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AGNES BEAUDRY

ABSTRACT. Let V(0) be the mod 2 Moore spectrum and let C be the super-

singular elliptic curve over F4 defined by the Weierstrass equation y2 +y = z3.

Let Fe be its formal group law and E¢ be the spectrum classifying the defor-
mations of Fg. The group of automorphisms of F, which we denote by Sc¢,
acts on E¢. Further, S¢ admits a norm whose kernel we denote by Sclj. The
cohomology of S} with coefficients in (E¢)«V (0) is the Ez-term of a spectral

sequence converging to the homotopy groups of Egsé AV (0), a spectrum closely
related to LK(Q)V(O). In this paper, we use the algebraic duality resolution
spectral sequence to compute an associated graded for H*(S}; (Ec)«V (0)).
These computations rely heavily on the geometry of elliptic curves made avail-
able to us at chromatic level 2.
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1. INTRODUCTION

This paper can be read as a sequel to [2]. For this reason, this section builds
upon the deeper discussion of [2, §2]. We give an overview of the tools that were
not introduced in the prequel and state our results. The reader who wants more
detail on background and motivation should refer to [2].

1.1. Background. Throughout this paper, I will work at the prime p = 2. Recall
that Morava K-theory K (2) is the unique ring spectrum with coefficients

K(2). = Fafvy],

for v9 in degree 6, and with formal group law the Honda formal group law Fy of
height 2. The group S, is the group of automorphisms of Fy over Fy. The extended
Morava stabilizer group Gy is the extension of Sy by the Galois group. Morava
E-theory FEs is the spectrum which classifies isomorphism classes of deformations
of F5. Its homotopy groups can be described as follows. Let ¢ be a primitive third
root of unity and let

W = WOF4) = ZQ[C]
be the Witt vectors on F4. Then
(1.1) (Ea)w = Wlua]Ju™"],

where u; has degree zero and u has degree —2. The group G2 acts on the spectrum
FEs. For any finite spectrum X, there is a weak equivalence

L)X ~ EY* A X.

Further, for closed subgroups G of Gy and finite spectra X, there are descent
spectral sequences

(1.2) ESt = H*(G, (Ey): X) = m_s(EN A X),

The groups Sy and G, both admit a norm induced by the determinant of a general
linear representation of S;. The elements of norm one form normal subgroups
denoted S} and G} respectively. Further,

(1.3) Sy = S} % Zy,
and
Gg = G% X Z2.
The group S, has a unique conjugacy class of maximal finite subgroups, which

can be described as follows. The automorphism of Fy given by [—1]g, (x) generates
a central subgroup Cs. The power series

w(z) =(x
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generates a subgroup of order three in Sy, denoted C'3. Define

06 = 02 X 03.
This group is contained in a subgroup
G214 := Qg x (s

for a quaternion group @g. The group Ga4 is a maximal finite subgroup of Ss.
The subgroups Cg and Gay4 are contained in S3. However, S has two conjugacy
classes of maximal finite subgroups. A representative for the other conjugacy class
is given by
G/24 = 7TG247T71
for 7 a topological generator of Zs in (1.3).
The following result is Theorem 1.8 and Theorem 1.10 of [2].

Theorem 1.4 (Goerss, Henn, Mahowald, Rezk). There is an exact sequence of
complete Si-module
0—)%38—%%28—2)%18—%%03Z2—>0,

where Cgo = Zg[[S%/GQd], %1 = ng = ZQ[[S%/CG]] and %0 = Z2HS%/G/Q4]] Further,
for any finitely generated complete Sy-module M, there is a first quadrant spectral
sequence,

EpY = Ext!

The differentials have degree

[S%]](%Pa M) = Hf"—q(Sé, M)

. P +7,q—r+1
d, : BP9 — prima—r+l,

and
HY(Ga4; M) if p=0;
EPT~ ¢ HYCe; M) ifp=12;
HY Gy M) if p=3.

The exact sequence of Theorem 1.4 is called the algebraic duality resolution
because it satisfies a certain duality. This is described in Theorem 1.9 of [2]. The
associated spectral sequence is called the algebraic duality spectral sequence.

Let V(0) be the mod 2 Moore spectrum. It is defined by the cofiber sequence

S 28— V().
The goal of this paper is to compute the E.-term of the algebraic duality spectral
sequence when M is the module (E2),.V(0). We obtain an associated graded for
H*(S}; (E2).V(0)). By taking the Galois fixed points of the E,-term, one obtains
an associated graded for the cohomology H*(G3; (F2).V (0)). Therefore, this com-
putation gives the Fa-page of the descent spectral sequence (1.2) when G = G4 and
X =V(0), that is
1
H*(GL; (B2),V(0)) = m_ s EL®2 AV(0).
Because there is a fiber sequence
hG} hG}
L@V (0) = Ey > AV(0) = Ey > AV(0),

computing H*(S3; (E2).V(0)) is a first step for computing m, L (2)V (0).
The computations will be done using the fact that, at chromatic level n = 2,
one can replace Morava K-theory K (2) by a spectrum K¢ whose formal group law
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is the formal group law of a super singular elliptic curve C. This allows us to use
the geometry of elliptic curves to get a better understanding of the action of the
Morava stabilizer group So on (Fs).. Before stating the results, I will explain this
point of view.

Let C be the unique super-singular elliptic curve over F4, with Weierstrass equa-
tion

(1.5) C:y? —y=2a>

Let F¢ be the formal group law of C. It satisfies
[~2F. (2) = 2™

Let K¢ denote the complex oriented ring spectrum whose ring of coefficients is
(Kc)e = Fafu™],

where u is in degree —2, and whose formal group law is F¢. In this paper,
E¢ := E(F4, Fe)

will denote the spectrum which represents isomorphism classes of deformations of
Fe. There is an isomorphism
(EC)* = (EQ)*
(Note that the isomorphism cannot be realized by a map of E-ring spectra. Such
a map would induce an F4-isomorphism on the formal group laws Fe and the 2-
periodic extension of F,. However, these formal group laws are not isomorphic over
F,. They become isomorphic after passing to the algebraic closure.)
Let S¢ be the group of automorphisms of F¢ over Fy,

SC = Aut(Fc).

The groups Se and S¢ are isomorphic. An explicit isomorphism is constructed in
Theorem 3.2. The group S¢ admits an action of the Galois group and the group
Ge is the extension of S¢ by this action. The group G¢ acts on the deformations.
By the Goerss-Hopkins-Miller theorem [8, §7], it acts on E¢ by maps of E-ring
spectra.

The isomorphism of Section 3 does not extend to an isomorphism of the groups
G2 and Ge¢. In fact, these groups are not isomorphic. However, over an algebraic
closure of Fy, the formal group laws F5 and F¢ are isomorphic. Therefore, the
Bousfield classes of K(2) and K¢ are the same. Their localization functors are
weakly equivalent, so that

LK(Q)X ~ LKCX-

It follows from the work of Devinatz and Hopkins in [7] that for X a finite
spectrum
Lx.X = ENS A X.
Further, for any closed subgroup G of G¢ and any finite spectrum X, there is
a spectral sequence analogous to (1.2). Therefore, for any finite X, there is a
convergent spectral sequence

E;’t = H*(Ge, (Ec) X) = m—sLio (X) = m_s Ly (2)(X),

where
(Ec)*X = m. Lk, (EC A X)
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The groups S¢ and G¢ also admit a norm induced by a general linear represen-
tation of S¢. The groups S} and Gé are defined to be the norm one subgroups.
Further,

SC . Sé X ZQ,
and
GC = Gé X ZQ.

Since S¢ is isomorphic to Se, the results of [2] also hold for S¢. In particular,
the resolution of Theorem 1.4 can be constructed using S¢. Further, the algebraic
duality resolution gives rise to a spectral sequence
(L6)  EPT=Ext? o, (6. (Ee).V(0) = HP"(Sk: (Ee).V(0).

This spectral sequence is isomorphic to the spectral sequence of Theorem 1.4. In
this paper, we compute the Ey-term of (1.6).

The main advantage of using S¢ is that the maximal finite subgroup of S¢ corre-
sponds to those automorphisms of Fi which are induced by automorphisms of the
elliptic curve C. For the super-singular curve, Tate has shown that the natural map

p: End(C) ® Zo — End(Fe).

is an isomorphism (see [3] or [19]). Therefore, the group Aut(C) injects into Sc.
Further,

(1.7) Aut(C) = Gay,

so that Aut(C) is a choice of maximal finite subgroup of S¢. For the remainder of
this paper, we let Ga4 denote Aut(C) in Sc.

Using level three structures, Strickland has computed the action of Ga4 on (E¢)..
Strickland’s results are used heavily in the computation of (1.6). They are not in
print and will be described in Section 2.4.

1.2. Statement of Results. In order to state the results, we will describe the
E;-term of (1.6). It follows from (1.1) that

(Ec)«V(0) = Falfua]][u"]

where u; has degree 0 and u has degree —2. Let v1 = uju~! in (E¢)«V(0). Let
Fg, be the graded formal group law of E¢. Then

2]y, (z) = viz® 4 ... mod (2).
The element v is invariant under the action of S¢ on (E¢).V(0) that is,
vy € H(SE; (Ee)V(0)).
Let 8 be the Bockstein homomorphism associated to the exact sequence
0 — (Ba)s = (Ea)s — (E2),V(0) = 0.

Let hy = B(v1) and vy = u~3. Then

H* (Ces (Ee)oV(0)) 2 Fal[udlfor, v, 1]/ (05 02 = u?),
for a class h € H'(Cs; (Ec)«V (0)) satisfying hy = hvy. In particular,

H°(Cs; (Ee):V(0)) = Falluil][vr, v3 )/ (v o} = uf).

Therefore, a set of Fy[v;] generators of H*(Cs; (Ec).V(0)) is given by

{hkvg}neﬂ
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The cohomology Gay is harder to describe. It is related to the cohomology of the
Hopf algebroid classifying Weierstrass curves over F4 with their strict isomorphisms
(see [1]). In particular, the Ga4 fixed points are related to modular forms modulo
2. In fact,

HO(Ga24, (Ec).V(0)) = Fa[[f]][or, A/ (GA = v1?),

where vy as defined above is the Hasse invariant, A is the determinant and j is
the j-invariant. The higher cohomology is described in Section 4 and is depicted in
Figure 4.1. A set of F4[v1] generators for H(Gay, (Ec)«V (0)) is given by

{An}n€Z~

Theorem 1.8. The algebraic duality resolution spectral sequence converging to
H*(S}, (Ec)«V(0)) collapses at the Ea-term. The spectral sequence is a module
over Fyfvy, hq]. There exist Fyqlv1]-generators a,, € E?’O, b, € E%’O, Cn € Ef’o and
dy € EY° with

bp =cp =05 mod (vq)

anp =d, =A" mod (vy)
and such that, for k >0 and t € Z,

62" i = 2k(1 + 2¢);
di(a,) :{ o b e i (1 +2t);
v} o (1420) n=25(3 + 4t);
dy (bn) = U%'2k+101+2k+1+t2k+3 n=1+ ok+2 =+ t2k+3;
0 otherwise.

3(2F 141
dl(Cn) = 1}1( + )ko(l-l-Qt) n=1+ ok+1 + 9k+2 + t2k+3;
0 otherwise.

A differential dy : EP? — EPYY is non-zero if and only if it is forced by hy-
linearity. All differentials d,. : E?? — EPT14 for r > 2 are zero, so that Ey = E.

It is worth mentioning here that the related computation of the FEs-page of the
Johnson-Wilson FE(2)-local Adams-Novikov spectral sequence converging to LS
was done by Shimomura and Wang in [17]. Their work is impressive, although
it is hard to understand and verify. Our computations were done independently.
However, historically, they depend on the work of Shimomura and Wang. Indeed,
results similar to those of Theorem 1.8 can be extracted from [17], and it is using
Shimomura and Wang’s computation that Mahowald conjectured the existence of
the duality resolution for the K (2)-local sphere.

1.3. Organization of the paper. In Section 2.1, we review the deformation the-
ory of formal group laws. In Section 2.2, we recall how the action of the group of
automorphisms of a formal group law acts on the theory classifying its deforma-
tions. In Section 2.3, we describe the universal deformation Cy; of the super-singular
elliptic curve C. This choice of deformation is due to Strickland. This allows us
to define E¢. In Section 2.4, we describe the group of automorphisms of C and
give explicit formulas for its action on E¢. The author learned these results from
unpublished notes of Strickland. The proofs given here are either his or constructed
using his results.
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Section 3 is dedicated to describing the structure of S¢. In Section 3.1, we give
an explicit isomorphism between the group of automorphisms of the Honda formal
group law Sy and the group S¢. In Section 3.2, we recall the standard filtration
on S¢. In Section 3.3, we give the information about the action S¢ on (E¢). that
will be used in the computation of H*(S}, (Ec).V(0)). The proofs are postponed
to Section 8.

The goal of Section 4 is to introduce the algebraic duality resolution spectral
sequence (ADRSS) for S¢ and to give the information necessary to begin the com-
putation. In Section 4.1, we recall the construction of the ADRSS that was given
in [2]. The ADRSS is not multiplicative, but it has some nice properties which
we describe in Section 4.2. In Section 4.3, we give a detailed description of the
FE1-term. The discriminant A of the curve Cy has useful linearity properties which
are given in Section 4.4.

The bulk of the paper is the computation of the FE .-term of the ADRSS with
coefficients in (E¢).V(0). This is done in Section 5. In Sections 5.1, 5.2 and 5.3,
we compute the differentials d; : Ef’o — Ef“’o. In Section 5.4, we compute
the differentials d, : EP? — EP™ for ¢ > 0. In Section 5.5, we prove that all
differentials d,. : EP4 — EP-! for r > 2 are zero.

This paper has three appendices. Section 6 describes some projective resolutions
which are used in the above computations. These are Cs-equivariant analogues of
some of the classical projective resolutions which can be found in [6]. Although
we do not give references, we believe these results are folklore. Section 7 describes
the v1-Bockstein spectral sequence whose construction can be found in [6, §1]. We
also use this spectral sequence to compare the cohomology of H*(Gay, (Ec).V (0))
and H*(Ay4, (Ec)«V(0)), where Ay = Ga4/C5. This comparison is used in the
computations of Section 5. In Section 8, we describe the action of S¢ on (E¢)..
First, we give formulas for the minus two series of C and Cy. We then use these
formulas to give estimates for the action.

1.4. Acknowledgements. I thank Paul Goerss, Hans-Werner Henn and Peter
May for their unfaltering support. I thank Neil Strickland for his unpublished
notes, which were crucial to these computations. Finally, I thank Mark Mahowald
whose insight continues to inspire me.

2. MORAVA E-THEORY AND ELLIPTIC CURVES

In this section, I will explain how the spectrum F¢ arises from deformation theory
of the super singular elliptic curve C. I will explain how this is used to compute the
action of the automorphisms of C on the coefficients (E¢)., results which are due
to Strickland.

2.1. Deformations. Let k be a perfect field of characteristic p > 0, and I" be a
formal group law of height n over k. Let R be the category of complete Noetherian
local rings with continuous homomorphisms. Let B € R with maximal ideal m and
projection 7 : B — B/m. Then Defr(B) is the groupoid whose objects are pairs
(G,1i) where G is a formal group law over B and i is an isomorphism

i:k— B/m
such that
.G = ,TI.
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A morphism between two pairs (G, %) and (Ga, i) with the same structure morphism
i is an isomorphism f : G; — G5 of formal group laws such that 7, f induces the
identity on 4,I". These are called x-isomorphisms. This defines a functor

Defr(—) :R—G

where G denotes the category of groupoids. The Lubin-Tate theorem describes the
representability of this functor.

Theorem 2.1 (Lubin, Tate). There exists a complete local ring R(k,T) and a
formal group law Fr over R(k,T') that represents the functor moDefr(—) in the
following sense. For B in R,

Homg (R(k,T), B) 2 mo(Defr(B)).

Given a representative (G,1) of a x-isomorphism class in wo Defr(B), there is a
unique ring homomorphism ¢ : R(k,I') — B and a unique x-isomorphism

f:0"Fr — G.
Further, if W (k) denotes the Witt vectors on k, then
R(k,T) 2 W (k)[[u1, ... us]]
Let u be in degree —2. Then
Fp = uFr(u'z,u"'y)
defines a graded formal group law over
E(k,T), := R(k,T)[u*"].

This gives E(k,T"). the structure of a Landweber exact MU,-module (see, for ex-
ample, [14, §6]). The associated homology theory is complex oriented and two
periodic. It is represented by a ring spectrum E(k,T") such that

E(k, 1) = W (k) [[u, - - ., un]][ut].
By the Goerss-Hopkins-Miller theorem, E(k,T") is an E-ring spectrum (see [8]).

Definition 2.2. Let Ec = E(F4, F¢), where Fe is the formal group law of the
super-singular elliptic curve C defined in (1.5).

2.2. The action of Aut(I'). The group Aut(I') acts on R(k,I') as follows. An
element v € Aut(I') is a power series in k[[z]]. Let ¢ in R(k,T")[[z]] be a lift of ~.
Define a new formal group law by

Fy(x,y) = g~ Fr(g(x), 9(y))-
Then Fj is a deformation of I' over R(k,I"). By Theorem 2.1, there exists a unique
ring isomorphism
(2.3) ¢y R(k,T') = R(E,T)

and a unique *-isomorphism
fq 1 (py)Fr — Fy
which classify Fy. If h is another lift of v, then
hilgfg : ((ﬁ'y)*FR — Fp

is a x-isomorphism. Therefore, ¢, is independent of the choice of lift g. This gives
an action of Aut(T") on R(k,T).
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To extend this to an action on E(k,T')., let f, be the composite

fq
(¢p)«Fr =5 F, % Fg.
Define

(2.4) 6 () = 11 (0.
This is extends the action Aut(T") to E(k,T'). (see [14, §6]). By the Goerss-Hopkins-
Miller theorem, this action can be realized through maps of F.,-ring spectra on
E(k,T) (see [8]). Further, Gal(k/F,) acts on W (k); hence, it acts on the coefficients
E(k,I),. If ' is fixed by Gal(k/F),), this extends the action of Aut(I") to an action
of

Aut(T") x Gal(k/Fp).

2.3. The super-singular elliptic curve. Elliptic curves over fields of character-
istic p > 0 admit a theory of deformations which is analogous to that of formal
group laws. In fact, for the super-singular elliptic curve, there is an equivalence of
groupoids

(25) Defpc (B) ~ Defc(B),
which can be explained as follows.

Let C be the formal group of the elliptic curve C. The map which sends a
deformation of F¢ to its associated formal group is an equivalence of groupoids

(2.6) Defp, (B) ~ Defs(B).
For super-singular curves over fields of characteristic p > 0, there is an isomorphism
(2.7) C=cp],

where C[p>°] denotes the p-divisible subgroup of C. Finally, the Serre-Tate Theorem
relates the deformations of C[p®°] to the deformations of the curve C (see [15, §2.9]).

Theorem 2.8 (Serre,Tate). Let B be in R. There is an equivalence of groupoids
Defc (B) >~ Defc[poc](B),
which sends a deformation E/B of C to its p-divisible group E[p™].

Theorem 2.8 together with (2.6) and (2.7) imply (2.5). For the super-singular
curve

C:y?—y=2a3,
these facts are made concrete by the following theorem.
Theorem 2.9. The formal group law of the elliptic curve
Cu:y? + 3uzy + (ud — 1)y =23
defined over W([u1]] is a universal deformation of Fc. This specifies an isomorphism
(Ec)x 2= Wilu]][u™],
and a formal group law
(2.10) Fp, = uFe, (u o, uty),

where Fe,, denotes the formal group law of the curve Cy .
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This choice of universal deformation Cy is due to Strickland. In order to prove
Theorem 2.9, we will use the following facts about isomorphisms of Weierstrass
curves. Let € be an elliptic curve defined over R by a Weierstrass equation

(2.11) E: P +arzy + asy = 2 + asx® + asx + ag.

If & is a Weierstrass curve with coefficients aj, an isomorphism f : &€ — &’ is given
by a change of coordinates of the form

(2.12) (z,y) = (2" 4+ 7,3y + sz’ + 1),

where (I, 7, s,t) is a tuple in R and [ is a unit (see [18, §I1I]). This forces the following
relations on (1,7, s,t):

la} = ay + 2s
1%d),

PPaly = az +raj + 2t

2

ag —say +3r —s

1*a), = ay — saz + 2raz — (t +rs)a; + 3r* — 2st

1°ay = ag + ras +r?ay +r® —taz — t* — rta.
Proof of Theorem 2.9. The equivalence (2.5) implies that there exists a ring R and
an elliptic curve Cr whose formal group law Fg,, is a universal deformation of Fp.

By the Lubin-Tate theorem, there is a non-canonical isomorphism R = W[[u4]].
The curve Cy is a deformation of C, hence there is a ring homomorphism

¢ : R— W([uy]]
such that
(2.13) 9*Cr = Cy.
It is sufficient to show that ¢ is an isomorphism. For a complete local ring B with
maximal ideal mpg, the tangent space of B is defined by
B = mp/m%.

A morphism of power series rings is an isomorphism if and only if it induces an
isomorphism on tangent spaces. Let 7g and Ty denote the tangent spaces of R and
W{[u1]] respectively. Then 7r and 7y are Fy vector spaces of the same dimension
and, therefore, the induced map
T - TR = TW,
is an isomorphism if and only if it is surjective. The curve Cg is given by a Weier-
strass equation
y2 + a1y + a3y2 =2%+ a2x2 + asx + ag,

and the coefficients of the Weierstrass equation of ¢*Cg are ¢(a;). The isomorphism

(2.13) is given by a change of coordinates of the form (2.12), where (I,r,s,t) are
elements of W[[u1]] and [ is a unit. This imposes the relation

¢*(a1) = 17 (3uy + 2s).
Hence

#*(a1) = uy + 25 mod m¥,
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where 5 € F4y. But Fy is in the image of the induced map
T¢ - TR — Tw,
which implies that 74 is surjective. O
2.4. The automorphisms of C. In unpublished notes, Strickland has computed
the action of the group Aut(C) on (E¢).. We explain his results in this section.
The relations on the coefficients a; for an isomorphism of Weierstrass curves £
over R can be used to compute the automorphisms of £. For the super-singular
curve C, this is done in [18, Appendix A]. I give the results here.
Fix a primitive third root of unity ¢ € F4. For the curve C over Fy4, the group
Aut(C) is generated by the elements
w = (¢%,0,0,0),
Z‘ :: (17 17 17 C)?
The subgroup C3 := (w) is cyclic of order three, so that w™! = w?. The element i
satisfies 2 = —1. Let
j = wiw?,

k= w?iw.

Then 5 = k, so that ¢ and j generate a normal subgroup isomorphic to the quater-
nions Qg and
Aut(C) = Qg x Cs.
An automorphism of C induces an automorphism of Fg. This gives a map
p: Aut(C) — Aut(Fe),
which Tate has shown is injective (see [3]). Define
Gayq := p(Aut(C)).

Let v be in G4 and ¢, be as in (2.3). The curve ¢>Cy is a deformation of C, so
there exists a unique isomorphism of elliptic curves

f’Y:(é?;CU _>CU7

which covers «. Strickland has constructed ¢, and the lifts f, for the generators w
and 4 by using level three structures on the curves C and Cy. First, he constructs
isomorphisms ¢,, and ¢; of (E¢)o given by

$u(¢) =¢ ?i(¢) =¢
Pu(u1) = Cuy ¢i(u1) = Zii—i

Let a; be the coefficients of Cy and a; = ¢,(a}) the coefficients of ¢>Cy. The
relations on the als determine the tuples (1,7, s,t):

fu=1(¢*,0,0,0)
C—¢ o 1—ud _Cup—1_ ud—-1 5
i = ) ,3 .3 1— 1— )
/ <u1 =1 (=1 up =17 (ug = 1)* (=0 + {1 =)
Note that ¢? — ¢ is a square root of —3. This choice is unique up to the action

of the Galois group, which preserves C. The maps f, and f; lift w and ¢ and the
isomorphisms ¢,, and ¢; generate the action of Go4 on (Es)g.
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Finally, if F¢;CU denotes the formal group law associated to the curve ¢2Cy,
then

F¢§CU = d)ikyFCU
and the induced isomorphism on formal group laws satisfies f(0) = 1. By (2.4),

¢ —<

ul—l'

(2.14) Pu(u) = Cu $i(u) = u

3. THE MORAVA STABILIZER GROUP

The Morava stabilizer group S, is the group of automorphisms of the Honda
formal group law F5, which is the p-typical formal group law over F, specified by
the series

2]p, (2) = ™.
The standard presentation for Ss is the non-commutative extension

Sy = (W (S) /(S? = 2,aS = Sa”)) ™,

where S is the automorphism S(z) = 2% and a € W (see [13, Appendix A2] or [2]
for more details.) In this section, I will specify an isomorphism So 2 S¢, whose
construction I owe to Henn. I will also recall some of the key properties of the
structure of the group So, which transfer to properties of S¢ via this isomorphism.

3.1. The isomorphism of Sy and S¢. As opposed to the Honda formal group
law, it is the [—2]-series of the formal group law Fr which has a nice presentation.
The following result is proved in Proposition 8.11 of Section 8.

Lemma 3.1. Let C be the super-singular elliptic curve defined by (1.5). If Fc is
the associated formal group law, then

[~2pe (2) = *.

The curve C and its formal group law F¢ are defined over Fy. Therefore,

T(z) = z?
is an endomorphism of F¢. Lemma 3.1 implies that T'(T(z)) = [—2](x). The
element w defined in Section 2.4 induces the isomorphism

w(z) =(x

of Fe, so that wT = Tw. This shows that
W(T) /(T? = —2,wT = Tw’) C End(F¢).
By Proposition 21.8.7 of [10], this must be an equality. Therefore,
Se = (W(T) /(T? = —2,wT = Tw?)) " .

Let o be the Frobenius element in Gal(IF4/Fs). The action of Gal on W induces an
action on S¢ defined by
a+ bl — a” +07T.
In [2], we constructed an element o in W* defined as
12w
==

«
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sothat a =1+ wT? +T*4 ... and
aa? = —1.
Theorem 3.2. The groups Sy and S¢ are isomorphic.

Proof. Each element v € S¢ can be expressed uniquely as a + bT for a and b in W
and a a unit. On the other hand, the elements of S admit a similar representation
as a + bS. The map S¢ — So,

a+ 0T — a+b(al),

is an isomorphism. O

3.2. The filtration and the norm. Theorem 3.2 implies that all the results of [2]
can be restated for the group S¢ instead of S,. Here, I briefly review those results
which will be important for the computations of this paper.

As in [2], any element v € S¢ can be expressed as a power series

00
Y= Z a,T",
n=0

where the a;’s satisfy the equation 2* —z = 0 and ag # 0. Let Fy/5S¢ := Sc. For
n >0, let

(3.3) Fo/oSe:={y€Sc|y=1 mod T" }.
Define
SC = F1/2SC-

Then S¢ is the 2-Sylow subgroup of S¢. This filtration is compatible with the 2-adic
filtration on W*. Further, {F}, /2S¢ }»>0 forms a system of open subgroups and S¢
is a profinite topological group.

Recall the following result follows from Theorem 2.29 of [2].

Proposition 3.4. The subgroup generated by Go4, ™ and « is dense in Sc.

The group S¢ acts on End(F¢) by right multiplication. This gives rise to a
representation p : S¢ — GLo(W), given by

pla+bT) = (gb" alz,) .
The restriction of the determinant to S¢ is given by
det(a + bT') = aa® + 2bb°.
Therefore, the determinant induces a map det : S¢ — Z5. The norm is defined as

the composite
det

N:Se — Z5 — L3 J{£1} = Zs.
The norm is split surjective. Indeed, let
=1+ 2w.

Then det(m) = 3 projects to a topological generator of Z /{£1}. The subgroup S}
is then defined by the short exact sequence,

15 SL—Se &5 ZF {1} > 1,
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and
Se 2S¢ % 25 J{*1}.
Note that ZJ /{£1} = Z is torsion-free; hence, Ga4 is a subgroup of S.
The following result was shown in Lemma 2.27 of [2], based on results of [4].

Proposition 3.5. The group S¢ contains a unique conjugacy class of mazximal
finite subgroups isomorphic to Gay. Further, S} contains two conjugacy classes of

maximal finite subgroups, represented by Goy and Ghy = nGaym 1.

3.3. The action of the Morava stablizer group. In order to compute the
cohomology of Se, it is necessary to understand its action on (E¢).. The action of
the elements of G'o4 was computed by Strickland, and his results were explained in
Section 2.4. By Proposition 3.4, it thus suffices to understand the action of a and
7w on (E¢)s to approximate the action of any element of S¢ on (E¢)..

A concrete method for approximating the action of S¢ on (E¢). was developed
n [11]. We describe it in Section 8. We state the key results here and prove them
there.

Theorem 3.6. For v in S¢, there exists to(vy) in (E¢)y and ti(y) in (Ec)o such
that

¢’Y(u) = t0(7)u7

¢~ (u1) = to(y)ur +

In particular, modulo (2),
O (u1) = to(y)u,
b~ (u) = to(y)u.
Therefore, v1 = uyu~" is fized by the action of S¢ modulo (2).
Theorem 3.7. Let y =1+ .2 a,T" be in F1/5Sc. Then
to(y) =1 mod (2,v1),
so that ¢, =id mod (2,v1). Fory = 14aT?+...in Fy/9Sc, modulo (4, 202, v10),
to(y) = 1+ 2as + 2a3uy + (ag + a)u’ + azul + azuf + (az + a3 + a4 + a?)ul.
and
t1(y) = a3u; mod (2,v}).
Ify=1+a,T*+ ... isin Fy /2S¢, then
¢, =id mod (2,0Y).
We will also use the following result. Recall that the action of [—1]g.(z) € S¢
and w € (3 is given by
¢—1(ur) = uy, bu(u1) = Cua,
¢-1(u) = —u, bu(u) = Cu,
where ( is a primitive third root of unity. Hence,

(Be)g® = Wllu]] = W[ua]]” = W[[ui]].
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Lemma 3.8. Let v in S¢ be an element which commutes with w in C3. Then
to(y) € W{[ui]].
Proof. Since yw = w7y, we have
Dry © Pu(u) = o © P (u).
By (2.14), ¢.,(u) = Cu. This forces
Pu(to(v)) = to(7)-
Therefore, to(7) is in W[[u;]]¢?, where the action of C3 is the W-linear map deter-
mined by ¢,,(u1) = uy. This implies that to(y) € W[[u3]]. O
We now apply these results to study the action of
a=1+wl? mod T
Lemma 3.9. The unit to(c) is an element of (Ec)§®. For ey and e in (Ec)oV (0)°e,
tola) = 14 ud + ¢oué mod (2),
and for vy = u™3
Palv2) = v2 + 15 + vy 'vfe mod (2).
Further
bo = Po-1  mod (2,07).

Proof. The element « is in W. Therefore, it commutes with w. Lemma 3.8 implies
that to(7) is in (Ec)oV (0)% = W[[u]]. The identities for to(a) and ¢ (v2) follows
from Theorem 3.7, using the fact that, for a, the coefficient a; = w and ag = 0.
Finally, since a? € Fy /2S¢, it follows from Theorem 3.7 that ¢,2 is the identity
modulo (2,v7). Then, the claim follows from the fact that ¢,-1 = ¢, and that
(rba? = ¢a © ¢a O

Lemma 3.10. Let m = 1+ 2w. Then
¢r =id mod (2,u?).

Proof. This follows from Theorem 3.7 since m € Fy/5S¢ and, for 7, az = w. (I

4. THE ALGEBRAIC DUALITY RESOLUTION SPECTRAL SEQUENCE

4.1. Preliminaries. The results in the following theorem were shown in [2] for the
group S3. I restate them here for the group S¢. The construction of the resolution
is due to Goerss, Henn, Mahowald and Rezk. The descriptions of the maps 9; and
0> are due to the author and Henn.

Theorem 4.1. Let Zo be the trivial Sé-module. There is an exact sequence of
complete S(lj-modules

0—)%36—3>(526—2>%1 8—1><50i>Z2—>07

where %O = ZQ[[S}:/G24]], %3 = Zg[[Sclj/G/%l]] and %1 = (gg = ZQHS(lj/CGH Let e be
the unit in Zs[[St]] and e, be the resulting generator of €,. The maps 9, can be
chosen to satisfy:

(i) 01(e1) = (e — a)eq,
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(ii) Do(e2) = Oey for © € Zs[[SE]] such that
O=c+a mod (2,(1S})?).

Further, there are isomorphisms of St-modules g, : €, — 6, and an ezact sequence

0% %% % a e 57,50
such that
0 G2ty PGy 7, 0
AN
0 G- G =, 0

is an isomorphism of complexes, and the map 0% : €5 — €» is given by
O4(ez) =m(e+i+j+k)e—a ) te.

The duality resolution gives rise to a spectral sequence which computes the
cohomology of Sé. Indeed, let M be a finitely generated complete Sé—module.
There is a first quadrant spectral sequence,

(4.2) Bt = Ext] o (6, M) = HPT4(SE, M).

[Se
The differentials in (4.2) have degree

d, : EP? — pptma-rtl
and

HY(G2a, M) if p=0;
EPI>~{ HI(Ce, M) ifp=1,2;
HI(Gly, M) if p = 3.

4.2. Some extra structure. In our computation, we will need to use some addi-
tional structure in the algebraic duality resolution. We record that here. For any
complete Si-modules A and B, let

}E}Xt(147 B) = EXtZz[[Sé]] (A, B)
If Bis an S}:—module which is free over the 2-adics Zo, then B/2 is defined by

(4.3) 0— B3 B— B/2—0.

Let 8 : Ext(A, B) — Ext(A, B/2) be the Bockstein homomorphism, that is, the
reduction modulo 2 of the connecting homomorphism of the long exact sequence
for (4.3). The algebraic duality resolution

0= %3 =% — 61— 6 — Zy— 0
is obtained from splicing exact sequences

(4.4) 0—= N, =%, —= Np_1 =0
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with €3 = Ny and N_; = Zs (see [2]). The exact couple

(4.5) Ext(N,, B/2) > Ext(N,_1, B/2)

Ext(%., B/2)

gives rise to the algebraic duality resolution spectral sequence. Here, the dotted
arrows are the connecting homomorphisms for the exact sequences (4.4), thus they
increase the cohomological degree.

Lemma 4.6. Let x € EP? in the algebraic duality resolution spectral sequence.
Then B(z) € EP9HL and d,.(B8(x)) = B(d.(z)).

Proof. The maps d., 7,1, and J, in the exact couple (4.5) commute with 5. A
diagram chase shows that d,.(8(z)) = B(d,.(x)). O

Lemma 4.7. Let R be an Sé—module which is also a ring. Suppose that the ac-
tion of Sé 18 given by ring homomorphisms. The algebraic duality resolution with
coefficients R is a module over the cohomology H(S}; R).

Proof. Note that Ext(A, R) is a module over Ext(Zs, R) for any S}-module A. Fur-
ther, the maps in the algebraic duality resolution are maps of Zy-modules. There-
fore, the maps d,, r., i, and d, in the exact couple giving rise to the algebraic duality
resolution are morphisms of Ext(Zs, R)-modules. This implies that the differentials
in the algebraic duality resolution are linear over Ext(Zs, R). (]

Recall that
(Ec)«V(0) = (Ec)«/(2) = Faf[w]][u™"].

In Theorem 2.9, it was shown that
g

o = uFe, (uta,uty),

where Cy was defined by
Cu v+ 3uzy + (vl — 1)y = 2%
It follows from [18, §IV.1] that
2] g, (7) = u g a3 (ud + )2t ... mod (2).

Therefore, we can define
and

Note that the element v; is uniquely determined modulo (2), but v is only defined
modulo (2,v1). The element v; is invariant under the action of S¢ on (E¢).V (0),
and vy is an element of HO(S}, (E¢).V (0)). However, it does not lift to an invariant
in (F¢)«. Therefore, v1 has a non-zero Bockstein. Define

(4.8) h1 = B(v1).

Lemma 4.9. The algebraic duality resolution spectral sequence is a spectral se-
quence of modules over Fylvy, hq].
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Proof. By Lemma 4.7, the duality resolution is a module over H*(S}, (E¢).V (0))
and H*(St, (E¢)«V(0)) is a module over Fy[vy, hy]. O

4.3. The E;i-term. I will now describe the Ei-term of the algebraic duality spec-
tral sequence. If p : W — Fy is the projection, then p*Cy is defined over (E¢).V(0)
and classifies deformations of C to complete local F4-algebras. Let £ be a Weier-
strass curve with coefficients a; (2.11) and wg be a generator for the module of
invariant differentials on €. If £ is defined over an Fy-algebra, then ajwe is the
Hasse invariant of £. For p*Cy, the element u~! € (E¢)2V (0) generates the invari-
ant differentials (see [9, §2.2]), and therefore the Hasse invariant is precisely

v1 = 3uguw” ' mod (2).
Further, the discriminant of Cy is A¢,, = 27(u3 — 1)3, so that
(4.10) A= u1227(ud — 1)3 = vy (vy +03) mod (2)

is invariant under the action of Aut(C) (see [18, §III.1]). Finally, the element
j = v{2A~1 is the j-invariant, not to be confused with the quaternion element.
Theorem 4.11 follows from [9, §4.4]. Its computational content is originally due to
Hopkins and Mahowald, but the best reference is Bauer, [1, §7]. We have used the
notation of [1] in the statement below.

4o . A1 Jo——
1L\
N o . Lo
2 L | e ° “3 | o1
=T T v
|t Aeh

0 2 4 6 g 10 12 14 16 18 20 22 24

FIGURE 4.1. The cohomology H*(Ga4, (Ec)«V(0)), drawn in the Adams grading
(t—s,s). It is periodic of period ¢ = 24 with respect to the element A. It is periodic
of period 4 with respect to the element g. A e denotes a copy of F4. Lines of slope
1 denote multiplication by h; and lines of slope 1/3 denote multiplication by hs.
Horizontal lines denote multiplication by v;. Classes attached to horizontal arrows
are free over Fy[vq].

Theorem 4.11. There is an isomorphism
H* (G4, (Ec):V(0)) = Falljl][or, AT ha, ho, 2,y 91/ (~),

where the degrees (s,t) (for s the cohomological grading, and t the internal grading)
are given by

lv1| = (0,2), [A] = (0,24), ha| = (1,2), lho| = (1,4)
|| = (1,8), lyl = (1,16), 9| = (4,24), il = (0,0),
and “~” denotes the following relations:
vihe =0, wviy =0, v%x =0 hihy =0, hg = h%m, hivix = how

Riz? =0, hyy=wvz?, hiy=0, =0 wolg=hiA, A Ww?=j
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Proof. Let My ¢;er denote the stack of Weierstrass curves and w be the canoni-
cal quasi-coherent sheaf of invariant 1-forms on My eer. Let (A,T) be the Hopf
algebroid classifying Weierstrass curves and their strict isomorphisms. Then

H*(MWeieraW®*) = H*(A7F)

The smooth locus of M, € Myyeier is given by the points where the determinant
A is invertible, hence

H*(Msm,w®*) ~ H*(A,F)[A_l].
Let /\//YSS be the formal neighborhood of the super-singular locus in Mg, ® Fs.
Then L
H* (Mys,0®) = (H (A @ Fo, T @ F2)[A7)))).
Let G48 = G24 X Gal(]F4/IF2) By Lubin-Tate theory,
H* (M, w®*) = H*(Gas, (Ec).V(0)).

The groups G4g and Go4 differ by the action of the Galois group on the coefficients
F,4, so that

H*(Gas; (Be).V(0)) = (H (A® Fy, T ® Fz)[A’l])?j) ®r, F4,

where the completion is done degree-wise. Finally, in [1, §7], Bauer computes
H*(A®Fy,I'® F3). The result then follows from his computation. O

The cohomology of Cg can be computed using the formulas of Section 2.4.
Lemma 4.12. The cohomology of Cg with coefficients in (E¢).V (0) is given by
H*(Ce: (Be)«V(0)) = Fa[[uf][or, 03, B/ (v} = vau),
where |h| = (1,0), |va| = (0,6), |v1| = (0,2) and |u}| = (0,0). Further, the action
of hy is determined by
(4.13) hi-1=uv1h.
Proof. Recall that Co = {£1} denotes the center of Go4 and that Cg = Cy x Cs.
Because Cy acts trivially on (E¢).V(0),
H*(Cy, (Ec)«V(0)) = ((Ec)+V(0))[h],
where h is in (s,t) degree (1,0). The order of Cj is coprime to 2, so that
H* (Ce; (Ee)V(0)) & H* (Ca; (Ee) V(0))°
= (Ec).V(0)°[n]
= Fa[[ud]][v1, 037", h]/ (0] = vaud).
To prove (4.13), first note that Cy acts on (E¢). = W([u;]][uT!] by
d-1(u) = —u
¢—1(u1) = u1.
This follows from (2.4) and the fact that —1 fixes the curve Cy. Using this and

the standard resolution of the trivial Co-module Zy, one can compute that the
Bockstein

B (Ec)V(0) = (Ec).V(0)
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induced by
0— (Ec)s 2 (Ee)s — (Ee)V(0) = 0,
satisfies
B(v1) = vih.
The identity (4.13) follows by naturality and the fact that 8(v1) = hy (see (4.8)). O

0 2 4 6 8 10 12 14 16 18 20 22 24
F1GURE 4.3. The pattern % in Figure 4.2.

Lemma 4.14. Let 7 = 1+2w in S¢. Let Gby = nGoym™ . Let ¢ : (Ec) — (Ec)«
give the action of m on (E¢).«. Then ¢ induces an Fy[vy, hq]-linear isomorphism
H* (G4, (Ec)«V(0)) = H* (Gay, (Ec):V(0)).

Proof. For M an Sc¢-module, define a map F; : M — M by m + m-m. Although

this is not a morphism of S¢-modules, it induces a natural isomorphism
Fr: (—)%2t — ()%,
Indeed, for another S¢-module N and a morphism of S¢g-modules f: M — N,

(M)G2a _ (MG

l(f)Gu l(f)G’M

(N)G24 B (N)G/24

is commutative. Therefore, F; induces an isomorphism on the right derived func-

tors, i.e., on group cohomology. For (E¢).V(0), the map F, is induced by ¢,.

The linearity follows from the fact that v; is invariant under the action of 7, and

hy = B(v1). O
To avoid ambiguities, define A’ := ¢ (A) and j' := ¢, (J).

4.4. Approximate A-linearity. In this section, I explain some additional prop-
erties of the action of S¢. These will be used in the computations of the differentials
dy : EP? — EPT0 Recall from (4.10) that there is an element A € (E¢)%2* such
that

A = 2Tvo (v} + v9)® = va(vg +03)*  mod (2).
As in Theorem 4.11, we abuse notation by denoting
(4.15) A = vy(vy +v})°

in (E¢).«V(0)%2¢. The key observation in the computation of Section 5 is that
the action of (IS})? is approzimately A-linear. The following theorem makes this
precise.
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Theorem 4.16. Let x be in (E¢).V(0). Let > agn(e —g)(e —h) be an element of
(ISL)2, where agp, is in Zs[[S3]]. Then, modulo (2,1}%4‘3'2“]),
(4.17)
3~ agaid = 09)(id = n) (8% 20) = 37 g (id = ) id = 6n) () A% (2.
Further,
(4.18) > agn(id — ¢g)(id — ¢n)(A) =0 mod (2,0F).
The next results are needed to prove Theorem 4.16.
Lemma 4.19. The action of a on A is given by
(4.20) ba(A) = A(1+v5208) mod (2,09).
Proof. By (3.9)

(v2 4 v} + vie) (v + vTe)?

v3(v2 +v7) mod (2,0Y),

$a(A)

so that
(i)a(A)A*l = vg(vg + vi’)*Q

=1+4+0vy%0% mod (2,0)).

Lemma 4.21. The group Goy acts as the identity on ¢o(A) modulo (2,v%).

Proof. First note that A itself is fixed by Gao4. The group Ga4 is generated by w
and i. As o and w commute,

¢w(¢a(A)) = ¢a(¢w(A))
= ¢a(A)

Further, it follows from Strickland’s computations, which were described in Section
2.4, that, for to(¢) as in Theorem 3.6,

to(i) = (1 +uy)~" mod (2).

Therefore,
bi(v2) = (1 4+ u1)vs.

It follows that
A1+ 3 2(1 + up)~59)
AL+ vy (1 + w?o?) )
AL+ vy %08)
ba(A) mod (2,0%).

¢i(¢a(A))

O

Lemma 4.22. Let y be in F3/5Sc. Then vy acts trivially on A and ¢o(A) modulo
(2,0%).
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Proof. First suppose that 7 is in Fy/5Sc. By Theorem 3.7, the action of + is trivial
modulo (2,u$). This implies that

b (v2) = v2 + vy "0l mod (2,0).

=00
~—

Hence, modulo (2, v

Oy (D) = (vz + vy vher)(v2 + 0f + vy ofer)?
= (v2 + vy 'ofer)((v2 + 07)° + (v2 +07) vy ofer)
(v2 + vy 'ofer)((v2 + 07)* +v2vfer)
v (v + v3)3 + vy e (vg + v3)3 + v3vie
= vy (v 4+ 02)3 + 20300¢;

=A mod (2,29).

Now suppose that v € F3,5S¢. It was shown in [2] that Fy/5Sc/Fy/2Sc is gener-
ated by «; and «;, where
a, =tar ta™l.

2

Thus, v = a;70, ¥ = 70 Or ¥ = a0, Where yg € F4/QSé. But a; = woyw* and

both w and 7 fix A modulo (2,v), so it is enough to verify the case when v = «;.
Using Lemma 3.9 and Lemma 4.21,

$a; (D) = ¢i 0 o © P10 Po-1(A)
= 61 0 a0 -1 (a(A))
= ¢i 0 ¢a2(A)
=A mod (2,0}),

To prove that ¢,(A) is fixed, note that ya = o', where v/ = a~!ya is in
F3/5Sg. Hence

¢’Y(¢Q(A)) = ¢a(¢7/(A))
= ¢o(A) mod (2,0}).
(I

Lemma 4.23. Let v be in S;. Modulo (2,v}), the action of y either permutes A
and ¢o(A), or it fixes both.

Proof. Write v = vo7 where vo € K' and 7 € Go4. That such a representation is
possible follows from the fact that S} = K! x Gos. It is sufficient to show that,
modulo (2,v§),

_ [ ba(D) if yo & F50S¢;
b(B) = { A iy € FypSh.

Because 7 acts trivially on A,
9 (A) = 95y (A) mod (2,05).

If ¢ is not in Fg/ggé, then vg = ayy for v € F3/2S(13. Modulo (2, v%), the element 7,
acts trivially on A, so that ¢, (A) = ¢(A). The same proof works for ¢,(A). O
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Proof of Theorem 4.16. Elements of (15})? are possibly infinite linear combinations
of elements of the form (e — g)(e — h) for g and h in S}. It suffices to show that,
for these generators,

(4.24)  (id+ 6,)(id + 6n) (2AT ) = (id + Gy + b + dgn) () - A 120

modulo (2,11%4'3'2“1). By Lemma 4.23, the elements g and h either fix A and
$a(A) or permute them modulo (2,v). If both permute A and ¢,(A), then gh
fixes them. Therefore, up to relabeling, one can assume that h fixes A and ¢, (A).
There are two cases depending on the action of g.

If g and h fix A modulo (2, v3), then they fix A2 (1420 modulo (2,v2"""). Hence,

modulo (2, U%k+3),

(4.25) (id+ 6n)(id + 0g) (&> 1F2) = (2 + 9 (2) + 6y () + dgn () A7 420,
This implies (4.18) for the case of x =1 and k,¢ = 0. Further, since
2k+3 > 1 _|_3 . 2k+1

(4.25) trivially implies (4.17).

If g permutes A and ¢a(A) modulo (2,0%), then it permutes A2 (1420 and
ba(A)2° (0420 modulo (2,v2" ). Therefore,

(id + 6p) (id + ) (£ H271) = (a4 () AT 420
+ (99() + Bn())da(A)7 121,

But

(9(x) + Gon (@) (8) 2 = (3(2) + dgn () A7 (20 (1 0702

= <(¢g($) + dgn(T))
+ ¢g(x + ¢h($))v2_2k+lvf'2k+l> AQk(1+2t).

When z = 1 and k,t = 0, this implies (4.18). Because h is in S}, Theorem 3.7
implies that
x4+ ¢p(x) =0 mod (2,v1),
so that
(69(@) + Bgn(@))6a(A)2 142 = (¢4 () + dgn(2) A% 1420 mod (2,0} 752",

Therefore, modulo (2,v}+3'2k+1)

(id + 1) (id + ¢g) (A2 IF2)) = (3 4 ¢ () + dp () + dn(x)) A2 120,

)

5. COMPUTATION OF THE E .-TERM

Now we turn to the computation of the algebraic duality resolution spectral
sequence

(5.1) EYY = Ext] 611 (€p, (Ee):V(0)) = HPT(S¢, (Ec).V(0)),

([sel)
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whose construction was described in Section 4. Recall also that the spectral se-
quence comes from a resolution
0—)%36—3>(526—2>%1 8—1><50i>Z2—>07

The differentials

dy : BP9 — EYTLa
are thus induced by

d1 = Ext%Q[[SéH((?pH, (Ec)*V(O))
The morphisms Jp41 were described in Theorem 4.1. We will use these descriptions
together with our partial knowledge of the action of S¢ on (E¢). to compute the
dy differentials.
Recall that EY? & (E¢)¢2+ and EP° 2 (E¢)%e for p =1 and p = 2. Since there

is an inclusion

(Ec)S* — (Ec)S®,
there is an action of (E¢)%+ on EP? for 0 < p < 2. Therefore, it will make sense
to talk about the image of A defined in Theorem 4.11 in EY 0. To avoid ambiguity,
we will use the convention

AF[p] =A* .1 ¢ EP°

in the statement of the results. However, in the proofs, we will assume that the
context is sufficient to determine which elements are meant. Similarly, vy € (E¢)s.
To distinguish between E;° and E° we let

vg[p] =k 1e Ef’o.

Finally, recall that the differentials are vi-linear. This will be used without
mention.

5.1. The differential d; : EV° — E}°. The differential d; : EY° — E}° is
induced by the map
81 : cgl — %0,
given by 01(ye1) = v(e — a)eg. Here, e; is the canonical generator of %;. Therefore,
dy = id + po : BYO — B
Recall from Theorem 4.11 that the powers of the element
A= 1}2(1}2 + U%)?’

generate H%(Gay, (Ec).V(0)) = (Ec)%24 as an Fy[vi]-module. So it is sufficient to
compute d; on A"[0] for n € Z.

Theorem 5.2. Let n = 2F(2t + 1), then
di (A™[0]) = v?‘gkv§k+l(4t+1)[1] mod (2,1}‘(1)‘2k).
Proof. Recall that d; is induced by id + ¢,. Using Lemma 4.19, one computes
A"+ ¢a(A") = (va(v2 +v7)*)" + (va2(v2 +0])° (1 + 03 %0] +ve))"
= (0202 + o))" (L (L™ o o))

2R T (4t+1) 6.9k 2k
= vy (+)v?2 mod (2,v%).
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5.2. The differential d; : E}° — E?°. The differential d; : E;° — E° is
induced by the map
82 : %2 — cgl.

Recall from Theorem 4.1 that

82('762) = 'y@el
for © € Zs[[SE]] such that

O©=c+a mod (2, (I53)%).
Let
(5.3) O=c+a+é,
where & = > agn(e — g)(e — h) is in (I5})? and is to be thought of as the error.
Further, let
(5.4) b6 =D agn(id— ¢,)(id — ).
The goal of this section is to prove the following theorem:
Theorem 5.5. Let n = 28(1+2t) wheret € Z and k > 0. There exist homogenous
elements by, such that
b, = v [1] mod (2,v1).

The elements b, satisfy

62, = 2k(1 4 2t)
di(A™0]) = ¢ U1 2k+1(144t) n = 2%(
oy ={ o
and
v%'kang(HQt) [2] mod (2, v§'2k+3) n =2k (3 + 4t)
di(b,) = vf'2k+1v;"_2k+l [2] mod (2, v§'2k+1+3) n=1+2k2 4 2k+3¢

0 n=0,1 and 28T1(1 + 4¢).

The idea for the next theorem comes from Mahowald and Rezk’s computations
of the homotopy of TM F, specifically, Corollary 6.2 in [12]. The idea is to consider
the spectral sequence

(5.6) EP = Bxt] o0 (6, (Ee)e) = HPPI(SE, (Ee)w).
Let
(5.7) fiEPY — EPY

be the map of spectral sequences induced by the map (E¢). — (E¢).V(0) on the
coefficients. We will show that there is a permanent cycle B; € E;"° such that

f(B1) =viva mod (2,v7).
This will allow us to define a permanent cycle by € E;° by
b1 = vy f(B1).
Theorem 5.8. There is an element by € E}"° such that
by = v3[1] mod (2,v9),
and
dyi(by) =0.



TOWARDS 7. Lg(2)V(0) AT p =2 27

Proof. There is a modular form ¢, in (E¢)&2* given by

ca = (v} + 8vivy) = Yutuy (ud + 8)
(see, for example, [18, §IIL.1]). I claim that there is an element B; € (FE¢)¢s such
that
By =wviv, mod (2,v})
and
di(ca) = ca — dalcs) = 1681,
where d; here denotes the differential in the spectral sequence Ef’q defined by (5.6).
The first step is to show that

(59) d1(64) =0 mod (16)

Let tg = to() and t; = t1(«) as defined in Theorem 3.6. A direct computation
using Theorem 3.6 implies that

di(cq) =8u™ (ul + % + t%tg% tlt? % 2;?) mod (32).
Let A =dy(cs)/(8u~?). Then
A=uitg? (to +ty +wit; +uititd) mod (2).
It follows from Proposition 8.21 of Section 8 that
to =ty +uit? +uityt?  mod 2.

This proves that dy(cs) =0 mod 16.
The next step is to show that

A =2u; mod (4,u?).
Theorem 3.7 applied to a gives
to = 1+ 2w mod (4,u?),
t; = uw?® mod (2,u?).
This implies that, modulo (4,u?),
3up 2t 2t

ASmE Rty
3uq 2wiuy
=T T e0E T 2wy
= 2u;.
Define
Bl _ d1(04)
16

Because v1v2 = uiu~ %, this implies that
By =wviv, mod (2,v})
so that
dq(cq) = 16(v1va +...) mod (32).
Let f : EP? — EP7 be the map defined in (5.7). Since f(By) is divisible by vy, we
can define an element b; € El1 0 by

b1 = ’Ul_lf(Bl).
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Then by = vy modulo (2,v1). But by is an element of
(Ec)eV (0)° = Fal[ui]]{v}.
This forces the congruence
by =vy, mod (2,v3).
It remains to show that dj(b1) = 0. In the spectral sequence E,{”q, we have
d3(c4) = d1(16By) = 16d,(By).
Since d? = 0, and there is no torsion in (F¢), this implies that
di(B1) =0.
in E7°. Therefore,

di(f(B1)) = 0.
Since By = wv1by, this implies that

dl (’Ulbl) =0
in E2°. But the differential d; : B, — E?° is v;-linear, so that
dl(’Ulbl) = ’Uldl(bl) =0.

Because there is no vi-torsion in E12707 we must have dj (b;) = 0. This finishes the
proof. O

Lemma 5.10. For d; : Ell’O — E12’0
di(A[1]) = v8v3[2] mod (2,vF).
Proof. Using Theorem 4.16, with ¢¢ as defined by (5.4),
di(A) = A+ ¢a(A) + ¢s(A)
= A+ A1+ vy %09)

=v30v? mod (2,0%).

Lemma 5.11. For d; : Ell’0 — E12’0
dy(v3[1]) = vv3[2] mod (2,v7).
Proof. Because b; = v, modulo (2,v3),
A =b} 4+ 03vd + 6208 mod (2,09).
Hence,
di(A) = dy(by + v3vy + bjoy)

= dy(b1)* + vidy (v3) + vidy (b1)?

=vd;(v3) mod (2,0%).
It thus follows from Lemma 5.10 that

v3dy(v3) = vv2  mod (2,07).

As there is no v;-torsion in Ef’o, this proves the claim. ([
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Lemma 5.12. For Y a,g in Zs[[SE]], where a, € Zo,

Zay@by 3+4t Zagqﬁg(vg)vét mod (2,1}?).

Proof. As g € S¢, it follows from Theorem 3.7 that to(g) = 1 modulo (2, v1). Hence,
to(9)* = 1 modulo (2,v}), and

3
2
S el
= Zag%(vg)vgt mod (2, v}).

Proof of Theorem 5.5. Let t € Z and k > 0

b} n=20,1;
vl n = 2% (3 + 4t);
bn = b1A2k+2k+lt n = 1 + 2k+2 + t2k+3;

v;ﬁ.zk dy (AQ’“(2t+1)) n =21 (4t 4 1).
The element b,, is in degree 6n and
b, = vy mod (2,v?).
By Theorem 5.5, for n =0, 1,
dy(by) = 0.
Let n = 25+1(1 + 4¢). Then

(0§ b,) = &3 (A2 D) 0.
The map d; is vi-linear and there is no vi-torsion in Ef’o; hence, d;(b,) = 0.
Next, let n = 2%(3 + 4t), so that b, = (v§+4t)2k. For any b in EP9,
d.(b*) = d,(b)*> mod (2),

so it is sufficient to prove the claim when k& = 0. Let ¢g be as in (5.4). It follows
from Lemma 5.11 and Lemma 5.12 that, modulo (2,v}),

dl(v§+4t) 3+4t +¢a( 3+4t) ( 3+4t>
U2+4t + Ga (V3)V5" + de (v3)v5"
= (03 + Pa(v3) + P (v5)) v3'

= dl(Ug) at

=33t mod (2,07).

Finally, let n = 1 + 2F+2 4 2k+3¢ 5o that b, = blAQk(H‘Qt). By Theorem 4.16,
y

¢£(bn) = ¢£(bl)A2k(1+2t) mod v 1+3 2k+1
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Therefore,
di(bp) = by + Ga(bn) + ds(bn)

= blAzk(1+2t) + ¢a(b1)A2k(l+2t)(1 + 1)2_2@?)2k(1+2t) + ¢g(b1)A2k(1+2t)
= 0 A7 0020 g, () A0 (1 0y 2 2 s () AT 40
= (b1 + Pa(b) + de(b1) A2 0+ 4 g, (by)oy 2 02 AZIA420
=d; (bl)A2k(1+2t) + ¢a(b1)v2_2k+lv§"2k+lA2k(1+2t) mod (2, v%+3‘2k+1).

But d;(b1) = 0 and

ba(b1) = vy mod (2,03).

k k42 k43
Furthermore, A2 (1428 = 27" F2777 56 that
_3.2FFt g _okdlgk+2 ok43y
dy(by) = vy vy
ok+1 k+1 k+3 ok+1
=032l mod (2,012,

This complete the proof of Theorem 5.5. ]

5.3. The differential d : E>° — E>°. Recall that
EY? = HY(Ghy, (Ee).V(0) = Fa[[j'][or, A/ (5 = vi?A"7).
We let
A'3]=A"-1e EY.
The next goal will be to prove:

Theorem 5.13. Letn = 2’“(1—|—2t) wheret € Z and k > 0. There exist homogenous
elements c¢,, such that

(5.14) cn = 05[2] mod (2,v1)
and
’U%Qk Cok+1(142¢) n = 2k(3 + 4t)
dl (bn) - U%.2k+lcl+2k+l+t2k+3 n = 1 + 2k+2 + t2k+3
0 otherwise.
Further,

di(en) = o} A 0[] mod (2,000
if n =1+ 2F1(3 4 4t) and is zero otherwise.

Let (EF%t, d!) be the duality resolution spectral sequence associated to the reso-
lution

o 84 2,
(515) 04)%3—3)%24%1%%0322%0,
described in Theorem 4.1. Recall also that there are isomorphisms

Gp : Cp — Cp,
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which induce an isomorphism of resolutions

0 G -—26 -2 -G — T, 0
\Lga lgz igl igo
22 2A 2 e
0 (53 %2 cgl %0 ZZ 07

As gp, is an isomorphism, the map Fy ®@z,((53]) Ip Fy — Ty is non-zero, so that
(5.16) gpep) = (e +IS¢)ey.
Let g, be the map induced by g,

9, := Homg, (5171 (9p, (Ec)+V (0))).

Theorem 4.1 implies that there is an isomorphism of complexes,

d" d’ d"
(5.17) 0 O s pl0 L p20 1, 3o 0,
P P
0 pOO D plo_ Gt p20 4 p3o 0

and Theorem 3.7 together with (5.16) implies that
(5.18) g, =id mod (2,vy).

Proof of Theorem 5.13. 1 construct the ¢, inductively. For n = 2%(3 + 4¢) and
n =14 2FF2 4 2k+3¢ define ¢, by the identities

3.2F _ ok .
dy(by) = { U1 Corti(1qar) n=2"(3 +4t);

okl
’Uia’ 2 Cipok+iyor+sy T =1+ 2k+2 4 ok +3¢

Then ¢, satisfies equation (5.14) and
d1 (Cn) =0.

Now note that the morphism ¢, for 7 = 1 4 2w restricts to an isomorphism of
F2Y 2 ((E¢).V(0))%. The isomorphism of complexes (5.17) implies that, for

m =1+ 2F+1 4 ok +3¢
there exist ¢/, in Ff’o and z,, in Ell’O such that
g; (¢7r(dm)) =cmt+d1 (xm)~
But, for z,, € Ei’o,
di(z,) =0 mod (2,v3),
so that
(5.19) o = v%”kﬂﬁk%t mod (2,vy).
For n =14 2k+1 4 2k+2 4 42hF3 et

= A

and define
cn 1= g5 (dx(c},))-
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Because A" = v%kﬂ modulo (2,v;), the elements ¢, satisfy (5.14). Further,

using the fact that d;g5 = gid},
di(cn) = g5(di (¢x(ch)))-
By Theorem 4.1, the map dj : F12’0 — Fl?”0 is given by
On(id + ¢ + &5 + 1) (id + 651,
so that
di(¢r(c,)) = b (id + ¢ + ¢ + dr) (id + o5, ') ().

I will compute this in three steps.
By Lemma 3.9,

Pa-1(A) = A(L+ vy %08 + 0fe).

Hence,
(id + ¢a-1)(c) = €y + Pa-1(cy,)

= A 4 601 () AT (14 05 20§ + o))

= AT 4 g1 () AT (102 T F T 402

= (id + ¢o-1)(c)) - A% + Pa1 () (w2 vF T 402 A%
Now note that ¢, j and k fix A, so that

b ((id+ 61+ 65+ 61) (1 + Do) () AP ) ) = dy(6(c})) (A7)

3T 37

The second equality follows from the fact that
9501 (¢x(cr)) = di(cm) =0
and g3 is an isomorphism, so is injective. Therefore,
X _ok+1 g ok41 ok ok k
di(6r(ch)) = x ((id+ 65+ 65+ 08) (Bamr ()03 072 4 0f 2 e2)a2"))
The morphism ¢,-1(c},) = ¢, modulo (2,v3), so that (5.19) implies that
Ga-1(ch) = v +ofvd e,
and,

ok +1 | gk+3y

dy(p=(ch)) = ¢x ((id+ ¢i + ¢; + on) (V5 + viv3 €0)

= ¢, ((id+¢i 6+ ) (v;+2k+3tv%~2k+1 +vf(1+2k+l)vgk+3t61> A2k>.
Here, I have used the fact that
32" +1) <9-2" <928 43,
Because i, j and k are in S}, they act as the identify modulo (2, v;). Further,

wetit+jt+kw=etititk
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Hence, for x € (E¢).V (0)%,
bu((id + @i + &5 + k) (x)) = (id + ¢i + &; + ¢x) ()

so that
(id + i + b; + pr) () € (Ee).V(0)°".
Therefore,
(id+ i + &5 + ¢r) (0] 'er) =0 mod (2,0]).

k
Hence, modulo (271}1”(1+2 “)+3)7

d1 (¢ (c,)) = ¢r ((id +¢i+ o5+ ¢k)(v%+2k+3t)vf'2k+lA2k> )
Finally, using Strickland’s formulas from Section 2.4,
to(i) ™t =1+wu
to() "t =1+ Cu
to(k)™ = 14 CPur,
and

_ k+3 _ k+3 _ k+3 3 .
d\(dn(c))) = (1 s 3(142"7%) t; 3(1+2FF3¢) it 3(1+2 t)) U%+2k+3tv%‘2k+dA2k.

Note that
314283 =142+ 283t 2" =142 mod 8.
Modulo 2, the binomial coefficients satisfy,
(ao +2a1 +2%a0 + ...+ Q”an) _ (ao) _ <a1> (an>
bo + 2by +22by + ... +27b, /  \bg bi) \b, /)

This implies that the binomial coefficients

BA+2M3)\ _ [ 1 if0<i<3;
i Tl 0 if3<i<é.

3(1428 )43
Hence, modulo ”1( 2OF

2
dll((i)ﬂ(cil)) = ¢n ((1 + Z(l +CPuy + C2SU? + u%)) U%—mkﬁtvfgkﬂAQk)

s=0

o 195+l k41 k
= ¢r (u“;’v2+ tv? 27N

_ o 3(142F Ty okt3y ok
= 102t (AT,

7

The last equivalence uses the fact that ¢, = id modulo (2,v}), which was shown
in Lemma 3.10.
Now, recall from Lemma 4.14 that the powers of

A= ¢ (A)

form a set of Fy[v;]-generators of H%(Gay, (Ec).V(0)). Because, d} (¢ (cl,)) is Ghy-
invariant, it must be a linear combination of powers of A’*! and powers of v;. This
implies that

k k+1
24(0x(c)) = 7T APE nod (2,]042TD ),
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Finally,
di(cn) = g5(dy(9x(cr,)))
must satisfy the same congruence by (5.18).

The only element c¢,, which has not been constructed is ¢;. Its existence follows

from Lemma 5.20 below.

Lemma 5.20. There ezists a sequence of elements {ci1,} such that

(1) c1,n = vy modulo (2,v%),

(2) di(c1,n) =0 modulo (27vf(1+4n)),

(3) cint1 — c1.n = 0 modulo (2,v5").

If (Ec)6V(0) is given the topology induced by the mazimal ideal
m= (’Ul)7

then the limit

¢ = lim ¢
n— o0

exists. The element ¢y satisfies equation (5.14) and

di(c1) = 0.
Proof. The construction of {c1 5} is by induction on n. First, define

C1,1 ‘= V2
and note that

c11 + ¢a-1(c11) = v +vle
The F4-vector space with basis
{03, v35A 7 W3 IA2 ,vf(1+4s)A’*8, .
is dense in ((EC)GV(O))G/“. Hence,
di(c11) =0 mod (2,v9).

O

Now suppose that ¢, has been defined. If di(c1,,) = 0, then let ¢1 5 1= ¢1,,, for

all N > n. Otherwise,

(5.21) di(c1n) = 3T A=

for s, > n. Let s, = 2% (1 + 2t,,) and let m,, = 3 - 25 +1(1 4 4t,,). Then
my, > 6n.

For

Ty = 14 2kt ofnt2 4 oknd3 (¢ 1),
(5.21) together with the fact that

di(er,) = o} AB O
implies that
di(c1n) =v{"d1(cr,) + ..
Define

. m
Cln+l '=Clpn + 07 "Cp,-

Then ¢y 41 satisfies properties (1), (2) and (3).
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Now consider the sequence {¢y,,}. Since my, 1 > 6n for k > 0,

__ yMn+1 Mntk 6n
Clintk = Cln = V1 " Crppy vy e € (01)7

The sequence {c; ,, } is Cauchy in the topology generated by m. Since ((E¢)sV (0))®
is complete with respect to m, the limit

c1:= lim ¢1.,
n—oo

exists. The map dy is continuous, so that,
dl(Cl) = lim dl(cl,n).
n— oo
But di(c1,n) € m3(+4N) for all n > N, which implies that

dy(c1) € [ m" =0,
n=0

O

We can now combine the results of this section to prove the first part of Theo-
rem 1.8. We restate it here for convenience.

Theorem 5.22. The algebraic duality resolution spectral sequence converging to

H*(S},(Ec)«V(0)) collapses at the Es-term. The spectral sequence is a module

over Fy[vy, h1]. There exist Fyqlv1]-generators a, € E?’O, b, € Ell’o, Cn € E12’0 and
3,0 .

dn, € By with

an = A"[0] mod (v1)

b, =vy[l] mod (v1)
cn =v5[2] mod (v1)
d, = A"[3] mod (v;)
and such that, for k >0 and t € Z,
62", = 2k(1 + 2t)
di(a,) =4 Y1 U244 n=
1(an) { 0 n =0.
k
U%leC%k+1(1+2t) n = 2k (3 + 4t)
dl(bn) = U%'Q " Clqok+1lppok+3 N = 14+ 2k+2 + t2k+3
0 otherwise.

3 2k:+1 1
di(cn) = Ul( " dar (142¢) n =14 2ktl 4 9k+2 | 4ok+3
0 otherwise.

Proof. Define

o = { ATl n = 2F(1 + 2t)
" 1-[0] n=0,
—3(1+25+) _ ok

d = V1 dy(Cryon+1port2yontsy) n=27(14 2t)
" 1-[3] n=0.

Then Theorem 5.2, Theorem 5.5 and Theorem 5.13 together prove the theorem. O
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5.4. The differentials d, : E?? — E'"™"? for ¢ > 0. The goal of this section is
to compute the remaining d; differentials and obtain the FEs-term.
Although V(0) is not a ring spectrum,
(Be)V(0) = (Ec)- /2,

and a canonical generator is given by the image of the unit in (E¢)g in the long
exact sequence

2

o= (Ee)x = (Be)s — (Ee)V(0) — ...

Thus, we can give (E¢).V(0) the ring structure induced by that of (E¢).. Then,
Lemma 4.7 implies that the algebraic duality resolution is a module over the coho-
mology H*(S¢, (Ec¢)+«V(0)). The canonical inclusion

Fy — (Ec)«V(0)
induces a map

H*(S¢,Fa) — H*(S¢, (Ec).V(0)).

Therefore, the algebraic duality resolution spectral sequence for (F¢).V(0) is also

a module over H*(S},Fy).
Let

(5.23) FPi = Ext%ﬂ[sé”(%ﬁg) — HP9(SL, Fy).

Let go € Fl0 4 be the periodicity generator for the cohomology of Gay,
g0 € H'(Goa, Fa) = HY(Qs, Fa) .
The extension
1 =K' =St = Gog — 1
is split. Therefore, the map
IT[>k (Sé, IF4) — H*(G24, IF4)
induced by the inclusion of Gy in S}, is split surjective. This implies that the image
. 0,4 .
of go is a permanent cycle in F}"". Therefore, it represents a class
go € H*(S¢; Fy),
and the differentials in the algebraic duality spectral sequence commute with the
action of gyg. To make sense of this, we must compute the action of gy on EPY.
First, note that gy acts by multiplication by A~'g in E®? and by A/’~l¢/ in E>?,
Further, the map
H*(Sg;Fa) — H*(Cs; (Ec)«V (0))
factors through the map
H* (G245 (Ec):V(0)) — H"(Cs; (Ec)«V (0))
induced by the inclusion Cg — Ga4. Therefore, gg acts by multiplication by h* on
EP?forp=1and p=2.
We collect these remarks in the following lemma.
Lemma 5.24. The differentials in the algebraic duality resolution are go-linear,

where the action of go is given by multiplication by A~1g on E%*, by multiplication
by A'=1g on E>*, and by multiplication by h* on EP* forp=1,2.

This lemma will allow us to compute some of the differentials d; : BP9 — EPTH4
for ¢ > 0 based on our results for ¢ = 0.
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Lemma 5.25. Let x € EY. The differential d, : EY? — E}'? is zero unless
x = hiA% or x = gt A%, in which case it is given by

di (hiA*) = hidi(A%)
and

dy (g"A®) = hMdy (A5,

Proof. There is no vi-torsion in Ell’q, and d; is vy-linear. Therefore, if = is v;-
torsion, we must have dy(z) = 0. The only classes in E? 'Y which are not vy torsion
are of the form z = h{A% or x = g'A®. The statement for x = h{A*® follows
from hi-linearity of the differentials. For x = g*A®, rewrite z as ¢! A"'ASTt. The
statement then follows from Lemma 5.24. [l

Lemma 5.26. Let x € B, The differential dy : B} — E} satisfies
h*dy (z) = dy(h*z).

Proof. This follows from the fact that the differentials are hy = hv; and v;-linear.
Indeed, since hy = v1h, we have the following equalities

oPhFdy (z) = hEdy(z) = dy(hEz) = dy (v hFz) = oFdy (hF).

Since there is no v;-torsion and no h-torsion in B¢ and E}Y, h*d, (z) = dy(hFz).
]

Understanding the differential d; : E>? — E;"¢ is more subtle as there is v;-
torsion in Ef’q for ¢ > 0. We will use the following result. Its proof is postponed
until the end of the section.

Lemma 5.27. Let x € E>. There exists y € E>9 such that dy (z) = vdy.

Lemma 5.28. Let x € EY°. Consider dy : B2 — EY. Then
di(h'z) = vy " hidi (),
where we make sense of division by vy as follows: if di(x) = v¥y, then
vp 'hidi(z) = oy hiy.
This includes the case when y = 0, in which case the formula reads as dy(hiz) = 0.

Proof. Since the differentials are gg-linear and the action of gy on x is given by
multiplication by h?, it suffices to consider the cases d;(hix) for 1 <i < 3.

Now, suppose instead that z € Ef’o. Note that since d; is Fy[vq, hq]-linear and
hi1 = vih, we have
(5.29) vidi(hiz) = hid; ().
We will treat the cases di(x) = 0 and d; (z) # 0 seperately.

First, suppose that dq(z) # 0. By Lemma 5.27, there is some y € Ef’o such that

di(x) = o1y
for k > 3. Hence,
vidy(hiz) = hidy(z) = v¥hiy.
Since E%’O is free over Fy[v1, hq], di () is not annihilated by vy or hy. Hence, neither

is y, so that . .
dy(hiz) = vF " hiy.
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Suppose that dq(z) = 0. We must show that dy (h‘z) = 0 for i = 1,2, 3. Since d;
is hi-linear, _ _ _
vidi(h'z) = dy(hixz) = 0.
Hence, in this case, d;(h‘x) must be vi-torsion. By Lemma 5.27, if 2 € E%’q, then
dy(z) = vy for some y € EPY. Letting z = hiz, this implies that d; (h'z) is divisible

. 3 . .
by v$. However, there are no non-zero elements in E;’? which are both v;-torsion

and divisible by v$. Indeed, all the vi-torsion is annihilated by v?. This finishes

the proof. 0

To prove Lemma 5.27, we will use the following fact. To state it, recall that
wo=i+j+k, @y =i+ (j+ wy =i+ %)+ Ck.
Further, let B, — W be the projective resolution of the trivial Cs-module W which

was constructed in Lemma 6.2. Let C, — W be the projective resolution of the
trivial Go4-module W which was constructed in Lemma 6.1.

Lemma 5.30. Let eg denote the canonical generator of W([St/Ga4]] and eq denote
the canonical generator of W[[S/Cg)]. The map

F:Inde (W) — Ind (W)
given by
F(yeo) =v(e+i+j+k)(e—a e
has a lift F,

S¢ F. S¢
Indg,, (C) —————Ind g, (Bx)

]

ndSe (W) IndSe (W),

such that, for v, y1 and v in W[[SE]],
Fo(yeo0) = (e + zo)(e —a™Hbo
Fi(mie11,y2c1,2) = —(mCay + y2la2)(e — o~ )by
Fa(v1¢2,1,72¢2.2)
F3(ves0)
Fy(yeao) = —3yxo(e + z0)i* (e — a™H)by.
Further, for 0 < k < 4, if we define Fyyp Qw Fqy = Fi, Qw Fy, then

= (n(¢* = Qra +72(¢ = ¢*)xr)(e —a™ )by
= —3yzole —a t)bs

1 1
F. @wFy : IndeE (C.) @w Fy — Indes (B.) ®w Fy
is a periodic lift of F Qw Fy.

1 1
Proof. The chain complexes IndSGC24 (Cy) and IndSCC6 (B.) are projective resolutions of

S¢-module of Indi&lf24 (Cy) 2 W[[SE/Ga4]] and Indié6 (B.) = W[[S{/Ce]] respectively.

A direct computation shows that for 0 < k < 4, Fy_1dy = diFy. Since these are

complexes of projective Si-modules, there exists Fy, k > 4 such that F, lifts F.
Finally, note that

—3x0(e + 20)i

2

= (20 + 23)i* = (e + 79) mod (2).
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Therefore,

—3zg(e +x0)it(e —a ') = (e +z0)(le —a~ ') mod (2)
and we can choose F), so that F, @w F4 is periodic. ]
Proof of Lemma 5.27. Let M = (E¢).V (0). Recall from Theorem 4.1 that there is

a commutative diagram

C3 Lc@

l92 lgz
9%

C3 —— 62,
where
95 (ves) = ym(e+i+j+k)(e—a )r (ep).
Let gr : 65 — %o be the map of Si-modules such that
gr(e3) = mep.
This is well-defined. Indeed, if 7/ € Gb,, then 7/ = w77~ ! for 7 € Ga4. Hence,
g=(T'e3) = 7'gx(e3)
= 7r7'7r_171'eo
= Teg.
Similarly, the map g,-1 : 41 — %> of S¢-modules given by
grler) =7 "es
is well-defined because m commutes with the elements of Cs. Let
f:% — 61
be the map of S}-modules given by
flyeo) = (e +i+j+k)(e—a e
Then, 93 = g5 ' g1 fgrgs, that is, it is the composite

GG a0la e 2 g

Since grg3 and g5 lg.—1 are isomorphisms and the map they induce on M are
vi-linear, it is sufficient to prove that the map

[ Exty, sy (61, M) — Exty, g1y (%0, M)
induced by f has image divisible by v$. Further, note that
Exctyysy (W[Se/H]), M) 2 Exty, sy (Zo[[Se / H]], M).
Therefore, it is sufficient to prove that the map
F* 2 Extyy, s (Wa[[S¢/Co]], M) — Extyy, s (Wa[[S¢ /G24]], M)

induced by
F =W ®g, f: W[[S¢/G24]] = W[[S¢/Cy]]
has image divisible by v3.
To compute F*, we use the lift described in Lemma 5.30. Let
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Let £, be the M-eigenspace with respect to the action of w. Note that £, is an
Fy[v1]-module. Define

Guo =i + & + Oy Gay =i + (05 + Cdr,  Guy = i + by + (.
Let
Gy = (e + bao) : E1 — &4,
Gt = —(CPay,(hay) : E1 = E2 D E,
G5 = ((C* = Qasr (€= P)ey) : €1 = E B Ep,
G35 = =3¢, : &1 — &1,
Gl = 0300, (Pe + buy) iz : E1 — &
so that
Fy = Gi(de — 03 ),
where (¢ — ¢5') : &1 = €. Let @ be an element of Extyyys (W([S¢/Cs]l, M).

«

1
Choose a representative Z € Homyy(s: ) (Indi?6 (Bg), M). Since (¢p.—¢,1)(T) = v37,
and G, is a v;-linear map, we have

Fi(7) = v{Gi(T)
Let § = G;(@). Since ¥ is a cocycle, so is viy. Since, the differential d of

1 1
Homw[[gé”(lnd%M(C*), M) is vi-linear, and Homyys1y) (Indi?M(C*), M) has no v;-
torsion, y is also a cocycle. Let

y € Extiysr (WISE/Gaall, M)
be the class detected by §. Then F*(z) = viy. |

This completes the computation of the Es-page. A small sample is shown in
Figure 5.1.

5.5. Higher Differentials. In this section, we prove that all differentials d, :
E%4 — Ena=m+1 for r > 2 are zero. Because of the sparsity of the spectral sequence,
the only differentials d,. for r > 2 which do not have a zero target are

dy: B9 — B3 g>2
dy: Ey? — E3T' g >2
d3: B9 — B39 ¢ > 3.

The proof of the following result is a direct computation. A similar computation
is done in [12, §4], and our notation corresponds to theirs.

Lemma 5.31. Let vy have degree (s,t) = (2,0), va have degree (6,0), and h have
degree (0,1). Let x = vih. Then

H*(Cs; (Ec)«) = Wlui]][?, vivz, 037", 2]/ (22).
Lemma 5.32. All differentials ds : E21’q — Eg”q_l are zero.
Proof. Let b, be as in Theorem 5.5. The set
B={h*b, |n=0,1,2°"1(1+4t), 0<k <3, 0< s}

generates E21* as an Fyfvq, go]-module, for gy as in Lemma 5.24. Because the
differentials are Fy[vy, go]-linear, it suffices to show that the dy differentials on the
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elements of B are zero. First, note that da(b,) = 0 for all n, since the targets
of these differentials are zero. Hence, it suffices to show that da(h*b,) = 0 for
1<k <3,

The first remark is that, if do(h*b,,) = 0, then

v1do (W 1b,) = do(v1hFT1,,) = da(hyhFD,) = hida(R*D,) = 0.
Hence, if dy(h*b,) = 0, then vidy(R¥*+1b,) = 0. Further,
v¥dy(hFby,) = da(RYb,) = hEdy(by,).

Since da(b,,) = 0, we must have that v¥dy(h*b,) = 0 for all k > 0.

Let 1 < k < 3. Then dy(h*by) is an element of internal degree ¢t = 0 in E
Since dy(bg) = 0, v1da(hby) = 0. However, there is no v;-torsion in (ES"O)O, hence
da(hbo) = 0. Further, (E3")o and (E3?)o are zero and da(h¥by) = 0 for k = 2,3
for degree reasons.

Next, consider the elements of the form h*b; for 1 < k < 3. Since dy(h¥by) is in
ES”kil and there is no v;-torsion in Eg“kil for 1 < k < 3, these differentials must
be zero.

The classes hkb25+1(1+4t) have internal degree 3-2°72(1+4t). Hence, their degree
is congruent to zero modulo 3.

First, consider the case when k£ = 1. The possible targets for the dy differentials
on these classes are in ES ¥ and must be annihilated by vi. Therefore, they must
be of the form

3,k—1
5 .

’
(1425 thH-1
U Ao’ (14241

However, such classes have internal degree congruent to 1 modulo 3, since the
degree of dyor (14 94y 15 24 -2°(1 + 2t') and the degree of vy is 2. Hence, there is
no appropriate target for these differentials. Further, this implies that do(h?b,,) is
annihilated by v;.

The classes which are annihilated by v, in Ej' are of one of the forms

s'+1
vfl”(1+2 )—2h1d25/(1+2t,),

hadyer (11 04ys V1@doer (14941, OF Ydowr (149,). Here, hy has internal degree 4, x has
internal degree 8 and y has internal degree 16. Again, such classes have internal
degree congruent to 1 modulo 3, so there is no possible target for the differentials.
This, in turn, implies that do(h3b,,) is annihilated by ;.

The classes in E5* which are annihilated by v; are of one of the forms

1428+
PR32

/

25" (142¢)

h3dyer 14ty VilTdaer (14 0pys hYdasr (1 4oy O haydawr (1 yapy.  Of these classes,
vlhlxdgsr(lﬁt,) and hlydzsI(HQt,) have internal degree congruent to 0 modulo 3,
so we must make a more careful analysis.

Note that 3-2°72(1 +4¢) =0 mod 24 if s > 1, and 3-2%(1 +4¢) = 12 mod 24.
Since the internal degree of hiydy. (1 5, is congruent to 18 modulo 24, it cannot be
hit by a differential. Further, the internal degree of vihi2dyer (1 494y is 12 modulo 24.
Therefore, the only possible differentials are dg(h3b2(1+4t)), with target vihixdoy.

Let B8 be the Bockstein homomorphism described in Lemma 4.6. To finish the
proof, we show that

5(d2(h3b2(1+4t))) =0
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and that

5(U1h1$d2t) 7é 0
Since by(144s) = v§(1+4t)f for some power series f € Fy[[u}]], there is a class in
HO(Cs, (E¢)+) which reduces to ba(144¢)- Hence,

B(b2(1+4t)) = 0.
Since
6(h2t+1) _ h2t+2’
it follows that

B(h3ba(1ary) = B(h*)bo(1rary + B B(ba(1+ar)) = h'bo(1an)-
By Lemma 4.6,

Bd2(h*by1441))) = da(B(h*ba(14a1))) = da(h*ba(14a1)) = godz(ba(144)) = 0.

The cohomology H*(Ga4, (E¢)+) can be obtained from [1] (see Figure 5.2). The
classes v1hyzdg; are not integral cohomology class. Further, 8(vihizda;) = hida;.
In particular, 8(vihixds:) # 0. Therefore,

da(hPba(14a1)) # vihiaday,
and we must have dy(h*by(1441)) = 0. O

The next few results will be necessary to prove that all remaining higher dif-
ferentials are zero. First, note that the algebraic duality resolution is a resolu-
tion of PSi-modules, where 6y = Zo[[PSE/A4)], €1 = €2 = Zo[[PSE/Cs)] and
€3 = Zs[[PSE/AL]]. There is a corresponding algebraic duality resolution spectral
sequence. Let FP? be this spectral sequence for coefficients in (E¢).V(0). This
spectral sequence converges to H*(PS{, (Ec).V(0)). There is a map of spectral
sequences FP? — EP9 induced by the projection Sé — PSé. The induced map
F)? — B is the map

@ Hq(A4, (Ec)*V(O)) — Hq(G24, (Ec)*V(O))
Theorem 5.33. The map
¢ H"(As, (Ec)+V(0)) = H*(Gas, (Ec)+V(0))/(h1)

induced by the projection Gag — Gag/Co = Ay is surjective in degrees * < 3. In
particular,

H°(Ay, (Ec).V(0)) = H%(Ga4, (Ec)<V (0)),
and the classes ha, h3, h3, x, viz, ¥2, v12?, y, hay, h3y (defined in Theorem 4.11)
and their translations by powers of A are in the image of .

Proof. The 2-Sylow subgroups of Go4 and A4 are Qg and V = Qg/C5 respectively.
The E-terms of the v;-Bockstein spectral sequences for Qg and V' are computed
in Proposition 7.1 and Proposition 7.6. Since Cy acts trivially on (E¢).V(0) and
on g, the projection p : Qg — V induces a morphism of v;-Bockstein spectral
sequences E5H% (V) — E$%%(Qg). Further, this morphism is induced by the map
constructed in Lemma 6.4. Using this, one can compute the image of the projection
p on the associated graded. Taking Cs-fixed points finishes the proof. O
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Theorem 5.33 is depicted in Figure 5.3. It implies that, modulo the image of
multiplication by hy, the map ¢ is surjective in degrees ¢ < 3. All classes of
degree ¢ > 4 in E%Y are multiples of go, so their differentials will be determined
by differentials on classes of degree ¢ < 3. Further, by h;-linearity it suffices to
show that the differentials on the classes in the image of ¢ are zero. It is therefore
sufficent to compute of some of differentials d,. : F>9 — F97 ™! for ¢ < 3. The
advantage of this method is that the spectral sequence F?'? is sparser than EP:9.
Indeed, ) and %, are projective PSi-modules. Hence, for p =1 or p = 2,

RO B0 (BalIPSE O], (Pe).V (0)

is zero when ¢ > 0. Hence, F?*? = 0 when ¢ > 0 for p =1 or and p = 2. Further,
EP? =~ FPY for all p, so the computation of F'? follows immediately from that of

Egﬂl,
[P o EPT ¢=0
2 FP9 g >0.
The following results are generalizations of results that can be found in [11, §6].

The first result we state is Lemma 6.1 of [11].

Lemma 5.34 (Henn-Karamanov-Mahowald). Let R be a Zs-algebra and M be an
R-module. Let

0—><€3a—3>(gg %%1%%0%22—)0
be an exact sequence of R-modules such that €, and €5 are projective. Define N;
recursively by 0 — N; — E; LN N;—1 — 0, and let E5* be the first quadrant spectral
sequence of the exact couple

EXtR(Ni,M) >EXtR(Ni,1,M)

‘\/

EXtR(%, M)
Then EV'Y =0 for 0 < p < 3 and q > 0. Further, there are isomorphisms
ker(Ey® — EP%) ¢=0
Ext%(No, M) = { EIT0 = pdtt0 g =12
E§0 q>3.
Let j : Ng — %o be the inclusion. The only possible non-zero higher differentials

are of the form d, : E®1 — E"9="1 and they can be identified with the map
Ext%, (60, M) — Ext%(No, M) induced by j.

Let P, = Zs[[PS}]] ®z,(4,] D« for D, as defined in Lemma 6.3 below, so that
P, is a projective resolution of Zs[[PS}{/A4]]. Let P, be the analogous projective
resolution of Zy[[PS}/A}]]. Let Ny be defined by the exact sequence 0 — Ny —

%o = Zy — 0. One can splice P! with the algebraic duality resolution to obtain a
PSé—projective resolution @, of Ng.

Lemma 5.35. There is a map ¢ : Q. — Py, such that

¢o0: Qo — Po
covers the map j : Nog — 6y which sends ey — (e — a)eq.
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Proof. Note that Qo = Py = F4[[PS}/C3]]. So the map which sends the generator
of e®1 € Qg to (e—a)®1 € Py is well defined and covers j. By the theory of
acyclic models, this extends to a chain map ¢. O

The following is an observation in [11, §6]. It follows from Lemma 5.34.

Lemma 5.36. Let T, . be the double complex satisfying Ty o = Py and Ty 1 = Q.
with vertical differentials 6p and dg and horizontal differentials ¢s : Qs — Ps. Up
to reindexing, the filtration of the spectral sequence of this double complex agrees
with that of the algebraic duality resolution spectral sequence.

The following result is an adaptation of part of Lemma 6.5 of [11].

Lemma 5.37. Let s > 0. Let z € H*(Ay, (Ec).V(0)) be an element of internal
degree 2t such that

vfz =0.
Let c € Homm[[pgé]] (Ps, M) be a cocyle which represents x. Choose an element h
in Homg, pgy) (Ps—1, M) such that
sp(h) = vke.
Let
¢* : Homg, [psy) (Ps, M) — Homg,[pgy) (Q«, M)

be induced by ¢. Then there are elements d and d' in Homh[[PSé”(Qs_l,M) and
an element d” in Homg,[psy) (Qs, M) such that

(5.38) ¢ 1 (h) =d +fd
and
So(d) = vid".
For d’ as above,
§°(2) = [d"] € Bxt, pgy (No, M).

Proof. Let M = (E¢).V(0). Recall that £, denotes the A-eigenspace with respect
to the action of w in C3. Consider ¢7_; (h) in Homg,ps1y)(Qs—1, M). Identify

51 s = 1, 2
@n#»m:sz g<2n+m s> 3.

Since x has degree 2t, so do h and ¢%_;(h). Hence,

* <81)2t s = 1’ 2
ot _1(h) =
" {@n+m53(5<2n+m)2t s> 3.

Therefore, it is the sum of terms of the form

oo k—1 00
ut E aul =u"" g au +of | utF E aui™F
i=0 i=0 i=k

and we can write

Homg, (psy) (Qs—1, M) = {

¢ (h) =d +vbd.
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To prove (5.38), note that

Hence, dg(d’') = 0 modulo (vf), that is,
bold) = vid"

for some d”. So the first claim holds.
Now, note that

0% () = vl i (e)
= ¢3(vie)
= ¢:(6p(h))
= 0o (¢5_1(h))

= 5Q (d/ + ’U]fd)
= ofd" 4+ v§og(d).

Since there is no v;-torsion in the double complex HomM[[PSé]](T*,*» M), we must
have

j*(e) = d" + éq(d).
This reduces to
i(z)=[d"] € EXtISm[[PSé]]((NU?M)'

Lemma 5.39. Let z be in Fy'?. Then dy(z) = 0.

Proof. If ¢ > 1, then d2(z) = 0 since the target of the differential is zero. Suppose
that ¢ = 1. Then z is v;-torsion. Let k be the smallest integer such that vz = 0.
The computations in Section 7 show that k = 1 or k = 2 (see Figure 7.4). Choose
h as in Lemma 5.37 and write

¢o(h) = (e — ¢a)(h) = d' + vd.
However,
$o =id  mod v3.
So we must have
d =0.
By Lemma 5.34 and Lemma 5.37, this implies that d2(z) = 0 in the algebraic
duality spectral sequence for PSé. (Il

Corollary 5.40. All differentials dy : ES? — E39™" are zero.

Lemma 5.41. All differentials ds : ES? — E>%" are zero.
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Proof. Differentials ds : Ey — E3*~* are zero for degree reasons if 0 < ¢ < 2. By
Corollary 5.40, the classes ho A* survive to the Es-term, and hence they must be
permanent cycles. Thus, they represent cohomology classes in H*(S}, (Ec).V (0)).
By Lemma 4.7, the differentials are hyAF-linear for all k € Z. Using this fact and
linearity with respect to h; and v, the problem reduces to verifying the claim for
22 AF. However, by the same argument, z is a permanent cycle and

d3(2?A%) = zdz(xAF) = 0.

Lemma 5.42. All differentials d,. : E%9 — E9"+1 qre zero.

Proof. By Lemma 5.39 and Lemma 5.41, E5* = E;*. The spectral sequence
collapses at the E4-term since the targets of all higher differentials are zero. O

6. APPENDIX I: SOME PROJECTIVE RESOLUTIONS
The group Ga4 contains the central subgroup Cs. Further,
G24/C = Ay,

where Ay is the alternating group on four letters. It will be necessary for the compu-
tation to know which classes are in the image of the map induced by the projection
Goy — A4. To do this computation, one can use explicit projective resolutions for
these groups, and a morphism of resolutions in order to compare their cohomol-
ogy. I construct these resolutions and this map in this section. The resolutions
described are Cs-equivariant versions of the classical projective resolutions for the
finite groups involved. Having these resolutions, their cohomology with coefficients
in (E¢)«V(0) can be computed using vi-Bockstein spectral sequences as described
in [6]. This is carried out in Section 7.

Choose generators i and j for Qg such that wiw™! = j, and w?iw™2 = ij. Let
e be the identity. For any subgroup H of Ga4 containing i2 = —1, I will call this
element 2 even if the group H does not contain i. I do this in order to avoid
confusion with the coefficients —1 € Zs.

Let x¢s be the representation of C3 whose underlying module is W and such that
w € C3 acts by multiplication by (°. For a representation y of C3 and a group G
which contains C3, we can form the induced module

Indg, (x) := W[G] ®wicy) x-
The modules Indgg“ (x¢=) are projective QQg-modules. Define the following elements
of W[G24]2
vy =i+ Cj+ ¢,
xy =i+ Cj + (ij.
These are eigenvectors for the action of w with eigenvalues 1, ¢? and ¢ respectively.
The following proposition gives a periodic projective resolution of the trivial
Gos-module W. In essence, this is a Cs-equivariant version of the Cartan-Eilenberg

resolution for Qs described in [5, XII§7]. For any ring R, let R{z} denote the free
R-module on the generator x.
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Lemma 6.1. There is a periodic projective resolution of the trivial Go4-module W
given by

W[G24/03]{Ck,0} k= 0, 3 mod 4

Cr = Ind&?“ (xe2){ck1} @ Indg§4 (xc){ek2t k=1 mod4,

Ind&2* (x¢){cr1} ® IndZ2 (xe2){ck2} k=2 mod 4.

where the differentials
dag+i * Cagri = Cagyia
are given by
da4+1(Cak+1,0) = T1Cak,0 + T2Cak,2

2
dapyo(Capy21) = —T1cap+1,1 + (6 +07)Carr12

( )
( ) =
dapro(Canro2) = (€ +i%)Caps1,1 — To2Cakr1,2
dapt3(Cakt31) = T1Cak+2,0

dap+3(Car43,2) = T2Cak42,0

dakra(Canra0) = (e +x0)(e +i?)canrao-

That is, the differentials are given by the right action of the following matrices:

T —x e+ 1i?
dag+1 = (g;) dak+2 = (e n 21-2 — s )
daps = (11 x2) dag+a = (€ + x0) (e + i?)

Lemma 6.2. There is a periodic projective resolution of the trivial Cg-module W
given by
By, = W[Cs/Cs[{br},

and whose differentials are di41 : Br+1 — By given by
dk+1<bk+1) = (6 + (—1)k’i2)bk.

Applying Zs[[St]]|®z,(G,,) to Ce and Zs[[SE]]®z,(cq] to Be gives Cs-equivariant
projective resolutions of the Si-modules of Zs[[St/Gaa]] and Zo[[St/Cs]).

The following is a Cs-equivariant analogue of the Cartan-Eilenberg resolution of
the trivial F4[Cy x Cs3]-module Fy.

Lemma 6.3. Let Ay = Goy/Cy. Let Y = x ®w Fy. Denote also by x1 and xo
the image of their projections under the natural map W[Gay] — Fy4[A4]. There is a
projective resolution of the trivial F4[A4]-module Fy which, in degree k, is given by

Dy = P Mmdd! (Xezore){dss}-
s+t=k

The differential on D, is given by the unique As-linear maps determined by
d(dsy) = x1ds—14 + Tads 1.

Proof. The modules Indég (Xc2s+¢) are projective Fy[A4]-modules. Using the fact
that 22 = 0, a direct computation shows that d*> = 0. Further, the differential
commutes with the left action of Cs. It remains to show that (D,,d) is an exact
chain complex.
Recall that
A4 =t (CQ X CQ) X Cg.
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To prove that the complex D, is exact, we will prove that it is exact as a complex
of F4[Cs x Cy]-modules. As left Fy[Cy x Co]-modules,

Indg! (Xezere) = Fa[Co x Cs.

Let E(x1,z2) be the exterior sub-algebra of Fy[Cy x Cs] generated by x; and .
The natural inclusion

L E($1,$2> — F4[CQ X Cg}

induces an isomorphism of left Fy[Cy x C3]-modules. Let T'[y] denote the divided
power algebra generated by 7. Consider the projective resolution of the trivial
E(x1,x9)-modules Fy given by

X = E(z1,22) ® Ty, 7]

and differential d(y574) = x17; 4+ 227575 . Then X is a a projective resolution
of the trivial E(z1, z2)-module Fy. Further, the map of chain complexes

p: X =D,
determined by
pla(yin3)) = la)ds,q

is an isomorphism of chain complexes. O

Lemma 6.4. The complex D, is a complexr of Gag-modules via restriction along
the natural map Gaog — Ay. The map ¢ : C, — D, determined by

do,o k=1=0

di o k=i=1,

d0)1 k=1,i=2,
(b(ck,i) = d2,0 k‘ = 2,i = 1,

do,2 k=1=2,

dso+dos k=3,1=0

0 otherwise

lifts the canonical map W — Fy.

To compute with these resolutions, it is necessary to understand the eigenspaces
of (Ec).V(0) = Fy[[u1]][u™?!] with respect to the C3 action.

Lemma 6.5. Let & be the A-eigenspace of (Ec).V (0) with respect to the action of
the generator w € Cs. For k € 7Z,

Fa[o1]{u**}rez A=1
Ex = Fafoi [ {u* ez A=¢
Fyfor){u** T} ez A= (3

Further,
(Ec)V(0) =& @ E @ E

as Cs3-modules.

Proof. This holds since ¢,,(u1) = (u; and ¢, (u) = Cu. O
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7. APPENDIX II: THE v;-BOCKSTEIN SPECTRAL SEQUENCE

Our next goal is to introduce the vi-Bockstein spectral sequence described in
[6, §1]. Recall that S¢ is the 2-Sylow subgroup of S¢. Fix a closed subgroup G of
either S¢ or PS¢, where

PSc = S¢/Cs.

Consider the exact couple

H* (G5 Fa[wa]][w]/ () <—— H*(Gs Fa[wa ][]/ (uy ™)

n
vy T

(G Fa ][]/ ()

Let s denote the cohomological degree, ¢ denote the internal degree and w denote
the filtration degree. The above exact couple gives rise to a strongly convergent
tri-graded spectral sequence

P 7 (G Falu™]e) = H*(G;Fal[wn]][u™)).

w>0
We will show in Theorem 3.7 that the action of S¢ on (Es), is trivial modulo (2, vy).
Therefore, for any subgroup G of S¢ or PS¢

Ei@,t,w _ HS(G;F4[u:t1]t) o~ HS(G;]F4) ®]F4[U:tl}t.
The differentials are given by
dr . Es,t,w N Es+1,t72r,w+2r'

They can be computed using any F,4[G]-projective resolution P, of Fy as follows.

Let 0, : P, — P,_; denote the differentials of P,. Let z be in H*(G;F4[u®!]).
Choose a representative ¥ in the complex Homg (Ps, F4[u™!]). Let ' be a lift of Z
in the complex Homg (Ps, Fy[[u1]][u™?]). Let

0+ : Home(Py, Fa[ur|[u1])) — Home (Poy 1, Fyfur]][121))
be the morphism induced by ds41. Then
) = o
for some 3 in Homg (Ps, Fyf[ui]][u®!]). Let y be the class in H*+(G;Fyu[ut?))
detected by the image of ¥ in Homg(Psy1,Fs[u™?]). The differential d, is defined
by
dp(z) = y.

The differentials are vi-linear and this is a spectral sequence of modules over
H*(G;Fy).

Proposition 7.1. Let ES""(Qg) be the vy -Bockstein spectral sequence computing
H*(Qs; (Ec)«V(0)). Then

EX5* =TFyfgo,u ™ ® <F4[U1]{17 hiou™t hyou™2, hy gu™3}
@ Falv1]/(v7){h1 0, h%,m h%,ou_17 h?,ou_l}

2 3 —2 ;2 -2 3 2
® Fa{hi1,hi 1, by 1, o™= ki ju™=, by qu })
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A class is named by the name of the class which detects it, and

(7.2) H*(Qs,F4) = Fulgo, h1,0, h11]/(h1,0h1 1, h?,o + hzﬁ)

where hy; has cohomological degree 1 and go has cohomological degree 4. Further,
the action of Cs is determined by

¢ (u) = wu
Gu(h1i) = ¥ ha s
Proof. Let iNLLO be the canonical generator of Homg, (Indgg4 (x¢2),F4) where
Homg, (Ind&2* (xc2), F4) € Homg, (C1,Fy)
and let ELI be the canonical generator of Homg, (Indg;4 (x¢),F4) where
Homg, (Indg2* (x¢), Fs) € Homg, (C1,Fy).

Let hy; be the corresponding cohomology classes in H'(Qs,F4). Then H*(Qs,Fy)
is given by (7.2). Note that

Gu(h1) = (¥ hu s,
The cohomology H*(Qs, (Ec)«V(0)) is computed by the following periodic resolu-

tion:
<¢> (% 0 )
¢mz 0 ¢I2 (d’wl ’%2) 0

S——lstoal ~— 5 € &

&1

Therefore, the cohomology of H*(Qs, (E¢)+«V (0)) is periodic of period 4 with respect
to the cohomological grading s. The periodicity generator is given by the image of
go in H*(Qg, (Ec).V(0)). It is also periodic of period 8 with respect to its internal
grading. Indeed, define the Qg-invariant

(7.3) §=(u-gi(u)-pj(u)- dp(w) ' =u (1 +wuf) mod (2).
Note that 62 = A. Since § is invertible, it induces an isomorphism

H*(Qs, (Ec)t) — H*(Qs, (Ec)t+s)-
The map induced by 0 on the associated graded

@Ef’t7w N @Ef,t—k&w

is given by multiplication by u~%. Therefore, all differentials in the v;-Bockstein
spectral sequence are u~*-linear.

This reduces the computation to a few simple verifications. It is sufficient to
compute the differentials for =" when r = 0, 1,2, 3 and the differential on hq ju=3.
Let ¢, denote the action of x; on (F2).V(0). When r = 0, all differentials are
zero. If r = 1, we have

0 r=20
_r 0 r=
vy r=
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and
0 T
_ U1 r=
7.5 2 "=
(7.5) b=,
U_2U1 r=

This gives the following key differentials
di(u™t) = vih 1, di(u™?) = u_2v1h1’1
and
do(u™?) = vtho, dg(ufghLo) = uflvfhio.
All other differentials are determined by v; and u~* linearity. ]

Figure 7.1 illustrates the E.-term. Classes have been named according to the
element which detects them. Taking C3-fixed points, we obtain an associated graded
for H*(Ga4, (E¢)«V (0)), which is depicted in Figure 7.3.

Proposition 7.6. Let V = Qg/Cy. Let ES"™ (V) be the vi-Bockstein spectral
sequence computing H*(V; (E¢).V(0)). Then,

B =Fau™® <F4 [01]{1} & Falv1]/(v1){h1,0,hF o, 11 o}
& Faf{hy1,hi 1, hoha, BE ghaa, haohs 1 hi g,
h1,1u727 hiluﬂ, h170h171u72, hiohl,lu*Q, hiluia hl)ohilll,Q}.)

A class is named by the name of the class which detects it, where

(7.7) H*(V,Fy) = Fy[h10, h11]
with hi; of cohomological degree 1. Further, the action of C3 is determined by
dw(u) = wu

Gu(hn i) = C'hui
Proof. Let iNLLO be the canonical generator of HomV(Indé;1 (X¢2), Fa) where
Homy (Ind3! (X,2), F4) € Homy (IndZ (Dy, Fy).
Let FfVLLl the canonical generator of Homy (Indég (X¢); Fa) where
Homy (Ind3! (X, ), F4) € Homy (Indg! (D1, Fy).

Let hy ; be the corresponding cohomology classes in H' (V,F4). Note that under the
morphism of chain complexes induced by the map Cx — D, described in Lemma 6.4,
the element h;; in Homy (D;,F4) is sent to the element of the same name in
Homg, (C1,F4). This justifies our choice of notation. Then H*(V,F,) is given by

(7.7) and ¢y, (h1,) = Cgihlyi. The cohomology H*(V, (E¢).V (0)) is computed using

the following resolution:
¢z, 0
¢w2 (b:vl
0 ¢a

&)
Day

R @~ E BE B E — ...
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The element § defined by (7.3) is again invariant and invertible. Therefore, the
cohomology H*(V, (E¢).V(0)) is also periodic of period 8 with respect to its internal
grading. Multiplication by ¢ induces an isomorphism

@Ei‘;»ﬂw N @Ef,tﬂL&w
4

in the associated v;-Bockstein spectral sequence given by multiplication by u™*.
The formulas given by (7.4) and (7.5) give the two key differentials:

dl(ufl) = ’U1h1717 dg(u72) = U%hl,(%

All other differentials follow from linearity under multiplication by vy, u~™* and
elements of H*(V,Fy). O

The F.-term is drawn in Figure 7.2, where classes are named according to the
class that detects them in the E7-term of the spectral sequence. Taking C3-fixed
points gives the associated graded for H*(Ay, (E¢).V(0)), which is depicted in
Figure 7.4.
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3, 12
3 hi yul 30,-3
h1,1' 3 1 hl,Uu
R gu
2 11
hiae hiou R
2 2 2 2 Mot
h1,0 hl,lu *
hiqe hygul!
h hmu 2
1,0
0 1
-3 -1 1 3

FIGURE 7.1. The E-term for the v;-Bockstein spectral sequence
computing H*(Qs, (E¢)«V(0)). Horizontal lines denote multipli-
cation by v;. Horizontal arrows denote classes which are free over
Fy[v1]. The E-term is periodic of period 8 with respect to the
internal grading ¢ on a class § = u~4(1 + u}), which is detected
by u~* in degree (t — s,5) = (8,0). It is periodic of period 4 with
respect to the cohomological grading s on a class detected by gq
(see (7.2)) in degree (t —s,s) = (—4,4).

hije  shyihi, B3 ul?s  eh} hygu”
h2 A .hilg.() h171hi(’uizo
11758
) h‘,l' oh 70h171 Llﬁlhl.gu 2o
h%,o %,115—2‘
h 1
huu_Q-
hio

0 1

-3 -1 1 3

FIGURE 7.2. The E,-term for the v;-Bockstein spectral sequence
computing H*(V, (E¢).V(0)). Horizontal lines denote multiplica-
tion by v1. Horizontal arrows denote classes which are free over
Fy[v1]. The E-term is periodic of period 8 with respect to the
internal grading ¢ on a class § = u~*(1 4 u3), which is detected by
u~% in degree (t — s, s) = (8,0).
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4 U 12.—*)
da ? 9o

b yu B e—— iLilu‘ﬁo hilquH—H ] illu‘vm

2 -2 hilu Yo 12 qu hio'uisifi—d N ilu* 10,
1o e !
oo e 2e | Ry ou e iy qufSe
0| 14— u12e—b
0 2 4 6 8 10 12 14 16 18 20 22 24

FIGURE 7.3. The associated graded for H*(Ga4, (Ec)«V (0)). Horizontal lines denote multiplication by v;. Horizontal
arrows denote classes which are free over Fy[v1]. The associated graded is periodic of period 24 with respect to the
internal grading ¢t on the class A = u=12(1 + u$)3, which is detected by u =12 in degree (t — s,s) = (24,0). It is
periodic of period 4 with respect to the cohomological degree s on a class detected by go in degree (t —s, s) = (—4,4).
Dotted lines denote extensions which are known from [1, §7]. The element hy gu~! detects h;.

. . 13 ulbe . . ‘ ohi Ju=™
hioh? u? ha hy 1w ‘v LS hiloh? Ju=® hA hy w194 AERID
h2 ute T . B2 2 ut o .
2 171 ) ]1[(]]/1 1 0 LOI/ _ . ) 11 ]/1(,/11 1 12
hlﬂl’U/,_Q‘ ‘ hlﬂo’u_4 }L171U_8‘
0| 17— 12—
0 2 4 6 8 10 12 14 16 18 20 22 24

FIGURE 7.4. The associated graded for H*(Ay4, (E¢)«V(0)). Horizontal lines denote multiplication by v;. Horizontal
arrows denote classes which are free over Fy[v;1]. The associated graded is periodic of period 24 with respect to the
internal grading ¢ on the class A = u='2(1 + u})?, which is detected by =12 in degree (t — s,s) = (24,0). Gray
classes map to zero under the map H*(Ay, (Ec).V(0)) = H*(Ga4, (Ec).V(0)).

99
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8. APPENDIX III: THE ACTION OF THE MORAVA STABILIZER GROUP

The goal of this appendix is to approximate the action of elements of S¢ on
(Ec)«. Some of our results are stronger than needed for the computations of this
paper, but the more precise estimates are necessary for future computations. Note
that the results of this section prove Theorems 3.6 and 3.7.

8.1. The formal group laws. Let £ be an elliptic curve with Weierstrass equation
& y? + a1y + azy = 2 + aga® + asw + ag.

Let Fg(z1,22) be the formal group law of £, where the coordinates (z,w) at the
origin are chosen so that

(8.1) w(z) = 2% + a12w(2) + a2’w(2) + azw(2)? + agzw(2)? + agw(z)>.

That the group S¢ acts on (E¢). is a consequence of the fact that the formal group
law F'g, of E¢ is a universal deformation of the formal group law F¢ of the elliptic
curve

C:y*+y=2>
defined over any field extension of Fy. Further, Ff, is the formal group law of an
elliptic curve, namely

Cu : y? + 3urzy + (u? -y = 2>

defined over (E¢)o. That is,
Fg, = Fe,.

The goal of this section is to gather information about Fg¢, . These results will
be used in the next section to compute the action of S¢ on (E¢).. We will also
compute information about the formal group law of the curve

Crpyt—y=2a
defined over Z. The curve Cyz is a lift of C to Z, and Cy reduces to Cz modulo u;.
Therefore, we will derive information about F¢,, from information about F¢,.

The following results are proved using the methods described in [18, §4]. We re-
call the key tools here. We restrict to elliptic curves £ with homogenous Weierstrass

equation of the form
E: 2+ arayz + asyz? = 2°.
Let z = —% and w = — 2, so that (z,w(2)) is a coordinate chart of £ at the origin,
with
w(z) = 25 + ar2w(2) + azw(z)?.
This can be used to write w(z) as a power series in z. Letting
w(z2) —w(z1)

>\(21722) = ﬁ’

the line through the points (z1,w(z1)) and (22, w(z2)) has equation
(8.2) w(z) = Az1,22)2 + w(z1) — M(21, 22) 21

(Note that there is a sign mistake in [18, §4.1] in the equation of the connecting
line. This was pointed out to the author by Hans-Werner Henn.) Substituting
(8.2) in (8.1), we obtain a monic cubic polynomial whose roots are z;, z2 and
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[<1] £, (F(21,22)). The coefficient of 22 is a1 \(z1, 22) + az\(21, 22)%. This implies
that
(83) [*1}F5 (F(Zl, ZQ)) = —21 — 22 — a1>\(2’1, 22) — a3>\(2’1, 22)2.

Noting that
w(s) —w(z)

)\ = 1 — !/
(Za Z) SIA)HL s _ 2 w (Z),
it follows that
[_2]F£ (Z) = -2z — alw,(z) - agw'(z)z.
Finally, the series [—1] g, (z), which is [-1] g, (F(z,0)), is given by
w(z w?(z
(8-4) [-1]p(2) = —2 — a17(z ) —ag 2(2 )

so that Fg can be computed by composing (8.4) with (8.3).

The following two results give formulas for the [—2]-series of the curve Cy, both
integrally and modulo 2. Corollary 8.7 was conjectured by the author using the
algorithms described of [18, §4]. The proofs are due to Hans-Werner Henn.

Proposition 8.5. The formal group law Fe,, has [—2]-series
zuy — 22%ud + 23 (ud — 1)
1 —6zuy + 92%u? — 423(uf — 1)’

[—2]Fe, (2) = =22 =9z

so that
(8.6) [—2Fe,, (2) = =22 — 9u12® — 36uiz® + 92* — 144wtz + O(2°).

Proof. For the curve Cy, we have

W(2) = 3(2% + ulf;u(z)) .
1—3u1z — 2(uj — Dw(z)
Using the fact that
[—2]Fe, (2) = =22 = 3uyw'(2) — (ud — Dw'(2)?
and the fact that
(ud — Dw(2)? = w(z) — 2% — 3u2w(2),
one expands and obtains the formula for [—2] Fe,, (z). Computing the Taylor expan-
sion gives the estimate (8.6). O

Corollary 8.7.
[—2]Fe,, () = urz® + Z uF T mod (2).

k>0
Proof. 1t follows from Proposition 8.5 that modulo 2,
2 3.4 1 4
w1z +ujz™ 4+ z
[_2}FCM (Z) 1+ 12 2
ujz

Therefore, modulo 2,
[—2]F,, (2) (ur2® +udzt +24) Z u?k 22k
k>0

= u1z2 + Z u%kz2k+4.

k>0
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d

Some of the key ingredients for the proof of the next result were brought to the

author’s attention by Inna Zakharevich. Let

2k)!
Cr = _CR .
El(k+1)!

be the k’th Catalan number. Let
(88) Cly) =Y Ciy*
k>0
be their generating series. Let D(y) = yC(y). It is a standard fact that
-y
2

Proposition 8.10. Let Cz be the elliptic curve defined over Z by the Weierstrass
equation

(8.9) D(y)

Cy:y? —y=ad

Then
[—2]e,(2) = =22+ 92* > (—1)"4m2%",
n>0

For (z,w(z)) a coordinate chart at the origin with w(z) = 2% — w(2)?,

3(nt1) _ \/1+4z3—1.

w(z) = =D((~2)*) = Y (~1)"Cnz 5

n>0
Further,
(28 +23) + D(= (2] + 23 +42{23))
(22 — 21)?

[—1]e, Fe,(21,22) = —21 — 22 +

Proof. 1t follows from Proposition 8.5 that, modulo uq,

— 4
[—2]c,(2) = =224+ 92 el

This proves the first claim. The second claim is equivalent to showing that
w(z) = 2°C((~2)°)

It is a standard result that
C(z) =1+ 2C(2)2

Therefore,

so that

2P0((=2)%) = 2% = (°C((=2)"))*.
Since w(z) and 23C((—2)3) satisfy the same functional equation, they must be
equal. Further, this implies that

V14423 -1

w(z) = )
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Finally, note that

Aow, 72 1 <\/1—|—4z§—1 \/1+4z§—1>
Z1,%22) = -

zZ9 — 21 2 2

V1423 — 1+ 428
2(2’2 — Zl) ’

Therefore,

[71}FCZ (FCZ(Zl7 22)) =—21— 22+ )\(Zla 22)2

2
14423 — /14428
———21—z2+<\/ 2 \/ 1)

2(z9 — 21)
2028 +23) + 1 — /1 +4(23 + 23 + 42523)
=-z1— 2+ 3
2(2’2 — Zl)
(23 + 23) + D(— (25 + 235 + 42323))
=—z1— 22+ 5 .
(22 — 21)

O

Proposition 8.11. Let C be the elliptic curve defined over Fy by the Weierstrass
equation
C:y*+y=2>

The local uniformizer at the origin w(z) = 2% + w(2)?, satisfies

w(z) = Z 232"

k>0
Further,
[~2r (2) = 2%,
and
3.2F-1_1
(812)  [Ur (Felaz) =atz+y, > (GO 7105,
k>1  n=0

Further,

[lre(z) =Y 272

k>0

so that

2.2, 6,4, 4.6 88, 124 4 12 , 12 10 _10_12
Fe(z1,22) = 21+ 20 + 2725 + 2025 + 2125 + 2725 + 21°25 + 2125 + 21°25° + 21" 23

148 8 14 16 12 1216 24 4 424
+ 2129 + 2725 212" 21729 t 2] 29+ 2725 + ..
where the next term has order 34.

Proof. One can compute directly that w(z) = Zkzo 232" This implies that C,, # 0
modulo 2 if and only if n + 1 = 2*. Therefore, we have the following identity of

power series
k
D(y) =Y Coy™ =) "y,
n>0 k>0



TOWARDS 7. Lg(2)V(0) AT p =2 61

Hence,

z122(21 + 22 23+ 23
(1]m, (Fe(or, 20)) = 22221t 22) £ DG+ 25)

(21 + 22)?
- # Z12’2(Z1—|—22 _|_Z 3.2k +Z§.2k)
2
(21 + 22) £>0
1 3.2F 1 .
— le2+z Z 32 —1—r ’I")
(21 + 22) k>0 r=0
The key observation is that if n is odd, then
n n—1
DTS =D (mz) (T 4+ )
r=0 r=0

n n—1-2r

:(21+22 Z nlrsr+3)

r=0 s=0
Therefore,
1 3.2F 1
[—1]p. (Fe(z1,22)) = it ) 2+ 25120425 + Z Z v S 23)
L= k>1 =0

3.2k—1_12(3.28 1 —1-r)

—Z1+Z2+Z Z Z (2 f-2k727(r+s)zg+s).

k>1 r=0 s=0
To simplify this expression, we must count the ways in which an integer n such
that 0 <n < 2(3-2F"! — 1) can be written as a linear combination r + s where
0<r<3-2F1-1
and
0<s<2(3-2"'—1-7r)
If n < 3-2%=1 —1, there are n+ 1 combinations. If 3-2F=1 -1 < n < 2(3-2k-1 —1),

there are 2(3-2~1—1)—n+1 combinations. Therefore, the coefficient of 2 22— s
is zero if and only if n is even. This implies that

3.28—1_1
k-1 n n
[~1r (Fe(z1,22)) = 21 +Z2+Z Z 2(32 - )zg ).
k>1 n=0

To prove the given estimate of Fg (21, z2), note that since w(z) = 2% +w(2)?, we

have that

[“Ure(2) =2+ —3

k:_
_ 2 232 2_
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A direct computation using (8.12) proves the claim. d

8.2. The technique for computing the action of S¢c. The method presented
here is an adaptation of the techniques used in [11], which we describe here. Let
be in S¢. Then v € Fy[[x]] is a power series which satisfies

vFe(x,y) = Fe(v(x),v(y))-

Recall from Section 2.4 that 7 gives rise to an isomorphism ¢~ : (E¢)s — (E¢)«
and a lift of ~,
fv : (ZS:FEC — FEcu
where
[y € (Ec)ol[=]].

The action of v on (E¢), is given precisely by ¢..

The isomorphism ¢, is linear over W; hence it is sufficient to specify ¢, (u) and
¢~(u1). The morphism f, is given by a power series

f1(@) = to(V)x + t1(7)2? + ta ()2 + ...

where

t; € (Ec)o = W[[ul]]
By (2.4)
(8.13) P (u) = f5(0)u = to(7)u,

which gives the action of v on wu.
The morphism f, must satisfy

(8.14) I ([=2z pe, () = [=2] pg,, (f+(2))-
This imposes a set of relations on the parameters t;(v) and ¢.(u1). Further, f, is
a lift of v, so that

(8.15) fy=v mod (2,u1).

This specifies the parameters t;(y) modulo (2,u;). With this information, the
relations imposed by (8.14) are sufficient to approximate ¢,. Before executing this
program, we prove a preliminary result.

Proposition 8.16. Ifvy € Zy NSc, so that vy =3, a;T%, for a; € {0,1}. Let
(= Z a;2°
i>0
in Zy C (Ec)o. Then ¢y(u1) = uy and ¢ (u) = lu.
Proof. The element 7 is given by
Y(z) = aor +r. a1[—2|r. (z) +re az[4]p. () +re - -
Let g be the lift for v given by
g(x) = apx +Fp, al[—Q]FEC (z) +Fp, a2 [4]FEC () + gy -

Then g is an automorphism of Fg,, hence ¢4 : (Ec)o — (E¢)o is the identity.
Therefore, the automorphism f; described in Section 2.2 is the identity, and hence

fy(x) = g(@).
Since
g(z)=Llx+...,
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we have ¢’(0) = . Hence, ¢, (u) = lu. O

Theorem 8.17. Let v € S¢ and t; = t;(y). Then

2t
(818) cZ).Y(ul) = UltO + g*l
to

Proof. Recall from (8.14) that
f5(=2]pz Fp, (%)) = [=2]Fg, (f5(2))-
Using (8.6), one obtains the following relation on the coefficients of z2,
—9¢., (uy)to + 4ty = —utd — 2t;.

Because ¢ is an isomorphism, ¢ is invertible. Isolating ¢~ (u;) and dividing both
sides by —9t¢y proves the claim. ([l

Therefore, to approximate the action of an element v in S¢ on (E¢)., it suffices
to approximate the parameters ¢o(y) and ¢ (7).

8.3. Approximations for the parameters ¢;(7y). In this section, we use the
technique described in Section 8.2 to approximate the parameters ¢;(vy). Our goal
is to give an approximation of the action of v modulo (2,u})?. By Theorem 8.17,
in order to do this, we must approximate to() modulo (2,u3$)% and ¢; () modulo
(2,u3)? for v in Sc, the 2-Sylow subgroup of S¢. The goal of this section is to
obtain these estimates.

Corollary 8.19. Modulo (2,u?),

s—1
_ 4 2 s+2) 5 2 2,4,2
te =15 + urts, g + ( 9 )tots+1u1 + Z%ti tos—1-2;
i=0

s S s+3 s+2
+ tote 1+ (- )thte 1 + totsra + 51 ) ut.
1 2 4 1 2

Proof. Let f,(z) =Y 2, t;z"T!. Using Corollary 8.7, we obtain

i ) i+1
fV([_Q]M,FEC (37)> = Zti <t0u1x2 + e + Z(tou1)2i$4+2i>

=0 i=1

o0
i+1
= Z t; (t0u1x2 + a2t + t%u%xﬁ + téui"x{g)l

o0 .
. 1 . . )
= E t; <:c4(’+1) + (Z Jlr >(tou1x4”2 + 2t ¢ tduiatts)

< ! )(tgufw T thubati)
i+ 1 . . .
+ (Z 5 ) (tgu‘r{’x4“2 + t%u%m‘“” + tgu“;’x“%’)
+
4

dgutatt= e (77 ) pugatie).
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Further,
2 oo 4 o 2k—+4
[—2] g, (fy(z (Zt 20 ) + (Z t,;:c”1> I Zu%k (Z tﬂ:iJrl)
=0 k=1 i=0

oo
EZ(th 2(i+1) + i 4(1+1)+u4t8 8(1+1)>
1=0

o 3

+ u? (Z tfﬁ(i“))
i=0

Next, note that

3
§ : % _,E : § 2 k
a; T = a;a;T

i>0 k>0 2i+j=k
Therefore,

3
o0
u? <Z tzzxz(iﬂ)) - Z Z u1t4t2 2k+6
i=0 k>0 2i4j=k
Now, using (8.14), the coefficient of 2*(**1) gives the relation

s+ 2
te =t tugtd g+ ( ) )t?)tsﬂu% + ) Wt
2i+j=2s—1

s s s+ 3
2
+ (S * )t%lu‘f
1 2

(Note that the the coefficient of the last term is chosen to be zero when s is even,
so that when ¢.-1 has a non-zero coefficient, (s —1)/2 is an integer.) O

Proposition 8.20. For t; = t;(y) where v € S¢, then
ti =ttty + 2tuas +2 Y 22 mod (2,u)?
r+s=21
0<r<s
Proof. Modulo (4, u), we have
[—2]re,, () = 22 + zt.
This gives

f’y([ 2]¢ FEC Zt < 4(i+1) +2<i—:1)$4i+1>

and

4
[—2] g, (fy(z ZZt it <Z ti:c”l)
= Z o, + ZLA a(i+1) 4 Zx4+212 Z 1242,

r+s=1
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Using (8.14), the coefficient of z*(“+1) gives the relation

ti = 2tyi43 + t;l +2 Z t%ti mod (4, Ul).

r4+s=21
0<r<s

The claim then follows from Corollary 8.19. (]
Proposition 8.21. Modulo (4)
(8.22) to = tg + 2tz + 3t3uy + 2totaus + 3totul.
Modulo (2),
ty = t] + t2uy + tgt3ud + titou? + thut + thut + titzul.
Proof. Modulo (8), the coefficient of 2% in f4([=2]pz Fy, (2)) is given by
to + ¢n (u1)*ts
and the coefficient of [—2]r,,, (fy(x)) is given by
to + 2t + 3tTug + 2totouy

Recall from Theorem 8.17 that ¢, (u1) = uito + %i—; This and (8.14) imply that

to + tatyu? =ty + 2t3 + 3tuy + 2totau;.

Isolating ty proves the first claim.
Similarly, the coefficients of z® give the desired relation for t;. O

Recall that v € S¢ has an expansion of the form
'y:ao—|—a1T+a2T2+a3T3+...

Here the a; are solutions to the equation z* —z = 0. Recall from Section 3 that
if w® € End(Fp) is a solution to the equation #* — 2 = 0, then it corresponds the
automorphism

wi(x) = C°x,
where ¢ € Fy = (E¢)+/(2,v1). Recall that there is a canonical copy of Fy in End(F¢)
given by the ring generated by the automorphism w(x). Further, (E¢)./(2,v1) is
isomorphic to F4, with canonical generator the image of (. Define a map

f:Fy CEnd(Fe) — (Ee)«/(2,v1) 2 Fy
by
flw(@)) = ¢
If v is as above, using the fact that T'(z) = 22,
v(@) = flao)z +pe flar)a® +p. flag)z* +r. flaz)a® + ...

For simplicity, we will identify a; with f(a;) and write

(8.23) v(z) = apx +p. ar2* +pp apx? +p. azx® 4.
Proposition 8.24. For v € Se,

Y(z) = 2 4 ar2® + aga® + a3ab + azx® + a22'0 + alaia® 4+ a4 (0 + ay)2'®

modulo (z'%).

Proof. This is a direct computation using (8.23) and the formal group law of Propo-
sition 8.11, noting that for v € S¢, ag = 1. a
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For the remainder of this section, we assume that v € Fy/5Sc.
Corollary 8.25. Let t; = t;(7y) where v € Fy/5Sc. Modulo (2,u1),
to=1 ts = as, tr = as, tgzag, t1s = ay,
and t1, ts, t11, t13 and to; for 0 < i < 8 are zero modulo (2,uq).

Proof. Since v € Fy/3S¢, ay = 0. The claim follows from Proposition 8.24, noting
that t; is congruent to the coefficient of z°*! modulo (2,u;). O

Proposition 8.26. Let t; = t;(v) where v € Fy/5Sc. Modulo (2,u})

to=1 ta =0 ts = asuq te =0
t = a%ul t3 = ag + agul ts = 0 tr = a3 + aiul.
Proof. This follows from Proposition 8.20 and Corollary 8.25. O

Proposition 8.27. Let t; = t;(y) where v € Fy/5Sc. Modulo (2,uf)
to =1+ (az + ad)ul,
t3 = as + a%ul + a4ui’.
Modulo (2,u?)
t1 = a%ul,
ts = (ag + a3)u?,
Modulo (2,u$)
ty = aiu? + azui + (az + ad)ud.
Proof. Tt follows from Corollary 8.19 that, modulo (2,u}),
t3 = t3 + t2uy + toud + titiud + t5tiu?
ts = ta 4+ 13 ug + tSud + Btiud + t5t2ud + t2teu? + titiud 4+ totiul.
The results for t3 and t5 then follow from Corollary 8.25 and Proposition 8.26. It
also follows from Corollary 8.19 that, modulo (2, u$),

ty = tg + t2uy + tSu? + titiud + tityul + titaud.

The identity for t5 then follows from the Corollary 8.25 and Proposition 8.26, using
the identity for t5 modulo (2, u3). O

Proposition 8.28. Let v € Fy/5Sc. Modulo (2,u8),
_ 2 3, 2.5 6 2, 3 2y, 7
t1(7y) = ajuy + asuy + asuy + asuy + (a3 + a; + as + aj)uy.
Modulo (2,ul?),
_ 24,3 5 8 2 2y, 9
to(v) = 1+ (ag + a3)uy + asuj + asuy + (a2 + a5 + ag + aj)uj.

Proof. The estimate for ¢; follows from Propositions 8.21 and 8.27. The estimate
for ¢y follow from Proposition 8.21 using the result for ¢;. [l
Proposition 8.29. Let v € F/5Sc. Modulo (4,2u?, ui®),

to(y) = 1+ 2a9 + 2a3u; + (ag + a3)ui + azu? + azul + (az + a3 + aq + at)uj.

Proof. This follows from Propositions 8.21, 8.26 and 8.28. (]
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Proof of Theorem 3.6. The claim follows from Theorem 8.17, noting that

d(u1) = tou;  mod (2)
O

Proof of Theorem 3.7. The claim for () is Proposition 8.29. The claim for ¢;(y)
follows from Proposition 8.28 by reducing the identity for ¢; modulo (2, u3). If 7 is

in

Fy /5S¢, that the action of v is trivial modulo (2,v?) follows from the fact that

to(y) = 1 modulo (2,uf). O
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