét,OE).

Proof. The proof is the same as for Lemma 6.3.14. �

Although a lisseE-sheaf does not always admit an integral structure as a lisseOE-sheaf, it does always
admit an integral structure as a constructibleOE-sheaf.

Lemma 6.8.13. Let L be a lisseE-sheaf on the topologically noetherian schemeX. Then there exists a
constructibleOE-sheafC such thatC ⊗OE

E = L.

Proof. First, we prove that there exists a finite stratification{Xi → X} such thatL|Xi
admits anOE-lattice.

By Proposition 6.8.4 (6), there exists some étale coverY → X such thatL|Y admits anOE-lattice. After
passing to a stratification onX, we may assume thatY → X is finite étale, and thatX is connected; fix a
geometric base point̄x ∈ X with a lift to Y . In that case,L|Y corresponds to a continuous representation
of the profinite fundamental groupπ1(Y, x̄) on a finite-dimensionalE-vector space. AsY → X is finite
étale, this extends to a continuous representation of the profinite fundamental groupπ1(X, x̄) on the same
finite-dimensionalE-vector space. Any such representation admits an invariantOE-lattice (asπ1(X, x̄) is
compact), giving the claim.

In particular,L can be filtered as a constructibleE-sheaf by constructibleE-sheaves which admitOE-
structures. By Lemma 6.8.12, for two constructibleE-sheavesC,C ′, one has

Ext1(C[ℓ−1], C ′[ℓ−1]) = Ext1(C,C ′)[ℓ−1] .

This implies thatL itself admits aOE-structure, as desired. �

The following proposition shows that the triangulated category Dcons(Xproét, E) is equivalent to the
triangulated category traditionally calledDb

c(X,E).

Proposition 6.8.14.
(1) For generalE,

colim
F⊂E

Dcons(Xproét,OF )→ Dcons(Xproét,OE)

is an equivalence of triangulated categories, whereF runs through finite extensions ofQℓ contained
in E.
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(2) The functorDcons(Xproét,OE)[ℓ
−1] → Dcons(Xproét, E) is an equivalence of triangulated cate-

gories.

Note that in part (2), one has an equivalence of categories without having to pass to étale covers ofX.

Proof. (1) Lemma 6.8.12 gives full faithfulness. For essential surjectivity, one can thus reduce to the
case of a constructibleOE-sheaf. In that case, the result follows from Proposition 6.8.11 (2).

(2) Again, full faithfulness follows from Lemma 6.8.12. Foressential surjectivity, one can reduce to the
case of anE-local systemL. In that case, the result is given by Lemma 6.8.13. �

Remark 6.8.15. Let Λ ∈ {OE , E}. Under the same assumptions as in§6.7, the 6 functors are defined on
Dcons(Xproét,Λ). Note that one can also define most of the 6 functors onD(Xproét,Λ). All schemes are
assumed to be noetherian in the following. There are obvious⊗, RHom andf∗ functors for a morphism
f : Y → X. The functorf∗ admits a left adjointf∗ : D(Xproét,Λ) → D(Yproét,Λ) given explicitly by
f∗K = f∗naiveK ⊗f∗naiveΛX

ΛY , wheref∗naive denotes the naive pullback. Iff is étale or a closed immersion
(or a composition of such), thenf∗naiveΛX = ΛY , sof∗K = f∗naiveK is the naive pullback. Moreover, one
has the functorj! : D(Uproét,Λ)→ D(Xproét,Λ) for an open immersionj : U → X; by composition, one
gets a functorf! for a separated morphismf : Y → X. If f is a closed immersion,f! = f∗ admits a right
adjointf ! : D(Xproét,Λ)→ D(Yproét,Λ), given as the derived functor of sections with support inY .

It follows from the results of§6.7 and the previous discussion that under the corresponding finiteness as-
sumptions, these functors preserve constructible complexes, and restrict to the 6 functors onDcons(Xproét,Λ).
In particular, one can compute these functors by choosing injective replacements inD(Xproét,Λ).
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7. THE PRO-ÉTALE FUNDAMENTAL GROUP

We study the fundamental group resulting from the category of locally constant sheaves on the pro-étale
topology, and explain how it overcomes some shortcomings ofthe classical étale fundamental group for
non-normal schemes. The relevant category of sheaves, together with some other geometric incarnations,
is studied in§7.3, while the fundamental group is constructed in§7.4. However, we first isolate a class of
topological groups§7.1; this class is large enough to contain the fundamental group we construct, yet tame
enough to be amenable to a formalism of “infinite” Galois theory introduced in§7.2.

7.1. Noohi groups. All topological groups in this section are assumed Hausdorff, unless otherwise speci-
fied. We study the following class of groups, with a view towards constructing the pro-étale fundamental
group:

Definition 7.1.1. Fix a topological groupG. LetG-Set be the category of discrete sets with a continuous
G-action, and letFG : G-Set→ Set be the forgetful functor. We say thatG is aNoohi group7 if the natural
map induces an isomorphismG ≃ Aut(FG) of topological groups, whereAut(FG) is topologized using
the compact-open topology onAut(S) for eachS ∈ Set.

The basic examples of Noohi groups are:

Example 7.1.2. If S is a set, thenG := Aut(S) is a Noohi group under the compact-open topology; recall
that a basis of open neighbourhoods of1 ∈ Aut(S) in the compact-open topology is given by the stabilizers
UF ⊂ G of finite subsetsF ⊂ S. The natural mapG→ Aut(FG) is trivially injective. For surjectivity, any
φ ∈ Aut(FG) induces aφS ∈ G asS is naturally aG-set. It is therefore enough to show that any transitive
G-set is aG-equivariant subset ofSn for somen. Any transitiveG-set is of the formG/UF for some finite
subsetF ⊂ S finite. For suchF , theG-action on the given embeddingF →֒ S defines aG-equivariant
inclusionG/UF → Map(F, S), so the claim follows.

It is often non-trivial to check that a topological group with some “intrinsic” property, such as the property
of being profinite or locally compact, is a Noohi group. To systematically deal with such issues, we relate
Noohi groups to more classical objects in topological grouptheory: complete groups.

Definition 7.1.3. For a topological groupG, we define thecompletionG∗ ofG as the completion ofG for
its two-sided uniformity, and writei : G →֒ G∗ for the natural embedding. We sayG is completeif i is an
isomorphism.

We refer the reader to [AT08] for more on topological groups,especially [AT08,§3.6] for the existence
and uniqueness of completions. We will show that a topological group is Noohi if and only if it admits
enough open subgroups and is complete. In preparation, we have:

Lemma 7.1.4. For any setS, the groupAut(S) is complete for the compact-open topology.

Proof. LetG := Aut(S), andη be a Cauchy filter onG for its two-sided uniformity. For eachF ⊂ S finite,
the stabilizerUF ⊂ G is open, so, by the Cauchy property, we may (and do) fix someHF ∈ η such that

HF ×HF ⊂ {(x, y) ∈ G
2 | xy−1 ∈ UF and x−1y ∈ UF }.

Fix also somehF ∈ HF for each suchF . Then the above containment means:h(f) = hF (f) andh−1(f) =
h−1
F (f) for all h ∈ HF andf ∈ F . If F ⊂ F ′, then the filter propertyHF ∩ HF ′ 6= ∅ implies that
hF ′(f) = hF (f), andh−1

F ′ (f) = h−1
F (f) for all f ∈ F . Hence, there exist unique mapsφ : S → S and

ψ : S → S such thatφ|F = hF |F andψ|F = h−1
F |F for all finite subsetsF ⊂ S. It is then immediate thatφ

andψ are mutually inverse automorphisms, and that the filterBφ of open neighbourhoods ofφ is equivalent
to η, soη converges toφ, as wanted. �

The promised characterisation is:

7These groups are called prodiscrete groups in [Noo08]. However, they are not pro-(discrete groups), which seems to be the
common interpretation of this term, so we adapt a different terminology.
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Proposition 7.1.5. LetG be a topological group with a basis of open neighbourhoods of1 ∈ G given by
open subgroups. Then there is a natural isomorphismAut(FG) ≃ G

∗. In particular,G is Noohi if and only
if it is complete.

Proof. Let U be the collection of open subgroupsU ⊂ G. For U ∈ U and g ∈ G, we write Tg :
G/(gUg−1) → G/U for theG-equivariant isomorphismα · gUg−1 7→ αg · U , i.e., right multiplication
by g.

We first construct a natural injective mapψ : Aut(FG)→ G∗. Givenφ ∈ Aut(FG), one obtains induced
automorphismsφU : G/U → G/U for U ∈ U. Let gU · U := φU (1 · U) andhU · U := φ−1

U (1 · U)

denote the images of the identity coset1 · U ⊂ G/U underφU andφ−1
U ; here we view a coset ofU as a

subset ofG. We claim that{gU ·U} (indexed byU ∈ U) is a filter base that defines a Cauchy and shrinking
filter. The finite intersection property follows immediately from φ commuting with the projection maps
G/W → G/U for W ⊂ U a smaller open subgroup. For the Cauchy property, we must check: given
U ∈ U, there existsW ∈ U andb ∈ G such thatgW ·W ⊂ U · b. Fix an elementh ∈ G defining the coset
hU · U , and letW = hUh−1 be the displayed conjugate ofU . Then one has aG-equivariant isomorphism
Th : G/W → G/U defined in symbols byα ·W 7→ α ·Wh = αh ·U , where the last equality is an equality
of subsets ofG. The compatibility ofφ with Th then showsgW ·W · h = φU (h · U) = U , where the last
equality usesφU ◦ φ

−1
U = id; settingb = h−1 then gives the Cauchy property. For the shrinking property,

we must show: for eachU ∈ U, there existV,W, Y ∈ U such thatV · gW ·W ·Y ⊂ gU ·U ; we may simply
takeW = Y = U , andV = gUg−1 for someg ∈ G lifting the cosetgU · U . Let ψ(φ) be the Cauchy
and shrinking filter associated to{gU · U}, i.e.,ψ(φ) is the collection of open subsetsY ⊂ G such that
gU · U ⊂ Y for someU ∈ U. Thenψ(φ) ∈ G∗, which defines a mapψ : Aut(FG)→ G∗.

Next, we show thatψ is injective. If φ ∈ ker(ψ), thengU · U = U in the notation above. Now pick
someU ∈ U and fix someg ∈ G. The naturality ofφ with respect toTg : G/(gUg−1) → G/U shows
thatφU (g · U) = g · U , which proves thatφU = id for all U ∈ U. Any S ∈ G-Set may be written as
S = ⊔iG/Ui for suitableUi, soφS = id for all suchS, and henceφ = id.

It now suffices to show thatAut(FG) is complete. Recall that the class of complete groups is closed inside
that of all topological groups under products and passage toclosed subgroups. We may realizeAut(FG) as
the equalizer of

∏
U∈UAut(U) //

//
∏
U,V ∈U

∏
MapG(G/U,G/V )Map(G/U,G/V ) ,

with the maps given by precomposition and postcomposition by automorphisms. Hence,Aut(FG) is a
closed subgroup of

∏
U∈UAut(S); as the latter is complete by Lemma 7.1.4, the claim follows. �

Proposition 7.1.5 leads to an abundance of Noohi groups:

Example 7.1.6. Any locally compact group with a fundamental system of neighbourhoods of1 given by
open subgroups is a Noohi group. Indeed, any locally compactgroup is complete. Some important classes
of examples are: (a) profinite groups, and (b) the groupsG(E) whereE is a local field, andG is a finite
typeE-group scheme, and (c) discrete groups.

Perhaps surprisingly, the algebraic closureQℓ of Qℓ is also a Noohi group for the colimit topology, in
contrast with the situation for theℓ-adic topology. In fact, one has:

Example 7.1.7.Fix a prime numberℓ. For any algebraic extensionE of aE0 = Qℓ, the groupGLn(E)
is a Noohi group under the colimit topology (induced by expressingE as a union of finite extensions) for
all n. To see this, we first show thatE is itself Noohi. Choose a towerE0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ E
such thatE = colimEi. Let U be the collection of all open subgroups ofOE in the colimit topology. By
Lemma 7.1.8, we must check thatOE ≃ O∗

E := limU OE/U ; here we use thatOE is abelian to identify
the completionO∗

E . A cofinal collection of open subgroups is of the formUf , wheref : N → N is a
function, andUf = 〈ℓf(i)OEi

〉 is the group generated inOE by the displayed collection of open subgroups
of eachOEi

. ChooseOEi
-linear sectionsOEi+1

→ OEi
; in the limit, this givesOEi

-linear retractions
ψi : OE → OEi

for eachi. An elementx ∈ O∗
E = limU OE/U determinesψi(x) ∈ O∗

Ei
= OEi

. If the
sequence{ψi(x)} is eventually constant (inOE), then there is nothing to show. Otherwise, at the expense
of passing to a cofinal set of theEi’s, we may assumeψi(x) ∈ OEi

−OEi−1
. Then one can choose a strictly
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increasing sequence{ki} of integers such thatψi(x) ∈ OEi
butψi(x) /∈ OEi−1

+ ℓkiOEi
. The association

i 7→ ki gives a functionf : N → N. Choose somexf ∈ OEj
for somej representing the image ofx in

OE/Uf . Nowψi(x)−ψi(xf ) ∈ ψi(Uf ) for eachi. Asψi isOEi
-linear andf is strictly increasing, it follows

thatψi(x) ∈ OEj
+ ℓkiOEi

for eachi > j; this directly contradicts the assumption onψi(x), proving that
OE is Noohi. To pass fromOE to GLn(OE), we use that the exponentialexp : ℓc ·Mn(OE) → GLn(OE)
(for somec > 0 to avoid convergence issues) is an isomorphism of uniform spaces onto an open subgroup
of the target, where both sides are equipped with the two-sided uniformity associated to open subgroups of
the colimit topology; see, for example, [Sch11,§18] for more on thep-adic exponential for Lie groups.

The following lemma was used above:

Lemma 7.1.8. If a topological groupG admits an open Noohi subgroupU , thenG is itself Noohi.

Proof. We must show that the natural mapG → Aut(FG) is an isomorphism. By considering the action
of both groups on theG-setG/U , it is enough to check thatU ≃ StabAut(FG)(x) =: H, wherex ∈ G/U
is the identity coset. For anyU -setS, one has an associatedG-set IndGU (S) = (S × G)/ ∼, where the
equivalence relation is(us, g) ∼ (s, gu) for anyu ∈ U , s ∈ S, g ∈ G, and theG-action is defined by
h · (s, g) = (s, hg) for h ∈ G. This construction gives a functorIndGU : U -Set → G-Set, left adjoint to
the forgetful functor. For anyU -setS, there is an obvious mapIndGU (S) → G/U of G-sets defined by the
projectionS×G→ G. The fibre of this map overx ∈ G/U is theU -setS. In particular, there is an induced
H-action onS. One checks that this gives a continuous mapH → Aut(FU ) extending the obvious map
U → Aut(FU ). Now the essential image ofIndGU generatesG-Set under filtered colimits: for any open
subgroupV ⊂ U , one hasIndGU (U/V ) = G/V . Thus,H → Aut(FU ) is injective. On the other hand, asU
is Noohi, the compositeU → H → Aut(FU ) is an isomorphism, and hence so isU → H. �

7.2. Infinite Galois theory. Infinite Galois theory gives conditions on a pair(C, F : C→ Set), consisting
of a categoryC and a functorF , to be equivalent to a pair(G-Set, FG : G-Set → Set) for G a topological
group. Here, an objectX ∈ C is called connected if it is not empty (i.e., initial), and for every subobject
Y ⊂ X (i.e.,Y

∼
→ Y ×X Y ), eitherY is empty orY = X.

Definition 7.2.1. An infinite Galois category8 is a pair (C, F : C→ Set) satisfying:

(1) C is a category admitting colimits and finite limits.
(2) EachX ∈ C is a disjoint union of connected objects.
(3) C is generated under colimits by a set of connected objects.
(4) F is faithful, conservative, and commutes with colimits and finite limits.

Thefundamental groupof (C, F ) is the topological groupπ1(C, F ) := Aut(F ), topologized by the compact-
open topology onAut(S) for anyS ∈ Set.

Example 7.2.2. If G is a Noohi group, then(G-Set, FG) is a Noohi category, andπ1(C, F ) = G.

However, not all infinite Galois categories arise in this way:

Example 7.2.3. There are cofiltered inverse systemsGi, i ∈ I, of free abelian groups with surjective
transition maps such that the inverse limitG = limGi has only one element, cf. [HS54]. One can define
an infinite Galois category(C, F ) as the2-categorical direct limit ofGi-Set. It is not hard to see that
π1(C, F ) = limGi, which has only one element, yetF : C→ Set is not an equivalence.

This suggests the following definition.

Definition 7.2.4. An infinite Galois category(C, F ) is tame if for any connectedX ∈ C, π1(C, F ) acts
transitively onF (X).

The main result is:

Theorem 7.2.5.Fix an infinite Galois category(C, F ) and a Noohi groupG. Then

8A similar definition is made in [Noo08]. However, the conditions imposed there are too weak: The category of locally profinite
sets with open continuous maps as morphisms satisfies all axioms imposed in [Noo08], but does not arise asG-Set for any Noohi
groupG. There are even more serious issues, see Example 7.2.3.
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(1) π1(C, F ) is a Noohi group.
(2) There is a natural identification ofHomcont(G,π1(C, F )) with the groupoid of functorsC→ G-Set

that commute with the fibre functors.
(3) If (C, F ) is tame, thenF induces an equivalenceC ≃ π1(C, F )-Set.

Proof. Fix a setXi ∈ C, i ∈ I, of connected generators. As in the proof of Proposition 7.1.5, one gets that
π1(C, F ) is the closed subgroup of

∏
iAut(F (Xi)) of those elements compatible with all maps between all

Xi. It follows thatπ1(C, F ) is closed in a Noohi group, and thus a Noohi group itself, proving (1). Also,
part (2) is completely formal.

It remains to prove part (3). As(C, F ) is tame, we know that for any connectedX ∈ C, π1(C, F ) acts
transitively onF (X). It follows that the functorC → π1(C, F )-Set preserves connected components. By
interpreting mapsf : Y → X in terms of their graphΓf ⊂ Y × X, one sees that the functor is fully
faithful. For essential surjectivity, take any open subgroup U ⊂ π1(C, F )-Set. As π1(C, F ) is closed in∏
iAut(F (Xi)), there are finitely manyXij , with pointsxj ∈ F (Xij ), j ∈ J , such thatU contains the

subgroupU ′ of π1(C, F ) fixing all xj . The elementπ1(C, F )/U ′ ∈ π1(C, F )-Set is the image of some
XU ′ ∈ C, as it can be realized as the connected component of

∏
jXij containing(xj)j . As colimits exist

in C, the quotientXU = XU ′/U exists inC. As colimits are preserved byF , it follows thatF (XU ) =
π1(C, F )/U , as desired. �

Proposition 7.1.5 is useful to study Noohi groups under limits. Similarly, Theorem 7.2.5 is useful for
studying the behaviour under colimits. For example, one hascoproducts:

Example 7.2.6.The category of Noohi groups admits coproducts. Indeed, ifG andH are Noohi groups,
then we can define an infinite Galois category(C, F ) as follows: C is the category of triples(S, ρG, ρH)
whereS ∈ Set, while ρG : G → Aut(S) andρH : H → Aut(S) are continuous actions onS of G andH
respectively, andF : C→ Set is given by(S, ρG, ρH) 7→ S. One has an obvious map from the coproduct of
abstract groupsG ∗H to π1(C, F ), from which one can see that(C, F ) is tame. ThenG ∗N H := π1(C, F )
is a coproduct ofG andH in the category of Noohi groups.

Remark 7.2.7. It may be true that general infinite Galois categories are classified by certain group objects
G in the pro-category of sets. One has to assume that the underlying pro-set of this group can be chosen to
be strict, i.e. with surjective transition maps. In that case, one can defineG-Set as the category of setsS
equipped with an action ofG (i.e., equipped with a mapG×S → S in the pro-category of sets that satisfies
the usual axioms). It is easy to verify thatG-Set forms an infinite Galois category under the strictness
hypothesis. To achieve uniqueness ofG, one will again have to impose the condition that there are enough
open subgroups. Fortunately, the infinite Galois categories coming from schemes will be tame, so we do not
worry about such esoteric objects!

7.3. Locally constant sheaves.Fix a schemeX which is locally topologically noetherian. We will consider
the following classes of sheaves onXproét:

Definition 7.3.1. Fix F ∈ Shv(Xproét). We say thatF is

(1) locally constantif there exists a cover{Xi → X} in Xproét with F |Xi
constant.

(2) locally weakly constantif there exists a cover{Yi → X} in Xproét with Yi qcqs such thatF |Yi is
the pullback of a classical sheaf on the profinite setπ0(Yi).

(3) a geometric coveringif F is anétaleX-scheme satisfying the valuative criterion of properness.

We writeLocX , wLocX andCovX for the corresponding full subcategories ofShv(Xproét).

Remark 7.3.2. The objects ofLocX , wLocX andCovX are classical. This is evident forCovX , and follows
from Lemma 5.1.4 forLocX andwLocX .

Remark 7.3.3. Any Y ∈ CovX is quasiseparated:Y is locally topologically noetherian by Lemma 6.6.10.
Hence, we can writeY as a filtered colimit of its qcqs open subschemes. This remarkwill be used without
comment in the sequel.

Remark 7.3.4. Fix anF ∈ Shv(Xproét). One checks thatF ∈ wLocX if and only if for any qcqs w-
contractibleY ∈ Xproét, the restrictionF |Y is classical, and the pullback of its pushforward toπ0(Y ). For
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suchY , pushforward and pullback alongShv(Yét) → Shv(π0(Y )ét), as well as the inclusionShv(Yét) ⊂
Shv(Yproét), commute with all colimits and finite limits; thus, the subcategorywLocX ⊂ Shv(Xproét) is
closed under all colimits and finite limits.

Example 7.3.5. If X = Spec(k) is the spectrum of a field, thenLocX = wLocX = CovX = Shv(Xét).
Indeed, this is immediate from the observation that any separable closure ofk provides a connected w-
contractible cover ofX. More generally, the same argument applies to any finite scheme of Krull dimension
0: the underlying reduced scheme is a finite product of fields.

Lemma 7.3.6. If Y is a qcqs scheme, andF ∈ Shv(Yproét) is the pullback of a classical sheaf onπ0(Y ),
then

(1) F is representable by an algebraic spaceétale overY .
(2) F satisfies the valuative criterion for properness.
(3) The diagonal∆ : F → F ×Y F is a filtered colimit of clopen immersions.

Proof. As any classical sheaf on a profinite set is a filtered colimit of finite locally constant sheaves, so
F = colimi Ui is a filtered colimit of finite étaleY -schemesUi indexed by a filtered posetI. In particular,
(2) and (3) are clear. (1) follows by expressingF as the quotient of the étale equivalence relation on⊔iUi
given by the two evident maps⊔i≤jUi → ⊔iUi: the identityUi → Ui and the transition mapUi → Uj. �

Remark 7.3.7. The algebraic spaceF in Lemma 7.3.6 neednotbe quasiseparated overY . For example, we
could takeF to be the pullback of two copies ofπ0(Y ) glued along a non-quasicompact open subset. This
phenomenon does not occur for the geometric coverings we consider asX is topologically noetherian.

Lemma 7.3.8. If Y is a henselian local scheme, then anyF ∈ CovX is a disjoint union of finitéetale
Y -schemes.

Proof. If Z ⊂ Y is the closed point, thenF |Z = ⊔iZi with Zi → Z connected finite étale schemes by
Example 7.3.5. Let̃Zi → Y be the (unique) connected finite étaleY -scheme liftingZi → Z. Then the
henselian property ensures thatF (Z̃i) = F |Z(Zi), so one finds a canonical étale mapφ : ⊔iZ̃i → F
inducing an isomorphism after restriction toZ. As the image ofφ is closed under generalization, and
because each point ofF specializes to a point of the special fibre (by half of the valuative criterion), one
checks thatφ is surjective. To checkφ is an isomorphism, one may assumeY is strictly henselian, sõZi = Y
for eachi. Then eachZ̃i → F is an étale monomorphism, and hence an open immersion. Moreover, these
open immersions are pairwise disjoint (by the other half of the valuative criterion), i.e., that̃Zi ∩ Z̃j = ∅ as
subschemes ofF for i 6= j. Then⊔iZ̃i gives a clopen decomposition forF , as wanted. �

Lemma 7.3.9. One hasLocX = wLocX = CovX as subcategories ofShv(Xproét).

Proof. The property that a sheafF ∈ Shv(Xproét) lies in LocX , wLocX , or CovX is Zariski local onX.
Hence, we may assumeX is topologically noetherian. It is clear thatLocX ⊂ wLocX . ForwLocX ⊂
CovX , fix someF ∈ wLocX . Lemma 7.3.6 and descent show thatF satisfies the conclusion of Lemma
7.3.6. To getF to be a scheme, note thatF is quasiseparated asX is topologically noetherian, and thus the
diagonal ofF is a clopen immersion by quasicompactness. In particular,F is separated, and thus a scheme:
any locally quasifinite and separated algebraic space overX is a scheme, see [Sta, Tag 0417].

We next showCovX ⊂ wLocX , i.e., any geometric coveringF → X is locally weakly constant. In fact,
it suffices to show the following: for any qcqsU ∈ Xét and mapφ : U → F , one may, locally onXét,
factorφ asU → L → F with L finite locally constant. Indeed, this property implies thatF |Y is a filtered
colimit of finite locally constant sheaves for any w-contractible Y ∈ Xproét, which is enough for local weak
constancy. AsF is a filtered colimit of qcqs open subschemes, this property follows from Lemma 7.3.8 and
spreading out.

It remains to checkwLocX = LocX . ChooseF ∈ wLocX and a qcqs w-contractible coverY → X such
thatF |Y = π∗G for someG ∈ Shv(π0(Y )ét), whereπ : Y → π0(Y ) is the natural map. We must show
thatG is locally constant. LetXη ⊂ X be the union of the finite collection of generic points ofX, and write
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Yη ⊂ Y for the corresponding fibre. LetYη be a qcqs w-contractible cover ofYη. Then we obtain a diagram

Yη
ψ

//

a

��

π0(Yη)

π0(a)

��

Yη
φ

//

b
��

π0(Yη)

π0(b)
��

Y
π //

c

��

π0(Y )

X

Each connected component ofY is a strict henselisation ofX, and thus contains a point lying over a point
of Xη, i.e., a point ofYη. This shows thatπ0(b) is surjective. The mapπ0(a) is clearly surjective. Write
f : π0(Yη) → π0(Y ) for the composite surjection. AsY is w-contractible, the spaceπ0(Y ) is extremally
disconnected. Thus, it is enough to show thatf∗G is locally constant. Asψ∗ψ

∗ ≃ id as endofunctors of
Shv(π0(Yη)), it is enough to showψ∗f∗G is locally constant. By the commutativity of the diagram, the
latter sheaf coincides with the restriction ofF to Yη. But Yη is a w-contractible cover ofXη, so the claim
follows from the equalitywLocXη = LocXη of Example 7.3.5. �

Remark 7.3.10. If X is Nagata, one may prove a more precise form of Lemma 7.3.9: there exists a pro-étale
cover{Ui → X} with Ui connected such thatF |Ui

is constant for anyF ∈ wLocX . To see this, choose
a stratification{Xi → X} with Xi affine, normal and connected; this is possible asX is Nagata. LetVi
be the henselisation ofX alongXi, andUi → Vi be a connected pro-(finite étale) cover that splits all finite
étaleVi-schemes. Then one checks that{Ui → X} satisfies the required properties using the Gabber-Elkik
theorem (which identifiesVi,f ét ≃ Xi,f ét), and the observation that eachF ∈ wLocXi

is a disjoint union of
finite étaleXi-schemes by normality.

Remark 7.3.11. For an arbitrary schemeY , defineLocY , wLocY andCovY as above, except that objects
of wLocY andCovY are required to be quasiseparated. Then the proof of Lemma 7.3.9 shows that one
always hasLocY ⊂ wLocY = CovY , and the inclusion is an equivalence ifY has locally a finite number
of irreducible components.

Example 7.3.12.Some topological condition on the schemeX (besides being connected) is necessary
to make coverings well-behaved. Indeed, consider the following example. LetT be topological space
underlying the adic space corresponding to the closed unit disc overQp. This is a spectral space, so there
is some ringA for whichX = SpecA is homeomorphic toT . All arguments in the following are purely
topological, so we will argue on the side ofT . The origin 0 ∈ T is a closed point which admits no
generalizations, yetT is connected. One has open subsetsT1, T1/2, . . . ⊂ T , whereT1/i is the annulus with
outer radius1/i and inner radius1/(i + 1).

The open subsetU = T \ {0} ⊂ T defines an object ofCovX . Indeed, it is clearly étale, and it satisfies
the valuative criterion of properness, as0 does not admit nontrivial generalizations. One can show that U
also defines an object ofwLocX , however it is not hard to see thatU does not define an object ofLocX . We
claim that the disjoint union ofU with an infinite disjoint union of copies ofX belongs toLocX . This will
prove thatLocX is not closed under taking connected components, so that it cannot define an infinite Galois
category.

Consider the pro-étale coverY → X which has connected componentsπ0(Y ) = {0, 1, 1/2, 1/3, . . .},
with connected componentsY0 = {0}, Y1/i = U1/i; it is easy to see how to buildY as an inverse limit. The
pullback ofU to Y is the pullback of the sheafFU on π0(Y ) concentrated on{1, 1/2, 1/3, . . .}. To show
that the disjoint union ofU with an infinite disjoint union of copies ofX belongs toLocX , it is enough
to show that the disjoint union ofFU with an infinite constant sheaf onπ0(Y ) is again an infinite constant
sheaf. This boils down to some easy combinatorics on the profinite setπ0(Y ), which we leave to the reader.
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7.4. Fundamental groups. In this section, we assume thatX is locally topologically noetherian and con-
nected, and we fix a geometric pointx of X with evx : LocX → Set being the associated functorF 7→ Fx.

Lemma 7.4.1. The pair(LocX , evx) is an infinite Galois category. Moreover, it is tame.

Proof. For the first axiom, Remark 7.3.4 shows thatwLocX ⊂ Shv(Xproét) is closed under colimits and fi-
nite limits. For the second axiom, we useCovX . Indeed, anyY ∈ CovX is locally topologically noetherian,
so that its connected components are clopen. Any clopen subset ofY defines another object ofCovX . It is a
connected object. Indeed, assumeY ∈ CovX is connected as a scheme, andZ → Y is some map inCovX .
The image ofZ is open and closed under specializations (by the valuative criterion of properness). AsY
is locally topologically noetherian, open implies locallyconstructible, and in general, locally constructible
and closed under specializations implies closed. Thus, theimage ofZ is open and closed, and thus either
empty or all ofY . The third axiom regarding things being a set (as opposed to aproper class) is left to the
reader. For the last axiom, we useLocX . As any pair of points ofX is linked by a chain of specializations,
one checks thatevx is conservative and faithful onLocX . As evx is given by evaluation on a connected w-
contractible object, it commutes with all colimits and all limits in Shv(Xproét), and hence with all colimits
and finite limits inLocX .

Finally, we have to prove tameness. This comes down to showing thatπ1 is large enough, i.e. we have to
construct enough paths inX. Thus, choose some connected coverY → X, and any two geometric points
y1, y2 abovex. They give rise to topological points̄y1, ȳ2 ∈ Y . AsY is locally topologically noetherian, we
can find a paths̄y1 = z̄0, z̄1, . . . , z̄n = ȳ2 of points inY such that for eachi = 0, . . . , n − 1, z̄i+1 is either
a specialization or a generalization ofz̄i. Fix geometric pointszi abovez̄i. By projection, we get geometric
pointsxi of X, lying above topological points̄xi ∈ X.

For eachi, choose a valuation ringRi with algebraically closed fraction field, together with a map
SpecRi → Y such that the special and generic point are (isomorphic to)zi and zi+1 (or the other way
around); we fix the isomorphisms. The valuation ringsRi induce mapsSpecRi → X, which induce iso-
morphisms of fibre functorsevxi ≃ evxi+1

. By composition, we get an isomorphism of fibre functors

evx = evx0 ≃ evx1 ≃ . . . ≃ evxn = evx ,

i.e. an automorphismγ ∈ π1(LocX , evx) of the fibre functorevx. By construction, we haveγ(y1) = y2,
showing that(LocX , evx) is tame. �

Tameness implies that the following definition is robust:

Definition 7.4.2. Thepro-étale fundamental groupis defined asπproét1 (X,x) := Aut(evx); this group is
topologized using the compact-open topology onAut(S) for anyS ∈ Set.

We now relateπproét1 (X,x) to other fundamental groups. First, the profinite completion of πproét1 (X,x)

recovers the étale fundamental groupπét1 (X,x), as defined in [SGA71]:

Lemma 7.4.3. LetG be a profinite group. There is an equivalence

Homcont(π
proét
1 (X,x), G) ≃ (BFG)(Xproét) .

Here,Hom(H,G) for groupsG andH denotes the groupoid of mapsH → G, where maps between
f1, f2 : H → G are given by elementsg ∈ G conjugatingf1 into f2.

Proof. Both sides are compatible with cofiltered limits inG, so we reduce toG finite. In this case, one
easily checks that both sides classifyG-torsors onXproét. �

To understand representations ofπproét1 (X,x), we first construct “enough” objects inLocX .

Construction 7.4.4. The equivalenceCovX ≃ LocX ≃ πproét1 (X,x)-Set implies that for each open sub-
groupU ⊂ πproét1 (X,x), there exists a canonically definedXU ∈ CovX with a lift of the base point
x ∈ XU,proét corresponding toπproét1 (X,x)/U ∈ πproét1 (X,x)-Set in a base point preserving manner.
Moreover, asXU is itself a locally topologically noetherian scheme, one has πproét1 (XU , x) = U as sub-
groups ofπproét1 (X,x).
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Write LocXét
for the category of locally constant sheaves onXét, viewed as a full subcategory ofLocX .

The difference betweenLocXét
andLocX can be explained group theoretically:

Lemma 7.4.5. UnderLocX ≃ πproét1 (X,x)-Set, the full subcategoryLocXét
⊂ LocX corresponds to the

full subcategory of thoseS ∈ πproét1 (X,x)-Set where an open subgroup acts trivially.

Proof. Fix S ∈ πproét1 (X,x)-Set, and assume an open subgroupU ⊂ πproét1 (X,x) acts trivially onS.
Then the corresponding locally constant sheaf is trivialized by passage toXU , which is an étale cover of
X. Conversely, fix someF ∈ LocXét

with fibre S, and consider the sheafG = Isom(F, S) on Xproét.
The étale local trivializability ofF shows thatG is anAut(S)-torsor onXét; here we use thatAut(S) =
Aut(S) = ν∗FAut(S) on Xét as eachU ∈ Xét has a discreteπ0. ThenG ∈ CovX , so there exists an

open subgroupU ⊂ πproét1 (X,x) and a factorizationXU → G → X. By construction,F |G is constant, so
U = πproét1 (XU , x) acts trivially on the fibreFx. �

The pro-(discrete group) completion ofπproét1 (X,x) covers the fundamental pro-group defined in [Gro64,
§6]:

Lemma 7.4.6. LetG be a discrete group. There is an equivalence

Homcont(π
proét
1 (X,x), G) ≃ (BG)(Xét) .

Proof. Any continuous mapρ : πproét1 (X,x)→ G gives aG-torsor inπproét1 (X,x)-Set, and hence an object
of (BG)(Xproét); one then simply observes that(BG)(Xproét) = (BG)(Xét) asG is discrete. Conversely,
anyG-torsorF onXét defines a fibre preserving functorG-Set → LocX simply by pushout, and hence
comes from a continuous mapπproét1 (X,x)→ G. �

Lemma 7.4.6 shows that the inverse limit of the pro-group defined in [Gro64,§6] is large enough, i.e., the
limit topological group has the same discrete group representations as the defining pro-group.

We now explain why the groupπproét1 (X,x) is richer than its pro-(discrete group) completion: the latter
does not know the entirety ofLocX(Qℓ) (see Example 7.4.9), while the former does. The main issue is
thatLocX(Qℓ) is notLocX(Zℓ)[

1
ℓ ], but rather the global sections of the stack associated to the prestack

U 7→ LocU (Zℓ)[
1
ℓ ] onXproét.

Lemma 7.4.7.For a local fieldE, there is an equivalence of categoriesRepE,cont(π
proét
1 (X,x)) ≃ LocX(E).

Proof. The claim is clear ifE is replaced byOE as GLn(OE) is profinite. Now given a continuous
representationρ : πproét1 (X,x) → GLn(E), the groupU = ρ−1GLn(OE) is open inπproét1 (X,x),
and hence defines a pointed coveringXU → X with πproét1 (XU , x) = U . The induced representa-
tion πproét1 (XU , x) → GLn(OE) defines someM ∈ LocXU

(OE), and hence anM ′ ∈ LocXU
(E);

one checks thatM ′ comes equipped with descent data forXU → X, and hence comes from a unique
N(ρ) ∈ LocX(E). Conversely, fix someN ∈ LocX(E), viewed as anFGLn(E)-torsor for suitablen. For
eachS ∈ GLn(E)-Set, one has an induced representationρS : FGLn(E) → FAut(S). The pushout ofN
alongρS defines anNS ∈ LocX with stalkS. This construction gives a functorGLn(E)-Set → LocX
which is visibly compatible with the fibre functor. AsGLn(E) is Noohi, one obtains by Galois theory the
desired continuous homomorphismρN : πproét1 (X,x)→ GLn(E). �

Remark 7.4.8. By Example 7.1.7, the conclusion of Lemma 7.4.7 also appliesto any algebraic extension
E/Qℓ with the same proof.

The following example is due to Deligne:

Example 7.4.9.Let Y be a smooth projective curve of genus≥ 1 over an algebraically closed field. Fix
three distinct pointsa, b, x ∈ Y , and pathseva ≃ evx ≃ evb between the corresponding fibre functors
on LocY . Let X = Y/{a, b} be the nodal curve obtained by identifyinga andb on Y ; setπ : Y → X
for the natural map, andc = π(a) = π(b). Then one has two resulting pathsevx ≃ evc as fibre functors
on LocX , and hence an elementλ ∈ πproét1 (X,x) corresponding to the loop. Fix a local fieldE, a rank
n local systemM ∈ LocY (E) with monodromy groupGLn(OE) with n ≥ 2, and a generic non-integral
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matrix T ∈ GLn(E). Then identifying the fibresMa andMb usingT (using the chosen paths) gives a
local systemM ∈ LocX(E) whereλ acts byT ; a similar glueing construction applies to local systems
of sets, and showsπproét1 (X,x) ≃ πproét1 (Y, y) ∗N λZ in the notation of Example 7.2.6. In particular, the
monodromy group ofL is GLn(E). Assume that the corresponding continuous surjective representation
ρ : πproét1 (X,x) → GLn(E) factors through the pro-(discrete group) completion ofπproét1 (X,x), i.e., the
preimage of each open subgroupW ⊂ GLn(E) contains an open normal subgroup ofπproét1 (X,x). Then
U := ρ−1(GLn(OE)) is open, so it contains an open normalV ⊂ U . By surjectivity, the imageρ(V ) is
a closed normal subgroup ofGLn(E) lying in GLn(OE). One then checks thatρ(V ) ⊂ Gm(OE), where
Gm ⊂ GLn is the center. In particular, the induced representationπproét1 (X,x) → PGLn(E) factors
through a discrete quotient of the source. It follows thatL has abelian monodromy over an étale cover of
X, which is clearly false: the corresponding statement failsfor M overY by assumption.

Example 7.4.9 is non-normal. This is necessary:

Lemma 7.4.10. If X is geometrically unibranch, thenπproét1 (X,x) ≃ πét1 (X,x).

Proof. One first checks that irreducible components are clopen in any locally topologically noetherian ge-
ometrically unibranch scheme: closedness is clear, while the openness is local, and may be deduced by a
specialization argument using the finiteness of generic points on a topologically noetherian scheme. It fol-
lows by connectedness thatX is irreducible. Moreover, by the same reasoning, any connectedY ∈ CovX is
also irreducible. Letη ∈ X be the generic point, and letYη → η be the generic fibre. ThenYη is connected
by irreducibility of Y , and hence a finite scheme asLocη is the category of disjoint unions of finite étale
covers ofη. In particular,π : Y → X has finite fibres. We claim thatπ is finite étale; this is enough for the
lemma asπét1 (X,x) classifies finite étale covers ofX. For the proof, we may assumeX quasicompact. Now
any quasicompact openU ⊂ Y containingYη is finite étale over a quasicompact openV ⊂ X, and hence
includes all points overV . ExpandingU to include the fibre over some point in the complement ofV and
proceeding inductively (using thatX is topologically noetherian) then shows thatY is itself quasicompact.
Thenπ is proper and étale, whence finite étale. �

Remark 7.4.11.The fundamental groupπdJ1 (X,x) for rigid-analytic spaces over a non-archimedean valued
field constructed by de Jong [dJ95] has some similarities with the groupπproét1 (X,x) introduced above. In
fact, in the language of our paper, the categoryCovdJX of disjoint unions of “coverings” in the sense of [dJ95,
Definition 2.1] is a tame infinite Galois category by [dJ95, Theorem 2.10]. Thus, the corresponding group
πdJ1 (X,x) is a Noohi group; by [dJ95, Theorem 4.2], the category of continuous finite dimensionalQℓ-
representations ofπdJ1 (X,x) recovers the category of lisseQℓ-sheaves (and the same argument also applies
to Qℓ-sheaves by Example 7.1.7). However, it is not true that a naive analogue ofCovdJX for schemes
reproduces the categoryCovX used above: the latter is larger. Note, moreover, that [dJ95, Lemma 2.7] is
incorrect: the right hand side is a monoid, but need not be a group. As far as we can tell, this does not affect
the rest of [dJ95].

The following definition is due to Gabber:

Remark 7.4.12. AssumeY is a connected scheme with locally a finite number of irreducible components.
Then one may define theweak fundamental groupoidwπ(Y ) as the groupoid-completion of the category
of points ofYét (which is equivalent to the category of connected w-contractible objects inYproét). For
each such pointy ∈ wπ(Y ), one has a corresponding automorphism groupwπ(Y, y); asY is connected,
the resulting functorB(wπ(Y, y)) → wπ(Y ) is an equivalence. One can think of elements ofwπ(Y, y) as
paths (of geometric points) inY , modulo homotopy.

Note that the definition ofπproét1 (Y, y) works in this generality, cf. Remark 7.3.11. Moreover, each
F ∈ LocY restricts to functorwπ(Y ) → Set, so the fibreevy(F ) has a canonicalwπ(Y, y)-action. This
construction gives a mapwπ(Y, y)→ πproét1 (Y, y); by the proof of Lemma 7.4.1, this map has dense image.
If we equipwπ(Y, y) with the induced topology, then continuous maps fromπproét1 (Y, y) to Noohi groupsG
are the same as continuous maps fromwπ(Y, y) toG. In particular, one can describe lisseQℓ- (resp.Qℓ-)
sheaves in terms of continuous representations ofwπ(Y, y) on finite-dimensionalQℓ- (resp. Qℓ-) vector
spaces.
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[Gro64] A. Grothendieck. Caractérisation et classification des groupes de type multiplicatif. InSchémas en Groupes (Sém.
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