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This document started out as notes for a talk I gave at the MIT Kan seminar in 2013 about May’s

Geometry of Iterated Loop Spaces, but I’ve since largely rewritten it as a general introduction to A∞
and E∞ operads, with a mention of the recognition principle.

1. Associativity

Operads (or at least An and En operads, which is what we’ll focus on) are a formalism
for discussing various degrees to which associativity and commutativity can fail. Suppose I
have a space X with a multiplication µ : X ×X → X that is not associative. In particular,
µ(−, µ(−,−)) and µ(µ(−,−),−) are two different ternary operations. One approach is to
consider a space O(3) of ternary operations, in which µ(µ(−,−),−) and µ(−, µ(−,−)) are
two different points. Then the geometry of this space tells us something about exactly how
badly associativity fails—strict associativity corresponds to this space being one point (so in
particular µ(−, µ(−,−)) = µ(µ(−,−),−)), and the idea is that the next best thing is for the
space to be contractible. For every n, we can also consider a space O(n) of n-ary operations,
where the operations µ(µ(µ(. . . ),−),−) etc. are points. The best kind of associativity short of
strict associativity is when all the O(n)’s are contractible; in this case, we say the multiplication
is A∞.

All of the above is a bit of a lie: I made it sound like we’re associating to every space X a
collection {O(n)}n of n-ary operations (for every n). This isn’t quite true; instead, there are
some stock collections {O(n)} that we care about, and you learn something about X if you
can interpret {O(n)} as n-ary operations on X in a nice way.

Definition 1.1. A non-Σ operad is a collection {O(n)}n≥0 of spaces with some extra structure
and properties inspired by thinking of O(n) as a space of n-ary operations:

(1) there are maps

γ : O(n)×O(k1)× . . .×O(kn)→ O(k1 + · · ·+ kn)

(you’re supposed to think of this as taking an n-ary operation, and n other operations,
and plugging those operations into the n-ary operation);

(2) there is a special element in O(1) that acts as the identity;

(3) O(0) = ∗;

and these are subject to some compatibility conditions; see [2, Def. 1.1] for a formal definition.
For a based space X, say that “O acts on X” (or, “X is an O-algebra”) if there is a morphism
of operads1 O → EndX , where EndX(n) is the space of maps Xn → X.

The simplest example of a non-Σ operad is the associative operad Ass, defined by setting
Ass(n) = ∗ for all n. An action of Ass on a space X is a map O(n)→ EndX(n) for every n;

1A morphism of operads O → O′ is a collection of maps O(n)→ O′(n) that commute with the operad structure
maps that we haven’t defined yet.
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all this does is pick out a single operation Xn → X for every n. If µ is the chosen binary
operation, then the fact that O → EndX preserves operad structure will ensure that the chosen
ternary operation is µ(µ(−,−),−) = µ(−, µ(−,−)), and so on.2 So X is an Ass-algebra iff X
has a unital,3 associative multiplication.

Now suppose X = ΩY . There is a multiplication (concatenation of loops), but it isn’t quite
associative because of the parametrization: if a, b, c are loops, then ab : [0, 1]/(0 ∼ 1)→ Y is

the loop where you spend half the time on a and half the time on b, and so a(bc) =
a b c

and (ab)c =
a b c

are different. However, there is quite clearly a homotopy between
them, in which you change the parametrization. Similarly, there are five ways to multiply
four loops (without changing the order), with not only homotopies between any pair, but
higher homotopies as well in a way that the operad structure will make clearer. So X is not
an algebra over Ass, but I’ll show it’s an algebra over a non-Σ operad K, called the Stasheff
associahedron, which is essentially designed to reflect these homotopies. The first few spaces

of K are K(1) = K(2) = ∗, K(3) is the interval labelled
(x1x2)x3 x1(x2x3)

, and K(4) is
the (filled in) pentagon labelled

((x1x2)x3)x4

(x1x2)(x3x4)

x1(x2(x3x4)) x1((x2x3)x4)

(x1(x2x3))x4

The rule is that the vertices are parenthesizations of a word on n letters, there is an edge
between two parenthesizations that are related by changing one pair of parentheses, a face
among vertices that are related by changing two pairs of parentheses, and so on. There’s
lots of interesting combinatorics involved in describing the K(n)’s, but all we need to know is
that K(n) is contractible. The discussion above on X = ΩY exactly expresses the fact that
there is a map K(3)→ EndX(3) sending the vertex (ab)c to µ(µ(−,−),−), the vertex a(bc)
to µ(−, µ(−,−)) and the homotopy between them to the interval in K(3).

Note that any space with a strictly associative multiplication is also a K-algebra, in addition
to being an Ass-algebra—just precompose the collapse map K(n) → Ass(n) = ∗ with the
Ass-action.

We say that X is an A∞-space if it has an action of an A∞ [non-Σ] operad, namely an operad
all of whose spaces are contractible. So K is an A∞ [non-Σ] operad and it turns out that a
space is A∞ iff it has an action of K.4

2In particular, γ(µ;1, µ) = µ(−, µ(−,−)) and γ(µ;µ,1) = µ(µ(−,−),−) are both elements of the image of
Ass(3) = ∗ → Maps(X3, X), which is a point so they must be the same.
3Remember the spaces X have basepoints; the structure maps are forcing the basepoint to act as the unit
w.r.t. the multiplication.
4There is a way to put a model category structure on operads, and there is a specific combinatorial way to
construct cofibrant resolutions called the Boardman-Vogt W -construction (see https://ncatlab.org/nlab/
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It turns out that we’ve already described all the grouplike A∞ spaces (i.e. the ones where
π0X is a group):

Theorem 1.2. [Recognition principle, n = 1 case] Every grouplike A∞ space5 has the weak
homotopy type of a loop space.

2. Commutativity

I want to tell the same story for multiplications that fail to be commutative, but it turns out
we’re missing a bit of structure so far. I want to talk about a space X with a multiplication
µ, and ask about a space of binary operations including (a, b) 7→ µ(a, b) and (a, b) 7→ µ(b, a).
If the space is a point then these are the same and the multiplication is commutative; if this
fails, we are less unhappy if the space is contractible.

Definition 2.1. An operad is a collection of spaces {O(n)} with the structure and properties
of a non-Σ operad, plus an action of the symmetric group Σn on O(n) (which you’re supposed
to think of as permuting the variables in an n-ary operation) and additional coherences
relating this to the other structure.

For example, the commutative operad Comm is defined to have Comm(n) = ∗. You can check
that Comm-algebras are the same as unital, associative, commutative monoids. The idea is
that Comm(2) = ∗ is forcing (a, b) 7→ µ(a, b) and (a, b) 7→ µ(b, a) to be the same point.

If your space fails to have a commutative multiplication, the next best thing to ask for is an
action of an operad, all of whose spaces are contractible.

Definition 2.2. An E∞ operad is an operad E such that E(n) is contractible for all n, and
the Σn action is free.6

(The free action is a technical condition.) For example, recall that EΣn is a contractible space
with a free Σn-action; it is the total space for the classifying space BΣn. Then I can define an
operad with E(n) = EΣn and structure maps coming from maps of Σi’s; this is called the
Barratt-Eccles operad.

Given a non-Σ operad C, you can always turn it into an operad CΣ (non-standard notation) by
defining CΣ(n) = C(n)× Σn, where Σn acts freely on the right. All the ideas in the previous
section are unchanged by this modification, and so we almost always talk about operads, not
non-Σ-operads. For example, if KΣ is the non-(non-Σ) version of K, then KΣ(2) consists of

show/Boardman-Vogt+resolution). It turns out that K is the W -construction of the associative operad
Ass. Some technicalities related to this are hinted at here: https://mathoverflow.net/questions/265308/

stasheffs-operad-as-a-relative-w-construction.
5Technically, “space” has to mean “compactly generated weakly Hausdorff space with non-degenerate base
point” (i.e. (X, ∗) is an NDR-pair).
6More abstractly, an E∞ operad is any cofibrant resolution of Comm; see https://ncatlab.org/nlab/show/

E-infinity+operad.
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two points labelled x1x2 and x2x1, and KΣ(3) consists of six copies of the interval:

(x1x2)x3 x1(x2x3) (x1x3)x2 x1(x3x2) (x3x1)x2 x3(x1x2)

(x2x1)x3 x2(x1x3) (x3x2)x1 x3(x2x1) (x2x3)x1 x3(x3x1)

A structure-preserving collection of maps KΣ(n)→ EndX(n) (where EndX(n) has the obvious
Σn action) is enforcing the associativity conditions as above, but is not making any new
demands about commutativity.

3. An and En

Another candidate for “not quite as good as an associative multiplication” is a homotopy
associative multiplication – that is, there is a homotopy between the maps µ(µ(−,−),−) and
µ(−, µ(−,−)). How does this fit in to the above discussion? This looks like the condition
for K(3); more precisely, being homotopy associative is the same thing as saying there is an
action of just K(i) for i ≤ 3. Alternatively, you can truncate K to form another operad K3

(taking care to make sure it’s closed under the structure maps); then a space with a homotopy
associative multiplication is the same as a Kn-space. Similarly, if X is an H-space (a space
with a unital multiplication), it might not have an action of all of K = {K(n)}, but you
can write down coherent maps from {K(i)}i≤2, since a map from K(2) is just picking out a
multiplication, and the structure maps make it unital w.r.t. the basepoint. We say that X
is an An-space if it has an “action” of K(i) for i ≤ n (or equivalently, is an algebra over a
properly truncated operad Kn).

So there is a hierarchy:

X is an
H-space ⇐= X has htpy.

assoc. mult
⇐= . . . ⇐= X is An ⇐= . . . ⇐= X is A∞ ⇐= X has a strictly

assoc. mult.

There is a similar hierarchy for commutativity, with the intermediate stages called En.
We could try to truncate e.g. the Barratt-Eccles operad, but the most important theory
surrounding this has to do with truncations of another E∞ operad, the little ∞-cubes operad.
We’ll focus on the nth truncation, called the little n-cubes operad.

Let I = [0, 1] ⊂ R; specifying a linear map I → I is equivalent to just specifying the
range [a, b] ⊂ [0, 1]. Specifying n of these maps is the same as specifying a “little cube”
[a1, b1]× · · · × [an, bn] ⊂ In; this is a (particularly constrained) linear map cn : In → In.

Definition 3.1 (Little n-cubes operad). The little n-cubes operad Cn is defined so an element
of Cn(j) is a map In t · · · t In

j

→ In that specifies j little cubes in In that do not overlap.
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Figure 1. An element of C3(2)

One reason to care about Cn is that it acts on ΩnX. This is the space of maps (Sn, ∗) →
(X, ∗), but we can think of it as the space of maps (In, ∂In) → (X, ∗). Given j little n-
cubes 〈c1, · · · , cj〉 and j maps fi : (In/∂In) → (X∗) ∈ ΩnX, we can create another map
f : (In, ∂In)→ (X, ∗) as follows:

f : t 7→

{
fi(c

−1
i (t)) if t ∈ im ci

0 otherwise.

Figure 2. The map (f : (In, ∂In)→ (X, ∗)) ∈ ΩnX

If n = 1, this is just the ordinary composition of j loops.

1 2

1 2

∗

Figure 3. The map (f : I1 → X) ∈ ΩX associated to an element of C1(2)

Moreover, you can show that the little intervals operad C1 has the right homotopy type to be
an A∞ operad. That is, E1 spaces are A∞ spaces (and the converse is true as well). Thus we
have a hierarchy:

A∞ = E1 ⇐= E2 ⇐= . . . ⇐= En ⇐= . . . ⇐= E∞ ⇐= strictly commutative.

One can also identify E2 in a manner analogous to A3: an A∞ space is E2 iff it is homotopy
commutative.
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4. Recognition principle

One of the useful things about operads (and one of the reasons we use them instead of their
historical predecessor, PROPs) is that every operad gives rise to a monad.

Construction 4.1 (Monad associated to C). Given an operad C we can define a monad
(C, µ, η) where C is an endofunctor Top∗ → Top∗:

CX =
⊔
j≥0

C(j)+ ∧Σj X
∧j .

Very explicitly, this is CX =
⊔
j≥0 C(j) ×Xj

/
∼, where in the case C = EndX (and other

operads are analogous) ∼ is described as:

• “including a basepoint works well”:
(

f :Xn→X,
(a1,··· ,∗

j

,··· ,an−1)

)
∼
(
f̃ :Xn−1

xj :=∗−→ Xn f−→X,
(a1,··· ,an−1)

)
;

• permuting the variables in f is the same as permuting the order of the copies of X in Xj .

Remark 4.2. This is the monad arising from the free-forgetful adjunction Top∗ � C-algebras,
and the category of C-algebras is equivalent to the category of C-algebras.

Example 4.3 (James reduced product (free monoid on X)). Let’s do this to the associative
operad AssΣ (this is the non-symmetric operad Ass made into an actual operad as discussed
in Section 2, i.e. by setting AssΣ(j) = Ass(j)

∗

×Σj = Σj); call the associated monad A. By

Remark 4.2, we know that AX is supposed to be the free monoid on X, i.e. the James
construction, but let’s watch this come out of the definition. We have AX =

⊔
j AssΣ(j)×Σj

Xj/ ∼ and every element (σ,x) has a unique representative under ∼ of the form (1,y). So
we can think of elements of AX as ordered strings x1 · · ·xn, and the basepoint condition just
guarantees that this plays nicely with inclusion of the basepoint (i.e. the monoid identity)
anywhere in the string. That is,

AX ∼=
∨
j

X∧j .

Now let’s go back to the little cubes operad Cn; recall we had an action of Cn on ΩnX
for any space X. If (Cn, µ, ηn) is the monad corresponding to Cn, this induces a map
θn : CnΩnX → ΩnX.

Construction 4.4 (Morphism of monads Cn → ΩnΣn). There is an adjunction Σn : Top∗ →
Top∗ : Ωn (where Σn is the suspension functor) so ΩnΣn is a monad. Then there is a map

αn : CnX
Cnηn−→ CnΩnΣnX

θn−→ ΩnΣnX.

Theorem 4.5 (“Approximation Theorem”). αn is a weak equivalence.

Proof. Read [2, Ch. 6-7]. �
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The idea is that you should think of Cn and ΩnΣn as the same monad. Indeed:

Theorem 4.6 (Recognition principle). For 1 ≤ n ≤ ∞, grouplike En-spaces (i.e. Cn-algebras)
are the same as n-fold loop spaces.

Since A∞ = E1, we see that Theorem 1.2 is the n = 1 case of this.

This clears up what (grouplike) En-spaces are. But we could have done this entire story over
a different category – that is, the operad pieces O(n) and the O-algebras live in a category
other than spaces, such as spectra or chain complexes. Then there is no analogue of the
recognition principle to explain everything, and figuring out which things are E∞ (or En) is a
major area of current research.
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