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John D. Berman
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Abstract

We survey Lawvere theories at the level of 8-categories, as an al-
ternative framework for higher algebra (rather than 8-operads). From
a pedagogical perspective, they make many key definitions and con-
structions less technical. They are also better-suited than operads for
equivariant homotopy theory and its relatives.

Our main result establishes a universal property for the 8-category
of Lawvere theories, which completely characterizes the relationship
between a Lawvere theory and its 8-category of models. Many familiar
properties of Lawvere theories follow directly.

As a consequence, we prove that the Burnside category is a classify-
ing object for additive categories, as promised in an earlier paper, and
as part of a more general correspondence between enriched Lawvere
theories and module Lawvere theories.

1 Introduction

The primary goal of this paper is to lay the foundations for a Lawvere theo-
retic approach to higher algebra. As such, we organize the paper as a survey,
combining others’ work with our own. In this introduction, we summarize
the new results for those who are familiar with the subject; however, the
casual reader may be better served by reading Section 2, followed by this
introduction.

A Lawvere theory L encodes a particular type of algebraic theory (for
example, commutative monoids). A model of L is an instance of that alge-
braic structure. As we are working with 8-categories, we take models by
default relative to the 8-category Top of spaces.

Specifically, L is an 8-category with finite products, generated by a sin-
gle object, and models are functors L Ñ Top which preserve finite products.

The author was supported by an NSF Postdoctoral Fellowship under grant 1803089.
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The assignment from L to the 8-category MdlL of models is functorial

Mdl : Lwv Ñ PrL,

where an object of PrL is a presentable 8-category, and a morphism is a left
adjoint functor. In fact, since any Lawvere theory L has a distinguished ob-
ject 1, MdlL also has a distinguished object, the model MapLp1,´q. There-
fore, Mdl may be promoted to a functor Lwv Ñ PrL˚ .

Theorem (Theorems 2.10, 3.3). The functor Mdl : Lwv Ñ PrL˚ is fully
faithful and symmetric monoidal, and it has a right adjoint which sends
C P PrL˚ to C

op
fgf, where Cfgf Ď C is the full subcategory of finitely generated

free objects.

In this way, Lwv is a symmetric monoidal colocalization of the better un-
derstood 8-category PrL˚ , which allows us to study Lawvere theories using
familiar tools like the adjoint functor theorem and Lurie’s tensor products
of categories ([17] 4.8).

The math here is not new, but the packaging is. That is, the theorem
encapsulates the following facts about Lawvere theories:

• (the adjunction) MdlL is the free cocompletion of Lop, regarding the
latter as an 8-category with finite coproducts ([18] 5.3.6.10);

• (Mdl is fully faithful) L can be recovered from MdlL as the full sub-
category of finitely generated free objects (Proposition 2.7);

The fact that Mdl is symmetric monoidal may be less familiar, but it is a
consequence of Lurie’s ‘tensor products of categories’ machinery in [17] 4.8.
In Section 3, we explore two direct corollaries of this monoidality:

• (Corollary 3.4) If a Lawvere theory L admits a symmetric monoidal
structure compatible with finite products, then MdlL inherits a closed
symmetric monoidal structure called Day convolution;

• (Corollary 3.8) If L is as above, then L is a semiring 8-category. Any
module over L is naturally enriched in MdlL with its Day convolution.

The first of these is well-known, but the second we believe is new. It also
admits a partial converse:

Theorem (Theorem 3.11). If L admits a symmetric monoidal structure
compatible with finite products, and another Lawvere theory K is enriched
in MdlL, then K is naturally tensored over L via a map of Lawvere theories

L b K Ñ K.
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This theorem suggests that there may be a strong converse to Corollary 3.8:

Conjecture (Conjecture 3.12). If L is as above, the 8-categories of MdlL-
enriched Lawvere theories and L-module Lawvere theories are equivalent.

Sections 4 and 5 are devoted to examples and applications:
For any E1-semiring space R, there is a Lawvere theory whose models

are R-modules. In Section 4, we show that these are the only semiadditive
Lawvere theories; that is, semiadditive Lawvere theories can be identified
with semiring spaces. This is an easy result for classical Lawvere theories.
We record it here because it is slightly more subtle for 8-categories. It also
suggests a philosophy that we are fond of: Lawvere theories may be regarded
as generalized (non-additive) rings.

In Section 5.1, we use our ideas relating module Lawvere theories to
enriched Lawvere theories, proving a result promised in the author’s earlier
paper [5]:

Theorem (Theorem 5.2). The Burnside 8-category is a commutative semir-
ing 8-category, and there is an equivalence

ModBurn – AddCat8,

where AddCat8 denotes the 8-category of additive 8-categories.

Finally, in Section 5.2, we describe an application to equivariant homotopy
theory. There are no results; at this point, the application is just motiva-
tional.

1.1 Acknowledgment

This paper is largely drawn from the author’s thesis [4], of which it is the
second part. It has been in the works for years, and benefitted from con-
versations with many others, including Ben Antieau, Clark Barwick, Saul
Glasman, Rune Haugseng, Mike Hill, Bogdan Krstic, and others.

2 Fundamentals of Lawvere theories

2.1 Lawvere theories and their models

Classical Lawvere theories are one of the earliest formulations of algebraic
theory, dating to Lawvere’s 1963 thesis [16], and they have been thoroughly
studied since then; see [1]. In the setting of 8-categories, Lawvere theories
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have been studied by just a few authors, notably by Cranch [6] and Gepner-
Groth-Nikolaus [9], and in the prequel to this paper [5].

The literature in this area is sparse in part because Lurie’s book Higher
Algebra [17] founds the subject on operads, instead. That approach is now
well-developed, and it has many benefits, but it suffers from the drawback
of being pedagogically unwieldy. Even for those who are already invested in
operads, like many homotopy theorists, there is a high barrier of entry: Even
the definitions of fundamental objects like 8-operads, commutative algebras,
and symmetric monoidal 8-categories presuppose a deep understanding of
the quasicategory model.

On the other hand, there are surely those who would like to use this
machinery without requiring operads at all.

In contrast, the Lawvere theoretic approach can be described in two
sentences, and independent of our model of 8-category:

Definition 2.1. A Lawvere theory is an 8-category L which is closed under
finite products and generated under finite products by a single distinguished
object 1. An algebra or model of L in C is a functor L Ñ C which preserves
finite products.

Typically, we want to take C to be an 8-category which is presentable and
cartesian closed, such as Set, Top, or Cat8, but there is no such require-
ment. By default, we take C to be the 8-category Top of CW complexes, or
homotopy types, which is the initial object among 8-categories which are
presentable and closed symmetric monoidal. We write

MdlL “ FunˆpL,Topq.

Example 2.2. Let Fin denote the category of finite sets. Then Finop is a
Lawvere theory, with product given by disjoint union of sets, and evaluation
at the singleton

MdlFinop Ñ Top

is an equivalence of 8-categories. We say Finop is the trivial Lawvere the-
ory.

Example 2.3. Let Burneff denote the effective Burnside 2-category, whose
objects are finite sets. For finite sets X,Y , the groupoid of morphisms from
X to Y is the groupoid of span diagrams X Ð T Ñ Y , and composition
is via pullback. Then Burneff is a Lawvere theory, with product given by
disjoint union of sets.
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If f : Burneff Ñ Top is a model, then the spans 0
“

ÐÝ 0 Ñ 1, respectively
2

“
ÐÝ 2 Ñ 1 endow fp1q with a distinguished point, respectively a binary

operation fp1q ˆ fp1q Ñ fp1q. Composition in Burneff precisely enforces the
structure of a commutative (or E8) monoid on fp1q, and evaluation at 1

MdlBurneff Ñ CMon8

is an equivalence of 8-categories. See [5] Remark 3.6.
We say Burneff is the commutative (or E8) Lawvere theory.

In fact, for any cartesian monoidal Cˆ, commutative monoids in C are equiv-
alent to models of Burneff in C ([5] 3.6). Applying this to [17] 2.4.2.4:

Example 2.4. A symmetric monoidal 8-category may be regarded as a
functor Burneff Ñ Cat8 which preserves finite products. In contrast to
Lurie’s definition of a symmetric monoidal 8-category, this construction
is elementary: In order to understand it, we need only understand how to
take finite products in an 8-category (they are the same as products in the
homotopy category!), and how to regard a 2-category such as Burneff as an
8-category.

More generally, given any 8-operad O, there is a Lawvere theory L such
that

AlgOpCˆq – MdlLpCˆq

for any cartesian monoidal Cˆ. The Lawvere theory can even be more-or-
less explicitly described in terms of O ([5] 3.16).

It may appear that Lawvere theories are less general than operads because
they apply only to cartesian monoidal 8-categories. This is apparently a
significant obstacle: a major application of operads is to understanding mul-
tiplicative structure on rings. For example, a ring spectrum is an algebra in
spectra under smash product. However, this problem can be easily overcome,
as long as we restrict attention to connective ring spectra:

Example 2.5. For any connective ring spectrum R, there are Lawvere the-
ories whose models are equivalent to Modě0

R , Algě0
R , and CAlgě0

R .

This example and others like it follow from a result of Gepner, Groth, and
Nikolaus [9] which describes exactly which 8-categories are equivalent to
MdlL for some Lawvere theory L (Theorem 2.6 below).

Before stating their result, we recall the theory of presentable 8-categories.
By the adjoint functor theorem ([18] 5.5.2.9), a functor C Ñ D between pre-
sentable 8-categories preserves small colimits if and only if it has a right
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adjoint. We write PrL for the 8-category of presentable 8-categories along
with these left adjoint functors.

If C P PrL, then since Top is freely generated by one object under col-
imits, the following data are equivalent:

• an object X P C (we say C is pointed);

• a left adjoint functor L “ ´ b X : Top Ñ C (we say LpSq is the free
object on S);

• a right adjoint functor R “ MappX,´q : C Ñ Top (we say RpY q is the
underlying space of Y ).

We will denote by PrL˚ the 8-category of these pointed presentable 8-
categories, along with left adjoint basepoint-preserving functors. (Formally,
PrL˚ – PrLTop{.)

If L is a Lawvere theory, generated by the distinguished object 1, then
we regard MdlL as canonically pointed by the right adjoint forgetful functor

evaluate at 1 : MdlL Ñ Top.

By the Yoneda lemma, the corresponding basepoint is the model

Mapp1,´q : L Ñ Top.

Theorem 2.6 (Gepner-Groth-Nikolaus [9] Theorem B.7). A pointed pre-
sentable 8-category C is equivalent to MdlL for some Lawvere theory L if
and only if the forgetful functor C Ñ Top is conservative and preserves geo-
metric realizations.

2.2 Reconstructing Lawvere theories from their models

We have just seen that many 8-categories M can be described as models
over a Lawvere theory (roughly, those which are presentable and algebraic
in nature). We may now ask: is that Lawvere theory unique, and to what
extent can it be recovered from M?

If L admits finite products, then MdlL “ FunˆpL,Topq is a full subcate-
gory, by definition, of the 8-category of presheaves, PpLopq “ FunpL,Topq.
Moreover, every representable presheaf MappX,´q : L Ñ Top preserves any
limits that exist in L, and therefore is in MdlL.

By the Yoneda lemma, then Lop is a full subcategory of MdlL. (We
called this a cartesian monoidal Yoneda lemma in [5] 3.7.)
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If L is a Lawvere theory, we can explicitly identify Lop as a subcategory
of MdlL: The embedding Lop Ď MdlL identifies 1>n P Lop with I

>n P MdlL.
Here I is the distinguished object of MdlL, so that I>n can also be regarded
as the free model on n generators. In conclusion:

Proposition 2.7. Suppose M is a pointed, presentable 8-category with
distinguished object I. Let Mfgf be the full subcategory of finitely generated
free objects; that is, those of the form I

>n for integers n ě 0. If M – MdlL
for some Lawvere theory L, then L – M

op
fgf.

Theoretically, this proposition combined with Theorem 2.6 allow us to de-
scribe the Lawvere theories associated to any operad, modules over a ring,
algebras over a ring, etc. – provided we already understand the 8-category
of models.

However, we may instead seek to describe the Lawvere theory first, and
use it to construct some new 8-category of models. (For example, we might
want to do this for pedagogical purposes as in Example 2.4.)

Principle 2.8. Lawvere theories often have combinatorial descriptions, in
which their objects are finite sets, morphisms are given by diagrams of finite
sets, and products are given by disjoint union.

Example 2.9. The commutative Lawvere theory Burneff is equivalent to the
2-category of spans of finite sets.

We may revisit this principle in a future paper on combinatorial Lawvere
theories; for now, we will not emphasize it.

2.3 Main theorem

We have described how to pass back and forth between a Lawvere theory
and its 8-category of models. We will show this relation is exceptionally
robust.

Let Lwv denote the 8-category whose objects are Lawvere theories and
morphisms are functors which preserve finite products and the distinguished
object1.

Theorem 2.10. There is an adjunction

Mdl : Lwv Ô PrL˚ : p´qopfgf,

and the left adjoint Mdl is fully faithful.

1Formally, Lwv is a full subcategory of pointed cartesian monoidal 8-categories.
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In other words, Lwv is a colocalization of PrL˚ . Theorem 2.6 described ex-
plicitly which colocalization by providing a testable criterion to determine
the essential image of Lwv in PrL˚ .

Proof. Call L “ Mdl and R “ p´qopfgf, suggestive of left and right adjoints.
The composition RL is equivalent to the identity by Proposition 2.7. There-
fore, applying R induces a map of spaces

FunL˚ pLpLq, Cq
R˚

ÝÝÑ Funˆ
˚ pL, RpCqq,

natural in both L P Lwv and C P PrL˚ , and this R˚ is a natural isomorphism
by [18] 5.3.6.10. Therefore, L and R are adjoint.

For L,K P Lwv, applying L induces a map of spaces

Funˆ
˚ pL,Kq

L˚

ÝÝÑ FunL˚ pLpLq, LpKqq.

Since RL – Id, R˚L˚ is equivalent to the identity, and because R˚ is an
equivalence (as above), so is L˚. Therefore, L is fully faithful.

Remark 2.11. As seen in the proof, Theorem 2.10 combines two facts in
one: the adjunction asserts [18] 5.3.6.10, that MdlL is the free cocomple-
tion of Lop (regarding the latter as an 8-category which already has finite
coproducts).

That the left adjoint is fully faithful asserts Proposition 2.7, that Lop is
a full subcategory of MdlL.

Remark 2.12. More generally, if CartMonCat8 denotes the 8-category
of 8-categories which admit finite products (and functors which preserve
them), then the same proof shows

Mdl : CartMonCat8 Ñ PrL

is fully faithful. It also comes very close to being a left adjoint to the functor

p´qop : PrL Ñ {CartMonCat8,

with the following fatal obstacle: The domain of Mdl consists of small carte-
sian monoidal 8-categories, while the codomain of p´qop consists of large
cartesian monoidal 8-categories.

This set-theoretic problem arises because of the definition of presentable
8-categories: they are required to have a small set of generating objects, but
these objects are not remembered as part of the data. Theorem 2.10 solves
the problem by introducing a framing; that is, by remembering these objects
(or in this case, a single object).
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3 Algebra of Lawvere theories

In Section 3.1, we show that the functor MdlL : Lwv Ñ PrL˚ is symmet-
ric monoidal. Then we study its behavior on commutative algebras in 3.2,
constructing Day convolution products of models. Finally, we study its be-
havior on modules in Section 3.3, showing that many Lawvere theories have
canonical enrichments. In fact, we provide evidence that L-module Lawvere
theories can be identified with MdlL-enriched Lawvere theories (Conjecture
3.12).

3.1 Kronecker products of Lawvere theories

The primary technical contribution of this paper is first to cast the relation-
ship between Lawvere theories and their models as a colocalization (Theo-
rem 2.10) and second that this colocalization is compatible with symmetric
monoidal structures on Lwv (the Kronecker product) and PrL˚ (Lurie’s ten-
sor product). We review each of these:

Remark 3.1 (Lurie’s tensor product of presentable 8-categories). There
is a closed symmetric monoidal tensor product on PrL with the following
universal property: left adjoint functors C b D Ñ E can be identified with
functors CˆD Ñ E which preserve small colimits in each variable separately.
This is constructed by Lurie in [17] 4.8.1, and the unit is Top.

If V is presentable, to endow V with the structure of a commutative alge-
bra in PrL,b is precisely to endow V with its own closed symmetric monoidal
structure2.

If C,D are two pointed presentable 8-categories, C b D is also canonically
pointed (for example, by the free functor Top – Top b Top Ñ C b D), so
that PrL˚ is also symmetric monoidal via Lurie’s tensor product.

A commutative algebra object in PrL˚ is a presentable 8-category with
a closed symmetric monoidal structure b, pointed by the unit of b.

Remark 3.2 (Kronecker tensor product of Lawvere theories). There is a
closed symmetric monoidal tensor product of cartesian monoidal 8-categories
with the following universal property: functors C b D Ñ E which preserve
finite products can be identified with functors C ˆ D Ñ E which preserve
finite products in each variable separately. This can be made precise in two
equivalent ways:

2a consequence of the adjoint functor theorem.
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• by Lurie’s general framework of tensor products of categories ([17]
4.8.1);

• as in [5]: cartesian monoidal 8-categories can be identified with mod-
ules over the commutative semiring category Finop, which admit a rel-
ative tensor product bFinop.

If C,D are Lawvere theories (that is, generated by a single object under
ˆ), then C b D is also a Lawvere theory, so that Lwv inherits a symmetric
monoidal operation b called Kronecker product, and the unit is Finop. See
[5] for details.

For classical Lawvere theories, the Kronecker product goes back to Freyd
[8], and it is also compatible with the Boardman-Vogt tensor product ([17]
2.2.5) of operads.

That is, if LO is the Lawvere theory associated to an operad O, then
LObO1 – LO b LO1 , because the two sides have equivalent 8-categories of
models.

Theorem 3.3. The functors

Mdl : CartMonCat8 Ñ PrL

Mdl : Lwv Ñ PrL˚

are compatible with the symmetric monoidal structures of the last two re-
marks.

That is, Lwv is a symmetric monoidal colocalization of PrL˚ .
In the next two sections, we will explore the consequences of this theorem

when applied to (first) commutative algebras and (second) modules with
respect to the two symmetric monoidal structures.

Proof. By [17] 4.8.1.8, the functor

Funˆpp´qop,Topq : CocartMonCat8 Ñ PrL

is symmetric monoidal. Passing via the symmetric monoidal equivalence
p´qop : CartMonCat8 Ñ CocartMonCat8, we have the first part.

Taking E0-algebras (that is, pointed objects) on each side, we see that
Mdl : CartMonCat˚ Ñ PrL˚ is symmetric monoidal, and this restricts to the
symmetric monoidal full subcategory Lwv Ď CartMonCat˚.
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3.2 Algebra Lawvere theories and Day convolution

For suitable Lawvere theories L, we can use Theorem 3.3 to construct ten-
sor products of L-models. A commutative algebra structure on L P Lwvb

amounts to a symmetric monoidal structure on L which preserves finite
products independently in each variable, and such that the unit is the dis-
tinguished object 1.

Such Lawvere theories are sometimes called commutative algebraic the-
ories in the classical literature [15].

Corollary 3.4. If L P CAlgpLwvbq, then MdlL inherits a closed symmetric
monoidal structure called Day convolution, with unit I3.

Conversely, if MdlL has a closed symmetric monoidal structure with unit
I, then L inherits a commutative algebra structure in Lwv.

Proof. Since Mdl is symmetric monoidal, it takes commutative algebras to
commutative algebras. Therefore, if L P CAlgpLwvbq, then MdlL has a
commutative algebra structure in PrL˚ , which is to say a closed symmetric
monoidal structure with unit I.

Conversely, the right adjoint to a symmetric monoidal functor is lax
symmetric monoidal [10]. If MdlL has a closed symmetric monoidal structure
with unit I, it is a commutative algebra in PrL˚ , so L P CAlgpLwvbq.

Example 3.5. The effective Burnside 2-category is symmetric monoidal
under cartesian product, which makes it a commutative algebraic theory.
Therefore, Day convolution provides a closed symmetric monoidal smash
product for E8-spaces.

Remark 3.6 (Models in other 8-categories). More generally, suppose L is
a Lawvere theory, and V is a presentable 8-category. By general theory of
presentable 8-categories,

FunˆpL,Vq – Fun>pLop,Vopq – FunLpMdlL,V
opq – FunRpVop,MdlLq.

Lurie proves ([17] 4.8.1.17) for two presentable 8-categories C and D, that
C b D – FunRpCop,Dq. Therefore, models of L in V can be identified with
the tensor product

MdlLpVq – MdlL b V.

This equivalence is due to [9] Proposition B.3.

3This is the Day convolution of Lurie [17] and Glasman [11].
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In particular, if L P CAlgpLwvbq and V has a closed symmetric monoidal
structure, then MdlLpVq also has a closed symmetric monoidal structure4

(Day convolution).

3.3 Module Lawvere theories and enrichment

Let V be presentable and closed symmetric monoidal; i.e., V P CAlgpPrL,bq.
If M P PrL is a V-module, and X P M, then ´ b X : V Ñ M has a right
adjoint MappX,´q : M Ñ V which makes M naturally V-enriched. Gepner
and Haugseng have made this precise ([10] 7.4.13).

Conjecture 3.7. Conversely, we may think of V-modules in PrL as precisely
those V-enriched categories which are presentable in an enriched sense. As
far as the author is aware, the notion of ‘presentable in an enriched sense’
has not yet been made rigorous for 8-categories, but this is a philosophy
already familiar to some.

We have a second corollary of Theorem 3.3:

Corollary 3.8. If L is a commutative semiring 8-category whose additive
structure is cartesian monoidal, and M is an L-module, then M is naturally
enriched in MdlL.

Proof. If M is an L-module in Lwv, then MdlM is a MdlL-model in PrL.
As above, MdlM inherits a canonical MdlL-enrichment, which restricts to a
MdlL-enrichment on the full subcategory M Ď Mdlop

M
.

Example 3.9. If L “ Burneff is the Lawvere theory for E8-spaces, then
Burneff-modules can be identified with semiadditive 8-categories ([5] The-
orem 1.2). By corollary 3.8, any semiadditive 8-category is naturally en-
riched in E8-spaces.

This is the homotopical analogue of a classical fact: semiadditive cate-
gories are naturally enriched in commutative monoids.

Conversely, if L P CAlgpLwvbq, then any Lawvere theory enriched in MdlL
is naturally tensored over L:

Definition 3.10. If V is presentable and closed symmetric monoidal, a V-
enriched Lawvere theory is a V-enriched category for which the underlying
8-category is a Lawvere theory.

4because tensor products of commutative algebras are commutative algebras
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Theorem 3.11. Suppose L P CAlgpLwvbq, and Kenr is a MdlL-enriched
Lawvere theory with underlying 8-category K. For any X P L, K P K,
there is some object X b K P K with a natural isomorphism

Mapenrp´,KqpXq – Mapp´,X b Kq,

and this b arises from a morphism of Lawvere theories

L b K Ñ K.

Proof. Because Kenr is MdlL-enriched, there is a functor

MapenrK p´,´q : Kop ˆ K Ñ MdlL,

and the composite with the forgetful functor ev1 : MdlL Ñ Top is the
ordinary mapping space MapK. In particular, that composite preserves finite
products in the second variable.

By Theorem 2.6, the forgetful functor ev1 (evaluation at 1) is conserva-
tive. It also preserves finite products because it is a right adjoint. Therefore,
the functor Mapenrp´,´q preserves finite products in the second variable.

It follows that the adjoint LˆK Ñ FunpKop,Topq preserves finite prod-
ucts independently in each variable, thereby inducing a functor

φ : L b K Ñ FunpKop,Topq

which preserves finite products. By construction, φpXbKq – Mapenrp´,KqpXq.
In particular, if n denotes 1ˆn in a Lawvere theory,

φpnq – MapenrK p´, nqp1q – ev1 ˝ MapenrK p´, nq – MapKp´, nq,

so that φ factors through the full subcategory K Ď FunpKop,Topq. This
completes the proof.

Together, Corollary 3.8 and Theorem 3.11 are suggestive of:

Conjecture 3.12. If L P CAlgpLwvbq, the 8-categories of MdlL-enriched
Lawvere theories and L-module Lawvere theories are equivalent.

4 Additive Lawvere theories

Suppose that L is semiadditive as an 8-category; essentially, finite products
are also finite coproducts. By Example 3.9, L is enriched in E8-spaces.

Therefore, Endp1q is an E1-semiring space, where 1 is the distinguished
object of L, and there is a functor

Endp1q : SemiaddLwv Ñ E1Semiring.

13



Proposition 4.1. This functor is an equivalence of symmetric monoidal
8-categories, identifying a semiring R with the Lawvere theory modeling
ModR.

The proposition should not be surprising; if L is semiadditive, then we know

Mapp1ˆm, 1ˆnq – Mapp1, 1qˆmn,

which depends only on the semiring Endp1q. Hence, we expect Endp1q to
encode all the data of the Lawvere theory.

Proof. If R is an E1-semiring space, write BurnR for the Lawvere theory
whose models are BurnR, which exists by Theorem 2.6. We claim that any
semiadditive Lawvere theory L is equivalent to BurnEndp1q.

Fix L and write R “ Endp1q. Since R acts on MapMdlL
p1,´q, we have

Mapp1,´q : MdlL Ñ ModR

which maps 1 to 1, preserves finite direct sums, and therefore restricts to a
map of Lawvere theories α : L Ñ BurnR.

Certainly α is essentially surjective, so we show it is full and faithful.
Given objects m “ 1>m and n “ 1>n in L, we wish to prove that

MapLpm,nq
α˚

ÝÝÑ MapBurnR
pm,nq

is an equivalence. When m “ n “ 1, this is true by construction. Oth-
erwise, since L and BurnR are semiadditive, we know on both sides that
Mappm,nq – Rmn, so α˚ is an equivalence.

Therefore, every semiadditive Lawvere theory is of the form BurnR. By
Theorem 2.10, SemiaddLwv is the symmetric monoidal full subcategory
of PrL˚ spanned by the 8-categories ModR, as R ranges over E1-semiring
spaces. On the other hand, the functor

E1Semiring Ñ PrL˚

which sends R to ModR is also fully faithful and symmetric monoidal, which
completes the proof.

From the proposition, we deduce an important philosophy: Lawvere theories
are more like algebraic objects than categorical objects. We might even
regard them as generalized (non-additive) rings.

Finally, we apply Theorem 2.6 to deduce:

Corollary 4.2. If M is presentable and semiadditive, and M Ñ Top is a
right adjoint functor which is conservative and preserves geometric realiza-
tions, then M – ModR for some E1-semiring space R, compatibly with the
forgetful functor ModR Ñ Top.
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5 Applications of Lawvere theories

We will end with two applications. The first is to the commutative algebra
of semiring 8-categories, and the second to equivariant homotopy theory.

5.1 Commutative algebra of categories

Definition 5.1. An 8-category is additive if it is semiadditive and each
mapping E8-space is grouplike.

That is, an additive 8-category is semiadditive and enriched in Ab8 – Spě0

(grouplike E8-spaces, or connective spectra). As promised in [5], we prove:

Theorem 5.2. The Burnside 8-category Burn (which is the Lawvere theory
for connective spectra) is a commutative semiring 8-category, and ModBurn,
AddCat8 are equivalent full subcategories of SymMonCat8.

Remark 5.3. Note that Theorem 5.2 implies Conjecture 3.12 for the specific
Lawvere theory Burn. Indeed, MdlBurn – Spě0-enriched Lawvere theories
are additive Lawvere theories, so the conjecture asserts that a Lawvere theory
is a Burn-module if and only if it is additive.

Proof. As in [9], the product map Spě0 b Spě0 Ñ Spě0 is an equivalence.
Identifying Spě0 with MdlBurn and noting that Mdl is symmetric monoidal,
we find that Burn b Burn Ñ Burn is also an equivalence.

This means that the forgetful functor ModBurn Ñ SymMonCat8 is fully
faithful. We need to show that a symmetric monoidal 8-category admits
the structure of a Burn-module if and only if it is additive.

First, if C is a Burn-module, it is a Burneff-module and therefore semi-
additive (Example 3.9), but it is also MdlBurn-enriched by Corollary 3.8. By
definition, it is therefore additive.

Conversely, suppose C is additive, so that PpCq “ FunpCop,Topq is addi-
tive and presentable. By [9], PpCq is a MdlBurn-module in PrL, and therefore
also in SymMonCat8, because the functor PrL Ñ SymMonCat8 is lax sym-
metric monoidal which forgets everything except the cocartesian monoidal
structure.

The embedding Burn – Burnop Ď MdlBurn respects both symmetric
monoidal structures (‘ and b), so PpCq is a Burn-module, as a cocartesian
monoidal 8-category. Moreover, the full subcategory C P PpCq is closed
under direct sum, so it inherits a Burn-module structure. This completes
the proof.
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5.2 Equivariant homotopy theory

Throughout this section, G is a finite group. We write FinG for the cat-
egory of finite G-sets, and BurnG for the associated 8-category of virtual
spans, often referred to as the Burnside 8-category without mention of the
particular group. See [3] for more on this.

All group actions will be on the right.
There are two classical model categories of equivariant G-spaces: the

‘naive’ model structure has weak equivalences those maps which are weak
equivalences of the underlying space. The corresponding 8-category is
FunpBG,Topq, because equivalences in a functor 8-category are likewise
checked objectwise, and BG has only one object (up to equivalence).

On the other hand, the ‘genuine’ model structure has weak equivalences
those maps which have inverses up to homotopy. This model category
corresponds to an 8-category TopG which is certainly not equivalent to
FunpBG,Topq! For example, the map EG Ñ ˚ is an equivalence in the
former but not in the latter model structure.

For spectra as well, there is a distinction between FunpBG,Spq and the
8-category SpG of genuine equivariant spectra. Consult [12] for a classical
survey.

We might ask how to describe TopG and SpG in higher categorical terms.
For this, we have the two theorems:

• (Elmendorf’s Theorem: [7] Theorem 1) TopG – MdlpFinopG q;

• (Guillou-May’s Theorem: [13] Theorem 0.1, [3] Example B.6)
Spě0

G – MdlpBurnGq.

Recall that we have used the notation MdlpLq “ FunˆpL,Topq whenever L
admits finite products, even if it is not a Lawvere theory. However, FinG
and BurneffG are not far from being Lawvere theories: although they do not
have single generating objects, they are generated freely by the set of orbits
G{H, as H ranges over subgroups of G.

We call them colored Lawvere theories, with set of colors tG{Hu, or equiv-
ariant Lawvere theories, because they admit essentially surjective, product-
preserving maps from the groupoid of finite G-sets, FinisoG .

Remark 5.4. The word ‘genuine’, used to describe equivariant spaces and
spectra, can be misleading. Frequently, group actions on spectra arise via
abstract homotopy-theoretic means, such as when the spectra themselves are
algebraic in nature (as in chromatic homotopy theory). In these cases, we
typically do not expect ‘genuine’ equivariant structures.
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However, when our spaces or spectra arise geometrically out of point-set
constructions, group actions will be ‘genuine’. This is because we can pass
through the model category of genuine equivariant objects, on our way to the
abstract 8-categories TopG and SpG.

It would almost be better to regard the ‘genuine’ actions as ‘geometric’,
and the ‘naive’ actions as ‘homotopical’.

The theorems of Elmendorf and Guillou-May may be combined with Corol-
lary 3.8 as follows:

Corollary 5.5. Regarding FinG and BurneffG as commutative semiring 8-
categories, any FinG-module is naturally enriched in genuine G-spaces, and
any BurneffG -module is naturally enriched in (connective) genuine G-spectra.

More generally, suppose we have some algebraic structure, whose homotopi-
cal instances form an 8-category C. For example, C “ Spě0 corresponds to
the structure ‘abelian group’. We might ask: what kind of structure does a
genuine equivariant G-object of C have?

This is a question which is not entirely idle. Following Remark 5.4, if
an object of C has an action of G at some sufficiently concrete point-set
level, we might expect additional structure to carry over to the 8-category
C, beyond a naive G-action.

By analogy with the theorems of Elmendorf and Guillou-May, we propose
addressing this question via a 3-step procedure:

1. check whether C is of the form MdlL for some Lawvere theory L (pos-
sibly by means of Theorem 2.6);

2. check whether L can be described combinatorially, by applying some
construction M to Fin (as in Principle 2.8);

3. FunˆpMpFinGq, Cq is a candidate for genuine G-objects of C.

Example 5.6. When C “ Top, L “ Finop and the combinatorial construc-
tion M is the opposite category construction, so that (3) is Elmendorf’s
Theorem.

When C “ Spě0, L “ Burn and the combinatorial construction M is the
virtual span construction, so that (3) is Guillou-May’s Theorem.

One goal is to use this strategy to understand equivariant E8-ring spectra
via the Lawvere theory of bispans of finite G-sets, by analogy with the
construction of Tambara functors [19].

We hope to address these problems in a sequel, in which we will discuss
combinatorial constructions of Lawvere theories (as in Principle 2.8).
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