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The chromatic splitting conjecture at nD p D 2

AGNÈS BEAUDRY

We show that the strongest form of Hopkins’ chromatic splitting conjecture, as
stated by Hovey, cannot hold at chromatic level n D 2 at the prime p D 2 . More
precisely, for V .0/ , the mod 2 Moore spectrum, we prove that �kL1LK.2/V .0/ is
not zero when k is congruent to �3 modulo 8 . We explain how this contradicts the
decomposition of L1LK.2/S predicted by the chromatic splitting conjecture.

55P60, 55Q45

1 Introduction

Fix a prime p . Let S be the p–local sphere spectrum, and LnS be the Bousfield
localization of S at the Johnson–Wilson spectrum E.n/. Let K.n/ be Morava K-theory.
There is a homotopy pullback square called the chromatic fracture square:

LnS //

��

LK.n/S

��

Ln�1S
�
// Ln�1LK.n/S

Let Fn be the fiber of the map LnS!LK.n/S . Note that Fn is weakly equivalent to
the fiber of �. It was shown by Hovey [12, Lemma 4.1] that Fn is weakly equivalent
to the function spectrum F.Ln�1S;LnS/. Hopkins’ chromatic splitting conjecture,
as stated by Hovey [12, Conjecture 4.2], stipulates that � is the inclusion of a wedge
summand, so that

(1-1) Ln�1LK.n/S 'Ln�1S _†Fn:

We will call this the weak form of the chromatic splitting conjecture. However, [12,
Conjecture 4.2] also gives an explicit decomposition of †Fn as a wedge of suspensions
of spectra of the form LiSp for 0 � i < n. We will call this the strong form of the
chromatic splitting conjecture.

The conjectured decomposition comes from the connection between the K.n/–local
category and the cohomology of a certain group called the Morava stabilizer group Gn .
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3214 Agnès Beaudry

Let Sn be the group of automorphisms of the formal group law of K.n/ over Fpn .
Then Gn is the extension of Sn by the Galois group Gal.Fpn=Fp/. Let W be the Witt
vectors on Fpn . There is a spectral sequence

(1-2) H s.Gn; .En/t / H) �t�sLK.n/S:

Note that W sits naturally in .En/0ŠW ŒŒu1; : : : ;un�1��. The inclusion induces a map

(1-3) H�.Gn;W /!H�.Gn; .En/0/:

Morava proves in [16, Remark 2.2.5], using the work of Lazard, that

H�.Gn;W /˝Qp ŠE.e1; : : : ; en/

for classes ei of degree 2i � 1. Therefore, H�.Gn;W / contains an exterior algebra
E.x1; : : : ;xn/ for appropriate integral multiples xi of the generators ei . The chromatic
splitting conjecture stipulates that, for some choice of x1; : : : ;xn , the exterior algebra
E.x1; : : : ;xn/ injects into H�.Gn; .En/0/ under the map (1-3), and that the nonzero
products xi1

� � �xij survive in (1-2) to nontrivial elements in ��2.
P

ik/Cj LK.n/S .
Further, it states that there is a factorization

S
�2.

P
ik/Cj

p
//

��

Ln�max.ik/S
�2.

P
ik/Cj

p

��

LK.n/S // †Fn

where Sm
p is the p–completion of Sm , and that these maps decompose †Fn as

(1-4) †Fn '

_
1�j�n

1�i1<���<ij�n

Ln�max.ik/S
�2.

P
ik/Cj

p :

The chromatic splitting conjecture has been shown for n � 2 and for all primes p ,
except in the case nD p D 2. For nD 1, it follows immediately from a computation
of ��L1Sp ; see Ravenel [19, Theorems 8.10 and 8.15]. At nD 2 and p � 5, it is due
to Hopkins, and follows from Shimomura and Yabe’s computations [23]. The proof
can be found in Behrens’ account of their work [4, Remark 7.8]. At nD 2 and p D 3,
the conjecture was proved recently by Goerss, Henn and Mahowald [9].

In this paper, we show that the chromatic splitting conjecture as stated above cannot
hold for nD p D 2. More precisely, we show that [12, Conjecture 4.2(iv)] fails in this
case. At nD 2, (1-1) and (1-4) imply that

(1-5) L1LK.2/S 'L1Sp _L1S�1
p _L0S�3

p _L0S�4
p :
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The chromatic splitting conjecture at nD p D 2 3215

We show that the right-hand side of (1-5) has too few homotopy groups for the equiv-
alence to hold. However, our results do not contradict the possibility that � is the
inclusion of a wedge summand. Giving an alternative description for the fiber in this
case is work in progress.

That our methods could disprove (1-5) was first suggested to the author by Paul Goerss.
He and Mark Mahowald had been studying the computations of Shimomura and
Wang [22] and Shimomura [21] and noticed that these suggest that the right-hand side
of (1-5) is too small.

Statement of the results Let V .0/ be the cofiber of multiplication by p on S . Note
that for any p–local spectrum X , there is a cofiber sequence

X
p
�!X !X ^V .0/:

Since Bousfield localization of spectra preserves exact triangles, it follows that

LEV .0/'LES ^V .0/

for any spectrum E . This has the following consequence.

Proposition 1.1 The strong form of the chromatic splitting conjecture at nD 2 implies
that L1LK.2/V .0/'L1V .0/_L1†

�1V .0/.

We now fix our attention to the case when p D 2. Since L0V .0/ is contractible, it
follows from the chromatic fracture square that L1V .0/ ' LK.1/V .0/. Computing
��LK.1/V .0/ is a routine exercise using the spectral sequence

(1-6) E
s;t
2
DH s.G1; .E1/�V .0// H) �t�sLK.1/V .0/:

The E1–term is given in Figure 1. At pD 2, we have that V .0/ is not a ring spectrum.
This manifests itself by the fact that ��LK.1/V .0/ is not a ring. In fact,

��LK.1/V .0/D
�
Z2Œ�; ˇ

˙1; �1�=.2�; �
3; �2

1/
�
fe0; v1e0g=.2e0; 2v1e0� �

2e0/;

where � 2 �1 is the Hopf map, ˇ 2 �8 is the v1–self-map detected by v4
1 , and

�1 2 ��1 is detected by a generator of H 1.G1;Z2/ Š H 1.Z�
2
;Z2/. The element

e0 2 �0 represents the inclusion of the bottom cell S0 ,! V .0/, and v1e0 2 �2 is a
lift of †� to the top cell:

S2

v1e0

}}

†�
��

S0
e0
// V .0/ // S1

2
// S1

The following result is a consequence of Proposition 1.1.

Geometry & Topology, Volume 21 (2017)



3216 Agnès Beaudry
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Figure 1: The E1–term of (1-6) computing ��LK.1/V .0/ . Vertical lines
denote extensions by multiplication by 2 , and lines of slope one denote
multiplication by � .

Corollary 1.2 The chromatic splitting conjecture implies that �kL1LK.2/V .0/ is
zero when k ��3 modulo 8.

However, in this paper, we prove the following result.

Theorem 1.3 There are nontrivial homotopy classes ˇtx in �8t�3L1LK.2/V .0/ and
�2ˇ

tx in �8t�4L1LK.2/V .0/.

This has the following immediate consequence.

Theorem 1.4 The homotopy group �kL1LK.2/V .0/ is nonzero when k ��3 mod-
ulo 8. Therefore, the decomposition (1-5) of the chromatic splitting conjecture does
not hold when nD 2 and p D 2.

The broad strokes of the proof of Theorem 1.3 when t D 0 are as follows. Let
G24 ŠQ8 Ì C3 be a representative of the unique conjugacy class of maximal finite
subgroups of S2 . Let C6 be a subgroup of G24 of order 6. Let S1

2
be the norm one

subgroup so that S2 Š S1
2

Ì Z2 (see Section 2). It follows from the duality resolution
techniques of Goerss, Henn, Mahowald and Rezk and the work of Bobkova [6] that,
for any X , there is a spectral sequence

E
p;t
1
D �t .Ep ^X / H) �t�p.E

hS1
2

2 ^X /;

where Ep are spectra such that E0 'EhG24
2 , Ep 'EhC6

2 if p D 1; 2 and .E2/�E3 Š

.E2/�E
hG24
2 as Morava modules. Localizing at E.1/, we obtain a spectral sequence

(1-7) E
p;t
1
D �tL1.Ep ^X / H) �t�pL1.E

hS1
2

2 ^X /:

We use this spectral sequence to show that ��3L1.E
hS1

2
2 ^V .0//Š F4 , in Lemma 4.1

and Proposition 4.2. After taking Galois invariants, we obtain a nonzero element x in
��3L1.E

hG1
2

2 ^V .0//. In the cofiber sequence

L1LK.2/V .0/!L1.E
hG1

2
2 ^V .0//!L1.E

hG1
2

2 ^V .0//;
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The chromatic splitting conjecture at nD p D 2 3217

which is obtained from the cofiber sequence LK.2/S !EhG1
2

2 !EhG1
2

2 by smashing
with V .0/ and localizing at E.1/; this class gives rise to nonzero elements x 2

��3L1LK.2/V .0/ and �2x 2 ��4L1LK.2/V .0/.

Warning 1.5 We use the notation �2 to denote the homotopy class defined by

S0

1
��

�2

%%

LK.2/S // EhG1
2

2
// EhG1

2
2

// †LK.2/S

Experts will notice that this clashes with Ravenel [17, Lemma 2.1], but this is the
natural generalization of what is now commonly denoted by �n at odd primes.

Organization of the paper In Section 2, we specialize to the case nD 2 and p D 2

and describe the duality resolution spectral sequence and its E.1/–localization. In
Section 3, we compute the E1–page of this spectral sequence for V .0/. In Section 4,
we prove Theorem 1.3.

Acknowledgements I thank Paul Goerss, Hans-Werner Henn and Peter May for their
constant help and support. I thank Tobias Barthel, Daniel G Davis and Douglas Ravenel
for helping me sort out some of the details for the proofs of Section 2. I also thank
Mark Behrens, Irina Bobkova, Michael Hopkins, Jack Morava, Niko Naumann and
Zhouli Xu for helpful conversations. Finally, I thank Mark Mahowald for the insight
he shared with all of us throughout his life.

This material is based upon work supported by the National Science Foundation under
Grant No. DMS-1612020.

2 The E.1/–local duality resolution spectral sequence

We take the point of view that, at height 2, the Honda formal group law may be replaced
by the formal group law of a supersingular elliptic curve. This was carefully explained
in [3, Section 1]. (The reader who wants to ignore this subtlety may take SC , GC
and EC to mean S2 , G2 and E2 , respectively.)

Let SC be the group of automorphisms of the formal group law of the supersingular
elliptic curve

C W y2
Cy D x3

Geometry & Topology, Volume 21 (2017)



3218 Agnès Beaudry

of height two over F4 ; see [3, Section 3] for the comparison. It admits an action of the
Galois group Gal.F4=F2/. Define

GC D SC Ì Gal.F4=F2/:

Let EC be the spectrum which classifies the deformations of the formal group law of C
over F4 as described, for example, in Rezk [20]. It can be chosen to be a complex
oriented ring spectrum with

.EC/� DW ŒŒu1��Œu
˙1�

for ju1j D 0, juj D �2, whose formal group law is the formal group law of the curve

(2-1) CU W y2
C 3u1xyC .u3

1� 1/y D x3:

It admits an action of GC , and for any finite spectrum X ,

LK.2/X 'EhGC
C ^X ' .EC ^X /hGC I

see Behrens and Davis [5, page 5]. The group of automorphisms Aut.C/ of C is of
order 24 and injects into SC . We let G24 denote the image of Aut.C/. We note that

G24 ŠQ8 Ì C3;

where Q8 is a quaternion subgroup and C3 a cyclic group of order 3. The group SC
contains a central subgroup of order 2, which we denote by C2 . We define

C6 D C2 �C3:

There is a surjective homomorphism N W SC ! Z�
2
=.˙1/ Š Z2 , which we call the

norm. It is constructed using the determinant of a representation �W SC!GL2.W /;
see [3, Section 3]. Further, it can be extended to GC . We let S1

C and G1
C be the kernels

of the norms, and note that the elements of finite order in SC and GC are contained
in S1

C and G1
C respectively. Further,

(2-2) SC Š S1
C Ì Z2 and GC ŠG1

C Ì Z2:

The formal group law FCU
of CU , is not 2–typical. Nonetheless, it is strictly iso-

morphic to a 2–typical formal group law classified by a map BP�! .EC/� . Further,
Œ2�FCU

.x/� u1u�1x2 modulo .2;x4/; see [3, Section 6.1] for details on FCU
. The

strict isomorphism between FCU
and its 2–typification preserves this identity. Hence, v1

is mapped to u1u�1 modulo .2/. Since we are working primarily modulo .2/, we
abuse notation and let v1 D u1u�1 2 .EC/2 .

Geometry & Topology, Volume 21 (2017)
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We will need the following result, which can be found in Henn [11, Theorem 13] and
is also discussed in greater detail in Bobkova [6]. We restate it here using our notation
for convenience.

Theorem 2.1 (Goerss, Henn, Mahowald, Rezk and Bobkova) There is a resolution
of spectra in the K.2/–local category given by

EhS1
CC

// EhG24
C

// EhC6
C

// EhC6
C

// E3

E0
// E1

// E2
// E3

where .EC/�E3 Š .EC/�E
hG24
C as Morava modules. Further, for any spectrum X , the

resolution gives rise to a tower of fibrations spectral sequence

(2-3) E
p;t
1
D �t .Ep ^X /

SS1

DH) �t�p.E
hS1

C
C ^X /

with differentials dr W E
p;t
r !E

pCr;tCr�1
r .

We call the resolution of Theorem 2.1 the duality resolution. Let � generate Z2 in the
decompositions (2-2), and let G0

24
D �G24�

�1 . Recall from [3] or [2] that there is
also an algebraic duality resolution:

0 // Z2ŒŒS
1
C=G

0
24
�� // Z2ŒŒS

1
C=C6�� // Z2ŒŒS

1
C=C6�� // Z2ŒŒS

1
C=G24�� // Z2

// 0

C3
// C2

// C1
// C0

(2-4)

Now, let X be a finite spectrum. Resolving (2-4) into a double complex of projective
S1
C–modules and applying the functor HomZ2ŒŒS

1
C ��
.�; .EC/tX / gives rise to a spectral

sequence

(2-5) E
p;q;t
1
D Extq

Z2ŒŒS
1
C ��
.Cp; .EC/tX /

SS2

DH) H pCq.S1
C ; .EC/tX /

with differentials dr W E
p;q;t
r !E

pCr;q�rC1;t
r . Further, in each fixed degree p , there

are spectral sequences

(2-6) E
p;q;t
1
D Extq

Z2ŒŒS
1
C ��
.Cp; .EC/tX /

SS3

DH) �t�q.Ep ^X /

with differentials dr W E
p;q;t
r !E

p;qCr;tCr�1
r . Finally, there is also a spectral sequence

(2-7) E
s;t
2
DH s.S1

C ; .EC/tX /
SS4

DH) �t�s.E
hS1

C
C ^X /

Geometry & Topology, Volume 21 (2017)
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with differentials dr W E
s;t
r !E

sCr;tCr�1
r . Thus, for X finite, we obtain a diagram of

spectral sequences:

(2-8)

Extq
Z2ŒŒS

1
C ��
.Cp; .EC/tX /

SS3

��

SS2 +3 H pCq.S1
C ; .EC/tX /

SS4

��
�t�q.Ep ^X /

SS1

+3 �t�.pCq/.E
hS1

CC ^X /

Remark 2.2 For elements of Adams–Novikov filtration s D 0 in E
p;t
1
.SS1/, the

differentials d1 are related to the d1–differentials in the algebraic duality resolution
spectral sequence SS2 in the following way. If X is finite, as in [10, Proposition 2.4
and (2.7)], for G a closed subgroup of GC , there are isomorphisms of Morava modules

.EC/t .E
hG
C ^X /Š Homc.GC=G; .EC/tX /Š HomZ2

.Z2ŒŒGC=G��; .EC/tX /:(2-9)

Let
E1.SS1/

p;t
Š �t .Ep ^X /

h
�!H 0.GC; .EC/t .Ep ^X //ŠE

p;0;t
1

.SS2/

be the edge homomorphism for the spectral sequence

H s.GC; .EC/t .Ep ^X // H) �t�s.Ep ^X /:

The spectral sequence SS1 is constructed so that the following diagram commutes:

E
p;t
1
.SS1/

h
//

d1

��

E
p;0;t
1

.SS2/

d1

��

E
pC1;t
1

.SS1/
h
// E

pC1;0;t
1

.SS2/

When both horizontal maps h are injective, one can deduce information in SS1 from
information in SS2 .

For the statement of the next result, recall that for any closed subgroup F of GC and
finite spectrum X , there is a spectral sequence

(2-10) E
s;t
2
.F;X /DH s.F; .EC/tX / H) �t�s.E

hF
C ^X /:

The author learned the proof of the following result from Paul Goerss.

Lemma 2.3 Let S a closed subgroup of SC which is invariant under the action of
Gal.F4=F2/. Let G Š S Ì Gal.F4=F2/ be the corresponding closed subgroup of GC .
Then for any finite X and any 2� r �1,

Es;t
r .S;X /ŠW ˝Z2

Es;t
r .G;X /;

and the differentials of the spectral sequence E
s;t
r .S;X / are W –linear.
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Proof The action of Gal.F4=F2/ on .EC/�X is semilinear over W , so there is an iso-
morphism E�;�2 .S;X /ŠW ˝Z2

E�;�2 .G;X /. Now consider, Es;t
r .SC;S

0/. We have
E0;0

2 .SC;S
0/ŠW and the subring Z2 of W consists of permanent cycles. The spec-

tral sequence E�;�r .SC;S
0/ is multiplicative, so the differentials dr W E

0;0
r !Er;r�1

r

are Z2–derivations. Since W is an étale extension of Z2 , for any r , the Z2–derivations
from W to the W –module Er;r�1

r are zero. Hence, E0;0
2 .SC;S

0/ Š W consists
of permanent cycles and the differentials are W –linear. Since the spectral sequence
E�;�r .S;X / is one of modules over E�;�r .SC;S

0/, the differentials of E�;�r .S;X / are
also W –linear, and the result follows.

In what follows, we will use the following remark.

Remark 2.4 Let X be a finite spectrum and F be a closed subgroup of GC . As
noted by Devinatz in the proof of [7, Lemma 3.5], it follows from the fact that EhF

C is
.KC/�–local EC–nilpotent, (see Devinatz and Hopkins [8, Proposition A.3]) that the
descent spectral sequence (2-10) has a horizontal vanishing line.

Now, recall that the telescope conjecture holds at height nD 1. This was proved at
odd primes by Miller [15] and at p D 2 by Mahowald [14]. In particular, we have the
following result.

Theorem 2.5 (Mahowald and Miller) Let Y admit a v1–self-map vk
1 W †

2kY ! Y .
Then

L1Y 'LK.1/Y ' v
�1
1 Y;

where

v�1
1 Y WD colim

�
� � �

vk
1
��!†2kY

vk
1
��! Y

vk
1
��! � � �

�
:

Proposition 2.6 For any finite type-1 spectrum X , with self map vk
1 W †

2kX ! X ,
there is a diagram of strongly convergent spectral sequences:

v�1
1 Extq

Z2ŒŒS
1
C ��
.Cp; .EC/tX /

L1SS3

��

L1SS2 +3 v�1
1 H pCq.S1

C ; .EC/tX /

L1SS4

��

�t�qL1.Ep ^X /
L1SS1

+3 �t�.pCq/L1.E
hS1

CC ^X /

Proof The spectral sequence L1SS2 is obtained from SS2 by inverting the element
vk

1 2 .EC/2kX , and L1SS1 is obtained by the applying L1 to the tower of fibrations
which gives rise to SS1 . The spectral sequences L1SS3 and L1SS4 are obtained by
inverting the algebraic element vk

1 in the spectral sequences SS3 or SS4 , and using
the fact that

v�1
1 ��.Ep ^X /Š ��L1.Ep ^X /:
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With regards to the strong convergence of the four spectral sequences, note that local-
ization with respect to v1 is exact. Therefore, the localized spectral sequences will
converge strongly if they have horizontal vanishing lines at the E1–term. The spectral
sequences SS1 and SS2 have a vanishing line at p D 4 for all r � 1. As noted in
Remark 2.4, the descent spectral sequences SS3 and SS4 have horizontal vanishing
lines. Therefore, the spectral sequences L1SSi exist and converge.

Remark 2.7 As in Remark 2.2, the differentials d1 in L1SS1 and L1SS2 commute
with the edge homomorphisms

E1.L1SS1/
p;t
Š �tL1.Ep^X /

h
��! v�1

1 H 0.GC; .EC/t .Ep^X //ŠE
p;0;t
1

.L1SS2/:

Remark 2.8 For X as in Proposition 2.6, the element v2k
1 2 .EC/2kX can be chosen

to be Galois invariant. Therefore, the results of Lemma 2.3 also hold for the localized
spectral sequences. That is, let

v�1
1 E

s;t
2
.F;X /Š v�1

1 H s.F; .EC/tX / H) �t�sL1.E
hF
C ^X /:

Then for S and G as in Lemma 2.3, we have

v�1
1 Es;t

r .S;X /ŠW ˝Z2
v�1

1 Es;t
r .G;X /

for 2� r �1, and the differentials are W –linear.

3 The homotopy of L1.E
hG24
C ^V.0// and L1.E

hC6
C ^V.0//

The spectrum V .0/ has a self map

ˇW †8V .0/
v4

1
��! V .0/;

and in this section, we give the E1–term for

E
p;q
1
.L1SS1/D �qL1.Ep ^V .0//

L1SS1

DDH) �q�pL1.E
hS1

C
C ^V .0//:

In order to do so, we must compute ��L1.E
hG24
C ^V .0// and ��L1.E

hC6
C ^V .0//.

We do this using the descent spectral sequences

v�1
1 H s.G; .EC/tV .0// H) �t�sL1.E

hG
C ^V .0//:

Notation 3.1 We use the following conventions. First,

v1 D u1u�1; v2 D u�3 and j0 D u3
1:
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The element � is the discriminant of CU , and hence is given by

�D 27v2.v
3
1 � v2/

3
� v2.v

3
1 C v2/

3 mod .2/;
and

c4 D 9v4
1 C 72v1v2 � v

4
1 mod .2/:

The j –invariant is
j D c3

4�
�1
� v12

1 ��1 mod .2/:

These identities can be computed using Silverman [24, Section III.1]; see also [3,
Section 4.2]. We abuse notation and let

�D ı.v1/;

where ı is the Bockstein associated to

0! .EC/�=2
2
�! .EC/�=4! .EC/�=2! 0:

This is justified by the fact that ı.v1/ detects the homotopy class � (see [3, Section 4.1]).

The v1–torsion-free elements of H�.G24; .EC/�V .0// generate a submodule isomor-
phic to

F4ŒŒj ��Œv1; �;�
˙1; k�=.�4

� v4
1k; j�� v12

1 /

for elements of degrees .s; t/, where s is the cohomological grading, t is the internal
grading, and

jv1j D .0; 2/; j�j D .1; 2/; j�j D .0; 24/; jkj D .4; 0/; jj j D .0; 0/I

see Section 4.2 or the appendix of [3]. On the other hand, H�.C6; .EC/�V .0// is
v1–torsion-free and is isomorphic to

F4ŒŒj0��Œv1; �; v
˙1
2 ; h�=.�� v1h; j0v2� v

3
1/;

where jv2j D .0; 6/, jhj D .1; 0/ and jj0j D .0; 0/; see Section 4.2 of [3].

The next proposition is an immediate consequence of these results. In its statement, we
let F4..x// denote the Laurent series on x .

Proposition 3.2 There are isomorphisms

v�1
1 H�.G24; .EC/�V .0//Š F4..j //Œv

˙1
1 ; ��

and
v�1

1 H�.C6I .EC/�V .0//Š F4..j0//Œv
˙1
1 ; ��:

The degrees .s; t/ are given by jv1jD .0; 2/, j�jD .1; 2/, jj jD .0; 0/ and jj0jD .0; 0/.
The restriction associated to the inclusion of C6 in G24 maps j to j 4

0
.1C j0/

�3 .
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Proof This follows from [3, Section 4.2] after inverting v1 .

To compute the differentials, we will use the following observation.

Remark 3.3 There is a class ˛3 in Ext1;6
BP�BP

.BP�;BP�/ (see Ravenel [18, page 430])
such that d3.˛3/D �

4 . Further, ˛3 reduces to �v2
1 in Ext1;6

BP�BP
.BP�;BP�V .0//, so

�d3.v
2
1/D �

4 .

In general, for a 2–local BP–algebra spectrum E , the E–Adams spectral sequence
for any spectrum X is a module over ExtBP�BP .BP�;BP�/. There is a universal d3–
differential d3.˛3z/D �4zC˛3d3.z/. Further, if 2 annihilates E�.X /, this reduces
to d3.�v

2
1z/ D �4z C �v2

1d3.z/. If there is no �–torsion on the E3–term as in our
examples below, this gives a universal differential d3.v

2
1z/D �3zC v2

1d3.z/.

Lemma 3.4 Let G be a closed subgroup of GC . Let X be a K.2/–local spectrum
such that .EC/�X Š .EC/�E

hG
C . Then the K.2/–local, EC–Adams spectral sequence

computing ��X has E2–term isomorphic to H�.G; .EC/�/.

Proof We first prove that the E2–term is isomorphic to H�.GC; .EC/�X /. This can
be deduced directly from Barthel and Heard [1, Theorem 4.3]. Nonetheless, we sketch
the proof here. The assumption on .EC/�X implies that it is profree as an .EC/�–
module. An inductive argument using [13, Proposition 8.4] and [10, Proposition 2.4]
shows that

��LK.2/.E
^k
C ^X /Š Homc.Gk�1

C ; .EC/�X /;

which allows us to identify the E2–term as H�.GC; .EC/�X /. Now, using the fact
that .EC/�X Š .EC/�E

hG
C as Morava modules, (2-9) and Shapiro’s lemma imply that

H�.GC; .EC/�X /ŠH�.G; .EC/�/.

Lemma 3.5 Let X be a K.2/–local spectrum such that .EC/�X Š .EC/�E
hG24
C

as Morava modules. Then the K.2/–local, EC–Adams spectral sequence computing
��.X ^ V .0// has E2–term isomorphic to H�.G24; .EC/�V .0//. Further, in this
spectral sequence, the elements �k and v1�

k are d3–cycles for all k .

Proof The identification of the E2–term follows from Lemma 3.4 and the five lemma.
There are no d2–differentials, so all elements survive to the E3–term. Let �D0; 1. It fol-
lows from [2, Theorem 4.2.2], that d3.v

�
1�

k/D v10C�
1 �3p.j /�k�1 for p.j / 2 F4ŒŒj ��.

Suppose that p.j / is not zero. Then p.j /D j r p0.j / for r � 0 and p0.j / 2 F4ŒŒj ��

such that p0.j /� ` modulo .j / for some ` 2 F�
4

. Using the fact that the differentials
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are �– and v4
1–linear (since X ^V .0/ has a v4

1–self map), Remark 3.3 and the identity
j D v12

1 ��1 , we have

0D d3.v
10C�
1 �3p.j /�k�1/

D v12rC8
1 �3d3.v

2C�
1 p0.j /�

k�r�1/

D v12rC8C�
1 �6p0.j /�

k�r�1
C v12rC10

1 �3d3.v
�
1p0.j /�

k�r�1/:

Again, by [2, Theorem 4.2.2], H 3.G24; .EC/tV .0// is F4Œv1; ��–torsion-free in degrees
t � 6C 2� modulo .24/, so we can conclude that

�3p0.j /�
k�r�1

D v2��
1 d3.v

�
1p0.j /�

k�r�1/:

Since � D 0 or 1, the right-hand side is divisible by v1 , while the left-hand side is not,
a contradiction. Therefore, we must have p.j /D 0.

In the next two propositions, we let

R.�/DW ..�//Œˇ˙1; ��=.2�; �3/:

Proposition 3.6 Let X be as in Lemma 3.5. The E.1/–localization of the K.2/–local,
EC–Adams spectral sequence

E
s;t
2
D v�1

1 H s
�
GC; .EC/t .X ^V .0//

�
H) �t�sL1.X ^V .0//

satisfies
Es;t
1 ŠR.j /fx; v1xg=.2 �x; 2v1x/

for x in .0; 0/ and v1x 2 .0; 2/. Further, �8tL1.X ^ V .0// Š F4..j //fˇ
tg and the

edge homomorphisms

hW �8tL1.X ^V .0//! v�1
1 H 0.G24; .EC/8tV .0//

are isomorphisms.

Proof By Lemma 3.5 and naturality, Es;t
2 is isomorphic to v�1

1 H s.G24; .EC/tV .0//

and j k D v12k
1 ��k and v1j k are d3–cycles. By Remark 3.3, there are differentials

d3.v
2
1j k/ D �3j k and d3.v

3
1j k/ D v1�

3j k . This, together with the fact that the
differentials are v4

1–linear, determines all d3–differentials. The E4–term has a hor-
izontal vanishing line at s D 3. Therefore, there cannot be any higher differentials.
Letting x be the element detected by 1 2 H 0.G24; .EC/0V .0//, v1x the element
detected by v1 2H 0.G24; .EC/2V .0// and ˇt the element detected by v4t

1 , we obtain
the desired description of the E1–term. For degree reasons, �8tL1.X ^ V .0// Š

F4..j //fˇ
tg. That the edge homomorphisms are isomorphisms in degrees 8t follows

since v�1
1 H 0.G24; .EC/8tV .0//Š F4..j //fv

4t
1 g and h.j kˇt /D j kv4t

1 .

Remark 3.7 When X D V .0/, the class x can be described as the composite S0!

L1EhG24
C

1^e0
����!L1.E

hG24
C ^ V .0//, where the first map is the unit and e0 is the
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2

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Figure 2: This picture is both an illustration of the homotopy groups
��L1.E

hG24
C ^ V .0// and of the homotopy groups ��L1.E

hC6
C ^ V .0// .

For the former, a ı denotes a copy of F4..j // , and for the latter, it denotes a
copy of F4..j0// .

inclusion of the bottom cell. In ��V .0/.2/ , there is a relation 2v1e0 D �
2e0 for v1e0

detected by v1 2BP2V .0/ in the Adams–Novikov spectral sequence. This then implies
that 2v1x D �2x in ��L1.E

hG24
C ^V .0//, so

��L1.E
hG24
C ^V .0//ŠR.j /fx; v1xg=.2 �x; 2v1x� �2x/:

With some work, one can show that the relation 2v1x D �2x holds for arbitrary X

satisfying the condition of Lemma 3.5. However, this fact is not needed here.

Proposition 3.8 There is an isomorphism

��L1.E
hC6
C ^V .0//ŠR.j0/fy; v1yg=.2 �y; 2v1y � �2y/

for y in .0; 0/ and v1y 2 .0; 2/; see Figure 2. Hence, ��L1.E
hC6
2 ^ V .0// is 8–

periodic with periodicity generator ˇ . Further, the edge homomorphisms

hW �8tL1.E
hC6
C ^V .0//! v�1

1 H 0.C6; .EC/8tV .0//

are isomorphisms.

Proof We prove that j k
0

is a d3–cycle for all integers k . Then an argument similar
to that of Proposition 3.6 finishes the computation of the E1–term, where we let y be
the element detected by 1 2H 0.C6; .EC/0V .0// and v1y be the element detected by
v1y 2H 0.C6; .EC/2V .0//. The extension is obtained as in Remark 3.7.

The spectral sequence H�.C6; .EC/�/) ��E
hC6
C is multiplicative; hence, in this

spectral sequence, all elements of the form a2 are d3–cycles. Note that j0 lifts to
an invariant in H 0.C6; .EC/0/. This implies that d3.j

2r
0
/ D 0 and d3.j

2rC1
0

/ D

j 2r
0

d3.j0/. Hence, it suffices to prove that j0 is a d3–cycle. The restriction induced
by the inclusion of C6 in G24 , maps j to j 4

0
.1C j0/

�3 . By naturality, the element
d3.j

4
0
.1C j0/

�3/D 0. However,

d3.j
4
0 .1C j0/

�3/D j 4
0 .1C j0/

�4d3.1C j0/D j 4
0 .1C j0/

�4d3.j0/;

which implies that d3.j0/D 0.
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4 Some elements in ��L1LK.2/V.0/

We now turn to examining the spectral sequence

E
p;q
1
.L1SS1/D �qL1.Ep ^V .0//

L1SS1

DDH) �q�pL1.E
hS1

C
C ^V .0//:

The idea is to use knowledge of the differentials in the spectral sequence

E
p;q;t
1

.L1SS2/Dv
�1
1 Extq

Z2ŒŒS
1
C ��
.Cp; .EC/tV .0//

L1SS2

DDH) v�1
1 H pCq.S1

C :.EC/tV .0//

to deduce information about the differentials of L1SS1 .

Lemma 4.1 In the spectral sequence L1SS1 , we have E
3;8t
2
Š F4fˇ

tg.

Proof From Section 3, we have that

E
p;8t
1
Š

�
F4..j //fˇ

tg; p D 0; 3;

F4..j0//fˇ
tg; p D 1; 2:

From Remark 2.7 and the fact that the edge homomorphisms are isomorphisms in these
degrees, we obtain a commutative diagram

E
0;8t
1

.L1SS1/
d1
//

Š

��

E
1;8t
1

.L1SS1/
d1
//

Š

��

E
2;8t
1

.L1SS1/
d1
//

Š

��

E
3;8t
1

.L1SS1/

Š

��

E
0;0;8t
1

.L1SS2/
d1
// E

1;0;8t
1

.L1SS2/
d1
// E

2;0;8t
1

.L1SS2/
d1
// E

3;0;8t
1

.L1SS2/

where ˇ4t maps to v4t
1 . Theorem 1.2.1 and Corollary 1.2.3 of [3] give a computation

of the spectral sequence L1SS2 . In particular, it follows immediately from these
results that

E
3;0;8t
2

.L1SS2/Š F4..j //fv
4t
1 g=.j /Š F4fv

4t
1 g:

The claim follows.

Proposition 4.2 If k ��3 modulo 8, then �kL1.E
hS1

CC ^V .0//Š F4 .

Proof We use the spectral sequence E
p;q
r D E

p;q
r .L1SS1/. From Proposition 3.6

applied to X D E0 and X D E3 , and from Proposition 3.8, it follows that for r D 1, 2

or 3 and for any p ,

E
p;8t�r
1

D �8t�r L1.Ep ^V .0//D 0:

By Lemma 4.1, E
3;8t
2
Š F4fˇ

8tg, which proves the claim.
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Proposition 4.3 If k ��3 modulo 8, then �kL1.E
hG1

CC ^V .0//Š F2 .

Proof It follows from Remark 2.8 that

v�1
1 E�;�1 .S1

C ;V .0//ŠW ˝Z2
v�1

1 E�;�1 .G1
C ;V .0//:

Since �kL1.E
hS1

CC ^V .0//ŠF4 , there is a unique s0�0 such that Es0;kCs0
1 .S1

C ;V .0//

is nonzero, and Es0;kCs0
1 .S1

C ;V .0//ŠF4 . Therefore, Es;kCs
1 .G1

C ;V .0//D 0 if s¤ s0

and Es0;kCs0
1 .G1

C ;V .0//Š F2 .

Definition 4.4 Define the class x 2 ��3L1.E
hG1

CC ^V .0// to be the nonzero element.

Recall that
GC ŠG1

C Ì Z2:

Let � be a topological generator of the subgroup Z2 in GC . There is a cofiber sequence

(4-1) LK.2/S !EhG1
C

C
��1
���!EhG1

C
C :

We can now prove our main result.

Proof of Theorem 1.3 Since LK.2/S^V .0/'LK.2/V .0/ and localization preserves
exact triangles, the fiber sequence (4-1) gives rise to a fiber sequence

(4-2) L1LK.2/V .0/!L1.E
hG1

C
C ^V .0//

��1
���!L1.E

hG1
C

C ^V .0//:

Since � acts by automorphisms and the only automorphism of F2 is the identity, the
map � � 1 acts trivially on �8t�3L1.E

hG1
CC ^ V .0//. Therefore, in the long exact

sequence on homotopy groups, the class ˇtx is in the kernel of � � 1, and the image
of ˇtx under the map L1.E

hG1
CC ^V .0//!†L1LK.2/V .0/ is nonzero. We denote

it by �2ˇtx .
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