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Abstract. In this paper we show that the known models for (∞, 1)-categories

can all be extended to equivariant versions for any discrete group G. We show
that in two of the models we can also consider actions of any simplicial group

G.

1. Introduction

Two areas of much recent research in homotopy theory have been the develop-
ment and application of homotopical categories, or (∞, 1)-categories, and equivari-
ant homotopy theory. In this paper, we seek to bring the two ideas together and
investigate equivariant (∞, 1)-categories.

There are many different models for (∞, 1)-categories. Simplicial or topological
categories are categories with a simplicial set or space of morphisms between any
two objects. Segal categories and complete Segal spaces are bisimplicial sets having
properties resembling the simplicial nerve of a simplicial category, but with a weaker
form of composition. Quasi-categories encode the same information in a simplicial
set. Each model for (∞, 1)-categories can be thought of as living in its respective
model category, in which a weak equivalence is defined by a homotopical version of
equivalence of categories; these model categories are all Quillen equivalent.

Given a group G, a G-equivariant (∞, 1)-category should be one of the above
structures equipped with an action of G. The morphisms in the category of such
should respect the G-action, and a weak equivalence should be a map which induces
weak equivalences on H-fixed point objects for all (closed) subgroups H of G.

To prove that each model for (∞, 1)-categories has a good equivariant analogue,
and that these models are in turn all equivalent to one another, we apply gen-
eral tools of Stephan [26] and of Bohmann, Mazur, Osorno, Ozornova, Ponto, and
Yarnall [5]. Their results give conditions under which the category of G-objects in a
model category itself has a model structure, and under which this process preserves
Quillen equivalences. A related approach for categories of diagrams has also been
described by Dotto and Moi [10].

For complete Segal spaces and quasi-categories, the existence of a G-equivariant
version for a discrete group G is immediate from Stephan’s results. For simplicial
categories and Segal categories, we give proofs here, but need to restrict to the case
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where G is finite. These conditions also guarantee that we can carry over all the
Quillen equivalences that we have non-equivariantly.

When G is a simplicial group, then we need the original model category to have
the structure of a simplicial model category. This additional assumption holds for
the complete Segal space and Segal category models, so we establish equivariant
versions in these contexts.

It is perhaps more interesting to consider the case where G is a topological
group, and in particular a compact Lie group. In this case, we need to begin with a
topological (rather than simplicial) model category, so it is expected that the right
models are complete Segal spaces and Segal categories taken in topological spaces
rather than in simplicial sets. We pursue this perspective, as well as a more hands-
on approach to the equivariant structures, in forthcoming work with Chadwick
[4].

We expect that many examples of (∞, 1)-categories have natural group actions
that can be investigated from this perspective. For example, any monoidal (∞, 1)-
category has an action of the automorphism group of a unit object. Further ex-
amples include cobordism categories equipped with group actions, from which one
could consider equivariant topological field theories; generalizing the results of this
paper to higher (∞, n)-categories would give a framework in which one could under-
stand equivariant extended topological filed theories. The most common models
for such examples are the Θn-spaces of Rezk [24] and the n-fold complete Segal
spaces of Barwick and Lurie [20], both of which have model structures which ad-
mit equivariant versions using Stephan’s results. Other generalizations for which
we obtain equivariant analogues include dendroidal models for (∞, 1)-operads as
developed by Cisinski and Moerdijk [6], [7], [8] and the 2-Segal spaces of Dyckerhoff
and Kapranov [12]. As the latter structures often arise from S•-constructions there
are a number of examples to be investigated in an equivariant setting. We plan to
look at such examples in future work.

We begin in Section 2 with a statement of the general theorems that we wish
to use, in the case where G is a discrete group. In Section 3, we show that they
can be applied immediately to the complete Segal space and quasi-category models.
In Sections 4 and 5, we prove that they can be applied to the simplicial category
and Segal category models. Lastly, in Section 6 we consider simplicial groups G
and show that we get equivariant versions of the complete Segal space and Segal
category models in this case.

Acknowledgments. The author would like to thank Anna Marie Bohmann, Angélica
Osorno, and Marc Stephan for several helpful conversations about this work, and
the referee for comments which led to improvements of the paper.

2. Equivariant versions of model categories

In this section, we summarize results of Stephan, namely, sufficient conditions
under which a G-equivariant version of a cofibrantly generated model category C
exists [26]. To begin, we assume that G is finite, and consider it as a category with
a single object and morphisms given by the elements of G. (Stephan actually works
more generally, only assuming that G is discrete. However, since the new examples
we give in this paper require that G be finite, we restrict to this case.)

Definition 2.1. The category of G-objects in C, denoted by CG, is the category of
functors G→ C.
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The key feature of a G-equivariant model structure, rather than just a model
structure of objects equipped with a G-action, is that weak equivalences are defined
using fixed point objects.

Definition 2.2. Given any subgroup H of G, define the H-fixed points functor,
denoted by (−)H , as the composite CG → CH → C where the first map is the
restriction defined by the inclusion of H into G, and the second map is the limit
functor.

Definition 2.3. Let G be a finite group. The G-model structure on CG (if it exists)
has weak equivalences the maps X → Y such that, for every subgroup H of G, the
map XH → Y H is a weak equivalence in C, and likewise for the fibrations.

Remark 2.4. Stephan works in the following more general setting. Let F be a set
of subgroups of G. The F-model structure on C is defined similarly to the G-model
structure, but where H is taken to be an element of F . We are most interested in
the G-model structure, but our results can be applied to the F-model structure as
well.

Since C is a model category, and in particular is complete and cocomplete, we
can think of it as being tensored and cotensored over the category of sets, as follows.
Let A and B be objects of C and X a set. Then there is a tensor

X ⊗A =
∐
X

A

and a cotensor
[X,B] =

∏
X

B

such that there are isomorphisms

HomC(X ⊗A,B) ∼= HomSets(X,HomC(A,B)) ∼= HomC(A, [X,B]).

Let A be an object of C and H a subgroup of G. Then we denote by G/H ⊗ A
the object of CG given composing the map G → Sets given by sending the single
object of G to G/H with the tensor map −⊗A : Sets→ C.

Lemma 2.5. [26] The functor G/H ⊗− : C → CG is left adjoint to the fixed point
functor (−)H .

We use the following criteria for determining the existence of the G-model struc-
ture on CG.

Theorem 2.6. [26], [5] Let G be a finite group, and let C be a cofibrantly generated
model category. Suppose that, for each subgroup H of G, the fixed point functor
(−)H satisfies the following cellularity conditions:

(1) the functor (−)H preserves filtered colimits of diagrams in CG,
(2) the functor (−)H preserves pushouts of diagrams where one arrow is of the

form
G/K ⊗ f : G/K ⊗A→ G/K ⊗B

for some subgroup K of G and f a generating cofibration of C, and
(3) for any subgroup K of G and object A of C, the induced map

(G/H)K ⊗A→ (G/H ⊗A)K

is an isomorphism in C.
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Then the category CG admits the G-model structure.

Observe that a fibrant object in CG is a fibrant object X of C equipped with
an action of G such that, for each subgroup H of G, the fixed point object XH is
fibrant in C.

This result was further strengthened via the following result.

Theorem 2.7. [5] Suppose that F : M � N : R be a Quillen equivalence between
model categories satisfying the cellularity conditions of Theorem 2.6. Then there is
an induced Quillen equivalence FG : MG � NG : RG.

In fact, these model categories are actually Quillen equivalent to those described
via orbit diagrams, generalizing a result of Elmendorf and Piacenza for topological
spaces [13], [22].

Definition 2.8. The orbit category of G is the full subcategory OG of the category
of G-sets with objects the orbits G/H where H is a subgroup of G.

Consider the category of functors Oop
G → C, equipped with the projective model

structure, where weak equivalences and fibrations are defined levelwise. There is
a functor i : G → Oop

G sending the single object of G to G/{e} and a morphism
g of G to the G-map G/{e} → G/{e} defined by h 7→ hg. The induced map

i∗ : GO
op
G → CG has a left adjoint i∗ given by left Kan extension.

Theorem 2.9. [26] Let G be a finite group, and let C be a cofibrantly generated
model category. Suppose that, for each subgroup H of G, the fixed point functor
(−)H satisfies the cellularity conditions of Theorem 2.6. Then there is a Quillen
equivalence

i∗ : CO
op
G � CG : i∗.

Remark 2.10. If one instead uses the F-model structure, for a set F of subgroups
of G, then it is necessary to assume that the trivial subgroup of G is included in
F , so that the functor i is defined.

Combining this result with that of Theorem 2.7, we get a commutative square
of Quillen equivalent model categories associated to a Quillen equivalence C � D
and a group G:

CG //

��

DGoo

��
CO

op
G

OO

// DO
op
G .

OO

oo

We conclude this section with two important families of examples.

Theorem 2.11. [26] Any category of functors D → Sets, equipped with a cofi-
brantly generated model structure in which the cofibrations are monomorphisms,
admits the G-model structure.

Observe that we can apply the above theorem to any category of functors D →
SSets simply by viewing the objects instead as functors D ×∆op → Sets.

Theorem 2.12. [26] Let C be a model category which satisfies the cellularity con-
ditions of Theorem 2.6. Then any left Bousfield localization of C also satisfies the
cellularity conditions, and hence admits the G-model structure.
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3. Equivariant complete Segal spaces and quasi-categories

In this section, we consider the two models for (∞, 1)-categories for which we
get equivariant versions immediately from Stephan’s results. Using Theorem 2.7,
we can lift the Quillen equivalences between them to these equivariant versions.

We begin with the model of quasi-categories. Recall that, given any n ≥ 1 and
0 ≤ k ≤ n, the kth horn of the n-simplex ∆[n], denoted by V [n, k], is the boundary
of ∆[n] with the kth face removed.

Definition 3.1. A quasi-category is a simplicial set X satisfying the inner horn
filling conditions, i.e., that for any n ≥ 2 and 0 < k < n, in any diagram

V [n, k] //

��

X

∆[n]

<<y
y

y
y

y

the dotted arrow lift exists.

Theorem 3.2. [16], [19], [11] There is a model structure QCat on the category
of simplicial sets in which the cofibrations are the monomorphisms and the fibrant
objects are the quasi-categories.

We can apply Theorem 2.11 and Theorem 2.9 to obtain the following result.

Theorem 3.3. The G-model structure for QCat exists, and there is a Quillen
equivalence of model categories

i∗ : QCatO
op
G � QCatG : i∗.

Now we turn to the complete Segal space model. The objects here are simplicial
spaces, or functors ∆op → SSets. Recall that the category of simplicial spaces can
be equipped with the Reedy model structure, in which the weak equivalences are
given levelwise [23]. In this case, it coincides with the injective model structure,
in which the cofibrations are also defined levelwise. Recall that the Reedy model
structure is equipped with a compatible simplicial structure, so there is a mapping
simplicial set Map(X,Y ) between any simplicial spaces X and Y .

Definition 3.4. A simplicial space W is a Segal space if it is Reedy fibrant and
the Segal maps

Wk →W1 ×W0 · · · ×W0 W1︸ ︷︷ ︸
k

are weak equivalences.

Let E denote the nerve of the groupoid with two objects and a single isomor-
phism between them. Denote by Et its corresponding discrete simplicial space (the
“transpose” of the constant simplicial space at E).

Definition 3.5. A Segal space W is complete if the map W0 → Map(Et,W ) is a
weak equivalence of simplicial sets.

Theorem 3.6. [25, 7.2] There is a model structure CSS on the category of sim-
plicial spaces, obtained as a left Bousfield localization of the Reedy model structure,
which satisfies the following properties:

(1) the cofibrations are the monomorphisms, and
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(2) the fibrant objects are the complete Segal spaces.

We obtain the following result by applying Theorems 2.11, 2.12, and 2.9.

Corollary 3.7. The model category CSS admits the G-model structure CSSG.
There is a Quillen equivalences of model categories

i∗ : CSSO
op
G � CSSG : i∗

We now turn to the comparison between the model structures QCat and CSS.
There are two different Quillen equivalences, both due to Joyal and Tierney.

Theorem 3.8. [17, 4.11] The functor p∗ : CSS → QCat, which associates to a
complete Segal space W the simplicial set W∗,0, has a left adjoint p!. This adjoint
pair defines a Quillen equivalence

p∗ : CSS � QCat : p!.

The second Quillen equivalence between these two model categories is given by
a total simplicial set functor t! : CSS → QCat and its right adjoint t!.

Theorem 3.9. [17, 4.12] The adjoint pair

t! : CSS � QCat : t!

is a Quillen equivalence.

Corollary 3.10. There are two commuting squares of Quillen equivalences:

QCatG //

��

CSSGoo

��

QCatG //

��

CSSGoo

��
QCatO

op
G

OO

// CSSO
op
Goo

OO

QCatO
op
G

OO

// CSSO
op
G .oo

OO

4. Equivariant simplicial categories

In this section we consider simplicial categories. Recall that a simplicial category
is a category enriched in simplicial sets, so that between any two objects x and y,
there is a simplicial set Map(x, y), together with compatible composition. In this
case, the G-equivariant model structure does not follow immediately from previous
results.

We start by recalling some notation. Given any simplicial category C, there is
an associated category of components π0C whose objects are the same as those of
C and whose morphisms are the sets of components of the mapping spaces of C.

Define the functor U : SSets → SC such that for any simplicial set K, the
simplicial category UK has two objects, x and y, and only nonidentity morphisms
the simplicial set K = Hom(x, y).

Theorem 4.1. [2, 1.1] There is a cofibrantly generated model structure SC on the
category of small simplicial categories with the following properties.

(1) The weak equivalences are the simplicial functors f : C → D satisfying the
following two conditions:
• for any objects x and y in C, the map

MapC(x, y)→ MapD(fx, fy)

is a weak equivalence of simplicial sets, and
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• the induced functor π0f : π0C → π0D on the categories of components
is an equivalence of categories.

(2) A set of generating cofibrations for SC contains the functors
• U∂∆[n]→ U∆[n] for n ≥ 0, and
• ∅ → {x}, where ∅ is the simplicial category with no objects and {x}

denotes the simplicial category with one object x and no nonidentity
morphisms.

We now consider the existence of a model structure on SCG, and it is here that
we need the restriction that G be finite.

Theorem 4.2. The model category SC satisfies the cellularity conditions of Theo-
rem 2.6.

Proof. To establish condition (1), we modify the argument used for categories in

[5]. Let I be a filtered category and F : I → SCG a functor. Consider the simplicial
nerve functor N : SC → SSets∆op

. Thinking of a simplicial category as a special
case of a simplicial object in Cat, the simplicial nerve is given by levelwise nerve of
categories. Therefore, the functor N commutes with filtered colimits [18]. Thus,
we get an isomorphism

NcolimI(F (i)H) ∼= colimI(N(F (i)H)).

Since the fixed point functor (−)H is defined as a limit and the simplicial nerve is
a right adjoint functor, we get an isomorphism

N(F (i)H) ∼= (NF (i))H .

Since finite limits and filtered colimits commute in Sets and are computed levelwise
in SSets∆op

, we obtain isomorphisms

colimI((NF (i))H) ∼= (colimINF (I))H ∼= (NcolimIF (i))H

where the second isomorphism is a second application of commuting the filtered
colimit with the nerve. We again use that N is a right adjoint, so that

(NcolimIF (i))H ∼= N(colimIF (i))H .

Since the nerve functor is fully faithful, this isomorphism holds even before applying
the nerve functor, which completes the proof of condition (1).

Next we consider condition (3). The tensor product is given by the disjoint union
of categories, and we want to show that the map

∐
(G/K)H

A→

∐
G/K

A

H

is an isomorphism. The action of H on
∐

G/K A is given by permuting the copies

of A, since each A itself has trivial G-action. Therefore, this action is determined
precisely by the action of H on G/K. The desired isomorphism follows.

Finally, we establish condition (2). Given any pushout diagram of the form∐
G/K A //

��

C

��∐
G/K B // D
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with A → B a generating cofibration in SC, we want to show, making use of
condition (3), that the diagram∐

(G/K)H A //

��

CH

��∐
(G/K)H B // DH

is again a pushout square.
We first consider the case where A is the initial simplicial category ∅ and B is a

terminal simplicial category {x}. Then in the original pushout square, the simplicial
category D is obtained from the simplicial category C simply by adjoining disjoint
objects indexed by the cosets G/K. When we apply the fixed point functor (−)H ,
we only adjoin those objects indexed by (G/K)H , which establishes the desired
pushout.

It remains to consider the case where A → B is of the form U∂∆[n] → U∆[n]
for any n ≥ 0. In this case, D is obtained from C by attaching, for each coset G/K,
an n-simplex of morphisms to the appropriate mapping space of C, then freely
adjoining all necessary composites with other mapping spaces. Since this gluing is
done in an equivariant manner, the adjoined simplices have H-action as specified
by the H-action on G/K. Since the composites are also included in a manner
compatible with the G-action, again the only fixed points of D by the action of H
can be those of C or those given by simplices indexed by (G/K)H , as desired. �

Corollary 4.3. The model structure SCG exists and there is a Quillen equivalence

p∗ : SCO
op
G � SCG : i∗.

We can now relate these model structures to the models from the previous sec-
tion. We use a direct Quillen equivalence between SC and QCat, defined using the

coherent nerve functor Ñ : SC → QCat, originally due to Cordier and Porter [9].
Given a simplicial category X and the simplicial resolution C∗[n] of the category

[n] = (0→ · · · → n), the coherent nerve Ñ(X) is defined by

Ñ(X)n = HomSC(C∗[n], X).

This functor has a left adjoint J : QCat→ SC.

Theorem 4.4. [11], [15], [19] The adjoint pair

J : QCat //SC : Ñoo

is a Quillen equivalence.

Corollary 4.5. There is a commuting square of Quillen equivalences

QCatG //

��

SCGoo

��
QCatO

op
G

//

OO

SCO
op
G .oo

OO
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5. Equivariant Segal categories

Lastly, we turn to the model of Segal categories. In this case, we consider two
different model structures with the same weak equivalences.

Definition 5.1. A simplicial space X is a Segal precategory if X0 is a discrete
simplicial set. It is a Segal category if additionally the Segal maps

Xk → X1 ×X0
· · · ×X0

X1︸ ︷︷ ︸
k

are weak equivalences for all k ≥ 2.

For any Segal category X, we can take its objects to be the set X0. Its mapping
spaces mapX(x, y) are given by the fibers of the map (d1, d0) : X1 → X0 ×X0 over
a given pair of objects (x, y). With notions of weak composition, one can define
homotopy equivalences as in [25] and hence a homotopy category Ho(X) associated
to X.

Given a Segal precategoryX, there is a functorial construction of a Segal category
LX which is weakly equivalent to X in the Segal space model structure [3, §5].

The inclusion functor from the category of Segal precategories into the category
of simplicial spaces has a left adjoint which we denote by (−)r. Recall that, for a
simplicial set K we denote again by K the constant simplicial space, and by Kt

the discrete simplicial space defined by the set of n-simplices of K in degree n.

Theorem 5.2. [1, 3.2], [3, 5.1, 5.13], [21] There exists a cofibrantly generated
model structure SeCatc on the category of Segal precategories satisfying the following
conditions.

• The weak equivalences are the Dwyer-Kan equivalences, or maps X → Y
such that

– for any objects x, y ∈ X0, mapLX(x, y) → mapLY (fx, fy) is a weak
equivalence of simplicial sets, and

– the induced functor Ho(LX)→ Ho(LY ) is an equivalence of categories.
• The fibrant objects are the Reedy fibrant Segal categories.
• Cofibrations are the monomorphisms.
• A set of generating cofibrations for SeCatc is given by

Ic = {(∂∆[m]×∆[n]t ∪∆[m]× ∂∆[n]t)r → (∆[m]×∆[n]t)r}

for all m ≥ 0 when n ≥ 1 and for n = m = 0.

Observe that this model structure actually satisfies the conditions of Theorem
2.11, since its objects are presheaves and the cofibrations are monomorphisms. How-
ever, since we have a restriction on those presheaves, namely that the degree zero
space be discrete, some features of the model structure are less intuitive. Therefore,
we include a complete proof.

Theorem 5.3. The model category SeCatc satisfies the cellularity conditions of
Theorem 2.6.

Proof. To show that condition (1) is satisfied, we need only observe that finite limits
and filtered colimits commute in the category of sets. Since limits are computed
levelwise in the category of Segal precategories, and the fixed point functor (−)H

is defined as a finite limit, the desired condition holds.
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Establishing condition (3) is similar to the case of simplicial categories.
It remains to show that condition (2) holds. Let A → B be a generating cofi-

bration for the Reedy model structure on simplicial spaces, of the form

∂∆[m]×∆[n]t ∪∆[m]× ∂∆[n]t → ∆[m]×∆[n]t

for some m,n ≥ 0. We know that the Reedy model structure satisfies the desired
condition for these generating cofibrations, using Theorem 2.11.

Any generating cofibration of SeCatc is of the form Ar → Br, where A → B is
as above and (−)r denotes the reduction functor. Suppose that we have a pushout
diagram ∐

G/K Ar
//

��

X

��∐
G/K Br

// Y

in the category of Segal precategories. Consider also the pushout∐
G/K A //

��

X

��∐
G/K B // Y ′

taken in the category of simplicial spaces. If we assume that X is a Segal precat-
egory, so that X = Xr, then the fact that the reduction functor is a left adjoint
implies that (Y ′)r ' Y . Therefore, in the diagram∐

(G/K)H A
//

��

∐
(G/K)H Ar

//

��

XH

��∐
(G/K)H B

// ∐
(G/K)H Br

// Y H

the left square and the large rectangle are both pushouts; therefore, the right square
is also a pushout. �

Corollary 5.4. The model structure SeCatGc exists and there is a Quillen equiva-
lence

i∗ : SeCatO
op
G

c � SeCatGc : i∗.

For the purposes of comparison with other models, we need another model struc-
ture with the same weak equivalences but different fibrations and cofibrations. To
define a generating set of cofibrations, we require the following construction.

For m ≥ 1 and n ≥ 0, define Pm,n to be the pushout of the diagram

∂∆[m]×∆[n]t0 //

��

∂∆[m]×∆[n]t

��
∆[n]t0 // Pm,n.
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If m = 0, then we define Pm,0 to be the empty simplicial space. For all m ≥ 0 and
n ≥ 1, define Qm,n to be the pushout of the diagram

∆[m]×∆[n]t0 //

��

∆[m]×∆[n]t

��
∆[n]t0 // Qm,n.

For each m and n, the map ∂∆[m] × ∆[n]t → ∆[m] × ∆[n]t induces a map
im,n : Pm,n → Qm,n. Note that whenm ≥ 2 this construction gives exactly the same
objects as those given by reduction, namely that Pm,n is precisely (∂∆[m]×∆[n]t)r
and likewise Qm,n is precisely (∆[m]×∆[n]t)r.

Theorem 5.5. [1, 4.2], [3, 7.1] There is a model structure SeCatf on the category
of Segal precategories with the following properties.

• The weak equivalences are the Dwyer-Kan equivalences.
• The cofibrations are the maps which can be formed by taking iterated pushouts

along the maps of the set

If = {im,n : Pm,n → Qm,n | m,n ≥ 0}.

• The fibrant objects are the Segal categories which are fibrant in the projective
model structure on simplicial spaces.

Theorem 5.6. The model category SeCatf satisfies the cellularity conditions of
Theorem 2.6.

Proof. Since the objects and weak equivalences in SeCatc and SeCatf are the same,
the cellularity conditions (1) and (3) continue to hold for SeCatf .

We need only prove that condition (2) holds. Consider a generating cofibration
A→ B for the projective model structure on simplicial spaces, which has the form

∂∆[m]×∆[n]t → ∆[m]×∆[n]t

for some m,n ≥ 0. This model structure satisfies the cellularity conditions by
Theorem 2.11.

For any m ≥ 2, the map Pm,n → Qm,n coincides with Ar → Br, so the argument
given for SeCatc applies. When m = 0, the map is an isomorphism. Therefore, we
need only consider the case when m = 1.

The pushout diagram defining P1,n can be rewritten as

∆[n]t0 q∆[n]t0 //

��

∆[n]t q∆[n]t

��
∆[n]t0 // P1,n.

The top horizontal map is the inclusion, and the left horizontal map is the fold
map, so it follows that P1,m = ∆[n]t, which coincides with (∆[n]t)r since ∆[n]t0 is
already discrete. Since Q1,n = (∆[1]×∆[n]t)r, we simply need to consider the map
(∆[n]t)r → (∆[1] ×∆[n]t)r. But this map is the reduction of a cofibration in the
projective model structure, so we can apply the same argument as the one used for
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SeCatc to the diagram∐
(G/K)H ∆[n]t //

��

∐
(G/K)H (∆[n]t)r //

��

XH

��∐
(G/K)H ∆[1]×∆[n]t // ∐

(G/K)H (∆[1]×∆[n]t)r // Y H .

It follows that the right-hand square is a pushout, which is what we needed to
prove. �

Corollary 5.7. The model structure SeCatGf exists and there is a Quillen equiva-
lence

i∗ : SeCatO
op
G

f � SeCatGf : i∗.

We now have a number of comparisons with other models, beginning with the
one connecting SeCatc and SeCatf .

Proposition 5.8. [3, 7.5] The identity functor induces a Quillen equivalence

I : SeCatf � SeCatc : J.

Corollary 5.9. The identity functor induces a commutative square of Quillen
equivalences

SeCatGf
//

��

SeCatGcoo

��

SeCatO
op
G

f
//

OO

SeCatO
op
G

c .oo

OO

Next, we consider the comparison between simplicial categories and Segal cate-
gories. The functor N taking a simplicial category to its simplicial nerve, a Segal
category has a left adjoint which we denote by F .

Theorem 5.10. [3, 8.6] The Quillen pair

F : SeCatf � SC : N

is a Quillen equivalence.

Corollary 5.11. There is a commutative square of Quillen equivalences

SeCatGf
//

��

SCGoo

��
SeCatO

op
G

f
//

OO

SCO
op
G .oo

OO

Next, we consider the inclusion functor I from the category of Segal precategories
to the category of simplicial spaces, which has a right adjoint R.

Theorem 5.12. [3, 6.3] The adjoint pair

I : SeCatc � CSS : R

is a Quillen equivalence.
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Corollary 5.13. There is a commutative square of Quillen equivalences

SeCatGc
//

��

CSSGoo

��
SeCatO

op
G

c
//

OO

CSSO
op
G .oo

OO

Similarly to the comparison between complete Segal spaces and quasi-categories,
Joyal and Tierney prove that there are also two different Quillen equivalences di-
rectly between QCat and SeCatc. The first of these functors is analogous to the
pair given in Theorem 3.8; the functor j∗ : SeCatc → QCat assigns to a Segal
precategory X the simplicial set X∗0. Its left adjoint is denoted j!.

Theorem 5.14. [17, 5.6] The adjoint pair

j! : QCat� SeCatc : j∗

is a Quillen equivalence.

The second Quillen equivalence between these two model categories is given by
the map d∗ : SeCatc → QCat, which assigns to a Segal precategory its diagonal,
and its right adjoint d∗.

Theorem 5.15. [17, 5.7] The adjoint pair

d∗ : SeCatc � QCat : d∗
is a Quillen equivalence.

Corollary 5.16. There are two commutative squares of Quillen equivalences

QCatG //

��

SeCatGcoo

��

QCatG //

��

SeCatGc
oo

��

QCatO
op
G

OO

// SeCatO
op
G

coo

OO

QCatO
op
G

OO

// SeCatO
op
G

c .oo

OO

6. Actions of simplicial groups

In this section, we consider the case of actions by any simplicial group G. Given
a model category C, to make sense of the category CG, we need to require that C
have the structure of a simplicial model category and consider simplicial functors
G→ C where G is regarded as a simplicial category with one object.

Stephan proves the following result for the topological case, but his proof holds in
the simplicial case as well. He restricts to the case of compact Lie groups, partially
because they are the case of most interest in equivariant homotopy theory, but
also because they satisfy important cofibrancy conditions. In particular, if G is a
compact Lie group, then the spaces G/H and (G/H)K are CW complexes for any
closed subgroups H and K of G. In our case, the analogous statement is that the
simplicial sets G/H and (G/H)K are cofibrant, which holds automatically since all
simplicial sets are cofibrant. In order to transfer our arguments from the discrete
setting, however, we assume that G is finite, in the sense of having finitely many
nondegenerate simplices.

Proposition 6.1. Suppose that G is a simplicial group and C is a cofibrantly gen-
erated simplicial model category. Then we have the following.
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(1) The category of G-objects in C admits the G-model structure if the condi-
tions of Theorem 2.6 hold. In this case, CG is a simplicial model category.

(2) The orbit category model category CO
op
G exists and is a simplicial model

category.
(3) There is a Quillen equivalence CO

op
G � CG.

Since CSS is known to be a simplicial model category [25, 7.2], we have the
following.

Corollary 6.2. The simplicial model categories CSSG and CSSO
op
G exist and there

is a Quillen equivalence

i∗ : CSSO
op
G � CSSG : i∗.

Proof. We already know that CSS satisfies the cellularity conditions. Therefore,
the result follows immediately from Proposition 6.1. �

However, we can also consider SeCatc; we include here a proof that it is a
simplicial model category.

Proposition 6.3. The model category SeCatc has the structure of a simplicial
model category.

Proof. We need to show that the axioms (SM6) and (SM7) for a simplicial model
category hold [14, 9.1.6]. We begin with (SM6). Suppose that X and Y are Segal
precategories and K is a simplicial set. Recall that the left adjoint to the inclusion
functor from Segal precategories to simplicial spaces is the reduction functor (−)r.
Define X ⊗K = (X ×K)r, where the product is taken in simplicial spaces. Then
define Map(X,Y ) and Y K just as for simplicial spaces; for the latter, observe that
if Y0 is discrete, then so is (Y K)0 = (Y0)K . Then one can verify the necessary
isomorphisms to verify (SM6).

To check axiom (SM7), we need to show that if i : A → B is a cofibration and
p : X → Y is a fibration in SeCatc, then the pullback-corner map

Map(B,X)→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration of simplicial sets which is a weak equivalence if either i or p is. Since
we have defined mapping spaces to be the same as in the category of simplicial
spaces, we need only verify that a cofibration or fibration in SeCatc is still a cofi-
bration or fibration, respectively, in the Reedy model structure on simplicial spaces.
Since cofibrations are exactly the monomorphisms in both categories, the case of
cofibrations is immediate.

Suppose, then, that p is a fibration in SeCatc, so that is has the right lifting
property with respect to monomorphisms between Segal precategories which are
also Dwyer-Kan equivalences. In particular, it has the right lifting property with
respect to monomorphisms which are levelwise weak equivalences of simplicial sets.
Suppose that A→ B is an acyclic cofibration in the Reedy model structure. Then
π0(A0) ∼= π0(B0), so (Ar)0 ∼= (Br)0. Therefore the map Ar → Br is still a level-
wise weak equivalence and monomorphism, and in particular a weak equivalence in
SeCatc. Therefore we obtain a lifting

A //

'
��

Ar
//

��

X

p

��
B // Br

>>}
}

}
}

// Y.
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Therefore, p is also a fibration in the Reedy model structure on simplicial spaces.
It follows that SeCatc satisfies axiom (SM7) and is a simplicial model category. �

Since we have already verified that SeCatc satisfies the cellularity conditions, we
have the following result.

Corollary 6.4. Let G be a simplicial group. The simplicial model categories

SeCatGc and SeCatO
op
G

c exist and there is a Quillen equivalence

i∗ : SeCatO
op
G

c � SeCatGc : i∗.

Using another application of Theorem 2.7, or rather, an analogue for simplicial
model categories, we obtain the following.

Corollary 6.5. Let G be a simplicial group. Then there are Quillen equivalences
of simplicial model categories

SeCatGc
//

��

CSSGoo

��
SeCatO

op
G

c
//

OO

CSSO
op
G .oo

OO
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