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Localizing the E2 page of the Adams spectral sequence

EVA BELMONT

There is only one nontrivial localization of ��S.p/ (the chromatic localization at
v0 D p ), but there are infinitely many nontrivial localizations of the Adams E2
page for the sphere. The first nonnilpotent element in the E2 page after v0 is
b10 2 Ext2;2p.p�1/A .Fp;Fp/ . We work at pD 3 and study b�110 Ext�;�P .F3;F3/ (where
P is the algebra of dual reduced powers), which agrees with the infinite summand
Ext�;�P .F3;F3/ of Ext�;�A .F3;F3/ above a line of slope 1

23
. We compute up to the

E9 page of an Adams spectral sequence in the category Stable.P / converging to
b�110 Ext�;�P .F3;F3/ , and conjecture that the spectral sequence collapses at E9 . We
also give a complete calculation of b�110 Ext�;�P .F3;F3Œ�31 �/ .
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1 Introduction

For a p–local finite spectrum X, the Adams spectral sequence

E��2 D Ext�;�A .Fp;H�X/) ��X
^
p

is one of the main tools for computing (the p–completion of) the homotopy groups
of X. If one understands the A–comodule structure of H�X, it is possible to compute
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1966 Eva Belmont

the E2 page algorithmically in a finite range of dimensions. However, for many
spectra X of interest such as the sphere spectrum S, there is no chance of determining
the E2 page completely. The motivating goal behind this work is to compute an infinite
part of the Adams E2 page Ext�;�A .Fp;Fp/ for the sphere at p D 3. Specifically, we
wish to compute the b10–periodic part, where b10 2 Ext2;2p.p�1/A .Fp;Fp/ converges
to ˇ1 2 �2p.p�1/�2S. We show that there is a plane above which Ext�;�A .Fp;Fp/

is b10–periodic, where the third grading f (in addition to internal degree t and
homological degree s ) is related to the collapse of the Cartan–Eilenberg spectral
sequence at odd primes p (see (1-2)). The b10–periodic region of the f D 0 summand
of Ext�;�A .F3;F3/ (the main focus of study in this paper) is the region lying above the
red line in Figure 1.

The only localization of the Adams E2 page for the sphere that has been completely
computed is

(1-1) a�10 Ext�;�A .Fp;Fp/Š FpŒa
˙1
0 �;

where a0D Œ�0� converges to p2�0S ; this follows from Adams’ fundamental work [1]
on the structure of the E2 page. This localization agrees with Ext�;�A .Fp;Fp/ above
a line of slope 1=.2p � 2/ (in the .t � s; s/ grading). Our proposed localization
b�110 Ext�;�A .Fp;Fp/ agrees with Ext�;�A .Fp;Fp/ above a plane whose fixed-f cross-
section is a line of slope 1=.p3 � p � 1/. While the only a0–periodic elements lie
in the zero-stem (corresponding to chromatic height zero), the b10–periodic region
encompasses nonzero classes in arbitrarily high stems, including some elements in
chromatic height 2, such as b10 itself. Though we do not give a complete calcu-
lation of b�110 Ext�;�A .Fp;Fp/, we will see that it is much more complicated than
a�10 Ext�;�A .Fp;Fp/. Thus, in some sense, one may think of b�110 Ext�;�A .Fp;Fp/ as a
richer and more revealing version of the classical calculation.

In a different sense, however, these two localizations come from different worlds.
Inverting a0 is the Adams E2 avatar of p–localization on (p–local) homotopy (ra-
tionalization). Equivalently, the sphere has chromatic type zero, and a0 is just the
algebraic name for the chromatic height-0 operator v0 . On the other hand, inverting b10
is not the shadow of any homotopy-theoretic localization: by the Nishida nilpotence
theorem, ˇ1 is nilpotent in homotopy, so ˇ�11 ��S D 0. While v0 D p is the only
chromatic periodicity operator acting on the sphere, a0 and b10 are just the first two
out of infinitely many nonnilpotent elements in Ext�;�A .Fp;Fp/. Palmieri [14] describes
a more complicated analogue of the classical theory of periodicity and nilpotence that
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Figure 1: Chart of Ext�;�P .F3;F3/ with the line of Proposition 3.1 drawn in
red: classes above the line are b10–periodic.

Algebraic & Geometric Topology, Volume 20 (2020)



1968 Eva Belmont

operates only on Adams E2 pages, almost all of which (except the vn operators) is
destroyed by the time one reaches the Adams E1 page.

Recall that the odd-primary dual Steenrod algebra has a presentation

AD FpŒ�1; �2; : : : �˝EŒ�0; �1; : : : �

where EŒx�DFpŒx�=x2 denotes an exterior algebra, j�njD2.pn�1/ and j�njD2pn�1.
Let P D FpŒ�1; �2; : : : � be the Steenrod dual reduced powers algebra, and let E be the
quotient Hopf algebra EŒ�0; �1; : : : �. If M is an evenly graded A–comodule, there is
an isomorphism

(1-2) Exts;tA .Fp;M/Š Exts;t�fP .Fp;Extf;�E .Fp;M//

which arises from the collapse of the Cartan–Eilenberg spectral sequence at odd
primes p . In light of this, we recast our goal as follows:

Goal 1.1 Compute b�110 Ext�;�P .Fp;M/ for P –comodules M.

In particular, we are most interested in M D Ext�;�E .Fp;Fp/. In this paper, we focus
on the f D 0 summand Ext0;�E .Fp;Fp/Š Fp and set p D 3. We show the following:

Theorem 1.2 Let DDF3Œ�1�=�31 and let RDb�110 Ext�;�D .F3;F3/DEŒh10�˝F3Œb˙110 �.
There is a convergent spectral sequence with E2 term

E
s;t;u
2 ŠRŒw2; w3; : : : �) b�110 ExtsCt;uP .F3;F3/;

where wn 2E
1;1;2.3nC1/
2 , and differentials

dr W E
s;t;u
r !EsCr;t�rC1;ur :

We have dr D 0 for r � 2 unless r � 4 .mod 9/ or r � 8 .mod 9/. The first nontrivial
differential is

d4.wn/D b
�4
10 h10w

2
2w

3
n�1

for n� 3.

The class w2 is a permanent cycle, which converges to g0 D hh10; h10; h11i 2

b�110 Ext�;�P .Fp;Fp/. For n� 3, wn is not a permanent cycle, but is represented in the
E1 page by hh10; h10; hn�1;1i. Theorem 1.2 completely describes the d4 differentials.
In Proposition 7.1 we give a complete description of the d8 ’s. We conjecture that the
spectral sequence collapses at E9 ; computer calculations using the software [13] verify
that this is true for stems � 700. See Figures 2 and 3 for a picture of the E2 D E4 ,
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Localizing the E2 page of the Adams spectral sequence 1969

E8 , and E1 pages of this spectral sequence. The charts are drawn in the .u0; s/
grading, defined in the introduction to Section 2 so that b10 has degree .0; 0/ and the
y–axis represents filtration in the spectral sequence. In particular, each dot represents
a b10 tower in Figure 1, and b10 multiplication goes into the page. The class h10 is
abbreviated as h.

Conjecture 1.3 There is an isomorphism

b�110 Ext�;�P .F3;F3/Š b
�1
10 Ext�;�D .F3; �W /;

where �W D F3Œ zw2; zw3; : : : � with j zwnj D 2.3n� 5/ and coaction given by

 . zwn/D 1˝ zwnC �1˝ zw
2
2 zw

3
n�1 for n� 3:

(These generators are related to the generators of Theorem 1.2 by zwn D b�110 wn .)

Adams’ theorem (1-1) has the more general form

a�10 Ext�;�A .Fp;M/Š a�10 Ext�;�
EŒ�0�

.Fp;M/

for an A–comodule M (see also May and Milgram [9]). In particular, the localized
cohomology depends only on the EŒ�0�–comodule structure on M. The analogous state-
ment for b10–localization (that b�110 Ext�;�P .Fp;M/ depends only on the D–comodule
structure of M ) is not true. In general, we propose the following:

Conjecture 1.4 At p D 3, there is a functor E W ComodP ! ComodD such that

b�110 Ext�;�P .F3;M/Š b�110 Ext�;�D .F3; E .M//

and, as vector spaces, R˝ E .M/ agrees with the E2 page of the spectral sequence
described below in Theorem 1.6 with � D P.

Our best complete result is the following; it is proved in Section 8 using different
methods.

Theorem 1.5 There is an isomorphism

b�110 Ext�;�P .F3;F3Œ�
3
1 �/Š b

�1
10 Ext�;�D .F3;F3Œh20; b20; w3; w4; : : : �=h

2
20/;

where D acts trivially on all the generators on the right.

1.1 Main tool

Our main tool (the spectral sequence mentioned in Theorem 1.2) is as follows. It is a
special case of the construction discussed in Belmont [3].
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Figure 2: Left: E4 page of the K.�1/–based MPASS, with d4 differentials
shown. Right: E8 page of the K.�1/–based MPASS. The grading is .u0; s/
(see the introduction to Section 2 for details).
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Figure 3: E1 page of the K.�1/–based MPASS.
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Theorem 1.6 Let D D FpŒ�1�=�
p
1 and let � be a Hopf algebra over Fp with a

surjection of Hopf algebras �!D. Let B� D � �D Fp . For a � –comodule M, there
is a spectral sequence

E
s;t
1 Š b

�1
10 Extt;�D .Fp; B

˝s
� ˝M/) b�110 Ext�;�� .Fp;M/(1-3)

(where B� is the coaugmentation ideal coker.Fp! B�/).

At p D 3, b�110 Ext�;�D .Fp; B�/ is flat as a b�110 Ext�;�D .Fp;Fp/–module , and

E��2 Š b
�1
10 Ext�;�

b�110 Ext�;�D .Fp;B�/
.R; b�110 Ext�;�D .Fp;M//:(1-4)

We work at p D 3 throughout. The main focus is the case � D P and BP D

P �D F3 DW B ; this is the spectral sequence of Theorem 1.2. We also apply this for
two quotients of P — for a spectral sequence comparison argument in Section 6 and
for the proof of Theorem 1.5 in Section 8. Convergence is proved in the appendix in
the case that � is a quotient of P.

In [3], we show that the following three constructions of (1-3) coincide at the E1 page:

(1) The first construction is a b10–localized Cartan–Eilenberg-type spectral sequence
associated to the sequence of P –comodule algebras B! P !D. (Note that
the inclusion B ! P is not a map of coalgebras; see [3, Section 2.3] for a
precise construction in this case.)

(2) The second construction is an Adams spectral sequence internal to the category
Stable.P /. See Margolis [7, Chapter 14] or Hovey, Palmieri and Strickland
[4, Section 9.6] for a definition of Stable.�/ for a Hopf algebra � over Fp , or
Barthel, Heard and Valenzuela [2, Section 4] for a more modern viewpoint; the
idea is that it is a variation of the derived category of � –comodules designed
to satisfy HomStable.�/.Fp; x

�1M/ D x�1 HomStable.�/.Fp;M/. In particular,
if M is a � –comodule, then HomStable.�/.Fp;M/ D Ext�;�� .Fp;M/. The
Adams spectral sequence in this setting was first studied by Margolis [7] and
Palmieri [14], and so we call this the Margolis–Palmieri Adams spectral sequence
(MPASS).

In particular, let K.�1/ WD b�110 B D colim.B b10
��! B

b10
��! � � � / (where the

colimit is taken in Stable.P /); then our spectral sequence is the K.�1/–based
Adams spectral sequence.

(3) The third construction is obtained by b10–localizing the filtration spectral se-
quence on the normalized P –cobar complex C �P .Fp;Fp/ WD P˝� in which

Algebraic & Geometric Topology, Volume 20 (2020)



Localizing the E2 page of the Adams spectral sequence 1973

Œa1 j � � � jan� 2 F
sC �P if at least s of the ai lie in ker.P !D/D BP. (Here B

denotes the augmentation ideal of B.)

Our dominant viewpoint will be via the framework of (2), but the other two formulations
will be useful at key moments. By a “b10–localized” spectral sequence, we mean the
spectral sequence whose Er page is obtained by b10–localizing the original Er page.
It is not automatic that this converges to the b10–localization of the original spectral
sequence; this is what is checked in the appendix.

Remark 1.7 The essential reason we focus on p D 3 is that for the analogous con-
struction at p > 3, the flatness condition does not hold. (This comes from the Adams
spectral sequence flatness condition applied in the setting of (2).)

Outline

In Section 2, we prove some basic results about the structure of the spectral sequence
converging to b�110 Ext�;�P .F3;F3/ and introduce definitions and notation that will be
used extensively in the computational sections. In Section 3, we apply vanishing line
results to describe a region in which b�110 Ext�;�P .Fp;M/ agrees with Ext�;�P .Fp;M/

for an arbitrary odd prime p . Sections 4 and 5 are devoted to computing the E2 page of
the K.�1/–based MPASS at pD 3 converging to b�110 Ext�;�P .F3;F3/. In Section 6 we
determine d4 , the first nontrivial differential after the E2 page. In Section 7, we deter-
mine d8 and show that our conjecture that the spectral sequence collapses at E9 would
imply the desired form of b�110 Ext�;�P .F3;F3/ in Conjecture 1.3. In Section 8 we prove
Theorem 1.5. In the appendix we show convergence of the MPASS in the cases of inter-
est, and also show convergence of an auxiliary spectral sequence needed for Section 6.

Acknowledgements I am grateful to Haynes Miller, my graduate advisor, for suggest-
ing this as a thesis project and for providing invaluable guidance at every step along the
way. I would also like to thank Dan Isaksen and Zhouli Xu for helpful conversations
about this work, and Hood Chatham for productive conversations and for the spectral
sequences LATEX package used to draw the charts in Figure 3.

2 Overview of the MPASS converging to b�1
10

Ext�;�
P
.F3;F3/

In every section except Sections 3 and 4 we will set p D 3 and let k D F3 . We will
denote exterior and truncated polynomial algebras, respectively, by EŒx�D kŒx�=x2

and DŒx�D kŒx�=xp . Let D DDŒ�1�.
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If M is a P –comodule and E D b�110M, we adopt the notation of [14] and write

���.M/ WDM�� WD Hom��Stable.P /.k;M/D Ext�;�P .k;M/;

M��M WD Hom��Stable.P /.k;M ˝M/D Ext�;�P .k;M ˝M/;

���.E/ WDE�� WD Hom��Stable.P /.k; E/D b
�1
10 Ext�;�P .k;M/;

E��E WD Hom��Stable.P /.k; E˝E/D b
�1
10 Ext�;�P .k;M ˝M/:

Here M˝M is given the diagonal P –comodule structure  .a˝b/D
P
a0b0˝a00˝b00,

where  .a/D
P
a0˝ a00 and  .b/D

P
b0˝ b00. Define

B WD P �D k; K.�1/ WD b
�1
10 B WD colim.B b10

��! B
b10
��! � � � /;

where the colimit is taken in Stable.P /. Due to the general machinery of Adams
spectral sequences in Stable.P / (see [14, Section 1.4]), we have a K.�1/–based
spectral sequence

E
s;t;u
1 D �t;u.K.�1/˝K.�1/

˝s/D b�110 Ext�;�P .k; B˝B˝s/) b�110 Ext�;�P .k; k/;

which we call the K.�1/–based Margolis–Palmieri Adams spectral sequence (MPASS).
Here x. � / denotes the coaugmentation ideal. By the shear isomorphism (Lemma 5.16)
and the change-of-rings theorem, we may write Es;t;u1 D b�110 Ext�;�D .k; B˝s/. If
K.�1/��K.�1/ is flat over K.�1/�� , then the E2 page (2-1) has the form

(2-1) Ext�;�;�
K.�1/��K.�1/

.K.�1/��; K.�1/��/:

The differential dr is a map Es;t;ur !E
sCr;t�rC1;u
r . Here s is the MPASS filtration,

t is the internal homological degree and u is the internal topological degree. Further-
more, we will often find it convenient to work with the degree

u0 WD u� 6.sC t /;

which has the property that u0.b10/D 0. In this grading, the differential dr is a map
E
s;u0

r !E
sCr;u0�6
r .

The coefficient ring K.�1/�� is easy to compute using the change-of-rings theorem:

K.�1/�� D b
�1
10 Ext�;�P .k; B/D b�110 Ext�;�P .k; P �D k/

D b�110 Ext�;�D .k; k/DEŒh10�˝ kŒb
˙1
10 �;

where h10 is in homological degree 1 and b10 is in homological degree 2. It will be
useful to have notation for this coefficient ring:

(2-2) R WDEŒh10�˝ kŒb
˙
10�:

Algebraic & Geometric Topology, Volume 20 (2020)
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Using the shear isomorphism (Lemma 5.16) and the change-of-rings theorem, we have

(2-3) K.�1/��K.�1/Š b
�1
10 Ext�;�P .k; B˝B/Š b�110 Ext�;�P .k; P �D B/

Š b�110 Ext�;�D .k; B/:

Notation 2.1 We have chosen to define B as a left P –comodule. It can be written
explicitly as FpŒx�

p
1 ;
x�2; x�3; : : : �. To simplify the notation, from now on we will redefine

the symbol �n to mean the antipode of the usual �n . Thus, going forward, we will
have �.�n/D

P
iCjDn �i˝�

pi

j , and

B D FpŒ�
p
1 ; �2; �3; : : : �:

In Section 5, we will show that the flatness condition holds and K.�1/��K.�1/ is
isomorphic, as a Hopf algebra over R , to an exterior algebra on generators

en D Œ�1��n� Œ�
2
1 ��

3
n�1 2 Ext�;�D .k; B/:

This implies that the E2 page is isomorphic to a polynomial algebra over R on classes
wn WD Œen� of degree .s; t; u/D .1; 1; 2.3nC 1//.

The generator w2 is a permanent cycle, and converges to g0 D hh10; h10; h11i 2

Ext�;�P .k; k/. We will see in Section 6 that the other wn support differentials, so it is
less easy to see how these generators connect to familiar elements in the Adams E2 page.
One heuristic comes from looking at the images of these classes in P=.�31 ; �

9
2 ; �

9
3 ; : : : /:

in that setting, wn D hh10; h10; hn�1;1i and h10wn D b10hn�1;1 .

Let WC D kŒb˙110 �Œw2; w3; : : : � and W� D WCfh10g. Then E2 D WC ˚W� , and,
using simple degree arguments, we will show that higher differentials take WC to W�
and vice versa.

Lemma 2.2 Suppose x 2Es.x/;u
0.x/

2 is nonzero. If u0.x/� 0 .mod 4/, then x 2WC
and s � �u0 .mod 9/. Otherwise, u0.x/ � 2 .mod 4/, in which case x 2 W� and
s � 7�u0 .mod 9/.

Proof This can be read off the following table of degrees:

element s u0 t

h10 0 –2 1

b10 0 0 2

wn 1 2.3n� 5/ 1

Algebraic & Geometric Topology, Volume 20 (2020)
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Proposition 2.3 If r � 2 with r ¥ 4 .mod 9/ and r ¥ 8 .mod 9/, then dr D 0.
Furthermore,

d4C9n.WC/�W�; d4C9n.W�/D 0; d8C9n.W�/�WC; d8C9n.WC/D 0:

Proof This is a degree argument, so we simplify to considering dr.x/ where x is a
monomial. First notice that s.dr.x//C t .dr.x//D s.x/C t .x/C 1. If x 2WC , then
sC t is even; if x 2W� , then sC t is odd. Thus dr.WC/�W� and dr.W�/�WC .

If x 2 W s;u0

C
, then dr.x/ 2 W sCr;u0�6

� . If dr.x/ ¤ 0, Lemma 2.2 implies sC u0 �
0 .mod 9/ and sC rCu0�6� 7 .mod 9/, so r � 4 .mod 9/. Similarly, if x 2W s;u0

� ,
then dr.x/ 2W

sCr;u0�6
C

, which implies r � 8 .mod 9/ if dr.x/¤ 0.

In Section 7, we show that if dr.x/Dh10y is the first nontrivial differential on x 2WC ,
and d4.y/Dh10z , then drC4.h10x/D b10z . Combined with our complete calculation
of d4 in Section 6, this determines the spectral sequence through the E9 page. We
conjecture that the spectral sequence collapses at E9 . The idea is that there is an operator
@W WC!WC defined by @.x/D 1

h10
dr.x/, where dr 0.x/D 0 for r < r 0, and that the

spectral sequence essentially operates by taking Margolis homology of this operator: if
x 2E2 supports a nontrivial dr , then dr.x/D h10@.x/, and drC4.h10x/D b10@2.x/.

Remark 2.4 It is tempting to expect that Conjecture 1.3 comes from a map k !
P �D

�W , which would induce a map b�110 Ext�;�P .k; k/! b�110 Ext�;�P .k; P �D
�W /Š

b�110 Ext�;�D .k; �W / by the change-of-rings theorem. However, this is not the case:
k ! P �D

�W would factor through P �D k , which would mean that the map in
b�110 Ext�;�P .k;�/ would factor through b�110 Ext�;�P .k; P �D k/ŠR .

3 Identifying the b10–periodic region

In this section, let p be an odd prime and let k D Fp . The following characterization
of a b10–periodic region in Ext is a consequence of results of Palmieri that generalize
the vanishing line theorems of Miller and Wilkerson [11] to the stable category of
comodules.

Proposition 3.1 The localization map Exts;tP .k;M/! b�110 Exts;tP .k;M/ is an iso-
morphism in the range s > .1=.p3�p� 1//.t � s/C c0 for some constant c0.
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Our main input is the following theorem, which Palmieri states for the Steenrod
dual algebra A instead of the algebra P of dual reduced powers, as we do below.
The necessary changes in the case of P follow immediately from the discussion in
[14, Section 2.3.2].1

Following Palmieri [14, Notation 2.2.8], define the slope of �p
s

t to be

s.�
ps

t /D
1
2
pj�

ps

t j D p
sC1.pt � 1/:

Let DŒx� D kŒx�=xp . We have Ext�;�
DŒ�

ps

t �
.k; k/ D EŒhts�˝ kŒbts�. Let K.�p

s

t / D

b�1ts .P�DŒ�
ps

t �k/, where the localization is defined by taking a colimit of multiplication
by bts in Stable.P /.

Theorem 3.2 [14, Theorem 2.3.1] Suppose X is an object in Stable.P / satisfying
the following conditions:

(1) There exists an integer i0 such that �i;�X D 0 if i < i0 ,

(2) There exists an integer j0 such that �i;jX D 0 if j � i < j0 ,

(3) There exists an integer i1 such that the homology of the cochain complex X
vanishes in homological degree > i1 . (In particular , this is satisfied if X is the
resolution of a bounded-below comodule.)

Suppose d D s.�p
s0

t0
/ (with s0 < t0 ) has the property that K.�p

s

t /��.X/ D 0 for all
.s; t/ with s < t and s.�

ps

t / < d . Then ���X has a vanishing line of slope d : for
some c , �i;jX D 0 when j < di � c .

Proof of Proposition 3.1 Let M=b10 denote the cofiber in Stable.P / of b10 2
Ext2;12P .k; k/, thought of as a map k ! k in Stable.P /. It is not hard to check
the conditions (1)–(3) of Theorem 3.2 for M=b10 . We will apply the theorem with
d D s.�2/D p

3�p ; note that �2 is the next �p
s

t with s < t and higher slope than �1 ,
so we just have to check K.�1/��.M=b10/ D 0. This follows because the cofiber
sequence

(3-1) M
b10
��!MŒ2�!M=b10Œ2�

gives rise to a long exact sequence in K.�1/�� , and multiplication by b10 is an
isomorphism on K.�1/��.M/ by construction. So the theorem implies that there exists
some c such that �s;t .M=b10/D 0 when t < .p3�p/s� c .

1The only difference is that, over A , one must also take into account the objects Z.n/ corresponding
to the �n as opposed to the �p

s

t , which do not come into play over P .
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Applying Ext to (3-1), we obtain

ExtsC1;tCjb10jP .k;M=b10/! Exts;tP .k; k/! ExtsC2;tCjb10jP .k; k/

! ExtsC2;tCjb10jP .k;M=b10/;

where jb10j D 2p.p� 1/. Applying the vanishing condition for M=b10 directly gives
a region in which multiplication by b10 is an isomorphism.

In particular, at p D 3, b�110 Ext�;�P .k; k/ agrees with Ext�;�P .k; k/ above a line of
slope 1

23
in the .s; t � s/ grading (see Figure 1). In [14, Remark 2.3.5(c)], Palmieri

gives an explicit expression for the constant, which allows us to calculate the y–intercept
to be c0 � 6:39.

4 R–module structure of K.�1/��K.�1/ at p > 2

In this section, we work at an arbitrary odd prime, and let kD Fp and DD FpŒ�1�=�
p
1 .

In preparation for studying the E2 page Ext�;�;�
K.�1/��K.�1/

.R;R/, our goal for the next
two sections is to study the Hopf algebra K.�1/��K.�1/, which in (2-3) we showed is
isomorphic to b�110 Ext�;�D .k; B/. Most of this section is devoted to giving an expression
for B as a D–comodule. In the next section, we will obtain a more explicit description
at p D 3, given which we calculate the E2 page.

4.1 D–comodule structure of B

Note that B is an algebra and a P –comodule, but not a coalgebra. Let  denote the
D–coaction B!D˝B that comes from composing the P –coaction B! P ˝B

with the surjection P !D.

Definition 4.1 If we write

 .x/D 1˝ xC �1˝ a1C �
2
1 ˝ a2C � � �C �

p�1
1 ˝ ap�1

for some ai , define
@.x/ WD a1:

For example, since �.�n/ D 1 ˝ �n C �1 ˝ �
p
n�1 C � � � (using the convention of

Notation 2.1), we have @.�n/D �
p
n�1 , and @.�pn�1/D 0. One can show using coassocia-

tivity that ak D 1
kŠ
@k�1a1 . As �1 is dual to P 01 in the Steenrod algebra, the operator

@W P ! P is dual to the operator on the reduced powers subalgebra of the Steenrod
algebra given by left P 01 –multiplication. In particular, .P 01 /

p D 0 implies @p D 0.
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Lemma 4.2 Ext�;�D .k;M/ is the cohomology of the chain complex

0!M @
�!M @2

�!M @
�!M ! � � � ;

and b�110 Ext�;�D .k;M/ is the cohomology of the unbounded chain complex

� � � !M @
�!M @2

�!M @
�!M ! � � � :

Lemma 4.3 We have @.xy/D @.x/yC x@.y/.

Proof We have

�.xy/D�.x/�.y/D .1˝ xC �1˝ @xC � � � /.1˝yC �1˝ @yC � � � /

D 1˝ xyC �1˝ .y@xC x@y/C � � � :

The structure theorem for modules over a PID says that modules over D_ Š D

decompose as sums of modules isomorphic to FpŒ�1�=� i1 for 1 � i � p . Dually, we
have the following:

Lemma 4.4 Let M.n/ denote the D–comodule FpŒ�1�=�
nC1
1 . Every D–comodule

splits uniquely as a direct sum of D–comodules isomorphic to M.n/ for n� p� 1.

Note that M.0/Š Fp and M.p� 1/ŠD.

Remark 4.5 Since Ext�;�D .k;D/ is a 1–dimensional vector space in homological
degree 0 and zero otherwise, b�110 Ext�;�D .k; F /D 0 for any free D–comodule F. If
0� i � p� 2, then Ext�;�D .k;M.i// is 1–dimensional in every homological degree.

The goal is to prove the following proposition:

Proposition 4.6 Define the indexing set B to be the set of monomials of the formQn
jD1 �

ej
ij

such that 1� ej �p�2, and for X 2B , write xj .X/ WD �
ej
ij

and ej .X/ WD
ej . Then there is a D–comodule isomorphism

B Š
M
X2B

nO
jD1

M.ej .X//xj .X/˚F;

where F is a free D–comodule, the tensor product is endowed with the diagonal
D–comodule structure, and M.e/�e

i
WD Fpf�ei ; @�

e
i ; : : : ; @

e�ei g ŠM.e/.
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Corollary 4.7 We have an R–module isomorphism

(4-1) b�110 Ext�;�D .k; B/Š b�110 Ext�;�D

�
k;
M
X2B

nO
jD1

M.ej .X//xj .X/

�
:

Remark 4.8 There is a formula due to Renaud [15, Theorem 1] that allows one to
decompose the tensor products

N
M.ei / into a sum of the basic comodules M.n/,

but in general it is rather complicated; instead we will do this in the next section only
at p D 3.

If e � p� 1 then M.e/�en is a sub-D–comodule of B with dimension eC 1. By the
Leibniz rule (Lemma 4.3) we have

M.eCpf /
�
eCpf
n

D Fpf�
e
n�
pf
n ; @.�en/�

pf
n ; : : : ; @e.�en/�

pf
n g DM.e/�en ˝Fpf�

pf
n g

for e � p� 1. For any collection of ei 2N , define

(4-2) T .�e1n1 � � � �
ed
nd
/ WDM.e1/�e1n1

˝ � � �˝M.ed /�
ed
nd

:

This is a sub-D–comodule spanned (as a vector space) by monomials of the form
@k1.�

e1
n1/ � � � @

kd .�
ed
nd /. Clearly, B D

P
monomials

Q
�
ei
ni
2B
T .�

e1
n1 � � � �

ed
nd /, but this is not

a direct sum decomposition — any given monomial appears in many different summands.
To fix this, we will study the poset of T .X/’s, and find that B is a direct sum of the
maximal elements of that poset.

Notation 4.9 Define �Y
i�1

�
ei
i I

Y
i�2

�
fi
i

�
WD

Y
�
ei
i

Y
�
pfi
i�1:

(These are not formal products; they only make sense if ei D 0 D fi for all but
finitely many i .) For example, we have hX I 1i D X for any monomial X, and
h1I �ni D �

p
n�1 D @.�n/. Expressions

˝Q
i�2 �

ei
i I
Q
i�2 �

fi
i

˛
represent elements of

B � P, and conversely every element of B has a representation of this form (note that
�
p
1 D h1I �2i). Monomials in B do not have unique expressions of the form hX IY i:

for example, h�pn�1I 1i D h1I �ni.

Lemma 4.10 There is a bijection

(4-3) fmonomials in Bg $
��Y

i�2

�
ei
i I

Y
i�2

�
fi
i

�
W ei � p� 1

�
:
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Say that a bracket expression is admissible if it is of the form on the right-hand side.

Proof Given a monomial, the admissible bracket expression is the one with the greatest
number of terms on the right-hand side.

Lemma 4.11 If X is a monomial with admissible bracket expression
˝Q
�
ei
i I
Q
�
fi
i

˛
and Y is a monomial in T .X/, then Y (up to invertible scalar) has admissible ex-
pression

˝Q
�
ei�ci
i I

Q
�
fiCci
i

˛
for a set of ci � 0 that are zero for all but finitely

many i .

The idea is that Y is obtained from X by moving terms from the left to the right.

Proof If e � p� 1 then we have

@i .�en/D
eŠ

.e� i/Š
�e�in �

pi
n�1:

By definition, X D
Q
i�1 �

eiCpfiC1
i , where e1 D 0, and

Y D
Y

@ki �
eiCpfiC1
i D

Y
.@ki �

ei
i /�

pfiC1
i D

Y ei Š

.ei � ki /Š
�
ei�kiCpkiC1
i �

pfiC1
i

D

�Y ei Š

.ei � ki /Š
�
ei�ki
i I

Y
�
kiCfi
i

�
using the fact that @�pi D 0. So we can take ci D ki in the lemma statement.

Definition 4.12 For monomials X and Y , write X � Y if Y 2 T .X/.

It is easy to check that this makes the set of monomials into a poset, and that X � Y if
and only if T .X/� T .Y /.

Lemma 4.13 Suppose W is a monomial with the admissible bracket expression˝Q
�
ei
i I
Q
�
fi
i

˛
. Let �W D ˝Q �

ci
i I
Q
�
di
i

˛
, where ci D minfei C fi ; p � 1g and di D

fi � .ci � ei /. Then �W is the maximal object �W .

Proof Let X be an arbitrary monomial, written in its unique admissible bracket
expression. Then X �W if and only if X can be obtained from W by moving terms
in W from the right to the left side of the bracket expression. Note that �W is the
bracket expression obtained by moving as many terms to the left as possible while still
keeping the resulting expression admissible. This implies �W is maximal.
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Define an equivalence relation on monomials where X � Y if zX D zY .

Lemma 4.14 There is a direct sum decomposition B Š
L

eq. class reps.X T .
zX/.

Proof I claim that T . zX/ D FpfY W X � Y g; this follows from the fact that, by
definition, T . zX/ is generated by Y such that Y � zX. So the direct sum decomposition
comes from partitioning monomials into their equivalence classes.

Let I be the set of admissible bracket expressions X such that zXDX. By Lemma 4.13
we have the following:

Lemma 4.15 I is the set of admissible bracket expressions
˝Q
�
ei
i I
Q
�
fi
i

˛
such that

ei � p� 1 and if ei < p� 1 then fi D 0.

Lemma 4.16 If X D
˝Q
�
ei
i I
Q
�
fi
i

˛
is an admissible expression, there is an isomor-

phism of D–comodules T
�˝Q

�
ei
i I 1

˛�
Š T .X/.

Proof By Lemma 4.11, every Y in T .X/ has a bracket expression obtained from X by
moving terms from the left to the right, so the right-hand side of the bracket expression
for Y is divisible by

Q
�
fi
i , and so Y is divisible by u WD

˝
1I
Q
�
fi
i

˛
D
Q
�
pfi
i�1 . So

multiplication by u gives a map T
�˝Q

�
ei
i I 1

˛�
! T .X/, and moreover from the above

description of Y 2T .X/ it is easy to see that this is a bijection. Finally, since @.u/D 0,
this is an isomorphism of D–comodules.

Lemma 4.17 If X D
˝Q
�
ei
i I
Q
�
fi
i

˛
is an admissible expression such that ek Dp�1

for some k , then T .X/ is a free D–comodule.

Proof By definition, we have T .X/ D
N
M.ei /�

ei
ni

, where the tensor product is
endowed with the diagonal D–comodule structure and M.ek/�eknk

ŠM.p�1/ŠD by
assumption. After rearranging terms, it suffices to show that, for any D–comodule M,
there is a D–comodule isomorphism D ˝M ! D ˝M where the left-hand side
has a diagonal D–coaction and the right-hand side has a left coaction

�
 .d ˝m/DP

d 0m0˝d 00˝m00 vs  .d ˝m/D
P
d 0˝d 00˝m, where �.d/D

P
d 0˝d 00 and

 .m/ D
P
m0 ˝m00

�
. This isomorphism is a variant of the shear isomorphism of

Lemma 5.16, and is given by d ˝m 7!
P
dm0˝m00.

By Lemmas 4.16 and 4.17, we have:

Corollary 4.18 If X D
˝Q
�
ei
i I
Q
�
fi
i

˛
is an admissible bracket expression in I such

that fi ¤ 0 for any i , then T .X/ is free as a D–comodule.
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Proof of Proposition 4.6 From Lemma 4.14 we have B Š
L
X2I T .X/, and by

Corollary 4.18 there are free D–comodules F and F 0 such that

B Š
M
hX I1i2I

T .hX I 1i/˚F D
M
hX I1i2I

T .X/˚F

Š

M
hX I1i s.t.
ei .X/�p�2

T .X/˚F 0 D
M
X2B

T .X/˚F 0

Š

M
X2B

O
i

M.ei .X//xi .X/˚F
0:

We conclude this section with a useful lemma that simplifies checking relations in
certain b10–local Ext groups of interest.

Lemma 4.19 Let I.n/ D .�pn1 ; �
pn
2 ; : : : /B. Then I.p � 1/ is contained in the free

part of B according to the decomposition in Proposition 4.6. In particular, if x 2
Ext�;�P .k; P �D I.p� 1// then x D 0 in b�110 Ext�;�P .k; P �D B/.

Proof Consider an arbitrary monomial qD�.p�1/pn X in I.p�1/. If X has an admissi-
ble expression

˝Q
�
ei
i I
Q
�
fi
i

˛
then q has an admissible expression

˝Q
�
ei
i I �

p�1
nC1

Q
�
fi
i

˛
.

By Lemmas 4.14 and 4.17, it suffices to show that zqD
˝Q
�
ci
i I
Q
�
di
i

˛
satisfies ckDp�1

for some k . Using the formula for zq in Lemma 4.13, we have cnC1 D p� 1.

Corollary 4.20 Let I.n/ be as in Lemma 4.19. If x2Ext�;�P
�
k; P�D.P�DI.p�1//

�
,

then x is zero in b�110 Ext�;�P
�
k; P �D .P �D I.p� 1//

�
.

5 Hopf algebra structure of K.�1/��K.�1/ at p D 3

Henceforth we will work at p D 3. This assumption will allow us to simplify the
formula for K.�1/��K.�1/ obtained in Corollary 4.7 and show that K.�1/��K.�1/ is
flat over K.�1/�� (this is not true at higher primes), enabling us to calculate the E2
page (2-1) of the K.�1/–based MPASS. In particular, our goal is to show the following:

Theorem 5.1 At pD 3, the ring of co-operations K.�1/��K.�1/ is flat over K.�1/�� ,
and moreover there is an isomorphism of Hopf algebras

K.�1/��K.�1/DR˝EŒe2; e3; : : : �

for generators en2b�110 Ext1;2.3
nC1/

D .k; B/. That is, en is primitive, and K.�1/��K.�1/
is exterior as a Hopf algebra over RDK.�1/�� .
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Plugging this into the expression (2-1) for the E2 page, we obtain:

Corollary 5.2 The E2 page of the K.�1/–based MPASS for computing ���.b�110 k/
is

E��2 ŠRŒw2; w3; : : : �;

where wn D Œen�.

Remark 5.3 As B is a P –comodule algebra, there is a Hopf algebroid .B;B˝B/
in Stable.P /, where B ˝B carries the diagonal coaction of P (see Section 2) and
the comultiplication is given by

B˝B
�˝�˝�
������! B˝B˝B Š .B˝B/˝B .B˝B/:

The Hopf algebroid above is given by applying b�110 ���.�/D b
�1
10 Ext�;�P .k;�/ to this

one.

5.1 Vector space structure of K.�1/��K.�1/ at p D 3

In the p D 3 case, Corollary 4.7 reads

K.�1/��K.�1/Š b
�1
10 Ext�;�D .k; B/Š b�110 Ext�;�D

�
k;

M
monomials
�n1 ����nd
ni¤nj

dO
iD1

M.1/�ni

�
;

where the tensor product has a diagonal D–coaction. It is easy to see directly that
M.1/ ˝M.1/ Š D ˚ †0;j�1jk . (Here we use bigraded notation for the shift for
consistency with viewing these objects in Stable.D/, so †0;j�1j denotes a shift of 0 in
the homological dimension and j�1j in internal degree). In particular,

kfx; @xg˝ kfy; @yg Š kfxy; @.x/yC x@.y/; @.x/@.y/g˚ kf@.x/y � x@.y/g:

After inverting b10 , free comodules become zero, and the only basic types of comodules
are M.0/D k and M.1/.

Lemma 5.4 In Stable.D/, we have an isomorphism

b�110M.1/Š†
�1;2j�1jb�110M.0/:

Proof A representative for M.1/ as an object of Stable.D/ (ie an injective resolution
for the comodule M.1/) is

0!D @2
�!†2j�1jD @

�!†3j�1jD @2
�!†5j�1jD! � � � ;
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where the degree shift in the terms of the complex denotes shift in internal degree. So
b�110M.1/ WD colim.M.1/ b10

��!†2;�jb10jM.1/! � � � / is represented by the injective
resolution

� � � !†�j�1jD @
�!†0D @2

�!†2j�1jD @
�!†3j�1jD! � � �

with †0D in homological degree zero. Similarly, b�110M.0/ is represented by

� � � !†�2j�1jD @2
�!†0D @

�!†j�1jD @2
�!†3j�1jD! � � � ;

with †0D in homological degree zero, and so there is a degree-preserving isomorphism
b�110M.1/!†�1;2j�1jb�110M.0/.

(At arbitrary primes, the formula b�110M.n/Š†
�1;.p�1/j�1jb�110M.p�2�n/ holds for

the same reason.) Therefore, if M is a D–comodule, then b�110M 2Stable.D/ is a sum
of shifts of the unit object kŠM.0/. Remembering that Stable.D/ was constructed so
that HomStable.D/.k; b

�1
10M/D b�110 Ext�;�D .k;M/, we obtain the following Künneth

isomorphism:

Lemma 5.5 (Künneth isomorphism for b�110 Ext�;�D .F3;�/) If M and N are D–
comodules, then

b�110 Ext�;�D .k;M ˝N/Š b�110 Ext�;�D .k;M/˝ b�110 Ext�;�D .k;N /:

This only works at p D 3, and is the essential reason we have made the simplification
of working at p D 3.

Applying this to (4-1) we have the following:

Corollary 5.6 We have an isomorphism

b�110 Ext�;�D .k; B/Š
M

monomials
�n1 ����nd

b�110 Ext�;�D .k;†�d;2j�1jk�n1 ����nd
/;

where †�d;2d j�1jk�n1 ����nd is the copy of †�d;2d j�1jk isomorphic to
Nd
iD1M.1/�ni

under Lemma 5.4. In particular, K.�1/��K.�1/ D b�110 Ext�;�D .k; B/ is free over
K.�1/�� D b

�1
10 Ext�;�D .k; k/.

So b�110 Ext�;�D .k; B/ has R–module generators in bijection with monomials of the
form �n1 � � � �nd (where ni ¤ nj if i ¤ j ). Now we will be more precise in choosing
these generators.
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Lemma 5.7 Suppose N is a D–comodule algebra with sub-D–comodules kfx; @xgŠ
M.1/ and kfy; @yg ŠM.1/. Then:

(1) The image of Ext1;�D .k; kfx; @xg/ in Ext1;�D .k;N / is generated by

e.x/ WD Œ�1�x� Œ�
2
1 �@x:

(2) We have
e.x/ � e.y/D b10.y@x� x@y/

in the multiplication Ext�;�D .k;N /˝Ext�;�D .k;N /! Ext�;�D .k;N / induced by
the product structure on N. In particular , e.x/2 D 0.

(3) If the multiplication map embeds kfx; @xg˝ kfy; @yg in N injectively, then

b�110 Ext2;�D .k; kfx; @xg˝ kfy; @yg/� b�110 Ext2;�D .k;N /

is a 1–dimensional vector space with generator e.x/ � e.y/.

Since Exti;�D .k;M/D b�110 Exti;�D .k;M/ for i > 0, note that this also gives a generator
of b�110 Ext1;�D .k;N /.

Proof Since Ext1;�D .k;M.1// is a 1–dimensional k–vector space, for (1) it suffices
to show that e.x/ is a cycle that is not a boundary. Indeed, since dx D Œ�1�@x and
d.@x/ D 0, we have d.e.x// D �Œ�1 j �1�@x C Œ�1 j �1�@x D 0, and e.x/ is not in
d.C 0D.k; kfx; @xg//D d.kfx; @xg/.

For (2), we use a special case of the cobar complex multiplication formula in [10,
Proposition 1.2]:

Fact 5.8 The multiplication C 1D.k;M/˝C 1D.k;N /! C 2D.k;M ˝N/ is given by

Œ��m˝ Œ!�n 7!
X

Œ�˝m0!�.m00˝n/:

Thus the product C 1D.k;N / ˝ C
1
D.k;N / ! C 2D.k;N ˝ N/

�
�! C 2D.k;N / takes

Œ��m˝ Œ!�n 7!
P
Œ�˝m0!�m00n. Using this formula, we have

e.x/�e.y/D Œ�1jx��Œ�1jy��Œ�1jx��Œ�
2
1 j@y��Œ�

2
1 j@x��Œ�1jy�CŒ�

2
1 j@x��Œ�

2
1 j@y�;

Œ�1jx��Œ�1jy�D
X

Œ�1jx
0�1�x

00yD Œ�1j�1�xyCŒ�1j�
2
1 �.@x/y;

Œ�1jx��Œ�
2
1 j@y�D

X
Œ�1jx

0�21 �x
00@yD Œ�1j�

2
1 �x@y;

Œ�21 j@x��Œ�1jy�D
X

Œ�21 j.@x/
0�1�.@x/

00yD Œ�21 j�1�.@x/y;

Œ�21 j@x��Œ�
2
1 j@y�D

X
Œ�21 j�

2
1 .@x/

0�.@x/00@yD Œ�21 j�
2
1 �@x@y;
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d.Œ�21 �xy/D2Œ�1j�1�xy�Œ�
2
1 j�1�.@x/y�Œ�

2
1 j�1�x@y�Œ�

2
1 j�

2
1 �@x@y;

e.x/�e.y/Cd.Œ�21 �xy/D Œ�1j�
2
1 �.@x/yCŒ�

2
1 j�1�.@x/y�Œ�1j�

2
1 �x@y�Œ�

2
1 j�1�x@y

Db10..@x/y�x@y/:

For (3), note that there is a decomposition of D–comodules

kfx; @xg˝ kfy; @yg
�

Š
�! kfxy; x@y; .@x/y; .@x/.@y/g

D kfxy; .@x/yC x@y; .@x/.@y/g˚ kf.@x/y � x.@y/g

and, since Exts;tD .k;D/D 0 for s > 0, the quotient map

b�110 Ext2;�D .k; kfx; @xg˝ kfy; @xg/Š b�110 Ext2;�D
�
k; kfx@y � .@x/yg

�
is an isomorphism. By (2), e.x/ � e.y/ is a generator of the latter Ext group.

Lemma 5.9 Suppose N is a D–comodule algebra with sub-D–comodules kfx; @xgŠ
M.1/ and kfyg Š k .

(1) The image of Ext0;�D .k; kfyg/ in Ext0;�D .k;N / is generated by y .

(2) We have
e.x/ �y D Œ�1�xy � Œ�

2
1 �.@x/y D y � e.x/:

(3) If the multiplication map embeds kfx; @xg˝kfyg in N injectively, then e.x/ �y
is a generator of the 1–dimensional vector space b�110 Ext1;�D .k; kfx; @xg˝kfyg/.

Proof (1) is clear. (2) follows from the cobar complex multiplication formulas

C 0D.k;M/˝C 1D.k;N /! C 1D.k;M ˝N/; m˝ Œ��n 7! Œ��.m˝n/;

C 1D.k;M/˝C 0D.k;N /! C 1D.k;M ˝N/; Œ��n˝m 7! Œ��.n˝m/:

For (3), note that kfx; @xg˝ kfyg D kfxy; .@x/yg. Note that .@x/y D @.xy/. From
Lemma 5.7, b�110 Ext1;�D .k; kfxy; @.xy/g/ is generated by e.xy/D Œ�1�xy�Œ�21 �@.xy/D
e.x/ �y .

Definition 5.10 Define en WD e.�n/D Œ�1��n � Œ�21 ��
3
n�1 to be the chosen generator

of b�110 Ext1;2.3
nC1/

D .k;M.1/�n/.

Lemma 5.11 Under the change-of-rings isomorphism

b�110 Ext�;�D .k; B/Š b�110 Ext�;�P .k; P �D B/;

the image of e.x/ in Ext1;jxjC4P .k; P �D B/ has cobar representative

Œ�1�.1 j x/� Œ�
2
1 �.1 j @x/C Œ�1�.�1 j @x/ 2 P ˝ .P �D B/:
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Proof The change-of-rings isomorphism Ext�;�D .k;M/Š Ext�;�P .k; P �DM/ works
as follows: since P is free over D, the functor P�D� is exact, and so given an injective
D–resolution M ! X� for M, the complex P �D M ! P �D X

� is an injective
P –resolution. So we have Exti;�D .k;M/ Š CotoriD.k;M/ D H i .k �D X

�/, which
agrees with Exti;�P .k; P �DM/ Š CotoriP .k; P �DM/ D H i .k �P .P �D X

�// Š

H i .k �D X
�/.

In particular, Ext�;�P .k; P �DB/ can be computed by applying k�P � to the resolution

(5-1) P �DCD.k; B/D .P �DB!P �D .D˝B/!P �D .D˝D˝B/!� � � /:

By Lemma 5.7, e.x/ has representative Œ1 j �1�x � Œ1 j �21 �@x 2 D ˝D ˝B in the
D–cobar resolution for B, and so its representative in (5-1) is 1 j1 j�1 jx�1 j1 j�21 j@x .

But we wanted a representative in the cobar complex CP .k; P �DB/, so we will write
down part of an explicit map from the P –cobar resolution for P �D B to (5-1):

P �D B

��

P �D B

��

P ˝ .P �D B/

��

f 0
//

��

P ˝B

��

P ˝P ˝ .P �D B/
f 1

//

��

P ˝D˝B

��

P ˝P˝2˝ .P �D B/

��

// P ˝D˝2˝B

��:::
:::

By basic homological algebra, the map f � exists and is unique, so to find f 0 and f 1

it suffices to find P –comodule maps that make the first two squares commute. In
particular, one can check that the maps

f 0.a j b j c/D ".b/a j c; f 1.a j b j c j d/D ".c/a j b j d

make the diagram commute, and z WD Œ1 j �1�.1 j x/C Œ1 j �1�.�1 j @x/� Œ1 j �21 �.1 j @x/
is a cycle in P ˝P ˝ .P �D B/ such that .k �P f /.z/D e.x/.
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5.2 Multiplicative structure

Proposition 5.12 The summand

b�110 Extd;�D .k;M.1/�n1
˝ � � �˝M.1/�nd

/� b�110 Extd;�D .k; B/

is generated by the product en1 � � � end .

Proof Since

b�110 Extd;�D
�
k;
O

M.1/�ni

�
D

�
†d;0b�110 Ext0;�D

�
k;
N
M.1/�ni

�
if d is even;

†d�1;0b�110 Ext1;�D
�
k;
N
M.1/�ni

�
if d is odd,

it suffices to show that b�110 Ext0;�D .k;M.1/�n1
˝ � � � ˝ M.1/�nd

/ is generated by
b
�d=2
10 en1 � � � end when d is even, and b�110 Ext1;�D .k;M.1/�n1

˝ � � � ˝M.1/�nd
/ is

generated by b�.d�1/=210 en1 � � � end when d is odd. We proceed by induction on d .
The base case d D 1 is by definition.

Case 1 (d is even) The tensor product M.1/�n1 ˝ � � �˝M.1/�nd�1 is isomorphic
to M.1/˚F for a free summand F . By Lemma 5.7,

b�110 Ext2;�D
�
k; .M.1/�n1

˝ � � �˝M.1/�nd�1
/˝M.1/�nd

�
is generated by e.x/ � end , where e.x/ is a generator of

b�110 Ext1;�D .k;M.1/�n1
˝ � � �˝M.1/�nd�1

/:

By the inductive hypothesis, we can take e.x/ D b
�.d�2/=2
10 en1 � � � end�1 . So then

b�110 e.x/end D b
�d=2
10 en1 � � � end is a generator for

b�110 Ext0;�D .k;M.1/�n1
˝ � � �˝M.1/�nd

/:

Case 2 (d is odd) In this case, M.1/�n1 ˝� � �˝M.1/�nd�1 is isomorphic to k˚F
for a free summand F . By Lemma 5.9,

b�110 Ext1;�D
�
k; .M.1/�n1

˝ � � �˝M.1/�nd�1
/˝M.1/�nd

�
is generated by y � end , where y is a generator of

b�110 Ext0;�D .k;M.1/�n1
˝ � � �˝M.1/�nd�1

/:

By the inductive hypothesis, we can take y D b�.d�1/=210 en1 � � � end�1 .

Recall we defined RD b�110 Ext�;�D .k; k/DEŒh10�˝ kŒb
˙1
10 �.
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Corollary 5.13 There is an R–module isomorphism

b�110 Ext�;�D .k;M.1/�n1
˝ � � �˝M.1/�nd

/ŠRfen1 � � � end g;

where the generator en1 � � � end is in degree d .

Corollary 5.14 The map R˝EŒe2; e3; : : : �! b�110 Ext�;�D .k; B/ is an isomorphism
of R–algebras.

5.3 Antipode

The antipode is the map induced on Ext by the swap map � W B ˝B ! B ˝B. In
order to get a useful formula for this map, we will need the following basic properties
of Hopf algebras:

Fact 5.15 Denote the coproduct on an element x of a Hopf algebra by �.x/ DP
x0˝ x00.

(1) Coassociativity
P
x0˝ .x00/0˝ .x00/00 D

P
.x0/0˝ .x0/00˝ x00 .

(2)
P
c.x/0˝ c.x/00 D

P
c.x00/˝ c.x0/.

(3)
P
c.x0/x00 D ".x/.

(4)
P
".x0/˝ x00 D 1˝ x .

Lemma 5.16 (shear isomorphism) Suppose M is a left P –comodule , and B˝M
is given the diagonal P –coaction  .b˝m/ D

P
b0m0˝ b00˝m00 (where  .b/ DP

b0˝ b00 and  .m/D
P
m0˝m00 ). Then there is an isomorphism SM W B˝M !

P �DM (where P coacts on the left on P �DM ) sending b˝m 7!
P
bm0˝m00. It

has an inverse S�1M W b˝m 7!
P
bc.m0/˝m00.

In order to be able to apply Lemma 4.19, we now obtain an explicit formula for the
induced map � 0 WD SB ı � ıS�1B W P �D B! P �D B. This map is

B˝B
�
// B˝B

SB
��

P �D B

S�1B

OO

� 0
// P �D B

P
xc.y0/ jy00

� //
P
y00 j xc.y0/

_

��

x jy
_

OO

P
y00 � x0c.y0/0 j x00c.y0/00
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Using Fact 5.15, we have

� 0.x˝y/D
X

y00 � x0c.y0/0 j x00c.y0/00

D

X
x0y00c..y0/00/ j x00c..y0/0/

D

X
x0.y00/00c..y00/0/ j x00c.y0/ .coassociativity/

D

X
x0".y00/ j x00c.y0/

D

X
x0 j x00c.y/:

Since .K.�1/��; K.�1/��K.�1// is a Hopf algebroid, the antipode is multiplicative, so
to determine it, it suffices to show:

Proposition 5.17 We have

(1) c.h/D h,

(2) c.en/D�en .

Proof The antipode is given by the map � 0�W Ext�;�P .k; P �DB/!Ext�;�P .k; P �DB/

induced by � 0, defined so that � 0�.Œx1 j � � � j xs�m/ D Œ�1 j � � � j xs��
0.m/. Since h D

Œ�1�.1 j 1/ 2 Ext1;�P .k; P �D B/, we have c.h/ D � 0�.h/ D h. For (2), we need an
explicit formula for the antipode in the dual Steenrod algebra:

Fact 5.18 [12, Lemma 10] Let Part.n/ be the set of ordered partitions of n, `.˛/
the length of the partition ˛ , and �i .˛/D

Pi
jD1 j̨ the partial sum. Then

c.�n/D
X

˛2Part.n/

.�1/`.˛/
`.˛/Y
iD1

�p
�i�1.˛/

˛i
:

In particular, if n � 2 then c.�n/ � ��n C �1�
p
n�1 .mod P p

2

P / and c.�
p
n�1/ �

��
p
n�1 .mod P p

2

P /.

Recall (Notation 2.1) that we have defined �n to be the antipode of its usual definition, so
here we have �.�n/D

P
iCjDn �i˝�

pi

j . (Since the antipode is a ring homomorphism,
the formula in Fact 5.18 is the same in either case.)

Combining this antipode formula with the formula for en in Lemma 5.11, we have

� 0�.en/D �
0
�.Œ�1�.1 j �n/� Œ�

2
1 �.1 j �

3
n�1/C Œ�1�.�1 j �

3
n�1//

D Œ�1�.1 j c.�n//� Œ�
2
1 �.1 j c.�

3
n�1//C Œ�1�.�1 j c.�

3
n�1/C 1 j �1c.�

3
n�1//
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D Œ�1�.�1 j �nC 1 j �1�
3
n�1C 1 jA/� Œ�

2
1 �.�1 j �

3
n�1C 1 jB/

C Œ�1�.��1 j �
3
n�1C �1 jC � 1 j �1�

3
n�1C 1 jD/

D�enC Œ�1�.1 jAC �1 jC C 1 jD/� Œ�
2
1 �.1 jB/

for A, B, C and D in P 9P D I.3/. By Lemma 4.19 these terms are zero in b10–local
cohomology, and c.en/D � 0�.en/D�en .

Corollary 5.19 We have �L D �R , ie the Hopf algebroid .K.�1/��; K.�1/��K.�1//
is , in fact , a Hopf algebra.

Proof One of the axioms of a Hopf algebroid is c ı �R D �L . Since �L is just the
inclusion of R into b�110 Ext�;�D .k; B/, its image is invariant under the antipode c .

5.4 Comultiplication

To define the comultiplication map

b�110 Ext�;�P .k; B˝B/! b�110 Ext�;�P .k; B˝B/˝2;

first consider the maps

Ext�;�P .k; B˝B/
˛�
�!Ext�;�P .k; B˝B˝B/

ˇ
 �Ext�;�P .k; B˝B/˝Ext�;�P .k; B˝B/;

where ˛� is the map on Ext induced by ˛W B˝2! B˝3 with ˛W a˝ b 7! a˝ 1˝ b ,
and ˇ is defined as the map in the factorization

(5-2)

Ext�;�P .k; B˝2/˝Ext�;�P .k; B˝2/
Künneth

//

**

Ext�;�P .k; B˝2˝B˝2/
�˝�˝�

// Ext�;�P .k; B˝3/

Ext�;�P .k; B˝2/˝Ext�;�
P

.k;B/Ext�;�P .k; B˝2/

ˇ

66

It follows from the shear isomorphism (Lemma 5.16) and the change-of-rings theorem
that Ext�;�P .k; B˝M/ŠExt�;�P .k; P�DM/ŠExt�;�D .k;M/, and the Künneth isomor-
phism for b10–local cohomology over D (Lemma 5.5) implies that ˇ is an isomorphism
after inverting b10 . We define the comultiplication map on b�110 Ext�;�P .k; B˝B/ by
� WD ˇ�1 ı˛� .

In particular, flatness of K.�1/��K.�1/ over K.�1/�� implies that

.K.�1/��; K.�1/��K.�1//
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is a Hopf algebroid using the definitions of comultiplication, antipode, counit and
unit above. In a Hopf algebroid, the comultiplication is a homomorphism, and so to
determine � explicitly it suffices to determine �.en/. We prove this in Proposition 5.21.
Lemma 5.11 gives an expression for en in Ext1;�P .k; P �DB/, so we prefer to calculate
�W b�110 Ext�;�P .k; B˝B/! b�110 Ext�;�P .k; B˝B/˝2 after composing with the shear
isomorphism; that is, there is a commutative diagram

b�110 Ext�;�P .k; B˝B/
˛� //

.SB /�

��

b�110 Ext�;�P .k; B˝B˝B/

..Id˝SB /ıSB˝B /�
��

b�110 Ext�;�P .k; B˝B/˝2
ˇoo

SB˝SB

��

b�110 Ext�;�P .k; P�DB/
˛0� // b�110 Ext�;�P .k; P�D.P�DB// b�110 Ext�;�P .k; P�DB/

˝2ˇ 0oo

and we will show that ˛0�.en/Dˇ
0.1˝enCen˝1/ in b�110 Ext�;�P .k; P �D .P �DB//.

(We have chosen to use an extra application of the shear isomorphism on the middle
term in order to apply Corollary 4.20.)

Lemma 5.20 If a 2 Ext�;�P .k; P �D B/ has cobar representative Œa1 j � � � j as�.p j q/,
we have

˛0�.a/D
X

Œa1 j � � � j as�.p j q
0
j q00/;

ˇ0.1˝ aC a˝ 1/D Œa1 j � � � j as�
�X

p0 jp00 j qCp j q j 1
�

in Ext�;�P .k; P �D .P �D B//.

So, to check that a is primitive after inverting b10 , it suffices to check

(5-3)
X

Œa1 j � � � j as�.p j q
0
j q00/� Œa1 j � � � j as�

�X
p0 jp00 j qCp j q j 1

�
D 0

in b�110 Ext�;�P .k; P �D .P �D B//.

Proof By definition, ˛0 is the map induced on Ext by the composition

P�DB
S�1B
���!B˝B

�˝�˝�
������!B˝B˝B

SB˝B
����!P�D.B˝B/

P�DSB
������!P�D.P�DB/:

On elements, we have

x jy 7!
X

xc.y0/ jy00 7!
X

xc.y0/ j 1 jy00 7!
X

xc.y0/.y00/0 j 1 j .y00/00

7!

X
xc.y0/.y00/0 j ..y00/00/0 j ..y00/00/00 D

X
x jy0 jy00;
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where the last equality is a coassociativity argument similar to the one at the beginning
of Section 5.3. That is, we have ˛0.x˝y/D

P
x˝y0˝y00, which implies

˛0�.Œa1 j � � � j as�.p j q//D
X

Œa1 j � � � j as�.p j q
0
j q00/:

The map ˇ0 comes from the bottom composition in

Ext�;�P .k; B˝2/˝2

.SB /�˝.SB /�

��

Künneth
// Ext�;�P .k; B˝2˝B˝2/

.�˝�˝�/�
//

.SB˝SB /�

��

Ext�;�P .k; B˝3/

.SB˝B /�

��

Ext�;�P .k; P�DB/
˝2 Künneth

// Ext�;�P .k; .P�DB/˝.P�DB//

�
// Ext�;�P .k; P�D.P�DB//

We will only give an explicit expression for ˇ0 on elements of the form 1˝a and a˝1,
where 1 denotes the unit 1˝ 1 2 Ext0;�P .k; P �D B/ and aD Œa1 j � � � j as�.p˝ q/ 2
Exts;�P .k; P �D B/. In [10], there is a full description of the Künneth map K on the
level of cochains, but here all we need are the maps KW C 0P .k;M/˝C sP .k;N /!

C sP .k;M ˝N/ and KW C sP .k;N /˝C
0
P .k;M/!C sP .k;M ˝N/. The former sends

m˝ Œa1 j � � � j as�n 7! Œa1 j � � � j as�.m˝ n/ and the latter sends Œa1 j � � � j as�n˝m 7!
Œa1 j � � � j as�.n˝m/. In particular, we have

K.1˝ a/D Œa1 j � � � j as�.1 j 1 jp j q/; K.a˝ 1/D Œa1 j � � � j as�.p j q j 1 j 1/

in Exts;�P .k; .P �D B/˝ .P �D B//.

To determine ˇ0, it remains to determine the map 
 W .P �D B/ ˝ .P �D B/ !

P �D .P �DB/ induced by �˝�˝�. This is accomplished by calculating the effect
of shear isomorphisms as follows:

.B˝B/˝ .B˝B/
�˝�˝�

// B˝3

SB˝B

��

.P �D B/˝ .P �D B/

S�1B ˝S
�1
B

OO

P �D .B˝B/
P�DSB

// P �D .P �D B/P
xc.y0/ jy00˝ zc.w0/ jw00

� //
P
xc.y0/ jy00zc.w0/ jw00

_

��

x jy˝ z jw
_

OO

P
xc.y0/.y00/0z0c.w0/0.w00/0

˝ .y00/00z00c.w0/00˝ .w00/00

D
P
xz0 jyz00c.w0/ jw00 7!

P
xz0 jyz00 jw
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That is, 
.x jy˝ z jw/D
P
xz0 jyz00 jw , which implies

ˇ0.1˝ aC a˝ 1/D 
�K.1˝ aC a˝ 1/

D 
�.Œa1 j � � � j as�.1 j 1 jp j qCp j q j 1 j 1//

D Œa1 j � � � j as�
.1 j 1 jp j qCp j q j 1 j 1/

D Œa1 j � � � j as�
�X

p0 jp00 j qCp j q j 1
�
:

Proposition 5.21 The element en is primitive.

Proof We need to check the criterion (5-3) for aD en . Recall we had the formula

en D Œ�1�.1 j �n/� Œ�
2
1 �.1 j �

3
n�1/C Œ�1�.�1 j �

3
n�1/ 2 C

1
P .P �D B/

from Lemma 5.11. It suffices to check that ˛0�.en/�ˇ
0
�.1˝ enC en˝1/ is zero as an

element of b�110 Ext�;�P .k; P �D .P �D B//. Using Lemma 5.20, we have

˛0�.en/�ˇ
0
�.1˝ enC en˝ 1/

D
�
Œ�1�.1 j��n/� Œ�

2
1 �.1 j��

3
n�1/C Œ�1�.�1 j��

3
n�1/

�
�
�
Œ�1�.1 j 1 j �nC 1 j �n j 1/� Œ�

2
1 �.1 j 1 j �

3
n�1C 1 j �

3
n�1 j 1/C Œ�1�.1 j �1 j �

3
n�1

C �1 j 1 j �
3
n�1C �1 j �

3
n�1 j 1/

�
D Œ�1�

X
iCjDn
2�i�n�1

1 j �i j �
3i

j � Œ�
2
1 �

X
iCjDn�1
1�i�n�2

1 j �3i j �
3iC1

j C Œ�1�
X

iCjDn�1
1�i�n�2

�1 j �
3
i j �

3iC1

j :

But all the remaining terms in the difference are in CP
�
P �D .P �D I.3//

�
, so by

Corollary 4.20 they are zero in b10–local cohomology.

Proof of Theorem 5.1 The flatness assertion was proved in Corollary 5.6. Putting
together Corollary 5.14, Proposition 5.17, Corollary 5.19 and Proposition 5.21, we
see that the map R˝EŒe2; e3; : : : �! b�110 Ext�;�D .k; B/ is an isomorphism of Hopf
algebras.

6 Computation of d4

6.1 Overview of the computation

In the previous section, we have shown that the K.�1/–based MPASS computing
b�110 Ext�;�P .k; k/ has the form

E��2 DEŒh10�˝ kŒb
˙1
10 ; w2; w3; : : : �) b�110 Ext�;�P .k; k/;
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where wn is represented in E1;2.3
nC1/

1 by

en D Œ�1��n� Œ�
2
1 ��

3
n�1 2 b

�1
10 Ext1;2.3

nC1/
D .k; B/:

Recall that dr is a map
Es;t;ur !EsCr;t�rC1;ur ;

wn has degree .s; t; u/ D .1; 1; 2.3n C 1//, h10 has degree .0; 1; 4/ and b10 has
degree .0; 2; 12/. Furthermore, u0.wn/D 2.3n� 5/, u0.h10/D�2, and u0.b10/D 0.
In Proposition 2.3, we have shown that the next nontrivial differential is d4 . In this
section we will completely determine this differential. We begin by recording some
d4 ’s in low degrees.

Proposition 6.1 We have the following:

dr.h10/D 0 for r � 2;

dr.w2/D 0 for r � 2;

d4.w3/D˙b
�4
10 h10w

5
2 ;

d4.w4/D˙b
�4
10 h10w

2
2w

3
3 :

Proof The first two facts can be seen directly in the cobar complex CP .k; k/, using
the cobar representatives h10D Œ�1� and w2D Œ�1 j�2�� Œ�21 j�

3
1 �, which are permanent

cycles.

The differentials on w3 and w4 were deduced from the chart of Ext�;�P .k; k/ up to the
700 stem that appears as Figure 1 (generated by the software [13]). In Proposition 3.1,
we show that Ext�;�P .k; k/ agrees with b�110 Ext�;�P .k; k/ in the range of dimensions
depicted in the chart. Thus we know which classes in E2 D RŒw2; w3; : : : � in this
range of dimensions die in the spectral sequence, and, using multiplicativity of the
spectral sequence, this forces the differentials above.

The goal of this section is to prove the following:

Theorem 6.2 For n� 5, there is a differential in the MPASS

d4.wn/D˙b
�4
10 h10w

2
2w

3
n�1:

Since the spectral sequence is multiplicative, this determines d4 .

The main idea is to use comparison with a spectral sequence computing b�110 Ext�;�Pn .k; k/,
where

Pn D kŒ�1; �2; �n�2; �n�1; �n�=.�
9
1 ; �

3
2 ; �

27
n�2; �

9
n�1; �

3
n/:
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(The idea is that this is the smallest algebra in which the desired differential can be seen.)
This is a quotient Hopf algebra of P by the classification of such (see Theorem 2.1.1(a)
of [14]). Here’s a picture:

�1

�31

�2 �n�2

�3n�2

�9n�2

�n�1

�3n�1

�n

Recall B D P �D k ; let Bn D Pn �D k . We will refer to the spectral sequence of
Theorem 1.6 with � D Pn as the b�110 Bn–based MPASS computing b�110 Ext�;�Pn .k; k/,
and use Er.k; Bn/ to denote its Er page. For example,

(6-1) E1.k; Bn/D b
�1
10 Ext�;�D .k; B˝�n /:

Let Er.k; B/ denote the b�110 B –based MPASS for b�110 Ext�;�Pn .k; k/ we have been
focusing on. Then the diagram

B //

��

P

��

// D

Bn // Pn // D

shows there is a map of spectral sequences Er.k; B/!Er.k; Bn/.

Lemma 6.3 It suffices to show that d4.wn/¤ 0 in E4.k; B/.

Proof Since s.d4.wn//D4Cs.wn/D5, we know that d4.wn/ is a linear combination
of terms of the form bN10h10wk1 � � �wk5 . We have

u0.wn/D u
0.bN10h10wk1 � � �wk5/C 6;

2.3n� 5/D�2C

5X
iD1

2.3ki � 5/C 6;

3nC 18D

5X
iD1

3ki :

Note that ki � 2. Looking at this mod 27, we see that (at least) two of the ki have to
equal 2, say k1 and k2 . Then we have 3n D 3k3 C 3k4 C 3k5 . The only possibility
is n� 1 D k3 D k4 D k5 . So if d4.wn/ ¤ 0 then d4.wn/ D bN10h10w

2
2w

3
n�1 , and

checking internal degrees shows N D�4.
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When we discuss Er.k; Bn/ it will be easy to see that there is a class wn 2E2.k; Bn/
which is the target of wn 2E2.k; B/ along the quotient map

E4.k; B/
d4
//

��

E4.k; B/

��

E4.k; Bn/
d4
// E4.k; Bn/

Lemma 6.3 says that it suffices to show d4.wn/¤ 0 in E4.k; Bn/, but it turns out to
be the same amount of work to show the following more attractive statement:

Claim 6.4 There is a differential d4.wn/D˙b�410 h10w
2
2w

3
n�1 in Er.k; Bn/.

Using the same argument as Proposition 2.3, we know that d2D 0D d3 in Er.k; Bn/,
so h10w22w

3
n�1 is not the target of an earlier differential. We will use the following

strategy to show the desired differential in Er.k; Bn/:

(1) Calculate E2.k; Bn/ in a region and identify classes w2 , wn�1 and wn that
are the targets of their namesake classes under the quotient map E2.k; B/!
E2.k; Bn/.

(2) Show that b�110 Ext�;�Pn .k; k/ is zero in the stem of b�410 h10w
2
2w

3
n�1 . This implies

that b�410 h10w
2
2w

3
n�1 either supports a differential or is the target of a differential.

(3) Show that b�410 h10w
2
2w

3
n�1 is a permanent cycle in the MPASS (so it must be

the target of a differential) and show that, for degree reasons, wn is the only
element that can hit it. By looking at filtrations, we see this differential is a d4 .

For (2), we introduce another spectral sequence for calculating b�110 Ext�;�Pn .k; k/, the
Ivanovskii spectral sequence (ISS) [6]. This is the (b10–localized version of the) dual
of the May spectral sequence; that is, it is the spectral sequence obtained by filtering the
cobar complex on Pn by powers of the augmentation ideal. (For example, Œ�1�2 j�3n�1�
has filtration 2C 3D 5.)

In Section 6.2 we will introduce notation and record facts about gradings. In Section 6.3
we will compute E1.k; Bn/ and the relevant part of E2.k; Bn/, and show (1) and (3)
assuming (2). In Section 6.4 we will calculate the relevant part of the ISS and show (2).
Convergence of the localized ISS is discussed in Section A.2.
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6.2 Notation and gradings

Since much of the work in this section consists of degree-counting arguments, we will
now record how differentials and convergence affect the various gradings at play. We
emphasize a change of coordinates on degrees that simplifies degree arguments by
putting b10 in degree zero.

MPASS gradings In Section 2, we introduced the gradings .s; t; u/. The differential
has the form

dr W E
s;t;u
r !EsCr;t�rC1;ur

and a permanent cycle in Es;t;ur converges to an element in b�110 ExtsCt;uP .k; k/. We
also introduced u0 WD u � 6.s C t /. We prefer to track .u0; s/ instead of .s; t; u/,
because u0.b10/ D 0 D s.b10/, so all classes in a b10–tower have the same .u0; s/
degree. The differential under the change of coordinates has the form

dr W E
u0;s
r !Eu

0�6;sCr
r

and a permanent cycle in Eu
0;s
r converges to an element in b�110 Exta;bP .k; k/ (where b

is internal topological degree and a is homological degree) with b� 6aD u0.

Definition 6.5 Let stem in b�110 Exta;bP .k; k/ denote the quantity b � 6a . Then a
permanent cycle in Eu

0;s
r converges to an element in the u0 stem.

Finally, define
u00 WD u� 6t:

This is only useful for looking at the E1 page of the MPASS, as d1 fixes u00.

ISS gradings The Ivanovskii spectral sequence computing b�110 Ext�;�Pn .k; k/ is the
spectral sequence obtained by filtering the cobar complex on Pn by powers of the
augmentation ideal. Let EISS

r denote the Er page of the Ivanovskii spectral sequence.

We use slightly different grading conventions: classes have degree .s; t; u/, where s
is the ISS filtration, t denotes degree in the cobar complex and u denotes internal
topological degree (as in the MPASS). The differential has the form

d ISS
r W E

s;t;u
r !EsCr;tC1;ur

and a permanent cycle in Es;t;ur converges to an element in b�110 Extt;uP .k; k/.
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We will use the change of coordinates

u0 WD u� 6t;

which is designed so that u0.b10/D 0. (This has a different formula from the MPASS
change of coordinates simply because .s; t; u/ correspond to different parameters here.)
The differential has the form

d ISS
r W E

u0;s
r !Eu

0�6;sCr
r

and a permanent cycle in E
u0;s
r converges to an element in b�110 Exta;bP .k; k/ with

u0 D b� 6a , ie an element in the u0 stem.

Note that u0 has different formulas for the MPASS and ISS, but in both spectral
sequences u0 corresponds to stem, with the definition given above. Now we will
introduce another grading on Pn (for n� 5) preserved by the comultiplication.

Extra grading on Pn Let P 0n D kŒ�1; �2; �
3
n�2; �n�1; �n�=.�

9
1 ; �

3
2 ; �

27
n�2; �

9
n�1; �

3
n/.

Note that every monomial in Pn can be written as �en�2x , where e 2 f0; 1; 2g and
x 2 P 0n .

Lemma 6.6 For n� 5, P 0n is a subcoalgebra of Pn .

Proof This is clear from the comultiplication formulas

(6-2)

�.�n/D 1˝ �nC �1˝ �
3
n�1C �2˝ �

9
n�2;

�.�n�1/D 1˝ �n�1C �1˝ �
3
n�2C �n�1˝ 1;

�.�3n�2/D 1˝ �
3
n�2C �

3
n�2˝ 1;

and the assumption n� 5 guarantees that �1; �2 ¤ �n�2 .

Proposition 6.7 Let n � 3. There is an extra grading ˛ on Pn that respects the
comultiplication, defined by the property that it is multiplicative on P 0n , and

˛.�1/D ˛.�2/D ˛.�n�2/D 0;

˛.�3n�2/D ˛.�n�1/D 3;

˛.�n/D 9;

˛.�en�1x/D ˛.x/ for e 2 f0; 1; 2g and x 2 P 0n:
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Proof First we check that ˛ respects the comultiplication when restricted to P 0n .
Since it is defined to be multiplicative on P 0n , it suffices to check that ˛.y/D ˛.�y/
for y as each of the multiplicative generators. This is clear from the comultiplication
formulas (6-2).

Now suppose y D �n�2x , where x 2 P 0n . We have

�.�n�2x/D .1˝ �n�2C �n�2˝ 1/�x D
X

.x0˝ x00�n�2C x
0�n�2˝ x

00/

and the ˛ degrees of both sides agree since P 0n is a coalgebra. Similarly, if y D �2n�2x
for x 2 P 0n , we have

˛.�y/D ˛..1˝ �3n�2C 2�n�2˝ �n�2C �
2
n�2˝ 1/.�x//

D ˛
�X

x0˝ �2n�2x
00
C 2�n�2x

0
˝ �n�2x

00
C �2n�2x

0
˝ x00

�
D ˛.�x/:

6.3 The E2 page of the b�1
10
Bn–based MPASS

The goal of this section is to prove the following:

Proposition 6.8 If b�410 h10w
2
2w

3
n�1 is the target of a differential in the b�110 Bn–based

MPASS calculating b�110 Ext�;�Pn .k; k/, that differential must be

d4.wn/D˙b
�4
10 h10w

2
2w

3
n�1:

The main task is to calculate enough of E2.k; Bn/ to do a degree-counting argument
(Proposition 6.16), where

Bn D Pn �D k D kŒ�
3
1 ; �2; �n�2; �n�1; �n�=.�

9
1 ; �

3
2 ; �

27
n�2; �

9
n�1; �

3
n/:

As in the calculation of the E2 page of the b�110 B–based MPASS (Section 5), the
Künneth formula for the functor b�110 Ext�;�D .k;�/ (Lemma 5.5) guarantees flatness of
.b�110 Bn/��.b

�1
10 Bn/ over .b�110 Bn/�� . So we can use the formula

(6-3) E2 Š Ext�;�
.b�110 Bn/��b

�1
10 Bn

..b�110 Bn/��; .b
�1
10 Bn/��/;

where .b�110 Bn/�� D b
�1
10 Ext�;�Pn .k; Bn/DR and

.b�110 Bn/��.b
�1
10 Bn/D b

�1
10 Ext�;�Pn .R;B

˝2
n /Š b�110 Ext�;�D .k; Bn/

by the change-of-rings theorem. We will simultaneously determine the vector space
structure and the comultiplication on b�110 Ext�;�D .k; Bn/.
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�31

�2 �n�2

�3n�2

�9n�2

�n�1

�3n�1

�n

Figure 4: Illustration of the decomposition of Bn into tensor factors.

Remark 6.9 By (6-1) and the Künneth formula mentioned above, we have

E
s;�
1 .k; Bn/Š b

�1
10 Ext�;�D .k; Bn/

˝s

and so the coproduct on b�110 Ext�;�D .k; Bn/ coincides with d1 on E1;�1 .

We can write Bn as a tensor product

Bn D kŒ�2; �
3
1 �=.�

3
2 ; �

9
1 /˝ kŒ�n�2�=�

3
n�2˝ kŒ�n�1; �

3
n�2�=.�

3
n�1; �

27
n�2/

˝ kŒ�n; �
3
n�1�=.�

3
n ; �

9
n�1/

illustrated in Figure 4.

Since we have a Künneth formula for b�110 Ext�;�D .k;�/, it suffices to apply this functor
to each of the four factors of Bn above.

Factor 1: kŒ�2; �
3
1
�=.�3

2
; �9

1
/ As a D–comodule, this decomposes as

(6-4) kŒ�2; �
3
1 �=.�

3
2 ; �

9
1 /

Š kf1g„ƒ‚…
Šk

˚ kf�2; �
3
1g„ ƒ‚ …

ŠM.1/

˚ kf�22 ; �
3
1�2; �

6
1g„ ƒ‚ …

ŠD

˚ kf�31�
2
2 ; �

6
1�2g„ ƒ‚ …

ŠM.1/

˚ kf�61�
2
2g„ ƒ‚ …

Šk

:

(Recall M.1/ was defined to be the D–comodule kŒ�1�=�21 , and every D–comodule
is a sum of copies of k , M.1/ and D.) As a module over R WD EŒh10�˝ kŒb˙110 �,
this is generated by a class e2 D e.�2/ in b�110 Ext1;16D .k; kf�2; �

3
1g/, a class f20 D

e.�31�
2
2 / in b�110 Ext1;48D .k; kf�31�

2
2 ; �

6
1�2g/ and a class c2 in b�110 Ext0;56D .k; kf�61�

2
2g/.

As b�110 Ext�;�D .k;D/D 0, we may ignore the free summands.

Using Lemma 5.7, we can give explicit representatives for the classes in

b�110 Ext�;�D .k; kŒ�2; �
3
1 �=.�

3
2 ; �

9
1 //
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coming from the decomposition (6-4):

e2 WD e.�2/D Œ�1��2� Œ�
2
1 ��

3
1 2 Ext1;16D .k; kŒ�2; �

3
1 �=.�

3
2 ; �

9
1 //;

f20 WD e.�
3
1�
2
2 /D Œ�1��

3
1�
2
2 C Œ�

2
1 ��

6
1�2;

c2 D �
6
1�
2
2 ;

satisfying relations e22 D 0D f
2
20 and b10c2 D e2f20 .

Lemma 6.10 The classes e2 and f20 are primitive in the coalgebra b�110 Ext�;�D .k; Bn/.

Proof As described in Section 1.1, we can interpret the MPASS as a filtration spectral
sequence on the cobar complex CPn.k; k/, where Œa1 j � � � j as� is in filtration n if at
least n of the ai are in BnPn . The elements e2 and f20 correspond to elements in
F 1=F 2C 2Pn.k; k/ with the same formulas, and by Remark 6.9 it suffices to show that
d1.e2/D 0D d1.f20/ in the filtration spectral sequence. One checks explicitly that
dcobar.e2/ D 0, so it is a permanent cycle. This is not true of f20 , but we can write
down explicit correcting terms in higher filtration,

f20� zf20 WD Œ�2 j�
2
2 �C Œ�

2
2 j�2�� Œ�1�2 j�2�

3
1 �C Œ�1�

2
2 j�

3
1 �C Œ�

2
1�2 j�

6
1 �C Œ�

2
1 j�2�

6
1 �

C Œ�1 j �
2
2�
3
1 �;

and then check that dcobar. zf20/D Œ�
3
1 j �

6
1 j �

3
1 �C Œ�

3
1 j �

3
1 j �

6
1 �. This has filtration 3, and

so d1.f20/D 0.

So we’ve proved:

Proposition 6.11 There is an isomorphism of Hopf algebras

b�110 Ext�;�D .k; kŒ�2; �
3
1 �=.�

3
2 ; �

9
1 //ŠR˝EŒe2; f20�;

where e2 and f20 are primitive.

We can summarize the degree information as follows:

element s t u u00 D u� 6t ˛

1 0 0 0 0 0
h10 0 1 4 –2 0
b10 0 2 12 0 0

e2 D Œ�1��2� Œ�
2
1 ��

3
1 1 1 20 14 0

f20 D Œ�1��
3
1�
2
2 C Œ�

2
1 ��

6
1�2 1 1 48 42 0

c2 D �
6
1�
2
2 1 0 56 56 0
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Factor 2: kŒ�n�2�=�
3
n�2

This decomposes as kf1g ˚ kf�n�2g ˚ kf�2n�2g, so we
have three R–module generators:

element s t u u00 D u� 6t ˛

1 0 0 0 0 0
�n�2 1 0 2.3n�2� 1/ 2.3n�2� 1/ 0
�2n�2 1 0 2 � 2.3n�2� 1/ 2 � 2.3n�2� 1/ 0

As a Hopf algebra we have

b�110 Ext�;�D .k; kŒ�n�2�=�
3
n�2/ŠR˝DŒ�n�2�:

Factor 3: kŒ�n�1; �
3
n�2

�=.�3
n�1

; �27
n�2

/ Similarly to (6-4), for the third factor of Bn
we have a D–comodule decomposition

kŒ�n�1; �
3
n�2�=.�

3
n�1; �

27
n�2/

Š kf1g„ƒ‚…
Šk

˚ kf�n�1; �
3
n�2g„ ƒ‚ …

ŠM.1/

˚ kf�2n�1�
21
n�2; �n�1�

24
n�2g„ ƒ‚ …

ŠM.1/

˚ kf�2n�1�
24
n�2g„ ƒ‚ …

Šk

˚F;

where F is a free D–comodule, which gives the following R–module generators of
b�110 Ext�;�D .k; kŒ�n�1; �

3
n�2�=.�

3
n�1; �

27
n�2//:

element s t u u00 D u�6t ˛

1 0 0 0 0 0
en�1 WD Œ�1��n�1�Œ�

2
1 ��

3
n�2 1 1 2.3n�1C1/ 2.3n�1�2/ 3

yn�1 WD Œ�1��
2
n�1�

21
n�2CŒ�

2
1 ��n�1�

24
n�2 1 1 2.3nC1�21/ 2.3nC1�24/ 27

zn�1 WD �
2
n�1�

24
n�2 1 0 2.3nC1C3n�1�26/ 2.3nC1C3n�1�26/ 30

Lemma 6.12 en�1 is a permanent cycle in Er.k; Bn/. In particular, d1.en�1/D 0.

Proof Use the filtration spectral sequence interpretation of the MPASS described in
the proof of Lemma 6.10, where en�1 has representative

Œ�1 j �n�1�� Œ�
2
1 j �

3
n�2�

in CPn.k; k/. It is clear that this is a cycle in CPn.k; k/, hence a permanent cycle in
the spectral sequence.
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Factor 4: kŒ�n; �
3
n�1

�=.�3
n; �

9
n�1

/ There is a D–comodule decomposition

kŒ�n; �
3
n�1�=.�

3
n ; �

9
n�1/

Š kf1g„ƒ‚…
Šk

˚ kf�n; �
3
n�1g„ ƒ‚ …

ŠM.1/

˚ kf�2n ; �
3
n�1�n; �

6
n�1g„ ƒ‚ …

ŠD

˚ kf�3n�1�
2
n ; �

6
n�1�ng„ ƒ‚ …

ŠM.1/

˚ kf�6n�1�
2
ng„ ƒ‚ …

Šk

:

The nonfree summands lead to R–module generators of

b�110 Ext�;�D .k; kŒ�n; �
3
n�1�=.�

3
n ; �

9
n�1//;

which have representatives (in order):

element s t u u00 D u� 6t ˛

1 0 0 0 0 0
en WD Œ�1��n� Œ�

2
1 ��

3
n�1 1 1 2.3nC 1/ 2.3n� 2/ 9

fn0 WD Œ�1��
3
n�1�

2
n � Œ�

2
1 ��

6
n�1�n 1 1 2.3nC1� 3/ 2.3nC1� 6/ 27

cn WD �
6
n�1�

2
n 1 0 2.3nC1C 3n� 8/ 2.3nC1C 3n� 8/ 36

Corollary 6.13 There is an isomorphism of R–modules

b�110 Ext�;�D .k; Bn/

ŠRf1; e2; f20; c2g˝Rf1; �n�2; �
2
n�2g˝Rf1; en�1; yn�1; zn�1g˝Rf1; en; fn;0; cng:

We have already computed part of the Hopf algebra structure on b�110 Ext�;�D .k; Bn/D

E
1;�
1 .k; Bn/ but do not need to finish this; we just need one more piece of information.

Lemma 6.14 en is primitive in b�110 Ext�;�D .k; Bn/

Proof Write  .en/ D
P
i cŒxi j yi �, where c 2 R and xi ; yi 2 b�110 Ext�;�D .k; Bn/.

As the cobar differential preserves the grading ˛ (see Proposition 6.7) and  can be
given in terms of the cobar differential (see eg Remark 6.9),  also preserves ˛ . Since
˛.en/D 9, in order for d1.en/ to have ˛ D 9, we need ˛.xi /C˛.yi /D 9. Looking
at ˛ degrees in the above charts of R–module generators in b�110 Ext�;�D .k; Bn/, the
only options are for en j xi or yi , or for e2n�1 j xi or yi . But e2n�1 D 0 by Lemma 5.7,
and so the only option is for en to be primitive.

Combining Lemmas 6.10, 6.12 and 6.14, we have:

Corollary 6.15 In b�110 Ext�;�D .k; Bn/, the elements e2 , f20 , en�1 and en are exterior
generators in the Hopf algebra sense — they are primitive and square to zero.
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Now we have computed enough of E2.k; Bn/ to show Proposition 6.8. If the element
b�410 h10w

2
2w

3
n�1 (which is in degree ˛ D 9, u0 D 2.3n�8/ and uD 2.3nC1/) is the

target of a differential, it must be a dr for r � 4 (since the target is in filtration 5), and
the source of that differential must have degree ˛D9, u0D2.3n�5/ and uD2.3nC1/.
Thus it suffices to prove Proposition 6.16.

Proposition 6.16 The only element in E2.k; Bn/ with s � 4, ˛ D 9, u0 D 2.3n� 5/
and uD 2.3nC 1/ is ˙wn .

Proof There is a map R˝EŒe2; f20; en�1; en�˝DŒ�n�2�! b�110 Ext�;�D .k; Bn/ that
is an isomorphism on degree u00<2.3nC1�24/ and induces a map on cobar complexes

C sR˝EŒe2;f20;en�1;en�˝DŒ�n�2�.R;R/! C s
b�110 Ext�;�D .k;Bn/

.R;R/:

We claim the map of cobar complexes is an isomorphism in degree

u00 < �2C 2.3nC1� 24/C 14.s� 1/:

One can see this by noting that a minimal-degree element in C s
b�110 Ext�;�D .k;Bn/

.R;R/

not in the image is h10Œyn�1 j e2 j � � � j e2�, in degree

�2C 2.3nC1� 24/C 14.s� 1/:

(We use u00 degree here because it is additive with respect to multiplication within
b�110 Ext�;�D .k; Bn/DE

1;�
1 , whereas u0 degree is additive with respect to multiplication

of cohomology classes in H�E1DE2 .) Note that the desired degrees u00D u0C6sD
2.3n� 5/C 6s fall into the region described here for every s .

Now we look at the map induced on Ext in this region. Since dr differentials increase
u00 degree by 6.r � 1/ (they preserve u and decrease t by r � 1) and increase s
by r , differentials originating in the region u00 < �2C 2.3nC1� 24/C 14.s� 1/ stay
in the region, but there might be differentials originating outside the region hitting
elements in the region. Instead of showing that the map on Ext is an isomorphism in
a smaller region, note that this is already enough for our purposes: we want to check
that Ext�;�

b�110 Ext�;�D .k;Bn/
.R;R/ is zero in particular dimensions, and it suffices to check

that in Ext�;�R˝EŒe2;f20;en�1;en�˝DŒ�n�2�.R;R/.

We have

Ext�;�
R˝EŒe2;f20;en�1;en�˝DŒ�n�2�

.R;R/ŠRŒw2; b20; bn�2;0; wn�1; wn�˝EŒhn�2;0�;

where wi D Œei �, b20 D Œf20� and Ext�;�
DŒ�n�2�

.R;R/DR˝EŒhn�2;0�˝ kŒbn�2;0�.
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Degree information is as follows:

element s t u u0 ˛

w2 1 1 20 8 0
b20 1 1 48 36 0
hn�2;0 1 0 2.3n�2� 1/ 2.3n�2� 1/ 0
bn�2;0 2 0 2.3n�1� 3/ 2.3n�1� 3/ 0
wn�1 1 1 2.3n�1C 1/ 2.3n�1� 5/ 3
wn 1 1 2.3nC 1/ 2.3n� 5/ 9

h10 0 1 4 –2 0

b10 0 2 12 0 0

Of course, wn has the right degree. Any other monomial with the right degree must
be in RŒw2; b20; bn�2;0; wn�1�˝EŒhn�2;0�, and it is clear from looking at ˛ degree
above that it must have the form w3n�1x (where x 2RŒw2; b20; bn�2;0�˝EŒhn�2;0�).
Since u0.w3n�1/D 2.3

n � 15/, we need u0.x/D 20, which is not possible using w2
in degree 8, b20 in degree 36, h10 in degree �2 (where h210 D 0), and hn�2;0 and
bn�2;0 in higher degree.

So the element must be ˙bN10wn , and by checking u degree we see that the power N
has to be zero.

6.4 Degree-counting in the ISS

Recall that b�410 h10w
2
2w

3
n�1 has ˛D 9 and u0D 2.3n�8/; if it were a permanent cycle,

it would converge to an element of b�110 Exta;bPn .k; k/ with stem b � 6a D 2.3n � 8/

(see Definition 6.5) and ˛ D 9. The goal of this section is to prove:

Proposition 6.17 The subvector space of b�110 Ext�;�Pn .k; k/ consisting of elements in
stem 2.3n� 8/ and ˛ D 9 is zero.

We will prove this using a (localized) Ivanovskii spectral sequence (ISS) computing
b�110 Ext�;�Pn .k; k/. In our case, the ISS is constructed by filtering the cobar complex
for Pn by powers of the augmentation ideal. For example, Œ�n� is in filtration 1, and,
in the Milnor diagonal

dcobar.Œ�n�/D Œ�1 j �
3
n�1�C Œ�2 j �

9
n�2�;

Œ�1 j �
3
n�1� is in filtration 4 (since Œ�1� is in filtration 1 and Œ�3n�1� is in filtration 3),

and Œ�2 j �9n�2� is in filtration 10. In general, all of the multiplicative generators �1 ,
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�2 , �n�2 , �n�1 and �n are primitive in the associated graded, ie they are in ker d0 . To
form the b10–localized spectral sequence, take the colimit of multiplication by b10 . In
Section A.2 we show that the (localized and unlocalized) ISS converges in our case.

So we have E0 ŠDŒ�1; �31 ; �2; �n�2; �
3
n�2; �

9
n�2; �n�1; �

3
n�1; �n� and

EISS
1 DEŒh1i ; h20; hn�2;j ; hn�1;i ; hn0�i2f0;1g; j2f0;1;2g

˝ kŒb˙110 ; b11; b20; bn�2;j ; bn�1;i ; bn;0�i2f0;1g; j2f0;1;2g:

Here hij D Œ�3
j

i � has filtration 3j and bij has filtration 3jC1 . To help with the
degree-counting argument in Proposition 6.17, here is a table of the degrees of the
multiplicative generators of the E1 page:

element s t u u0 D u� 6t ˛

h10 1 1 4 –2 0
b10 3 2 12 0 0
h11 3 1 12 6 0
b11 9 2 36 24 0
h20 1 1 16 10 0
b20 3 2 48 36 0
hn�2;0 1 1 2.3n�2� 1/ 2.3n�2� 4/ 0
bn�2;0 3 2 2.3n�1� 3/ 2.3n�1� 9/ 0
hn�2;1 3 1 2.3n�1� 3/ 2.3n�1� 6/ 3
bn�2;1 9 2 2.3n� 9/ 2.3n� 15/ 9
hn�2;2 9 1 2.3n� 9/ 2.3n� 12/ 9
bn�2;2 27 2 2.3nC1� 27/ 2.3nC1� 33/ 27
hn�1;0 1 1 2.3n�1� 1/ 2.3n�1� 4/ 3
bn�1;0 3 2 2.3n� 3/ 2.3n� 9/ 9
hn�1;1 3 1 2.3n� 3/ 2.3n� 6/ 9
bn�1;1 9 2 2.3nC1� 9/ 2.3nC1� 15/ 27
hn;0 1 1 2.3n� 1/ 2.3n� 4/ 9
bn;0 3 2 2.3nC1� 3/ 2.3nC1� 9/ 27

Proof of Proposition 6.17 The argument has two parts:

(1) show the only generators (up to powers of b10 ) in EISS
1 in degree u0D 2.3n�8/

and ˛ D 9 are h10h20hn�2;2 and h10h11h20bn�2;1 ;

(2) show that those elements are targets of higher differentials in the b10–local ISS.
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From looking at ˛ degrees we see that no monomial in E1 in degree u0 D 2.3n� 8/
and ˛ D 9 can be divisible by bn�2;2 , bn�1;1 , or bn;0 , and moreover by looking
at u0 degree we see it is not possible for bn�1;0 , hn�1;1 or hn;0 to be a factor of
such a monomial. The only monomial of the right degree divisible by hn�2;2 is
bN10h10h20hn�2;2 . Any remaining elements of the right degree are in

EŒh10; h11; h20; hn�2;0; hn�2;1; hn�1;0�˝ kŒb
˙1
10 ; b11; b20; bn�2;0; bn�2;1�:

Of these generators, only hn�2;1 , hn�1;0 and bn�2;1 have ˛ > 0. Since h2n�2;1D 0D
h2n�1;0 , a monomial with ˛ D 9 needs to be divisible by bn�2;1 . If u0.bn�2;1x/ D
2.3n� 8/ then u0.x/D 14, and the only possibility is x D bN10h10h11h20 . (Here we
are using the assumption n� 5 to determine that u0.hn�2;0/D 2.3n�2� 4/� 46, and
the elements following it in the chart have greater degree.)

This concludes part (1) of the argument; for (2) it suffices to show

d9.h10h20bn�1;0/D h10h20h11bn�2;1� b10h10h20hn�2;2;(6-5)

d9.b10h10hn0/D�b10h10h20hn�2;2:(6-6)

First, we claim that h10h20 is a permanent cycle; it is represented by Œ�1 j �2� �

Œ�21 j �
3
1 �Dw2 , which we’ve seen is a permanent cycle in the cobar complex. The class

bn�1;0 has cobar representative Œ�n�1 j �2n�1�C Œ�
2
n�1 j �n�1� and

bn�1;0 � Œ�n�1 j �
2
n�1�C Œ�

2
n�1 j �n�1�� Œ�1�n�1 j �n�1�

3
n�2�C Œ�1�

2
n�1 j �

3
n�2�

C Œ�21�n�1 j �
6
n�2�C Œ�

2
1 j �n�1�

6
n�2�C Œ�1 j �

2
n�1�

3
n�2�

2 .F 3=F 4/C 2Pn.k; k/:

Computing the cobar differential on this class (and remembering that �9n�3D 0 in Pn ),
we see that d9.bn�1;0/D h11bn�2;1� b10hn�2;2 . So

d9.h10h20bn�1;0/D h10h20d9.bn�1;0/D h10h20.h11bn�1;1� b10hn�2;2/:

We have h10hn0� Œ�1 j�n�� Œ�21 j�
3
n�1�Dwn 2F

2=F 3 and there is a cobar differential

dcobar.Œ�1 j �n�� Œ�
2
1 j �

3
n�1�/D�Œ�1 j �2 j �

9
n�2�C Œ�

2
1 j �

3
1 j �

9
n�2�:

This implies (6-6). (We did not check that h10h20h11bn�2;1 and h10h20b10hn�2;2
survive to the E9 page, because that is not necessary: we only have to check that these
elements die somehow in the spectral sequence, and if they have already died before
the E9 page, then that is good enough for this argument.)
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7 Some results on higher differentials

In the case r D 4, the following proposition gives an explicit way to compute d8 on
any class, given our knowledge of d4 from the previous section.

Proposition 7.1 Suppose xx 2 E2 satisfies dr 0.xx/ D 0 for r 0 < r and dr.xx/ D

h10 zy 2 Er . Also suppose xy is an E2 representative for zy and d4.xy/D h10zz . Then
drC4.h10xx/D b10zz .

Note that the choice xy does not matter, as two such choices differ (up to E2 class) by
a boundary.

One is tempted to use Massey product arguments, eg try to apply the Massey product dif-
ferential and extension theorem [8, Theorem 4.5 and Corollary 4.6] to hh10; h10; zz; h10i,
but the following explicit argument avoids Massey product technicalities.

Lemma 7.2 Suppose 0 ¤ xx 2 Eu
0.x/;s.x/
2 is not h10–divisible, and define xy 2

E
u0.x/�4;s.x/Cr
r such that dr.xx/ D h10xy and dr 0.xx/ D 0 for r 0 < r . Furthermore,

suppose d4.xy/ D h10xz . Then there is a cobar representative x 2 F s.x/ of bN10xx
for some N, a cobar representative y 2 F s.x/Cr of bN10xy and a cobar representative
z 2 F s.x/CrC4 of bN10xz such that

(7-1) d.x/D Œ�1 jy�� Œ�
2
1 j z�:

Proof We prove this by induction on u0. The statement is trivially true for u0 < �2,
since there are no elements of E2 in those degrees. So let xx 2 E2 with u0.xx/� �2,
and assume the inductive hypothesis.

By Proposition 2.3, dr.xx/ has the form h10xy . If xy is not a permanent cycle, we
abuse notation by letting xy denote an E2 representative. By Proposition 2.3, there is a
nontrivial differential dR.xy/D h10xz for some R � 4 such that dr 0.xy/D 0 for r 0 <R .
Since u0.xy/ D u0.xx/� 4, we may apply the inductive hypothesis to xy , obtaining a
cobar representative y of bN10xy for some N, a cobar representative z 2 F s.x/CrCR

of bN10xz and a cobar element w 2 F s.x/CrCRC4 such that

(7-2) d.y/D Œ�1 j z�� Œ�
2
1 jw�:

If xy is a permanent cycle, (7-2) holds with z D 0D w .
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Since dr.bN10xx/D b
N
10h10xy , there exists a cobar representative x 2 F s.x/ for bN10xx 2

E
sDs.x/
2 such that d.x/� Œ�1 jy� .mod F s.x/CrC1/. In particular, we may write

(7-3) d.x/D Œ�1 jy�� Œ�
2
1 j z�C x

0

with x0 2 F s.x/CrC1 . (Note that Œ�21 j z� is also in higher filtration than y , and this
term is added because it simplifies the next calculation.)

Claim 7.3 We may choose x and x0 such that x0 2 F s.x/CrC5 .

Proof Applying d to (7-2), we have

0D�Œ�1 j d.z/�C Œ�1 j �1 jw�C Œ�
2
1 j d.w/�:

Equating terms starting with �1 , we obtain d.z/ D Œ�1 jw�; equating terms starting
with �21 , we obtain d.w/D 0. Applying d to (7-3), we have

0D�Œ�1 jd.y/�C Œ�1 j�1 jz�C Œ�
2
1 jd.z/�Cd.x

0/D Œ�1 j�
2
1 jw�C Œ�

2
1 j�1 jw�Cd.x

0/;

so d.x0/ D �b10w 2 F
s.x/CrCRC4 � F s.x/C8 . So x0 represents an element of

E
sDs.x/CrC1
2 . Since u0.x0/D u0.h10y/, Lemma 2.2 implies that if x0 were nonzero

in Es.x
0/

2 , then s.x0/ � s.h10y/ D s.x/C r .mod 9/. In particular, x0 is zero as an
element of Es.x/CrC12 , so it must have a representative in higher filtration. Repeating
this argument, we find x0 is zero as an element of Es.x/CrCi2 for 1 � i � 5. So we
may write x0 C d.x1/ 2 F s.x/CrC5 , where x1 2 F s.x/Cr . Thus, by adjusting the
representative x by x1 , we may assume x0 2 F s.x/CrC5 .

Then
d.b10x/D Œ�1 j �

2
1 j �1 jy�C Œ�

2
1 j �1 j �1 jy�� Œ�1 j �

2
1 j �

2
1 j z�

� Œ�21 j �1 j �
2
1 j z�C b10x

0;

d.b10x� Œ�
2
1 j �

2
1 jy�/D Œ�1 j �

2
1 j �1 jy�� Œ�1 j �

2
1 j �

2
1 j z�� Œ�

2
1 j �1 j �

2
1 j z�C b10x

0

C Œ�1 j �1 j �
2
1 jy�� Œ�

2
1 j �

2
1 j �1 j z�C Œ�

2
1 j �

2
1 j �

2
1 jw�

DW Œ�1 j zy�� Œ�
2
1 j zz�;

where

zy WD b10y � Œ�
2
1 j �

2
1 j z�C Œ�

2
1 j x

0�; zz WD b10z� Œ�
2
1 j �

2
1 jw�� Œ�1 j x

0�:

By our assumptions on the filtrations of all the elements involved,

zy � b10 .mod F s.x/Cr/ and zz � b10z .mod F s.x/CrC5/;

so zy is a representative of bNC110 xy and zz is a representative of bNC110 xz .
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Proof of Proposition 7.1 Use Lemma 7.2 to write

(7-4) d.x/D Œ�1 jy�� Œ�
2
1 j z�;

where x is a cobar representative for bN10xx , y is a cobar representative for bN10xy and z
is a cobar representative for bN10zz . Applying d to (7-4),

0D�Œ�1 j d.y/�C Œ�1 j �1 j z�� Œ�
2
1 j d.z/�:

Equating terms whose first component is �1 , we have d.y/D Œ�1 j z�; equating terms
whose first component is �21 , we have d.z/D0. Then Œ�1 jx��Œ�21 jy� is a representative
for h10xx , and we have

d.Œ�1 j x�� Œ�
2
1 jy�/D Œ�1 j �

2
1 j z�C Œ�

2
1 j �1 j z�D b10z:

Thus, in the b10–localized spectral sequence, drC4.bN10h10xx/ D b
N
10zz implies that

drC4.h10xx/D b10zz .

Conjecture 7.4 The K.�1/–based MPASS collapses at E9 .

Using computer calculations, we verified the conjecture for stems � 600. However, it
is not possible to rule out higher differentials based only on degree.

Proposition 7.5 Assuming Conjecture 7.4, we have

b�110 Ext�;�P .k; k/Š b�110 Ext�;�D .k; kŒ zw2; zw3; : : : �/;

where zwn D b�110 wn and the D–coaction on the E2 page is given by  . zwn/ D

1˝ zwnC �1˝ h10 zw
2
2 zw

3
n�1 for n� 3.

Proof Let �W D kŒ zw2; zw3; : : : �. We have d4. zwn/D h10 zw22 zw
3
n�1 . By Proposition 2.3

and Conjecture 7.4, the E1 page of the MPASS is obtained by taking the cohomology
of E2 by d4 and d8 ; more precisely, we have

E1 Š ker.d4jWC/= im.d8jWC/˚ ker.d8jW�/= im.d4jW�/:

If we let @.x/D 1
h10
d4.x/, then Proposition 7.1 says that b10@2.x/D d8.h10x/. Thus

we may write down an isomorphism f of chain complexes,

� � � // �W @
//

f 2n

��

�W @2
//

f 2nC1

��

�W @
//

f 2nC2

��

� � �

� � � // �W fbn10g d4
// �W fh10bn10g d8

// �W fbnC110 g
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By Lemma 4.2, the cohomology of the top complex is b�110 Ext�;�D .k; �W /, and we have
argued below that the cohomology of the bottom complex is E1 . Thus we have an
isomorphism of vector spaces b�110 Ext�;�P .k; k/Š b�110 Ext�;�D .k; �W /.
It remains to show that this is an isomorphism of R–modules. We will just check that
the induced map f� on cohomology respects h10–multiplication. If ! D Œx� 2 �W 2n

is a cycle, then h10! is represented by Œx� 2 �W 2nC1 . If � D Œy� 2 �W 2nC1 is a
cycle, then h10� is represented by Œ@y� 2 �W 2n . So f 2nC1� .h10!/ D Œh10b

n
10x� D

h10Œb
n
10x�D h10f

2n
� .!/. For the other case, we need to show that f 2nC2� .h10�/D

ŒbnC110 .@y/� can be represented as h10 � Œh10bn10y�D h10f
2nC1
� .�/. This corresponds

to a hidden multiplication in the MPASS. From the commutativity of the diagram we
have d4.Œbn10y�/ D Œh10b

n
10@y� D h10Œb

n
10@y�. The desired relation h10Œh10bn10y� D

ŒbnC110 .@y/� follows from Lemma 7.6.

Lemma 7.6 Suppose dr.xx/D h10xy , where xx 2WC and dr 0.xx/D 0 for r 0 < r . Then
there is a hidden multiplication h10 � .h10xx/D�b10xy .

This is closely related to the Massey product shuffle h10.h10xx/D h10hh10; h10; xyi D
hh10; h10; h10ixy , though the following explicit argument avoids Massey product tech-
nicalities.

Proof Use Lemma 7.2 to find a representative x such that d.x/D Œ�1 jy�� Œ�21 j z�,
where y is a representative for xy and z is a representative for xz such that d4.xy/Dh10xz .
We use Œ�1 jx�� Œ�21 jy� as a representative for h10xx . Then h10 � .h10xx/ is represented
by Œ�1 j �1 jx�� Œ�1 j �21 jy�. Since d.Œ�21 jx�/D�Œ�1 j �1 jx�� Œ�

2
1 j �1 jy�C Œ�

2
1 j �

2
1 jz�,

we have

(7-5) Œ�1 j �1 jx�� Œ�1 j �
2
1 jy�Cd.�

2
1 jx/D�b10yC Œ�

2
1 j �

2
1 j z���b10xy:

8 Localized cohomology of a large quotient of P

In this section we will prove Theorem 1.5, a complete calculation of b10–local coho-
mology of a small P –comodule. Using the change-of-rings theorem, this is equivalent
to the following:

Theorem 8.1 Let D1;1 D kŒ�1; �2; : : : �=.�31 /. Then

b�110 Ext�;�D1;1.k; k/ŠEŒh10; h20�˝P Œb
˙1
10 ; b20; w3; w4; : : : �:
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In particular, one can write

b�110 Ext�;�D1;1.k; k/Š b
�1
10 Ext�;�D .k; kŒh20; b20; w3; w4; : : : �=.h

2
20//;

where all the generators h20 , b20 and wn are D–primitive.

Though D1;1 seems reasonably close to P in size, the computation of its b10–local
cohomology is much simpler. In particular, attempting to apply the methods in this sec-
tion (especially the explicit construction in Lemma 8.7) to computing b�110 Ext�;�P .k; k/

quickly becomes intractable.

The strategy is to explicitly construct a map from the cobar complex CD1;1.k; k/
to another complex which is designed to have the right cohomology, and then show
the map is a quasi-isomorphism. Note that the cobar complex is a dga under the
concatenation product, so every element is a product of elements in degree 1. Thus if
our target complex is a dga, it suffices to construct a map out of C 1D1;1.k; k/DD1;1 ,
and then extend the map to all of C �D1;1.k; k/ by multiplicativity. In order to ensure
the resulting map is a map of complexes, there is a criterion that the map on degree 1
needs to satisfy:

Proposition 8.2 Let � be a Hopf algebra over k , Q� be a dga with augmentation
k!Q� and � W �!Q1 be a k–linear map such that

(8-1) dQ.�.x//D
X

�.x0/�.x00/

for all x 2 � , where
P
x0˝ x00 is the reduced diagonal x�.x/. Then there is a map of

dgas f W C �� .k; k/!Q� sending Œa1 j � � � j an� to
Q
�.ai /.

Proof We just need to check that f commutes with the differential; that is, we have
to check the following diagram commutes:

C n� .k; k/
f

//

dcobar
��

Qn

dQ
��

C nC1� .k; k/
f
// QnC1

For nD 1, this is precisely what the condition (8-1) guarantees. Commutativity for
n > 1 follows from the Leibniz rule. The map on nD 0 is the augmentation.

Remark 8.3 This is an example of the more general construction of twisting cochains;
see [5, Section II.1]. A morphism � satisfying (8-1) will be called a twisting morphism.
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The target of our desired twisting morphism will be the complex b�110 zU
�˝W 0, where

� W 0 D kŒw3; w4; : : : �, with u.wn/D 2.3n � 1/, is in homological degree zero
with zero differential, and

� zU � WD UL�.�1/˝ UL
�.�2/ � C

�
DŒ�1;�2�

.k; k/, where the sub-dga UL�.x/ �
C �
DŒx�

.k; k/ is defined below.

Definition 8.4 Given a height-3 truncated polynomial algebra DŒx�, let UL�.x/
be the sub-dga of C �DŒx�.k; k/ multiplicatively generated by the elements ˛ D Œx�,
ˇ D Œx2� and 
 D Œx j x2�C Œx2 j x�. This inherits from C �

DŒx�
.k; k/ the differentials

d.˛/D 0, d.ˇ/D�˛2 and d.
/D 0, along with the relations ˛ˇCˇ˛D 
 , ˛3 D 0
and ˇ2 D 0.

Remark 8.5 This is (up to signs) the p D 3 case of a construction due to Moore:
let UL� be the dga which has multiplicative generators a1; : : : ; ap�1 in degree 1 and
t2; : : : ; tp in degree 2 with d.ai /D ti , subject to

a21 D t2; a2i D 0 for i ¤ 1; a
p
1 D 0;

aiaj D�ajai for i; j ¤ 1; aja1 D�a1aj C tjC1; ai tj D tjai ;

ti tj D tj ti :

This is a dga quasi-isomorphic to, and much smaller than, CkŒx�=xp .k; k/. It also has
the nice property that tp (which, in the case x D �1 , represents b10 ) is central.

Notation 8.6 Denote the generators of UL�.�1/ by a1 D Œ�1�, a2 D Œ�21 � and b10 D
Œ�1 j �

2
1 � C Œ�

2
1 j �1�, and the generators of UL�.�2/ by q1 D Œ�2�, q2 D Œ�22 � and

b20 D Œ�2 j �
2
2 �C Œ�

2
2 j �2�. (This definition of b10 and b20 does, of course, match

up with the image of b10 and b20 along Ext�;�P .k; k/! Ext�;�
DŒ�1;�2�.k;k/

, and even
Ext�;�P .k; k/! Ext�;�D1;1.k; k/.) Note that

H�. zU/DH�.CDŒ�1;�2�.k; k//DEŒh10; h20�˝P Œb10; b20�:

So our target complex b�110 zU ˝W
0 has cohomology

(8-2) H�.b�110
zU ˝W 0/DH�.b�110

zU/˝W 0 DEŒh10; h20�˝P Œb
˙1
10 ; b20�˝W

0:

8.1 Defining �W D1;1! b�1
10
zU ˝W 0

The definition of the map � W D1;1! b�110
zU �˝W 0 is quite ad hoc, and will be done

in several stages. The map will arise as a composition

D1;1!D0! zU �˝W 0! b�110
zU �˝W 0;
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where the first map is the natural surjection to

D0 WD kŒ�1; �2; : : : �=.�
3
1 ; �

9
2 ; �

9
3 ; : : : /

and the last map is the natural localization map; the main goal is to construct a
map D0 ! zU �˝W 0 satisfying the twisting morphism condition, and we begin by
constructing a map out of a slightly smaller coalgebra.

Lemma 8.7 Let

C D kŒ�1; �
3
2 ; �3; �4; : : : �=.�

3
1 ; �

9
2 ; �

9
3 ; : : : /:

There is a twisting morphism � W C ! UL1.�1/˝W
0.

Proof For n;m; k � 3, define

�.�1/D a1; �.�3n�1�
3
m�1/D a2wnwm;

�.�21 /D a2; �.�n�
3
m�1/D 0;

�.�3n�1/D�a1wn; �.�n�m/D 0;

�.�n/D a2wn; �.�21�
3
n�1/D 0;

�.�1�
3
n�1/D�a2wn; �.�1�

3
n�1�

3
m�1/D 0;

�.�1�n/D 0; �.�3n�1�
3
m�1�

3
k�1/D 0:

It is a straightforward computation with the cobar differential to check that each of
these does not violate the twisting morphism condition

(8-3) d.�.x//D
X

�.x0/ � �.x00/;

where x�.x/D
P
x0˝x00. (Note that, in C, we have x�.�3n�1/D0 and x�.�n/D�1j�3n�1.)

Now it suffices to prove the following:

Claim 8.8 Defining �.X/ D 0 for all monomials X except the ones listed above
defines a twisting morphism.

Define a (nonmultiplicative) grading � on C, where

�.1/D 0; �.�1/D 1; �.�21 /D 2;

�.�3n�1/D 1; �.�6n�1/D 2; �.�n/D 2; �.�2n/D 4

for n � 3, and �
�Q

i �
aiC3bi
i

�
D
P
�.�

ai
i /C �.�

3bi
i / (where ai ; bi 2 f0; 1; 2g). The

reason for considering this grading is the following:
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Claim 8.9 Writing �.x/D
P
x0˝ x00, we have �.x0/C �.x00/� �.x/.

Proof If X D
Q
�
aiC3bi
i for ai ; bi 2 f0; 1; 2g, consider the collection

TX D f�
ai
i W ai ¤ 0g[ f�

3bi
i W bi ¤ 0g:

Use induction on n WD #TX . If nD 1, then it suffices to check explicitly the Milnor
diagonal of each of the terms f�1; �21 ; �

3
i�1; �

6
i�1; �i ; �

2
i g. (In fact, we find �.x/ D

�.x0/C �.x00/ for each of these terms.)

For general monomials a and b , we have

(8-4) �.ab/� �.a/C �.b/:

By definition, if x and y are products of nonoverlapping subsets of TX , then

(8-5) �.xy/D �.x/C �.y/:

Write X D xy , where x 2 TX and y is a product of terms in TX (different from x ).
Since �.xy/ D

P
x0y0 j x00y00 it suffices to prove �.x0y0/C �.x00y00/ � �.xy/. We

have

�.x0y0/C �.x00y00/� �.x0/C �.y0/C �.x00/C �.y00/� �.x/C �.y/D �.xy/;

where the first inequality is by (8-4), the second inequality is by the inductive hypothesis,
and the last equality is by (8-5).

So the monomials in C with degree 1 are �1 and �3n�1 for n� 3, the monomials with
� degree 2 are �21 , �n , �3n�1�

3
m�1 and �1�3n�1 for n;m� 3, and the monomials with

degree 3 are �21�
3
n�1 , �1�3n�1�

3
m�1 , �3n�1�

3
m�1�

3
k�1

, �1�n and �3n�1�m for n;m � 3.
Notice that � has already been defined for these monomials above. So it remains to
show that � can be defined consistently for monomials with � � 4. In particular, we
will show using induction on � degree that we can define �.x/D 0 if �.x/� 3 while
preserving the twisting morphism condition (8-1).

Since we have already checked above that we can define �.x/D 0 on the monomials x
with �.x/D 3, let �.x/D n > 3 and assume inductively that we have already defined
�.y/D 0 if 3 � �.y/ � n� 1. Any monomial y with �.y/D 0 is in k (and hence
�.y/ D 0), so we can assume that �.x0/ < �.x/ and �.x00/ < �.x/. So, by the
inductive hypothesis, we have

P
�.x0/ � �.x00/ D 0, and so we can set �.x/ D 0

without violating (8-1).
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Lemma 8.10 One may extend � constructed in Lemma 8.7 to a twisting morphism
D0! zU 1˝W 0 by defining

�.�2/Dq1; �.�22 /Dq2; �.�2x/D0 for x2C ; �.�22x/D0 for x2C ;

where C is the cokernel of the unit map k! C.

Proof Note that �2 is primitive in D0, and C is a subcoalgebra of D0, so we need
to define � on �2C and �22C. It is straightforward to check that �.�2/ D q1 and
�.�22 /D q2 is consistent with (8-1).

If x D �2y for y 2 C, then every y0; y00 in �y is in C, andX
�.x0/��.x00/D

X
.�.�2y

0/��.y00/C�.y0/��.�2y
00//

D �.�2/�.y/C�.y/�.�2/C
X

y0;y00…k

.�.�2y
0/��.y00/C�.y0/��.�2y

00//

D q1�.y/C�.y/q1C
X

y0;y00…k

.�.�2y
0/��.y00/C�.y0/��.�2y

00//:

Since �.y/ 2 UL1.�1/˝W 0 and q1 anticommutes with the generators a1 and a2
of UL1.�1/, we have q1�.y/C �.y/q1 D 0. Thus, defining �.�2y/ D 0 does not
violate (8-1).

Similarly, if x D �22y for y 2 C, thenX
�.x0/��.x00/D

X
.�.�22y

0/��.y00/C2�.�2y
0/��.�2y

00/C�.y0/��.�22y
00//

D �.�22 /�.y/C2�.�2/�.�2y/C2�.�2y/�.�2/C�.y/�.�
2
2 /

C

X
y0;y00…k

.�.�22y
0/��.y00/C2�.�2y

0/��.�2y
00/C�.y0/��.�22y

00//

D �.�22 /�.y/C�.y/�.�
2
2 /C

X
y0;y00…k

.�.�22y
0/�.y00/C�.y0/�.�22y

00//;

where in the third equality we use the fact that 0 D �.�2y/ D �.�2y
0/ D �.�2y

00/

(for y0; y00 … k ). Again, �.�22 /�.y/C �.y/�.�
2
2 / D q2�.y/C �.y/q2 , which is zero

since �.y/ is in UL1.�1/˝W 0 and q2 anticommutes with the generators a1 and a2
of UL1.�1/. So it is consistent with (8-1) to define �.�22y/D 0.

Now precompose with the surjection qW D1;1!D0 to obtain a twisting morphism

� W D1;1!D0! zU 1˝W 0:
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This remains a twisting morphism because it is a coalgebra map — in particular,
q commutes with the coproduct — and so d

�
�.q.x//

�
D
P
�.q.x/0/�.q.x/00/ DP

�.q.x0//�.q.x00//. So, by Proposition 8.2, we get an induced map

(8-6) � 0W C �D1;1.k; k/!
zU �˝W 0

by extending � multiplicatively using the concatenation product on the cobar complex.

8.2 Showing � is a quasi-isomorphism via spectral sequence comparison

Our goal is to show that the map

� 0W C �D1;1.k; k/!
zU �˝W 0

induces an isomorphism in cohomology after inverting b10 .

To prove this, we define filtrations on C �D1;1.k; k/ and on zU �˝W 0 in a way that
makes � 0 a filtration-preserving map; this induces a map of filtration spectral sequences.
We compute the E2 pages of both sides and show that � 0 induces an isomorphism
of E2 pages, hence an isomorphism of E1 pages.

Let B1;1 WDkŒ�2; �3; : : : �DD1;1�Dk . Define a decreasing filtration on C �D1;1.k; k/,
where Œa1 j� � �jan� is in F sC �D1;1.k; k/ if at least s of the ai are in ker.D1;1!D/D

B1;1D1;1 . Define a decreasing filtration on zU �˝W 0 by the multiplicative grading

� ja1j D ja2j D jb10j D 0,

� jq1j D jq2j D 1,

� jb20j D 2,

� jwnj D 1.

Looking at the definition of � in Lemmas 8.7 and 8.10, it is clear that � is filtration-
preserving, and hence so is � 0.

For the same reasons that the b�110 B –based MPASS coincides at E1 with the filtration
spectral sequence mentioned in Section 1.1, the b�110 B1;1–based MPASS for computing
b�110 Ext�;�D1;1.k; k/ coincides with the b10–localized version of the filtration spectral
sequence on C �D1;1.k; k/ defined above. Our next goal is to calculate the E2 page
of (the b10–localized version of) the filtration spectral sequence on C �D1;1.k; k/, and
using this correspondence we may instead calculate the MPASS E2 term

(8-7) E
s;�
2 D b

�1
10 Exts;�

b�110 Ext�;�D .k;B1;1/
.b�110 Ext�;�D .k; k/; b�110 Ext�;�D .k; k//:
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So we need to compute b�110 Ext�;�D .k; B1;1/ and its coalgebra structure. The corre-
spondence of spectral sequences further gives that

(8-8) E
1;�
1 D b�110 Ext�;�D .k; B1;1/Š b

�1
10H

�.F 1=F 2C �D1;1.k; k//

and the reduced diagonal on b�110 Ext�;�D .k; B1;1/ coincides with d1 in the filtration
spectral sequence.

Proposition 8.11 As coalgebras, we have

b�110 Ext�;�D .k; B1;1/Š b
�1
10 EŒe3; e4; : : : �˝DŒ�2�;

ie en and �2 are primitive and x�.�22 /D 2�2˝ �2 .

Proof The first task is to determine the D–comodule structure on B1;1 . Let  denote
the D–coaction induced by the D–coaction on P, and @W B1;1! B1;1 denote the
operator defined by  .x/ D 1˝ x C �1 ˝ @x � �21 ˝ @

2x (see Definition 4.1). For
example, @.�n/D �3n�1 , @.�3n�1/D 0, and @ satisfies the Leibniz rule.

We have a coalgebra isomorphism B1;1 Š DŒ�2�˝ kŒ�
3
2 ; �3; �4; : : : �. Since 1, �2

and �22 are all primitive, DŒ�2� splits as D–comodule into three trivial D–comodules,
generated by 1, �2 and �22 , respectively. So it suffices to determine the D–comodule
structure of kŒ�32 ; �3; �4; : : : �.

As part of the determination of the structure of b�110 Ext�;�D .k; B/ in Section 4.1, we
showed that there is a D–comodule decomposition

B Š
M

�n1 ����nd
ni�2 distinct

T .h�n1 � � � �nd I 1i/˚F;

where F is a free D–comodule and T .h�n1 � � � �nd I 1i/ is generated as a vector space
by monomials of the form @"1.�n1/ � � � @

"d .�nd / for "i 2 f0; 1g. I claim the surjection
f W B ! kŒ�32 ; �3; �4; : : : � takes F to another free summand: this map preserves the
direct sum decomposition into summands of the form D, M.1/ and k , and the image
of a free summand D must be either 0 or another free summand (just as there are
no D–module maps k D kŒx�=.x/! D or M.1/ D kŒx�=.x2/! D, there are no
D–comodule maps D! k or D!M.1/).

Furthermore, I claim that f acts as zero on summands T .h�n1 � � � �nd I 1i/ where
some ni D 2, and is the identity otherwise. In the first case, every basis element
@"i .�2/

Q
j¤i @

"j .�nj / in T .h�n1 � � � �nd I 1i/ has either the form �2
Q
j¤i @

"j .�nj / or
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�31
Q
j¤i @

"j .�nj /2 �
3
1 �kŒ�

3
2 ; �3; �4; : : : �, and these are sent to zero under f . If instead

ni > 2 for every i , then every term @"1.�n1/ � � � @
"d .�nd / is in kŒ�32 ; �3; �4; : : : � and

so f acts as the identity. So we have shown that there is a D–comodule isomorphism

B1;1 D

� M
�n1 ����nd
ni�3 distinct

T .h�n1 � � � �nd I 1i/˚F
0

�
˝ .k1˚ k�2 ˚ k�22

/;

where F 0 is a free D–comodule. So we have

b�110 Ext�;�D .k; B1;1/Š
M

�n1 ����nd
ni�3 distinct

b�110 Ext�;�D
�
k; T .h�n1 � � � �nd I 1i/˝ kf1; �2; �

2
2g
�

Š

M
�n1 ����nd
ni�3 distinct

b�110 Ext�;�D
�
k; T .h�n1 � � � �nd I 1i/

�
˝ kf1; �2; �

2
2g:

By Lemma 5.7, b�110 Extd;�D
�
k; T .h�n1 � � � �nd I 1i/

�
is generated by en1 � � � end , where

en D Œ�1��n� Œ�
2
1 ��

3
n�1 2 b

�1
10 Ext1;2.3

nC1/
D

�
k; T .h�nI 1i/

�
is primitive. The map B! B1;1 gives rise to a map of MPASSs, and in particular a
map b�110 Ext�;�D .k; B/!b�110 Ext�;�D .k; B1;1/ of Hopf algebras over b�110 Ext�;�D .k; k/

sending en 7! en for n� 3, and e2 7! h10 � �2 . In particular, we have

(8-9) b�110 Ext�;�D .k; B1;1/ŠEŒh10; e3; e4; : : : �˝P Œb
˙1
10 �˝ kf1; �2; �

2
2g

and en 2 b�110 Ext�;�D .k; B1;1/ is primitive. To find the coproduct on the elements �2
and �22 , use (8-8), in particular the fact that the (reduced) Hopf algebra diagonal corre-
sponds to d1 in the filtration spectral sequence. In particular, �22b�110 Ext0;16D .k; B1;1/

corresponds to the element Œ�2� 2 F 1=F 2C 1D1;1.k; k/, and we have xdcobar.Œ�2�/ D

Œ�1j�
3
1 �, which is zero in C �D1;1.k; k/, so �2 is primitive. Similarly, the cobar differential

on C �D1;1.k; k/ shows x�.�22 /D 2�2˝ �2 . Thus the tensor factor kf1; �2; �22g is, as
a coalgebra, a truncated polynomial algebra. This finishes the determination of the
coalgebra structure of b�110 Ext�;�D .k; B1;1/ in (8-9).

The E2 page (8-7) of the MPASS is the cohomology of the Hopf algebroid

.b�110 Ext�;�D .k; k/; b�110 Ext�;�D .k; B1;1//

D .EŒh10�˝P Œb
˙1
10 �; EŒh10; e3; e4; : : : �˝P Œb

˙1
10 �˝DŒ�2�/;

so we have:
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Corollary 8.12 The MPASS E2 page is

E��2 ŠEŒh10; h20�˝P Œb
˙1
10 ; b20; w3; w4; : : : �:

Proposition 8.13 The map � 0 induces an isomorphism of E2 pages after inverting b10.

Proof We first show that the E2 pages of the filtration spectral sequences on C �P .k; k/
and zU � ˝W 0 are abstractly isomorphic after inverting b10 . By the machinery of
Section 1.1, it suffices to calculate the E2 page for zU �˝W 0 and check that it coincides
with the E2 page of the MPASS from Corollary 8.12. Then we show that the map � 0

induces this isomorphism.

In the associated graded, there is a differential d0.a2/ D �a21 , but the correspond-
ing differential on q2 is a d1 . So the filtration spectral sequence UEr computing
H�.b�110

zU �˝W 0/ has E0 page

UE0 Š b
�1
10 UL

�.�1/˝UL
�.�2/˝W

0

with differential d0.u1˝u2˝w/D d.u1/˝u2˝w . So

UE1 ŠH
�.b�110 UL

�.�1//˝UL
�.�2/˝W

0
ŠEŒh10�˝P Œb

˙1
10 �˝UL

�.�2/˝W
0

and the only remaining differential is generated by d1.q2/D�q21 , so

UE2 ŠEŒh10�˝P Œb
˙
10�˝H

�.UL�.�2//˝W
0
DEŒh10; h20�˝P Œb

˙1
10 ; b20�˝W

0:

Then Er ŠE2 for r � 2.

To show that � 0 is an isomorphism, it suffices to show that � 0.h10/Dh10 , � 0.b10/Db10 ,
� 0.h20/D h20 , � 0.b20/D b20 and � 0.wn/D b10wn for n � 3. We use the fact that
� 0 extends � multiplicatively using the concatenation product in the cobar complex.
So � 0.Œa1 j � � � j an�/D

Q
�.ai /, and we have

� 0.h10/D �
0.Œ�1�/D �.�1/D a1;

� 0.b10/D �
0.Œ�1 j �

2
1 �C Œ�

2
1 j �1�/D �.�1/�.�

2
1 /C �.�

2
1 /�.�1/D a1a2C a2a1 D b10;

� 0.h20/D �
0.Œ�2�/D �.�2/D q1;

� 0.b20/D �
0.Œ�2 j �

2
2 �C Œ�

2
2 j �2�/D �.�2/�.�

2
2 /C �.�

2
2 /�.�2/D q1q2C q2q1 D b20;

� 0.wn/D �
0.Œ�1 j �n�� Œ�

2
1 j �

3
n�1�/D a1a2wnC a2a1wn D b10wn:
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Proof of Theorem 8.1 In Section 8.1 we constructed a map � 0W C �D1;1.k; k/ !

zU �˝W 0 which is filtration-preserving, where C �D1;1.k; k/ has the filtration associ-

ated to the MPASS and zU � ˝W 0 has the filtration constructed in Section 8.2. By
Proposition 8.13, � 0 induces an isomorphism of spectral sequences after inverting b10 ,
and so it induces an isomorphism in cohomology. Thus

b�110 Ext�;�D1;1.k; k/D b
�1
10H

�.CD1;1.k; k//Š b
�1
10H

�.b�110
zU �˝W 0/:

The result follows from (8-2).

Appendix Convergence of localized spectral sequences

In this appendix, we study the convergence of two b10–localized spectral sequences,
the b10–localized MPASS (the main subject of this paper) and the b10–localized ISS
(introduced in Section 6). In each case, the nonlocalized spectral sequences converges
for straightforward reasons.

In general, there are two possible ways in which a localization of a convergent spectral
sequence can fail to converge:

(1) There could be a b10–tower x in E1 that does not appear in b�110 E1 because it
is broken into a series of b10–torsion towers connected by hidden multiplications.

(2) There could be a b10–tower x in b�110 E1 that is not a permanent cycle in E1
because in the nonlocalized spectral sequence it supports a series of increasing-
length differentials to b10–torsion elements (so these differentials would be zero
in b�110 Er ).

(The reverse of (2), where a sequence of torsion elements supports a differential
that hits a b10–tower, cannot happen: if dr.x/ D y and bn10x D 0 in Er , then
0D dr.b

n
10x/D b

n
10dr.x/D b

n
10y .)

A.1 Convergence of the K.�1/–based MPASS

In this section we prove convergence of the B� –based MPASS of Theorem 1.6 in
the case that � is a quotient of P (in fact, the only property of � that is used is that
u.x/� u.�31 / for u 2 � ). The convergence argument will only rely on the form of the
E1 page.
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torsion

torsion

torsion

hidden mult.

hidden mult.

hidden mult.

Figure 5: Illustration of (1): this represents a b10–tower in “homotopy”.

Proposition A.1 For any nonnegatively graded �–comodule M, the b10–localized
K.�1/–based MPASS

(A-1) E
s;�
1 D b

�1
10 Ext�;�D .k; B˝s� ˝M/) b�110 Ext�;�� .k;M/

converges.

The proof is a slight modification of [14, Propositions 4.4.1 and 4.2.6].

Recall our grading convention: x 2Es;t;u1 is an element in Extt;u� .k; B� ˝B
˝s
� /.

Lemma A.2 Let M be a bounded-below graded D–comodule and suppose uM D
minfu.x/ W x 2M g. If x 2 Ext�;�D .k;M/ is a nonzero element of degree .s; t; u/ and
x ¤ 0, then u� uM C 6t � 2.

Proof It suffices to check the cases M D k , M DM.1/ D kŒ�1�=�21 and M D D.
In the case M D k , we have Ext�;�D .k; kfyg/DEŒh10�˝ kŒb10�˝ kfyg. In the case
M DM.1/, write M D kfy; @yg; then Ext�;�D .k;M/D kŒb10�˝ kf@y; e.y/g, where
e.y/ D Œ�1�y � Œ�

2
1 �.@y/. In the case M D D, Ext0;�D .k;D/ Š k is concentrated in

homological degree zero. In each of these cases, we verify the desired statement, using
the fact that b10 2E

0;2;12
1 and h10 2E

0;1;4
1 .

Proposition A.3 There is a vanishing plane in the E1 page of (A-1): Es;t;u1 D 0 if
u < 12sC 6t � 2.

Proof Recall Es;t;�1 D Extt;�� .k; ��D .B
˝s
� ˝M//Š Ext�;�D .k; B˝s� ˝M/. Since �

is a quotient of P, if x 2B� is nonzero then u.x/� u.�31 /D 12. Therefore a nonzero
element x 2B˝s� ˝M has u� 12s . By Lemma A.2, if x 2Es;t;u1 has degree .s; t; u/,
then u� 12sC 6t � 2.
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Corollary A.4 dr W E
s;t;u
r !E

sCr;t�rC1;u
r is zero if r > 1

6
.u� 12s� 6t � 4/.

Proof Given x 2 Es;t;ur , dr.x/ 2 E
s0;t 0;u0

r D E
sCr;t�rC1;u
r will be zero because of

the vanishing plane if 12s0C 6t 0� 2�u0 > 0. But

12s0C 6t 0� 2�u0 D 12.sC r/C 6.t � r C 1/� 2�uD .12sC 6t C 4�u/C 6r;

which is > 0 for r as indicated.

Corollary A.5 There is a vanishing line in Ext�;�� .k;M/: if x 2 Extt
0;u
� .k;M/ and

u� 6t 0C 2 < 0, then x D 0.

Proof Permanent cycles in E
s;t;u
1 converge to elements in ExtsCt;u� .k;M/. Any

such x would then be represented by a permanent cycle in Es;t;u1 with u�6.sCt /C2<
0� 6s (since Adams filtrations are nonnegative), which falls in the vanishing region of
Proposition A.3.

Note that b10 2 Ext2;12� .k;M/ acts parallel to this vanishing line.

Proof of Proposition A.1 Convergence of the nonlocalized MPASS follows from a
general result by Palmieri [14, Proposition 1.4.3].

For convergence problem (1), suppose x has degree .sx; tx; ux/. If there were no
multiplicative extensions, then bi10x would have degree .sx; txC 2i; uxC 12i/. But
multiplicative extensions cause it to have the expected internal degree u and stem sC t ,
but higher s . That is, bi10x has degree .sx C ni ; tx C 2i � ni ; ux C 12i/ for some
ni >0, and because this scenario involves the existence of infinitely many multiplicative
extensions, the sequence .ni /i is increasing and unbounded above. This causes us to
run afoul of the vanishing plane (Proposition A.3) for sufficiently large i :

12sC 6t � 2�uD 12.sxCni /C 6.txC 2i �ni /� 2� .uxC 12i/

D 12sxC 6tx � 2�uxC 6ni ;

which is > 0 for i � 0.

For convergence problem (2), the scenario is, more precisely, as follows: we have a b10–
periodic element x 2 Ext�;�� .k; k/, and a sequence of differentials dri .b

i
10x/D yi ¤ 0,

where every yi is b10–torsion. The sequence .ri /i must be increasing and bounded
above: if bni10yi D 0 then dri .b

ni
10x/ D b

ni
10yi D 0, and so if bni10x is to support a

differential drni , we must have rni > ri . Note that the condition on r in Corollary A.4
is the same for all bi10x . So some of the ri will be greater than this bound, contradicting
the assumption that dri .b

i
10x/¤ 0.
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A.2 Convergence of the b10–local ISS

In this section, we consider the b10–local ISS computing b�110 Ext�;�Pn .k; k/. As dis-
cussed in Section 6.4, this is obtained by b10–localizing a filtration spectral sequence
on the cobar complex for Pn , where the filtration is defined by taking powers of the
augmentation ideal. Let EISS

r denote the Er page of the nonlocalized ISS and b�110 E
ISS
r

denote the Er page of the localized ISS.

Lemma A.6 There is a slope 1
4

vanishing line in EISS
1 in .u; s/ coordinates. That is,

if x 2EISS
1 has s.x/ > 1

4
u.x/, then x D 0.

Proof In Section 6.4 we computed the E1 page:

EISS
1 D

O
.i;j /2I

EŒhij �˝ kŒbij �;

where

I D f.1; 0/; .1; 1/; .2; 0/; .n�2; 0/; .n�2; 1/; .n�2; 2/; .n�1; 0/; .n�1; 1/; .n; 0/g:

These generators occur in the following degrees:

element u s u=s

hij 2.3i � 1/3j 3j 2.3i � 1/

bij 2.3i � 1/3jC1 3jC1 2.3i � 1/

So we have u=s � 2.31� 1/D 4, which proves the lemma. Note that b10 , in degrees
.uD 12; s D 3/, acts parallel to the vanishing line.

Here is a picture:

u

s

h10

b10

h20
1

2

4 8 12 160

Differentials are vertical: dr takes elements in degree .u; s/ to degree .u; sC r/.

Proposition A.7 The b10–localized ISS converges to b�110 Ext�;�Pn .k; k/.
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x
b10x

b210x

b310x

b410x

b510x

x
b10x

b210x

:::
y
b10y

z

b10z

Figure 6: Convergence problems (1) and (2) for the ISS.

Proof The nonlocalized ISS converges because it is based on a decreasing filtra-
tion of the cobar complex that clearly satisfies both

T
s F

sCPn.k; k/ D f0g andS
s F

sCPn.k; k/D CPn.k; k/.

The two convergence problems are illustrated in Figure 6.

In both of these cases, it is clear from the pictures that these cannot happen if there is a
vanishing line of slope equal to the degree of b10 , as guaranteed by Lemma A.6.

Remark A.8 The same proof shows that the ISS for b�110 Ext�;�P .k; k/ converges;
in particular, the vanishing line in Lemma A.6 goes through even with more hij ’s
and bij ’s in the E1 page.
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