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Abstract

We de�ne topological Andr�e–Quillen cohomology of commutative S-algebras and construct
a spectral sequence that calculates the Andr�e–Quillen cohomology of commutative S-algebras
over HFp. c© 1999 Elsevier Science B.V. All rights reserved.

MSC: 55P42

0. Introduction

The notion of commutative S-algebra, which is equivalent to the traditional notion of
E∞-ring spectrum, is a generalization to stable homotopy theory of the algebraic notion
of commutative ring. The purpose of this paper is to construct and begin the analysis
of the topological analogue of Andr�e–Quillen cohomology [11]. Our initial motivation
was to develop and expand the mathematical theory suggested by the work of Igor Kriz
in “Towers of E∞-ring spectra with an application to BP” [6]. We develop the theory
of Andr�e–Quillen cohomology of commutative S-algebras in the framework provided
by Elmendorf et al. [5]. McClure and Hunter studied the Andr�e–Quillen cohomology of
the Eilemberg–Mac Lane E∞-ring spectrum corresponding to the �eld of two elements
before the necessary foundations on spectra were in place. We hope to apply some
of their ideas in future calculations. Alan Robinson and Sarah Whitehouse have also
worked on a cohomology theory for E∞-ring spectra. At the moment we are not sure
how it would relate to our theory.
The following is an outline of the structure of the paper.
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In the �rst section we introduce the model categories in which our work takes place.
These are
– MA, the category of A-modules for a commutative S-algebra A.
– CA=B, the category of commutative A-algebras with A-algebra maps to B.
– NA, the category of non-unital commutative A-algebras.
All of the above are complete and cocomplete topological model categories. In general,
the classical notions of co�bration and �bration will not coincide with the respective
concepts that describe our model categories. Hence, we retain the terminology of [5]
and refer to the model theoretic concepts as q-co�brations and q-�brations. Given
a model category C, we let �hC denote its homotopy category, that is, the category
obtained by inverting the weak equivalences of the model category structure of C.
In Sections 2 and 3, we will exhibit a series of adjunctions relating the categories

listed above. These adjunctions pass to the homotopy categories and, in particular, we
�nd that �hCA=A is equivalent to �hNA. If B is a q-co�brant commutative A-algebra, the
adjunctions and equivalence just mentioned will allow us to describe a left adjoint to
the trivial B-algebra extension functor

B∨− : �hMB→ �hCA=B:

We will refer to this left adjoint as the “abelianization” functor for commutative
A-algebras over B.
In Section 4, we de�ne Andr�e–Quillen cohomology of commutative S-algebras in

terms of the “abelianization” functor. If B is a commutative A-algebra, let 
B=A denote
the B-module obtained by applying the “abelianization” functor to B so that we have

�hCA=B(B; B∨M)∼= �hMB(
B=A;M):

Given a B-module M , we de�ne the Andr�e–Quillen cohomology of B relative to A
with coe�cients in M by

AQ∗(B=A;M)=Ext∗B (
B=A;M)≡ �−∗FB(
B=A;M):

We observe that there is a forgetful map from AQ-cohomology relative to A to
ordinary A-module cohomology.
We �nish the section with topological analogues of Quillen’s transitivity exact se-

quence and at base change [11].
In Section 5 we construct a spectral sequence suitable for computing the AQ-

cohomology relative to S of commutative S-algebras B with S-algebra maps to HFp. In
Section 6 we identify its E2-term as the derived functors of a certain composite functor
and in Section 7, we exhibit a Grothendieck-type spectral sequence to calculate those.
In Section 8 we present an application of the theory due to Igor Kriz. We construct

the Postnikov towers of connective algebras in the category of commutative S-algebras.
The k-invariants lie in their Andr�e–Quillen cohomology relative to S and map to their
ordinary k-invariants via the forgetful map exhibited in Section 4.
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In Section 9 we prove a lemma needed in Section 5. Basically, we overcome the
fact that the underlying module of a q-co�brant non-unital commutative algebra is not
q-co�brant.
The numbering of the theorems, de�nitions and such describe the section and order

in which they appear within that section. That is, De�nition 2.3 refers to a de�nition
in Section 2 which is the numbered item within that section.

1. Categories of A-algebras

Let A be a commutative S-algebra, and let MA denote the category of A-modules.
Recall from [5] that CA, the category of commutative A-algebras, coincides withMA[P],
the category of P-algebras, where P :MA→MA is the monad given by

PM =
∨
j≥0

Mj=�j:

Here Mj denotes the j-fold smash power over A and M 0 =A:
By [5] we know that CA is enriched over topological spaces and has a topological

model category structure where the weak equivalences are those morphisms which
are weak equivalences when viewed as maps of spectra. The q-�brations are those
morphisms which, when viewed as maps of A-modules, satisfy the RLP with respect
to the inclusions of A-modules CSn

A ∧{0+}→CSn
A ∧ I+, and the q-co�brations are those

morphisms which are retracts of relative cell P-algebras.
The category of commutative A-algebras over B. For a commutative A-algebra B,

let CA=B denote the category of commutative A-algebras over B, that is, the subcategory
of CA whose objects C come equipped with a map of A-algebras � :C→B and whose
morphisms are maps of A-algebras over B.
CA=B inherites a topological model category structure from CA. The case A=B is

important to us and we note that CA=A is a pointed category and hence it is enriched
over based topological spaces.
The category of non-unital commutative A-algebras. De�ne A :MA→MA by AM =∨

j¿0M
j=�j; A is a monad with unit � :M→AM the inclusion on the �rst summand,

and product � :AAM → AM induced by the maps

Mj1 ∧A · · · ∧A Mjk →Mj1+···+jk

given by the evident identi�cations.
Let NA=MA[A] be the category of A-algebras and note that this is the category of

non-unital commutative A-algebras. We will refer to an object of NA as an A-NUCA
or an A-algebra if the monadic description of the category is relevant.
Let K :NA→CA denote the functor which assigns to an A-algebra M the commuta-

tive A-algebra A∨M with multiplication

(A∨M) ∧A (A∨M)∼=A∨M ∨M ∨M ∧A M→A∨M
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given by the obvious maps on the �rst summands and the multiplication of M on the
last one. Note that for any A-module X , K(AX )=PX .

Proposition 1.1. NA has a topological model structure where the weak equivalences
are those maps which are weak equivalences when viewed as maps of spectra. The
q-�brations are those maps which; when viewed as maps of A-modules; satisfy the
RLP with respect to the inclusions of A-modules CSn

A ∧{0+}→CSn
A ∧ I+. A map is a

q-co�bration if and only if it is a retract of a relative cell object. A q-co�bration is
a co�bration (but not a q-co�bration) of underlying A-modules.

Proof. In [5], Theorem VII.4.9 asserts that if A is a commutative S-algebra and
T :MA→MA is a continuous monad that preserves reexive coequalizers and which
satis�es the “Co�bration Hypothesis”, then MA creates a topological model category
structure in MA[T].
The functor A :MA→MA is a continuous monad which, by the argument in [5,

II.7.2], preserves reexive coequalizers in MA. The relevant formulation of the “Co�-
bration Hypothesis” in our case says that, given a pushout inMA[A] of the general form

AE −−−−−→ Dy
y i

ACE−−−−−→ B

with E a wedge of A-module spheres Sn
A , the map i is a co�bration of A-modules.

The underlying spectrum of the A-algebra colimit of a sequence of co�brations of
A-algebras is their colimit as a sequence of maps of spectra.
Given a pushout diagram in MA[A] as above, one checks that

K(AE)=PE −−−−−→K(D)y
y A∨ i

K(ACE)=PCE−−−−−→K(B)

is a pushout in the category of commutative A-algebras and, by [5, VII.3.9], A∨ i is
a co�bration of A-modules. Since i is a retract of this map it is also a co�bration of
A-modules.
Now, let {Mi} be a sequence of maps of A-algebras that are co�brations of spec-

tra. The colimit in the category of spectra computes the colimit in the category of
A-modules.
Note that we have the following map:

(colimMi) ∧A (colimMj)∼=colim(Mi ∧A Mi)→ colimMi:
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Thus, the colimit in the category of spectra comes with a multiplication that gives it
an A-algebra structure.
Hence, MA creates the topological model category structure on MA[A] =NA claimed

in the proposition. The statement about the q-co�brations follows from
[5, VII.4.14].

2. The augmentation ideal functor

We will exhibit an equivalence between the homotopy categories �hNA and �hCA=A.
Let I :CA=A→NA assign to (B; �; �) its “augmentation ideal” : I(B) is given by the

pullback diagram in MA,

I(B)
i−−−−−→ By

y �

∗ −−−−−→ A:

Note that since the following is a commutative diagram

I(B)∧AI(B)
i∧ i−−−−−→B∧A B

�B−−−−−→ By
y �∧ �

y �

∗= ∗∧A∗ −−−−−→ A∧AA−−−−−→
=∼

A

I(B) comes with a multiplication � given by the universal property of pullbacks. On
morphisms f, I(f) is also given by the universal property of pullbacks.
Recall the functor K :NA→CA from the previous section. The projection map � :

K(M)=A∨M→A is a map of A-algebras, and the composite

A
�−→A∨M �−→A

is the identity. Hence, we may view K as a functor NA→CA=A. We have the following
adjunction. We thank the referee who suggested the following line of argument for the
proofs of this fact and Proposition 3.1.

Proposition 2.1. CA=A(K(M); B)∼=NA(M; I(B)).

Proof. If M =AX for an A-module X , we have

CA=A(K(AX ); B)∼=CA=A(PX; B)∼=MA(X; I(B))∼=NA(AX; B):
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Since for any A-NUCA M ,

AAM
�
�
A�
AM

�−→M

is a split coequalizer, the result follows for general M .

Proposition 2.2. The adjunction described above gives an equivalence of homotopy
categories.

Proof. We will use Dwyer and Spalinski’s re�nement of Quillen’s total derived functor
theorem [10, I.4]. To show that the adjunction passes to the homotopy categories, it is
enough to show that K preserves q-co�brations and acyclic q-co�brations.
By Proposition 1.1, a map in NA is a q-co�bration if and only if it is a retract

of a relative cell A-algebra. A map in CA=A is a q-co�bration if and only if it is a
q-co�bration in CA, that is, if and only if it is a retract of a relative cell P-algebra in
CA=A.
Let Y be a relative cell A-algebra under the A-algebra X . Thus, Y =colim Yn, where

Y0 =X and Yn+1 is obtained from Yn by a pushout of the form

AE −−−−−→ Yny
y i

ACE−−−−−→Yn+1

with E a wedge of A-module spheres Sm
A .

Since K is a left adjoint, it preserves all colimits. Further, PX =KAX so, if (colim Yn;
X ) is a relative cell A-algebra (Kcolim Yn; KX )= (colimKYn; KX ) is a relative cell
P-algebra. Hence, K takes retracts of relative cell A-algebras to retracts of relative
cell P-algebras in CA=A. Since K clearly preserves weak equivalences, we conclude that
the adjunction passes to the homotopy categories.
To prove the proposed equivalence, it is left to show that if M is a q-co�brant object

of NA and B is a q-�brant object of CA=A, then g :M→ I(B) is a weak equivalence if
and only if its adjoint g̃ :A∨M→B is a weak equivalence. But this is clear. Given g
as above, its adjoint is the composite

g̃ :A∨M
A∨ g−→A∨ I(B)

�∨ i−→B:

If g is a weak equivalence, A∨ g is also a weak equivalence. If B is q-�brant, that is,
if the augmentation map B→A is a �bration, then its �ber is I(B) i−→B and �∨ i is
a weak equivalence. Hence, the composite g̃ is a weak equivalence as well.
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Now, suppose that g̃ :A∨M→B is a weak equivalence in CA=A. We have the fol-
lowing commutative diagram of A-modules :

Since g̃ is a weak equivalence, A∨ g is a weak equivalence and the diagram

�∗M
g∗−−−−−→ �∗I(B)y

y
�∗A⊕ �∗M−−−−−→

=∼
�∗A⊕ �∗I(B)

shows that g is a weak equivalence.
Hence, by [4, 9.7–9.8], the total derived functors LK and RI exist and are inverse

equivalences between the homotopy categories �hNA and �hCA=A.

3. The indecomposables and abelianization functors

Let Q :NA→MA denote the “indecomposables” functor that assigns to an object N
of NA the A-module Q(N ) given by the pushout of A-modules

N ∧A N−−−−−→ ∗y
y

N −−−−−→
r

Q(N ):

Let Z :MA→NA be the functor given by considering A-modules as objects in NA with
zero multiplication and which is the identity on morphisms.

Proposition 3.1. MA(Q(N ); M)∼=NA(N; Z(M)):

Proof. If N =AX for some A-module X , then Q(N )=Q(AX )=X and we have that

NA(AX; Z(M))∼=MA(X;M)∼=MA(Q(AX ); M):

For a general A-NUCA the result follows as in Proposition 2.1.
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Since Z is the identity on morphisms and MA creates the model category structure
on NA, Z preserves q-�brations and acyclic q-�brations, so the total derived functors
RZ and LQ exist and are adjoint. We have

�hMA(LQ(N ); M)∼= �hNA(N;RZ(M)):

If B is a commutative A-algebra, the usual adjunction

CA(C;D)∼=CB(C ∧A B; D)

restricts to the categories of algebras over B and passes to their homotopy categories.
We have

�hCA=B(C;D)∼= �hCB=B(C ∧LA B; D)

where C ∧LA B denotes the total derived functor of −∧A B applied to C. That is,
C ∧LA B∼=�C ∧A B for �C a q-co�brant commutative A-algebra over B weakly equiv-
alent to C.
Let B be a q-co�brant commutative A-algebra. We now have all the ingredients to

describe the abelianization functor

AbB
A : �hCA=B→ �hMB

adjoint to the trivial B-algebra extension functor

B∨ − : �hMB→ �hCA=B:

Proposition 3.2. Let C be a commutative A-algebra over B and M a B-module. Then:

�hCA=B(C; B∨M)∼= �hMB(LQRI(C ∧LA B); M):

Proof. We have the following diagram, where the parallel arrows are adjunctions:

The unlabeled arrow is given by the forgetful functor.
For C a commutative A-algebra over B we have

�hMB(LQRI(C ∧LA B); M) ∼= �hNB(RI(C ∧LA B);RZ(M))
∼= �hCB=B(LKRI(C ∧LA B);LKRZ(M))
∼= �hCB=B(C ∧LA B; B∨M)
∼= �hCA=B(C; B∨M);
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where the second and third isomorphisms come from the fact that the pair (LK;RI)
gives an adjoint equivalence of homotopy categories.

The above proposition tells us that the right adjoint to the trivial B-algebra extension
functor B∨− : �hMB→ �hCA=B is given by

AbB
A( )=LQRI(−∧LA B): (1)

The reader should be aware that the functor B∨− and the composite functor
QI(−∧A B) are not adjoint before passing to the homotopy categories.

4. Andr�e–Quillen cohomology of commutative A-algebras

Let B be a commutative A-algebra and M a B-module.

De�nition 4.1. Let 
B=A denote the B-module AbB
A(B)=LQRI(B∧LA B), so that

�hCA=B(B; B∨M)∼= �hMB(
B=A;M):

De�ne the Andr�e–Quillen cohomology of B relative to A with coe�cients in M by

AQ∗(B=A;M)=Ext∗B(
B=A;M)≡ �−∗FB(
B=A;M):

We can relate AQ-cohomology relative to A to ordinary A-module cohomology as
follows. For a q-co�brant A-algebra B, consider the composite map of A-modules

 :B→B∨
B=A→
B=A;

where the �rst map is the A-algebra map, viewed as a map of A-modules, adjoint to
the identity and the second map is the projection. The map  induces a forgetful map
from AQ-cohomology to ordinary A-module cohomology:

 ∗ :Ext∗B(
B=A;M)→Ext∗A(
B=A;M)→Ext∗A(B;M): (2)

We have a topological analogue of Quillen’s transitivity exact sequence
[11, Theorem 5.1].

Proposition 4.2. Let A→B→C be maps of q-co�brant commutative S-algebras.
Then


B=A ∧ B C→
C=A→
C=B

is a homotopy co�ber sequence of C-modules.

Corollary 4.3. If A→B→C are maps of q-co�brant S-algebras and M is a
C-module; we have a long exact sequence

· · · →AQn(C=B;M)→AQn(C=A;M)→AQn(B=A;M)→AQn+1(C=B;M) · · ·
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Before we can prove the proposition we need some facts about the functors RI and
LQ. We �x the following notation : � denotes maps which are q-co�brations and
� denotes maps which are q-�brations. We also append subscripts to the functors I ,
Q and K and their derived functors to avoid confusion as to what categories these
functors refer to.

Lemma 4.4. Let A be a q-co�brant commutative S-algebra; B a q-co�brant commu-
tative A-algebra; and C a q-�brant and q-co�brant A-algebra over A. In the homotopy
category �hNB;

RIA(C)∧LA B∼=RIB(C ∧LA B):

That is; RI commutes with (− )∧LA B.

Proof. For an object J in NA let J denote a q-co�brant approximation and for an
object D in CB=B let fD denote a q-�brant approximation.
We will show that, in NB,

RIA(C)∧LA B= IA(C)∧A B ∼−→ IB(f(C ∧A B))=RIB(C ∧LA B):

We have the following diagram in CA=A:

A�A∨ IA(C)
∼−→ C�A:

The functor −∧A B takes q-co�brations in CA=A to q-co�brations in CB=B and preserves
weak equivalences between q-co�brant objects. Hence, applying −∧A B, we obtain the
following diagram in CB=B:

B�B∨ (IA(C)∧A B) ∼−→ C ∧A B→B:

We factor the augmentation C ∧A B→B by an acyclic q-co�bration and a q-�bration
to obtain the following diagram:

B�B∨ (IA(C)∧A B) ∼−→ C ∧AB
∼
� f(C ∧A B)�B:

Hence, we have that KB(IA(C)∧A B)=B∨ (IA(C)∧A B) ∼−→ f(C ∧A B). Note that
IA(C)∧A B is q-co�brant and f(C ∧A B) is q-�brant. Hence, since the total derived
functors LKB and RIB give an adjoint equivalence of homotopy categories, the adjoint

IA(C)∧A B→ IBf(C ∧A B)

to the weak equivalence above is also a weak equivalence.

Lemma 4.5. Let A be a q-co�brant commutative S-algebra; B a q-co�brant commu-
tative A-algebra; and N a q-co�brant A-NUCA. In the homotopy category �hMB;

LQA(N )∧LA B∼=LQB(N ∧LA B):

That is; LQ commutes with (− )∧LA B:
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Proof. The functor −∧A B, takes q-co�brant objects to q-co�brant objects and, being
a left adjoint, it commutes with colimits. The functor Q also takes q-co�brant objects
to q-co�brant objects and, since it is de�ned by a pushout diagram, it commutes with
−∧A B.

We now give the proof of Proposition 4.2.

Proof of Proposition 4.2. We will use the following notation:
• �D denotes a q-co�brant A-algebra approximation of D.
• M denotes a q-co�brant C-NUCA approximation of M .
• fR denotes a q-�brant C-algebra over C approximation of R.
Consider the following factorization by q-co�brant A-algebras:

Applying −∧A C we obtain a diagram of q-co�brant C-algebras over C

C��B∧A C
g
��C ∧A C:

The co�ber of the map g is given by the homotopy pushout in the category of
C-algebras over C of

�C ∧AC��B∧A C→C:

By [5, VII.7.3], since all the algebras are q-co�brant and the map g is a q-co�bration,
this is homotopy equivalent to the actual pushout

�C ∧A C ∧�B∧A CC ∼= �C ∧�B C;

which is a q-co�brant C-algebra over C. We obtain a co�ber sequence of q-co�brant
C-algebras over C:

�B ∧ A C→�C ∧ A C→�C ∧ �BC:

This gives us a homotopy co�ber sequence of C-modules

QCICf(�B ∧ A C)→QCICf(�C ∧ A C)→QCICf(�C ∧ �BC)

since the derived functors (LKC;RIC) give an equivalence between the homotopy cat-
egories �hCC=C and �hNC , and since QC preserves co�ber sequences.
By the two previous lemmas, QCICf(�B ∧ A C)∼=
B=A ∧ BC.
By de�nition, QCICf(�C ∧ A C)=
C=A.
Hence, it is left to show that QCICf(�C ∧ �BC)=
C=B.
By de�nition 
C=B=QCICf(�BC ∧ BC) where �BC denotes a q-co�brant B-algebra

approximation of C. Thus, it is enough to show that �C ∧ �BC is weakly equivalent
to �BC ∧ BC.
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Factoring the arrow B→C in the original factorization of A→B→C, we obtain the
following commutaive diagram:

The existence of the diagonal arrow is guaranteed by the properties of q-�brations and
q-co�brations in a model category, and it is a weak equivalence.
The diagram

C ←−−−−− �B � �C∥∥∥∥∥
y =∼

y =∼

C ←−−−−− B � �BC

gives that the homotopy pushouts of the top and bottom rows are weakly equiv-
alent. But, all the algebras involved are q-co�brant commutative S-algebras hence
the homotopy pushouts are weakly equivalent to the actual pushouts. Thus, we get
�C ∧ �BC '�BC ∧ BC as desired.

We also have the analogue of Quillen’s Theorem 5.3 [11] which he calls “at base
change”.

Proposition 4.6. Let A be a q-co�brant commutative S-algebra and let B and C be
q-co�brant commutative A-algebras. There are isomorphisms in the homotopy cate-
gory of B ∧ A C-modules


B∧ AC=C
∼=
B=A ∧ A C;


B∧ AC=A
∼=
B=A ∧ A C ∨
C=A ∧ A B:

Hence; if M is a B ∧ A C-module there are isomorphisms

AQ∗(B ∧ A C=C;M)∼=AQ∗(B=A;M);

AQ∗(B ∧ A C=A;M)∼=AQ∗(B=A;M)⊕AQ∗(C=A;M):

Proof. The �rst isomorphism follows from Lemmas 4.4 and 4.5. The second isomor-
phism follows from comparing the two homotopy co�ber sequences that we obtain by
applying the previous theorem to the sequences

A→B→B ∧ A C; A→C→B ∧ A C:

The isomorphisms on cohomology follow from the properties of Ext.
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5. Construction of the spectral sequence

Let B be a q-co�brant connective commutative S-algebra with an S-algebra map to
HFp which we take to be a q-co�bration.
Let A denote the q-co�brant B algebra HFp. We will also consider HFp as a

B-module and in this case we will write HFp instead of A.
We will construct a spectral sequence to calculate

AQ∗(B=S; HFp)=Ext∗B(
B=S ; HFp)=Ext∗B(LQBRIB(B ∧L B); HFp):

Theorem 5.1. There exists a spectral sequence that satis�es

Es; t
2 =HomFp(L

F
s (Fp⊗R Qalg)(HFp∗B)t ; Fp)

and converges strongly to AQ∗(B=S; HFp).

Here LF
s (− ) denotes the sth comonad F-left derived functor which we will de�ne

shortly. We shall �rst prove the following proposition.

Proposition 5.2. AQ∗(B=S; HFp)∼=HomFp(�∗(LQARIA(B ∧L A)); Fp).

Proof. This follows from Lemmas 4.3 and 4.4:

AQ∗(B=S;HFp) = Ext∗B(LQBRIB(B ∧L B); HFp)

= Ext∗A(LQBRIB(B ∧L B)∧LBA; HFp)
= Ext∗A(LQA(RIB(B ∧L B)∧LBA); HFp)
= Ext∗A(LQARIA(B ∧L A); HFp)

= HomFp(�∗(LQARIA(B ∧L A)); Fp):

We now proceed to describe a simplicial resolution of LQARIA(B∧A). We will use
the bar �ltration to construct the spectral sequence and identify its E2-term.
Suppose that N is a q-co�brant A-NUCA and recall that (A; �; �) is the free non-

unital commutative A-algebra monad in the category of A-modules.
Let B∗N =B∗(A;A; N ) denote the simplicial object with nth term BnN =An+1N and

face and degeneracy operators given by

di=Ai�An−i−1 ; 0 ≤ i¡n; dn=An�;

si=Ai+1�An−i ; 0 ≤ i ≤ n:

There are several ways we can interpret this construction.
If we consider A :MA→MA[A] as the functor left adjoint to the forgetful functor

U :MA[A]→MA, then

B∗N =B∗(A; UA; UN )

is the construction of [8] for the monad UA in MA and the UA-functor A.
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On the other hand, (AU; �;A�U ) is a comonad on MA[A] and

B∗(A; UA; UN )=B∗(AU;AU;N )

is the usual bar construction applied to the comonad AU .
In any case, we continue to omit the forgetful functor and note that B∗N is a

simplicial A-NUCA. The degeneracies si are of the form Ai+1� and hence B∗N is
proper. Further, the action map of N provides an augmentation for B∗N . We can
consider � :B∗N→N as an augmented simplicial A-module for which it is routine to
de�ne a contraction using the unit map � :N→AN .
An argument similar to that of [5, VII.3.3] shows that the geometric realization in

the category of A-algebras is isomorphic to the geometric realization in the category
of A-modules. Hence, |B∗N | and N are homotopy equivalent as A-modules and weakly
equivalent as A-algebras.
Note that, even though N is a q-co�brant A-NUCA, |B∗N | might not be q-co�brant.

The functor A takes q-co�brant A-modules to q-co�brant A-NUCAs, but a q-co�brant
A-NUCA is not necessarily q-co�brant as an A-module. Hence, the simplices AnN
might not be q-co�brant.
We construct a simplicial A-NUCA �B∗N with q-co�brant simplices weakly equiva-

lent to those of B∗N and whose geometric realization is a q-co�brant A-NUCA weakly
equivalent to |B∗N | and hence weakly equivalent to the q-co�brant A-NUCA N .
Explicitly, let �B∗ be the simplicial A-NUCA with �Bn=�An+1N where � denotes

the functorial cell A-algebra approximation described in [5, VII 5.8.] By construction,
�B∗N satis�es the hypothesis of [5, X.2.7(i)] in the NUCA setting. That is, each �BqN
is a cell object, each degeneracy operator is the inclusion of a subcomplex, and each
face operator is sequentially cellular. By the proof of the above mentioned result, we
can conclude that |�B∗N | is a cell, hence q-co�brant, A-NUCA.
Since both �B∗N and B∗N are proper simplicial A-NUCA’s with degreewise weakly

equivalent simplices, [5, X.2.4(ii)] gives that their geometric realizations are weakly
equivalent as desired.
We have the following composite weak equivalence:

|�B∗N |→ |B∗N |→N:

Therefore, since |�B∗N | and N are q-co�brant, the composite

LQA|�B∗N | ∼=QA|�B∗N |→QA|B∗N |→QAN ∼=LQAN (3)

is a weak equivalence.
Since QA is a left adjoint, it commutes with categorical colimits and hence it com-

mutes with geometric realization. Thus, we could use the bar �ltration of |QA�B∗N | to
construct a spectral sequence converging to �∗(LQAN )∼= �∗QAN . But we would have
very little knowledge of its E2 term:

E2s; t =Hs(�t(QA�B∗N ));
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the sth homology group of the chain complex associated to the simplicial group ob-
tained by applying the functor �t degree-wise to QA�B∗N .
On the other hand, if we knew that |QAB∗N |→QAN were a weak equivalence,

we could take advantage of the fact that for any A-algebra T , we have a natural
isomorphism QAAT ∼= T and, as we will see in the next section, �∗AX can be described
algebraically as a functor of �∗X . So, we would have a much better handle on the
E2-term of the spectral sequence obtained from the bar �ltration of |QAB∗N |.
We will show that the left arrow in (3) is a weak equivalence, and hence QA|B∗N |

and QAN are weakly equivalent as desired.
We will need the following key lemma which we shall prove in Section 9.

Lemma 5.3. Let N be a q-co�brant A-NUCA and let  :X →AnN be a cell A-module
approximation. Then A :AX →AAnN is a weak equivalence.

Proposition 5.4. QA|B∗N |→QAN is a weak equivalence of A-modules.

Proof. Let  :X →AnN be a cell A-module approximation. By the previous lemma,
A :AX →AAnN is a weak equivalence. Thus, �AX →�AAnN is a homotopy equiv-
alence of A-algebras since it is a weak equivalence of q-co�brant A-algebras.
We have the following commutative diagram:

QA�AX −−−−−−−−−→ QA�AAnNy
y

X ∼=QAAX −−−−−→ AnN ∼=QAAAnN:

The top horizontal and the left vertical arrows are homotopy equivalences of A-modules.
The bottom horizontal arrow is a weak equivalence and hence, the right arrow is also
a weak equivalence.
Thus, QA�BnN is weakly equivalent to QABnN for each n. Since both QA�B∗N

and QAB∗N are proper, their geometric realizations are weakly equivalent. Since QA

commutes with geometric realization, we have that QA|�B∗N | is weak equivalent to
QA|B∗N | which gives the desired result.

To construct our spectral sequence we take B∧A to be q-�brant and q-co�brant,
and we let N above be a q-co�brant approximation IA(B∧A) of IA(B∧A).
As in [5, X.2.9], the bar �ltration yields a natural homological spectral sequence

with E2-term given by

E2s; t =Hs(�t(QAB∗N ));

the sth homology group of �t(QAB∗N ), the chain complex associated to the simplicial
group obtained by applying the functor �t degree-wise to QAB∗N .
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This spectral sequence converges strongly to

�∗(|QAB∗N |)∼= �∗(QAN )∼= �∗(LQARIA(B ∧L A)):

We apply the exact functor HomFp(−; Fp) to the spectral sequence above and we
obtain a �rst quadrant cohomological spectral sequence with E2-term

Es; t
2 =Hs(HomFp(�t(QAB∗N ); Fp))

and di�erentials dr :Es; t
r →Es+r; t−r+1

r ; it converges strongly to

HomFp(�∗(QAN ); Fp)∼=AQ∗(B=S;A):

6. Algebraic identi�cation of the E2-term

Let A, as before, denote the q-co�brant commutative S-algebra HFp. We can give a
more algebraic description of the E2-term of our spectral sequence once we note that for
any object X in NA there is an algebraic functor of �∗X describing
�∗(QAAX ).
We will use the following notation:
• V will denote the category of graded Fp-vector spaces.
• R will denote the (Z-graded) Dyer–Lashof algebra at the prime p.
• D, ND and U will denote, respectively, the categories of algebras, non-unital
algebras, and modules with an allowable action by R.
Let P denote the free commutative A-algebra monad in the category of A-modules.
Mandell’s description of the homotopy operations on the category of commutative

A-algebras [7] together with McClure’s work in [1] shows that �∗ is a functor from
CA to D. Further, for any A-module Y , �∗PY is the free allowable algebra over R
generated by the graded Fp-vector space �∗Y .
Let X be a q-co�brant object in NA. Then, �∗X = I alg�∗(KAX ) where I alg de-

notes the algebraic “augmentation ideal” functor. Hence, �∗ is a functor from NA to
ND.
Let F :V→D denote the free allowable algebra over R functor constructed by May

in [1] and let �F :V→ND denote the left adjoint to the forgetful functor. One can
see that �F = I algF . Thus, we have a natural isomorphism

�∗AX ∼= I alg�∗PX = �F(�∗X ):

Let �F= �F �U where �U :ND→V denotes the forgetful functor. Note that �F is a
comonad on ND.
If X is an A-algebra, �∗AX ∼= �F(�∗X ) and the isomorphism is natural not only with

respect to X but also with respect to AX . If X and Y are A-algebras and f :AX →AY
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is a map of A-algebras, the following diagram commutes:

Let Qalg and �Qalg denote the “algebra indecomposables” functor in D and ND, re-
spectively. Note that their target is U. By the comments above, for an A-module Y we
have

�∗Y = Fp ⊗R (Qalg�∗PY )= Fp ⊗R ( �Qalg�∗AY ):

Let �Q denote the composite functor Fp⊗R
�Qalg(− ). Since QAAX and X are natu-

rally isomorphic we see that there is a composite natural isomorphism of functors:

�∗(QAAX )∼= �∗X ∼= �Q(�∗AX )∼= �Q �F(�∗X ):

Further, when X and Y are A-algebras and f :AX →AY is a map of A-algebras, the
following diagram commutes:

We now remind the reader of the de�nition of comonad derived functors [3, 9].

De�nition 6.1. Let F :C→A be a functor to some abelian category and let (T; �; �)
denote a comonad on C. For an object C of C, let T∗C denote the augmented simplicial
object with

TnC =Tn+1C;

di=Ti�Tn−i ; 0 ≤ i ≤ n

si=Ti�Tn−i ; 0 ≤ i ≤ n

and augmentation given by the counit � :TC→C.
Let FT∗C denote the augmented simplicial object obtained by applying F to T∗C

degreewise. The comonad T-left derived functors of F applied to C, LT
∗ F(C), are

given by the homology of the chain complex associated to FT∗C.
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For every object C of C, there is a natural map

� :LT
0 F(C)→FC

and we say that C is LT
∗ F-acyclic if � is an isomorphism and LT

i F(C)= 0 for i¿0.

The functor �F= �F �U de�nes a comonad on ND; we will denote its counit and
comultiplication by �� and ��, respectively.
The natural isomorphisms

�∗AX ∼= �F�∗X and �∗(QAAX )∼= �Q �F�∗X

give an isomorphism of simplicial objects

�∗QAB∗N ∼= �Q �F∗(�∗N );

where the object on the left is obtained by applying �∗QA degreewise to the simplicial
A-NUCA B∗(A;A; N ). Hence, we have an equivalence of chain complexes and an
isomorphism of their homologies. The homology of the chain complex obtained from
�Q �F∗(�∗N ) calculates L

�F
∗ �Q(�∗N ), the comonad �F-left derived functors of �Q, applied to

�∗N .
Recall that N = IA(B∧A) is a q-co�brant approximation to IA(B∧A). Thus, we

have

�∗(N )= �∗(IA(B∧A))= I alg�∗(A∨ IA(B∧A))= I alg�∗(B∧A)= I algH∗(B; Fp):

Hence, we can rewrite

Es; t
2 =Hs(HomFp(�t(QAB∗N ); Fp))=HomFp(L

�F
s
�Q(I algH∗(B; Fp)t ; Fp):

To obtain Theorem 5.1, we let (F=UF; �; �) be the comonad associated to the free
functor F :V→D. The following proposition shows that the F-left derived functors
of the composite �QI alg applied to an object C of D coincide with the �F-left derived
functors of �Q applied to the object I algC of ND.

Proposition 6.2. For each t and each object C of D; there is a natural isomorphism
of Fp-vector spaces

LF
t ( �QI alg)(C)∼=L

�F
t
�Q(I algC):

Proof. Consider the maps of double-chain complexes associated to the augmentations:

�QI algF∗C
�Q ��∗←− �Q �F∗(I algF∗C)

�Q �F∗I alg�−→ �Q �F∗I algC:

We will show that both maps induce homology isomorphisms.
For each object C of D we have

�̃ : I algFC = I algFUC→ I algF �UI algFUC = �FI algFC
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given by �̃= I algF ��UC where �� is the unit for the monad �UI algF . Since ��◦ �̃= ��I algFUC ◦
I algF ��UC = IdI algFUC; there is a contraction for

�Q �� : �Q �F∗(I algFnC)→ �QI algFnC:

Hence, �ltering the double-chain complex associated to

�Q ��∗ : �Q �F∗(I algF∗C)→ �QI algF∗C

by degree in F we obtain an isomorphism at E1.
We also have s : �UI algC→ �UI algFUC with s= ��UC ◦ i where i : �UI algC→UC is the

obvious inclusion. Note that �UI alg� ◦ s= Id �UI algC and hence there exists a contraction
for

�UI alg� : �UI algF∗C→ �UI algC:

Since, for each n ≥ 0, �Q �Fn+1I alg = �Q �FnI algF �UI alg there exists a contraction for

�Q �Fn+1I alg� : �Q �Fn+1I algF∗C→ �Q �Fn+1I algC:

Hence, �ltering the double-chain complex associated to

�Q �F∗I alg� : �Q �F∗I algF∗C→ �Q �F∗I algC

by degree in �F, we obtain an isomorphism at E1. Therefore both maps of total com-
plexes above are homology isomorphisms.

Note that

�QI alg(− )= Fp⊗R
�QalgI alg(− )= Fp⊗R Qalg(− ):

Hence we can rewrite the E2 term in the form proposed by Theorem 5.1:

Es; t
2 =HomFp(L

F
s (Fp⊗R Qalg(− ))(H∗(B; Fp))t ; Fp):

7. A Grothendieck spectral sequence

We construct a spectral sequence that converges to the comonad left derived functors
of the composite functor

Q= Fp ⊗R Qalg(− ):
The existence of such a spectral sequence is an application to left derived functors of
proposition 2.13 in Miller’s paper “The Sullivan Conjecture on Maps from Classifying
Spaces” [9].
We consider the following general situation:

C
F−→B

E−→A
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where F and E are covariant functors and B and A are abelian categories. We let
(T; �; �) denote a comonad on C and (S; �′; �′) a comonad on B.
In this setting Miller’s Proposition 2.13 reads:

Proposition 7.1. Assume that:
(a) For every object C of C; FTC is LS

∗ E-acyclic.
(b) ESn+1 is exact for all n ≥ 0.
Then there is a convergent homological spectral sequence

E2s; t =LS
s E(LT

t F(C))⇒LT
s+t(EF)(C):

Before we apply this proposition to our composite functor Fp⊗R Qalg(− ), we need
the following observation about the target of Qalg.
Recall that if B is an algebra with an allowable action of the Dyer–Lashof algebra

R at the prime p, then Qnx= xp if |x|= n and p=2 or if 2|x|= n and p¿2. Hence,
QalgB is a module with an allowable action of R that satis�es Q|x|x=0 if p=2 and
Q2|x|x=0 if p¿2. Let aU denote the full subcategory of U consisting of modules
satisfying the above condition. Then we have the following setting:

D
Qalg−−−−−→ aU

Fp ⊗R−−−−−→ V

V

x
y U ′ a

x
y i

U U

D

x
y U D

x
y U

V V:

Here U ′ and U are forgetful functors and V and D are their respective left adjoints
constructed by May in [1]; i denotes the inclusion and a is its left adjoint given by
aM =M={Qsx} with s= |x| if p=2 and s=2|x| if p¿2. Observe that ai= Id and,
QalgVM = aM if M is an object of U.
Let (F; �; �) denote the comonad on D appearing in Theorem 3.1. Note that it is

given by F=VD �U , where �U is the forgetful functor to V.
Let (D; �′; �′) denote the comonad on aU given by D= aDUi.
Let TorD∗ (Fp− ) denote the comonad D-left derived functors of Fp⊗R (− ).

Proposition 7.2. There exists a convergent homological spectral sequence:

E2s; t = TorDs (Fp;LF
t Qalg(H∗(B; Fp))⇒LF

s+t(Fp⊗R Qalg(− ))(HFp∗B):

We must show that our functors and comonads satisfy the conditions on Miller’s
proposition, and we break the argument into the following two lemmas. Let E=Fp⊗R−.
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Lemma 7.3. QalgFA is LS
∗ E-acyclic for all A in D.

Proof. Let

f :QalgFA=QalgVD �UA= aD �UA→ aDUiaD �UA=DQalgFA

be given by f= aD� �UA where � is the unit of the monad UiaD. Then, �′ ◦f= �′ ◦
aD� �UA= IdaD �UA. Hence, there is a contraction for �∗ :D∗QalgFA→QalgFA which gives
the desired result.

Lemma 7.4. EDn+1 is exact for all n ≥ 0.

Proof. We show that D : aU→ aU and ED : aU→V are exact.
Let M ′→M→M ′′ be exact in aU. Since D= aDUi, we �rst must forget down to

the category of vector spaces. Then the exact sequence above becomes UiM ′→UiM ′⊕
UiM ′′→UiM ′′. Hence DM ′→DM→DM ′′ is the same as DM ′→DM ′ ⊕ D
M ′′→DM ′′ which is exact. Applying Fp ⊗R (− ) to this sequence it remains exact.
Hence, the result follows.

8. Postnikov towers of connective commutative S-algebras

In this section we give the proof of Theorem 1.6 of Kriz’s unpublished paper [6].
That is, given a connective commutative S-algebra we construct its Postnikov tower in
the category of commutative S-algebras.
In the paper mentioned above, Kriz gives a di�erent description of 
B=A from ours.

He claims that, as in our framework,

�hCA=B(B; B∨M)∼= �hMB(
B=A;M)

but we have been unable to verify this bijection using his description of 
B=A. This is
what prompted us to develop our theory. Kriz de�nes E∞-cohomology in terms of 
B=A

and our de�nition of Andr�e–Quillen cohomology mimics his. Thus, his observations
and in particular his construction of the Postnikov towers of E∞-ring spectra translate
directly to our framework with some di�erences in the proofs.
We will use the following de�nitions and observations:
Let B be a connective, q-co�brant commutative S-algebra with �0B=K . Then, by

[5, IV.3.1], there is a map of commutative S-algebras � :B→HK which we can take
to be a q-co�bration and that realizes the identity homomorphism �0B=K . By con-
struction, its underlying map of spectra is the bottom k-invariant.
Let A be a q-co�brant commutative S-algebra. Suppose that B as above is also a

q-co�brant commutative A-algebra. Let J be a K-module. Then HJ is a B-module and
for n ≥ 0

AQn(B=A;HJ )= �−nFB(
B=A; HJ )∼= �hMB(
B=A; �nHJ )∼= �hCA=B(B; B∨�nHJ ):
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Let [k] be a class in AQn(B=A;HJ ) represented by a map of A-algebras over B

k :B→B∨�nHJ

and let 1 :B→B∨�nHJ be the inclusion in the �rst wedge summand. The homotopy
pullback in the category of commutative A-algebras

B′ −−−−−→ By
y 1

B −−−−−→
k

B∨�nHJ

produces B′, a commutative A-algebra over B. Following Kriz’s terminology we say
that B′ is an extension of B by k.
Let k ′ denote the composite of k with the projection B∨�nHJ→�nHJ . The class

[k ′] coincides with the class  ∗([k]) where

 ∗ :AQn(B=A; HJ )→Hn(B; A; J )

is the forgetful map of (2). Moreover, B′ is the homotopy �ber of k ′ in the category
of A-modules.
We have the following theorem.

Theorem 8.1 (Kriz [6]). For any connective commutative S-algebra A; there is a se-
quence of commutative S-algebras Ai; �0A-modules Qi; and elements

ki ∈AQ∗(Ai=S; HQi)

such that
(a) A0 =H�0A and Ai+1 is the extension of Ai by the k-invariant ki,
(b) �jAi=0 for j¿i,
(c) there are maps of commutative S-algebras �i :A→Ai which are (i + 1)-equi-

valences and such that

commutes in the homotopy category of commutative S-algebras.
Furthermore; this data is unique up to (non-canonical) isomorphism.

In order to prove this theorem we need the following lemma.
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Lemma 8.2. Let B be a connective commutative S-algebra and let � :A→B be a
map of S-algebras which is an n-equivalence; where n≥ 1. Then; 
B=A is n-connected
and �n+1(
B=A)∼= �nA.

Proof. Consider the composite map of A-modules

u :B→B∨
B=A→
B=A;

where the �rst map is a map of A-algebras adjoint to the identity and the second is
the projection. Then the composite map of A-modules

A �−→B u−→
B=A

is zero since, by functoriality, it factors through 
A=A= ∗. Thus, we have a commutative
diagram of A-modules

where C� is the co�ber of �. Hence C� is n-connected. We will show that 
B=A is
also n-connected and that � induces an isomorphism on �n+1.
Consider the following commutative diagram of A-modules:

A −−−−−→ B −−−−−→ C�y
y

y
B −−−−−→B∧A B−−−−−→B∧A C�:

The top and bottom rows are co�ber sequences and the vertical maps are the obvious
inclusions.
The spectral sequence in [5, IV.4.1] shows that �i(B; ∧A C�)= 0 for i≤ n and that

the map C�→B∧AC� gives an isomorphism on �n+1. Since

B∨RIB(B ∧ LA B)→B∧A B

is a weak equivalence, we see that B ∧A C�, the co�ber of B→B ∧A B; is weakly
equivalent to RIB(B ∧ LA B):
The following diagram commutes in the homotopy category of A-modules:

A
�−−−−−→ B −−−−−→ C�

�−−−−−→ 
B=Ay
y

y
x i

B −−−−−→B∧A B−−−−−→B∧A C�−−−−−→
=∼

RIB(B∧L
A B):

Hence, the e�ect of � on �n+1 coincides with the e�ect of i.
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Recall from Section 5 that there is a spectral sequence with

E2s; t =Hs(�t(QBB∗(A;A; RIB(B∧ LA B)))
that calculates �∗(
B=A): Since RIB(B∧ LA B) is n-connected,

E1s; t = �t(QB(As+1(RIB(B∧ LA B))))= �t(As(RIB(B∧ LA B)))= 0
if t≤ n and

E20; n+1 =E∞
0; n+1 = �n+1RIB(B∧ LA B)∼= �n+1(
B=A);

where the isomorphism is induced by the map i, as desired.

Proof of Theorem 8.1. As mentioned above, there is a map of commutative S-algebras
� :A→A0 =H�0A which is a 1-equivalence and realizes the bottom k-invariant in the
category of S-modules. To construct A1, the next stage of the tower in the category
of S-modules, we let B=A0 in the lemma above. Since 
B=A is 1 connected and
�2(
B=A)∼= �1A, we can construct a map

c1 :
B=A→�2H�1A

by attaching cells to 
B=A to kill its higher homotopy groups. We de�ne A1 to be the
homotopy �ber of the composite

B→
B=A
c1−→ �2H�1A:

Then A1 is equivalent to the extension of B by the map of A-algebras

k1 :B→B∨�2H�1A

adjoint to c1: Hence, A1 is a commutative A-algebra, thus a commutative S-algebra. The
required map �1 :A→A1 is given by the unit and k1 gives a class in AQ2(B=S;H�1A).
If the ith stage of the tower has been constructed, letting B=Ai, we construct Ai+1

in an analogous way. The uniqueness of these k-invariants follows from the uniqueness
of the classical k-invariants.

9. Extended cell R-modules

The object of this section is to prove the following theorem from which Lemma 5.3
follows.

Theorem 9.1. Let R be a q-co�brant commutative S-algebra. Let N be a q-co�brant
R-NUCA and n¿0. If  : Y →AnN is a cell R-module approximation then

i=�i : Y i=�i→ (AnN )i=�i

is a weak equivalence for all i¿0:
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We restate Lemma 5.3 as a corollary:

Corollary 9.2. If N is a q-co�brant R-NUCA and Y→AnN is a cell R-module
approximation; then AY→AAnN is a weak equivalence.

To prove the theorem using induction on n does not seem to be possible. We are able
to prove the case n=1 relying on a convenient �ltration of the q-co�brant R-NUCA N .
However, for n≥ 1 AnN is not q-co�brant and we lack the above mentioned �ltration to
show the inductive step. Our proof of the theorem relies on the elementary observation
that AnN is a wedge of R-modules of the form Nj=H where j≥ 1 and H ⊂�j.
We will show that when N is a q-co�brant R-NUCA, arbitrary wedges of R-modules

Nj=H with j and H as above have cell R-module approximations Y�→Nj� =Hj� such
that (

∨
Y�)i=�i→ (

∨
Nj� =Hj�)

i=�i is a weak equivalence.
We begin by generalizing the class of R-modules �ER described in [5, VII.6.4] to a

class �FR whose objects retain the desirable property speci�ed in [5, VII.6.7]. That is,
the derived smash product of objects in �FR is represented by their point set-level smash
product. Then we describe a subclass of �FR, the class of extended cell R-modules, to
which q-co�brant R-NUCA’s belong. We will show that if M is an extended cell
R-module, M has a cell R-module approximation Y →M such that for all i≥ 1 and all
H ⊂�i, Y i=H→Mi=H is a weak equivalence. Furthermore, we will see that arbitrary
wedges of these Mi=H have cell R-module approximations which behave as desired
with respect to the symmetric power operation (−) j=�j.
We will use the following notation and de�nitions:
X (i) will denote the i-fold external smash product of spectra.
R will denote a q-co�brant commutative S-algebra.

De�nition 9.3. Let FR be the class of all R-modules of the form

R∧SS ∧LL(i) nG K

where K is any G-spectrum indexed on the universe Ui that has the homotopy type
of a G-CW spectrum for some G⊂�i.
De�ne �FR to be the closure of FR under the following operations in the category

of R-modules: �nite ∧R, wedges, pushouts along co�brations, colimits of countable
sequences of co�brations, homotopy equivalence and the following operation which
we call stabilization: if �M is in �FR then M is in �FR.

We have the following observations:
(1) �ER⊂ �FR.
(2) R is in �FS .
(3) Stabilization implies that if M→N→C is a co�ber sequence of R-modules with

M and C in �FR, then N is in �FR:
We have the following generalization of [5, VII.6.3]:
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Theorem 9.4. Let Xi; 1≤ i≤ n; be an Hi-spectrum indexed on Uji which has the
homotopy type of an Hi-CW spectrum for some Hi⊂�ji . Then∧

L

S ∧LL(L(ji)nHiX i)

has the homotopy type of CW S-module and

∧L(Id ∧L �) :
∧
L

S ∧LL(L(ji) nHi Xi)→
∧
L

S ∧LL(ji)nHi Xi

is a homotopy equivalence of spectra and a weak equivalence of S-modules.

Proof. By [5, XI.2.5],
∧

L L(ji)nHi Xi has the homotopy type of a CW -spectrum
indexed in U . The assertion about the homotopy type of

∧
L S ∧LL(L(ji)nHi Xi)

follows from the fact that L and S ∧L(−) preserve CW - homotopy types and the
smash product of CW -S-modules is a CW -S-module.
As in [5, VII.6.3] we have the following commutative diagram of L-spectra:
∧

L(S ∧L L(L(ji)nHi ; Xi))
∧L�−−−−−→∧L L(L(ji)nHiXi)

∧L(Id∧L�)

y
y ∧L�

∧
L(S ∧L L(ji)nHi ; Xi) −−−−−→∧L�

L(ji)nHiXi:

The top horizontal arrow is a homotopy equivalence of L-spectra and the bottom hor-
izontal arrow is a homotopy equivalence of spectra. By [5, I.5.4 and I.5.6] the right
vertical arrow is isomorphic to the map

(L(n)×L(ji)× · · · ×L(jn))nH1 × ···×HnX1 ∧ · · · ∧Xn

n Id

y
L(j1 + · · ·+ jn)nH1 × ···×HnX1 ∧ · · · ∧Xn:

Since  is an (H1× · · · ×Hn)-equivariant homotopy equivalence, [2, XXII.1.8] gives
that n Id is an equivariant homotopy equivalence before passing to orbits. Thus, after
passing to orbits, n Id is a homotopy equivalence and so is the left vertical arrow.

We also have the following generalization of [5, VII.6.7].

Theorem 9.5. Choose cell R-modules �M and weak equivalences of R-modules  :�M
→M for each M ∈ �FR. Then; for any �nite subset {M1; : : : ; Mn} of �FR

∧R · · · ∧R  :�M1 ∧R · · · ∧R �Mn→M1 ∧R · · · ∧R Mn

is a weak equivalence of R-modules.
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Proof. We adapt the proof of [5, VII.6.7] to our situation.
Let R= S. By standard commutation formulas relating smash products with the cho-

sen operations and the fact that this operations preserve weak equivalences, it is enough
to show that the claim is true when each Mi is in FS . For these the conclusion follows
by the previous theorem.
For general R and Mi=R∧SNi, where Ni ∈FS has cell S-module approximation �Ni,

R∧S�Ni is a cell R-module approximation of Mi. Using the commuting properties of
smash products we have that

(R∧SN1)∧R · · · ∧R (R∧SNn)∼=R∧S N1 ∧S · · · ∧S Nn

and similarly for the �Ni. Hence we must show that

R∧S�N1 ∧S · · · ∧S �Nn→R∧S N1 ∧S · · · ∧S Nn

is a weak equivalence. The conclusion follows from the result for S since, as mentioned
above, R∈ �FS . For general Mi the result follows as in the case R= S.

We now introduce the class of extended cell R-modules.

De�nition 9.6. An extended cell is a pair of the form (X ∧Bn
+; X ∧ Sn−1

+ ), where n≥ 0
and X =R∧S S ∧LL(i) nG K for a G-spectrum K indexed on Ui and which has the
homotopy type of a G-CW spectrum for some G⊂�i. Here S−1 = ∅.
An extended cell R-module is an R-module M =colimMi with M0 = ∗ and Mn ob-

tained from Mn−1 by a pushout of R-modules of the form∨
� X� ∧ Sn�−1

+ −−−−−→Mn−1y
y∨

� X� ∧Bn�
+ −−−−−→ Mn:

The sequence Mi is called the sequential �ltration of M . Note that the maps Mi→
Mi+1 are co�brations of R-modules.

The following lemma explains our interest in extended cell R-modules.

Lemma 9.7. If N is a cell R-NUCA then it is an extended cell R-module.

Proof. Supposed that N =colimMi where M0 = ∗ and Mi is obtained from Mi−1 as a
pushout of the form

AE −−−−−→Mi−1y
y

ACE−−−−−→ Mi;

where E is a wedge of sphere R-modules.
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Then Mi
∼= |�R

∗(ACE;AE;Mi−1)|, where the bar construction is the one described in
[5, VII.3.5] with respect to the coproduct AqB=A∨B∨A∧R B. A similar argument to
that of [5, VII.7.5] shows that the qth �ltration of the bar construction is an extended
cell R-module and by passage to colimits so is any cell R-NUCA.

Clearly, extended cell R-modules are in �FR. They also have the following key
property.

Theorem 9.8. If M is an extended cell R-module; i¿0 and H ⊂�i; then Mi=H is in
�FR and the projection

� : (EH)+ ∧H Mi→Mi=H

is a weak equivalence of spectra.

We will see below that this theorem is an immediate consequence of the case n=1
of the following proposition:

Proposition 9.9. Let Xi; 1≤ i≤ n; be extended cell R-modules with �nite sequential
�ltrations of respective lengths di and let m¿0. Then for each partition m=m1 +
· · ·+ mn and each H ⊂�m; ((�m)+ ∧×�mi

X m1
1 ∧R · · · ∧R X mn

n )=H is in �FR and

(EH)+ ∧H ((�m)+ ∧×�mi
X m1
1 ∧R · · · ∧RX mn

n )→((�m)+ ∧×�mi
X m1
1 ∧R · · · ∧R X mn

n )=H

is a weak equivalence of spectra. Here ×�mi =�m1 × · · · ×�mn .

Proof. We will describe a �ltration of (�m)+ ∧×�mi
X m1
1 ∧R · · · ∧R X mn

n ;

G0⊂G1⊂ · · · ⊂Gt =(�m)+ ∧×�mi
X m1
1 ∧R · · · ∧R X mn

n ;

where each of the inclusions is a �m-co�bration of R-modules. If we know the result
for G0 and each of the subquotients we can conclude the result for

(�m)+ ∧×�mi
X m1
1 ∧R · · · ∧R X mn :

We use induction on d=maximum length of �ltration of the Xi’s. The base case
d=1 will be the hardest to prove and we postpone it until the end.
The inductive step is proved by induction on c=number of Xi’s with sequential

�ltration of length d. Let d¿1 and assume inductively that the results are true for
f¡d. The case c=0 occurs when all the Xi’s have �ltration at most d− 1, in which
case the statement is true by the inductive hypothesis. Now, assume the results for l¡c.
Without loss of generality assume that X1 has sequential �ltration of length d and let
Z be the (d−1)-st �ltration level of X1. Then X1=Z is an extended cell R-module with
�ltration length 1.
Filter Xm1

1 by

Zm1 =F0⊂F1⊂ · · · ⊂Fm1−1⊂Fm1 =Xm1
1 ;



M. Basterra / Journal of Pure and Applied Algebra 144 (1999) 111–143 139

where Fk is the union of the subcomplexes M1 ∧R · · · ∧R Mm1 such that each Mj is
either X1 or Z and k of the Mj are X1. As in [5, III.5.1], the inclusions Fk ⊂Fk+1 are
�m1 -co�brations and the subquotients can be identi�ed equivariantly as

(Fk=Fk−1)∼=(�m1 )+ ∧ �m1−k×�k (Z)
m1−k ∧R (X1=Z)k :

This �ltration induces a �ltration on (�m)+ ∧×�mi
X m1
1 ∧R · · · ∧RX mn

n . The initial R-
submodule is (�m)+ ∧×�mi

Zm1 ∧R X m2 ∧R · · · ∧R X mn
n , the inclusions are �m-co�brations

and the subquotients are identi�ed equivariantly as

(�m)+ ∧×�mi
(Fk=Fk−1)∧R X m2 ∧R · · · ∧R X mn

n

∼= (�m)+ ∧ �m1−k×�k×�m2×···×�mn
(Z)m1−k ∧R (X1=Z)k ∧R X m2 ∧R · · · ∧R X mn

n :

Since Z and X1=Z have �ltration length less than d we have reduced c by one hence
by induction the statement is true for these modules. Inducting up the �ltration we
prove the inductive step for d.
We are left with showing the result for d=1. That is, each Xi is an extended cell

R-module with �ltration length 1. Then each Xi is a wedge of things of the form

(R∧SS ∧LL(p) nG K)∧ (Bn=Sn−1)+

and this reduces to the case when each Xi consists of a single wedge summand. Let

Xi=(R∧SS ∧LL(pi)nGiKi)∧ (Bni =Sni−1)+

where Ki is a Gi-spectrum of the homotopy type of a Gi-CW -spectrum indexed on
Upi and Gi⊂�pi . To simplify notation we suppress (B

ni =Sni−1)+ in what follows.
We want to show that[

(�m)+ ∧×�mi

(∧
R

R∧SS ∧LL(mipi)nGmi
i
K (mi)

i

)]/
H

is in �FR and that it is weak equivalent to

(EH)+ ∧H

[
(�m)+ ∧×�mi

(∧
R

R∧SS ∧LL(mipi)nGmi
i
K (mi)

i

)]
:

Note that

(�m)+ ∧×�mi

(∧
R

R∧SS ∧LL(mipi)nGmi
i
K (mi)

i

)

= R∧SS ∧L

[
(�m)+ ∧×�mi

L(�mipi)n×Gmi
i

∧
i

K (mi)
i

]

= R∧SS ∧L

[
(�m ×L(�mipi))n×(�mi

∫
Gi)

∧
i

K (mi)
i

]
:
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We simplify the notation further and consider the problem for an R-module of the
form

R∧L[(�m)+ ∧G (L(q) n Q K)]

where G=�m1 × · · · ×�mk , Q=Gm1
1 × · · · ×Gmk

k , m=�mi, q=�pimi and K is a
spectrum indexed on Uq that has the homotopy type of a G

∫
Q-CW spectrum. Here

we have let G
∫
Q denote (�m1

∫
Gm1 )× · · · × (�mk

∫
Gmk )⊂�q.

For H ⊂�m we can write �m as the disjoint union of double cosets Hx�G and we
have that H -equivariantly

(�m)+ ∧G (L(q)n Q K)=
∨
�

(Hx�G)+ ∧G (L(q)n Q K):

We will show that for each �

(EH)+ ∧H (Hx�G)+ ∧G (L(q)n Q K)→ [(Hx�G)+ ∧G (L(q)n Q K)]=H

is a homotopy equivalence of spectra.
Let J�= {g∈G | x�g= hx�; h∈H}. Note that the map g 7→ x�g(x�)−1 embeds J� in

H . We recall from elementary group theory that

EH ×H Hx�G∼=EH ×J� G

as G-spaces. Letting X =L(q)n Q K , this implies that

(EH)+ ∧H (Hx�G)+ ∧G X =(EH)+ ∧ J� X:

We also have that

[(Hx�G)+ ∧G X ]=H =S0∧H (Hx�G)+ ∧G X
=(∗×H HxG)∧G X ∼=G=J� ∧G X =X=J�:

Thus,

[(�m)+ ∧GL(q) n Q K]=H ∼=
∨
�

(L(q) n Q K)=J�=
∨
�

L(q) n Qo J� K;

which shows that[
(�m)+ ∧×�mi

(∧
R

R∧S S ∧LL(mipi)nGmi
i
K (mi)

i

)]/
H

is a wedge of R-modules in �FR and hence is in �FR as desired. We need to show that

� : (EH)+ ∧ J� X ∼=(EH)+ ∧ J� (L(q) n Q K)→ (L(q) n Q K)=J�∼=X=J�

is a homotopy equivalence of spectra. But this is the case because

(EH)+ ∧ (L(q) n Q K)= (EH ×L(q)) n Q K

and � is induced from the homotopy equivalence of G
∫
Q-spaces EH ×L(q)→L(q)

by passage to orbits.
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Further, by [5, I.8.5] and the equivariant version of [5, I.2.5],

S ∧L((EH)+ ∧ J� (L(q) n Q K))→ S ∧L ((L(q)n Q K)=J�)

is also a homotopy equivalence of spectra. Since R is q-co�brant, R∧S (−) takes this
homotopy equivalence to a weak equivalence giving the desired result.

As mentioned above, Theorem 9.8 follows from the case n=1 in the previous propo-
sition. The restriction to extended cell R-modules with �nite sequential �ltration does
not present a problem. If M is a general extended cell R-module, then M =colimMj,
where each of the Mj is an extended cell R-module with �nite sequential �ltration.
The previous proposition proves the theorem for each of the Mi’s. Since we have
that Mi=colimMi

j and the maps Mi
j−1→Mi

j are �i-co�brations, Theorem 9.8 follows
for M .
We now see that extended cell R-modules have the following good properties.

Theorem 9.10. Let M be an extended cell R-module and let Y →M be a cell
R-module approximation. Then; for all i≥ 1 and all H ⊂�i; Y i=H→Mi=H is a weak
equivalence. Further; there is a cell R-module approximation Z→Mi=H such that
Zj=G→ (Mi=H) j=G is a weak equivalence for all j≥ 1 and all G⊂�j.

Proof. We have the commutative diagram

(EH)+ ∧H Y i−−−−−→(EH)+ ∧H Miy
y

Y i=H −−−−−→ Mi=H;

where Y i is a cell R-module approximation of Mi and the vertical arrows are weak
equivalences by Theorem 9.8. We will show that

(EH)+ ∧H Y i→ (EH)+ ∧H Mi

is a weak equivalence.
We use the skeletal �ltration of EH to set up a natural spectral sequence

H∗(H; �∗(Y i))⇒ �∗((EH)+ ∧H Y i);

which proves the �rst part of the theorem.
To prove the second part of the theorem, let Z→ (EH)+ ∧H Mi be a cell R-module

approximation. Then, the composite

Z→ (EH)+ ∧H Y i→ Y i=H

is a cell R-module approximation of Y i=H . Hence, since Mi=H is in �FR, the following
composite is also a weak equivalence:

Zj→ [(EH)+ ∧HMi] j→ (Mi=H) j ∼=Mij=Hj:
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Note that

[(EH)+ ∧H Mi] j ∼=(EH) j+ ∧ Hj M ij ∼=(EHj)+ ∧ Hj M ij:

Hence, the second arrow of the above composite is a weak equivalence by Theorem 9.8.
Therefore, the �rst arrow is also a weak equivalence.
We also have that

(EG)+ ∧G [(EH)
j
+ ∧ Hj M ij] ∼= [EG× (EH)i]+ ∧G

∫
H Mij

∼=
[
E
(
G
∫

H
)]

+
∧G
∫

H Mij

and hence Theorem 9.8 gives that the vertical arrows in the following commutative
diagram are weak equivalences:

(EG)+ ∧GZj−−−−−→(EG)+ ∧G[(EH)
j
+ ∧ HjM ij]

=∼−−−−−→E(G
∫
H)]+ ∧G

∫
H Mij

y
y

Zj=G −−−−−→ (Mi=H) j=G −−−−−→
=∼

Mij=(G
∫
H):

The top horizontal arrow is also a weak equivalence and hence the bottom horizontal
arrow is a weak equivalence as desired.

We need one last proposition.

Proposition 9.11. Let M =Kk=H and N = Ll=J be R-modules for some extended cell
R-modules K and L; k; l≥ 1; H ⊂�k and J ⊂�l. Then there exists a cell R-module
approximation Z→M ∨N such that, for all i≥ 1;

Z i=�i→ (M ∨N )i=�i

is a weak equivalence.

Proof. By the previous theorem we have cell R-module approximations X →M and
Y →N such that for all j≥ 1, X j=�j→Mj=�j and Y j=�j→Nj=�j are weak equiva-
lences. For i¿0

(M ∨N )i=
∨
j

[(�i)+ ×�i−j×�j M
i−j ∧R N j]

thus, passing to orbits, we have

(M ∨N )i=�i=
∨
j

M i−j=�i−j ∧R N j=�j;

and simmilarly with M and N replaced by X and Y . By Theorem 9.8 we know
that for each j, Mi−j=�i−j =Kk(i−j)=(�i−j

∫
H) and Nj=�j = Llj=(�j

∫
J ) are in �FR.
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Since, X i−j=�i−j; Y j=�j are also in �FR the weak equivalences above smash to a weak
equivalence

X i−j=�i−j ∧R Y j=�j→Mi−j=�i−j ∧R N j=�j:

Therefore,

Z =X ∨Y →M ∨N

is a cell R-module approximation with the desired property.

Theorem 9.1 follows from the previous work since if N is a q-co�brant R-NUCA,
then N is an extended cell R-module and AnN is a wedge of R-modules of the form
Ni=H with i≥ 1 and H ⊂�i.
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