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R-MOTIVIC v1-PERIODIC HOMOTOPY

EVA BELMONT, DANIEL C. ISAKSEN AND HANA JIA KONG

We compute the v1-periodic R-motivic stable homotopy groups. The main
tool is the effective slice spectral sequence. Along the way, we also analyze
C-motivic and η-periodic v1-periodic homotopy from the same perspective.

1. Introduction

The computation of the stable homotopy groups of spheres is a difficult but central
problem of stable homotopy theory. There is much that we do not know about
stable homotopy. However, the v1-periodic stable homotopy groups (also known as
the homotopy groups of the spectrum J ) are completely understood, and they have
interesting number-theoretic properties.

The goal of this article is to explore v1-periodic stable homotopy in the R-motivic
context. This choice of ground field represents a middle ground between the well-
understood C-motivic situation and the much more difficult situation of an arbitrary
field, in which arithmetic necessarily enters into the picture.

From our perspective, the field R introduces just one piece of arithmetic: the
failure of −1 to have a square root. This leads to complications in R-motivic
homotopical computations, but they can be managed with care and attention to
detail.

Classically, v1-periodic homotopy is detected by the connective spectrum j top,
which is defined to be the fiber of a map

kotop
−−−→
ψ3
−1

64ksptop,

where kotop is the connective real K -theory spectrum, ksptop is the connective
symplectic K -theory spectrum, and ψ3 is an Adams operation. (A superscript top

indicates that we are discussing the classical context here, not the motivic context.)
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In fact, kotop itself is the more natural target for the map ψ3
− 1. However, the

fiber of kotop
−−−→
ψ3
−1 kotop has a minor defect. It has some additional homotopy classes

in stems −1, 0, and 1 that do not correspond to homotopy classes for the sphere
spectrum. In other words, the map from S0 to this fiber is not surjective in homotopy.
If we change the target of ψ3

− 1 from kotop to its 3-connective cover 64ksptop,
this problem disappears, and the map from S0 to the fiber is onto in homotopy.

It is possible to mimic these constructions in motivic stable homotopy theory [5].
At the prime 2, one can define the motivic connective spectrum j to be the fiber
of a map ko−−−→ψ3

−1
64,2ksp, where ko is the very effective connective Hermitian

K -theory spectrum, ksp is defined in terms of very effective covers of ko, and ψ3

is a motivic lift of an Adams operation.
However, from a computational perspective, this definition of j introduces

apparently unnecessary complications. It is possible to compute the homotopy
of R-motivic j using the techniques that appear later in this article. However,
the computation is slightly messy, involving some exceptional differentials and
exceptional hidden extensions in low dimensions. In any case, the homotopy of
the R-motivic sphere does not surject onto the homotopy of R-motivic j . In other
words, the main rationale for using ksp in the first place does not apply in the
motivic situation.

On the other hand, the computation of the homotopy of the R-motivic fiber of
ko−−−→ψ3

−1 ko is much cleaner. Moreover, it tells us just as much about v1-periodic
R-motivic homotopy as j . In other words, it has all of the computational advantages
of j , while avoiding some unfortunate complications.

Consequently, here we will be solely concerned with the fiber of ko−−−→ψ3
−1 ko.

We use the notation L for this fiber in order to avoid confusion with the traditional
meaning of j . The symbol L is meant to draw a connection to the classical K (1)-
local sphere L K (1)S0, which is the fiber of KOtop

−−−→
ψ3
−1 KOtop. Our main result is a

computation of the homotopy of L .

Theorem 1.1. The homotopy of the R-motivic spectrum L is depicted in Figures
13–19 via the E∞-page of the effective spectral sequence, including all hidden
extensions by ρ, h, and η.

The proof of Theorem 1.1 appears in Section 5. See especially Theorem 5.12
and Proposition 5.13.

Beware that the homotopy of the R-motivic spheres does not surject onto the
homotopy of R-motivic L . It is possible that we may have not yet constructed the
“correct” motivic version of the classical connective spectrum j top. These consider-
ations raise questions about vector bundles and the motivic Adams conjecture. We
make no attempt to study these more geometric issues.1

1After the first version of this article was released, some of these issues have been addressed in [2].
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We claim to compute the v1-periodic R-motivic stable homotopy groups, but
this claim deserves some clarification. We do not use an intrinsic definition of
v1-periodic R-motivic homotopy, although such a definition could probably be
formulated in terms of the motivic K (1)-local sphere. See [7] for some progress on
motivic K (1)-localization.

Rather, we merely compute the homotopy of L , and we observe that it detects
large-scale structure in the stable homotopy of the R-motivic sphere, which was
described in a range in [9]. In other words, we have a practical description of
R-motivic v1-periodic homotopy, not a theoretical one.

The careful reader may object that our approach with effective spectral sequences
is long-winded and unnecessarily complicated. In fact, the homotopy of L could be
determined by direct analysis of the long exact sequence associated to the defining
fiber sequence for L . However, there is a disadvantage in this direct approach. We
find that the effective filtration is useful additional information about the homotopy
of L that helps us understand the computation. The effective filtration is part of the
“higher structure” of the homotopy of L . For example, some subtle phenomena, such
as hidden multiplicative extensions, can only shift into higher effective filtration,
so detailed knowledge of effective filtrations of homotopy classes can rule out
possibilities that may otherwise be difficult to analyze. Another example occurs
with Toda brackets, which may be computable using effective differentials. While
we have no immediate uses for this higher structure, we know from experience that
it inevitably becomes important in deeper homotopical analyses.

1A. Charts. We provide on pages 73–82 charts that display the effective spectral
sequences for ko and L , as well as their C-motivic counterparts. We consider these
charts to be the central achievement of this article. We encourage the reader to rely
heavily on them. In a sense, they provide an illustrated guide to our computations.

Caution must be exercised in the comparison to [9] since the Adams filtrations
and effective filtrations are different. As in [9], our charts consider each coweight
separately; we have found that this is a practical way of studying R-motivic ho-
motopy groups. Periodicity by τ 4 (which is not a permanent cycle, but should be
thought of as a periodicity operator in coweight 4) allows us to give a fairly compact
depiction of the homotopy of L in coweights congruent to 0, 1, and 2 modulo 4;
see Figures 13, 14, and 15.

The homotopy of L in coweights congruent to 3 modulo 4 is much more inter-
esting but harder to describe. See Figures 17 and 18.

1B. Completions. We are computing exclusively in the 2-complete context. This
simplifies all questions surrounding convergence of spectral sequences. Also, the
final computational 2-complete answers are easier to state than their 2-localized or
integral counterparts.
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We generally omit completions from our notation for brevity. For example, we
write Z for the 2-adic integers, and we write KO for the 2-completed R-motivic
Hermitian K -theory spectrum.

Section 2C discusses these topics in slightly more detail.

1C. Regarding the element 2. When passing from the effective E∞-page to stable
homotopy groups, one must choose homotopy elements that are represented by
each element of the E∞-page. For the element 2 in the E∞-page, there is more than
one choice in π0,0 because of the presence of elements in the E∞-page in higher
effective filtration.

From the perspective of abelian groups, the element 2 = 1+ 1 is the obvious
choice of homotopy element. However, there is another element h, also detected by
2 in the effective spectral sequence, that turns out to be a much more convenient
choice. The difference between h and 2 in homotopy is detected by the element ρh1

in higher filtration (to be discussed later). Experience has shown that the motivic
stable homotopy groups are easier to describe in terms of h than in terms of 2. For
example, we have the relations hρ = 0 and hη = 0, where ρ and η are homotopy
elements detected by ρ and h1 respectively. However, neither 2ρ nor 2η are zero.
Because of the presence of elements in higher filtration, the homotopy elements ρ
and η are not uniquely defined by the effective E∞-page elements that detect them.
However, the mentioned relations hold for all choices. In this discussion, the exact
definitions of ρ and η are less important than the observation that they satisfy nicer
relations with respect to h than with respect to 2.

There are two additional reasons why the element h plays a central role. First, it
corresponds to the hyperbolic plane under the isomorphism between motivic π0,0

and the Grothendieck–Witt group of symmetric bilinear forms [25]. Second, it
plays the role of the zeroth Hopf map, in the sense that the Steenrod operations on
its cofiber are simpler than the Steenrod operations for the cofiber of 2.

Consequently, instead of describing motivic stable homotopy groups as a module
over the 2-adic integers Z (i.e., in terms of the action of 2), it is easier to describe
the homotopy groups in terms of the action of h.

1D. Future directions. Our work points toward several open problems.

Problem 1.2. Compute motivic v1-periodic homotopy over an arbitrary base field.
Using [5], one can define L as the fiber of the map ψ3

−1, and it is conceivable that
one could carry out the effective spectral sequence for L in this level of generality,
similar to the kind of computations that appear in [27] and [28]. See Section 1E
for further discussion. For prime fields of characteristic not two, some explicit
computations were carried out in [22].
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Problem 1.3. Recompute the homotopy of L using the R-motivic Adams spectral
sequence. This would be a useful comparison object for further computations with
the Adams spectral sequence for the R-motivic sphere. The classical Adams spectral
sequence for j top was studied by Davis [14], but it was only recently computed
completely by Bruner and Rognes [12]. We are proposing a motivic analogue of
their results.

Problem 1.4. Carry out the effective spectral sequence for the R-motivic sphere
in a range. These computations would serve as a useful companion to R-motivic
Adams spectral sequence computations [9]. The idea is to build on the techniques
that are developed here.

Problem 1.5. Compute the v1-periodic C2-equivariant stable homotopy groups.
More precisely, carry out the C2-effective spectral sequence for a C2-equivariant
version of L . The details will be similar to but more complicated than the com-
putations in this article. See [21] for the effective approach to the C2-equivariant
version of ko. Alternatively, one might compute the v1-periodic C2-equivariant
stable homotopy groups by periodicizing the v1-periodic R-motivic groups with
respect to τ , as considered by Behrens and Shah [8].

Recall that the R-motivic and C2-equivariant stable homotopy groups are isomor-
phic in a range [10]. Consequently, we anticipate that some version of the structure
described here appears in the C2-equivariant context as well.

In the equivariant context, we mention Balderrama’s [6] computation of the
homotopy groups of the Borel C2-equivariant K (1)-local sphere, using techniques
that are entirely different from ours. Roughly speaking, Balderrama computes
the τ 4v4

1-periodicization of our result. The effective E∞ charts in Figures 13–19
possess an obvious regularity every 8 stems, and Balderrama’s computation sees
that regular pattern.

Problem 1.6.2 Study K (1)-localization in the motivic context, which ought to be
something like localization with respect to KGL/2. Compute K (1)-local motivic
homotopy. This would provide an intrinsic definition of v1-periodic homotopy that
would improve upon the practical computational perspective of this article.

A guide to the motivic situation could lie in the work of Balderrama [6] and
Carrick [13] on equivariant localizations.

1E. Towards v1-periodic homotopy over general base fields. Our explicit compu-
tations point the way towards a complete computation of the v1-periodic motivic
stable homotopy groups over arbitrary fields. The situation here is analogous to the
η-periodic R-motivic computations of [16], which foreshadowed the more general
η-periodic computations of [32], [26], and [5].

2After the first version of this article was released, some progress has occurred in [7].
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Problem 1.7. Let k be an arbitrary field of characteristic different from 2. Let
GW (k) be the Grothendieck–Witt ring of symmetric bilinear forms over k. De-
scribe the 2-primary homotopy groups of the k-motivic spectrum L in terms of the
cokernels and kernels of multiplication by various powers of 2 and of h on GW (k).

Problem 1.7 is stated only in terms of 2-primary computations because that
is the most interesting part. We expect that the generalization to odd primes is
straightforward.

The exact powers of 2 and h that are required in Problem 1.7 depend not only
on the coweight but also on the stem. Figures 17 and 18 show that 2v( j)+3 is the
relevant power of 2 in most stems in coweight 4 j − 1. Here v( j) is the 2-adic
valuation of j , i.e., largest number v such that 2v divides j . In coweight 4 j −1 and
stem 4i − 1, we see larger powers of 2, as well as powers of h.

Similar observations apply to the kernels that contribute to coweight 4i .

1F. Outline. Section 2 contains some background information that we will need
to get started on our computations. We briefly discuss convergence of the effective
spectral sequences that we will use. We recall some results of Bachmann–Hopkins
[5] about motivic Adams operations and of Ananyevskiy–Röndigs–Østvær [1] about
the slices of ko.

In Section 2, we have taken some care to eliminate details that we do not use.
In other words, Section 2 describes the minimal hypotheses necessary in order to
carry out our computations.

Section 3 considers C-motivic computations, which play two roles in our work.
First, they serve as a warmup to the more intricate R-motivic computations. Sec-
ond, the comparison between R-motivic and C-motivic homotopy is a necessary
ingredient for our computations. In this section, we describe the effective spectral
sequence for koC. This material is well-known, since it is the same (up to regrading)
as the C-motivic Adams–Novikov spectral sequence for koC, which is nearly the
same as the classical Adams–Novikov spectral sequence for kotop. We then use the
fiber sequence

LC
−→ koC

−−−→
ψ3
−1 koC

in order to determine the E1-page of the effective spectral sequence for LC.
We next completely analyze the effective spectral sequence for the η-periodic-

ization LC
[η−1
]. The η-periodic spectral sequence is significantly simpler than

the unperiodicized spectral sequence. We note the close similarity between the
homotopy of LC

[η−1
] and the computations of Andrew–Miller [3].

The η-periodic effective differentials completely determine the unperiodicized
effective differentials for LC. Finally, we determine hidden extensions in the
effective E∞-page for LC.
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Section 3 completely computes the homotopy of LC, but the effective spectral
sequence is not necessarily the simplest way of obtaining the computation. Nev-
ertheless, we have chosen this approach because of its relationship to our later
R-motivic computations.

Section 4 analyzes the effective spectral sequence for R-motivic ko, including
all differentials and hidden extensions. The E1-page is readily determined from the
work of Ananyevskiy–Röndigs–Østvær [1] on the slices of ko. We draw particular
attention to the formula

(1-1) (τh1)
2
= τ 2
· h2

1+ ρ
2
· v2

1 .

This formula has a major impact on the shape of the answers that we obtain. In
a sense, our work merely draws algebraic conclusions from (1-1) and η-periodic
information. The hidden extensions in the effective E∞-page for ko are easily
determined by comparison to the C-motivic case, using the relationship between
C-motivic and R-motivic homotopy that is described in [8, Corollary 1.9].

Our computation of the homotopy of R-motivic ko is not original. See [21] for a
C2-equivariant analogue of the effective spectral sequence for ko. The R-motivic
computation can be extracted from the C2-equivariant computation by dropping the
“negative cone” elements. Also, Hill [17] computed the Adams spectral sequence
for ko, although the R-motivic spectrum ko had not yet been constructed at the
time.

The next step, undertaken in Section 4B, is to analyze the effect of ψ3 on the
effective spectral sequence of ko. This follows from a straightforward comparison
to the classical case, together with careful bookkeeping. In turn, this leads to
a complete understanding of the effective E1-page of L , which is described in
Section 5A. Again, this is mostly a matter of careful bookkeeping.

Section 5B completely analyzes the effective spectral sequence for η-periodic
L[η−1

]. This information is essentially already well-known, either from [16] or from
Ormsby–Röndigs [26], although those references do not specifically mention L .

As in the C-motivic situation of Section 3, η-periodic information yields all that
we need to know about the unperiodic situation, including all multiplicative relations
in the effective E1-page for L (see Section 5C) and all differentials (see Sections
5D and 5E). We again emphasize the significance of (1-1) in carrying out the details.
Finally, Section 5F studies hidden extensions in the effective E∞-page for L . As for
ko, these hidden extensions follow by comparison to the C-motivic case.

1G. Notation. We use the following conventions.

• v(n) is the 2-adic valuation of n, i.e., the largest integer v such that 2v divides n.

• Except in Section 2, everything is implicitly 2-completed. For example, S is
actually the 2-complete R-motivic sphere spectrum, and Z is the 2-adic integers.
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• s∗(X) are the slices of a motivic spectrum X .

• Er (X) is the Er -page of the effective spectral sequence for a motivic spectrum
X .

• We find the effective slice filtration to be slightly inconvenient for our purposes.
We prefer to use the “Adams–Novikov filtration”, which equals twice the effective
filtration minus the stem.

• Coweight equals the stem minus the motivic weight.

• Elements in Er (X) are tri-graded. We write E s, f,w
r (X) to denote the part with

topological dimension s, Adams–Novikov filtration f , and motivic weight w.

• We use unadorned symbols for R-motivic spectra. For example, ko is the very
effective cover of the R-motivic Hermitian K -theory spectrum.

• XC is the C-motivic extension-of-scalars spectrum of an R-motivic spectrum X .

• X top is the Betti realization of an R-motivic spectrum X .

• S is the R-motivic sphere spectrum.

• KO is the R-motivic spectrum that represents Hermitian K -theory (also known
as KQ).

• ko is the very effective connective cover of KO.

• H A is the R-motivic Eilenberg–Mac Lane spectrum on the group A.

• ψ3 is an Adams operation. We use the same symbol in the R-motivic, C-motivic,
and classical situations.

• L is the fiber of ko−−−→ψ3
−1 ko.

• 6s,wX is a (bigraded) suspension of a motivic spectrum X .

• π∗,∗(X) are the bigraded stable homotopy groups of an R-motivic or C-motivic
spectrum.

• Recall that ϵ is the motivic homotopy class that is represented by the twist map
S ∧ S→ S ∧ S, where S is the motivic sphere spectrum. Let h be the element
1−ϵ, which corresponds to the hyperbolic plane under the isomorphism between
π0,0(S) and the Grothendieck-Witt ring GW (R) [25].

• The element ρ belongs to the R-motivic homology of a point. It is the class
represented by−1 in the Milnor K -theory of R. Since ρ survives all of the spectral
sequences under consideration, we use the same symbol for the corresponding
homotopy class. However, there is a choice of homotopy class represented by ρ
because of the presence of elements in higher filtration. There is an inconsistency
in the literature about this choice. Following [4], we define ρ such that ϵ=ρη−1,
or equivalently 2= ρη+ h.
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We frequently use names for indecomposables that consist of more than one
symbol. For example, Theorem 2.1 discusses the indecomposable element v2

1 of
the effective E1-page for koC. These longer names are slightly more cumbersome.
This is especially the case when we consider products. We will use expressions of
the form x · y for clarity.

On the other hand, our names are particularly convenient because they reflect the
origins of the elements in terms of the spectral sequences that we use. For example,
consider the indecomposable element 2v2

1 of the effective E∞-page for koC, as
discussed in Theorem 3.3 (see also Figure 2). This name reflects the element’s
origin in the effective E1-page. It also illuminates relations such as

2v2
1 · 2v

2
1 = 4 · v4

1

However, one must be careful about possible error terms in such formulas; see
especially (1-1).

2. Background

In this section only, we write ko for the integral version of the very effective cover
of the Hermitian K -theory spectrum, and we use the usual decorations to indicate
localizations and completions of ko. After that, ko is assumed to be 2-completed.

2A. The effective slices of ko. We recall the structure of the effective slices of ko.

Theorem 2.1 [1, Theorem 17]. The slices of ko are

s∗(ko)= HZ[h1, v
2
1]/(2h1),

where v2
1 and h1 have degrees (4, 0, 2) and (1, 1, 1) respectively.

We explain the expression in Theorem 2.1. Each monomial of degree (s, f, w)
contributes a summand of 6s,wH A in the

( s+ f
2

)
-th slice. Here H A is the motivic

Eilenberg–Mac Lane spectrum associated to A. The abelian group A is F2 when
the monomial is 2-torsion, and is Z when the monomial is torsion free. We list the
first three slices as examples:

s0(ko)= HZ{1},

s1(ko)=61,1 HF2{h1},

s2(ko)=62,2 HF2{h2
1} ∨6

4,2 HZ{v2
1}.

Beware that the multiplicative structure of s∗(ko) is not completely captured by
the notation in Theorem 2.1. The essential multiplicative relation is (1-1), which
follows immediately from the general formulas in [1].
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Remark 2.2. The calculation of the slices of the motivic sphere spectrum, due to
Röndigs, Spitzweck, and Østvær [27], is commonly expressed at the prime 2 as

s∗(S)= HZ⊗Ext∗,∗B P∗B P(B P∗, B P∗).

Analogously, Theorem 2.1 says that

s∗(ko)= HZ⊗Ext∗,∗B P∗B P(B P∗, B P∗(kotop)).

However, we do not know of a general theorem relating the slices of a motivic
spectrum with the Adams–Novikov E2-page for its topological counterpart.

2B. The Adams operation ψ3 and the spectrum L. Bachmann and Hopkins [5]
constructed a motivic analogue of the classical Adams operation ψ3. We summarize
the results that we need.

Theorem 2.3 [5]. There is a unital ring map ψ3
: ko

[1
3

]
→ ko

[1
3

]
whose Betti

realization is the classical Adams operation ψ3.

Proof. There is a unital ring map ψ3
:KO

[1
3

]
→KO

[1
3

]
[5, Theorem 3.1], which is

an E∞-map. Its Betti realization is also an E∞-map whose action on the classical
Bott element is multiplication by 81. These properties uniquely characterize the
classical Adams operation.

Now apply very effective covers, and the result about ko follows formally. □
The original result is more general in more than one sense. First, it works over

general base schemes in which 2 is invertible, while we only use the construction
over R. Second, its values are computed more precisely than just compatibility
with the classical values.

Corollary 2.4.

(1) ψ3
: π∗,∗(ko∧2 )→ π∗,∗(ko∧2 ) is a ring map.

(2) If x is in the image of the unit map π∗,∗(S∧2 )→ π∗,∗(ko∧2 ), then ψ3(x)= x.

(3) There is a commutative diagram

π∗,∗(ko∧2 )
ψ3

//

��

π∗,∗(ko∧2 )

��

π∗((kotop)∧2 )
ψ3
// π∗((kotop)∧2 ),

where the vertical maps are Betti realization homomorphisms.

Proof. These are computational consequences of Theorem 2.3. Part (1) follows from
the fact that ψ3 is a ring map. Part (2) follows from the fact that ψ3 is unital. Part



R-MOTIVIC v1-PERIODIC HOMOTOPY 53

(3) follows from the fact that the Betti realization of the motivic Adams operation
is the classical Adams operation. □

Remark 2.5. Corollary 2.4 can also be stated in a localized sense rather than
completed sense, but we will not need that.

Definition 2.6. Let L be the fiber of the map ko
[1

3

]
−−−→
ψ3
−1 ko

[1
3

]
.

Note that our definition of L is already localized; we do not consider an integral
version. Except for this section, L is assumed to be 2-completed.

The most important point for us is that there is a fiber sequence

L∧2 −→ ko∧2−−−→
ψ3
−1 ko∧2

of completed spectra since completion preserves fiber sequences.

2C. Convergence of the effective spectral sequence. The effective spectral se-
quence for a motivic spectrum X denotes the spectral sequence associated to the
effective slice filtration of X . We refer to [23; 27] for details on the construction
and properties of this spectral sequence.

The effective slice filtration [31] has truncations f q(X) and quotients (i.e., slices)
sq(X). The E1-page of the effective spectral sequence is π∗,∗(s∗(X)). In good cases,
it converges to the homotopy groups of a completion of X . We also use the very
effective slice filtration [30], but only to define ko.

The slice functors do not necessarily commute with completions, i.e., s∗(X)∧2
and s∗(X∧2 ) are not always equivalent. Consequently, we must carefully define the
spectral sequences that we use to study completed spectra. On the other hand, the
effective slices do interact nicely with localizations [29, Corollary 4.6].

Theorem 2.7. There are strongly convergent spectral sequences

E s, f,w
1 (ko)= πs,w

(
s s+ f

2
(ko)∧2

)
=⇒ πs,w(ko∧2 )

and
E s, f,w

1 (L)= πs,w
(
s s+ f

2
(L)∧2

)
=⇒ πs,w(L∧2 ),

with differentials dr : E
s, f,w
r → E s−1, f+2r+1,w

r .

We remind the reader that our grading of the effective spectral sequence is differ-
ent than the standard grading in the literature. Briefly, s represents the topological
stem, f represents the Adams–Novikov filtration (not the effective filtration), and
w represents the motivic weight. See Section 1G for more discussion.

Proof. We discuss the spectral sequence for ko in detail; most of the argument for
L is the same.
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Consider the effective slice tower

f 0(ko)← f 1(ko)← f 2(ko)← · · · .

Now take the 2-completion of this tower to obtain

f 0(ko)∧2 ← f 1(ko)∧2 ← f 2(ko)∧2 ← · · · .

The resulting layers are the same as s∗(ko)∧2 since completion respects cofiber
sequences. Beware that this is not necessarily the same as the slice tower of the
completion ko∧2 , since slices do not interact nicely with completions. The associated
spectral sequence of this tower is the one described in the statement of the theorem.

It remains to determine the target of the completed spectral sequence. The limit
of the uncompleted slice tower of ko is equivalent to its η-completion [27], [1], i.e.,

holim f n(ko)≃ ko∧η .

Completion respects limits, so the limit holim( f n(ko)∧2 ) of the completed slice
tower is equivalent to (ko∧η )

∧

2 , which is equivalent to ko∧2 by [18, Theorem 1].
Consequently, the completed effective spectral sequence of ko converges to the
homotopy of ko∧2 , as desired.

Strong convergence follows from [11, Theorem 7.1], which has a technical
hypothesis involving derived E∞-pages. For ko, this technical hypothesis follows
directly from the computations of Section 4. For L , the technical hypothesis follows
directly from the computations in Sections 5D and 5E. □

Remark 2.8. By construction, we have a fiber sequence

s∗(L)∧2 −→ s∗(ko)∧2−−−→
ψ3
−1 s∗(ko)∧2 ,

which yields a long exact sequence

· · · −→ E s, f,w
1 (L)−→ E s, f,w

1 (ko)−−−→ψ3
−1 E s, f,w

1 (ko)−→ · · · .

This long exact sequence will be our main tool for computing E1(L) in Section 5A.

3. C-motivic computations

In this section, we carry out a preliminary computation of the effective spectral
sequences for koC and LC. We also consider the η-periodic spectral sequences. We
are primarily interested in R-motivic computations, but we will need to compare
our R-motivic computations to their C-motivic counterparts.

3A. The effective spectral sequence for koC. We review the effective spectral
sequence for koC.
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coweight (s, f, w) x d1(x) ψ3(x)

0 (1, 1, 1) h1 h1

1 (0, 0,−1) τ τ

2 (4, 0, 2) v2
1 τh3

1 9v2
1

Table 1. Multiplicative generators for E1(koC).

Proposition 3.1. The effective spectral sequence for koC takes the form

E1(koC)= Z[τ, h1, v
2
1]/2h1.

Proof. This follows from Theorem 2.1 by taking stable homotopy groups. There
are no possible error terms to complicate the multiplicative structure. □

Table 1 lists the generators of E1(koC). Figure 1 depicts E1(koC) graphically.

Proposition 3.2. Table 1 gives the values of the effective d1 differential on the
multiplicative generators of E1(koC).

Proof. The C-motivic effective spectral sequence is identical to the C-motivic
Adams–Novikov spectral sequence up to reindexing. This claim does not appear
to be cleanly stated in the literature, but it is a computational consequence of the
weight 0 result of [24, Theorem 1]. Alternatively, there is only one pattern of
effective differentials that computes the motivic stable homotopy groups of koC,
which were previously described using the C-motivic Adams spectral sequence
[20]. □
Theorem 3.3. The E∞-page of the effective spectral sequence for koC takes the
form

E∞(koC)=
Z[τ, h1, 2v2

1, v
4
1]

2h1, τh3
1, (2v

2
1)

2 = 4 · v4
1

.

Proof. For degree reasons, there can be no higher differentials in the effective
spectral sequence for koC. □

Table 2 lists the multiplicative generators of E∞(koC). Figure 2 depicts E∞(koC)

in graphical form.

Remark 3.4. There are no possible hidden extensions in E∞(koC) for degree
reasons. Therefore, Theorem 3.3 describes π∗,∗(koC) as a ring.

3B. The effective E1-page for LC. Our next goal is to describe the effective E1-
page E1(LC). First we must study the values of ψ3 on koC.

Lemma 3.5. The map E∞(koC)→ E∞(koC) induced by ψ3 on effective E∞-pages
takes the values shown in Table 2.
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coweight (s, f, w) x ψ3(x)

0 (1, 1, 1) h1 h1

1 (0, 0,−1) τ τ

2 (4, 0, 2) 2v2
1 9·2v2

1
4 (8, 0, 4) v4

1 81v4
1

Table 2. Multiplicative generators for E∞(koC).

Proof. All values follow immediately by comparison along Betti realization to the
values of classical ψ3. □
Lemma 3.6. The map E1(koC)→ E1(koC) induced by ψ3 on effective E1-pages
takes the values shown in Table 1.

Proof. The values of ψ3 on E1(koC) are compatible with the values of ψ3 on
E∞(koC), as shown in Table 2 (see also Lemma 3.5). This immediately yields all
values. □

In order to describe E1(LC), we need some elementary number theory.

Definition 3.7. Let v(n) be the 2-adic valuation of n, i.e., the exponent of the
largest power of 2 that divides n.

Lemma 3.8. v(3n
− 1)=

{
1 if v(n)= 0,
2+ v(n) if v(n) > 0,

Proof. Let n = 2a
· b, where b is an odd number, so v(n)= a. Then

3n
− 1=

(
1+ 32a

+ (32a
)2+ · · ·+ (32a

)b−1)(3− 1)
a−1∏
i=0
(1+ 32i

).

The first factor is odd, so it does not contribute to the 2-adic valuation. The factor
(1+ 32i

) has valuation 1 if i > 0, and it has valuation 2 if i = 0. □
Proposition 3.9. The chart in Figure 3 depicts the effective E1-page of LC.

Proof. The long exact sequence

· · · −→ E1(LC)−→ E1(koC)−−−→
ψ3
−1 E1(koC)−→ · · ·

induces a short exact sequence

0−→6−1C −→ E1(LC)−→ K −→ 0,

where C and K are the cokernel and kernel of E1(koC)−−−→
ψ3
−1 E1(koC) respectively.

The cokernel and kernel can be computed directly from the information given in
Table 1 (see also Lemma 3.6).

The kernel is additively generated by all multiples of h1 in E1(koC), together
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coweight (s, f, w) generator

1 (0, 0,−1) τ

2k (4k+1, 1, 2k+1) h1v
2k
1

2k−1 (4k−1, 1, 2k) ιv2k
1

Table 3. Multiplicative generators for E1(LC): k ≥ 0.

with the elements τ k for k ≥ 0.
The cokernel C is nearly the same as E1(koC) itself. We must impose the relations

(32k
− 1)v2k

1 = 0 for all k > 0. Lemma 3.8 says that 32k
− 1 equals 2v(2k)+2

· u,
where u is an odd number, i.e., a unit in our 2-adic context. Therefore, the relation
(32k
− 1)v2k

1 = 0 is equivalent to the relation 2v(2k)+2v2k
1 = 0. □

Table 3 lists some elements of the effective E1-page of LC. In fact, these elements
are multiplicative generators for E1(LC). By inspection, all elements of E1(LC)

are of the form τ ahb
1x , for some x in the table.

We use the same notation for elements of E1(LC) and their images in E1(koC).
On the other hand, we define the elements ιx of E1(LC) by the property that they are
the image of x under the map ι :6−1 E1(ko)→ E1(L). For example, the element 1
of E1(ko) maps to ι.

Remark 3.10. Our choice of notation for elements of E1(LC) is helpful for the
particular analysis at hand. The generators of E1(LC) also have traditional names
from the perspective of the Adams–Novikov spectral sequence. Namely, h1v

2k
1

and ιv2k
1 correspond to α2k+1 and α2k/v(8k) respectively. However, the α-family

perspective is not so helpful for us.

3C. The effective spectral sequence of LC[η−1]. Next, we describe the effective
spectral sequence of LC

[η−1
].

In the η-periodic context, the element h1 is a unit, so its powers are inconse-
quential for computational purposes, and have been removed from all η-periodic
formulas. The appropriate powers of h1 can be easily reconstructed from the degrees
of elements (although this reconstruction is typically not necessary).

Proposition 3.11. The effective E1-page for LC
[η−1
] is given by

E1(LC
[η−1
])= F2[h±1

1 , τ, v2
1, ι]/ι

2.

Proof. The functors s∗ commute with homotopy colimits [29, Corollary 4.6].
Therefore, we can just invert h1 in E1(koC) to obtain

E1(koC
[η−1
])= F2[h±1

1 , τ, v2
1].

See Proposition 3.1 (and Figure 1) for the description of E1(koC).
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The map E1(koC
[η−1
])−−−→
ψ3
−1 E1(koC

[η−1
]) is trivial because (ψ3

−1)(v2k
1 ) is a

multiple of 2, as shown in Table 1 (see also Lemma 3.6). Therefore, the long exact
sequence

· · · −→ E1(LC
[η−1
])−→ E1(koC

[η−1
])−−−→
ψ3
−1 E1(koC

[η−1
])−→ · · ·

implies that E1(LC
[η−1
]) splits as

E1(koC
[η−1
])⊕6−1 E1(koC

[η−1
]).

This establishes the additive structure of E1(L[η−1
]), as well as most of the multi-

plicative structure.
The relation ι2= 0 is immediate because no nonzero values for ι2 are possible. □

Proposition 3.12. In the effective spectral sequence for LC
[η−1
], we have d1(v

2
1)=

τ . The effective differentials are zero on all other multiplicative generators on all
pages.

Proof. The value of d1(v
2
1) in E1(LC

[η−1
]) follows by comparison of effective

spectral sequences along the maps LC
→ LC

[η−1
] and LC

→ koC. Table 1 (see
also Proposition 3.2) gives the value of d1(v

2
1) in E1(koC). □

Remark 3.13. The effective spectral sequence for LC
[η−1
] is very close to the

effective spectral sequence for the η-periodic sphere SC
[η−1
]. The effective spectral

sequence for SC
[η−1
] is the same (up to reindexing) as the motivic Adams–Novikov

spectral sequence for SC
[η−1
]. This motivic Adams–Novikov spectral sequence

is analyzed in [3]. The element ι is not present in E1(SC
[η−1
]), but its multiples

ι(v2
1)

k are present.

3D. Effective differentials for LC.

Proposition 3.14. Table 4 gives the values of the effective d1 differentials on the
multiplicative generators of E1(LC). There are no higher differentials in the effective
spectral sequence for LC.

coweight (s, f, w) x d1(x)

1 (0, 0,−1) τ

4k (8k+1, 1, 4k+1) h1v
4k
1

4k+2 (8k+5, 1, 4k+3) h1v
4k+2
1 τh3

1 ·h1v
4k
1

4k−1 (8k−1, 1, 4k) ιv4k
1

4k+1 (8k+3, 1, 4k+2) ιv4k+2
1 τh3

1 ·ιv
4k
1

Table 4. Effective d1 differentials for LC: k ≥ 0.
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Proof. All of these differentials follow immediately from the effective d1 differentials
for LC

[η−1
], which are determined by Proposition 3.12.

For degree reasons, there are no possible higher differentials. □
Theorem 3.15. The E∞-page of the effective spectral sequence for LC is depicted
in Figure 4.

Proof. Because there are no higher effective differentials for LC, we obtain the
effective E∞-page immediately from the effective d1 differentials in Table 4 (see
also Proposition 3.14). □

3E. Hidden extensions in E∞(LC).
Proposition 3.16. In the effective spectral sequence for LC, the elements h1v

4k
1 do

not support hidden h extensions for all k ≥ 0.

Proof. The elements h1v
4k
1 detect elements in π∗,∗LC that are in the image of

the homotopy π∗,∗SC of the C-motivic sphere. In the C-motivic sphere, these
v1-periodic elements are annihilated by h. □
Remark 3.17. The proof of Proposition 3.16 appeals to knowledge of the homotopy
of the C-motivic sphere. In fact, one can avoid this by use of Toda brackets in the
homotopy of LC. Namely, in the homotopy of LC, the E∞-page element h1v

4k+4
1

detects an element in the bracket ⟨h3σ, h, α⟩, where α is detected by h1v
4k
1 and σ

is detected by ιv4
1 . By induction,

⟨h3σ, h, α⟩h= h3
· σ ⟨h, α, h⟩ = h3

· σ · τη ·α = 0.

Proposition 3.18. In the effective spectral sequence for LC, there are hidden h

extensions from ι4v4k+2
1 to τh2

1 · h1v
4k
1 for all k ≥ 0.

Proof. Recall that τη2
= ⟨h, η, h⟩ in the homotopy of the C-motivic sphere [19,

Table 7.23]. If α is a homotopy element of LC such that hα is zero, then

α · τη2
= α⟨h, η, h⟩ = ⟨α, h, η⟩h.

In particular, let α be detected by h1v
4k
1 . Note that hα = 0 by Proposition 3.16.

Then τh2
1 · h1v

4k
1 detects a homotopy element that is divisible by h, so τh2

1 · h1v
4k
1

must be the target of a hidden h extension. There is only one possible source for
this extension. □

4. The effective spectral sequence for ko

We now study the effective spectral sequence for R-motivic ko.

Proposition 4.1. The effective spectral sequence for ko takes the form

E1(ko)=
Z[ρ, τ 2, h1, τh1, v

2
1]

2ρ, 2h1, 2 · τh1, (τh1)2 = τ 2 · h2
1+ ρ

2 · v2
1
.
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coweight (s, f, w) x d1(x) ψ3(x) image in E1(ko[η−1
])

0 (−1, 1,−1) ρ ρ ρ

0 (1, 1, 1) h1 h1 1
1 (1, 1, 0) τh1 τh1 τ ·h1

2 (0, 0,−2) τ 2 ρ2
·τh1 τ 2 τ 2

+ρ2
·v2

1 ·h
−2
1

2 (4, 0, 2) v2
1 τh1 ·h2

1 9v2
1 v2

1

Table 5. Multiplicative generators for E1(ko).

Proof. The additive structure follows from Theorem 2.1 by taking stable homotopy
groups. We need that the homotopy groups of R-motivic HZ are

HZ∗,∗ = Z[τ 2, ρ]/2ρ,

and the homotopy groups of R-motivic HF2 are

(HF2)∗,∗ = F2[τ, ρ].

The multiplicative structure is mostly also immediate from Theorem 2.1. As
explained in [21], our formula for (τh1)

2 is equivalent to the formula η2
−→
δ √

α

given in [1, p. 1029]. □

Table 5 lists the generators of E1(ko). Figure 5 depicts E1(ko) graphically.

Proposition 4.2. Table 5 gives the values of the effective d1 differential on the
multiplicative generators of E1(ko).

Proof. The value of d1(τ
2) follows from [1, Theorem 20] and R-motivic Steenrod

algebra actions. Then the value of d1(v
2
1) follows from (1-1).

Alternatively, there is only one pattern of effective differentials that computes
the motivic stable homotopy groups of ko, which were previously computed with
the R-motivic Adams spectral sequence [17]. □

The entire d1 differential in the effective spectral sequence for ko can easily be
deduced from Proposition 4.2 and the Leibniz rule.

Theorem 4.3. The E∞-page of the effective spectral sequence for ko is depicted in
Figures 6, 7, and 8.

Proof. The Leibniz rule, together with the values in Table 5 (see also Proposition 4.2),
completely determines the effective d1 differential on E1(ko). The E2-page can then
be determined directly. However, the computation is not entirely straightforward.
Of particular note is the differential

d1(τ
2
· τh1 · v

2
1)= τ

4
· h4

1+ ρ
4
· v4

1,
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which yields the relation

(4-1) τ 4
· h4

1 = ρ
4
· v4

1

in E2(ko).
For degree reasons, there can be no higher differentials in the effective spectral

sequence for ko. □

For legibility, Figures 6, 7, and 8 display E∞(ko) in three different charts
separated by coweight modulo 4. There is no chart for coweights 3 mod 4 because
E∞(ko) is zero in those coweights.

Figure 9 illustrates part of the analysis of the d1 differentials and the determination
of E2(ko); it is meant to be representative, not thorough. The chart shows some
of the elements in coweights 1 and 2 mod 4, together with the d1 differentials
that relate these elements. In this chart, one can see that τ 2

· h2
1+ ρ

2
· v2

1 survives
to E2(ko). This element survives to E∞(ko). It is labeled (τh1)

2 in Figure 8, in
accordance with (1-1).

Remark 4.4. There is an alternative, slightly more structured, method for obtaining
E∞(ko). One can filter E1(ko) by powers of τh1 and obtain a spectral sequence that
converges to E2(ko). In this spectral sequence, we have the relation τ 2

·h2
1= ρ

2
·v2

1 .
There are differentials d1(τ

2) = ρ2
· τh1 and d1(v

2
1) = h2

1 · τh1. Then there is a
higher differential d3(τ

2
· v2

1)= (τh1)
3. None of this is essential to our study, but

the interested reader may wish to carry out the details.

Table 6 lists the multiplicative generators of E∞(ko). It is possible to give a
complete list of relations. However, the long list is not so helpful for understanding
the structure of E∞(ko). The charts in Figures 6, 7, and 8 are more useful for this
purpose.

coweight (s, f, w) x ψ3(x)

0 (−1, 1,−1) ρ ρ

0 (1, 1, 1) h1 h1

1 (1, 1, 0) τh1 τh1

2 (0, 0,−2) 2τ 2 2τ 2

2 (4, 0, 2) 2v2
1 9·2v2

1
4 (0, 0,−4) τ 4 τ 4

4 (4, 0, 0) 2τ 2v2
1 9·2τ 2v2

1
4 (8, 0, 4) v4

1 81v4
1

Table 6. Multiplicative generators for E∞(ko).
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coweight source type target (s, f, w)

2 2v2
1 ρ (τh1)

2h1 (3, 3, 1)
4 2τ 2v2

1 ρ τ 4
·h3

1 (3, 3,−1)
4 2τ 2v2

1 η ρ3
·v4

1 (5, 3, 1)
2 2τ 2 η ρ(τh1)

2 (1, 3,−1)
1 τh1 h ρ ·τh1 ·h1 (1, 3, 0)
2 (τh1)

2 h ρ(τh1)
2h1 (2, 4, 0)

Table 7. Hidden extensions in E∞(ko).

Proposition 4.5. Table 7 lists some hidden extensions by ρ, h, and η in the effective
spectral sequence for ko. All other hidden extensions by ρ, h, and η are v4

1-multiples
and τ 4-multiples of these.

Proof. Recall from [8, Corollary 1.9] that the homotopy of ko/ρ is isomorphic to
the homotopy of koC. Therefore, we completely understand the homotopy of ko/ρ
from Theorem 3.3 and Figure 2.

The hidden ρ extensions follow from inspection of the long exact sequence
associated to the cofiber sequence

6−1,−1ko−→ρ ko−→ ko/ρ.

The map ko→ ko/ρ takes the elements τ 4
· h3

1 and (τh1)
2h1 to zero because there

are no possible targets in the homotopy of ko/ρ. Therefore, those two elements
must receive hidden ρ extensions, and there is only one possibility in both cases.

The relation τ 4
· h4

1 = ρ
4
· v4

1 (see (4-1)) then implies that 2τ 2v2
1 also supports an

h1 extension.
The map ko/ρ→60,−1ko takes τ 3 and τ 3h1 to 2τ 2 and ρ(τh1)

2 respectively.
There is an h1 extension connecting τ 3 and τ 3h1 in ko/ρ, so there must be a hidden
η extension from 2τ 2 to ρ(τh1)

2.
The hidden h extension on τh1 follows from the analogous hidden extension in

the homotopy groups of the R-motivic sphere [15] [9], using the unit map S→ ko.
Alternatively, this hidden extension is computed in [17, Proposition 4.3] in the
context of the R-motivic Adams spectral sequence for ko.

Finally, multiply by τh1 to obtain the hidden h extension on (τh1)
2.

For degree reasons, there are no other possible hidden extensions to consider. □

Remark 4.6. We have completely analyzed the E∞-page of the effective spectral
sequence for ko, but this is not quite the same as completely describing the homotopy
of ko. In particular, one must choose an element of π∗,∗ko that is represented by
each multiplicative generator of E∞(ko) (see Table 6). In some cases, there is
more than one choice because of the presence of elements in higher filtration in
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the E∞-page. The choices of ρ, h1, τh1, and τ 4 can be made arbitrarily; the ring
structure is unaffected by these choices. The elements 2τ 2 and 2v2

1 are already
well-defined because there are no elements in higher filtration. Finally, the choices
of 2τ 2v2

1 and v4
1 can then be uniquely specified by the relations ρ · 2τ 2v2

1 = τ
4
· h3

1
and ρ4

· v4
1 = τ

4
· h4

1.

4A. η-periodic ko. Later we will need some information about the η-periodic spec-
trum ko[η−1

]. As in Section 3C, powers of h1 are inconsequential for computational
purposes in the η-periodic context. Consequently, we have removed these powers
from all η-periodic formulas.

Proposition 4.7. The effective E1-page for ko is given by

E1(ko[η−1
])= F2[h±1

1 , τ, ρ, v2
1].

Moreover, the periodicization map ko→ ko[η−1
] induces the map on effective

E1-pages whose values are given in Table 5.

The first part of Proposition 4.7 was first proved in [1, Theorem 19], although
the notation is different.

Proof. The functors s∗ commute with homotopy colimits [29, Corollary 4.6].
Therefore, we can just invert h1 in the description of E1(ko) given in Proposition 4.1
(see also Figure 5).

After inverting h1, the relation 2h1 in E1(ko) implies that 2= 0 in E1(ko[η−1
]).

This gives that

E1(ko[η−1
])=

F2[h±1
1 , ρ, τ 2, τh1, v

2
1]

τ 2 = h−2
1 (τh1)2+ h−2

1 · ρ
2 · v2

1

.

Because of the relation, the generator τ 2 is redundant.
The values of the periodicization map given in Table 5 are immediate from the

algebraic analysis of the previous paragraph. □

Remark 4.8. Table 5 gives an unexpected value for τ 2. Recall that τ 2 is inde-
composable in E1(ko), so there is no inconsistency. The unexpected value arises
from (1-1).

4B. The Adams operation ψ3 in effective spectral sequences. Our goal in this
section is to study ψ3 as a map of effective spectral sequences. This will allow us
to compute the E1-page of the effective spectral sequence for L .

Lemma 4.9. The map E∞(ko)→ E∞(ko) induced by ψ3 on effective E∞-pages
takes the values shown in Table 6.
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Proof. Corollary 2.4(2) gives the values of ψ3 on ρ, h1, and τh1.
The value of ψ3 on τ 4 is determined immediately by comparison along Betti

realization to the classical value ψ3(1)= 1. The computation is greatly simplified
by ignoring terms in higher effective filtration. Similarly, the value of ψ3 on 2τ 2 is
determined by the classical value ψ3(2)= 2.

The remaining values in Table 6 are also determined by comparison along Betti
realization to the classical values ψ3(2v2

1)= 9 · 2v2
1 and ψ3(v4

1)= 81v4
1 . □

Lemma 4.10. The map E1(ko)→ E1(ko) induced by ψ3 on effective E1-pages
takes the values shown in Table 5.

Proof. The values of ψ3 on E1(ko) are compatible with the values of ψ3 on E∞(ko),
as shown in Table 6. This immediately yields the value of ψ3 on ρ, h1, and τh1.

The value of ψ3((τ 2)2) must be (τ 2)2 by compatibility with the value of ψ3(τ 4)

in E∞(ko). Then the relation ψ3((τ 2)2)= (ψ3(τ 2))2 implies that ψ3(τ 2)= τ 2.
Similarly, the value of ψ3((v2

1)
2) must be 81(v2

1)
2 by compatibility with the

value of ψ3(v4
1) in E∞(ko). Then the relation ψ3((v2

1)
2)= (ψ3(v2

1))
2 implies that

ψ3(v2
1)= 9v2

1 . □

Remark 4.11. Since ψ3 is a ring homomorphism, all values of ψ3 on E1(ko) are
readily determined by the values on multiplicative generators given in Table 5. In
particular, for all k ≥ 0,

ψ3(v2k
1 )= 9kv2k

1 .

Remark 4.12. Table 5 implies that ψ3(v4
1)= 81v4

1 . The careful reader will notice
that this expression appears to be simpler than the analogous formula in [5, Theorem
3.1(2)]. The difference is explained by the fact that we are working only up to
higher effective filtration. In particular, our formulas do not reflect the difference
between the homotopy elements 2 and h, since their difference is detected by ρh1

in higher effective filtration. This also means that our formulas are less precise, but
that has no consequence for our computational results.

5. The effective spectral sequence for L

5A. The effective E1-page of L. In this section we compute the E1-page of the
effective spectral sequence for L .

The fiber sequence L→ ko−−−→ψ3
−1 ko induces a fiber sequence

s∗L −→ s∗ko−−−→ψ3
−1 s∗ko

on slices. Upon taking homotopy groups, we obtain a long exact sequence

· · · −→ E1(L)−→ E1(ko)−−−→ψ3
−1 E1(ko)−→ · · · .
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Table 5 (see also Lemma 4.10) gives us complete computational knowledge of the
map E1(ko)→ E1(ko). This allows us to compute E1(L).

Proposition 5.1. The chart in Figure 10 depicts the effective E1-page of L.

Proof. The long exact sequence

· · · −→ E1(L)−→ E1(ko)−−−→ψ3
−1 E1(ko)−→ · · ·

induces a short exact sequence

0−→6−1C −→ E1(L)−→ K −→ 0,

where C and K are the cokernel and kernel of E1(ko)−−−→ψ3
−1 E1(ko). The cokernel

and kernel can be computed directly from the information given in Lemma 4.10.
See also Remark 4.11.

The kernel consists of all elements in E1(ko) with the exception of the integer
multiples of τ 2 j

· v2k
1 for j ≥ 0 and k > 0.

The cokernel C is nearly the same as E1(ko) itself. We must impose the relations
(32k
− 1)v2k

1 = 0 for all k > 0. Lemma 3.8 says that 32k
− 1 equals 2v(2k)+2

· u,
where u is an odd number, i.e., a unit in our 2-adic context. Therefore, the relation
(32k
− 1)v2k

1 = 0 is equivalent to the relation 2v(2k)+2v2k
1 = 0. □

Table 8 lists some elements of the effective E1-page of L . In fact, by inspection
these elements are multiplicative generators for E1(L).

We use the same notation for elements of E1(L) and their images in E1(ko). On
the other hand, we define the element ιx of E1(L) to be the image of x under the
map ι :6−1 E1(ko)→ E1(L). For example, the element 1 of E1(ko) maps to ι in
E1(L).

5B. The effective spectral sequence for L[η−1]. In Section 5A, we determined the
effective E1-page of L . The next steps in the analysis of the effective spectral se-
quence for L are to determine the multiplicative structure of E1(L) (see Section 5C)
and to determine the effective differentials (see Sections 5D and 5E).

coweight (s, f, w) generator image in E1(L[η−1
])

2 (0, 0,−2) τ 2 τ 2
+ρ2
·v2

1
2k+1 (4k+1, 1, 2k) τh1v

2k
1 τ(v2

1)
k

2k (4k−1, 1, 2k−1) ρv2k
1 ρ(v2

1)
k

2k (4k+1, 1, 2k+1) h1v
2k
1 (v2

1)
k

2k−1 (4k−1, 1, 2k) ιv2k
1 ι(v2

1)
k

Table 8. Multiplicative generators for E1(L): k ≥ 0.
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Before doing so, we collect some information on the η-periodicization L[η−1
].

We will study L[η−1
] by comparing to the more easily understood ko[η−1

].
As in Sections 3C and 4A, powers of h1 are inconsequential for computational

purposes in the η-periodic context. Consequently, we have removed these powers
from all η-periodic formulas.

Proposition 5.2. The effective E1-page for L[η−1
] is given by

E1(L[η−1
])= F2[h±1

1 , τ, ρ, v2
1, ι]/ι

2.

the periodicization map L→ L[η−1
] induces the map E1(L)→ E1(L[η−1

]) whose
values are given in Table 8.

Proof. As in Proposition 4.7, we can just invert h1 in the additive description of
E1(L) given in Proposition 5.1.

The map E1(ko[η−1
])−−−→
ψ3
−1 E1(ko[η−1) is trivial because (ψ3

− 1)(h1)= 0, as
shown in Table 5 (see also Lemma 4.10). Therefore, the long exact sequence

· · · −→ E1(L[η−1)−→ E1(ko[η−1
])−−−→
ψ3
−1 E1(ko[η−1

])−→ · · ·

splits as
E1(L[η−1

])∼= E1(ko[η−1
])⊕6−1 E1(ko[η−1

]).

With Proposition 4.7, this establishes the additive structure of E1(L[η−1
]), as well

as most of the multiplicative structure.
The relation ι2= 0 is immediate because no nonzero values for ι2 are possible. □

Remark 5.3. As in Remark 4.8, Table 8 gives an unexpected value for τ 2, which
arises from (1-1). Also, the last column of Table 8 leaves out of h1 for readability.

Remark 5.4. Note that E1(L[η−1
]) is very close to the effective E1-page for the

η-periodic sphere S[η−1
] [27, Theorem 2.32] [26, Theorem 2.3]. The element ι is

not present in E1(S[η−1
]), but the elements ιv2k

1 are present.

Proposition 5.5. Some values of the differentials in the effective spectral sequence
of L[η−1

] are:

(1) d1(v
2
1)= τ .

(2) dn+1(v
2n

1 )= ρ
n+1
· ιv2n

1 for n ≥ 2.

The effective differentials are zero on all other multiplicative generators on all
pages.

Following our convention throughout this section, we have omitted the powers
of h1 from the formulas in Proposition 5.5.
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Proof. The d1 differential follows from [27, Lemma 4.2] or [26, Theorem 2.6].
To study the higher differentials, consider the map S[η−1

] → L[η−1
]. This map

induces an isomorphism on stable homotopy groups, except in coweight −1. This
follows from a minor adjustment to [5, Theorem 1.1]. The adjustment arises from
the fact that our L[η−1

] is the fiber of ko[η−1
]−−−→
ψ3
−1 ko[η−1

], while [5, Theorem
1.1] refers to the fiber of ko[η−1

]−−−→
ψ3
−1

68,4ko[η−1
].

The homotopy of S[η−1
] is completely computed in [16], so the homotopy of

L[η−1
] is known (except in coweight −1). There is only one pattern of differentials

that is compatible with the known values for L[η−1
]. □

Remark 5.6. In the language of [26, Section 4], Proposition 5.5 establishes the
profile of the η-periodic effective spectral sequence over R.

5C. Multiplicative relations for E1(L). In this section, we will completely de-
scribe the product structure on E1(L). We do not need all of this structure for our
later computations, but we include it for completeness.

Proposition 5.7. Table 9 lists some products in E1(L).

Proof. All of these products are detected by E1(L[η−1
]), which is described

in Proposition 5.2. We need the values of the periodicization map E1(L) →
E1(L[η−1

]) given in Table 8. □

5D. The effective d1 differential for L. Our next task is to compute the differentials
in the effective spectral sequence for L .

Proposition 5.8. Table 10 gives the values of the effective d1 differential on the
multiplicative generators of E1(L).

Proof. All of these differentials follow immediately from the effective d1 differentials
for L[η−1

], which are all determined by Proposition 5.5(1) Beware that the exact
values of the map E1(L)→ E1(L[η−1

]), as shown in Table 8, are important.
For example, consider the differential on the element τh1v

4k+2
1 . It maps to

τ(v2
1)

2k+1 in E1(L[η−1
]) (up to h1 multiples, which as usual we ignore in the

η-periodic situation). The η-periodic differential on this latter element is τ 2(v2
1)

2k .

ρv
2 j
1 h1v

2 j
1 τh1v

2 j
1 ιv

2 j
1

ρv2k
1 ρ ·ρv

2 j+2k
1

h1v
2k
1 ρ ·h1v

2 j+2k
1 h1 ·h1v

2 j+2k
1

τh1v
2k
1 ρ ·τh1v

2 j+2k
1 h1 ·τh1v

2 j+2k
1 τ 2

·h1 ·h1v
2 j+2k
1 +ρ ·ρv

2 j+2k+2
1

ιv2k
1 ρ ·ιv

2 j+2k
1 h1 ·ιv

2 j+2k
1 τh1 ·ιv

2 j+2k
1 0

Table 9. Products in E1(L): j ≥ 0 and k ≥ 0.



68 EVA BELMONT, DANIEL C. ISAKSEN AND HANA JIA KONG

coweight (s, f, w) x d1(x)

2 (0, 0,−2) τ 2 ρ2
·τh1

4k (8k−1, 1, 4k−1) ρv4k
1

4k+2 (8k+3, 1, 4k+1) ρv4k+2
1 ρh2

1 ·τh1v
4k
1

4k (8k+1, 1, 4k+1) h1v
4k
1

4k+2 (8k+5, 1, 4k+3) h1v
4k+2
1 h3

1 ·τh1v
4k
1

4k+3 (8k+5, 1, 4k+2) τh1v
4k+2
1 τ 2

·h3
1 ·h1v

4k
1 +ρ

2h1 ·h1v
4k+2
1

4k+1 (8k+1, 1, 4k) τh1v
4k
1

4k+1 (8k+3, 1, 4k+2) ιv4k+2
1 τh1 ·h2

1 ·ιv
4k
1

4k−1 (8k−1, 1, 4k) ιv4k
1

Table 10. Effective d1 differentials for L: k ≥ 0.

Finally, we need to find an element of E1(L) in the correct degree whose η-period-
icization is τ 2(v2

1)
2k , The only possibility is τ 2

· h3
1 · h1v

4k
1 + ρ

2h1 · h1v
4k+2
1 . □

Remark 5.9. All d1 differentials in E1(L) can be deduced from the information
in Table 10 and the Leibniz rule, but the computations can be complicated by the
multiplicative relations of Table 9. For example,

d1(τ
2
· τh1v

2
1)= ρ

2
· τh1 · τh1v

2
1 + τ

2(τ 2
· h4

1+ ρ
2h1 · h1v

2
1)= τ

4
· h4

1+ ρ
4
· v4

1 .

Having completely analyzed the slice d1 differentials for E1(L), it is now possible
to compute the E2-page of the slice spectral sequence for L .

Proposition 5.10. The E2-page of the effective spectral sequence for L is depicted
in Figures 11, 12, 14, and 15.

For legibility, Figures 11, 12, 14, and 15 display E2(L) in four different charts
separated by coweight modulo 4. Note that Figures 14 and 15 also serve as E∞-page
charts in coweights 1 and 2 modulo 4 because there are no higher differentials that
affect these coweights.

Proof. The Leibniz rule, together with the values in Table 10, completely deter-
mines the effective d1 differential on E1(L). The E2-page can then be determined
directly. However, as in the proof of Theorem 4.3, the computation is not entirely
straightforward.

It turns out that the d1 differential preserves the image of the map 6−1 E1(ko)→
E1(L). Moreover, it turns out that all d1 differentials with values in the image of
6−1 E1(ko)→ E1(L) also have source in this image. (This is not for formal reasons;
in fact, the higher effective differentials do not have this property.) Consequently,
the determination of the E2-page splits into two separate computations: one for the
image of 6−1 E1(ko)→ E1(L), and one for the cokernel of the same map.
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In more concrete terms, we can determine E2(L) by first considering only
elements of the form ιx , and then separately considering only elements that are not
of this form.

The d1 differential on the image of 6−1 E1(ko)→ E1(L) is identical to the
d1 differential for ko discussed in Section 4. The d1 differential on the cokernel
of 6−1 E1(ko)→ E1(L) is similar to the d1 differential on E1(ko), but slightly
different. The difference is created by the absence of the elements v2k

1 in E1(L). □

5E. Higher differentials. We now consider the higher differentials in the effective
spectral sequence for L .

By inspection of the charts for E2(L), the only possible higher differentials have
source in coweight congruent to 0 modulo 4 and value in coweight congruent to 3
modulo 4. In other words, in coweights congruent to 1 and 2 modulo 4, we have
that E2(L) equals E∞(L).

It turns out that there are many higher differentials. In fact, nearly all of the
elements in E2(L) in coweight congruent to 0 modulo 4 support differentials.
While it is possible to write down explicit formulas for all of these differentials,
the formulas would be cumbersome and not so helpful. Rather, we give a more
qualitative description of the differentials because it is more useful for computation.

Proposition 5.11. Consider the elements of E2(L) in coweights congruent to 0
modulo 4 that belong to the cokernel of the map 6−1 E2(ko)→ E2(L).

(1) The only permanent cycles are the multiples of 1, the multiples of 2τ 4k for
k ≥ 0, and ρahb

1 for all a ≥ 0 and b ≥ 0.

(2) Excluding the elements listed in (1), if an element has coweight congruent to
2r−1 modulo 2r , then it supports a dr differential.

Proposition 5.11 may seem imprecise because it does not give the values of the
differentials. However, there is only one nonzero possible value in every case, so
there is no ambiguity.

Proof. These differentials follow immediately from the η-periodic differentials of
Proposition 5.5, together with multiplicative relations in E2(L).

For example, consider the element τ 8
· ρv12

1 in coweight 20, which is congruent
to 22 modulo 23. Using Table 8, we find that this element maps to ρ9(v2

1)
10 in

E2(L[η−1
]). Here we are using that τ 2 is zero in E2(L[η−1

]) since it is hit by
an η-periodic d1 differential. Proposition 5.5 says that this element supports an
η-periodic d3 differential. It follows that τ 8

·ρv12
1 also supports a d3 differential. □

Theorem 5.12. The E∞-page of the effective spectral sequence for L is depicted in
Figures 13, 14, 15, 16, 17, 18, and 19.

Proof. The E∞-page can be deduced directly from the higher differentials described
in Proposition 5.11. □
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The E∞-page in coweights congruent to 3 modulo 4 is by far the most complicated
case. Figures 17, 18, and 19 display E∞(L) in coweights congruent to 3 modulo 8,
7 modulo 16, and 15 modulo 32 respectively.

In each case (and more generally in coweights congruent to 2n−1
− 1 modulo 2n ,

we see similar patterns with minor variations. The lower boundary of each chart
takes the same shape. The upper boundary of the τ -periodic portion of each chart
also takes the same shape. However, the filtration jump between the lower and
upper boundaries increases linearly with n.

In addition to the τ -periodic portion of each chart, there are also τ -torsion, η-
periodic regions. These consist of bands of infinite h1-towers of width n that repeat
every 2n+1 stems. The first such band starts at ιv2n−1

1 .

5F. Hidden extensions. Our last goal is to compute hidden extensions by ρ, h,
and η. See [19, Section 4.1] for a precise definition of a hidden extension. Fortu-
nately, none of the complications associated with crossing extensions occur in our
situation.

Proposition 5.13. Table 11 lists some hidden extensions by ρ, h, and η in the
effective spectral sequence for L.

Proof. The last column of Table 11 indicates the reason for each hidden extension.
Some of the hidden extensions follow from the analogous extensions for ko given
in Table 7, using the maps 6−1ko→ L and L→ ko.

coweight source type target (s, f, w) proof

0 ι·τh1 h ι·ρh1 ·τh1 (0, 2, 0) 6−1ko→ L
1 τh1 h ρh1 ·τh1 (1, 1, 0) L→ ko
1 ι(τh1)

2 h ι·ρh1(τh1)
2 (1, 3, 0) 6−1ko→ L

1 ι·2τ 2 η ι·ρ(τh1)
2 (−1, 1,−2) 6−1ko→ L

1 ι2v2
1 ρ ι·h1(τh1)

2 (3, 1, 2) 6−1ko→ L
1 ι4v2

1 h h2
1 ·τh1 (3, 1, 2) L/ρ

2 (τh1)
2 h ρh1(τh1)

2 (2, 2, 0) L→ ko
3 ι4τ 2v2

1 h (τh1)
3 (3, 1, 0) L/ρ

3 ι2τ 2v2
1 ρ ιτ 4

·h3
1 (3, 1, 0) 6−1ko→ L

3 ι2τ 2v2
1 η ρ3

·ιv4
1 (3, 1, 0) 6−1ko→ L

2 2τ 2 η ρ(τh1)
2 (0, 0,−2) L→ ko

3 (τh1)
3 h ιτ 4

·ρ2h6
1 (3, 3, 0) L/ρ

5 ιv4
1 ·8τ

2 h ρ2
·τh1v

4
1 (7, 1, 2) L/ρ

Table 11. Hidden extensions in E∞(L).
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Other extensions follow from the long exact sequence associated to the cofiber
sequence

6−1,−1L −→ρ L −→ L/ρ.

Here we need that the homotopy of L/ρ is isomorphic to the homotopy of LC, as
shown in [8, Corollary 1.9]. For example, the hidden h extensions of Proposition 3.18
give hidden h extensions in L/ρ, which then imply the hidden extension from ι4v2

1
to h2

1 · τh1. □
Remark 5.14. The hidden extensions in Table 11 are τ 4-periodic in the following
sense. If we take the source and target of each extension in E1(L) and multiply by
τ 4, then we obtain permanent cycles that are related by a hidden extension. For
example, the hidden h extension from τh1 to ρh1 · τh1 generalizes to a family of
hidden extensions from τ 4k+1h1 to ρh1 · τ

4k+1h1 for all k ≥ 0.

Remark 5.15. Similarly to the τ 4-periodicity discussed in Remark 5.14, most of
the hidden extensions in Table 11 are v4

1-periodic as well. For example, the hidden
h extension from τh1 to ρh1 ·τh1 generalizes to a family of hidden extensions from
τh1v

4k
1 to ρh1 ·τh1v

4k
1 for all k≥ 0. There are three exceptions, which appear below

the horizontal divider at the bottom of the table. These exceptions are discussed in
more detail in Remarks 5.16, 5.17, and 5.18.

Remark 5.16. The hidden η extension from 2τ 2 to ρ(τh1)
2 is τ 4-periodic as in

Remark 5.14, but it is not v4
1-periodic. The elements 2τ 2v4k

1 are not permanent
cycles for k ≥ 1.

Remark 5.17. The hidden h extension from ιv4
1 · 8τ

2 to ρ2
· τh1v

4
1 is v4

1-periodic,
but the situation is slightly more complicated than in Remark 5.15. For all k,
ρ2
· τh1v

4k
1 receives a hidden h extension from an appropriate multiple of ιv4k

1 ·2τ
2.

For example, as shown in Figure 14, there is a hidden h extension from ιv4k
1 · 16τ 2

to ρ2
· τh1v

8
1 .

Remark 5.18. The hidden h extension from (τh1)
3 to ιτ 4

·ρ2h6
1 is v4

1-periodic, but
the situation is more complicated than in Remarks 5.15 and 5.17. For all k ≥ 0, the
element (τh1)

2τh1v
4k
1 supports a hidden h extension to the element of E∞(L) of

highest filtration in the appropriate degree. For example, as shown in Figure 18,
there is a hidden h extension from (τh1)

2
· τ 5h1 to ιτ 8

· ρ3h7
1. Figures 17, 18, and

19 show several extensions of this type.

6. Charts

We explain the notation used in the charts.

• The horizontal coordinate is the stem s. The vertical coordinate is the Adams-
Novikov filtration f (see Section 1G for further discussion).



72 EVA BELMONT, DANIEL C. ISAKSEN AND HANA JIA KONG

• Black or green circles represent copies of F2, periodicized by some power of
τ . The relevant power of τ varies from chart to chart.

• Black or green unfilled boxes represent copies of Z (the 2-adic integers),
periodicized by some power of τ . The relevant power of τ varies from chart
to chart.

• Black or green boxes containing a number n represent copies of Z/2n , peri-
odicized by some power of τ . The relevant power of τ varies from chart to
chart.

• Red unfilled boxes represent copies of Z (the 2-adic integers) that are not
τ k-periodic for any k.

• Green objects represent elements in the image of the map E1(6
−1ko)→ E1(L)

(or E1(6
−1koC)→ E1(LC)). Beware that the color refers to the E1-page origin

of the element, not the properties of the homotopical element that it detects.
For example, in Figure 4, the element τh3

1 detects an element in π3,2LC that
maps to zero in π3,2koC, so it is in the image of π4,2koC. Nevertheless, the
element is colored black because it is not in the image on E1-pages.

• Black objects represent elements in the cokernel of the map E1(6
−1ko)→

E1(L) (or E1(6
−1koC)→ E1(LC)). In other words, they are detected by the

map L → ko (or LC
→ koC). As in the previous paragraph, beware of the

distinction between E1-page origins and homotopical properties.

• Lines of slope 1 represent h1-multiplications.

• Black or green arrows of slope 1 represent infinite sequences of elements that
are τ k-periodic for some k > 0 and are connected by h1-multiplications.

• Red arrows of slope 1 represent infinite sequences of elements that are con-
nected by h1-multiplications and are not τ k-periodic for any k.

• Lines of slope −1 represent ρ-multiplications.

• Dashed lines of slope −1 represent ρ-multiplications whose values are multi-
ples of τ k for some k > 0. For example, in Figure 6, we have ρ · ρ3v4

1 equals
τ 4
· h4

1.

• Black or green arrows of slope −1 represent infinite sequences of elements
that are τ k-periodic for some k > 0 and are connected by ρ-multiplications.

• Light blue lines of slope −3 represent effective d1 differentials.

• Dashed light blue lines of slope −3 represent effective d1 differentials that
hit multiples of τ k , for some k > 0. For example, the dashed line in Figure 1
indicates that d1(v

2
1) equals τh3

1.

• Dark blue lines indicate hidden extensions by h, ρ, or h1.
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• Dashed dark blue lines indicate hidden extensions whose value is a multiple
of τ k for some k > 0. For example, in Figure 4, there is a hidden h extension
from ι4v2

1 to τh3
1.

0 1 2 3 4 5 6 7
0

1

2

E1(ko
C) � = Z[τ ]

• = F2[τ ]

0 2 4 6 8 10 12 14

0

2

4

rS

1

b

b

b

rS

v21

rS

v41

b

b

b

rS

v61

Figure 1. The E1-page of the effective spectral sequence for koC.

0 1 2 3 4 5 6 7
0

1

2

E∞(koC) � = Z[τ ]

• = F2[τ ]

0 2 4 6 8 10 12 14

0

2

4

rS

1

b

b

rS

2v21

rS

v41

b

b

rS

2v61

Figure 2. The E∞-page of the effective spectral sequence for koC.
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Figure 3. The E1-page of the effective spectral sequence for LC.
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Figure 4. The E∞-page of the effective spectral sequence for LC.
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Figure 5. The E1-page of the effective spectral sequence for ko.
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E∞(ko), coweights 0 mod 4
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Figure 6. The E∞-page of the effective spectral sequence for ko
in coweights 0 mod 4.
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Figure 13. The E∞-page of the effective spectral sequence for L
in coweights 0 mod 4.
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Figure 16. The E∞-page of the effective spectral sequence for L
in coweight −1.
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Figure 17. The E∞-page of the effective spectral sequence for L
in coweights 3 mod 8.
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Figure 18. The E∞-page of the effective spectral sequence for L
in coweights 7 mod 16.
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Figure 19. The E∞-page of the effective spectral sequence for L
in coweights 15 mod 32.
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