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Secondary derived functors and the Adams spectral sequence
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Abstract

Classical homological algebra takes place in additive categories. In homotopy theory such additive categories arise
as homotopy categories of “additive groupoid enriched categories”, in which a secondary analog of homological
algebra can be performed. We introduce secondary chain complexes and secondary resolutions leading to the concept
of secondary derived functors. As a main result we show that the E3-term of the Adams spectral sequence can be
expressed as a secondary derived functor. This result can be used to compute the E3-term explicitly by an algorithm.
� 2005 Elsevier Ltd. All rights reserved.
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The paper introduces secondary derived functors obtained by secondary resolutions. This generalizes
the concept of the classical derived functor Extn. It is well known that the groups Extn describe the E2-term
of the Adams spectral sequence. As a main application we show that the secondary Ext groups, in fact,
determine the E3-term of the Adams spectral sequence. Using the theory in [6] this yields an algorithm for
the computation of the E3-term, as described in a sequel to this paper [12]. The algorithm is achieved by
taking into account the track structure: one considers not just homotopy classes of maps between spectra,
but instead maps and homotopy classes of homotopies between maps, termed tracks. These form a track
category, that is, a category enriched in groupoids. It then turns out that in appropriate track categories
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secondary Ext groups can be defined which are unchanged if one replaces the ambient track category
with a weakly equivalent one. In fact in [6] a manageable purely algebraically described track category
weakly equivalent to the track category of Eilenberg–Mac Lane spectra has been completely determined
by the computation of the Hopf algebra of secondary cohomology operations. It is this algebraic model
that will be used on the basis of the main result 7.3 below to compute explicitly the E3-term of the Adams
spectral sequence as a secondary Ext-group.

Since the work of Adams [1] it has been generally believed that secondary cohomology operations can
be used to compute the d2-differential and hence the E3-term of the Adams spectral sequence. Adams
gave particular examples of such computations. A global algorithm for the complete determination of d2
and the E3-term, however, was not achieved. In [12] it is shown precisely how such an algorithm can
be realised using the algebraic model from [6] and techniques of the present paper. The corresponding
algorithm in a first approach has been implemented on a computer, elaborating on the MAPLE package
“Steenrod” by Kenneth Monks. Calculations performed so far have reached total degree 40 and confirm
all the previous calculations of the E3-term in this realm.

We are presently refining the implementation by combining our methods with a dual approach using
an analog of the algebraic model from [6] for the Milnor dual of the Steenrod algebra [13]. Our goal is to
compute the E3-term as far as the E2-term is presently known, i.e. up to degree 210 as given in the work
of Nassau [22].

1. Derived functors

We first recall the notion of a resolution in an additive category from which we deduce (primary)
derived functors. What follows is a version of relative homological algebra as originated in [18] and then
further developed in e.g. [29] and many subsequent works. Later we introduce the secondary version of
these notions in the context of an “additive track category”, see Section 3.

Our initial data consist of an additive category A and a full additive subcategory a of A. The basic
situation to have in mind is the category R-Mod of modules over a ring R and its subcategory R-mod
of free (or projective) R-modules. As another motivating example, coming from topology, one considers
for A the opposite of the stable homotopy category and for a its full subcategory on objects represented
by finite products of Eilenberg–Mac Lane spectra over a fixed prime field Fp; then a is equivalent to the
category of finitely generated free modules over the mod p Steenrod algebra.

1.1. Definition. A chain complex (A, d) in A is a sequence of objects and morphisms

· · · → An+1
dn−−→An

dn−1−−→An−1 → · · ·
from A, with dn−1dn = 0 (n ∈ Z).

A chain map f : (A, d)→ (A′, d ′) is a sequence of morphisms fn : An → A′n with fndn = d ′nfn+1,
n ∈ Z. For two maps f, f ′ : (A, d) → (A′, d ′), a chain homotopy h from f to f ′ is a sequence of
morphisms hn : An−1 → A′n satisfying f ′n = fn + d ′nhn+1 + hndn−1, n ∈ Z.

A chain complex (A, d) is called a-exact if for any object X from the subcategory a the (ordinary)
chain complex HomA(X, A•) of abelian groups

· · · → HomA(X, An+1)
HomA(X,dn)−−−−−−−→HomA(X, An)

HomA(X,dn−1)−−−−−−−−→HomA(X, An−1)→ · · ·
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is acyclic, i.e., is an exact sequence. Explicitly, this means that for any n ∈ Z, any object X from a and any
morphism an : X→ An with dn−1an = 0 there exists a morphism an+1 : X→ An+1 with an = dnan+1.

A chain map f : A → A′ is an a-equivalence if for every X in a the chain map HomA(X, f ) is a
quasiisomorphism. Thus a chain complex (A, d) is a-exact if and only if the map (0, 0)→ (A, d) is an
a-equivalence.

1.2. Definition. For an object A of A, an A-augmented chain complex A�• is a chain complex of the form

· · · → A1 → A0 → A→ 0→ 0→ · · · ,
i.e., with A−1 =A and A−n = 0 for n > 1. We will consider such an augmented chain complex as a map
between chain complexes, � : A• → A, where A• is the complex · · · → A1 → A0 → 0 → 0 → · · ·
whereas A is considered as a complex concentrated in degree 0, with � = d−1 : A0 → A called the
augmentation.

An a-resolution of A is an a-exact A-augmented chain complex such that all An for n�0 belong to
a. Thus an a-resolution A�• of an object A is the same as a chain complex A• in a together with an
a-equivalence � : A• → A.

There are obvious dual notions of an A-coaugmented complex and a-coresolution of A. Namely, this
means a complex (resp. a-exact complex) with A1 = A and An = 0 for n > 1.

1.3. Lemma. Suppose

• the coproduct of any family of objects of a exists in A and belongs to a again;
• there is a small subcategory g of a such that every object of a is a retract of a coproduct of a family

of objects from g.

Then every object of A has an a-resolution.

Proof. We begin by taking

A0 =
∐
G∈g

a:G→A

G,

with the obvious map � : A0 → A having a for the a-th component. Next, we take

A1 =
∐
G∈g

t0:G→A0
�t0=0

G,

with a similar map d0 : A1 → A0 whose t0th component is t0 (so obviously �d0 = 0). One continues in
this way, with

An+1 =
∐
G∈g

tn:G→An
dn−1tn=0

G,

n�1, with dn : An+1 → An having tnth component equal to tn. Once again, dn−1dn = 0 is obvious.
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To prove exactness, first note that if HomA(X, A•) is exact, then for any retract A of X HomA(A, A•)
is exact as well. Similarly if HomA(Gi, A•) are exact, so is HomA(

∐
i Gi, A•). Thus it suffices to show

that HomA(G, A•) is exact for any object G from g. Thus suppose given tn : G→ An with dn−1tn = 0.
Then tn = dntn+1, where tn+1 : G → An+1 is the canonical inclusion of the tnth component into the
coproduct. �

The following is the analog, in our a-relative setting, of the Fundamental Lemma of homological
algebra on the comparison of two resolutions of an object.

1.4. Lemma. Let � : A• → A and �′ : A′• → A be A-augmented chain complexes. If An are in a for n�0
and A′• is a-exact, then there exists a chain map f : A• → A′• over A (i.e., with f−1 equal to the identity
of A). Moreover this map is unique up to a chain homotopy over A, i.e., for any two f, f ′ : A• → A′•
over A there is a chain homotopy h• from f to f ′ over A (which means h0 = 0).

Proof. Since A0 is in a, by a-exactness of A′• the map HomA(A0, �′) is surjective; in particular, there
is a morphism f0 : A0 → A′0 with �′f0 = �. Next, as A1 is also in a, and �′f0d0 = �d0 = 0, again by
a-exactness of A′• there is a map f1 : A1 → A′1 with f0d0 = d ′0f1.Continuing this way, one obtains a
sequence of maps fn : An→ A′n with d ′nfn = fn−1dn for all n�0.

Now suppose we are given two such sequences f, f ′. Take h0=0 : A→ A′0. Since �′(f0−f ′0)=0, there is
ah1 : A0 → A′1 withf0−f ′0=d ′0h1=d ′0h1+h0d0. Next sinced ′0(f1−f ′1−h1d0)=(f0−f ′0)d0−d ′0h1d0=0,
there is a h2 : A1 → A′2 with f1 − f ′1 − h1d0 = d ′1h2. Continuing one obtains the desired chain
homotopy h. �

As an immediate corollary we obtain that any two a-resolutions A•, A′• of an object are chain homotopy
equivalent, i.e., there are maps f : A′• → A•, f ′ : A• → A′• with ff ′ and f ′f chain homotopic to
identity maps. We thus see that all the standard ingredients for doing homological algebra are available.
So we define

1.5. Definition. The a-relative left derived functors La
nF , n�0, of a functor F : A→ A from A to an

abelian category A are defined by

(La
nF )A=Hn(F (A•)),

where A• is given by any a-resolution of A. Similarly, a-relative right derived functors of a contravariant
functor F : Aop → A are given by

(Rn
aF)A=Hn(F (A•)).

By the above lemmas, La
nF and Rn

aF are indeed functors and do not depend on the choice of resolutions.
Note also that these constructions are functorial in F, i.e., a natural transformation F → F ′ induces natural
transformations between the corresponding derived functors.

In particular, we have a-relative Ext-groups given by

Extna(A, X)= (Rn
a(HomA(_, X)))A=Hn(HomA(A•, X)),
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for objects A, X of A and an a-exact a-resolution A• of A. Note that these groups can be equipped with
the Yoneda product

Extma (Y, Z)⊗ Extna(X, Y )→ Extm+n
a (X, Z).

On representing cocycles this product can be defined as follows: given a-exact a-resolutions X• of X and
Y• of Y, we can represent elements of the Ext groups in question by maps f : Ym→ Z with f dm=0 and
g : Xn→ Y with gdn=0. Then similarly to the proof of 1.4, we can find maps h0 : Xn→ Y0, . . . , hm−1 :
Xn+m−1 → Ym−1, hm : Xn+m→ Ym giving a map of complexes, and define [f ][g]= [f hm]. A standard
homological algebra argument then shows that this product is well-defined, bilinear and associative.

1.6. Remark. Note that, as usually in relative homological algebra, we do not impose any requirements
to the effect that the subcategory a generates A in any sense. To put it differently, our relative derived
functors are only sensitive to that part of A which can be “seen from a”. For example, it does not contradict
anything to take a consisting of the zero object only—which results in trivial relative derived functors,
identically zero. Thus the content of relative derived functors depend crucially on an appropriate choice
of the subcategory a.

1.7. Examples. 1. A typical situation for the above is given by a ringoid g, with A being the category of
g-modules, i.e., of linear functors from g to abelian groups. The abelian version of theYoneda embedding
identifies g with the full subcategory of A with objects the representable functors. The natural choice for
a is then either the category of free g-modules, which is the closure of this full subcategory g ⊂ A under
arbitrary coproducts, or that of projective g-modules—the closure under both coproducts and retracts. In
particular, when g has only one object, we obtain the classical setup for homological algebra given by a
ring R, with A being the category of R-modules and a that of free or projective R-modules.

2. When A has finite limits, we obtain the additive case of derived functors from [31].

1.8. Remark. There is an obvious dual version of the above which one obtains by replacing A with the
opposite category Aop. Explicitly, chain complexes get replaced by cochain complexes (with differentials
having degree +1 rather than −1); exactness of the complex HomA(X, A•) becomes replaced by that of
HomA(A•, X), etc.

1.9. Example. Let A be the stable homotopy category of spectra and let a ⊂ A be the full subcategory
consisting of finite products of Eilenberg–Mac Lane spectra over a fixed prime field Fp. Let A be the mod
p Steenrod algebra. The mod p cohomology functor restricted to a yields an equivalence of categories for
which the following diagram commutes

Here Aop denotes the opposite category of A, A-Mod is the category of positively graded A-modules and
A-mod is its full subcategory of finitely generated free modules. Given a spectrum X, its
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a-coresolution (A�•, d)

· · · ← A1 ← A0 ← X← 0← 0← · · ·
is an X-coaugmented chain complex in A, with An in a for n�0, which is a-coexact, that is HomA(A�•, A′)
is acyclic for all A′ ∈ a. Hence (A�•, d) is an aop-resolution of X in Aop which is carried by the cohomology
functor H ∗ to an aA-resolution of H ∗(X) in AA above. For this reason we get for a spectrumY the binatural
equation

Extmaop(X, Y )= ExtmaA(H ∗(X), H ∗(Y )).

Here the left hand side Extmaop(X, Y ) is defined in the additive category Aop which is the opposite of the
stable homotopy category. Moreover the right hand side is the classical Ext group

ExtmaA(H ∗(X), H ∗(Y ))= ExtmA(H ∗(X), H ∗(Y )).

2. Secondary resolutions

We have seen in Section 1 how relative resolutions yield the notion of relative derived functors. We
now introduce relative secondary resolutions from which we deduce relative secondary derived functors.
For this we need the notion of tracks.

A track category is a category enriched in groupoids; in particular, for all of its objects X, Y their
hom-groupoid �X, Y � is given, whose objects are maps f : X → Y and whose morphisms, denoted
� : f ⇒ f ′, are called tracks. Detailed treatment of various aspects of this notion and its applications in
homotopy theory and homological algebra can be found in [3–5,7–11,14,15,19,25,26].

Equivalently, a track category is a 2-category all of whose 2-cells are invertible. For a track � : f ⇒ f ′
above and maps g : Y → Y ′, e : X′ → X, the resulting composite tracks will be denoted by g� : gf ⇒
gf ′ and �e : f e⇒ f ′e. Moreover there is a vertical composition of tracks—composition of morphisms
in the groupoids �X, Y �; for � : f ⇒ f ′ and � : f ′ ⇒ f ′′, it will be denoted ��� : f ⇒ f ′′. An inverse
of a track � with respect to this composition will be denoted by ��. Identity tracks will be denoted by the
symbol ≡.

By a track functor we will mean a groupoid enriched functor between track categories.
A track category B will be also depicted as B1 ⇒ B0. Here B0 being the underlying ordinary category of

B obtained by forgetting about the tracks, whereas B1 is another ordinary category with the same objects
but with morphisms from X to Y being tracks � : f ⇒ f ′ with f, f ′ : X→ Y in B0, composite of � and
� in the diagram

being

��= �g′�f �= f ′���g : fg ⇒ f ′g′. (2.1)
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There are thus two functors B1 → B0 which are identity on objects and which send a morphism � : f ⇒ f ′
to f, resp. f ′.

A track category B has the homotopy category B
—an ordinary category obtained by identifying
homotopic maps, i.e., maps f, f ′ for which there exists a track f ⇒ f ′. It is thus the coequalizer of
B1 ⇒ B0 in the category of categories.

We now assume given a track category B such that its homotopy category is an additive category like
A from Section 1,

B
 = A,

and that moreover B has a strict zero object, that is, an object ∗ such that for every object X of B, �X, ∗�
and �∗, X� are trivial groupoids with a single morphism. It then follows that in each �X, Y � there is a
distinguished map 0X,Y obtained by composing the unique maps X→ ∗ and ∗ → Y . The identity track
of this map will be denoted just by 0. Note that 0X,Y may also admit non-identity self-tracks; one however
has

0Y,Z�= 0= �0X,Y (2.2)

for any � : f ⇒ f ′, f, f ′ : Y → Z, � : g ⇒ g′, g, g′ : X→ Y .
In Section 3 we introduce the notion of an “additive track category” which is the most appropriate

framework for secondary derived functors and which has the properties of the track category B.

2.3. Example. The most easily described example is the track category ChA whose objects are chain
complexes in an additive category A, maps are chain maps, and tracks are chain homotopies.

Our basic example is the track category PairA; it is the full track subcategory of Ch whose objects are
chain complexes concentrated in degrees 0 and 1 only. Thus objects A of PairA are given by morphisms
�A : A1 → A0 in A, a map f from A to B is a pair of morphisms (f1 : A1 → B1, f0 : A0 → B0) in A
making the obvious square commute, and a track f ⇒ f ′ for f, f ′ : A→ B is a morphism � : A0 → B1
in A satisfying ��A = f1 − f ′1 and �B�= f0 − f ′0.

2.4. Remark. The secondary homology H, as defined in [6], yields a track functor

H : ChA → PairAZ .

Here A is an abelian category, AZ denotes the category of Z-graded objects in A, and for a chain complex
(A, d) in A the nth component of H(A, d) is given by

Hn(A, d)= (dn : Coker(dn+1)→ Ker(dn−1)).

2.5. Example. A further basic example we have in mind is the track category B which is opposite to the
category of spectra, stable maps, and tracks which are stable homotopy classes of stable homotopies.

Next we describe the secondary analogues of the notions of chain complex and resolution in 1.1, 1.2.
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2.6. Definition. A secondary chain complex (A, d, �) in a track category B is a diagram of the form

i.e., a sequence of objects An, maps dn : An+1 → An and tracks �n : dndn+1 ⇒ 0, n ∈ Z, such that for
each n the tracks

dn−1dndn+1
dn−1�n

dn−10
≡

0

and

dn−1dndn+1
�n−1dn+1

0dn+1
≡

0

coincide. Equivalently, the track �n−1dn+1�dn−1�
�
n in hom�An+2,An−1�(0, 0) must be the identity.

It is clear that a track functor F : B→ B′ between track categories as above (which preserves the zero
object) carries a secondary chain complex in B to a secondary chain complex in B′.

2.7. Examples. 1. In the example PairA, a secondary chain complex looks like

with the equations �nd1,n = d0,n�n+1, d1,n−1d1,n = �n−1�n+1, d0,n−1d0,n = �n−1�n−1 and d1,n−1�n =
�n−1d0,n+1 satisfied for all n.

More generally for ChA what one obtains is a bigraded group Am,n with differentials �m,n : Am+1,n→
Am,n, �m,n�m+1,n=0, and maps dm,n : Am,n+1 → Am,n, �m,n : Am−1,n+2 → Am,n satisfying analogous
equalities for all m and n.

One thus obtains a structure strongly related to what is called multicomplex or twisted complex in the
literature; cf. [17,20,24].

2. In [30], the notion of complex of categories with abelian group structure is investigated. One can
show that a slightly strictified version of their notion coincides with that of the secondary chain complex
in an appropriate track category. On the other hand we could relax the requirement of existence of the
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strict zero object to that of a weak zero object; then the construction of [30] would be subsumed in full
generality.

2.8. Definition. A secondary chain map (f, �) between secondary chain complexes (A, d, �) and
(A′, d ′, �′) is a sequence of maps and tracks as indicated

such that pasting of tracks in this diagram yields the identity track ≡: 0⇒ 0, that is, the resulting track
diagrams

(2.9)

commute for all n ∈ Z.
For secondary chain maps (f, �) : (A, d, �)→ (A′, d ′, �′) and (f ′, �′) : (A′, d ′, �′)→ (A′′, d ′′, �′′),

their composite is given by (f ′nfn, �′nfn+1�f ′n�n), n ∈ Z. It is straightforward to check that this indeed
defines a secondary chain map, and that the resulting composition operation is associative. Thus these
operations determine the category of secondary chain complexes.

As in Section 1 we now fix a full track subcategory b of B, with a = b
.

2.10. Definition. For a secondary complex (A, d, �) in B and an integer n, a b-chain of degree n of
(A, d, �) is a map X → An for some object X of b. A b-cycle is a pair (c, �) consisting of a b-chain
c : X→ An and a track � : dn−1c ⇒ 0 such that the track dn−2� : dn−2dn−1c ⇒ dn−20 ≡ 0 is equal to
�n−2c : dn−2dn−1c⇒ 0c ≡ 0. A b-cycle (b, �) of degree n is a b-boundary if there exists a b-chain a of
degree n+ 1 and a track � : b⇒ dna such that the following diagram of tracks commutes:
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A secondary complex (A, d, �) is called b-exact if all of its b-cycles are b-boundaries. In other words,
every diagram consisting of solid arrows below

in which the pasted track from dn−20X,An−1 to 0An,An−2c is the identity track can be completed by the
dashed arrows in such a way that the resulting pasted track from 0An+1,An−1a to 0X,An−1 is the identity
track.

2.11. Example. Consider the track category PairA from 2.3, with A the category of modules over a ring
R, and choose for b the full track subcategory on the objects 0→ Rn, n�0. Then for a secondary chain
complex as in 2.7, a secondary cycle of degree n is a pair (c, �) ∈ A0,n×A1,n−1 satisfying d0,n−1c=�n−1�
and �n−2c = d1,n−2�. Such a cycle is a boundary if there exist elements a ∈ A0,n+1 and � ∈ A1,n with
c = d0,na + �n� and �= �n−1a + d1,n−1�.

Note that we can arrange for a total complex

· · · ← A0,n−1 ⊕ A1,n−2

(
d0,n−1 −�n−1
�n−2 −d1,n−2

)
←−−−−−−−−−−−−− A0,n ⊕ A1,n−1

(
d0,n −�n

�n−1 −d1,n−1

)
←−−−−−−−−−−−−−A0,n+1 ⊕ A1,n← · · ·

in such a way that secondary cycles and boundaries will become usual cycles and boundaries in this total
complex. In particular then, secondary exactness of the secondary chain complex of type 2.7 is equivalent
to the exactness in the ordinary sense of the above total complex.

We now turn to the secondary analog of the notion of resolution from 1.2.

2.12. Definition. For an object B in B, a B-augmented secondary chain complex is a secondary chain
complex (B, d, �) with B−1 = B, B−n = 0 for n > 1, and �−n equal to identity track for n > 1. For a full
track subcategory b of B, a B-augmented secondary chain complex is called a b-resolution of B if it is
b-exact as a secondary chain complex and moreover all Bn for n�0 belong to b.

As in the primary case, denoting � = d−1, �̂ = �−1, a B-augmented secondary chain complex can be
considered as a secondary chain map (�, �̂) : B• → B from the secondary chain complex B• given by
· · · → B1 → B0 → 0 → 0 → · · · with �−n identities for all n > 0, to the secondary chain complex B
concentrated in degree 0, with trivial differentials:

Accordingly such an augmented secondary chain complex will be denoted B �̂,�• , and the pair (�, �̂) will
be called its augmentation.
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Dually, we have the notion of a B-coaugmented secondary chain complex—the one satisfying B1 =
B, Bn = 0 for n > 1, and �n equal to the identity track for n > 1. Accordingly, there is a notion of a
b-coresolution of B.

To have the analog of 1.3 we need an appropriate notion of coproduct; we might in principle use
groupoid enriched, or strong coproducts, but for further applications more suitable is the less restrictive
notion of weak coproduct, which we now recall.

2.13. Definition. A family of maps (ik : Ak → A)k∈K in a track category is a weak (respectively, strong)
coproduct diagram for the family of objects (Ak)k∈K if for every object X the induced functor

�A, X�→
∏
k∈K

�Ak, X�

is an equivalence (resp., isomorphism) of groupoids.
Thus being a weak coproduct diagram means two things:

(1) for any object X and any maps xk : Ak → X, k ∈ K , there is a map x : A → X and a family of
tracks �k : xk ⇒ xik , k ∈ K;

(2) for any x, x′ : A → X and any family of tracks (�k : xik ⇒ x′ik)k∈K there is a unique track
� : x → x′ satisfying �k = �ik for all k ∈ K ,

whereas for a strong coproduct one must have

(1′) for any object X and any maps xk : Ak → X, k ∈ K , there is a unique map x : A→ X satisfying
xk = xik for all k ∈ K

and (2).
We will use notation A= ∐̃k Ak (resp., A=∐k Ak) to indicate that A occurs in a weak (resp. strong)

coproduct diagram for the family (Ak)k as above; we will say then, that A is a weak (resp. strong) coproduct
of the Ak .

Note that any weak (a fortiori strong) coproduct diagram in a track category B becomes a coproduct
diagram in its homotopy category B
. In particular, if (ik : Ak → A)k and (i′k : Ak → A′)k are weak
coproduct diagrams with the same family (Ak)k then the objects A and A′ are canonically isomorphic in
B
, i.e., homotopy equivalent in B.

We can also weaken the notion of retract in 1.3: call an object X a weak retract of an object Y if there
exist maps j : X→ Y , p : Y → X and a track 1X ⇒ pj .

2.14. Lemma. Suppose

• the weak coproduct of any family of objects of b exists in B and belongs to b again;
• there is a small track subcategory g of b such that every object of b is a weak retract of a weak

coproduct of a family of objects from g.

Then every object of B has a b-resolution.
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Proof. The first step is exactly as in the primary case: for an object B we take

B0 =
∐̃
G∈g

b:G→B

G,

i.e., we choose any object B0 occurring in a weak coproduct diagram for the indicated family. Thus in
particular there is a map d−1 : B0 → B and a family of tracks �b : b⇒ d−1ib for each b : G→ B.

Suppose now we are given a (−1)-dimensional b-cycle (b, �) in the b-resolution. This means just a map
b : X→ B for an object X of b, since � : d−2b⇒ 0 is then necessarily the trivial track. By hypothesis we
then can find some weak coproduct G= ∐̃k∈K Gk of objects from g, maps j : X→ G and p : G→ X,
and a track 	 : 1X ⇒ pj . Then by the weak coproduct property, for the maps ibpik : Gk → B0, where
ik : Gk → G are the weak coproduct structure maps, there exists a map f0 : G → B0 and a family of
tracks �k : ibpik ⇒ f0ik , k ∈ K . This then gives composite tracks

d−1f0ik
d−1�k

d−1ibpik

�bpik

bpik .

Again by the defining property of weak coproducts there is then a track � : bp⇒ d−1f0 with d−1�k��bpik=
�ik for all k ∈ K . Denoting f0j by a, one then obtains a track � : b⇒ d−1a, namely the composite

b
b	

bpj
�j

d−1f0j ,

which means that (b, �) is a boundary, since both � and �−2a�d−2� are zero for trivial reasons.
We next take

B1 =
∐̃
G∈g

t0:G→B0

:d−1t0⇒0

G.

Then by the weak coproduct property, for the family (t0 : G→ B0)
:d−1t0⇒0 there exists d0 : B1 → B0
and tracks �
 : t0 ⇒ d0i
, where the i
 : G→ B1 are the structure maps of the weak coproduct. Moreover
for the family(

d−1d0i

d−1��


d−1t0



0= 0G,B = 0B1,Bi


)

:d−1t0⇒0

there exists �−1 : d−1d0 ⇒ 0 with

�−1i
 = 
�d−1�
�

 (†0)

for all 
 : d−1t0 ⇒ 0. Since �−2 by definition must be the identity track of the zero map, whereas d−2
is the unique map to the zero object, the condition dn−1�n = �n−1dn+1 from 2.6 is trivially satisfied at
n=−1.

To prove b-exactness at B0, let b0 : X→ B0 and � : d−1b0 ⇒ 0 be given, for some object X of b. By
hypothesis, there is a weak retraction j : X → G, p : G→ X, 	 : 1X ⇒ pj for some weak coproduct
G= ∐̃k∈K Gk of objects Gk from g. Then for the family (i�pik : Gk → B1)k∈K , where ik : Gk → G are
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the structure maps of the weak coproduct, there exists a map f1 : G→ B1 and tracks �k : i�pik ⇒ f1ik ,
k ∈ K . One thus obtains the composite tracks

d0f1ik
d0�k

d0i�pik

��pik

b0pik .

Then again by the second property of weak coproducts there is a track �0 : b0p ⇒ d0f1 with �0ik =
d0�k����k

, k ∈ K . One then gets a1 = f1j and �= �0j�b0	 : b0 ⇒ d0a1. To prove that (a1, �) exhibits
(b0, �) as a boundary, it remains to show � = �−1a1�d−1�, that is, � = �−1f1j�d−1�0j�d−1b0	. Now
we have

�−1f1ik�d−1�0ik = �−1f1ik�d−1d0�k�d−1��pik

= �−1i�pik �d−1��pik .

On the other hand by (†0) one has �−1i�pik = �pik�d−1�
�
�pik

, so one obtains

�−1f1ik�d−1�0ik = �pik

for all k; by the weak coproduct property this then implies �−1f1�d−1�0 = �p, hence

�−1f1j�d−1�0j�d−1b0	= �pj�d−1b0	

= 0	��

= �.

Now take some n�1 and suppose all the Bi , di−1 and �i−2 have been already constructed for i�n in
such a way that the conditions of 2.6 and b-exactness are satisfied up to dimension n− 1. Moreover we
can assume by induction that exactness is constructively established for b-cycles originating at g, that
is, for each (n− 1)-cycle (tn−1 : G→ Bn−1, 
n−2 : dn−2tn−1 ⇒ 0), G ∈ g, with dn−3
n−2 = �n−3tn−1,
we are given explicit maps i
n−2 : G → Bn−1 and tracks �
n−2 : tn−1 ⇒ dn−1i
n−2 satisfying 
n−2 =
�n−2i
n−2�dn−2�
n−2 . At least this induction hypothesis is certainly satisfied for n= 1, by (†0) above.

We then define

Bn+1 =
∐̃
G∈g

tn:G→Bn

n−1:dn−1tn⇒0

dn−2
n−1=�n−2tn

G.

Then for the family (tn : G→ Bn){
n−1:dn−1tn⇒0 | dn−2
n−1=�n−2tn} there exists dn : Bn+1 → Bn and tracks
�
n−1 : tn ⇒ dni
n−1 , where the i
n−1 : G → Bn+1 are the coproduct structure maps. Moreover for the
family(

dn−1dni
n−1

dn−1��
n−1
dn−1tn


n−1
0= 0i
n−1

)
{
n−1:dn−1tn⇒0 | dn−2
n−1=�n−2tn}

there exists �n−1 : dn−1dn ⇒ 0 with

�n−1i
n−1 = 
n−1�dn−1�
�

n−1

(†n)
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for all 
n−1 : dn−1tn ⇒ 0 with dn−2
n−1 = �n−2tn. To prove the condition dn−2�n−1 = �n−2dn from 2.6,
it suffices by the weak coproduct property to prove

dn−2
n−1i
n−1�dn−2dn−1�
n−1 = �n−2dni
n−1�dn−2dn−1�
n−1

for each 
n−1 : dn−1tn ⇒ 0, tn : G→ Bn, with dn−2
n−1 = �n−2tn. Now by (†n) we have

dn−2�n−1i
n−1�dn−2dn−1�
n−1 = dn−2
n−1,

whereas by naturality we have

�n−2dni
n−1�dn−2dn−1�
n−1 = 0�
n−1��n−2tn = �n−2tn.

Next note that the maps i
n−1 and tracks �
n−1 fulfil the induction hypothesis, i.e., explicitly exhibit
cycles with domains from g as boundaries. Finally to prove exactness at Bn, consider any X, any weak
coproduct G= ∐̃k∈KGk of objects from g, any weak retraction j : X→ G, p : G→ X, 	 : 1X ⇒ pj ,
and any bn : X→ Bn, �n−1 : dn−1bn ⇒ 0 with dn−2�n−1 = �n−2bn. Then for each coproduct inclusion
ik : Gk → G one has cycles given by bnpik : Gk → Bn, �n−1pik : dn−1bnpik ⇒ 0, hence for the family
(i�n−1pik : Gk → Bn+1)k∈K there exists a map fn+1 : G→ Bn+1 and tracks �k : i�n−1pik ⇒ fn+1ik . We
then can consider the composite tracks

dnfn+1ik
dn�k

dni�n−1pik

��n−1pik

bnpik

and by the weak coproduct property of G find for them a track �n : bnp⇒ dnfn+1 with dn�k���n−1pik =
�nik for all k ∈ K . This gives us an (n+1)-chain an+1=fn+1j and a track �=�nj�bn	 : bn ⇒ dnan+1.
To show that these exhibit (bn, �n−1) as a boundary, one has to prove �n−1= �n−1an+1�dn−1�. The proof
goes exactly as for the case n= 0 above. �

Now to the analog of 1.4.

2.15. Lemma. Let B• and B ′• be B-augmented secondary chain complexes. If all Bn belong to b and B ′•
is b-exact, then there exists a secondary chain map (f, �) : B• → B ′• over B (i.e., with f−1 equal to the
identity of B).

Proof. The pair d−1 : B0 → B, identity0 : d−2d−1 ⇒ 0 can be considered as a (−1)-cycle in B ′•, so
by b-exactness of B ′• there exist f0 : B0 → B ′0 and �−1 : d−1 ⇒ d ′−1f0. Next f0d0, �−1���−1d0 :
d ′−1f0d0 ⇒ d−1d0 ⇒ 0 is a 0-cycle in B ′•, so again by exactness of B ′• there are f1 : B1 → B ′1 and
�0 : f0d0 ⇒ d ′0f1 with

�−1���−1d0 = �′−1f1�d ′−1�0, (∗)
which ensures the condition of 2.8 for n = 0. Then f1d1, f0�0���

0 d1 : d ′0f1d1 ⇒ f0d0d1 ⇒ f00 = 0
is a 1-cycle in B ′•. Indeed (∗) above implies �′−1f1d1 = �−1d1���−1d0d1�d ′−1�

�
0 d1; on the other hand

�−1d1���−1d0d1=d−1�0���−1d0d1=��−10�d ′−1f0�0=d ′−1f0�0, so �′−1f1d1=d ′−1f0�0�d ′−1�
�
0 d1,which

precisely means that the cycle condition is fulfilled. One thus obtains f2 : B2 → B ′2 and �1 : f1d1 ⇒ d ′1f2
such that f0�0���

0 d1 = �′0f2�d ′0�1, so the condition of 2.8 at n= 1 is also satisfied.
It is clear that continuing in this way one indeed obtains a secondary chain map. �
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3. Additive track categories

The secondary analogue of an additive category is an additive track category considered in this section.
For related conditions, see [16].

3.1. Definition. A track category B is called additive if it has a strict zero object ∗, the homotopy category
A= B
 is additive and moreover B is a linear track extension

D→ B1 ⇒ B0 → A

of A by a biadditive bifunctor

D : Aop × A→ Ab.

Explicitly, this means the following: a biadditive bifunctor D as above is given together with a system of
isomorphisms

�f : D(X, Y )→ Aut�X,Y �(f ) (3.2)

for each 1-arrow f : X→ Y in B, such that for any f : X→ Y , g : Y → Z, a ∈ D(X, Y ), b ∈ D(Y, Z),
� : f ⇒ f ′ one has

�gf (ga)= g�f (a);
�gf (bf )= �g(b)f ;
���f (a)= �f ′(a)��.

3.3. Remark. Using 3.2 we can identify the bifunctor D via the natural equation

D(X, Y )=Aut(0X,Y ),

where 0= 0X,Y : X→ ∗→ Y is the unique morphism factoring through the zero object.

A strict equivalence between additive track categories B, B′ is a track functor B→ B′ which induces
the identity on A and is compatible with the actions 3.2 above. Thus for fixed A and D as above, one
obtains a category whose objects are additive track categories which are linear track extensions of A by
D and morphisms are strict equivalences. This category will be denoted by Trext(A;D). For an additive
category A and a biadditive bifunctor D on it, there is a bijection

�0(Trext(A;D)) ≈ H 3(A;D),

where �0(C) denotes the set of connected components of a small category C. Two additive track categories
are called equivalent if they are in the same connected component of Trext(A;D). Thus in particular (as
shown in [7,25]) each additive track category B as above determines a class 〈B〉 ∈ H 3(A;D).

As shown in [27], when A is the category of finitely generated free modules over a ring R and D is
given by D(X, Y )= HomR(X, B⊗RY ) for some R-R-bimodule B, there are isomorphisms

H 3(A;D)�HML3(R;B)�T HH 3(HR;HB),

where HML∗ denotes Mac Lane cohomology, THH is topological Hochschild cohomology, and HR and
HB are the Eilenberg–Mac Lane spectra corresponding to R and B.
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3.4. Definition. An additive track category B is -additive if an additive endofunctor  : A→ A is given
which left represents the bifunctor D, i.e., B is a linear track extension of A by the bifunctor

D(X, Y )= HomA(X, Y ).

Dually, B is �-additive if an additive endofunctor � : A → A is given such that B is a linear track
extension of A by the bifunctor

D(X, Y )= HomA(X, �Y ).

For objects X, Y in a -, resp. �-additive track category B we will denote the group HomA(mX, Y ), resp.
HomA(X, �mY) by [X, Y ]m.

In examples from topology the functor  is the suspension and the functor � is the loop space, compare
also [8].

3.5. Example. As in 1.9 let A be the stable homotopy category of spectra. Since the category of spectra
has a Quillen model structure we know that A is the homotopy category of all spectra which are fibrant and
cofibrant. Using the cylinder of such spectra we obtain the additive track category B. That is, B consists
of spectra which are fibrant and cofibrant, of maps between such spectra, and tracks between such maps.
Then B is both -additive and �-additive, if one takes for  the suspension and for � the loop functor.

- or �-additivity of a track category enables one to relate secondary exactness of a secondary chain
complex to exactness of the corresponding chain complex in the homotopy category.

3.6. Lemma. Let B be a track category with the additive homotopy category A=B
, let b be a full track
subcategory of B and denote a = b
. Suppose that one of the following conditions is satisfied:

(a) B is -additive and a is closed under suspensions (i.e., for each X ∈ a one has X ∈ a); or
(b) B is �-additive and the functor � is a-exact (i.e., for an a-exact complex A• in A, �A• is also a-exact).

Then for any secondary chain complex (A, d, �) in B, a-exactness of its image (A, [d]) in A implies
b-exactness of (A, d, �).

If moreover (A, d, �) is bounded below, then conversely its b-exactness implies a-exactness of (A, [d]).
Proof. Unraveling definitions, we have that for any an : X → An with X in b and for any track �n−1 :
dn−1an ⇒ 0 there exists an+1 : X → An+1 and a track �n : an ⇒ dnan+1. From this, we have then to
deduce that for (an, �n−1) as above with the additional property dn−2�n−1= �n−2an one can actually find
(ãn+1, �̃n) as above with the additional property �n−1 = �n−1ãn+1�dn−1�̃n.

Indeed for any an : X→ An, �n−1 : dn−1an ⇒ 0 with dn−2�n−1=�n−2an and any an+1 : X→ An+1,
�n : an ⇒ dnan+1 consider the element �n−1 ∈ Aut(dn−1an) given by the composite

dn−1an

dn−1�n

dn−1dnan+1
�n−1an+1

0an+1 ≡ 0
��
n−1

dn−1an.

For this element one has dn−2�n−1 = 0. Indeed, this equality is equivalent to the equality

dn−2�n−1an+1�dn−2dn−1�n = dn−2�n−1
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of tracks Aut(0X,An−2). But dn−2�n−1 = �n−2an. Moreover by naturality there is a commutative diagram

showing that �n−2an = �n−2dnan+1�dn−2dn−1�n+1. It thus follows that dn−2�n−1 = 0 if and only if one
has

dn−2�n−1an+1�dn−2dn−1�n+1 = �n−2dnan+1�dn−2dn−1�n+1,

which is clear since (A, d, �) is a secondary complex.
Now if (a) is satisfied, then there is a commutative diagram

Similarly if (b) holds, then one has the diagram

In both cases, it follows that there exists �n ∈ Aut(an) such that �n−1 = dn−1�n.
Let us then choose

ãn+1 = an+1,

�̃n = �n���
n .

Then ��
n−1��n−1an+1�dn−1�̃n = �n−1�dn−1�

�
n is the identity track of dn−1an, that is,

�n−1 = �n−1an+1�dn−1�̃n,

as desired.
For the converse, by boundedness we can assume by induction that (A, [d]) is exact in all degrees < n.

Let us then consider any a-cycle [c] ∈ [X, An] in (A, [d]), choose a representative map c : X→ An and
a track � : 0⇒ dn−1c and consider the composite track �= �n−2c�dn−2� in Aut(0X,An−2).

The track dn−3� is the identity track 0 of 0X,An−3 . Indeed dn−3�n−2 = �n−3dn−1 by definition of a
secondary chain complex, so dn−3� = �n−3dn−1c�dn−3dn−2�. Then by (2.1) for �n−3 : dn−3dn−2 ⇒
0An−1,An−3 and � : 0X,An−1 ⇒ dn−1c one has �n−3dn−1c�dn−3dn−2�= 0An−1,An−3���n−30X,An−1 and by
(2.2) both of the constituents in the last composition are identity tracks.
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Now by induction hypothesis (A, [d]) is a-exact in degree n− 2, hence if (a), resp. (b) holds, then the
diagram

shows that there exists � ∈ Aut(0X,An−1) such that �= dn−2�. Then for �̃= ���� one has �n−2c�dn−2�̃=
�n−2c�dn−2��dn−2�= ���� = 0, so that (c, �̃) is a secondary cycle. Then by secondary b-exactness of
(A, d, �) there is a b : X → An+1 and � : c ⇒ dnb, so [c] is the boundary of [b] in [X, (A, [d])]. Thus
(A, [d]) is exact in degree n and we are done. �

3.7. Remark. Note that the additive track category from our 3.5 above satisfies both hypotheses of 3.6.

4. Secondary Ext

In this section we deduce from a secondary resolution a differential defined on “primary” derived
functors as studied in Section 1. This differential is the analogue of the d2-differential in a spectral
sequence. We use the secondary differential to define certain “secondary” derived functors.

Let B be an additive track category with the additive homotopy category A= B
. Let us furthermore
fix a full additive subcategory a in A; it determines the full track subcategory b of B on the same objects.
It is clear that if b satisfies the conditions of 2.14, then a will satisfy those of 1.3. We can then consider
the a-derived functors in A. In particular, the Ext groups Extna(X, Y ) are defined for any objects X, Y in
B. Moreover if B is -, resp. �-additive, then derived functors of the functor D(X, Y ) =Aut(0X,Y ) are
given by

Dn
a (X, Y )�Extna(X, Y ),

resp.

Dn
a (X, Y )�Extna(X, �Y ).

We will use these isomorphisms to introduce the graded Ext groups Extna(X, Y )m=Extna(
mX, Y ), resp.

Extna(X, Y )m = Extna(X, �mY). Evidently if B is both - and �-additive, these groups coincide.
We will from now on assume in what follows that for the pair (B, a) one of the conditions in 3.6 is

satisfied, i.e., either B is -additive and a is closed under  or B is o�-additive and � preserves a-exactness
of chain complexes in B
; moreover in the latter case we also assume that a is closed under �.

We are going to define the secondary differential

d(2) = d
n,m
(2) : Extna(X, Y )m→ Extn+2

a (X, Y )m+1.
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Replacing, if needed, X by mX (resp. Y by �mY ) we might clearly assume m = 0 here. Moreover by
2.14 we may suppose that a b-exact b-resolution (X•, d•, �•) of X is given. Then by 3.6 it determines
an a-exact a-resolution (X•, [d•]) of X in A. Hence an element of Extna(X, Y ) gets represented by an
n-dimensional cocycle in that resolution, i.e., by a homotopy class [c] : Xn→ Y with [c][dn] = 0. Thus
we may choose a map c ∈ [c] and a track � : 0⇒ cdn in B, as in the diagram below:

(4.1)

Then the composite track c�n��dn+1 ∈ Aut(0Xn+2,Y ) determines an element � = �c,� in the group
Aut(0Xn+2,Y ). One then has �dn+2 = 0. Indeed

�dn+2 = (c�n��dn+1)dn+2

= c�ndn+2��dn+1dn+2

= cdn�n+1��dn+1dn+2

= �0�0�n+1

= 0.

Thus � determines an (n+ 2)-cocycle in Aut(0(X•,[d•]),Y )�[(X•, [d•]), Y ]1. We then have

4.2. Theorem. The above construction does not depend on the choice of c, � and the resolution, up to
coboundaries in [(X•, [d•]), Y ]1; hence the assignment [c] �→ [�c,�] gives a well-defined homomorphism

d
n,m
(2) : Extna(X, Y )m→ Extn+2

a (X, Y )m+1.

4.3. Remark. Of course the above homomorphism depends on the additive track category B in which
we define the secondary resolution. In fact, d(2) depends only on the track subcategory b {X, Y } ⊂ B
obtained by adding to b the objects X and Y and all morphisms and tracks from �Z, X�, �Z, Y � for all
objects Z from b. We shall see in Section 5 below that additive track categories B, B′ with subcategories
b, b′ such that the track categories b {X, Y } and b′ {X, Y } are track equivalent yield the same differential
d(2).

If the composites d
n,m
(2) d

n−2,m−1
(2) are all zero (as this is the case for examples derived from spectral

sequences), we define the secondary Ext groups

Extnb(X, Y )m := ker(dn,m
(2) )/im(d

n−2,m−1
(2) ). (4.4)

This then will be, in examples, the E3-term of a spectral sequence. We point out that the secondary
Ext-groups are well defined and do not depend on the choice of the secondary resolution. We shall use
the secondary Ext-groups for the computation of the E3-term in the Adams spectral sequence, see [12].
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Proof. We will first show that the cocycles corresponding to (c, �) and (c, �′) for �, �′ : 0 ⇒ cdn are
cohomologous. Indeed the first one is c�n��dn+1 and the second is

c�n��′dn+1 = c�n��dn+1���dn+1��′dn+1

= c�n��dn+1�(����′)dn+1,

so these cocycles indeed differ by the coboundary of ����′. Thus we obtain a map d(2) from the group of
n-cocycles of HomA((X•, [d•]), Y ) to Hn+2(Aut(0(X•,[d•]),Y ))�Extn+2

a (X, Y )1.
Next let us show that the map we just constructed is actually a homomorphism.
To see this, let us choose maps p1,∇, p2 : Y ⊕Y → Y in the homotopy classes ([1Y ], 0), ([1Y ], [1Y ]),

(0, [1Y ])∈ [Y⊕Y, Y ] respectively. Thus for any two maps c1, c2 : X→ Y there is a map c1,2 : X→ Y⊕Y

such that there exist tracks �i : pic1,2 ⇒ ci , i=1, 2, and moreover [c1]+[c2]=[∇c1,2]. Now suppose ci

represent cocycles, then [c1,2][dn]=([c1][dn], [c2][dn])=(0, 0) ∈ [Xn+1, Y ]×[Xn+1, Y ] ≈ [Xn+1, Y ⊕
Y ], so there is a track � : 0⇒ c1,2dn. Consequently, the cohomology class d(2)([c1]+[c2])=d(2)([∇c1,2])
can be represented by the cocycle

∇c1,2�n�∇�dn+1 = ∇(c1,2�n��dn+1).

On the other hand d(2)([fi]), i = 1, 2, can be represented by

ci�n��idndn+1�pi�dn+1 = �i0�pic1,2�n�pi�dn+1

=pic1,2�n�pi�dn+1

=pi(c1,2�n��dn+1)

(see the diagram below).

But by assumption Aut(0) is biadditive, which in particular means that the map

(p1_, p2_) : Aut(0X,Y⊕Y )→ Aut(0X,Y )×Aut(0X,Y )

is an isomorphism, and moreover addition in Aut(0X,Y ) is given by the composite of the left action ∇_
with the inverse of that isomorphism. This obviously means d(2)([c1] + [c2])= d(2)([c1])+ d(2)([c2]).

It follows that in order to show that d(2) factors through a homomorphism from the group Extna(X, Y )

= Hn([(X•, [d•]), Y ]) it suffices to show that d(2) vanishes on coboundaries, i.e., on cocycles of the
form [c] = [adn−1], for some map a : Xn−1 → Y . But for such a cocycle we may choose the track
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� : 0 ⇒ adn−1dn to be a��
n−1, and then the value of d(2) on it will be represented by the cocycle

adn−1�n�a�n−1dn = 0—see the diagram.

Finally we must show that d(2) does not depend on the choice of the secondary resolution. Indeed
consider any two b-exact b-resolutions (X•, d•, �•) and (X′•, d ′•, �′•) of X. By 2.15 there is a secondary
chain map (f, �) between them over X. Obviously then [f ] determines a chain map between (X•, [d•])
and (X′•, [d ′•]) inducing isomorphisms f ∗ on cohomology of the cochain complexes obtained by applying
[_, Y ] and Aut(0_,Y ). We must then show that the diagrams

commute. This can be seen from the diagram

in more detail, one considers the track diagram
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whose left part commutes by 2.9 and the right part by naturality. Now the lower composition of this
diagram is

(c�n��dn+1)fn+2 = f ∗d(2)([c]),
whereas the upper one is

(cf n)�
′
n�(c��

n ��fn+1)d
′
n+1,

which represents d(2)(f
∗([c])), since we might choose for �′ : 0⇒ f ∗(c)d ′n the track c��

n ��fn+1 : 0⇒
cf nd

′
n ≡ f ∗(c)d ′n. �

5. Invariance of the secondary differential in the equivalence class of the track extension

In this section we will prove that the secondary differential

d
n,m
(2) : Extna(X, Y )m→ Extn+2

a (X, Y )m+1

constructed from an additive track category B depends only on the class

〈B〉 ∈ H 3(A;D).

More precisely one has

5.1. Theorem. For any additive track categories B and B′ with B
=A=B′
 and any additive subcategory
a ⊂ A, the secondary differentials d

n,m
(2) constructed from B and B′ coincide provided there is a strict

equivalence of track subcategories b {X, Y } ∼→b′ {X, Y }.
Proof. Recall the construction of

d
n,m
(2) : Extna(X, Y )m→ Extn+2

a (X, Y )m+1.

Let b ⊂ B, b′ ⊂ B′ be the full track subcategories in B, resp. B′, on objects from a. Then F(b) ⊂ b′.
One starts from a b-exact b-resolution (X•, d•, �•) of X in B; according to 4.2, the resulting d(2) does
not depend on the choice of such a resolution. Suppose now we are given an element in Extna(X, Y )

represented by a Y-valued n-cocycle [c] ∈ [Xn, Y ] in the a-exact a-resolution (X•, [d•]) of X in A. By
our construction, the value on this element of the d(2) corresponding to B is obtained by choosing a
representative [c] � c : Xn→ Y and a track � : 0⇒ cdn in B, as in 4.1. One then has

d(2)([c])= [c�n��dn+1].
But it is clear that F(X•, d•, �•) is a b′-exact b′-resolution of X in B′. We then might choose F(c)

and F(�) for the corresponding data in B′, which would give us the element of AutB′(0Xn+2,Y ) equal
to F(c)F (�n)�F(�)F (dn−1)= F(c�n��dn1). Since by assumption F induces the identity on Aut(0), the
theorem follows. �
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6. Resolutions of the Adams type

Let B be a track category with a strict zero object and homotopy category B
 = A.

6.1. Definition. For an object X of A, an X-coaugmented sequence R is a diagram in A of the form

R : · · ·←−−Yn+1
p̄n←−− An

īn←−− Yn←−−· · ·←−−Y2
p̄1←−− A1

ī1←−− Y1
p̄0←−− A0

ī0←−− Y0 =X

satisfying

p̄nīn = 0

in A for all n= 0, 1, 2, . . .. The associated X-coaugmented cochain complex of such a sequence is then
defined to be

CA(R) : · · · īn+1p̄n←−−−− An
īnp̄n−1←−−−− · · · ī2p̄1←−−−− A1

ī1p̄0←−−−− A0
ī0←−−−− X.

For an additive subcategory a ⊂ A = B
, an X-coaugmented sequence R as above will be called an
a-sequence if An belongs to a for all n. Moreover it will be called a-exact if for any object A from a, the
induced sequence

HomA(Yn+1, A)→ HomA(An, A)→ HomA(Yn, A)

is a short exact sequence of abelian groups for all n�0. Thus in this case, the chain complex CA(R)

is a-exact in the sense of 1.1. In fact, for any object A in a the differential d̄n : HomA(An+1, A) →
HomA(An, A) in HomA(CA(R), A) is then HomA(īn+1p̄n, A), and one has

ker(d̄n−1)= im(d̄n)= HomA(Yn+1, A)

for all n and all A ∈ a.

6.2. Proposition. For each X-coaugmented sequence R in A, any choice of representatives in ∈ īn,
pn ∈ p̄n in B0 and of tracks �n : pnin ⇒ 0Yn,Yn+1 determines an X-coaugmented secondary chain
complex in B of the form
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Proof. Consider the diagram

That this diagram yields on CB(R) above the structure of a secondary chain complex, is equivalent to the
identities

in+1pnin�n−1pn−2 = in+1�npn−1in−1pn−2.

These are satisfied since one actually has

pnin�n−1 = �npn−1in−1,

as the next lemma shows. �

6.3. Lemma. For any maps f : X→ Y , f ′ : Y → Z and tracks � : f ⇒ 0X,Y , �′ : f ′ ⇒ 0Y,Z one has

f ′�= �′f .

Proof. This is a particular case of 2.1. �

6.4. Remark. Strictly speaking, CB(R) depends on the choice of the in, pn and �n; however it will be
harmless in what follows to suppress these from the notation.

6.5. Example. Let B be a track category and suppose that A = B
 is equipped with the structure of a
triangulated category. Thus there is a self-equivalence � : A → A, with an inverse equivalence �−1

which we will call delooping in the following, and one has a distinguished class of diagrams of the form

A← B ← C ← �A,

called exact triangles, which satisfy certain axioms (see e.g. [23]). A fiber tower T over an object X is a
diagram in A

(6.6)

such that each An ← Xn ← Xn+1 ← �An is an exact triangle in A. In particular, the composites
�−1Xn+1 ← An ← Xn are zero maps in A. For an additive subcategory a in A, call a fiber tower T
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a-exact if Ai ∈ a for all i and moreover each of its exact triangles induces a short exact sequence

0→ Hom(�−1Xn+1, A)→ Hom(An, A)→ Hom(Xn, A)→ 0

for all A ∈ a.
A fiber tower yields a system of coaugmented sequences in A of the form

(6.7)

which via delooping in A yields the X-coaugmented sequence

R(T) : · · · ← �−2A2 ← �−2X2 ← �−1A1 ← �−1X1 ← A0 ← X.

Thus by 6.2 each fiber tower over X gives rise to an X-coaugmented secondary chain complex CB(R(T)).

6.8. Remark. Before the authors obtained the construction from 6.2, a direct topological proof that
Adams resolutions give rise to a secondary complex has been kindly provided to them by Birgit Richter
[28].

One then has

6.9. Theorem. Assume either B is -additive and A ∈ a implies A ∈ a, or B is �-additive and �
preserves a-exactness of complexes in A (cf. 3.6). Then for any a-exact fiber tower over an object X, any
X-coaugmented secondary chain complex associated to it (as in 6.5 and 6.2) is a b-coresolution of X.
Hence for any object Y there is a secondary differential

d(2) : Extnaop(X, Y )m→ Extn+2
aop (X, Y )m+1,

where Ext∗aop(X, Y )m denotes either Ext∗aop(mX, Y ) or Ext∗aop(X, �mY) in Aop. The differential d(2) is
well-defined by the cohomology class 〈B〉 ∈ H 3(A;D) with D in 3.4.

Proof. This follows directly from 3.6. �

7. The E3 term of the Adams spectral sequence

Let us return to our main Examples 1.9 and 3.5. Thus let A be the stable homotopy category of spectra,
let a ⊂ A be the full subcategory of finite products of Eilenberg–Mac Lane spectra over a fixed prime
field Fp, and let B and b be the corresponding additive track category and its subcategory as in 3.5.
Thus B is both - and �-additive, with  and � having their usual meaning (i.e. suspension and loop
functors).



320 H.-J. Baues, M. Jibladze / Topology 45 (2006) 295–324

Let X be a spectrum of finite type, that is, one for which the cohomology groups Hi(X; Fp) are finite
dimensional Fp-vector spaces for all i. Then the Adams fiber tower of X is given by

(7.1)

Here H = HFp is the Eilenberg–Mac Lane spectrum, the map Xi → H ∧ Xi is given by smashing
S0 → H with Xi , and Xi+1 is the fiber of this map. Since X is of finite type all spectra H ∧ Xi can be
considered to be objects of a. By construction the Adams fiber tower is a-exact.

As noted in 3.7, conditions of 3.6 are satisfied, so that we can apply Theorem 6.9 to the Adams fiber
tower. Hence we get for a spectrum Y the following diagram whose top row is defined by any secondary
b-coresolution of X and the bottom row is the differential d(2) in the Adams spectral sequence.

(7.2)

The vertical isomorphisms in this diagram are defined in Example 1.9.

7.3. Theorem. The diagram 7.2 commutes.

This shows that d(2)d(2) = 0 so that the secondary Ext in Section 4 coincides with the E3-term of the
Adams spectral sequence. In the book [6] a pair algebra B is computed which can be used to describe
algebraic models for secondary b-coresolutions. This, in fact, yields an algorithm computing the d(2)

differential in the Adams spectral sequence since we can use Theorem 7.3.

Proof. In our terms the second differential of the Adams spectral sequence can be understood in the
following way: one is given a fiber tower T like 6.6 or 7.1 over an object X in the stable homotopy
category, with the associated X-coaugmented sequence R(T) as in 6.5. To it corresponds by 6.1 the
associated X-coaugmented cochain complex

CA(R(T)) : · · ·←−−−−�−n−1An+1
�−ndn←−−−− �−nAn←−−−− · · · �−1d1←−−−− �−1A1

d0←−−−−A0←−−−−X

where dn : An → �−1An+1 are the composites An → �−1Xn+1 → �−1An+1 of maps in the exact
triangles Xn+1 → Xn → An → �−1Xn+1 and An+1 → �−1Xn+2 → �−1Xn+1 → �−1An+1. Here
all An are Fp-module spectra, i.e., Eilenberg–MacLane spectra of Fp-vector spaces, and moreover the
sequences Xn → An → �−1Xn+1 are Fp-exact, i.e., applying H ∗(_; Fp) to them yields short exact
sequences. In particular, H ∗(CA(R(T)); Fp) is an A-projective resolution of H ∗(X; Fp).

Now choose new spectra Bn fitting in exact triangles

Bn
−in−−−−−−→ An

−dn−−−−−−→ �−1An+1−−−−→�−1Bn
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and observe that by the octahedron axiom there is a commutative diagram of (co)fibre sequences of the
form

(7.4)

so that in particular the original fiber tower T “doubles” to give two new fiber towers T(2) starting at
X0, resp. X1, of the form

The associated sequences R(T(2)) and the cochain complexes

CA(R(T(2))) : · · ·←−−−−�−n−2Bn+4←−−−−�−n−1Bn+2
�−nd(2)n←−−−−−−− �−nBn←−−−− · · · ,

where d(2)n : Bn → �−1Bn+2 is the composite Bn → �−1Xn+2 → �−1Bn+2, are then obtained as in
6.5.

Let us now take any spectrum Y and apply the stable homotopy classes functor {Y, _} to the whole
business. Because of the exact triangles Bn→ An→ �−1An+1 → �−1Bn, there are isomorphisms

im({Y, Bn} → {Y, An})� ker({Y, An} → {Y, �−1An+1}).
On the other hand it is known (see e.g. [21]) that the canonical maps

{Y, An} �→HomA(H ∗(An; Fp), H ∗(Y ; Fp)) (7.5)

are isomorphisms; it thus follows that the groups

E
s,t
2 (Y, X)=

im

(
{Y, �t−sBs} {Y,�t−s is}−−−−→{Y, �t−sAs}

)
im

(
{Y, �t−s+1As−1} {Y,�t−s+1ds−1}−−−−−−−→{Y, �t−sAs}

)
are isomorphic to ExtsA(H ∗(X; Fp), H ∗(Y ; Fp))t .

Moreover (see again [21]) the Adams differential E
s,t
2 → E

s+2,t+1
2 is induced by the map

im
({Y, �t−sBs} → {Y, �t−sAs}

)→ im
({Y, �t−s−1Bs+2} → {Y, �t−s−1As+2}

)
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which sends the class of a stable map

Y → �t−sBs → �t−sAs

to the class of the composite

Y → �t−sBs
�t−sd(2)s−−−−→ �t−s−1Bs+2 → �t−s−1As+2

or, which by 7.4 is the same, the composite

Y → �t−sBs → �t−s−1Xs+2 → �t−s−1As+2.

To see then that the differential so defined coincides with the secondary differential as constructed
in 4.2, 4 and 6.9, let us choose zero tracks �n for the composites Xn → An → �−1Xn+1 and switch
from CA(R(T)) to the X-coaugmented secondary cochain complex CB(R(T)) as defined in 6.2. Then
according to 4.2, given an element 〈c〉 of ExtsA(H ∗(X; Fp), H ∗(Y ; Fp)))t , the corresponding element
d(2) 〈c〉 ∈ Exts+2

A (H ∗(X; Fp), H ∗(Y ; Fp))t+1 is constructed in the following way. First represent 〈c〉 by
a cocycle in CA(R(T)), i.e., by a homomorphism of A-modules [c] : H ∗(�t−sAs; Fp) → H ∗(Y ; Fp)

with [c] ◦H ∗(�t−sds; Fp)= 0. By 7.5, this homomorphism is in turn induced by a map c : Y → �t−sAs

such that ds ◦c is nullhomotopic. Choosing a homotopy � : 0⇒ ds ◦c, according to 4.2 the class d(2) 〈c〉 is
represented by the map Y → �t−s−1As+2=��t−s−2As+2 which corresponds to the composite homotopy

0
≡

�t−s−1ds+1 ◦ 0
�t−s−1ds+1�

�t−s−1ds+1 ◦ �t−sds ◦ c
−�c

0c
≡

0

from the zero map Y → �t−s−2As+2 to itself, as in

Now according to the construction of CB(R(T)) given in 6.2, this diagram reduces to the following
diagram:

(7.6)

Next note that because of the fibre sequence

�t−sBs → �t−sAs → �t−s−1As+1 → �t−s−1Bs ,
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choosing � : 0 ⇒ �t−sds ◦ c is equivalent to choosing a lift of c to a map Y → �t−sBs . Similar
correspondences between homotopies and liftings of maps take place further along the sequence, as can
be summarized in the following diagram

in which the columns form fiber sequences and the upper horizontal maps are liftings corresponding
to the homotopies indicated in lower squares. That the resulting upper horizontal composite is indeed
the lifting corresponding to the composite homotopy in 7.6 now follows from the following standard
homotopy-theoretic lemma which can be found e.g. in [2, (2.9) on p. 263]:

7.7. Lemma. Given a diagram

whose columns are fiber sequences and upper horizontal maps are liftings corresponding to the indi-
cated homotopies, then the composite F → F ′′ is the lifting corresponding to the composite homotopy
�e�b�. �
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