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Abstract

This is the first of a series of papers on enriched 8-categories,
seeking to reduce enriched higher category theory to the higher algebra
of presentable 8-categories, which is better understood and can be
approached via universal properties.

In this paper, we introduce enriched presheaves on an enriched 8-
category. We prove analogues of most familiar properties of presheaves.
For example, we compute limits and colimits of presheaves, prove that
all presheaves are colimits of representable presheaves, and prove a
version of the Yoneda lemma.
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1 Introduction

There has been explosive progress in higher category theory in the last
decade, largely made possible by Lurie’s books Higher Topos Theory [9] and
Higher Algebra [10]. Although the foundations of the subject are combi-
natorial and notoriously technical, a toolbox of techniques involving pre-
sentable 8-categories allows us to reduce many problems to universal prop-
erties which better agree with intuition from ordinary category theory.

If C is an 8-category, the 8-category of presheaves PShpCq “ FunpCop,Topq
is presentable, in the sense that it admits all limits and colimits, and by the
Yoneda lemma, C is the full subcategory of PShpCq spanned by representable
presheaves.

Moreover, PShpCq is freely generated by representables under colimits.
For example, there are equivalences of 8-categories

FunpC,Dq – FunL‹ pPShpCq,PShpDqq,

where FunL‹ denotes colimit-preserving functors which send representables to
representables. In other words, the 8-category Cat of 8-categories embeds
as a full subcategory of PrL‹ (presentable 8-categories with some distin-
guished objects) via the assignment C ÞÑ PShpCq.

In this way, any question about 8-categories can be reduced to a question
about presentable 8-categories. There are many reasons one may wish to
make this reduction. For example, presentable 8-categories can often by
modeled by model categories.

Another example comes from the higher algebra of presentable 8-categories
(introduced in [10] Section 4.8.1; also see [5]). If C and D are presentable
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8-categories, there is a presentable 8-category C bD satisfying the univer-
sal property: A colimit-preserving functor C b D Ñ E classifies a functor
C ˆ D Ñ E which preserves colimits in either variable independently.

In this way, PrL is a symmetric monoidal 8-category. To give some
C P PrL an algebra structure with respect to this external tensor product b
is precisely to endow C with a closed monoidal operation. Hence, the higher
algebra of PrL is a powerful tool for constructing monoidal operations; for
example, Lurie uses it to construct a symmetric monoidal smash product of
spectra, which was considered a difficult problem in homotopy theory, even
after it was first solved by Elmendorf-Kriz-Mandell-May [4].

Our goal in this series of papers is study enriched higher category theory by
reducing to the theory of presentable 8-categories. Hopefully, this will allow
enriched 8-categories to be used more effectively in subjects that rely on
them, such as secondary or iterated algebraic K-theory (see [8]) or algebraic
K-theory of analytic rings (see [11]).

Enriched higher category theory was developed by Gepner-Haugseng [6],
and a form of the enriched Yoneda lemma has been proven by Hinich [7], but
the theory so far is highly technical and has been difficult to use. Nonethe-
less, it is conjectured by experts that:

Conjecture 1.1. If V is a presentable, closed monoidal 8-category, the
8-category CatV of V-enriched categories embeds as a full subcategory of
RModVpPrLq‹, the 8-category of presentable right V-modules with some dis-
tinguished objects.

In other words, if C is a V-enriched category, there should be an 8-category
PShVpCq of V-enriched presheaves. Moreover, PShVpCq should be not only
presentable but also right tensored over V via a functor

b : PShVpCq ˆ V Ñ PShVpCq,

given roughly by the formula pF bAqpXq “ FpXq bA.
The conjecture asserts that PShVpCq contains all of the information of

the enriched category C. This would completely reduce enriched higher
category theory to the higher algebra of presentable 8-categories, which
has been well-studied over the past decade.

This is a series of papers aimed towards proving the conjecture. In
this first paper, we introduce and study the 8-categories PShVpCq of en-
riched presheaves. We think of such an enriched presheaf informally as a
contravariant V-enriched functor Cop Ñ V. We prove:
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Theorem 1.2. If V is presentable and closed monoidal, and C is a V-
enriched category, then PShVpCq is a presentable 8-category.

Theorem 1.3. If F P PShVpCq and A P V, let F b A denote the presheaf
roughly given by pF b AqpXq “ FpXq b A. This b makes PShVpCq a pre-
sentable right V-module.

In order to understand a presentable 8-category, we generally ask two ques-
tions: How can we compute limits and colimits? What is a set of objects
which generates the 8-category under colimits? We completely answer both
these questions:

Corollary 1.4. The limit and colimit of F : I Ñ PShVpCq are given by
plimPShVpCqF qpXq “ limVpFXq and pcolimPShV pCqF qpXq “ colimVpFXq.

Corollary 1.5. As a presentable right V-module, PShVpCq is generated
by the representable presheaves. That is, every presheaf is a colimit of
presheaves of the form repX bA, where X P C and A P V.

It is illustrative to compare to the ordinary theory of 8-categories, which
are categories enriched in the 8-category Top of spaces. In this case, we
have PShpCq “ FunpCop,Topq. However, it is also known that if M is any
presentable 8-category, FunpCop,Mq – PShpCq b M.

We will prove an enriched version of this equivalence by constructing an
8-category PShVpC;Mq of presheaves with values in M. This construction
makes sense provided that M is a left V-module.

Theorem 1.6. If M is a presentable left V-module, then

PShVpC;Mq – PShVpCq bV M.

We have already announced that PShVpCq is generated by representable
presheaves. In ordinary category theory, something much stronger is true:
PShpCq is freely generated by representable presheaves, in the sense that
there are equivalences of 8-categories FunLpPShpCq,Dq – FunpC,Dq.

Our last main theorem will be a generalization of this statement to en-
riched category theory. In order to make the statement, we introduce an-
other variant on the enriched presheaf construction.

That is, we introduce an 8-category coPShVpCq of V-enriched copresheaves,
which are roughly covariant functors C Ñ V.

Theorem 1.7. If V is presentable and closed monoidal, PShVpCq is dualiz-
able as a right V-module in PrL, and its dual is coPShVpCq.
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Combining with Theorem 1.6, this implies that

FunLRModV
pPShVpCq,Dq – coPShVpC;Dq,

provided D is a presentable right V-module.

Remark 1.8. If C is a V-enriched category, there are two natural candidates
for the 8-category of V-enriched functors C Ñ D. On one hand, V-enriched
categories form an p8, 2q-category CatV , so therefore we have an 8-category
FunVpC,Dq of V-enriched functors whenever D is a V-enriched category.

On the other hand, we will define an 8-category of V-enriched copresheaves
coPShVpC;Dq any time D is an 8-category right tensored over V (a right
V-module).

It is important to recognize that, although these two constructions convey
essentially the same information, one is defined for V-enriched categories
D and the other for right V-module 8-categories D. If V is presentable
and closed monoidal, Gepner-Haugseng have shown that presentable right
V-modules D are canonically V-enriched ([6] 7.4.13), and in this case we
conjecture the two constructions are equivalent.

1.1 Methods

Our results rest on Gepner-Haugseng’s operadic model for enriched 8-
categories [6]. If V is a monoidal 8-category, we expect a V-enriched cate-
gory to consist of a set S of objects, along with:

• objects CpX,Y q P V for each X,Y P S;

• composition morphisms CpX,Y q b CpY,Zq Ñ CpX,Zq;

• identity morphisms 1 Ñ CpX,Xq;

• and coherences relating these.

This data is encoded in an 8-operad AssocS (which depends on the set S),
so that a V-enriched category can be identified with an AssocS-algebra in V.
We define AssocS in Definition 3.1 and Remark 3.2; note that the definition
is fairly concrete, as AssocS is the nerve of a 1-category.

A V-enriched presheaf on C should consist of the following in addition
to the above data:

• objects FpXq P V for each X P S;

• morphisms CpX,Y q b FpY q Ñ FpXq;
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• and coherences relating these.

This data is also encoded in an 8-operad, which we call LMS (Definition
3.11). That is, an LMS-algebra in V should be regarded as a pair pC;Fq,
where C is a V-enriched category, and F is a V-enriched presheaf on C.

We write CatVS “ AlgAssocS
pVq and PShVS “ AlgLMS

pVq. There is an

inclusion AssocS Ď LMS, inducing a forgetful functor θ : PShVS Ñ CatVS . If
C is a V-enriched category, we may define PShVpCq to be the fiber θ´1pCq.

Example 1.9. We will always keep in mind the example |S| “ 1. In this
case, AssocS is the usual associative operad Assoc, and LMS is the left
module operad LM. In other words, an enriched category C with one object
X can be identified with the endomorphism algebra CpX,Xq. A presheaf on
this enriched category can be identified with a left module over CpX,Xq.

In Higher Algebra Chapter 4 [10], Lurie studies 8-categories of left mod-
ules, which are 8-categories of presheaves on enriched categories with one
object. This paper should be viewed as a generalization of that chapter to
the case |S| ą 1.

Defining PShVpCq as the fiber θ´1pCq agrees with our intuition, but it is not
easy to prove anything about these fibers.

In order to prove our main results, we will need a second model for
enriched category theory, which is more explicit although less formally well-
behaved. To do this, we construct 8-preoperads ∆op

{S and ∆op

{S ˆ ∆1, where

∆1 is the diagram category 0 Ñ 1, and ∆{S is the category of finite,
nonempty, totally ordered sets equipped with a function to S. That is,
∆{S “ ∆ ˆSet Set{S .

Remark 1.10. To describe ∆op

{S and ∆op

{S ˆ ∆1 as 8-preoperads, we also

need to equip them with maps to the commutative operad. See Sections 4.1,
respectively 4.2.

Definition 1.11. An A8-V-enriched category (with set S of objects) is a
∆op

{S-algebra in V. An A8-V-enriched presheaf is a ∆op

{S ˆ ∆1-algebra in V.

We will prove that this A8-model is equivalent to the Gepner-Haugseng
model (Corollaries 4.5 and 4.12) by utilizing Lurie’s theory of approxima-
tions to 8-operads (which is reviewed in Section 2.3).

Because ∆op

{S and ∆op

{Sˆ∆1 are 8-preoperads rather than 8-operads, the

A8-model is not as formally well-behaved as the operadic model. However,
it has two benefits.
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The first benefit is that ∆op

{S is easier to construct than AssocS . The

second, more significant, benefit is the very close relationship between ∆op

{S

and ∆op

{S ˆ ∆1.

That is, an A8-enriched presheaf can be regarded as a map F0 Ñ F1 of
functors ∆op

{S Ñ
ş
V, where

ş
V is the 8-operad associated to V (see Section

1.4 notation (4)). It turns out that F1 is just the underlying A8-enriched
category. Therefore, an A8-enriched presheaf on C can be regarded as a
single functor ∆op

{S Ñ
ş
V satisfying properties.

This provides us with a new model for PShVpCq, which is more technical
but also more concrete than its definition as a fiber of θ : PShVS Ñ CatVS .
This is Proposition 4.15.

We will use this new model to conclude Theorem 1.2 and Corollary 1.4.
We will also prove (Corollary 4.21) that PShVpCq is functorial in C, in the
sense of a functor

PShVp´q : CatVS Ñ PrL.

Example 1.12. To get a feeling for the A8-model, suppose that V is carte-
sian monoidal (monoidal under its product). Then V-enriched categories C

(with set S of objects) can be identified with functors CA8 : ∆op

{S Ñ V, in that

there is a full subcategory inclusion CatVS Ď Funp∆op

{S ,Vq. For X,Y P S, let

rX,Y s P ∆op

{S denote the function r1s Ñ S which sends 0 ÞÑ X and 1 ÞÑ Y .

Then CA8rX,Y s is the mapping object CpX,Y q P V.
When |S| “ 1, then the enriched category C carries the same information

as a V-algebra A “ CpX,Xq, and CA8 is a simplicial object of V – the
simplicial object given by the Milnor construction ([10] 4.1.2.4):

CA8 “ ¨ ¨ ¨Aˆ2
//
//
//
A

//
//oo

oo
1.oo

Given such a CA8 : ∆op

{S Ñ V, a presheaf on C can be identified with a second

functor FA8 : ∆op

{S Ñ V along with a natural transformation FA8 Ñ CA8.

We think of this natural transformation as a functor ∆op

{S ˆ ∆1 Ñ V.

In the case |S| “ 1, such a presheaf is a left X-module M , and it is
completely specified by a map of simplicial objects:

FA8 “

��

¨ ¨ ¨Xˆ2 ˆM

��

//
//
//
X ˆM

��

//
//oo

oo
M

��

oo

CA8 “ ¨ ¨ ¨ Xˆ2
//
//
//
X

//
//oo

oo
1.oo
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The downward maps are just projection away from M ; all the information
about the algebra and module structures is carried in the horizontal maps.

In general, A8-enriched categories and presheaves can be thought of as
Milnor constructions like this, but indexed by the thickened simplex category
∆op

{S
instead of ∆op. We could represent CA8 pictorially as a simplicial object

of V where the n-simplices are given by an S2 ˆ¨ ¨ ¨ ˆS2-hypercube of entries

¨ ¨ ¨

˜
CpX1,X1qbCpX1,X1q ¨¨¨ CpX1,X1qbCpXn,Xnq

...
...

CpXn,XnqbCpX1,X1q ¨¨¨ CpXn,XnqbCpXn,Xnq

¸
//
//
//

˜
CpX1,X1q

...
CpXn,Xnq

¸
//
//oo

oo
1.oo

Obviously such a diagram is cumbersome; it is included as a mnemonic, but
it won’t appear in this paper again.

Our discussion so far concerns the presheaves on a V-enriched category C

with values in V (roughly, V-enriched functors Cop Ñ V). There are two
variants on this construction.

First, an enriched copresheaf on C is roughly a V-enriched functor C Ñ V.
The theory of enriched copresheaves is completely parallel to the theory of
enriched presheaves; we introduce an 8-operad RMS , and a copresheaf is
an RMS-algebra.

Let Vrev denote the 8-category V with its reverse monoidal operation
described by X brev Y “ Y b X. Then Cop is naturally a Vrev-enriched
category (Example 5.3) and

coPShVpCq – PShV
rev

pCopq

(Remark 5.7). Therefore, everything we prove about presheaves is also true
about copresheaves.

Example 1.13. If V is symmetric monoidal, then Vrev – V as monoidal
8-categories, so coPShVpCq – PShVpCopq. This is not true in general.

Second, a V-enriched copresheaf on C with values in M is roughly a V-
enriched functor Cop Ñ M. We write PShVpC;Mq for the 8-category
thereof.

It turns out that this construction makes sense whenever M is left ten-
sored over V (a left V-module in Cat). In this case, we may regard the pair
pV;Mq as an LM-algebra in Cat, or an LM-monoidal 8-category, and we de-
fine a presheaf with values in M to be an LMS-algebra in this LM-monoidal
8-category.
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In Sections 5 and 6, we take advantage of these constructions to study
the interplay of presheaves (left actions) with copresheaves (right actions).
The key is a pairing

x´,´y : LMS ˆ RMT Ñ AssocS>T

introduced in Section 5.2. Careful analysis of this pairing allows us to:

• construct the right V-action on PShVpCq in Section 5.2 (Theorem 1.3)
and prove (Theorem 1.6)

PShVpC;Mq – PShVpCq bV M;

• construct the Yoneda embedding Y P coPShVpC; PShVpCqq in Sec-
tion 6 and prove that it induces a duality between presheaves and
copresheaves (Theorem 1.7).

Remark 1.14. Since a copresheaf is like an enriched functor, Y can be
regarded informally as an enriched functor C Ñ PShVpCq. In this sense, Y
really is the Yoneda embedding.

On the other hand, by Theorems 1.6 and 1.7 together,

coPShVpC;PShVpCqq – PShVpCq bV coPShVpCq.

In this sense, we may regard Y as an element of PShVpCq bV coPShVpCq.
It is precisely the element which exhibits the duality between PShVpCq and
coPShVpCq.

1.2 What not to expect from this paper

We study the 8-category CatVS whose

• objects are V-enriched categories C with set S of objects;

• morphisms are V-enriched functors F : C Ñ D which act as the identity
on the set S of objects, F pXq “ X.

This construction is functorial in the set S, CatV´ : Setop Ñ Cat, and it is
possible to construct an 8-category CatV of all V-enriched categories by
taking a sort of oplax colimit over CatV´. This is due to Gepner-Haugseng
[6], although the idea is older (of first studying enriched categories with a
fixed set of objects and then extrapolating). See [2] for the formulation as
an oplax colimit.
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In this paper, we make a systematic study of PShVpCq for any fixed V-
enriched category C, and we will describe the functoriality as C varies within
CatVS (see Section 4.3). However, we will not review the construction of
CatV , and we will not make any comparison of PShVpCq and PShVpDq when
C and D have different sets of objects.

The reader should expect such results in a future paper of this series.
They do not appear here because they use substantially different techniques
(centered around oplax colimits) than the results of this paper (which center
around A8-algebras, the pairing x´,´y : LMS ˆRMT Ñ AssocS>T , and the
Barr-Beck Theorem). Nonetheless, it is instructive to keep some of the
expected results in mind. These include Conjecture 1.1 as well as:

1. We expect a functor PShVp´q : CatV Ñ RModVpPrLq; that is, for
any V-enriched functor F : C Ñ D, we expect to have an adjunction
F˚ : PShVpCq Ô PShVpDq : F ˚ with F˚ a V-module functor;

2. If V is symmetric monoidal, we expect the functor PShVp´q to be
symmetric monoidal; that is, we expect

PShVpC b Dq – PShVpCq bV PShVpDq;

3. If FunV denotes the 8-category of V-enriched functors, we expect
statements of the form

PShVpC;Mq – FunVpCop,Mq,

coPShVpC;Mq – FunVpC,Mq.

Remark 1.15. Gepner-Haugseng construct CatV in a slightly different, but
equivalent way. That is, they construct an 8-operad AssocS for each space
(or 8-groupoid) S, interpreting an AssocS-algebra as an enriched category
with space S of objects. When S is discrete, this recovers our AssocS.

Then CatV´ is even functorial Topop Ñ Cat, and Gepner-Haugseng define
CatV to be the oplax colimit over Topop.

However, regardless of whether we take the oplax colimit over Setop or
Topop, we obtain equivalent 8-categories CatV by [6] Theorem 5.3.17.1

To summarize, we might use the term ‘enriched category’ for an enriched
category with a set of objects, or ‘enriched 8-category’ for an enriched cate-
gory with a space of objects. Then there is no difference between the theories
of V-enriched categories and V-enriched 8-categories.

1Thanks to Aaron Mazel-Gee for pointing out this distinction.
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The reason we choose S to vary over sets, not spaces, is very simple: If
S is a set, AssocS is (the nerve of) an ordinary category, which makes the
entire theory pleasantly concrete.

1.3 Summary

We begin in Section 2 with some review of marked 8-categories and 8-
operads. (Our notation for 8-operads differs in some respects from Lurie’s,
so this section should not be skipped.)

In Section 3, we review enriched categories and introduce enriched presheaves.
This section should be fairly accessible. We end this section by introducing
the representable presheaves repX . We prove a key technical result about
them (Theorem 3.25), which is best understood through the following corol-
lary:

Corollary 3.27. If F P PShVpC;Mq, MapprepXbM,Fq – MappM,FpXqq.

If we take M “ V, this is a kind of enriched Yoneda lemma, in the sense that
MapprepXb´,Fq, which is a priori a presheaf on V, is just the representable
presheaf described by FpXq.

The last three sections are more technical. Section 4 introduces the new
A8-model for enriched higher category theory, which we prove is equivalent
to Gepner-Haugseng’s operadic model. We prove Theorem 1.2 and Corollary
1.4.

In Section 5, we construct the right V-module structure on PShVpCq
and prove Theorem 1.3, Corollary 1.5, and Theorem 1.6. The hard part is
the construction of the V-action; the equivalence is an application of the
Barr-Beck Theorem.

In Section 6, we construct the Yoneda embedding as a copresheaf Y in
coPShVpC; PShVpCqq, and we prove Theorem 1.7. By this point, we will have
done most of the work already, so this section is short.

The casual reader who wishes to skim the paper without understanding
the proofs is recommended to read Sections 2.1-2.2, 3, 4.3, and the section
introductions. The more serious reader should follow the same prescription
before returning to Section 2.3 and reading from there to fill in the gaps.

1.4 Acknowledgments

The author thanks the National Science Foundation for his time as a post-
doctoral fellow, as well as his postdoctoral mentor Andrew Blumberg, who
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has taken an active interest in this project. He also thanks Rok Gregoric
and Rune Haugseng for helpful conversations.

Enriched categories with one object are just associative algebras, and
presheaves over them are just left modules. Chapter 4 of Lurie’s book Higher
Algebra contains all of our results already in the case of enriched categories
with one object, and most of the proofs generalize directly. Therefore, the
author also thanks Jacob Lurie for many proof techniques, and for doing
most of the hard work already.

1.5 Notation

Because of the heavy reliance on Higher Algebra, we consistently cite it as
HA rather than [10], and cite Higher Topos Theory as HTT rather than [9].
We will follow Lurie’s notation in most cases, with the following exceptions:

1. We will write Cat (not Cat8) for the 8-category of 8-categories, sim-
ilarly dropping 8 notationally anywhere it won’t introduce confusion.

2. If F : C Ñ Cat is a functor, we use
ş
F Ñ C for the associated

cocartesian fibration.

3. We use notation like O rather than Lurie’s Ob for 8-operads.

4. We regard a monoidal 8-category as a functor C : Assoc Ñ Cat, where
Assoc is the associative operad. We write the associated 8-operadş
C rather than Lurie’s Cb, because it is the associated cocartesian

fibration
ş
C Ñ Assoc.

In other respects, we follow Lurie’s notation. For example:

• We distinguish between Cat, the large 8-category of small 8-categories,
and yCat, the very large 8-category of large 8-categories.

• We denote by PrL the subcategory of yCat spanned by the presentable
8-categories, along with functors that preserve small colimits (equiv-
alently, admit right adjoints).

PrL has a symmetric monoidal operation b, and an algebra in PrL

carries the same data as a presentable, closed monoidal 8-category.
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2 Preliminaries

In this section we review some preliminaries, beginning with marked 8-
categories in Section 2.1. This material follows [2].

The rest of the section is on 8-operads, following HA (Higher Algebra
[10]). Section 2.2 reviews the foundations of 8-operads and 8-preoperads.
Then Section 2.3 is on operadic approximation, and 2.4 is on the A8-model
for algebras and modules, an extended example of operadic approximation.

These last two sections are used crucially in Section 4 to describe limits
and colimits in 8-categories of presheaves. However, the casual reader would
do better to read Section 3 first, and only then return to 2.3 and 2.4.

2.1 Marked categories

Definition 2.1. A marked 8-category is an 8-category C along with a
specified collection of morphisms, such that:

• all equivalences are marked;

• given two equivalent morphisms f – g, f is marked if and only if g is;

• any composite of marked morphisms is marked.

If C,D are marked 8-categories, a functor F : C Ñ D is marked if it sends
marked morphisms to marked morphisms.

There is an (8,2)-category of marked 8-categories and marked functors,
which we denote Cat:.

Remark 2.2. There are many ways to construct Cat::

• Let Cat:1 denote the 2-category of marked 1-categories, marked func-
tors, and (all) natural equivalences. A marked 8-category can be spec-
ified by a marking on the homotopy category, so Cat: “ CatˆCat1Cat

:
1.

See [2] 2.2 or [10] 4.1.7.1.

• Cat: is equivalent to the full subcategory of Funp∆1,Catq spanned by
those functors Cmk Ñ C which exhibit Cmk as a subcategory of marked
morphisms. See [1] 1.14.

• Cat: can be described in terms of a model structure on marked simpli-
cial sets.
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We will often be interested in multiple markings on the same 8-category,
so we will use notation like C:, C7, C6, . . . to denote markings on C.

The following reference table provides examples of marked 8-categories
and establishes notation that we will use throughout the paper.

Notation Marked morphisms Comments

C7 all morphisms the sharp marking

C5 equivalences the flat marking

C6 p-(co)cartesian morphisms for a given (co)cartesian
fibration p : C Ñ D

C§ inert morphisms for 8-operads and similar;
see Definition 2.7

C; totally inert morphisms technical (Warning 2.20)

C! left inert morphisms technical (Definition 5.11)

Example 2.3. If p : C Ñ D is a cocartesian (respectively cartesian) fibration
and D: is marked, there is an induced marking C:, in which f is marked if
and only if f is p-cocartesian (respectively p-cartesian) and ppfq is marked.

If D5 has the flat marking, the induced marking on C is the flat marking
C5. If D7 has the sharp marking, the induced marking on C is the natu-
ral marking C6: the marked morphisms are precisely the p-cocartesian mor-
phisms.

If C:,D: P Cat:, we will write Fun:pC:,D:q for the full subcategory of
FunpC,Dq spanned by marked functors2.

If C: P Cat:, there is a universal functor C Ñ |C:| which sends each
marked morphism to an equivalence [2]. Roughly, |C:| is obtained from C

by localizing (adjoining formal inverses) at all the marked morphisms.

Example 2.4. If C is any 8-category, then |C5| – C, and |C7| is the geomet-
ric realization, or the 8-groupoid built by formally inverting all morphisms.

The 8-category Cat: admits all small limits and colimits ([2] 2.5). The limit
(respectively colimit) of a diagram of marked 8-categories F : I Ñ Cat: is
the limit (colimit) of the underlying diagram of 8-categories, marked via:

• A morphism φ of colimpF q is marked if there exists i P I such that
F piq Ñ colimpF q sends some marked morphism of F piq to φ;

• A morphism φ of limpF q is marked if for all i P I, limpF q Ñ F piq sends
φ to a marked morphism of F piq.

2In principle, Fun:pC:
,D:q is itself naturally a marked category; marked morphisms are

natural transformations that send each object of C to a marked morphism of D. However,

we will never use this marking.
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Example 2.5. If A: Ñ C: and B: Ñ C: are marked functors, then the
pullback A ˆC B inherits a natural marking: a morphism is marked if and
only if the projections to A and B are each marked. With this marking,
A ˆC B is the pullback in Cat:.

2.2 Operads

If S is a set, we denote by S` “ S>t˚u the pointed set obtained by adjoining
a new basepoint. For each integer n, we also denote

• xny˝ “ t1, . . . , nu, an object of the category Fin of finite sets;

• xny “ xny˝
`, an object of the category Fin˚ of finite pointed sets;

• rns “ t0 ă 1 ă ¨ ¨ ¨ ă nu, an object of the simplex category ∆ of finite,
nonempty, totally ordered sets.

Definition 2.6. We say that a function of pointed sets f : S` Ñ T` is
inert if |f´1ptq| “ 1 for all t P T . Notice there is no condition on f´1p˚q.

We denote by Comm§ the category of finite pointed sets, marked by inert
morphisms3.

Definition 2.7 (HA 2.1.4.2). An 8-preoperad is an 8-category equipped
with a functor to Comm.

If p : O Ñ Comm is an 8-preoperad, we say a morphism of O is inert
if it is p-cocartesian and its image in Comm is inert. We will always regard
8-preoperads as marked by their inert morphisms, writing O§ P Cat:.

A morphism of 8-preoperads is a functor over Comm which sends inert
morphisms to inert morphisms. That is, the 8-category POp is the full
subcategory of Cat:

{Comm§ spanned by those 8-categories over Comm which

are marked by their inert morphisms.

Warning 2.8. This definition is slightly stronger than Lurie’s. He defines
an 8-preoperad to be any marked 8-category over Comm§, while we require
that it carries the canonical inert marking.

Before we continue, note that there are inert morphisms ρi : xny Ñ x1y for
each 1 ď i ď n, defined by ρipjq “ 1 if i “ j and ˚ otherwise.

If p : O Ñ Comm is an 8-preoperad, we write On for the fiber over xny,
which is a pullback O ˆComm txnyu.

3We use § by analogy to 6, because the inert marking on an 8-operad is typically

closely related to the natural marking on a cocartesian fibration.
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Definition 2.9 (HA 2.1.1.10,14). An 8-preoperad p : O Ñ Comm is an
8-operad if:

1. For every X P O and inert morphism f : ppXq Ñ Y in Comm, there is
an inert morphism (equivalently, a p-cocartesian morphism) X Ñ Ȳ

in O lifting f ; this implies that an inert morphism ρ : xny Ñ xmy
induces a functor ρ˚ : On Ñ Om.

2. The functor On Ñ Oˆn
1 induced by the inerts ρi : xny Ñ x1y is an

equivalence of 8-categories.

3. For every X,Y P O and f : ppXq Ñ ppY q, let MapfOpX,Y q be the
union of connected components of MapOpX,Y q lying over f . Choose
an inert Y Ñ Yi lying over each inert ρi : ppY q Ñ x1y. Then

MapfOpX,Y q Ñ
ź

i

Mapρ
if

O pX,Yiq

is an equivalence.

The 8-operads form a full subcategory Op Ď POp.

The terminal object of Op is Comm§ itself, which we regard as the commu-
tative 8-operad (hence the notation Comm).

We also have the equally important associative 8-operad Assoc: An
object of Assoc is a finite pointed set. A morphism is a basepoint-preserving
function f : S` Ñ T`, equipped with the data of total orderings on f´1ptq
for each t P T . (Note there is no extra data on f´1p˚q.)

Definition 2.10 (HA 2.1.2.13). If O is an 8-operad, an O-monoidal 8-

category is a functor V : O Ñ Cat such that
ş
V§ p

ÝÑ O§ Ñ Comm§ exhibits
the cocartesian fibration

ş
V§ as an 8-operad.

In this case, we call p a cocartesian fibration of 8-operads.
A lax O-monoidal functor V Ñ V 1 is a map of 8-operads

ş
V Ñ

ş
V 1

over O, and an O-monoidal functor is a lax O-monoidal functor which also
sends p-cocartesian morphisms to p1-cocartesian morphisms.

Definition 2.11. Suppose that O§ is an 8-operad, V is an O-monoidal 8-
category, and O1§ is an 8-preoperad over O§. An O1-algebra in V is a map
of 8-preoperads over O§:

O1§

!!❇
❇❇

❇❇
❇❇

❇
//❴❴❴❴❴❴❴❴
ş
V§

}}④④
④④
④④
④

O§.
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There is an 8-category of algebras AlgO1{OpVq “ Fun:
{O§pO1§,

ş
V§q.

We record a small lemma for later use:

Lemma 2.12. For any 8-operad O, |O§| is contractible.

Proof. The claim is equivalent to: The functor Fun:pO§, C5q Ñ C, given by
evaluation at the terminal object H, is an equivalence.

Suppose F : O Ñ C is a functor which sends inert morphisms to equiv-
alences. For any morphism f : X Ñ Y in O, F sends the inert morphisms

Y Ñ H and X
f
ÝÑ Y Ñ H to equivalences, so F pfq is an equivalence.

Therefore, Fun:pO§, C5q “ Fun:pO7, C5q – Funp|O|, Cq. Since O has a termi-
nal object, the geometric realization is contractible, and this completes the
proof.

We will also be crucially interested in the left module 8-operad LM (HA
4.2.1). It has the defining property that an LM-algebra in a monoidal 8-
category V is a pair pA,Mq, where A is an algebra in V, and M is a left
A-module. We will give a formal definition in Section 4, as a special case of
a more general construction LMS .

Example 2.13. An LM-monoidal 8-category may be regarded as a pair
pV;Mq, where V is a monoidal 8-category and M is an 8-category left
tensored over V.

Suppose pV;Mq is such an LM-monoidal 8-category. An LM-algebra in
pV;Mq consists of a pair pA,Mq, where A is an algebra in V, and M is a
left A-module in M. We write

LModpV;Mq “ AlgLM{LMpV;Mq.

There is a canonical forgetful functor θ : LModpV;Mq Ñ AlgpVq, given by
θpA,Mq “ A. Therefore, we may define:

Definition 2.14. If A P AlgpVq, the 8-category of left A-modules in M is

LModApMq “ LModpV;Mq ˆAlgpVq tAu.

Our goal is to generalize many of the nice properties satisfied by LModApMq
to 8-categories of presheaves. However, there is a major obstacle: The
definition of LModApMq is fairly unnatural. For example, if V and M

are both presentable satisfying mild conditions, then LModApMq is also
presentable, but this is not at all clear from the definition.
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Lurie solves this problem in [10] Chapter 4 by giving an alternative A8-
model for algebras and left modules, which is equivalent to the operadic
model discussed above. Then he identifies LModApMq with an 8-category
of marked functors.

The A8-model relies heavily on the theory of operadic approximations,
which we review first.

2.3 Operadic approximation

Suppose O is an 8-operad. We will often want to construct a simpler 8-
preoperad I which has the same algebras as O; that is, such that there is a
functor f : I Ñ O which induces an equivalence AlgOpVq Ñ AlgIpVq for each
monoidal 8-category V. We do this using Lurie’s theory of approximations
to 8-operads (HA 2.3.3).

Definition 2.15. A morphism f : S` Ñ T` in Comm is called active if
f´1p˚q “ t˚u (HA 2.1.2.1-3). If p : O Ñ Comm is an 8-operad, a morphism
in O is called active if its image in Comm is active.

Definition 2.16 (HA 2.3.3.6). Suppose f : I Ñ O is a map of 8-preoperads,
and O is an 8-operad. We say f is an approximation to O if:

1. For every X P I and inert morphism φ : ppXq Ñ x1y in Comm, there
is an inert morphism X Ñ Y in I lifting φ.

2. For every Y P I and active morphism φ : X Ñ fpY q in O, there is an
f -cartesian morphism X̄ Ñ Y lifting φ.

We say f is a strong approximation to O if it is an approximation to O

and f1 : I1 Ñ O1 is an equivalence between the fibers over x1y P Comm.

Theorem 2.17 (HA 2.3.3.23). Let O be an 8-operad, V a monoidal 8-
category, and f : I Ñ O a strong approximation to O. Then the map
f˚ : AlgOpVq Ñ AlgIpVq induced by composition with f is an equivalence of
8-categories.

We are motivated by two examples of operadic approximations.

Example 2.18 (HA 4.1.2.11). There is a strong approximation to Assoc,
Cut : ∆op Ñ Assoc. A morphism f˚ : rns Ñ rms in ∆op is inert if and only
if the associated morphism f˚ : rms Ñ rns in ∆ embeds rms as a convex
subset ti ă i` 1 ă ¨ ¨ ¨ ă i `mu Ď rns.
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Example 2.19 (HA 4.2.2.8). There is a strong approximation to LM,
LCut : ∆op ˆ ∆1 Ñ LM, which fits into a commutative square

∆op ˆ t1u
Cut //

��

Assoc

��
∆op ˆ ∆1

LCut
// LM.

A morphism prns
f˚

ÝÑ rms, i Ñ jq in ∆op ˆ ∆1 is inert if and only if f˚ is
inert in ∆op and either:

• f˚pmq “ n;

• or j “ 1.

We will delay explicit constructions of Cut and LCut until Section 5, as
special cases of more general constructions CutS and LCutS.

Warning 2.20. From the inert marking on ∆op ˆ ∆1, notice that the two
embeddings ∆op Ď ∆op ˆ ∆1 induce two different markings on ∆op:

• The embedding t1u Ď ∆1 induces the inert marking ∆op§;

• The embedding t0u Ď ∆1 induces the totally inert marking ∆op;, where
a morphism f˚ : rns Ñ rms of ∆op is totally inert if it is inert and
f˚pmq “ n.

2.4 The A8-model for higher algebra

We will end this section by reviewing the A8-model for algebras and left
modules.

For a monoidal 8-category V, the composite ∆op Cut
ÝÝÑ Assoc

V
ÝÑ Cat is

the simplicial 8-category BV given by the Milnor construction (HA 4.1.2.4):

¨ ¨ ¨ Vˆ2
//
//
//
V

//
//oo

oo
˚.oo

Definition 2.21. An A8-algebra of V is a section of
ş
BV

p
ÝÑ ∆op which

sends inert morphisms to p-cocartesian morphisms, and we write

A8AlgpVq “ Fun:
{∆op§p∆op§,

ş
BV§q.

By Example 2.18 and Theorem 2.17, composition with Cut : ∆op Ñ Assoc
induces an equivalence AlgpVq Ñ A8AlgpVq.
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Remark 2.22. The preceding material follows HA 4.1.3, where Lurie refers
to

ş
BV Ñ ∆op as the planar 8-operad (which he writes Vf Ñ ∆op) asso-

ciated to the 8-operad
ş
V Ñ Assoc (which he writes Vb Ñ Assoc).

Now suppose we also have a left V-module 8-category M; that is, the
pair pV;Mq is an LM-monoidal 8-category as in Example 2.13. Denote by

BpV;Mq the composite ∆op ˆ ∆1 LCut
ÝÝÝÑ LM

pV ;Mq
ÝÝÝÝÑ Cat. For concreteness,

BpV;Mq may be regarded as the morphism of simplicial 8-categories:

BV ˙ M “

q

��

¨ ¨ ¨ Vˆ2 ˆ M

��

//
//
//
V ˆ M

��

//
//oo

oo
M

��

oo

BV “ ¨ ¨ ¨ Vˆ2
//
//
//

V
//
//oo

oo
˚.oo

The downward maps are simply projection away from M; the module struc-
ture is recorded by the horizontal maps in the top row. The bottom simpli-
cial 8-category is just BV (which is in particular independent of M) because
the square of Example 2.19 commutes.

Definition 2.23. A left A8-module is a section of
ş
BpV;Mq

p
ÝÑ ∆op ˆ ∆1

which sends inert morphisms to p-cocartesian morphisms, and we write

A8LModpV;Mq “ Fun:
{∆opˆ∆1§p∆op ˆ ∆1§,

ş
BpV;Mq§q.

By Example 2.19, composition with LCut : ∆op ˆ ∆1 Ñ LM induces an
equivalence LModpV;Mq Ñ A8LModpV;Mq.

If A P A8AlgpVq, then we may define A8LModApMq just as in we did
in the operadic model:

Definition 2.24. If pV;Mq is an LM-monoidal 8-category and A P A8AlgpVq,
then A8LModApMq “ A8LModpV;Mq ˆA8AlgpVq tAu.

The benefit of the A8-model is that we can also give a much more explicit
model for A8LModApMq than this last definition. In order to do so, we
need a bit more notation.

Applying the Grothendieck construction to the map of simplicial 8-
categories

ş
BV ˙ M Ñ

ş
BV, we have a functor q over ∆op, which sends

p0-cocartesian morphisms to p1-cocartesian morphisms:

ş
BV ˙ M

q
//

p0
%%❑

❑❑
❑❑

❑❑
❑❑

ş
BV

p1
||①①
①①
①①
①①

∆op
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Remark 2.25. This discussion follows HA 4.2.2, where Lurie uses the no-
tation Mf “

ş
BV ˙ M. Therefore, he writes Mf Ñ Vf where we writeş

BV ˙ M Ñ
ş
BV.

Remark 2.26. Our discussion so far is model-independent, but everything
is fairly concrete if we work with quasicategories. Suppose we are given a
cocartesian fibration of quasicategories

ş
pV;Mq Ñ LM which realizes M as

a left V-module. Pullback along the two inclusions ∆op Ď ∆opˆ∆1 LCut
ÝÝÝÑ LM

yields quasicategory models for
ş
BV ˙ M and

ş
BV.

In this case, the functor q :
ş
BV ˙ M Ñ

ş
BV is a categorical fibration

(HA 4.2.2.19) and a locally cocartesian fibration (HA 4.2.2.20).

Remark 2.27. We will be interested in the following markings (with nota-
tion as in the triangle above):

• The marking
ş
BV§ by inert morphisms, or morphisms which are p1-

cocartesian and lie over inert morphisms in ∆op;

• The marking
ş
BV ˙ M6! by locally q-cocartesian morphisms (we use

the notation 6! to emphasize this is not the expected marking by p0-
cocartesian morphisms);

• The marking
ş
BV ˙ M; by totally inert morphisms, or morphisms

which are p0-cocartesian and lie over totally inert morphisms in ∆op

(see Warning 2.20).

We end with three important propositions describing left module 8-categories.

Proposition 2.28 (HA 4.2.2.19). If V is a monoidal 8-category, M is a
left V-module 8-category, and A is an A8-algebra of V (that is, a marked
section of

ş
BV§ Ñ ∆op§), then

A8LModApMq – Fun:

{
ş
BV§p∆op;,

ş
BV ˙ M;q.

Proof. See Proposition 4.15 for the proof of a more general result (or just
see HA 4.2.2.19 for this one).

Proposition 2.29 (HA 4.8.4.12). If V is a monoidal 8-category, M,N

are left V-module 8-categories, and FunLModV pM,N q is the 8-category of
V-linear functors (HA 4.6.2.7), then

FunLModV pM,N q – Fun:

{
ş
BV7p

ş
BV ˙ M6!,

ş
BV ˙ N 6!q.
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Corollary 2.30. A8LModApCatq is equivalent as an p8, 2q-category to the
full subcategory of Cat:

{
ş
BV7 spanned by

ş
BV ˙ M6! as M varies over left

V-modules.

Actually, we haven’t defined LModApCatq as an p8, 2q-category, but Propo-
sition 2.29 implies that there is an equivalence of 8-categories, and that
it would promote to an equivalence of p8, 2q-categories given any sensible
definition of LModApCatq as an p8, 2q-category. On the other hand, we
might simply take Corollary 2.30 as our definition of LModApCatq as an
p8, 2q-category.

For the next proposition, note that we can define right modules in parallel
with left modules, using an 8-operad RM in place of LM. We still have a
strong approximation ∆op ˆ ∆1 Ñ RM, and an RM-monoidal 8-category
is a pair pV;N q exhibiting N as a right V-module 8-category. In this case,
the associated functor BpV;N q : ∆op ˆ ∆1 Ñ Cat may be identified with a
morphism of simplicial 8-categories

N ¸ BV “

q

��

¨ ¨ ¨N ˆ Vˆ2

��

//
//
//
N ˆ V

��

//
//oo

oo
N

��

oo

BV “ ¨ ¨ ¨ Vˆ2
//
//
//

V
//
//oo

oo
˚.oo

Proposition 2.31 (HA 4.8.4.3). If V is a monoidal 8-category, N ,M are
right (respectively left) V-module 8-categories, and N bV M is the tensor
product of V-modules (HA 4.4), let r be the canonical cocartesian fibration
p
ş
N ¸ BVq ˆş

BV
p
ş
BV ˙ Mq Ñ ∆op. Then

N bV M – |p
ş
N ¸ BVq ˆş

BV
p
ş
BV ˙ Mq6|,

where the marking 6 is by r-cocartesian edges.

Remark 2.32. According to Proposition 2.31, a functor F : N bV M Ñ Z

is classified by a functor F̄ : p
ş
N ¸BV ˆş

BV
p
ş
BV ˙Mq Ñ Z. HA 4.8.4.3

actually asserts more.
Note that the fiber of p

ş
N ¸ BV ˆş

BV
p
ş
BV ˙ Mq Ñ ∆op over rns is

N ˆ Vˆn ˆ M. If the restriction of F̄ to N ˆ Vˆn ˆ M Ñ Z preserves
small colimits for each n, then F specializes to a colimit-preserving functor
N bL

V M Ñ Z, where bL
V is a relative tensor product taken in PrL.
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3 The operadic model for enriched categories

Fix a set S. Gepner-Haugseng [6] construct an 8-operad AssocS (they
call it OS) with the universal property: If V is a monoidal 8-category, an
AssocS-algebra in V is a V-enriched category with set S of objects. We write

CatVS “ AlgAssocS{AssocpVq.

A V-enriched presheaf on C P CatVS is then something like a contravariant,
V-enriched functor from C to V. However, this is not a suitable definition
at this point, because of two obstacles:

• V does not belong to the same 8-category CatVS , as it doesn’t have set
S of objects;

• V is not itself V-enriched unless it is closed monoidal; even then, it is
not obvious how to construct the self-enrichment on V.

The first obstacle is not serious; Gepner-Haugseng construct an 8-category
CatV of all V-enriched categories. However, we will delay this construction
until a future paper. In any case, it is not easy to understand enriched
functor 8-categories in CatV , so we prefer to avoid this approach.

The second obstacle is more serious. While it is possible to construct the
self-enrichment on V (see [6] Section 7), the construction is rather obscure
and not easy to use.

Instead, we will construct an 8-operad LMS with a natural embedding
AssocS Ď LMS . If C is a V-enriched category, which is an AssocS-algebra
in V, then an enriched presheaf on C is a lift to an LMS-algebra. In other
words, if we write

PShVS “ AlgLMS{AssocpVq,

we can regard an object of PShVS as a pair pC,Fq, where C P CatVS and F is
an enriched presheaf on C. The inclusion AssocS Ď LMS induces a forgetful
functor θ : PShVS Ñ CatVS , and we define

PShVpCq “ θ´1pCq,

the 8-category of enriched presheaves on C.
In fact, we always work in a more general situation. If M is an 8-

category left tensored over V, the pair pV,Mq is itself an LM-algebra in Cat,
or an LM-monoidal 8-category. We will define PShV ;M

S “ AlgLMS{LMpV;Mq,
which we interpret as the 8-category of pairs pC,Fq, where C is a V-enriched
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category, and F is an enriched presheaf with values in M. This should be
thought of informally as an enriched, contravariant functor from C to M.

In Section 3.1, we review the construction of enriched categories, due to
Gepner-Haugseng [6]. Then in Section 3.2, we introduce enriched presheaves.
Finally, in Section 3.3, we introduce two closely related constructions:

If X P C, a presheaf on C can be evaluated at X, and evaluation at X is
functorial evX : PShVpC;Mq Ñ M. Also for each X, there is a representable
presheaf repX P PShVpCq given informally by repXpY q “ CpY,Xq. In our
main result of this section (Theorem 3.25), we prove that repX is a free
presheaf. In other words:

Corollary 3.29. The functor evX : PShVpC;Mq Ñ M has a left adjoint
described by repX b ´ : M Ñ PShVpC;Mq. The presheaf repX bM is given
informally by prepX bMqpY q “ CpY,Xq bM .

This can be regarded as a form of the enriched Yoneda lemma:

Corollary 3.27. If F P PShVpCq and A P V, then

MapprepX bA,Fq – MappA,FpXqq.

3.1 Enriched categories

Definition 3.1. Fix a set S. An object of AssocS is a finite pointed set E`

along with two functions s, t : E Ñ S. A morphism is a basepoint-preserving
function f : E` Ñ E1

` along with a total ordering of f´1peq for each e P E1,
such that:

1. If f´1peq is empty, then speq “ tpeq;

2. If f´1peq “ te0 ă e1 ă . . . ă enu nonempty, then spe0q “ speq,
tpenq “ tpeq, and tpeiq “ spei`1q for each 0 ď i ă n.

We say f is inert if |f´1peq| “ 1 for all e P E1, which makes Assoc§S marked.

Remark 3.2. We make sense of the definition as so: We regard an object
of AssocS as a directed graph Γ with set S of vertices and set E of edges.
Each edge e P E has source vertex speq and target vertex tpeq.

A morphism f : Γ Ñ Γ1 is a way of transforming Γ into Γ1 by means of
the following three operations:

1. deleting some edges – these are the edges for which fpeq “ ˚;
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2. adding some loops (edges from a vertex to itself) – this corresponds to
condition (1) above;

3. deleting edges e0, . . . , en which form a path from s “ spe0q to t “ tpenq,
and replacing them by a single edge from s to t – this corresponds to
condition (2) above.

This description should also make clear how to compose morphisms.
An inert morphism is one that involves only the operation (1), and an

active morphism is one that involves only the operations (2)-(3).

Remark 3.3. In [3], we call the active morphisms in AssocS bypass oper-
ations, and we study the symmetric monoidal envelope of AssocS, which we
call BypassS.

Remark 3.4. There is an evident forgetful functor AssocS Ñ Assoc. It
sends inert morphisms to inert morphisms, and it is an isomorphism when
|S| “ 1 (in this case the functions s, t : E Ñ S carry no information, and
the two conditions of Definition 3.1 are satisfied for free).

Suppose there are two graphs Γ,Γ1 P AssocS . Then there is a new graph
ΓbΓ1 given by disjoint union of the sets of edges in Γ and Γ1. This b endows
AssocS with a monoidal structure.

The unit of b is H, the graph with no edges. Also, given X,Y P S, let
pX,Y q P AssocS denote the graph with a single edge from X to Y .

Every object of AssocS can be written uniquely (up to permutation) in
the form pX1, Y1q b ¨ ¨ ¨ b pXn, Ynq. There are also morphisms corresponding
to the three operations of Remark 3.2:

1. pX,Y q Ñ H for each X,Y P S;

2. H Ñ pX,Xq for each X P S;

3. pX,Y q b pY,Zq Ñ pX,Zq for each X,Y,Z P S.

Morphisms of type (1) are inert. Morphisms of type (2) and (3) will describe
identity morphisms and composition in enriched categories.

Proposition 3.5. The composite p : Assoc§S Ñ Assoc§ Ñ Comm§ is an

8-operad, and Assoc§S Ñ Assoc§ is a map of 8-operads.

Proof. First we check that the inert morphisms in AssocS are p-cocartesian,
so that the inert marking we have described is the correct inert marking for
an 8-operad. Let f : Γ0 Ñ Γ1 be the inert morphism in question, so that
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f´1 induces an inclusion of graphs Γ1 Ď Γ0 (in the sense of an inclusion of
edge sets, not a morphism in AssocS). Assume we have a map h : Γ0 Ñ Γ1,
and a commutative triangle

ppΓ0q

f

��

h // ppΓ1q.

ppΓ1q

u

;;✈
✈

✈
✈

✈

Then the restriction of h along Γ1 Ď Γ0 describes a map ū : Γ1 Ñ Γ1 (the
only possible lift of u to AssocS), precisely because the triangle commutes.

This is what it means for f to be p-cocartesian. Hence Assoc§S Ñ Comm§

is an 8-preoperad.
Now we need to check conditions (1)-(3) of Definition 2.9.
(1) Given Γ P AssocS and an inert morphism f : ppΓq Ñ T`, f

´1 exhibits
T as a subset of the set of edges of Γ. Let Γ1 be the subgraph spanned by
those edges. Then f lifts to an inert morphism f̄ : Γ Ñ Γ1.

(2) If O “ AssocS , each On is just the (discrete) set pS2qn, where an
element pX,Y q P S2 is interpreted as an edge from X to Y . It follows that
On Ñ Oˆn

1 is an equivalence.
(3) A morphism Γ Ñ Γ1 in AssocS is determined only by the underlying

morphism f : E` Ñ E1
` and data and conditions on each fiber f´1peq.

Therefore Assoc§S is an 8-operad. The forgetful functor AssocS Ñ Assoc
is compatible with the forgetful functors to Comm. It sends inerts to inerts,
because in each case a morphism is inert if and only if it lies over an inert
morphism in Comm, so it is a map of 8-operads.

Definition 3.6. If V is a monoidal 8-category and S a set, a V-enriched
category with set S of objects is an AssocS-algebra in V, and we write

CatVS “ AlgAssocS{AssocpVq.

Example 3.7. Suppose |S| “ 1. Then AssocS – Assoc as in Remark
3.4. Therefore, V-enriched categories with one object can be identified with
associative algebras in V.

Unpacking the definition, a V-enriched category with set S of objects is a
map of 8-operads C : Assoc§S Ñ

ş
V§. Such a functor C comes with the

following data, plus coherences:

• ‘hom’ objects CpX,Y q P
ş
V1 “ V;
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• ‘identity’ morphisms 1 Ñ CpX,Xq;

• ‘composition’ morphisms CpX,Y q b CpY,Zq Ñ CpX,Zq.

This is exactly the classical structure of an enriched category.
A morphism C Ñ D in CatVS consists of maps CpX,Y q Ñ DpX,Y q. In

other words, it is an enriched functor F : C Ñ D which acts as the identity
on objects: F pXq “ X for all X P S.

Example 3.8. Let 0 denote the contractible 8-category ˚ with its unique
monoidal structure. The corresponding functor Assoc Ñ Cat is the constant
functor with value ˚, so the associated cocartesian fibration is the identity
Assoc Ñ Assoc. Therefore, Cat0S “ Fun:

{Assoc
pAssocS,Assocq – ˚ is con-

tractible for each S.
In summary, there is a unique (up to equivalence) 0-enriched category

1S with set S of objects. We may regard it as having 1SpX,Y q “ 1 for each
X,Y P S, where 1 P V is the monoidal unit.

Example 3.9. For any monoidal 8-category V, there is a unique monoidal
functor 0 Ñ V. By pushing forward the AssocS-algebra 1S of the last exam-
ple, we obtain a V-enriched category 1S. It has the property 1SpX,Y q “ 1 for
all X,Y P S. This is the trivial V-enriched category with set S of objects.

Remark 3.10. If V is presentable and closed monoidal, then CatVS “ AlgAssocS
pVq

is also presentable by HA 3.2.3.5.

3.2 Enriched presheaves

Definition 3.11. Suppose S` is a pointed set and Γ P AssocS` . Call Γ
left-modular if speq ‰ ˚ for all edges e in Γ.

If S is a set, LMS is the full subcategory of AssocS` spanned by left
modular graphs.

A morphism of LMS is inert if it is inert in AssocS` .

In other words, we may think of the objects of LMS as graphs on vertex-set
S`, such that no edges have source ˚.

Hence there are two kinds of edges of LMS : those of the form pX,Y q,
and those of the form pZ, ˚q. The edges that do not involve ˚ span the full
subcategory AssocS , so that there are inclusions of marked categories

Assoc§S Ď LM§
S Ď Assoc§S`

,

and LMS inherits from AssocS` the monoidal operation b.
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Example 3.12. If |S| “ 1, then LMS – LM, the left module operad.

For any function S Ñ T , the induced functor AssocS` Ñ AssocT` restricts
to LMS Ñ LMT . In particular, there are canonical functors LMS Ñ LM for
each S which forget the labelings of the vertices of a graph (except for the
distinguished vertex ˚).

Proposition 3.13. The composite LM§
S Ñ LM§ Ñ Comm§ is an 8-operad.

The proof is exactly like Proposition 3.5.
Notice that the 8-operads AssocS and LMS have the property: A mor-

phism is inert if and only if it lies over an inert morphism in Comm. There-
fore, all of the functors in the following diagram are 8-operad maps (where
S Ñ T is a function):

AssocS
� � //

��

LMS
� � //

��

AssocS`

��
AssocT

� � // LMT
� � // AssocT` .

Definition 3.14. Suppose pV;Mq is an LM-monoidal 8-category; that is,
V is a monoidal 8-category and M is a left V-module 8-category. A V-
enriched presheaf with underlying set S and values in M is an LMS-algebra
in pV;Mq, and we write

PShV ;M
S “ AlgLMS{LMpV;Mq.

In order to compare to CatV , we will need a small lemma:

Lemma 3.15. With notation as before, CatV – AlgAssocS{LMpV;Mq.

We will henceforth abuse notation by defining CatV “ AlgAssocS{LMpV;Mq
any time we are working with a pair pV;Mq.

Proof. There is a pullback

ş
V //

��

ş
pV;Mq

��
Assoc �

�
// LM.

which is compatible with inert morphisms, in the sense that a morphism
in

ş
V is inert if and only if its images in

ş
pV;Mq and Assoc are inert.

Therefore, an 8-operad map AssocS Ñ
ş
V over Assoc records the same

data as an 8-operad map AssocS Ñ
ş
pV;Mq over LM.
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Now let’s unpack the definition. By the lemma, the inclusion AssocS Ď LMS

induces a forgetful functor

θ : PShV ;M
S Ñ CatVS .

In total, the data of an enriched presheaf consists of the restriction to AssocS ,
which is an enriched category C, with the following data and coherences:

• objects FpX, ˚q P M for each X P S;

• morphisms CpX,Y q b FpY, ˚q Ñ FpX, ˚q for each X,Y P S.

We generally write just FpXq instead of FpX, ˚q. We read (2) as a method
for turning hypothetical ‘morphisms’ X Ñ Y in C into maps FpY q Ñ FpXq
in M. This data is something like a ‘functor’ Cop Ñ M, and it is for this
reason we call an LMS-algebra a presheaf.

Example 3.16 (Presheaves with values in V). Suppose V is a monoidal
8-category. LM is an 8-operad over Assoc via LM Ď Assocx1y Ñ Assoc.

The composite LM Ñ Assoc
V
ÝÑ Cat describes an LM-monoidal 8-category

pV;Vq; that is, V acts on itself by tensoring on the left. We write

PShVS “ PShV ;V
S ,

understanding by convention that we are taking presheaves with values in V.
By construction,

ş
pV;Vq –

ş
V ˆAssocLM, and this pullback is compatible

with inert morphisms. Just as in the proof of the last lemma, we conclude

PShVS – AlgLMS{AssocpVq.

We have constructed the 8-category PShV ;M
S of pairs pC;Fq where C is an

enriched category and F is a presheaf. However, we will typically be more
interested in fixing C and studying the 8-category PShVpC;Mq of presheaves
on C:

Definition 3.17. If C is a V-enriched category with set S of objects, then
the 8-category of enriched presheaves on C with values in M is

PShVpC;Mq “ PShV ;M
S ˆCatVS

tCu.

When M “ V with its canonical left action on itself, we will also write

PShVpCq “ PShVpC;Vq.
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Notice that PShVpC;Mq depends on the set S although it is not specified
notationally. (In fact, S is part of the data of C, so in this sense it is implicit
in the notation.)

Example 3.18. If the enriched category C has a single object, let A be the
associated algebra (the endomorphism algebra of the single object). In this
case, PShVpC;Mq “ LModApMq by definition (HA 4.2.1.13)

Example 3.19. We will prove later:

• (Proposition 3.30) If 1S is the trivial V-enriched category with set S
of objects (Example 3.9) then PShVp1S ;Mq – M;

• (Corollary 3.31) If 0 is the trivial monoidal 8-category, PSh0;MS – M.

Remark 3.20. All of our definitions so far are model-independent, but be-
fore we move on, we should say a word about the quasicategory model. Sup-
pose we are given a cocartesian fibration

ş
pV;Mq Ñ LM of quasicategories

exhibiting M as a left V-module 8-category. Then the constructions

CatVS “ Fun:

{LM§pAssoc§S ,
ş
pV;Mq§q

PShV ;M
S “ Fun:

{LM§pLM§
S ,

ş
pV;Mq§q

model CatVS and PShV ;M
S concretely as quasicategories.

Since the inclusion AssocS Ñ LMS is a categorical fibration, the forgetful
functor θ : PShV ;M

S Ñ CatVS is also a categorical fibration, so PShVpC;Mq
may be modeled as the literal fiber θ´1pCq, or the quasicategory of lifts

Assoc§S

��

C //
ş
V§

��
LM§

S
//❴❴❴
ş
pV;Mq§.

3.3 Representable presheaves

Suppose F is a V-enriched presheaf with values in M. That is, F is a map
of 8-operads F : LMS Ñ

ş
pV;Mq for some set S. If X P S, then FpX, ˚q

is an object of
ş
pV;Mq lying over p0, ˚q P LMt0u. Since the fiber over p0, ˚q

is just M, FpX, ˚q is an object of M.
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Definition 3.21. As above, evaluation at pX, ˚q P LMS induces

evX : PShV ;M
S Ñ M.

We call this functor evaluation at X and also write FpXq “ evXpFq.
We may also restrict to the fibers PShVpC;Mq Ď PShV ;M

S , yielding func-
tors evX : PShVpC;Mq Ñ M for each enriched category C.

We will now construct the representable presheaves. For any X P S, there is
a function πX : S` Ñ S given by πXp˚q “ X and πXpY q “ Y . This induces
an operad map πX˚ : LMS Ď AssocS` Ñ AssocS , and composition with πX˚
induces repX : CatVS Ñ PShVS .

The inclusion AssocS Ñ LMS is a section of πX˚ , so repXpCq is a presheaf
on C.

Definition 3.22. If C is a V-enriched category with set S of objects and
X P S, then repXpCq is the representable presheaf at X. When C is clear
from context, we will just write repX .

Notice that repXpY q “ CpY,Xq by construction. The representable presheaves
are free, in the following sense.

Definition 3.23. Consider pC,Fq P PShV ;M
S , so that C is an enriched cate-

gory and F a presheaf on C. If X P S and M P M, we say that a morphism
λ : M Ñ FpXq exhibits F as freely generated by M at X if for all Y P S,
the map CpY,Xq bM Ñ CpY,Xq b FpXq Ñ FpY q is an equivalence.

Example 3.24. Let 1 be the unit of the monoidal structure on V. Then
repX P PShVpC;Vq is freely generated by 1 at X.

Theorem 3.25. For any C P CatVS , X P C, and M P M, there exists a
presheaf F P PShVpC;Mq which is freely generated by M at X. Moreover,
for any pD,Gq P PShV ;M

S , composition with λ induces an equivalence

Map
PSh

V;M
S

ppC,Fq, pD,Gqq Ñ MapCatVS
pC,Dq ˆ MapMpM,GpXqq.

This is the main result of this section, but it is not the theorem itself that
interests us so much as its corollaries. We record those corollaries before
proving the theorem.

Corollary 3.26. If C P CatVS , X P S, and M P M, then there exists
a presheaf in PShVpC;Mq which is freely generated by M at X, and it is
essentially unique in the following sense:

If F0,F1 are two such presheaves, there is an equivalence F0 Ñ F1

which is compatible with the maps λi : M Ñ F ipXq and is unique up to
homotopy.
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We refer to the presheaf freely generated by M at X as repX bM , notation
justified by the formula prepX bMqpY q – CpY,Xq bM – repXpY q bM .

Corollary 3.27 (Enriched Yoneda lemma, weak form). If pC,Fq P PShV ;M
S ,

X P S, and M P M, then λ :M Ñ prepX bMqpXq induces an equivalence

MapPShVpC;MqprepX bM,Fq Ñ MapMpM,FpXqq.

Example 3.28. If M “ V and M “ 1 is the monoidal unit, then the last
corollary asserts MapprepX ,Fq – Mapp1,FpXqq.

Corollary 3.29. The functor evX : PShVpC;Mq Ñ M has a left adjoint
described by repX b ´ : M Ñ PShVpC;Mq.

We can use this last corollary to prove the claims of Example 3.19:

Proposition 3.30. Let 1S be the trivial V-enriched category of Example 3.9.
For any X P S, the functor evX : PShVp˚X ;Mq Ñ M is an equivalence.

Proof. Suppose that F is a presheaf on ˚X . For each X,Y P S, we have
structure maps cX,Y : FpY q “ 1SpX,Y q b FpY q Ñ FpXq. We claim cX,Y
is an equivalence.

Since FpXq
id
ÝÑ 1SpX,Xq bFpXq

cX,X
ÝÝÝÑ FpXq is the identity, cX,X is the

identity on FpXq. Consider the commutative square

1SpX,Y q b 1SpY,Xq b FpXq
cY,X

// 1SpX,Y q b FpY q

cX,Y

��
1SpX,Xq b FpXq

cX,X

// FpXq,

it follows that cX,Y and cY,X are inverse to each other, hence are equiva-
lences.

In other words, the map 1SpY,Xq bFpXq Ñ FpY q is an equivalence for
all Y , which means that the identity FpXq Ñ FpXq exhibits F as freely
generated by FpXq at X, so F – repX b FpXq. In other words, the unit
of the adjunction evX : PShVp˚X ;Mq Ô M : repX b ´ is an equivalence.
On the other hand, the counit prepX bMqpXq Ñ M is also an equivalence
because repXpXq – 1.

Hence evX and repX b ´ is a pair of inverse functors, and evX is an
equivalence.
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Corollary 3.31. Let 0 be the trivial monoidal 8-category as in Example
3.8. Then any 8-category M has a (unique) trivial action of 0. By Example
3.8, Cat0S is contractible. By Proposition 3.30, evX : PSh0p1S ;Mq Ñ M is

an equivalence. Therefore θ : PSh0;MS Ñ Cat0S is equivalent to the functor
M Ñ ˚; that is, we have an equivalence

evX : PSh0;MS Ñ M.

The rest of this section constitutes a proof of Theorem 3.25, following HA
4.2.4.2. The proof is a straightforward application of HA 3.1.3 (free algebras
over 8-operads), but in order to apply it, we will need to introduce some
notation. None of the notation will reappear in this paper. Define LMS,X

to be the subcategory of LMS spanned by:

• graphs Γ P LMS such that every edge which terminates at ˚ originates
at X;

• morphisms f : Γ Ñ Γ1 such that for any edge e P Γ, fpeq terminates
at ˚ if and only if e terminates at ˚.

Let Triv denote the trivial 8-operad of HA 2.1.1.20 (the subcategory of
Comm spanned by all objects and inert morphisms), and b the coproduct
of 8-operads. These satisfy the universal properties AlgTrivpVq – V and
AlgObO1pVq – AlgOpVq ˆ AlgO1pVq by HA 2.1.3.5, respectively 2.2.3.6.

Consider the full subcategories of LMS,X spanned by edges of the form
pX, ˚q, respectively edges which do not terminate at ˚. These subcategories
are isomorphic to Triv, respectively AssocS , and the induced map of 8-
operads AssocS b Triv Ñ LMS,X is an isomorphism by construction of b

(HA 2.2.3.3). Therefore, the inclusion LMS,X Ď LMS induces a functor

ξ : PShV ;M
S “ AlgLMS{LMpV;Mq Ñ AlgLMS,X{LMpV;Mq – CatVS ˆ M

defined by ξpC,Fq “ pC,FpXqq. Now we can formulate:

Lemma 3.32. Given algebras pC,Mq P CatVS ˆ M – AlgLMS,X{LMpV;Mq

and pC̄,Fq P PShV ;M
S “ AlgLMS{LMpV;Mq, as well as a morphism

λ : pC,Mq Ñ pC̄,FpXqq “ ξpC̄,Fq, the following are equivalent:

1. λ exhibits pC̄,Fq as the free LMS-algebra generated by pC,Mq in the
sense of HA 3.1.3.1;

2. λ0 : C Ñ C̄ is an equivalence and λ1 :M Ñ FpXq exhibits F as freely
generated by M at X in the sense of Definition 3.23.
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Proof. We recall HA Definition 3.1.3.1 for reference (the case O “ LM,
A “ LMS,X , and B “ LMS).

If Γ P LMS, define Aact
{Γ “ LMS,X ˆLMS

pLMact
S q{Γ, where LMact

S is the
subcategory of LMS spanned by all objects and active morphisms.

Then (1) asserts that the induced map αΓ : pAact
{Γ qŹ Ñ

ş
pV;Mq is an

operadic colimit diagram for all graphs Γ with a single edge. To unpack
this, we split into two cases:

(a) If Γ “ pA,Bq for any A,B P S, then Γ P Aact
{Γ is terminal. Therefore,

αΓ is an operadic colimit diagram if and only if λ : CpA,Bq Ñ C̄pA,Bq
is an equivalence.

(b) If Γ “ pA, ˚q for any A P S, then pA,XqbpX, ˚q P Aact
{Γ is terminal, so αΓ

is an operadic colimit diagram if and only if λ : CpA,Xq b M Ñ FpXq
is an equivalence.

Hence, the statements (1) and (2) unpack to the same conditions.

Proof of Theorem 3.25. In light of the lemma, HA 3.1.3.3 asserts that free
presheaves exist (noting, as in the proof of the lemma, that Aact

{Γ has a

terminal object for each Γ P LMS with a single edge). The equivalence in
the theorem statement is a restatement of HA 3.1.3.2.

4 The A8-model for enriched categories

Recall that a functor p : A Ñ B is called a presentable fibration if either of
the following equivalent conditions hold (HTT 5.5.3.3):

• p is cartesian and the functor Bop Ñ yCat factors through PrR Ď yCat;

• p is cocartesian and the functor B Ñ yCat factors through PrL Ď yCat.

Definition 4.1. If V is a monoidal 8-category and M is a left V-module,
we say that pV;Mq is a presentable pair if the equivalent conditions hold:

• V and M are both presentable, V is closed monoidal (V b V Ñ V pre-
serves colimits independently in each variable), and M is a presentable
left V-module (V ˆ M Ñ M preserves colimits independently in each
variable);

• The pair pV;Mq, which is a priori an LM-algebra in Cat, restricts to
an LM-algebra in PrL.
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Our primary goal in this section is to prove:

Theorem 1.2. If pV;Mq is a presentable pair and C is V-enriched, then
PShVpC;Mq is presentable.

We will also describe how to compute limits and colimits in PShVpC;Mq:

Corollary 4.20. If pV;Mq is a presentable pair and C is V-enriched:

1. A functor p : KŸ Ñ PShVpC;Mq is a limit diagram if and only if
evXp : K

Ÿ Ñ M is a limit diagram for all X P C;

2. A functor p : KŹ Ñ PShVpC;Mq is a colimit diagram if and only if
evXp : K

Ź Ñ M is a colimit diagram for all X P C;

These and other important structural results appear in Section 4.3. Their
proofs rely on the A8-model for enriched categories and presheaves, techni-
cal tools which we first introduce in Sections 4.1 and 4.2.

We recommend that the reader begin by skimming the results in Section
4.3, and then return to Sections 4.1 and 4.2 before attempting to understand
the proofs.

4.1 Enriched categories

Define ∆{S “ ∆ ˆSet Set{S. In this way, an object of ∆{S is simply a
function ℓ : rns Ñ S. For ease of exposition, we will refer to this as the
object X “ tX0 ă ¨ ¨ ¨ ă Xnu when ℓpiq “ Xi. We think of X as the
ordered set rns “ t0 ă ¨ ¨ ¨ ă nu along with a labeling of each element in S.
A morphism X Ñ Y is an order-preserving function f : rns Ñ rms which
preserves the labeling, Yfpiq “ Xi.

We begin by introducing a strong approximation CutS : ∆op

{S
Ñ AssocS

generalizing Example 2.18 (which corresponds to the case |S| “ 1).
We may imagine the totally ordered set rns “ t0 ă ¨ ¨ ¨ ă nu as a directed

graph on the set t0, . . . , nu:

0 // 1 // ¨ ¨ ¨ // n,

and therefore as an object of Assocrns. If ℓ : rns Ñ S is an object of ∆{S,
push forward along ℓ˚ : Assocrns Ñ AssocS to a graph CutSpℓq P AssocS .

Concretely, if X “ tX0 ă ¨ ¨ ¨ ă Xnu P ∆{S, then

CutSpXq “ pX0,X1q b pX1,X2q b ¨ ¨ ¨ b pXn´1,Xnq.
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If Y “ tY0 ă ¨ ¨ ¨ ă Ymu and f : X Ñ Y is a map in ∆{S, then there is
an induced map f˚ : CutSpY q Ñ CutSpXq as follows: f˚ sends the edge
pYi´1, Yiq to the edge pXj´1,Xjq if fpj ´ 1q ă i ď fpjq. If there is no such
j, f˚ sends pYi´1, Yiq to the basepoint. The total ordering on rns induces
total orderings on the fibers of f˚, and f˚ satisfies the two properties of
Definition 3.1, so that we have a functor

CutS : ∆op

{S Ñ AssocS .

The composite ∆op

{S

CutSÝÝÝÑ AssocS Ñ Comm makes ∆op

{S an 8-preoperad.

Remark 4.2. Recall (Example 2.18) that a morphism rns Ñ rms of ∆op is
inert if it embeds rms as a convex subset ti ă ¨ ¨ ¨ ă i ` mu Ď rns. Then a
morphism of ∆op

{S is inert if and only if the underlying morphism in ∆op is
inert.

In particular, we can verify any such morphism is p-cocartesian, just as
in the proof of Proposition 3.5.

Proposition 4.3. The functor CutS : ∆op

{S Ñ AssocS is a strong approxi-

mation to the 8-operad AssocS.

Proof. Both ∆op

{S and AssocS have the property: A morphism is inert if and

only if it lies over an inert morphism in Comm. Therefore, CutS sends inert
morphisms to inert morphisms, so it is a morphism of 8-preoperads.

We need to check the two conditions of Definition 2.16 to prove that CutS
is an approximation. Since the fibers of ∆op

{S and AssocS over x1y P Comm

are each equivalent to the (discrete) set S, it is clear that CutS is a strong
approximation if and only if it is an approximation.

(1) Note that p : ∆op

{S Ñ Comm is given by ppX0 ă ¨ ¨ ¨ ă Xnq “ xny,

where i P xny corresponds to the edge pXi´1,Xiq in CutSpX0 ă ¨ ¨ ¨ ă Xnq.
Given an inert morphism φ : t0, . . . , n ´ 1u Ñ x1y, let i “ φ´1p1q, and let
tXi ă Xi`1u Ñ tX0 ă ¨ ¨ ¨ ă Xnu be the natural inclusion. This describes
an inert morphism tX0 ă ¨ ¨ ¨ ă Xnu Ñ tXi ă Xi`1u in ∆op

{S
lifting φ, so

CutS satisfies Definition 2.16(1).
(2) Fix an active morphism φ : Γ Ñ pY0, Y1qb¨ ¨ ¨bpYm´1, Ymq in AssocS .

That is, φ transforms the graph Γ into pY0, Y1qb¨ ¨ ¨bpYm´1, Ymq via repeated
application of the two moves:

• pA,Bq b pB,Cq Ñ pA,Cq;

• H Ñ pA,Aq.
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Recall that the morphism φ includes the data of total orderings on the
fibers φ´1pYi, Yi`1q. Taken together, these induce a total ordering on the
edges of Γ such that they form a path from Y0 to Ym. Hence we may write
Γ “ pX0,X1q b ¨ ¨ ¨ b pXn´1,Xnq where X0 “ Y0 and Xn “ Ym.

Define 0 “ k0 ď ¨ ¨ ¨ ď km “ n such that φpXj ,Xj`1q “ pYi, Yi`1q
whenever ki ď j ă ki`1. That is, pXki ,Xki`1q b ¨ ¨ ¨ b pXki`1´1,Xki`1

q
is the fiber φ´1pXi,Xi`1q, or the fiber is empty when ki “ ki`1. Since
φ´1pXi,Xi`1q must form a path from Xi to Xi`1, we conclude Xki “ Yi for
all i. Therefore, the indices k0, . . . , km describe a morphism

φ̄ : tX0 ă ¨ ¨ ¨ ă Xnu Ñ tY0 ă ¨ ¨ ¨ ă Ymu

of ∆op

{S lifting φ. By construction, φ is universal among such lifts of φ, which

is to say it is f -cartesian.
Thus CutS satisfies Definition 2.16(2), which completes the proof.

Definition 4.4. If V is a monoidal 8-category, an A8-V-enriched category
with set S of objects is a ∆op

{S-algebra in V, and they form an 8-category

A8CatVS “ Alg∆op

{S
{AssocpVq.

Applying Theorem 2.17, we find:

Corollary 4.5. CutS induces an equivalence CatVS Ñ A8CatVS .

Remark 4.6. If V is a monoidal 8-category, recall from Section 2.4 that
we can regard V either as a functor V : Assoc Ñ Cat, with associated 8-
operad

ş
V Ñ Assoc, or as a functor BV : ∆op Ñ Cat, with associated planar

8-operad
ş
BV Ñ ∆op. By construction we have a pullback

ş
BV //

��

ş
V

��
∆op

Cut
// Assoc,

so A8CatVS – Fun:
{∆opp∆op§

{S ,
ş
BV§q.

4.2 Enriched presheaves

We have just shown that ∆op

{S is a strong approximation to the 8-operad

AssocS, which means that we can identify V-enriched categories with ∆op

{S-

algebras in V.
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Now we will show that ∆op

{S ˆ ∆1 is a strong approximation to the 8-

operad LMS . First, we construct the functor LCutS : ∆op

{S ˆ ∆1 Ñ LMS .

This will closely parallel the construction of CutS in Section 4.1.
Given rns P ∆, consider the following graphs on t0, . . . , nu`:

rns0 “ r0 Ñ 1 Ñ ¨ ¨ ¨ Ñ n Ñ ˚s

rns1 “ r0 Ñ 1 Ñ ¨ ¨ ¨ Ñ ns ,

which are objects of LMrns. Suppose rns
ℓ

ÝÑ S is an object of ∆{S , inducing

ℓ˚ : LMrns Ñ LMS . We write LCut0Spℓq “ ℓ˚rns0 and LCut1Spℓq “ ℓ˚rns1,
which are left-modular graphs on the set S`. Exactly as in Section 4.1, we
have functors

LCut0S ,LCut
1
S : ∆op

{S
Ñ LMS .

Remark 4.7. The functor LCut1S is essentially the same as CutS; that is,

it factors ∆op

{S

CutSÝÝÝÑ AssocS Ď LMS.

There are inert morphisms rns0 Ñ rns1 which send the edge n Ñ ˚ to
the basepoint, and act as the identity function on the other edges. These
assemble into a natural transformation LCut0S Ñ LCut1S ; that is, a functor
∆1 Ñ Funp∆op

{S
,LMSq. There is a corresponding functor

LCutS : ∆op

{S ˆ ∆1 Ñ LMS.

The composite with LMS Ñ Comm makes ∆op

{S ˆ ∆1 an 8-preoperad.

Remark 4.8. Recall (Example 2.19) that a morphism prns
f
ÝÑ rms, i Ñ jq

of ∆op ˆ ∆1 is inert if f is inert in ∆op and either:

• fpmq “ n;

• or j “ 1.

A morphism of ∆op

{S ˆ∆1 is inert if and only if the underlying morphism in

∆op ˆ ∆1 is inert.

Proposition 4.9. The functor LCutS : ∆op

{S ˆ ∆1 Ñ LMS is a strong ap-

proximation to the 8-operad LMS.

Proof. The proof is just like Proposition 4.3; see also HA 4.2.2.8.
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Definition 4.10. Suppose pV;Mq is an LM-monoidal 8-category; that is,
V is a monoidal 8-category, and M is a left V-module 8-category.

An A8-V-enriched presheaf with set S of objects is a ∆op

{S ˆ ∆1-algebra

in pV;Mq, and they form an 8-category

A8PShV ;M
S “ Alg∆op

{S
ˆ∆1{LMpV;Mq.

As in Lemma 3.15, A8CatVS – Alg∆op

{S
{LMpV;Mq, so composition with the

inclusion ∆op

{S ˆ t1u Ñ ∆op

{S ˆ ∆1 induces a forgetful functor

θ : A8PShV ;M
S Ñ A8CatVS .

Definition 4.11. If C P A8CatVS , then the 8-category of A8-V-enriched
presheaves on C with values in M is the fiber

A8PShVpC;Mq “ A8PShV ;M
S ˆ

A8CatVS
tCu.

Corollary 4.12. Let C be a V-enriched category with set S of objects, and
C̄ the corresponding A8-V-enriched category. Then composition with LCutS
induces equivalences

PShV ;M
S Ñ A8PShV ;M

S ,

PShVpC;Mq Ñ A8PShVpC̄;Mq.

Proof. The first equivalence follows from Proposition 4.9 by Theorem 2.17.
In fact, we have a commutative square

PShV ;M
S

//

��

A8PShV ;M
S

��

CatVS
// A8CatVS ,

where the horizontal maps are equivalences, and so the second equivalence
follows by taking fibers.

Suppose V is a monoidal 8-category and M is a left V-module. Recall
from Section 2.4 that we can regard the pair pV;Mq as either a functor
pV;Mq : LM Ñ Cat with corresponding 8-operad

ş
pV;Mq Ñ LM, or as
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a functor BpV;Mq : ∆op ˆ ∆1 Ñ Cat with corresponding planar 8-operadş
BpV;Mq Ñ ∆op ˆ ∆1. By construction we have a pullback

ş
BpV;Mq //

��

ş
pV;Mq

��
∆op ˆ ∆1

Cut
// LM,

so A8PShV ;M
S – Fun:

{∆opˆ∆1p∆op

{S ˆ ∆1§,
ş
BpV;Mq§q.

Remark 4.13. Although everything we have said in this section is model-
independent, now we will say a word about quasicategories, paralleling Re-
mark 3.20 for the operadic model. Suppose we are given a cocartesian fi-
bration of quasicategories

ş
BpV;Mq Ñ ∆op ˆ ∆1 exhibiting M as a left

V-module 8-category in the A8-sense. Then we have the following explicit
quasicategory models:

A8CatVS “ Fun:
{∆opˆ∆1p∆op§

{S
,
ş
BpV;Mq§q;

A8PShV ;M
S “ Fun:

{∆opˆ∆1p∆op

{S ˆ ∆1§,
ş
BpV;Mq§q.

∆op

{S lies over ∆op ˆ ∆1, as always, by ∆op

{S Ñ ∆op ˆ t1u Ď ∆op ˆ ∆1. Since

the inclusion ∆op

{S Ñ ∆op

{Sˆ∆1 is a categorical fibration, the forgetful functor

θ : A8PShV ;M
S Ñ A8CatVS is also a categorical fibration, so A8PShVpC;Mq

may be modeled as the literal fiber θ´1pCq, which is to say the quasicategory
of lifts

∆op§
{S

C //

��

ş
BV§

��
∆op

{S ˆ ∆1§
F

//❴❴❴
ş
BpV;Mq§.

Unlike in the operadic model, we can unpack this last diagram further. Re-
call (following Remark 2.22) that BpV;Mq : ∆op ˆ∆1 Ñ Cat can be identi-
fied with a morphism BV ˙ M Ñ BV of simplicial 8-categories. Applying
the Grothendieck construction, we have a diagram

ş
BV ˙ M

q
//

p0
%%❑

❑❑
❑❑

❑❑
❑❑

❑

ş
BV

p1
||①①
①①
①①
①①

∆op,
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where q sends p0-cocartesian morphisms to p1-cocartesian morphisms. Also
recall the marking

ş
BV ˙M; by totally inert morphisms (Warning 2.20 and

Remark 2.27).

Definition 4.14. Say that a morphism of ∆op

{S is totally inert if the underly-

ing morphism of ∆op is totally inert, and write ∆op;
{S for this marking. Equiv-

alently, a morphism is totally inert if its image under ∆op

{S ˆ t0u Ď ∆op

{S ˆ∆1

is inert.

Proposition 4.15. For any pair pV;Mq and set S, A8PShV ;M
S is equivalent

to the full subcategory of Fun:p∆op;
{S ,

ş
BV ˙ M;q spanned by functors such

that ∆op

{S Ñ
ş
BV ˙ M Ñ

ş
BV is an A8-algebra.

If C P A8CatVS , then

A8PShVpC;Mq – Fun:

{
ş
BV§p∆op;

{S ,
ş
BV ˙ M;q.

Proof. The proof follows HA 4.2.2.19 (stated earlier as Proposition 2.28),
which is the case |S| “ 1.

If
ş
BpV;Mqi is the fiber of

ş
BpV;Mq Ñ ∆op ˆ∆1 over ∆op ˆ tiu, then:

•
ş
BpV;Mq§0 “

ş
BV ˙ M;;

•
ş
BpV;Mq§1 “

ş
BV§;

• If Xi P
ş
BpV;Mqi are two objects both lying over Y P ∆op

{S, and

f : X0 Ñ X1 is a morphism lying over pY, 0q Ñ pY, 1q P ∆op
S ˆ∆1 (the

identity map on Y ), then f is inert if and only if the induced functor
qpX0q Ñ X1 is an equivalence.

Therefore, giving a lift F as in the square

∆op§
{S

C //

��

ş
BV§

��
∆op

{S ˆ ∆1§
F

//❴❴❴
ş
BpV;Mq§.

is the same as giving a marked functor F0 : ∆
op;
{S Ñ

ş
BV ˙M;, as well as a

natural transformation F0 Ñ C sends each Y P ∆op

{S to an inert morphism of

BpV;Mq lying over pY, 0q Ñ pY, 1q; in other words, C should factor C “ qF0.
The proposition follows from this description.
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4.3 Limits and colimits of presheaves

We are ready to prove that θ : PShV ;M
S Ñ CatVS is a cartesian fibration,

and a presentable fibration if pV;Mq is a presentable pair. We will begin by
proving that θ is a cartesian fibration.

Proposition 4.16. If V is a monoidal 8-category, M is a left V-module,
and S is a set, then the forgetful functor θ : PShV ;M

S Ñ CatVS is a cartesian

fibration, and a morphism f in PShV ;M
S is θ-cartesian if and only if its image

under evX : PShV ;M
S Ñ M is an equivalence for each X P S.

Remark 4.17. Since θ is a cartesian fibration, a map F : C Ñ D in CatVS
induces a functor F ˚ : PShVpD;Mq Ñ PShVpC;Mq. By the identification
of θ-cartesian morphisms, F ˚pFq can be evaluated at objects by the formula
F ˚pFqpXq “ FpXq. In other words, each triangle commutes:

PShVpD;Mq
F˚

//

evX
&&▲

▲▲
▲▲

▲▲
▲▲

▲
PShVpC;Mq

evX
yyrrr

rr
rr
rr
r

M.

Lemma 4.18. Suppose the pair pV;Mq is modeled by a cocartesian fibration
of quasicategories

ş
pV;Mq Ñ LM, and K is a simplicial set such that M

admits K-indexed limits. Then:

1. For every commutative square

K //
_�

��

A8PShV ;M
S

θ
��

KŸ //

::t
t

t
t

t

A8CatVS ,

there exists a dotted arrow as indicated, which is a θ-limit diagram.

2. An arbitrary functor KŸ Ñ A8PShV ;M
S is a θ-limit diagram if and

only if the composite KŸ Ñ A8PShV ;M
S

evXÝÝÑ M is a limit diagram
for each X P S.

Proof. We follow HA 4.2.3.1, which is the |S| “ 1 case. We set notation as
in the triangle preceding Remark 2.25:

ş
BV ˙ M

q
//

p0
%%❑

❑❑
❑❑

❑❑
❑❑

ş
BV

p1
||①①
①①
①①
①①

∆op
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The fibers over rns P ∆op are
ş
BV ˙ Mn “ Vˆn ˆ M and

ş
BVn “ Vˆn.

Lurie concludes in HA 4.2.3.1 p12
n ´ 22

nq:

1’. For every commutative square

K //
_�

��

ş
BV ˙ Mn

qn

��
KŸ //

99t
t

t
t

t ş
BVn,

there exists a dotted arrow as indicated, which is a q-limit diagram.

2’. An arbitrary map KŸ Ñ
ş
BV ˙ Mn is a q-limit diagram if and only if

the projection KŸ Ñ
ş
BV ˙ Mn “ Vˆn ˆ M Ñ M is a limit diagram.

Applying HA 3.2.2.9,

1”. For every commutative square

K //
_�

��

Funp∆op

{S ,
ş
BV ˙ Mq

θ

��
KŸ //

77♦
♦

♦
♦

♦
♦

Funp∆op

{S,
ş
BVq,

there exists a dotted arrow as indicated, which is a θ-limit diagram.

2”. An arbitrary map KŸ Ñ Funp∆op

{S ,
ş
BV ˙ Mq is a θ-limit diagram if

and only if for each tX0 ă ¨ ¨ ¨ ă Xnu P ∆{S, the projection KŸ evXÝÝÑş
BV ˙ Mn Ñ M is a limit diagram.

In 1”-2”, we can just as well restrict to A8CatVS , which is a full subcategory
of Funp∆op

{S,
ş
BVq by Remark 4.13 (that is, the full subcategory of functors

with send inert morphisms to inert morphisms and are compatible with the
functors down to ∆op).

Let preA8PShV ;M
S be the full subcategory of Funp∆op

{S ,
ş
BV˙Mq spanned

by those functors F for which θpF q is an A8-algebra. Then the restriction
θ : preA8PShV ;M

S Ñ A8CatVS enjoys the same properties 1”-2”.
By Proposition 4.15, A8PShV ;M is the full subcategory of preA8PShV ;M

spanned by those functors ∆op

{S Ñ
ş
BV ˙ M which send totally inert mor-

phisms to p0-cocartesian morphisms.
Now we will prove part (1) of the lemma. It suffices to show that if ḡ is

a θ-limit diagram KŸ Ñ preA8PShV ;M
S and the restriction g to K factors
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through A8PShV ;M
S , then ḡ factors through A8PShV ;M

S . Any totally inert
morphism f : tX0 ă ¨ ¨ ¨ ă Xnu Ñ tY0 ă ¨ ¨ ¨ ă Ymu in ∆op

{S induces a natural

transformation ḡX Ñ ḡY of functors KŸ Ñ
ş
BV ˙M, and we want to show

that each object of KŸ is sent to a p0-cocartesian morphism in BV ˙ M.
Since f is totally inert, fpmq “ n, and we have a commutative triangle,

where the downward maps are just projection

ş
BV ˙ Mn

//

α
%%❑

❑❑
❑❑

❑❑
❑❑

❑

ş
BV ˙ Mm

βyyss
ss
ss
ss
ss

M,

and it suffices to show that t̄ : αḡX Ñ βḡY is an equivalence. By hypothesis,
the restriction t : αgX Ñ βgY is an equivalence, and then by (2”), t̄ is an
induced natural transformation between limit diagrams. Therefore, t̄ is also
an equivalence, completing the proof of (1).

As for (2), we need to prove that the following are equivalent for a functor
ḡ : KŸ Ñ A8PShV ;M

S :

2”. Each KŸ ḡ
ÝÑ A8PShV ;M

S

evXÝÝÑ M is a limit diagram, where evX is
evaluation of ∆op

{S Ñ
ş
BV ˙ M at any X “ tX0 ă ¨ ¨ ¨ ă Xnu P ∆op

{S;

2. Each evX ḡ is a limit diagram if n “ 0; that is, X “ tX0u P ∆op

{S.

Obviously 2” implies 2. Conversely, assume 2. If X “ tX0 ă ¨ ¨ ¨ ă Xnu,
then there is a totally inert morphism X Ñ tXnu which induces a commu-
tative square

A8PShV ;MpCq
evX //

evtXnu

��

ş
BV ˙ Mn

��ş
BV ˙ M0

// M.

Then evX ḡ “ evtXnuḡ is a limit diagram by 2, completing the proof.

Proof of Proposition 4.16. Suppose the pair pV;Mq is modeled by a co-
cartesian fibration of quasicategories

ş
pV;Mq Ñ LM. We will prove that

θ : A8PShV ;M
S Ñ A8CatVS is a cocartesian fibration of quasicategories. We

already know θ is a categorical fibration (Remark 4.13), hence also an inner
fibration.

Recall that a functor ∆1 Ñ A8PShV ;M
S is a θ-limit diagram if and only

if it is a θ-cartesian edge (HTT 4.3.1.4). Hence when K “ ˚, part (1) of the

44



lemma asserts θ is a cartesian fibration, and (2) asserts that f is θ-cartesian
if and only if evXpfq is an equivalence for each X P S.

For the rest of this section, we will assume that pV;Mq is a presentable pair.

Theorem 4.19. If pV;Mq is a presentable pair and C is V-enriched:

1. PShVpC;Mq is presentable;

2. for each X P C, evX : PShVpC;Mq Ñ M preserves limits and colimits;

3. If F : C Ñ D is a map in CatVS , then F
˚ : PShVSpD;Mq Ñ PShVpC;Mq

preserves limits and colimits.

4. if N is presentable, a functor F : N Ñ PShVpC;Mq preserves colimits
(respectively limits) if and only if the composite evXF : N Ñ M

preserves colimits (limits) for each X P C.

In particular, (1) is Theorem 1.2 of the introduction.

Proof. We follow the proof of HA 4.2.3.4. Pick a cocartesian fibration of
quasicategories

ş
pV;Mq Ñ LM which realizes M as a left V-module. Define

X to be the pullback

X //

q1

��

ş
BV ˙ M

q

��
∆op

{S C
//
ş
BV,

and say that a morphism of X is totally inert if its images in ∆op

{S
andş

BV ˙M are each totally inert. Recall (Remark 2.26) that q is a categorical
fibration and a locally cocartesian fibration. Therefore, q1 is as well.

By Proposition 4.15, PShVpC;Mq is equivalent to the quasicategory of
sections of q1 which send totally inert morphisms to totally inert morphisms.
Applying HTT 5.4.7.11 using the subcategory PrL Ď yCat, we conclude:

• PShVpC;Mq is presentable;

• F : N Ñ PShVpC;Mq preserves colimits if and only if the composite
evXF : N Ñ

ş
BV ˙ Mn does for each X “ tX0 ă ¨ ¨ ¨ ă Xnu P S.

At the end of the proof of Lemma 4.18 (where we proved conditions 2 and
2” are equivalent), we proved that this second condition is equivalent to the
colimit formulation of (4).
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The limit formulation of (4) is Lemma 4.18 when KŸ Ñ A8CatVS is the
constant functor with value C.

So we have (1) and (4). Applying (4) to the identity functor establishes
(2). Applying (4) to the functor PShVSpD;Mq Ñ PShVpC;Mq along with
Remark 4.17 establishes (3).

We deduce two important corollaries. The first is a formulation of Corollary
1.4 from the introduction.

Corollary 4.20. If pV;Mq is a presentable pair and C is V-enriched:

1. A functor p : KŸ Ñ PShVpC;Mq is a limit diagram if and only if
evXp : K

Ÿ Ñ M is a limit diagram for all X P C;

2. A functor p : KŹ Ñ PShVpC;Mq is a colimit diagram if and only if
evXp : K

Ź Ñ M is a colimit diagram for all X P C;

Corollary 4.21. If pV,Mq is a presentable pair, θ : PShV ;M
S Ñ CatVS is a

presentable fibration.

Proof. By Proposition 4.16, θ is a cartesian fibration. Now assume pV;Mq

is a presentable pair. Let F : pCatVSqop Ñ yCat be the associated functor, so
that F pCq “ PShVpC;Mq. By Theorem 4.19, F pCq is presentable for each
C, and F pDq Ñ F pCq is a right adjoint functor (as it preserves limits and
colimits) for each enriched functor C Ñ D. Therefore, F factors through

PrR Ď yCat, so θ is a presentable fibration.

Remark 4.22. If F : C Ñ D is a map in CatVS , then there is always a
functor F ˚ : PShVpD;Mq Ñ PShVpC;Mq. Corollary 4.21 asserts that F ˚

has a left adjoint F˚ if pV;Mq is a presentable pair. Recall that F ˚ fits in a
commutative triangle for each X P S (Remark 4.17),

PShVpD;Mq
F˚

//

evX
&&▲

▲▲
▲▲

▲▲
▲▲

▲
PShVpC;Mq

evX
yyrr
rr
rr
rr
rr

M.

Taking left adjoints, we have a commutative triangle

M
repXb´

yyrrr
rr
rr
rr
r

repXb´

&&▲▲
▲▲

▲▲
▲▲

▲▲

PShVpC;Mq
F˚

// PShVpD;Mq,

so F˚prepXpCq bMq – repXpDq bM .

46



Recall that a functor F : X Ñ Y is called monadic if either of the following
equivalent conditions hold (HA 4.7.3.5):

• F has a left adjoint, is conservative, and preserves certain colimits4;

• There is a monoidal 8-category E , an algebra E in E , and a left
E-module structure on Y, such that F is equivalent to the forgetful
functor LModEpYq Ñ Y.

E can be taken to be the endomorphism 8-category FunpY,Yq, and E the
monad associated to F (the composite F ˝ L, where L is the left adjoint).

Corollary 4.23. If pV;Mq is a presentable pair and C is V-enriched with set
S of objects, let ev : PShVpC;Mq Ñ MˆS be the product of all the functors
evX , as X P S varies. The functor ev is monadic.

Proof. By Theorem 4.19(2), ev is a functor of presentable 8-categories
which preserves small limits and colimits. Therefore, it has a left adjoint.
By Corollary 4.20 in the case K “ ˚, ev is conservative, hence monadic.

Corollary 4.24. If pV;Mq is a presentable pair and C is V-enriched, then
PShVpC;Mq is generated under colimits by the free presheaves repX b M ,
where X P C and M P M.

Proof. Since ev : PShVpC;Mq Ñ MS is monadic, we can without loss of
generality replace ev with a functor LModEpMSq Ñ MS . Every left E-
module M is a colimit of free left E-modules by the bar construction for
E bE M (HA 4.4.2). Therefore, PShVpC;Mq is generated under colimits
by the image of the free functor MS Ñ PShVpC;Mq. By Corollary 3.29,
this free functor sends tMXuXPS to the coproduct

š
XPS repX b MX , so

PShVpC;Mq is generated under colimits by free presheaves.

Remark 4.25. It should be possible to relax the presentability conditions on
V and M as follows:

• By Lemma 4.18, PShVpC;Mq admits limits indexed by K as long as
M admits limits indexed by K (with no condition on V).

• PShVpC;Mq admits colimits indexed by K if M admits colimits in-
dexed by K, which are compatible with the left V-module structure in
a certain sense. If details are needed, consult HA 4.2.3.4-5.

In each case, limits and colimits are detected by evX : PShVpC;Mq Ñ M.
4We won’t care which colimits are preserved, because all monadic functors we study

will preserve all small colimits.
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5 Tensor products of presheaves

Suppose that F P PShVpCq is a presheaf, M is a left V-module, andM P M.
Then there is a tensor presheaf F b M P PShVpC;Mq given informally by
the formula pF bMqpXq “ FpXq bM .

If M “ V, then this tensor product describes a right action of V on
PShVpCq. We begin in Section 5.1 by reviewing right modules. In the same
way that left modules were generalized to enriched presheaves, right modules
describe enriched copresheaves. We introduce enriched copresheaves, which
play an important role in Section 6.

In Section 5.2, we construct the right V-action on presheaves (Definition
5.16, Theorem 5.17). In Section 5.4, we prove that it really is given by the
formula above (Proposition 5.18).

In the event that V is presentable and closed monoidal, PShVpCq is even
a presentable right V-module (Theorem 5.21) and assembles into a functor

PShVp´q : CatVS Ñ RModVpPrLq

(Corollary 5.24). In other words, if F : C Ñ D is an enriched functor, then
F˚ : PShVpCq Ñ PShVpDq is compatible with the right V-module structure,
or F˚pF bAq – F˚pFq bA.

Remark 5.1. Of course, we expect that PShVp´q extends to a functor
CatV Ñ RModVpPrLq, where CatV is the 8-category of all V-enriched cat-
egories (that is, without a fixed set of objects). As always, we are delaying
such results until a future paper in this series.

Our discussion so far all assumed M “ V. In general, the construction
F b M describes a functor PShVpCq bV M Ñ PShVpC;Mq. In Section 5.4,
we prove the main theorem of this section:

Theorem 1.6. If V is presentable and closed monoidal, C is a V-enriched
category, and M is a presentable left V-module, then the functor

Ψ : PShVpCq bV M Ñ PShVpC;Mq

is an equivalence, where bV is the relative tensor product in PrL.

The construction of the V-module structure and this functor Ψ are quite
involved. However, most of our proofs rely only on the interaction of tensor
presheaves with evaluation and representable presheaves. That is:

• pF bMqpXq – FpXq bM
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• repX bM is the free presheaf generated by M at X.

In Section 3.3, we used the notation repXbM for the free presheaf generated
by M at X. Now we see that this notation is justified: the free presheaf
repX bM really is equivalent to the tensor presheaf repX bM .

We prove these facts in Proposition 5.18 in the case M “ V, and Lemma
5.25 in general.

5.1 Right modules

First we introduce 8-operads RMS for each set S, whose algebras are co-
presheaves. In the case |S| “ 1, RM is the right module 8-operad, and an
algebra over RM is a pair pA,Mq, where A is an algebra and M a right
module.

The 8-operad RMS is the reverse of LMS , in the sense of HA 4.1.1.7;
that is, the underlying 8-category is equivalent, but the operad structure is
reversed. We begin by reviewing reverse 8-operads.

If Γ P AssocS is a graph, let revpΓq denote Γ with the directions of
all arrows reversed. For example, revpX,Y q “ pY,Xq. This construction
describes a functor of categories rev : AssocS Ñ AssocS, which is an isomor-
phism. Recall:

Definition 5.2 (HA 4.1.1.7). If O is an 8-operad, then the composite
O Ñ Assoc

rev
ÝÝÑ Assoc endows the 8-category O with a distinct 8-operad

structure. We write Orev for this 8-operad, and call it the reverse 8-operad
of O.

If V : Assoc Ñ Cat is a monoidal 8-category, then the composite V ˝ rev
is another monoidal 8-category, which we denote Vrev.

Note that V and Vrev have the same underlying 8-categories, but the
monoidal operations are reversed; that is, X brev Y “ Y bX.

If O is an 8-operad and V is a monoidal 8-category, then the reversal
isomorphism induces an equivalence AlgOpVq – AlgOrevpVrevq.

Example 5.3. The isomorphism rev : AssocS Ñ AssocS exhibits AssocS
as equivalent to its own reversal. Therefore, CatVS – CatV

rev

S . If C is a
V-enriched category, then the corresponding Vrev-enriched category is Cop,
which has mapping spaces CoppX,Y q “ CpY,Xq.

Definition 5.4. For any set S, RMS “ LMrev
S .

When |S| “ 1, we also write RM “ RMS, which is the right module
operad of HA 4.2.1.36.
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Remark 5.5. We say that a graph Γ P AssocS` is right modular (compare
left modular, Definition 3.11) if for all edges e P Γ, tpeq ‰ ˚. Then RMS

is equivalent to the full subcategory of AssocS` spanned by right modular
graphs.

This is because rev : AssocS` Ñ AssocS` restricts to an isomorphism
between LMS and the full subcategory of right modular graphs.

In the case |S| “ 1, we think of an RM-algebra as a pair pA,Mq, where A
is an algebra and M is a right A-module.

In general, we think of an RMS-algebra as a pair pC,Fq, where C is a
V-enriched category and F is an enriched copresheaf on C:

Definition 5.6. Suppose that V is a monoidal 8-category and N a right
V-module category, so that the pair pV;N q is an RM-monoidal 8-category.

If C is a V-enriched category with set S of objects, an enriched copresheaf
on C with values in M is a lift of the AssocS-algebra C to an RMS-algebra
in pV;N q. We write

coPShV ;N
S “ AlgRMS{RMpV;N q,

coPShVpC,N q “ coPShV ;N
S ˆCatVS

tCu.

We think of a copresheaf F P coPShVpC,N q informally as a V-enriched
functor C Ñ N .

Remark 5.7. Because LMS and RMS are reverse 8-operads,

• A right V-action on N canonically induces a left Vrev-action on N ,
and vice versa;

• coPShV ;N
S – PShV

rev;N
S ;

• coPShVpC;N q – PShV
rev

pCop;N q.

Therefore, copresheaves may be regarded as examples of presheaves, so every-
thing we have already proven about presheaves is also true of copresheaves.

5.2 The internal tensor product

Now we are ready to describe the right V-module structure on PShVpCq, for
any monoidal 8-category V and V-enriched category C.

Given two graphs Γ0 P LMS and Γ1 P RMT , define xΓ0,Γ1y P AssocS>T

as follows:
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• an edge of xΓ0,Γ1y is a pair pe0, e1q, where ei is an edge of Γi and at
least one of the edges e0, e1 touches the basepoint vertex ˚;

• if one of the edges ei does not touch the vertex ˚, then pe0, e1q has the
same source and target as ei;

• if e0 is an edge from some X to ˚, and e1 is an edge from ˚ to Y , then
pe0, e1q is an edge from X to Y .

Example 5.8. Let pX0, . . . ,Xnq “ pX0,X1q b pX1,X2q b ¨ ¨ ¨ b pXn´1,Xnq
denote the graph with a single path from X0 to Xn. Then we have

xpX0, . . . ,Xmq, pY0, . . . , Ynqy “ H

xpX0, . . . ,Xm, ˚q, pY0, . . . , Ynqy “ pY0, . . . , Ynq

xpX0, . . . ,Xm, ˚q, p˚, Y0, . . . , Ynqy “ pX0, . . . ,Xm, Y0, . . . , Ynq.

Remark 5.9. The pairing x´,´y is a functor LMS ˆ RMT Ñ AssocS>T .
Moreover, if Γ0 Ñ Γ1

0 is inert in LMS and Γ1 Ñ Γ1
1 is inert in RMS, then

xΓ0,Γ1y Ñ xΓ1
0,Γ

1
1y is inert.

So it is even a marked functor x´,´y : LM§
S ˆ RM§

S Ñ Assoc§S>T .

Remark 5.10. The bimodule operad BM of HA 4.3.1.5 can be identified
with the full subcategory of Assoct0,1u spanned by graphs that have no edges
from 1 to 0. Then our pairing factors LMt0u ˆ RMt1u Ñ BM Ď Assoct0,1u.
This recovers the functor of HA 4.3.2.1, Pr : LM ˆ RM Ñ BM.

For now, we will just be interested in the case |S| “ |T | “ 1 and the
composite LM ˆ RM Ñ Assoct0,1u Ñ Assoc.

Definition 5.11. If V is a monoidal 8-category, define
ş1
V via the pullback

ş1
V

p

��

//
ş
V

��
LM ˆ RM

x´,´y
// Assoc,

and say that a morphism in
ş1
V is left inert if it is p-cocartesian, its pro-

jection to LM is inert, and its projection to RM is an equivalence. We will
write

ş1
V ! for the left inert marking.
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Remark 5.12. Identify RM “ RMt1u, so that there are two kinds of edges
in RM: p˚, 1q and p1, 1q.

Unpacking this construction, the fiber of
ş1
V Ñ LM ˆ RM over any

Γ P RM is an LM-monoidal 8-category, which describes:

1. V acting on itself on the left if Γ “ p˚, 1q;

2. 0 acting on V on the left if Γ “ p1, 1q (where 0 is the trivial monoidal
8-category).

Definition 5.13. If V is a monoidal 8-category,

ĚCatVS “ Fun:
{LMpAssoc§S,

ş1
V !q,

ĚPShVS “ Fun:
{LMpLM§

S ,
ş1
V !q.

Consider the forgetful functors

ĚCatVS Ñ Fun:
{LMpAssoc§S,LM

§ ˆ RM5q – Fun:pAssoc§S ,RM
5q – RM,

and similarly ĚPShVS Ñ RM. (The rightmost equivalence is by Lemma 2.12.)
These fit into a commutative triangle

ĚPShVS θ̄ //

p0
##●

●●
●●

●●
●●

ĚCatVS

p1
{{①①
①①
①①
①①
①

RM.

Lemma 5.14. In this triangle:

1. p0 and p1 are cocartesian fibrations of 8-operads;

2. a morphism in ĚPShVS (respectively ĚCatVS) is p0-cocartesian (p1-cocartesian)
if and only if the evaluation at each Γ P LMS (or AssocS) is a p-
cocartesian morphism of

ş1
V, where p is the map

ş1
V Ñ LM ˆ RM;

3. θ̄ sends p0-cocartesian morphisms to p1-cocartesian morphisms.

Proof. (3) is a direct corollary of (2). The proof of (1) and (2) is completely
identical to the proof of HA 4.3.2.5, which uses categorical patterns. Rather
than introduce the categorical pattern terminology here (which would ap-
pear nowhere else in this paper), see the proof of HA 4.3.2.5, and replace

the construction X̄ ÞÑ LM6 ˆX̄ with LM6
S for ĚPShVS or Assoc6

S ˆ´ for ĚCatVS .
The proof carries over without any modification, except that we observe

LM6
S and Assoc6

S P pSet`
∆q{PLM

are cofibrant as well as LM6.
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By the lemma, θ̄ is a functor of RM-monoidal 8-categories (HA 2.1.3.7).

Lemma 5.15. The RM-monoidal 8-category ĚPShVS
p0ÝÑ RM describes a

right V-action on PShVS .

The RM-monoidal 8-category ĚCatVS
p1ÝÑ RM describes the (essentially

unique) right action of the trivial monoidal 8-category 0 on CatVS .

Proof. If Γ P RM, let
ş1
VΓ Ñ LM denote the fiber of

ş1
V Ñ LM ˆ RM over

Γ, and note that the fiber of p0 over Γ is Fun:
{LMpLM§

S ,
ş1
V
§
Γq.

By Remark 5.12,
ş1
Vp˚,0q “

ş
pV;Vq, so the fiber of p0 over p˚, 0q is PShVS .

On the other hand,
ş1
Vp0,0q “

ş
p0;Vq, so the fiber over p0, 0q is PSh0;VS – V;

this equivalence is by Corollary 3.31. Therefore, p0 exhibits a right V-action
on PShVS . Similarly, p1 exhibits a right action of Cat0S – 0 (this equivalence
by Example 3.8) on CatV .

Summarizing our discussion so far, the forgetful functor θ : PShVS Ñ CatVS
extends to an RM-monoidal functor, which is to say that it is compatible
with the right V-action on PShVS and the trivial action on CatVS . It follows
that each fiber PShVpCq “ PShVS ˆCatVS

tCu inherits the right V-action. To
make this more clear, here is an explicit construction of the right V-action
on PShVpCq:

Definition 5.16. By Lemma 5.15, ĚCatVS –
ş
p0;CatVSq. By Corollary 3.31,

CatVS – RModp0;CatVSq “ Fun:
{RM

pRM§, ĚCatV§
S q.

If C P CatVS , let C˚ : RM Ñ ĚCatVS be the associated functor, and define
ĚPShVpCq to be the pullback

ĚPShVpCq //

��

ĚPShVS

��

RM
C˚

// ĚCatVS .

Theorem 5.17. If V is a monoidal 8-category and C P CatVS , then the

functor ĚPShVpCq Ñ RM is a cocartesian fibration of 8-operads, and the
associated RM-monoidal 8-category describes a right V-action on PShVpCq.

In other words, we have constructed PShVpCq as a right V-module.
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Proof. The identity functor RM Ñ RM is a cocartesian fibration of 8-
categories corresponding to the (unique) action of the monoidal 8-category
0 on itself. By Lemma 5.14, C˚ sends all morphisms to p1-cocartesian mor-
phisms, and the composite p1C˚ : RM Ñ RM is the identity functor.

Therefore, C˚ is a functor of RM-monoidal 8-categories, so the pullback
ĚPShVpCq Ñ RM is also an RM-monoidal 8-category, exhibiting an action
of V ˆ0 0 – V on PShVS ˆCatVS

tCu “ PShVpCq.

5.3 Properties of the internal tensor product

Proposition 5.18. Suppose C P CatVS and X P S. Then

1. Evaluation evX : PShVS Ñ V promotes to a right V-module functor;

2. If a morphism A Ñ FpXq exhibits F P PShVpCq as freely generated by
A at X (Definition 3.23), then A b B Ñ FpXq b B – pF b BqpXq
exhibits F bB as freely generated by A bB at X.

(1) asserts that F bA can be ‘computed’, in that pF bAqpXq – FpXq bA.
(2) asserts that tensor products of free presheaves are free. That is, the free
presheaf repX b A (notation introduced in Section 3.3) is equivalent to the
tensor presheaf repX bA (in the sense of the right V-action on presheaves).

In light of Proposition 5.18, Corollary 4.24 can be restated:

Corollary 1.5. If V is presentable and closed monoidal and C is V-enriched,
then PShVpCq is generated under colimits and the right V-action by the rep-
resentable presheaves repX .

Proof of Proposition 5.18. Consider the functor

sevX : ĚPShVS “ Fun:
{LMpLM§

S ,
ş1
V !q Ñ

ş
V

given by evaluation at pX, ˚q P LMS composed with
ş1
V Ñ

ş
V. By Lemma

5.14, sevX sends p0-cocartesian morphisms to p-cocartesian morphisms, where

p :
ş
V Ñ RM, so the induced functor ĚPShVS Ñ

ş
pV;Vq “

ş
V ˆAssocRM is an

RM-monoidal functor evX : pV; PShVSq Ñ pV;Vq. Moreover, the restriction
to Assoc Ď RM is the identity on V, so this describes a right V-module func-
tor evX : PShVS Ñ V. It agrees with the functor we called evX in Section
3.3 because they are both given by evaluation at pX, ˚q P LMS .

The second claim follows directly from Definition 3.23 and (1).
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Corollary 5.19. Let sevX : ĚPShVpCq Ñ
ş
pV;Vq be the RM-monoidal functor

associated to evX , guaranteed by Proposition 5.18(1). Then sevX has a right
adjoint ĎrepX b ´, which is also an RM-monoidal functor.

Proof. By HA 7.3.2.7, sevX has a right adjoint which is a map of 8-operads
over RM. (Intuitively, this is the statement that the right adjoint to an
RM-monoidal functor is canonically a lax RM-monoidal functor.)

To prove that ĎrepX b ´ is not just lax but fully RM-monoidal, it suffices
to prove that for each A,B P V, the map prepX bAq bB Ñ repX b pAbBq
is an equivalence of presheaves. But this is true by Proposition 5.18(2).

Remark 5.20. That is, in the adjunction evX : PShVpCq Ô V : repX b ´,
both adjoints promote to right V-module functors, and in a compatible way.

For an arbitrary monoidal 8-category V, we can’t do any better than con-
struct the right V-action on PShVpCq. However, if V is presentable, we will
prove that PShVpCq varies functorially in C.

Theorem 5.21. If V is presentable and closed monoidal and C P CatVS , then
PShVpCq is a presentable right V-module.

Together with Proposition 5.18(1), this establishes Theorem 1.3 from the
introduction.

Proof. Since PShVpCq is presentable (Theorem 4.19), we just need to prove
that PShVpCq ˆV Ñ PShVpCq preserves colimits independently in each vari-
able. By Proposition 5.18(1), the following square commutes:

PShVpCq ˆ V
b //

evX

��

PShVpCq

evX

��
V ˆ V

b
// V.

By Theorem 4.19 (and taking the upper composite around the square), it
suffices to show that for each X P S, the composite PShVpCq ˆ V Ñ V

preserves colimits independently in each variable. However, we know evX
preserves colimits (Theorem 4.19) and V ˆ V

b
ÝÑ V preserves colimits inde-

pendently in each variable (since V is closed monoidal), so it follows that
the lower composite preserves colimits in each variable separately. Since the
square commutes, this completes the proof.

Proposition 5.22. If V is presentable and closed monoidal, ĚPShVS Ñ ĚCatVS
is a cocartesian fibration.
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Lemma 5.23. Suppose we have a commutative triangle of 8-categories

X
F //

G
��❅

❅❅
❅❅

❅❅
❅ Y

H��⑧⑧
⑧⑧
⑧⑧
⑧

Z

such that G and H are cocartesian fibrations, and F sends G-cocartesian
morphisms to H-cocartesian morphisms. Further assume that for any a P Z,
Fa : Xa Ñ Ya is a cocartesian fibration, and for any a Ñ b in Z, the
induced functor Xa Ñ Xb sends Fa-cocartesian morphisms to Fb-cocartesian
morphisms. Then F is a cocartesian fibration.

Proof. This lemma is proven in a special case in HA 4.8.3.15, but the proof
is general. We repeat it here. Let f0 : A Ñ B be a morphism in Y lying
over α : s Ñ t in Z, and let M P X be a lift of A. We are looking for an
F -cocartesian lift M Ñ N of f0.

By assumption, there is a G-cocartesian morphism f 1 : M Ñ M 1 lifting
α, which is therefore also F -cocartesian. Write f 1

0 : A Ñ A1 for F pf 1q. Also
by assumption, f 1

0 is a cocartesian lift of α, so f0 factors

A1

f2
0

  ❆
❆❆

❆❆
❆❆

❆

A
f0

//

f 1
0

??⑧⑧⑧⑧⑧⑧⑧⑧
B,

for some f2
0 which projects to the identity morphism idt in Z. By assump-

tion, there is an Ft-cocartesian lift f2 : M 1 Ñ N of f2
0 . Moreover, any

t Ñ t1 in Z induces a functor Xt Ñ Xt1 which sends f2 to an Ft1-cocartesian
morphism; therefore, f2 is F -cocartesian.

So f2f 1 : M Ñ N is a composite of F -cocartesian morphisms, and
therefore itself an F -cocartesian morphism (HTT 2.4.1.7) lifting f0. Hence
F is a cocartesian fibration.

Proof of Proposition 5.22. It suffices to prove that the commutative triangle

ĚPShVS θ̄ //

p0
""❋

❋❋
❋❋

❋❋
❋

ĚCatVS

p1
||②②
②②
②②
②②

RM
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satisfies the hypotheses of the lemma. By Lemma 5.14, p0 and p1 are co-
cartesian fibrations, and θ̄ sends p0-cocartesian morphisms to p1-cocartesian
morphisms.

Next, we show that θ̄Γ : p ĚPShVSqΓ Ñ pĚCatVSqΓ is a cocartesian fibration
for any Γ P RM. If Γ “ p˚, 0q, then θ̄Γ is just θ : PShVS Ñ CatVS , which is a
cocartesian fibration by Corollary 4.21. If Γ “ p0, 0q, then θ̄Γ is just V Ñ ˚,
which is a cocartesian fibration (as is any functor to ˚). For general Γ, θ̄Γ is
a product of copies of θ̄p˚,0q and θ̄p0,0q, which are all cocartesian fibrations.

Now consider f : Γ Ñ Γ1 in RM. We are reduced to showing that

f˚ : p ĚPShVSqΓ Ñ p ĚPShVSqΓ1 sends θ̄Γ-cocartesian morphisms to θ̄Γ1-cocartesian
morphisms. Every morphism in RM is a product of morphisms of these
types:

1. inert morphisms p0, 0q Ñ H and p˚, 0q Ñ H;

2. H Ñ p0, 0q;

3. p˚, 0q b p0, 0q Ñ p˚, 0q.

Therefore it suffices to prove just in these three cases that f˚ sends co-
cartesian morphisms to cocartesian morphisms. For (1) and (2) this is clear
because pPShVSqH “ ˚. For (3), the claim reduces to the following:

If F : C Ñ D is a map in CatVS and A P V, then for every F P PShVpCq,
the map ηF : F˚pF bAq Ñ F˚pFq bA is an equivalence of presheaves on D.
(In other words, we are claiming F˚ : PShVpCq Ñ PShVpDq is compatible
with the right V-module structures; this is the main content of the proof.)

If F “ repX b B for some B P V, then the claim is true because free
presheaves are sent to free presheaves by both the constructions F˚ (Remark
4.22) and ´ b A (Proposition 5.18(2)). Hence we have a natural transfor-
mation η : F˚p´ bAq Ñ F˚p´q bA of functors PShVpCq Ñ PShVpDq, both
functors preserve colimits, and η is an equivalence at representables. Since
PShVpCq is generated under colimits by representables (Corollary 1.5), η is
an equivalence at all presheaves. Therefore θ̄ satisfies the hypotheses of the
lemma, so it is a cocartesian fibration.

Now we are ready to show that the right V-modules PShVpCq are functorial

in C. Recall from Definition 5.16 that CatVS – Fun:
{RM

pRM§, ĚCatV§
S q. By
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adjunction, we have a functor RM ˆ CatVS Ñ ĚCatVS . Form the pullback

ĚPShVpCatVS q //

p

��

ĚPShVS
θ̄
��

RM ˆ CatVS
// ĚCatVS .

By Proposition 5.22, θ̄ is a cocartesian fibration, and therefore p is also

a cocartesian fibration. Moreover, each fiber pC : ĚPShVpCq Ñ RM is a
cocartesian fibration of 8-operads by Theorem 5.17. In other words, p is
a cocartesian CatVS -family of RM-monoidal 8-categories in the sense of HA
4.8.3.1. By Theorem 5.21, it is also compatible with small colimits in the
sense of HA 4.8.3.4.

Therefore p is classified by a functor CatVS Ñ ModRMpPrLq, which sends
C to PShVpCq as a right V-module (Ha 4.8.3.20). The composite with the
forgetful functor ModRMpPrLq Ñ ModAssocpPr

Lq is constant with value V,
so PShVp´q factors through the fiber RModVpPrLq Ď ModRMpPrLq over
V P ModAlgpPrLq. To summarize:

Corollary 5.24. If V is presentable and closed monoidal, then the cocarte-

sian fibration p : ĚPShVpCatVSq Ñ RM ˆ CatVS classifies a functor

PShVp´q : CatVS Ñ RModVpPrLq.

5.4 The external tensor product

We will end this section by proving Theorem 1.6: that for any presentable
pair pV;Mq, there is an equivalence of 8-categories

Ψ : PShVpCq bV M Ñ PShVpC;Mq.

Informally, FbM corresponds to the presheaf which assignsX ÞÑ FpXqbM .
The construction of Ψ is quite technical. However, the only properties of Ψ
that we will use are:

Lemma 5.25. Suppose pV;Mq is a presentable pair and C is V-enriched.

1. For any X P C, the following diagram commutes:

PShVpCq bV M
Ψ //

evX

��

PShVpC;Mq

evX

��
V bV M M.
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2. For any X P C and M P M, M Ñ CpX,Xq b M – ΨprepX b MqpXq
exhibits ΨprepX b Mq as freely generated by M at X, in the sense of
Definition 3.23.

In other words, (1) asserts that ΨpF bMqpXq – FpXq bM , and (2) asserts
that ΨprepX bMq is the free presheaf repX bM .

We will proceed with the proof of Theorem 1.6, conditional on Lemma
5.25. Then, at the end of the section, we will construct the functor Ψ and
prove Lemma 5.25.

First, we need two lemmas concerning monadic functors which respect
a module structure.

Lemma 5.26. Suppose F : X Ñ Y is a map in RModVpPrLq: that is, a
V-module functor with a right adjoint. Also suppose F is monadic and its
left adjoint is compatible with the V-module structure (as in Corollary 5.19).

Then there is a monoidal 8-category E such that Y is an pE ,Vq-bimodule,
and an algebra A P E such that there is an equivalence f of right V-module
8-categories making the triangle commute:

X
f

//

F
��❄

❄❄
❄❄

❄❄
❄ LModApYq

yytt
tt
tt
tt
tt

Y.

Proof. Let E “ EndVModpYq, the monoidal 8-category of V-module functors
from Y to itself. Then Y P RModVpCatq is a left E-module, so therefore Y

is an pE ,Vq-bimodule by HA 4.3.3.8.
Moreover, F “ FunRModV pX ,Yq is a left E-module. If G denotes the

left adjoint to F , then A “ FG is an algebra in E , and F is a left A-

module. Therefore, F factors X
f
ÝÑ LModApYq Ñ Y, where f is a right V-

module functor. By Barr-Beck (HA 4.7.3.16), f is an equivalence, because
the induced morphism of monads A Ñ A is an equivalence by construction.

Lemma 5.27. If F : X Ñ Y is a monadic right V-module functor as in the
last lemma, and M is a left V-module, X bVM Ñ Y bVM is also monadic.

Proof. By the last lemma, we can assume without loss of generality that
X “ LModApYq and F is the forgetful functor, where A is an algebra in
some E , such that Y is an pE ,Vq-bimodule. By HA 4.8.4.6, F factors

LModApYq – LModApEq bE Y
F 1

ÝÑ E bE Y – Y.
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Therefore, the functor that we wish to show is monadic is

LModApEq bE Y bV M Ñ Y bV M.

This is equivalent (by HA 4.8.4.6 again) to

LModApY bV Mq Ñ Y bV M,

which is indeed monadic.

Theorem 1.6. If M is a presentable left V-module, then

Ψ : PShVpC;Mq Ñ PShVpCq bV M

is an equivalence.

Proof (conditional on Lemma 5.25). Suppose C has set S of objects. The
proof is by Barr-Beck, following HA 4.8.4.6, which is the case |S| “ 1. By
Lemma 5.25(1), the following triangle commutes:

PShVpCq bV M
Φ //

G
&&◆◆

◆◆
◆◆

◆◆
◆◆

◆
PShVpC;Mq

G1
yyrrr

rr
rr
rr
r

MS ,

where G and G1 are given by evaluation at each object in S (and G factors
through the equivalence VS bV M – MS). We know G1 preserves small
limits and colimits by Theorem 4.19(2), so it has a left adjoint F 1. It is also
conservative by Corollary 4.20. Therefore, it is monadic. By Lemma 5.27,
G is also monadic; call its left adjoint F .

According to the Barr-Beck Theorem (HA 4.7.3.16-17), Φ is an equiv-
alence if G,G1 are both monadic and the induced natural transformation
G1F 1 Ñ GF of functors MS Ñ MS is an equivalence.

We will prove this is true. SinceG1F 1 and GF preserve colimits, it suffices
to check for each X,Y P S that G1

XF
1
Y Ñ GXFY is a natural equivalence of

functors M Ñ M, which is to say ΦprepY bMqpXq Ñ repY pXq bM is an
equivalence for all M P M. This is true by Lemma 5.25(2).

Finally, we will construct the functor Ψ and prove that it satisfies Lemma
5.25. The construction follows HA 4.8.4.4, which is the case |S| “ 1.

60



Remark 5.28. Let X “ p
ş
PShVpCq ¸ BVq ˆş

BV
p
ş
BV ˙ Mq as in Propo-

sition 2.31, which is equipped with a cocartesian fibration r : X Ñ ∆op. We
should think of an object of X as a tuple pF , A0, . . . , An,Mq P Xn, where
F P PShVpCq, Ai P V, and M P M.

By Proposition 2.31, constructing Ψ : PShVpCq bV M Ñ PShVpC;Mq
is equivalent to constructing a functor X Ñ PShVpC;Mq which sends r-
cocartesian morphisms to equivalences and (Remark 2.32) such that the re-
striction PShVpCq ˆVˆn ˆM Ñ PShVpC;Mq preserves colimits for each n.
By Proposition 4.15, we have PShVpC;Mq – Fun:

{
ş
BV§p∆op;

{S ,
ş
BV ˙ M;q.

Hence we need to construct a functor ψ : X ˆ ∆op

{S Ñ
ş
BV ˙ M such that:

1. ψ sends r-cocartesian morphisms in the first coordinate to equiva-
lences;

2. ψ sends totally inert morphisms in the second coordinate to totally
inert morphisms;

3. the following square commutes

X ˆ ∆op

{S

ψ
//

��

ş
BV ˙ M

��
∆op

{S C
//
ş
BV;

4. for each n, PShVpCq ˆ Vˆn ˆ M Ñ PShVpC;Mq preserves colimits.

Let ‹ : p
ş
BV ˙Vq ˆ p

ş
BV ˙Mq Ñ

ş
BV ˙M denote concatenation, defined

by pA0, . . . , Amq ‹ pAm`1, . . . , An,Mq “ pA0, . . . , An,Mq. Define φ0, φ1 to
be the functors (respectively)

X ˆ ∆op

{S Ñ PShVpCq ˆ ∆op

{S Ñ Funp∆op

{S ,
ş
BV ˙ Vq ˆ ∆op

{S Ñ
ş
BV ˙ V,

X ˆ ∆op

{S Ñ X Ñ
ş
BV ˙ M,

and φ “ φ0 ‹ φ1, which is also a functor X ˆ ∆op

{S Ñ
ş
BV ˙ M. Explicitly,

if T “ ppF , A0, . . . , An,Mq, pX0 ă ¨ ¨ ¨ ă Xmqq P X ˆ ∆op

{S, then

φ0pT q “ pCpX0,X1q, . . . , CpXm´1,Xmq,FpXmqq P
ş
BV ˙ V,

φ1pT q “ pA1, . . . , An,Mq P
ş
BV ˙ M,
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φpT q “ pCpX0,X1q, . . . , CpXm´1,Xmq,FpXmq, A1, . . . , An,Mq P
ş
BV ˙ M.

By construction, the following diagram commutes:

X ˆ ∆op

{S

φ
//

��

ş
BV ˙ M

q

��
∆op

{S ˆ ∆op

{S ‹
// ∆op

{S,

where pX0 ă ¨ ¨ ¨ ă Xmq ‹ pXm`1 ă ¨ ¨ ¨ ă Xnq “ pX0 ă ¨ ¨ ¨ ă Xnq. Call the
composite φ̄ : X ˆ ∆op

{S Ñ ∆op

{S. On the other hand, call ψ̄ : X ˆ ∆op

{S Ñ ∆op

{S

the projection onto the second coordinate. There is a canonical natural
transformation φ̄ Ñ ψ̄ of inert morphisms, given essentially by inclusion
X Ď X ‹ Y in ∆op

{S.

We know q : FunpX ˆ∆op

{S
,
ş
BV˙Mq Ñ FunpX ˆ∆op

{S
,∆op

{S
q is a cocarte-

sian fibration since
ş
BV ˙ M Ñ ∆op

{S is a cocartesian fibration. Therefore,

there is a q-cocartesian lift φ Ñ ψ of φ̄ Ñ ψ̄, essentially defined by

ψpT q “ pCpX0,X1q, . . . , CpXm´1,Xmq,FpXmq bA1 b ¨ ¨ ¨ bAn bMq.

Unpacking, ψ satisfies conditions (1)-(3) of Remark 5.28, and it also satisfies
condition (4) by Theorem 4.19(4), so there is an induced functor

Ψ : PShVpCq bV M Ñ PShVpC;Mq.

We are finally ready to prove Lemma 5.25, which we restate here for refer-
ence.

Lemma 5.25. Suppose pV;Mq is a presentable pair and C is V-enriched.

1. For any X P C, the following diagram commutes:

PShVpCq bV M
Ψ //

evX

��

PShVpC;Mq

evX

��
V bV M M.

2. For any X P C and M P M, M Ñ CpX,Xq b M – ΨprepX b MqpXq
exhibits ΨprepX b Mq as freely generated by M at X, in the sense of
Definition 3.23.
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Proof of Lemma 5.25. By construction, evX ˝ Ψ corresponds to the functor

X ˆ tpX0qu Ď X ˆ ∆op

{S

ψ
ÝÑ

ş
BV ˙ M Ñ M;

this sends pF , A0, . . . , An,Mq to FpXqbA0b¨ ¨ ¨bAnbM , which is the tensor

product of X Ñ PShVpCq
evXÝÝÑ V with X Ñ

ş
pV;Mq

b
ÝÑ M. Unpacking

definitions, this implies (1).
To prove (2), we just need to check Definition 3.23; that is, we need to

prove that CpY,Xq bM Ñ ΨprepX bMqpY q is an equivalence for all Y P C.
But this is true by (1).

6 Duality for presheaves

In ordinary category theory, we have a Yoneda embedding Y : C Ñ PShpCq,
which exhibits PShpCq as freely generated by C under colimits.

In other words, if D is a presentable category, then restriction along Y

induces an equivalence of categories

FunLpPShpCq,Dq Ñ FunpC,Dq.

In this section, we will prove the analogous statement for enriched 8-
categories. We will always assume the enriched 8-category V is presentable
and closed monoidal.

Because PShVpCq is a right V-module, and not a priori a V-enriched cat-
egory, we will not want to speak of V-enriched functors to D, but rather
V-enriched copresheaves with values in D. (We introduced enriched co-
presheaves in Section 5.1.)

We will construct the Yoneda embedding in the guise of a copresheaf
Y P coPShVpC; PShVpCqq, and then we will prove:

Theorem 6.1. If N is a presentable right V-module, and F : PShVpCq Ñ N

is a colimit-preserving right V-module functor, let Y˚pF q denote the push-
forward of Y along F˚ : coPShVpV;PShVpCqq Ñ coPShVpV;N q. Then

Y˚ : FunLRModV
pPShVpCq,N q Ñ coPShVpV;N q

is an equivalence of 8-categories.

This theorem is essentially equivalent to Theorem 1.7 from the introduction,
that PShVpCq and coPShVpCq are dual V-modules. We will conclude Theo-
rem 1.7 at the end of this section.
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We begin by constructing the Yoneda copresheaf.
Identify the V-enriched category C with a marked functor Assoc§S Ñ

ş
V§,

and consider the composite

LM§
S ˆ RM§

S

x´,´y
ÝÝÝÝÑ Assoc§S>S

∇
ÝÑ Assoc§S

C
ÝÑ

ş
V§,

where ∇ : S > S Ñ S is the identity on each component (the codiagonal),
and x´,´y is the pairing of Section 5.2. Because LMS ˆ RMS Ñ AssocS is
natural in S, the following diagram commutes:

LMS ˆ RMS

∇x´,´y
//

��

AssocS
C //

%%❏
❏❏

❏❏
❏❏

❏❏
❏

ş
V

��
LM ˆ RM

∇x´,´y
// Assoc.

Therefore, there is an induced marked functor

LM§
S ˆ RM§

S Ñ
ş1
V§ “

ş
V ˆAssoc pLM ˆ RMq.

By adjunction, we have Y : RMS Ñ ĚPShVS “ Fun:
{LMpLM§

S,
ş1
V !q, which is

compatible with the functors down to RM:

RMS
Y

//

##●
●●

●●
●●

●●
ĚPShVS

p0

��
RM.

Moreover, Y sends inert morphisms to p0-cocartesian morphisms by Lemma

5.14, so therefore it describes a copresheaf. Since ĚPShVS –
ş
pV; PShVS q by

Lemma 5.15, Y P coPSh
V ;PShVS
S . We will see shortly:

• that the underlying enriched category is C, so thatY P coPShVpC; PShVSq;

• that the copresheaf evaluated at any object of C is an enriched presheaf
on C, so that Y P coPShVpC; PShVpCqq.

We will regard Y as the enriched Yoneda embedding. Now we prove the two
points in the next two lemmas; they amount to the observations that

tpX, ˚qu ˆ AssocS Ď LMS ˆ RMS
∇x´,´y
ÝÝÝÝÝÑ AssocS,

AssocS ˆ tp˚,Xqu Ď LMS ˆ RMS
∇x´,´y
ÝÝÝÝÝÑ AssocS

are each the identity functor by construction of x´,´y.
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Lemma 6.2. Y is a copresheaf on C; that is, Y P coPShVpC;PShVSq.

Proof. The underlying enriched category of Y is described by the restriction

AssocS Ď RMS
Y
ÝÑ ĚPShVS . Since ĚPShVS –

ş
pV; PShVSq, this composite is just

a V-enriched category.
For any object X P S, recall that evX : PShVS Ñ V is a right V-module

functor, described explicitly (as in the proof of Proposition 5.18) as

sevX : ĚPShVS “ Fun:
{LMpLM§

S,
ş1
V !q Ñ

ş
V,

which is evaluation at pX, ˚q P LMS . As a right V-module functor, sevX
restricts to an equivalence on ĚPShVS ˆRM Assoc –

ş
V.

In particular, this means that the composite

AssocS Ď RMS
Y
ÝÑ ĚPShVS

ĎevXÝÝÑ
ş
V,

which is a priori a V-enriched category, actually recovers the underlying
V-enriched category of the copresheaf Y (regardless of which X P S was
chosen).

By construction of Y, this composite is also

tpX, ˚qu ˆ AssocS Ď LMS ˆ RMS
x´,´y
ÝÝÝÝÑ AssocS

C
ÝÑ

ş
V,

but tpX, ˚quˆAssocS Ñ AssocS is the identity by construction of x´,´y, so
this composite recovers the enriched category C, completing the proof.

Lemma 6.3. The following square commutes:

RMS
Y

//

��

ĚPShVS
θ̄
��

RM
C˚

// ĚCatVS .

Proof. Since ĚCatVS –
ş
p0;CatVSq, each composite RMS Ñ ĚCatVS is a co-

presheaf in coPSh
0;CatVS
S . Each evaluation map evX : coPSh

0;CatVS
S Ñ CatVS is

an equivalence by Corollary 3.31.
Therefore, it suffices to show (for a single chosen X P S) that the two

composites RMS Ñ ĚCatVS are equivalent when evaluated at p˚,Xq P RMS .
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The lower composite evaluated at p˚,Xq is C, by construction, while the
upper composite evaluated at p˚,Xq is the enriched category

AssocS ˆ tp˚,Xqu Ď LMS ˆ RMS
x´,´y
ÝÝÝÝÑ AssocS

C
ÝÑ

ş
V.

As in the proof of the last lemma, the composite AssocSˆtp˚,Xqu Ñ AssocS
is the identity, so this enriched category is also C, completing the proof.

Remark 6.4. By Lemma 6.3, Y factors through a marked functor of the

form RMS Ñ ĚPShVpCq “ ĚPShVS ˆĚCat
V
S
RM, which is to say a copresheaf with

values in PShVpCq. By Lemma 6.2, the underlying enriched category of this
copresheaf is C, so that we have a Yoneda copresheaf

Y P coPShVpC;PShVpCqq.

Now we will prove Theorem 6.1, that the functor

Y˚ : FunLRModV
pPShVpCq,N q Ñ coPShVpV;N q

is an equivalence of 8-categories.

Proof of Theorem 6.1. The proof is by Barr-Beck, following HA 4.8.4.1 and
very similar to Theorem 1.6. As S P X varies, the right V-module functors
repXb´ : V Ñ PShVpCq assemble into a V-module functor VˆS Ñ PShVpCq.
Precomposition with this functor induces

FunLRModV
pPShVpCq,N q Ñ FunLRModV

pVˆS ,N q – N S ,

and the following triangle commutes (where T 1 denotes evaluation at each
X P S)

FunLRModV
pPShVpCq,N q

Y˚ //

T
((◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

coPShVpC;N q

T 1
xxrrr

rr
rr
rr
rr

N S ,

because Y˚pF qpXq – F prepXq. We proved T 1 is monadic in the proof of
Theorem 1.6 (end of Section 5). We claim T is also monadic.

Indeed, T preserves colimits by construction (as it is a map of PrL), and it
has a left adjoint U by Corollary 5.19, which is given by precomposition with
ev : PShVpCq Ñ VˆS . To finish the proof that T is monadic, we need only
show T is conservative. Let F,G : PShVpCq Ñ N be two right V-module
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functors and η : F Ñ G a natural transformation such that T pηq is an
equivalence. In other words, η is an equivalence at repX for all X P S. But
since PShVpCq is generated by repX as a right V-module in PrL (Corollary
1.5), it follows that η is an equivalence everywhere.

Therefore, T and T 1 are monadic. By HA 4.7.3.16-17, to complete the
proof that Y˚ is an equivalence, it suffices to show that the induced natural
transformation T 1U 1 Ñ TU of functors N S Ñ N S is an equivalence, where
U,U 1 are the left adjoints to T , respectively T 1.

Since T 1U 1 and TU preserve colimits, it suffices to check for eachX,Y P S
that T 1

XU
1
Y Ñ TXUY is a natural equivalence of functors N Ñ N . But both

these functors are given by ´ b CpY,Xq, and unpacking, the map is an
equivalence. This completes the proof.

Finally, we will conclude Theorem 1.7, that PShVpCq P RModVpPrLq is left
dual to coPShVpCq P LModVpPrLq (in the sense of HA 4.6.2.3).

Proof of Theorem 1.7. We have coPShVpC; PShVpCqq – PShVpCqbVcoPSh
VpCq

by Theorem 1.6, so we may regard Y as an object of this tensor product, or
a colimit-preserving functor

´ b Y : Top Ñ PShVpCq bV coPShVpCq.

Here the 8-category Top of spaces is the unit of the monoidal structure on
PrL. By HA 4.6.2.18, we just need to prove that for each D P PrL and
N P RModVpPrLq, the composite

iFunLRModV
pD b PShVpCq,N q

´bVcoPSh
VpCq

��

iFunLpD b PShVpCq bV coPShVpCq,N bV coPShVpCqq

Y

��

iFunLpD,N bV coPShVpCqq

is an equivalence of spaces (8-groupoids), where iFun denotes the maximal
subgroupoid of the functor 8-category. However, we have equivalences

FunLRModV
pD b PShVpCq,N q Ñ FunLpD, coPShVpC;N qq,

FunLpD,N bV coPShVpCqq Ñ FunLpD, coPShVpC;N qq,

the first by Theorem 6.1 and the second by Theorem 1.6, and (unpacking)
they are compatible with the functor above. This establishes duality.
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