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A C2-EQUIVARIANT ANALOG OF MAHOWALD’S THOM

SPECTRUM THEOREM

MARK BEHRENS AND DYLAN WILSON

(Communicated by Michael A. Mandell)

Abstract. We prove that the C2-equivariant Eilenberg–MacLane spectrum
associated with the constant Mackey functor F2 is equivalent to a Thom spec-
trum over ΩρSρ`1.

1. Introduction

Let μ be the Möbius bundle over S1, regarded as a virtual bundle of dimension
0. The mod 2 Moore spectrum is the Thom spectrum

Mp2q » pS1
q
μ.

The classifying map for μ extends to a double loop map

rμ : Ω2S3
Ñ BO.

Mahowald proved the following theorem [Mah77].

Theorem 1.1 (Mahowald). There is an equivalence of spectra

pΩ2S3
q

rμ
» HF2.

The bundle μ may also be regarded as a C2-equivariant virtual bundle over
S1 by endowing both S1 and the bundle with the trivial action. Since BC2

O is
an equivariant infinite loop space [Ati68], the classifying map for μ extends to an
Ωρ-map

rμ : ΩρSρ`1
Ñ BC2

O.

Here, ρ is the regular representation of C2. The purpose of this paper is to prove
the following.

Theorem 1.2. There is an equivalence of C2-spectra

pΩρSρ`1
q

rμ
» HF2.

(Here, F2 denotes the constant Mackey functor with value F2.)
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Conventions. Equivariant objects in this paper either live in TopC2 , the category
of C2-spaces, or SpC2 , the category of genuine C2-spectra. In both of these cate-
gories, the equivalences are those equivariant maps which induce equivalences on
both the C2-fixed points spectrum and the underlying spectrum. We let H denote
the Eilenberg–Maclane spectrum HF2, with underlying spectrum H :“ HF2. We
use H‹ and πC2

‹ to denote ROpC2q-graded homology and homotopy groups (i.e.,
not the Mackey functors) of C2-equivariant spaces and spectra, and H˚ and π˚ to
denote the ordinary homology and homotopy groups of nonequivariant spaces and
spectra. We let σ denote the sign representation of C2, and we let ρ “ 1`σ denote
the regular representation. For a representation V , SpV q denotes the unit sphere
in V , SV denotes its one point compactification, and |V | denotes its dimension.

2. Equivariant preliminaries

Euler class. Let a denote the Euler class in πC2
´σS, given geometrically by the

inclusion

S0
ãÑ Sσ.

There is a cofiber sequence

(2.1) C2` Ñ S0
ãÑ Sσ

so the cofiber of a is stably given by

(2.2) Ca » Σ1´σC2`.

The equivalence of underlying spectra

(2.3) pS1
q
e

» pSσ
q
e

induces an equivalence of C2-spectra

C2` ^ S1
» C2` ^ Sσ.

Therefore, the equivalence (2.2) can actually be regarded as giving an equivalence

Ca » C2`.

It follows that Ca is a commutative ring spectrum. The adjoint of the equivalence
(2.3) gives a C2-equivariant map

C2` ^ S1
Ñ Sσ

which, by the self-duality of C2`, gives a map

u : S1
Ñ C2` ^ Sσ

» Ca ^ Sσ

which serves as a Thom class for the representation σ. For X P SpC2 , we have

πC2

k pXq – πkpXC2q,

πC2

V pX ^ Caq – π|V |pX
e
q.

Said differently,

(2.4) πC2
‹ pX ^ Caq – π˚pXe

qru˘
s.
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Tate square. We will let

Xh :“ F pEC2`, Xq,

XΦ :“ X ^ ĄEC2

denote the homotopy completion and geometric localization of X, respectively. The
fixed points of Xh are the homotopy fixed points of X, and the fixed points of XΦ

are the geometric fixed points of X. X is recovered from these approximations by
the pullback (“Tate square”) [GM95]

X ��

��

XΦ

��
Xh �� Xt

where the spectrum Xt is the equivariant Tate spectrum

Xt :“ pXh
q
Φ.

Note that a generalization of the argument establishing (2.2) yields an equivalence

Σkσ´1Cpakq » Spkσq`.

Taking a colimit, we see that we have

hocolim
k

Σkσ´1Cpakq » EC2`,

hocolim
k

Skσ
» ĄEC2.

It follows that homotopy completion and geometric localization can be reinterpreted
as a-completion and a-localization:

Xh
» X^

a ,

XΦ
» Xra´1

s.

In this manner, the Tate square is equivalent to the “a-arithmetic square”

X ��

��

Xra´1s

��
X^

a
�� X^

a ra´1s

Using (2.4), the a-Bockstein spectral sequence takes the form

E˚,˚
1 “ π˚pXe

qru˘, as ñ πC2
‹ pXh

q.

The a-Bockstein spectral sequence can be regarded as an ROpC2q-graded version
of the homotopy fixed point spectral sequence (see [HM17, Lem. 4.8]).

The mod 2 Eilenberg–MacLane spectrum. We have [HK01]

πC2
‹ H “ F2ra, us ‘

F2ra, us

pa8, u8q
tθu,

where

|u| “ 1 ´ σ,

|θ| “ 2σ ´ 2.
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The a-u divisible factor in π‹H is best understood from the Tate square, using

πC2
‹ Hh

– F2ra, u˘1
s,

πC2
‹ HΦ

– F2ra˘1, us.

Actually, the second isomorphism lifts to an equivalence

HΦC2 » Hra´1us :“
ł

iě0

ΣiH

so we have

HΦ
‹ X – H˚pXΦC2qra˘1, us,

and, restricting the grading to trivial representations, we get

(2.5) HΦ
˚X – H˚pXΦC2qra´1us.

By applying πC2

V to the map

H ^ X Ñ H ^ X ^ Ca

we get a homomorphism

(2.6) Φe : HV pXq Ñ H|V |pX
e
q.

Taking geometric fixed points of a map

SV
Ñ H ^ X

gives a map

SV C2
Ñ HΦC2 ^ XΦC2 .

Using (2.5) and passing to the quotient by the ideal generated by a´1u, we get a
homomorphism

(2.7) ΦC2 : HV pXq Ñ H|V C2 |pX
ΦC2q.

A useful lemma. Our main computational lemma is the following.

Lemma 2.8. Suppose that X P SpC2 and suppose that tbiu is a set of elements of
H‹pXq such that

(1) tΦepbiqu is a basis of H˚pXeq and
(2) tΦC2pbiqu is a basis of H˚pXΦC2q.

Then H‹pXq is free over H‹ and tbiu is a basis.

Proof. The set tbiu corresponds to a map

H ^

ł

S|bi|
Ñ H ^ X.

Assumption (1) implies this map is an equivalence upon applying Φe, while as-
sumption (2) implies this map is an equivalence upon applying ΦC2 . The result
follows. �

3. Homology of ρ-loop spaces

We spell out some specific algebraic structure carried by the equivariant homol-
ogy of a ρ-loop space. A more detailed and general study of this algebraic structure
can be found in [Hil17].
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Products. Suppose X “ ΩρY P TopC2 is a ρ-loop space. Then X is in particular
a 1-loop space and is therefore an equivariant H-space with product

m : X ˆ X Ñ X.

However, the σ-loop space structure also endows X with a twisted product related
to the transfer. Namely, let

Sσ
Ñ Sσ

{S0
« C2` ^ S1

be the pinch map. This gives rise to a twisted product

rm : NˆΩY Ñ ΩσY,

where

NˆZ :“ MappC2, Zq “ Z ˆ Z
õ

C2

is the norm with respect to Cartesian product (i.e., the coinduced space). In par-
ticular, there is a map

(3.1) rm : NˆΩ2Y Ñ X.

Upon applying fixed points to the map (3.1), we get an additive transfer

(3.2) t : Xe
Ñ XC2 .

In homology, the H-space structure gives rise to a product

m : HV X b HWX Ñ HV `WX.

Using the equivariant commutative ring spectrum structure ofH [Ull13], the twisted
product rm gives rise to a “norm map”(see [BH15, Thm. 7.2])

n : HkX
e

Ñ HkρX.

Dyer–Lashof operations. X has even more structure: X is an Eρ-algebra
[GM17]. Specifically, regard Spρq as a C2 ˆ Σ2-space where C2 acts on ρ and
Σ2 acts antipodally. Then the Eρ-structure gives a map

Spρq ˆΣ2
Xˆ2

Ñ X.

Note that H is itself an Eρ-ring spectrum because it is actually an equivariant
commutative ring spectrum, so H ^ X` is an Eρ-ring in H-modules. Given x P

HV pXq, represented by a map

x : SV
Ñ H ^ X`,

there is an induced composite

H ^ Spρq` ^Σ2
S2V 1^1^x^x

ÝÝÝÝÝÝÑH ^ Spρq` ^Σ2
pH ^ X`q

^2

ÑH ^ H ^ X`

ÑH ^ X`

(where the unlabeled maps come from the Eρ-ring and H-module structure of
H ^ X`). Applying πC2

‹ , we get a total power operation

Ppxq : rH‹pSpρq` ^Σ2
S2V

q Ñ H‹X.

For the purposes of this paper we will only be concerned with the case of V “ kρ´σ
for k P Z.
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Proposition 3.3. We have

rH‹

´

Spρq` ^Σ2
S2pkρ´σq

¯

– H‹te2kρ´σ´1, e2kρ´σu.

Proof. Consider the following cofiber sequences:

S2pk´1qρ
Ñ Spρq` ^Σ2

S2ppk´1qρq
Ñ S2pk´1qρ`σ,(3.4)

ΣSpρq` ^Σ2
S2ppk´1qρq

Ñ Spρq` ^Σ2
S2pkρ´σq

Ñ Σ2pkρ´σqSpρq`.(3.5)

The sequence (3.4) arises from Theorem 2.15 of [Wil17] and the second arises from
the pC2 ˆΣ2q-equivariant inclusion ΣS2ppk´1qρq Ñ S2pkρ´σq, where both C2 and Σ2

act trivially on the first suspension coordinate.
In (3.4), the boundary map on H‹ is zero because the group

”

S2pk´1qρ`σ,Σ2pk´1qρ`1H
ı

“ H´1`σ

is zero. Thus

rH‹

´

Spρq` ^Σ2
S2pk´1qρ

¯

– H‹te2pk´1qρ, e2pk´1qρ`σu “ H‹te2kρ´2σ´2, e2kρ´σ´2u.

Now we turn to the second cofiber sequence. Notice that Spρq` is C2-equivariantly
equivalent to Sσ _ S0. From the previous computation, the boundary is then
determined by elements in the following four groups:

B1 P

”

S2pkρ´σq,Σ2kρ´2σH
ı

“ H0,

B2 P

”

S2pkρ´σq`σ,Σ2kρ´σH
ı

“ H0,

B3 P

”

S2pkρ´σq,Σ2kρ´σH
ı

“ H´σ “ 0,

B4 P

”

S2pkρ´σq`σ,Σ2kρ´2σH
ı

“ Hσ “ 0.

Elements of H0 are determined by their restriction to H0 and comparison with the
underlying homology forces B1 “ 1 and B2 “ 0. The result follows. �

Thus we get a pair of Dyer–Lashof operations

Qkρ : Hkρ´σX Ñ H2kρ´σX,

Qkρ´1 : Hkρ´σX Ñ H2kρ´σ´1X

given by the formulas

Qkρ
pxq :“ Ppxqpe2kρ´σq,

Qkρ´1
pxq :“ Ppxqpe2kρ´σ´1q.

Remark 3.6. If X is actually an equivariant infinite loop space, then H‹X has an
action by equivariant Dyer–Lashof operations [Wil17], and these operations agree
with those defined in that paper.

Compatibility with fixed points. The compatibility of all this structure with
the maps Φe and ΦC2 of (2.6) and (2.7) is summarized as follows.

Products: Note that Xe is an E2-algebra and XC2 is an E1-algebra. The
maps Φe and ΦC2 are algebra homomorphisms.
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Norms: The following diagram commutes:

HkX
e

t

�����
���

���
�

n

��

Fr

����
���

���
���

HkX
C2 HkρX

ΦC2

��
Φe

�� H2kX
e

Here t is the transfer (3.2) and Fr is the squaring map (Frobenius).

Dyer–Lashof operations: The following diagrams commute, where ε “ 0, 1:

Hkρ´σX
Φe

��

Qkρ´ε

��

H2k´1X
e

Q2k´ε

��
H2kρ´σ´εX

Φe
�� H4k´1´εX

e

Hkρ´σX
ΦC2 ��

Qkρ

��

HkX
C2

Fr

��
H2kρ´σX

ΦC2

�� H2kX
C2

4. Homology of ΩρSρ`1

Theorem 4.1. There is an additive isomorphism (of H‹-modules)

H‹Ω
ρSρ`1

– H‹ b Ert0, t1, . . .s b P re1, e2, . . .s

with

|ti| “ 2iρ ´ σ,

|ei| “ p2i ´ 1qρ.

Proof. Note that we have

H˚Ω
2S3

“ F2rx1, x2, . . .s

with
|xi| “ 2i ´ 1.

Here x1 is the fundamental class ι1 and

xi :“ Q2iQ2i´1

¨ ¨ ¨Q2x1.

Define t0 P H1Ω
ρSρ`1 to be the fundamental class and define the other “generators”

ei and ti by

ei :“ npxiq,

ti :“ Q2iρQ2i´1ρ
¨ ¨ ¨Qρt0.

Consider the product

tεek :“ tε00 tε11 ¨ ¨ ¨ ek1
1 ek2

2 ¨ ¨ ¨ P H‹pΩρSρ`1
q

with εi P t0, 1u and ki ě 0. We compute

Φe
ptεekq “ x2k1`ε0

1 x2k2`ε1
2 ¨ ¨ ¨ .
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Mapping out of the cofiber sequence (2.1) gives a fiber sequence

ΩNˆΩSρ`1
Ñ ΩρSρ`1

Ñ ΩSρ`1 Δ
ÝÑ NˆΩSρ`1.

Upon taking fixed points we get a fiber sequence

Ω2S3 t
ÝÑ pΩρSρ`1

q
C2 Ñ ΩS2 null

ÝÝÑ ΩS3.

In particular, there is an equivalence

pΩρSρ`1
q
C2 » ΩS2

ˆ Ω2S3,

and we have

H˚pΩρSρ`1
q
C2 – P rys b P rtpx1q, tpx2q, . . .s,

where y is the image of the fundamental class under the map

S1
Ñ pΩρSρ`1

q
C2 .

It follows that

ΦC2ptεekq “ yε0`2ε1`4ε2`¨¨¨tpx1q
k1tpx2q

k2 ¨ ¨ ¨ .

Thus the set

ttεeku Ă H‹X

satisfies the hypotheses of Lemma 2.8, and the result follows. �

5. The equivariant Mahowald theorem

In order to prove Theorem 1.2 we will need to establish a Thom isomorphism

H‹pΩρSρ`1
q

rμ
– H‹Ω

ρSρ`1.

We will do so in two steps. Recall that an E0-algebra is just a spectrum X equipped
with a map S0 Ñ X. Let Free˚

Eρ
: AlgE0

pSpC2q Ñ AlgEρ
pSpC2q denote a homo-

topical left adjoint to the forgetful functor. An explicit model for this functor is
the homotopy pushout of Eρ-algebras:

FreeEρ
pS0q

��

�� FreeEρ
pXq

��
S0 �� Free˚

Eρ
pXq

We will need the following theorem.

Theorem 5.1. Let f : X Ñ BC2
O classify a virtual bundle of dimension zero and

denote by f̃ : ΩρΣρX Ñ BC2
O the associated Ωρ-map. Then there is a canonical

equivalence of Eρ-algebras in SpC2 ,

Free˚
Eρ

pXf
q – pΩρΣρXq

f̃
.

Proof. Combine the equivariant approximation theorem [GM17,RS00] with Theo-
rem IX.7.1 and Remark X.6.4 of [LMSM86]. �

Remark 5.2. The nonequivariant version of Theorem 5.1 was first observed by Mark
Mahowald and then proven by Lewis. A nice modern account in the nonequivariant
setting via universal properties can be found in [AB14].
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Proposition 5.3. There is a Thom isomorphism

H‹pΩρSρ`1
q

rμ
– H‹Ω

ρSρ`1.

Proof. Let Free˚
Eρ,H : AlgE0

pModHq Ñ AlgEρ
pModHq denote a homotopical left

adjoint to the forgetful functor. Along with the previous theorem, we will need two
facts:

(1) H ^ p´q : SpC2 Ñ ModH is symmetric monoidal.
(2) There is a Thom isomorphism H ^ pS1qμ – H ^ S1

`.

The proposition is now proved by the following string of equivalences:

H ^
`

ΩρΣρS1
˘μ̃

– H ^ Free˚
Eρ

`

pS1
q
μ

˘

by Theorem 5.1

– Free˚
Eρ,H

`

H ^ pS1
q
μ

˘

by (1)

– Free˚
Eρ,H

`

H ^ S1
`

˘

by (2)

– H ^ Free˚
Eρ

`

S1
`

˘

by (1)

– H ^ ΩρΣρS1
`.

�
Proof of Theorem 1.2. The Thom class is represented by a map

pΩρSρ`1
q

rμ
Ñ H.

We wish to show this map is an isomorphism on H‹. The homology of H is the
C2-equivariant Steenrod algebra, computed in [HK01] to be

H‹H “ H‹rτ0, τ1, . . . , ξ1, ξ2, . . .s{pτ2i “ pu ` aτ0qξi`1 ` aτi`1q

with

|τi| “ 2iρ ´ σ,

|ξi| “ p2i ´ 1qρ.

It suffices to show it is surjective, since the two homologies are abstractly isomorphic
and of finite type. Observe that the composite

Mp2q » pS1
q
μ

Ñ pΩρSρ`1
q

rμ
Ñ H

hits τ0. Everything is hit then, by [Wil17, Thm. 5.4]. �
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