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a b s t r a c t

Recent work (Ando et al., 2015, 2014; Beardsley, 2017; Hess, 2010; Rognes, 2008) in higher
algebra allows the reinterpretation of a classical description (Blumberg, 2010; Cohen et al.,
1981; Mahowald, 1977; Mahowald et al., 2001) of the Eilenberg–MacLane spectrum HZ as
a Thom spectrum, in terms of a kind of derived Galois theory. This essentially expository
talk summarizes someof thiswork, and suggests an interpretation in terms of configuration
spaces and monoidal functors on them, with some analogies to a topological field theory.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1.

Questions about an absolute base F1 → Z for arithmetic (e.g. [5,6]) evoke echoes in algebraic topology (e.g. [7,8]), where
Waldhausen’s brave new rings program interprets the unit 1 ∈ H̃0(S0,Z) as a kind of ring homomorphism from the sphere
spectrum S0 to the Eilenberg–MacLane spectrum HZ. This talk, aimed at interested non-experts, tries to summarize current
thinking (and speculation) about this and related questions in homotopy theory, framed in terms of recent work of Rognes,
Hess, and others on an emerging version of Galois theory in higher algebra. A now classic construction byMahowald from the
late 1970s (then at p = 2, though quickly generalized [3, Corollary 3.5] [2]) interpretsHZ as a Thom spectrum (or cobordism
theory); this talk describes that result in this developing language.

Some conventions: We write ∧ for the (symmetric monoidal) smash product of pointed spaces, and ∧R (e.g. ∧S0 ) for
the smash product of R-module spectra. If G is a group, the geometric realization or nerve |[∗/G]| := BG of the associated
singleton category provides a standardmodel for its classifying space.Σ∞X+ (or S0[X]) will denote the suspension spectrum
defined by an unpointed space. X∞ will denote one-point compactification (e.g.C∞

∼= S2). For a space X we use X⟨n⟩ to indi-
cate the nth level of the Whitehead tower, i.e. the space which has trivial homotopy in degrees less than or equal to n, and is
equivalent to X elsewhere. There seems to be some disagreement in the literature about the precisemeaning of this notation
and how it relates to the terms ‘‘n-connected’’ and ‘‘n-connective’’, but we will always mean the space described above.

1.2.

The homotopy theorist’s category of spectra (cf. [9,10]), or modules over the sphere spectrum, is the distinguished
ancestor of themodern theory of derived categories and their relatives (such as Voevodsky’smotives), and for our principally
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expository purposes we will assume some general familiarity with its constructions. However, a significant difference
between classical and homotopy-theoretic ring objects is the subtlety of notions of associativity and commutativity in the
latter context. There, a multiplicative structure on an object A can usefully be presented by a compatible collection

En(k)∧ΣkA
∧k

→ A

of parametrized multiplication morphisms, making A an algebra over an operad En := {En(k), k ≥ 0} of objects with an
action of the system {Σk} of symmetric groups. In our situation En(k) will be, very roughly, a space of ordered k-tuples in
Rn, 1 ≤ n ≤ ∞ [11]. An E1 (or A∞) algebra structure thus defines a coherently homotopy-associative product, and an E∞

algebra is similarly coherently homotopy-commutative. In particular, the unit map

S0 → HZ

is a morphism of E∞ algebras (in the category of spectra, i.e. S0-modules), but the description of HZ as a Thom spectrum
presents it only as an E2-algebra.

When n > 2 the spaces En(k) are simply-connected, but E2(k) is a classifying space for the kth pure braid group:
E2-algebras thus have a braidedmonoidal structure. This suggests possible connections with the study of automorphisms of
the braid groups (i.e. understanding the work of Grothendieck and Drinfel’d on the tower of mapping class groups [12,13]);
we will not discuss this further here, but it is one of the motivations for our interest in this subject [14,15].

1.3.

The organization of the paper is as follows: in Section 2 we briefly recall the notion of a Hopf–Galois extension, for both
fields and ring spectra. We also state our main theorem, which is that the unit map S0 → HZ, when considered as a map of
E2-algebras, is such an extension. This can be thought of as a description of the descent data for passing from algebra, over
Z, to homotopy theory, over S0.

Our main theorem can be considered a restatement of the material we review in Section 3. Therein, we recall the
important work of Ando, Blumberg, Gepner, Hopkins and Rezk in describing Thom spectra as quotients of actions by
grouplike iterated loop spaces. We also recall the descriptions of HFp, HZp̂ and HZ as Thom spectra, described by Blumberg
as well as Antolín-Camarena and Barthel. In particular, HZ is described as the Thom spectrum of a 2-fold loop map
Ω2(S3⟨3⟩) → BO.

Finally in Appendix A, which we include as an appendix, we give a concrete categorical model for the space Ω2(S3⟨3⟩) in
terms of braids of writhe, or total twist, equal to zero.

2. Hopf–Galois theory in spectra

2.1.

The normal basis theorem of elementary Galois theory can be phrased as the existence, for a finite normal field extension
F ⊂ E with Galois group G, of an isomorphism

E⊗FE ∼= FG⊗FE

of F-vector spaces [16]: where FG is the Hopf-algebra of functions from G to F , dual to the group ring F [G]. This realization
allows one to generalize the notion of a G-Galois extension to extensions of fields (or rings, as in [17]) whose ‘‘Galois groups’’
are in fact Hopf-algebras or even just bialgebras [18,19].Wewill use the terminologyHopf–Galois object for the generalized
Galois groups of such extensions.

About ten years ago Rognes [20] took this as the basis for a Galois theory of E∞ ringmorphisms in the category of spectra,
arguing in particular that the Thom isomorphism

MU∧S0MU ≃ (Σ∞BU+)∧S0MU

for the complex cobordism spectrum MU (with the suspension spectrum Σ∞BU+ regarded as a strictly cocommutative
bialgebra with diagonal induced by BU+ → BU+ ∧ BU+, and multiplication defined by the (E∞) Whitney sum map
⊕ : BU+ ∧ BU+ → BU+) can be interpreted as making the unit map

S0 → MU

an E∞ extension of ring spectra, withΣ∞BU+ as its Hopf–Galois object [20, §4.1.3]. [Note that BU+ is not strictly dualizeable;
if it were, Σ∞BU+ might be interpreted as a Hopf algebra of functions on some Spanier–Whitehead dual ‘‘spectral
groupscheme’’.]

Applications and examples of these ideas followed quickly: Hess [21] used them as the basis for a derived Tannakian
theory of homotopical descent and codescent; others [22] considered weakening the E∞ conditions, and developments in
higher category theory (discussed below) led to a theory of intermediate extensions interpreting, for example, the forgetful
morphism from complex to oriented cobordism,MU → MSO, as Galois, withΣ∞Spin+ as Hopf–Galois object [23, §2]. Other
connections with the theory of Brauer and Picard groups will be relevant below.
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2.2.

It is classical [24,25] that the Hopf algebra dual

π∗(HF2∧S0HF2) ∼= A∗ = F2[ξi | i ≥ 1]

to the Steenrod algebra is polynomial, on generators ξi of degree 2i
−1. Its spectrum, in the sense of commutative algebra, is

thus the dual (Prim Ga)∨ of the space of primitive elements of the additive groupscheme Ga := Spec F2[T ], and represents
the functor of endomorphisms of Ga. It is similarly classical that the Pontryagin (Hopf) algebra

H∗(Ω2S3,F2) ∼= F2[xi | i ≥ 1]

(|xi| = 2i
−1) is primitively generated, and is in fact free on one generator over the Kudo–Araki operations: xi = Q̄ ix1 (where

Q̄ i is the iterated Kudo–Araki operation Q 2i−1
◦ Q 2i−2

◦ · · · ◦ Q 2); and x1 is the Hurewicz image of the adjoint

S1 → Ω2S3

to the identity map of the three-sphere [26, Theorem 7.1]. Moreover, the cohomology H∗(Ω2S3,F2) is free of rank one over
the Steenrod algebra.

Mahowald’s construction interprets this as an equivalence of E2-HF2-algebras

HF2∧S0HF2 ≃ (Σ∞Ω2S3
+
)∧S0HF2

coming from a presentation of HF2 as a Thom spectrum defined by the map

Ω2S3 → BO.

This map is obtained from

[η : S1 → BO] ∈ KO1 ∼= {±1}

using Bott’s infinite-loopspace structure on BO: a map from X to an n-fold loopspace Y extends, via the diagram

X

↓↓

h →→ Y ≃ ΩnZ

ΩnSnX

α(h)
↗↗

→→ ΩnSnΩnZ ,

↑↑

to an n-fold loop map ΩnSnX → Y . In terms of E2-algebras, this construction comes from an equivalence

MapsTop∗
(S1, BO) ≃ MapsE2−alg(Ω

2S3, BO) .

Comparing the Dyer–Lashof and Steenrod algebra structures [1, §9] implies that

S0 → HF2

is an extension of E2-algebras with Σ∞Ω2S3
+
as Hopf–Galois object.

2.3.

The F1-approach to the Riemann hypothesis proposes Spec Z×F1Z, or a suitable compactification, as an analog of Weil’s
space C×kC for a curve C over a finite field k: with an associated algebra of correspondences built from its divisors [27, §2.1].
In an attempt to understand Z as a curve over S0, we could try to understand the derived algebro-geometric properties of
the tensor product HZ∧S0HZ, or of the functor of points defined by its homotopy groups.

In classical algebraic topology, the dual Steenrod algebra A∗ corepresents the groupscheme AutĜa
of automorphisms of

the additive formal groupscheme Ĝa (cf. [28, §1] or [25]). This functor is given by

F2 − alg ∋ A ↦→

{
a(T ) = T +

∑
i≥1

aiT 2i
∈ A[[T ]]

}
:= AutĜa

(A)

and its elements can explicitly seen to be automorphisms,

a(T0 + T1) = a(T0) + a(T1),

of the additive formal group Spf(A[[T ]]) over A, where Spf is the formal spectrum functor. The groupscheme structure here
comes from composition of power series. If we think of the F2-homology H∗(X,F2) := π∗(Σ∞X+∧S0HF2) as a kind of fiber
functor

(finite spectra) ∋ X ↦→ H∗(X,F2) ∈ (F2 − Vect)
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then we can think of the groupscheme AutĜa
as (the dual of) the automorphisms of this functor, in the Tannakian formalism

of [29, Chapter II].
More generally, by identifying A∗ with the Hopf-algebra endomorphisms of the (usual, not formal) additive group Ga,

the Steenrod algebra can be interpreted as corepresenting the F2-algebra-valued functor

A ↦→ A⟨F⟩ :=

{∑
n≥0

anF n
| i ≫ 0 ⇒ ai = 0

}
(with semilinear multiplication (Fa = a2F , a ∈ A)), where F is the Frobenius endomorphism, see also [30]. This suggests
regarding EndGa as an analog, in the category of ring-schemes, of an algebra of correspondences for the integers over F1. This
algebra is in some sense of infinite rank, but the F1-program envisages Spec Z as a curve of infinite genus anyway.

2.4.

Following [21], we may also think of HF2∧S0HF2 as the descent coring of the E∞-morphism S0 → HF2 controlling
descent from F2-vector spaces to S0-modules. On the other hand, Mahowald’s construction of HF2 as a Thom spectrum
indicates that if we only concern ourselves with S0 → HF2 as an E2-map, we can replace this descent coring with
Σ∞Ω2S3

+
∧S0HF2. Moreover, recall from e.g. [19] that the Hopf–Galois extension associated to a G-Galois extension will

have Hopf-algebra the (dual of the) ring of functions on G. This suggests that we may think of the primitively generated
Hopf algebra H∗(Ω2S3,F2) as the symmetric algebra of functions on the affine space underlying EndGa . Its generators xn
then become conceptually analogous to the divisors generating Weil’s algebra of correspondences. If, in light of [31,32], we
consider the Morava K-theories K (n) to be the prime ideals of the sphere spectrum, then the generators xn ∈ H∗(Ω2S3,F2)
correspond to these points thought of as divisors in the fiber product Spec(HF2)×Spec(S0)Spec(HF2). [At the moment, a
structure space or spectrum for an E2-ring spectrum is yet to be defined, but the convergence of the classical Adams spectral
sequence reflects the fact that this fiber product ‘‘knows’’ about the primes of S0.]

One would like there to be a similar Hopf–Galois object for the unit maps S0 → HFp when p ̸= 2 as well. Unfortunately,
the isomorphismπ1BO ∼= Z/2 precludes the possibility of a straightforward generalization of this construction to odd primes
(in particular, for p > 2, it is not the case that p − 1 is invertible in π0(S0) ∼= Z). Any Thom spectrum arising from a map
X → BGl1(S0) must have π0 isomorphic to either Z or Z/2. However, following ideas of Hopkins (as described in [4, Lemma
3.3], [1, §9.2] and [33, Theorem 5.1]), one obtains the same results at odd primes by working over the p-localization of
BGl1(S0). This kind of construction has also recently been extended to include HZpk in [34].

We are, however, ultimately interested in an integral extension of S0 which relates the global structure of Z to that of S0
via a kind of descent from algebra to topology. This goal is reflected in the following:

Theorem 1. The unit morphism

S0 → HZ

is an E2 - Galois extension with Σ∞Ω2(S3⟨3⟩)+ as Hopf–Galois object.

Here S3⟨3⟩ is the three-connected cover of S3 (which is of course homeomorphic to SU(2); also note that SU(2)⟨3⟩ is
known in some physics circles as String(1)). In proving this statement, one first proves its p-adic analogues; that is, one
proves equivalences

HZp̂∧S0p̂
HZp̂ ≃ HZp̂∧S0p̂

Σ∞Ω2(S3⟨3⟩p̂)+.

Here the subscript p̂ signifies p-adic completion, soZp̂ is the ring of p-adic integers. This in turn follows from the construction
of HZp̂ as a Thom spectrum over a 2-fold loop space [33, Theorem 5.7] [1, §9.3], as the above equivalence is precisely the
Thom isomorphism.

Local-to-global methods [1, Lemma 9.3] then lead to a description of HZ as a Thom spectrum over the double loop space
Ω2(S3⟨3⟩), and thus an E2-extension of S0 with Hopf–Galois object Σ∞Ω2(S3⟨3⟩)+.

3. Thom spectra from spherical fibrations

3.1.

The Thom space of a vector bundle E → X is the cofiber of the projection S(E) → X of its unit sphere bundle; this
suggests the extension of the theory of Thom spectra to more general spherical fibrations, classified not by maps to BO but
to a classifying space BGl1(S0) for the monoid of stabilized self-equivalences of the sphere. More generally, Ando, Blumberg,
Gepner, Hopkins, and Rezk [35,36] use ∞-categorical methods to associate to an E1-algebra spectrum R, a classifying space
BGl1(R) for ‘‘bundles’’ of free rank oneR-modules (which they call R-lines); if R is an E∞-algebra, this classifying space is an
infinite loop space. To be precise,BGl1(R) is theKan complex or∞-groupoid ofR-lines and equivalences between them, hence
the base-point component of the so-called Picard category of LModR. So defined, there is a natural inclusion of∞-categories
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BGl1(R) ↪→ LModR. By regarding a space X as an ∞-category in [36, §2.5], these authors associate to a map f : X → BGl1(R),
a Thom R-module spectrum

Mf := colim(X
f →→ BGl1(R)

↘ ↙ →→ LModR).

Moreover, they show that if G is a group-like monoidal ∞-groupoid, then a map BG → BGl1(R) defines an R-linear action of
G on R, yielding an equivalence (cf. [36, Theorem 1.17]):

Mf ≃ R//G

of their Thom spectrum with the homotopy quotient (n.b. not the homotopy fixed-points: this is not our Grandmother
Emma’s Galois theory!) of R by G. For example, the classical J-homomorphism defines a map

BO → BGl1(S0)

and thus an identificationMO ≃ S0//O.
Hopkins’ reinterpretation of Mahowald’s theorem is based on an identification

π1BGl1(S0p̂ ) ∼= Z×

p̂

of the fundamental group of the Picard category of S0p̂ -lines with the multiplicative group of invertible p-adic integers. A
map h : S1 → BGl1(S0p̂ ) extends, as in §2.2, to a two-fold loop map α(h) : Ω2S3 → BGl1(S0p̂ ), defining a homomorphism
π1α(h) : Z → Z×

p̂ on fundamental groups. If, for example, h = 1−pkwith (p, k) = 1 thenπ1α(h) maps 1 ∈ Z to a topological
generator of (1 + pZp̂)×, defining an isomorphism of π1(Ω2S3) with a dense subgroup of π1BGl1(S0p̂ ). The Thom spectrum of
this morphism is then HFp [1,4,33]. Lifting the map α(h) to universal covers defines a double loop map

Ω2(S3⟨3⟩) ≃ B(Ω3
0 S

3) → BSl1(S0p̂ ),

whose Thom spectrum is HZp̂, with Ω3
0 S

3 the base-point component of Ω3S2 [33, Theorem 5.7]. From [1] we then have that
the p-adic maps may be glued together to produce HZ as a Thom spectrum over Ω2(S3⟨3⟩). This defines an equivalence of
E2-algebras:

HZ ≃ S0//Ω3
0 S

3 .

It will be relevant below that the image

π2(p−1)α(h) : π2(p−1)Ω
2(S3⟨3⟩) = π2pS3 → π2(p−1)BGl1(S0) = π S

2p−3

contains the class α1 (generating the image of the J-homomorphism in that degree [2, Theorem 3]).

3.2.

At this point it is interesting to reconsider the p = 2 case, and recall that

α(h) : Ω2S3 → BO(≃ Ω2Sp)

can be constructed by group-completing the following sequence of monoids:∐
n≥0

BBn →

∐
n≥0

BΣn →

∐
n≥0

BO(n)

Here Bn is the n-strand braid group (discussed inmore detail in the appendix) andΣn is the symmetric group on n elements.
The map Bn → Σn is the ‘‘underlying permutation’’ map that takes a braid to the permutation obtained by forgetting
all crossings and only remembering the endpoints of the braids. The map BΣn → BO(n) is the defined by the regular
representationwhich permutes coordinates. Here, following [37], BBn can be interpreted as a configuration space of n points
in C, so the composite∐

n≥0

BBn → Ω2S2 → Z × BO

can be regarded as a kind of topological field theory F ↦→ RF which takes a configuration F , with #F = n, to Rn, and
a braid from F to F ′ to the transformation Rn

→ Rn which permutes coordinates in accordance with the forgetful map
Bn → Σn. More precisely, the domain category has finite subsets (codimension two submanifolds) of C as its objects,1 and
braids, regarded as isotopy classes of one-dimensional cobordisms (codimension two submanifolds embedded in [0, 1]×C)
as morphisms; while the range is the category VectR with monoidal structure given by ⊕. The monoidal structure in the
domain, which is given by juxtaposition of braids, can be defined geometrically on configurations in C ⊂ C∞ by pulling

1 Perhaps with an underlying F1-module?
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back along a suitable pinch map C∞ → C∞ ∨ C∞, e.g. constructed by collapsing R∞ ⊂ C∞ to a point. This suggests
asking if something analogous might underlie the Thom space interpretation of HZ, defined by a functor from some such
configuration space to a Picard category of S0-lines.

In fact classic work on ‘finite models’ for the J-homomorphism, going back to [38, Chapter 2] [39] may be relevant to this
question. Sullivan showed that the J-homomorphism splits as a map of spaces, and later work (e.g. [40]) extends this to a
splitting (at least at odd primes):

Gl1(S0) ≃ J × Coker J

as infinite loopspaces. In more modern language we might think of this splitting as defined by Rezk’s logarithm [41]

RlogK : gl1(S
0) → LK S0

(cf. e.g. [42, §8]) in one direction, where gl1(S0) is the spectrum associated to the infinite loopspace Gl1(S0), and in the other
by Tornehave’s equivalence

J⊕p ≃ J⊗p
of infinite loopspaces (cf. [11, VIII Corollary 4.2, Remark 4.6] and [43]), based on Quillen’s models for the image of J in terms
of Fl-vector spaces (l ≡ 1 mod p2), viewed alternatively as finite sets under Cartesian product [44,45]. The issue is that the
monoidal structure onΩ3

0 S
3 comes from loop addition, while that of Gl1(S0) comes from smash product; but (at odd primes)

the morphism

Ω3
0 S

3
p̂ → Sl1(S0p̂ )

factors through the image of J , where the distinction between ⊕ and ⊗ simplifies. Note that by Sl1(R), for a ring spectrum R,
we mean the connected component of the identity in Gl1(R).

This can perhaps be summarized in a diagram of the form

S1

↓↓

→→ BGl1(S0p̂ )
R →→ BJpT

←←

Ω2S3

α(h)
↗↗

BSl1(S0p̂ )

↑↑

R →→ BJ̃pT
←←

↑↑

Ω2(S3⟨3⟩) ,

↑↑
α̃(h)

↗↗

interpreted as defining a kind of monoidal functor from a suitable category of ‘‘configurations’’ to LK S0-lines where R and
T are the maps of Rezk and Tornehave, respectively. At odd primes p we may think of replacing LK S0 by (Fl-Mod,⊗). The
appendix below describes a tentative model for such a category of configurations.

Acknowledgments

The first author thanks Fred Cohen and Nitu Kitchloo, and the second author thanks Andrew Salch and Eric Peterson for
helpful conversations. Both authors thank Oscar Randal-Williams for extensive tutorials about the matters in the appendix,
and for allowing us to include an account of his work there. Both authors also thank the anonymous referee for many helpful
comments.

Appendix A. A categorification of Ω2(S3⟨3⟩)

A.1.

We show in what follows that the fibration Ω2S3⟨3⟩ → Ω2S3 → S1, as a fibration of 2-fold loop spaces, can
be constructed from a fibration whose components are group completed classifying spaces of categories. The space
corresponding to Ω2S3 is the free braided monoidal category on an object B•, S1 arises from the abelianization of B•, and
the fiber arises from a category of braids of zero writhe.

Let

B• :=

∐
n≥0

[{n}/Bn]

be the free braided monoidal groupoid on one generator as in [46], i.e. with the set Z≥0 of non-negative integers as objects,
and morphisms:

MapsB•
(m, n) =

{
{1} n = m ≤ 1
Bn n = m > 1
∅ n ̸= m
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where Bn is Artin’s braid group

Bn = ⟨σi, 1 ≤ i ≤ n − 1 | σiσi+1σi = σi+1σiσi+1, |i − j| > 1 ⇒ [σi, σj] = 1⟩.

Its monoidal structure is defined on objects by the functor (n,m) ↦→ n + m and on morphisms by the juxtaposition product

Bn × Bm → Bn+m

that constructs an n+m stranded braid by placing an n-stranded braid next to anm-stranded one. Let cn,m be the braid that
passes the trivial n-strand braid on the left over the trivial m-strand braid on the right. Then cn,m : n + m → m + n defines
a braiding on B• [46, Example 2.1].

A.2.

If n > 1, the abelianization map

wn : Bn ∋ σi ↦→ 1 ∈ Z ∼= Bab
n

sends a braid to its total twist or writhe, i.e. the number of overcrossings less the number of undercrossings; if n = 0 or 1
we take wn to be 0 → Z. Being a groupoid, B• has an abelianization (constructed by abelianizing morphism objects):

B• → Bab
•

:= [Zn≥0/Z]

(defined by the trivial action of the integers on Zn≥0) which is again monoidal, with a nontrivial braiding. This functor is the
identity on objects ofB• and onmapping objects takes each braid to itswrithe.We are very grateful to Oscar Randal-Williams
for explaining the properties of this object to us, and for his permission to include parts of his description here. Of course
any mistakes or falsities are wholly a result of our own misunderstanding!

The monoidal structure on Bab
•

is given by (p, q) ↦→ p + q on objects and by addition on maps:

MapsBab
•
(p, q) × MapsBab

•
(r, s) = Z × Z

+
→ Z = MapsBab

•
(p + r, q + s).

It is clearly associative and unital, with associator given by associativity of addition and unitality given by the fact that
a + 0 = a. There is in fact a symmetric monoidal structure on this category, but the monoidal structure induced by the
abelianization functor is only braided. Recall that the braiding in B• was just the invertible action of Bn+m = Bm+n on itself
by left multiplication with the Joyal–Street element cn,m. The element cn,m abelianizes to

nm ∈ Z = MapsBab
•
(n + m,m + n),

(since it has n strands crossing over m strands). In other words, the braiding of Bab
•

is the isomorphism n + m
nm

−→ n + m =

m+ nwhose inverse is −nm. The groupoid abelianization functor preserves monoidal structure, so it is immediate that this
defines a braiding on Bab

•
. For the sake of clarity, we verify the relations defining a braided monoidal structure on Bab

•
.

Let p, q and r be objects of Bab
•

(hence non-negative integers). Then, again following [46], we must have commutativity
of the following diagrams (where 0, the identity map, is the associator):

(p + q) + r

0
↓↓

pq →→ (q + p) + r

(q+p)r

↓↓
p + (q + r)

qr

↓↓

r + (q + p)

0
↓↓

p + (r + q)
p(r+q) →→ (r + q) + p,

p + (q + r)

0
↓↓

qr →→ p + (r + q)

0
↓↓

(p + q) + r

(p+q)r

↓↓

(p + r) + q

pr

↓↓
r + (p + q) 0 →→ (r + p) + q.

Taking geometric realization of these categories defines a map

|B•| → |Bab
•

|

of topological monoids: in fact of algebras over the E2 operad (one can show by an elementary computation with Browder
brackets that these cannot extend to E3-algebra structures). We would like to understand the homotopy type of this map
and its fiber, after group completion. To that end, we first recall the homotopy type of the source.

Classical work [47,48] of Boardman, Vogt, and Segal describes a homotopy equivalence of |B•| with the space of finite
subsets of C

{F ⊂ C | #F < ∞},

of finite subsets of the plane, topologized as a coproduct of configuration spaces Confn(C). Segal further points out that to
each configuration, by thinking of the points as ‘‘electrical particles with charge +1’’, one may associate an electrical field
Ec : C \ F → C. This extends to a map Ec : C∞ → C∞ by Ec(p) = ∞ whenever p ∈ F ∪ {∞}. Concretely, we may either
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think of this construction as a sum of rational functions with poles at F , or by the Weierstrass Factorization Theorem, as a
polynomial with zeros at F :

|B•| ∋ F ↦→ pF (z) =

∏
ρ∈F

(z − ρ) ∈ C[z] .

In either case we obtain a function of topological spaces that Segal calls the ‘‘completion map’’

|B•| → MapsTop∗
(C∞,C∞) ≃ Ω2S2.

Segal further shows (cf. also [49]) that this map is an equivalence after delooping once. Thus, by thinking of the functor ΩB
as group completion, we have an equivalence:

ΩB|B•|
∼
→ ΩBΩ2S2 ≃ Ω2S2.

Now note that we have |Bab
•

| = |
∐

n≥0[{n}/Z]| ≃ N × S1. Hence group completion induces an equivalence ΩB|Bab
•

| ≃

Z × S1. Recalling that Ω2S2 ≃ Z × Ω2S3, it follows that the map

ΩB|B•| → ΩB|Bab
•

|

is the 1-type truncation

Ω2S2 ≃ Z × Ω2S3 → Z × S1 ≃ Ω2S2[0, 1] ≃ Ω2(S2[0, 3]).

Here X[0, n] denotes the space obtained by killing all homotopy groups of X above πn.
Because thismap is obtained as the group completion of the geometric realization of a braidedmonoidal functor,we know

that it is a map of E2-algebras, but we can give a more precise construction. In particular, note that the 3-type truncation
S2[0, 3] is defined by a Postnikov fibration

S2[0, 3] → K (Z, 2) → K (Z, 4),

where the second map is x2 ∈ H∗(K (Z, 2);Z) ∼= Z[x]. By taking the two-fold delooping of the truncation map S2 → S2[0, 3]
we obtain our 2-fold loop map

Ω2S2 → Ω2(S2[0, 3]).

Moreover, noticing that the attaching map x2 : K (Z, 2) → K (Z, 4) must be trivial after looping once (because K (Z, 1) ≃ S1
has no cohomology in degree 3), we obtain an E2 splittingΩ2(S2[0, 3]) ≃ Z× S1. Finally, the fiber of the identity component
of the map

ΩB|B•| ≃ Ω2S2 ≃ Ω2S3 × Z → ΩB|Bab
•

| ≃ Ω2(S2[0, 3])

can be identified with the universal cover Ω2(S3⟨3⟩) of Ω2S3. The resulting map of E2-spaces

Ω2(S3⟨3⟩) → Ω2S3

Thomifies to the map HZ2̂ → HF2 after composing with the braid representation described in Section 3.2. Incidentally, the
fibration Ω2(S3⟨3⟩) → Ω2S3 → S1 also leads, as a result of Corollary 4 of [23], to a description of the map HZ2̂ → HF2 as a
Galois extension with Hopf–Galois object Σ∞S1

+
.

A.3.

Juxtaposing two braids, each with writhe zero, yields another such braid, defining a (strictly associative, but not braided)
monoidal dewrithed category

B0
•

:=

∐
n≥0

[{n}/B0
n] ,

with

B0
n := ker[wn : Bn → Z] ∼=[Bn,Bn] ,

where this last isomorphism arises from noticing that wn, the writhe map, is in fact the abelianization. Thus Bm
= {1} if

m = 0, 1, 2, and in low degrees we have actions

B0
m × B0

n ∋ 1 × σi ↦→ σm+i ∈ B0
m+n ,

B0
n × B0

m ∋ σi × 1 ↦→ σi ∈ B0
n+m .
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Visualizing braids as displayed vertically and braid multiplication β · β ′ as corresponding to placing β ′ below β , B0
1 acts on

B0
•
on the left by adding a trivial strand (β ↦→ β−) on the left, and on the right (β ↦→ β+) by adding a trivial strand on the

right. It is not hard to see that if β ∈ B0
n then we have compositions

cn,1 · β+ = β− · cn,1 ∈ Bn+1 .

For example, if β = σ1 ∈ B2 then β+ = σ1, β− = σ2 ∈ B3, while c2,1 = σ1 · σ2 ∈ B3, yielding

c2,1 · β+ = σ1σ2σ1 = σ2σ1σ2 = β− · c2,1 ,

The left and right actions thus differ by conjugation with cn,1 ∈ Bn+1, i.e. by the nth power of a generator of the group
Z = Bn+1/B0

n+1 of outer automorphisms of B0
n+1.

By construction we have a homotopy pullback diagram:

|B0
•
| →→

↓↓

N

↓↓
|B•|

→→ |Bab
•

|.

Using strengthenings of [50] by [51], we can apply Randal-Williams’ methods [52, Theorem 1.1] even though B0
•
is not

homotopy commutative: by the remark above, it is enough to use right fractions in Randal William’s Theorem 1.1 [52],
obtaining a homotopy pullback diagram of group completions:

ΩB|B0
•
| →→

↓↓

Z

↓↓
ΩB|B•|

→→ ΩB|Bab
•

|.

The bottom horizontal map in the above diagram is a map of 2-fold loop spaces, but the right vertical map is not, so
we cannot say that ΩB|B0

•
| is an E2-algebra (and it should not be, because B0

•
is only monoidal). However, by restricting to

identity components in the diagram, and using the fact that the inclusion ∗ ↪→ BZ is trivially an infinite loop map (and thus
a map of 2-fold loop spaces), we obtain the following homotopy pullback diagram of 2-fold loop spaces:

ΩB|B0
•
|0 →→

↓↓

∗

↓↓
Ω2S3 →→ BZ.

We have already shown the fiber of the map Ω2S3 → BZ to be equivalent to Ω2(S3⟨3⟩), but now we see that this fiber is
further equivalent to the identity component of the group completion of |B0

•
|.

A.4.

The above analysis admits a geometric description in line with thinking of B• as being constructed from configuration
spaces. Recall from Appendix A.2 that a finite subset F ⊂ C induces an ‘‘electrical field’’, determined by a polynomial
pF (z) =

∏
ρ∈F (z − ρ) with F as its set of zeros. The classical discriminant

C ⊃ F ↦→ ∆(F ) := (−1)n(n−1)/2
∏

ρ ̸=ρ′∈F

(ρ − ρ ′) ∈ C×

(n = #F ) can be seen to induce the abelianizationmapwn on fundamental groups. This gives a geometric model for our map
|B•| ≃ Ω2S2 → S1, with fiber product

BB0
n

↓↓

→→ C

e
↓↓

BBn
∆ →→ C×

(where e(w) = exp(2π iw)) homotopy-equivalent to the components of |B0
•
| (though not equal, so we write B instead of B).

In other words, we may think of these components as spaces of configurations (F , δF ) augmented by an angular anomaly
δF ≡ (2π i)−1 log∆(F ) (mod Z).
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If F = {ρα ∈ C} is an unordered n-tuple of distinct points, and u ∈ C×, then uF := {uρα} is another such tuple, with
∆(uF ) = un(n−1)∆(F ); consequently C acts on BB0

n by

∆(e(w)F ) = e(δF + n(n − 1)w) .

Randal-Williams’ construction thus provides us with an E1 model for the group completion of |B0
•
| as Z × Ω2(S3⟨3⟩), with

the covering group Z ⊂ C acting by

k · (F , δF ) = (F , δF + n(n − 1)k) .
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