
ON THE Q-CONSTRUCTION FOR EXACT ∞-CATEGORIES

CLARK BARWICK AND JOHN ROGNES

Abstract. We prove that the algebraic K-theory of an exact ∞-category

can be computed via an ∞-categorical variant of the Q-construction. This

construction yields a quasicategory whose weak homotopy type is a delooping
of the K-theory space. We show that the direct sum endows this homotopy type

with the structure of an infinite loop space, which agrees with the canonical

one. Finally, we prove a proto-dévissage result, which gives a necessary and
sufficient condition for a nilimmersion of stable ∞-categories to be a K-theory

equivalence. In particular, we prove that a well-known conjecture of Ausoni–

Rognes is equivalent to the weak contractibility of a particular ∞-category.
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Exact ∞-categories, which were introduced in [2], are a natural ∞-categorical
generalization of Quillen’s exact categories. They include a large portion of those
∞-categories to which one wishes to apply the machinery of Waldhausen’s algebraic
K-theory. The algebraic K-theory of any ordinary exact category, the K-theory of
arbitrary schemes and stacks, and Waldhausen’s algebraic K-theory of spaces can
all be described as the K-theory of exact ∞-categories.

Quillen showed that the algebraic K-theory of an ordinary exact category can
be described as the loop space of the nerve of a category — the Q-construction.
In perfect analogy with this, we prove that the algebraic K-theory of an exact ∞-
category can be computed as the loopspace of the classifying space of an∞-category
— given by an ∞-categorical Q-construction (Th. 3.10). We show that the direct
sum endows this homotopy type with the structure of a infinite loop space, which
agrees with the canonical one (Th. 4.7).

Finally, we discuss consequences of Quillen’s Theorem A and Theorem B for ∞-
categories (the latter of which we prove — Th. 5.3) for the algebraic K-theory of
exact ∞-categories. In particular, we prove a “proto-dévissage” theorem (Th. 5.9),
which gives a very concrete model for the fiber of the map in K-theory induced
by a nilimmersion (Df. 5.6) of stable ∞-categories. In particular, we show (Ex.
5.15) that the well-known conjecture of Ausoni–Rognes [1, (0.2)] is equivalent to
the weak contractibility of a relatively simple ∞-category.
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1. Recollections on exact ∞-categories

We briefly recall the relevant definitions from [2, §2].

1.1. Definition. An ∞-category C will be said to be additive if its homotopy
category hC is additive (as a category enriched in the homotopy category hKan of
spaces).

1.2. Example. The nerve of any ordinary additive category is an additive ∞-
category, and any stable ∞-category is additive.

1.3. Definition. Suppose C an ∞-category, and suppose C†,C † ⊂ C subcate-
gories that contain all the equivalences. We call the morphisms of C† ingressive
or cofibrations, and we call the morphisms of C † egressive or fibrations.

(1.3.1) A pullback square

X Y

X ′ Y ′

is said to be ambigressive if X ′ Y ′ is ingressive and Y Y ′ is egressive.
Dually, a pushout square

X Y

X ′ Y ′

is said to be ambigressive if X Y is ingressive and X X ′ is
egressive.

(1.3.2) We will say that the triple (C ,C†,C †) is an exact ∞-category if it satisfies
the following conditions.
(1.3.2.1) The underlying ∞-category C is additive.
(1.3.2.2) The pair (C ,C†) is a Waldhausen ∞-category.
(1.3.2.3) The pair (C ,C †) is a coWaldhausen ∞-category.
(1.3.2.4) A square in C is an ambigressive pullback if and only if it is an

ambigressive pushout.
(1.3.3) An exact sequence in C is an ambigressive pushout/pullback square

X ′ X

0 X ′′

in C . The cofibration X ′ X will be called the fiber of X X ′′, and
the fibration X X ′′ will be called the cofiber of X ′ X.

1.4. Example. (1.4.1) The nerve NC of an ordinary category C can be endowed
with a triple structure yielding an exact ∞-category if and only if C is
an ordinary exact category, in the sense of Quillen, wherein the admissi-
ble monomorphisms are exactly the cofibrations, and the admissible epi-
morphisms are exactly the fibrations. This is proved by appealing to the
“minimal” axioms of Keller [8, App. A].
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(1.4.2) Any stable ∞-category is an exact ∞-category in which all morphisms are
both egressive and ingressive.

Suppose A a stable ∞-category equipped with a t-structure [11, Df. 1.2.1.4], and
suppose a and b integers.

(1.4.3) The ∞-category A[a,+∞) := A≥a admits an exact ∞-category structure, in
which every morphism is ingressive, but a morphism Y Z is egressive
just in case the induced morphism πaY πaZ [11, Df. 1.2.1.11] is an
epimorphism of A ♥.

(1.4.4) Dually, the ∞-category A(−∞,b] := A≤b admits an exact ∞-category struc-
ture, in which every morphism is egressive, but a morphism X Y is
ingressive just in case the induced morphism πbX πbY is a monomor-
phism of A ♥.

(1.4.5) We may intersect these subcategories to obtain the full subcategory

A[a,b] := A≥a ∩A≤b ⊂ A ,

and we may intersect the subcategories of ingressive and egressive mor-
phisms described to obtain the following exact ∞-category structure on
A[a,b]. A morphism X Y is ingressive just in case the induced morphism

πbX πbY is a monomorphism of the abelian category A ♥. A morphism
Y Z is egressive just in case the induced morphism πaY πaZ is an
epimorphism of A ♥.

More generally, suppose A any stable ∞-category.

(1.4.6) Suppose C ⊂ A any full additive subcategory that is closed under exten-
sions. Declare a morphism X Y of C to be ingressive just in case its
cofiber in A lies in C . Dually, declare a morphism Y Z of C to be
egressive just in case its fiber in A lies in C . Note that with this triple
structure, cofibrations are closed under pushout, and fibrations are closed
under pullback. Any ambigressive pushout square in C is a pushout square
in A , which must therefore be an ambigressive pullback square in C . This
observation and its dual complete the proof that C is exact.

1.5. Definition. Suppose C and D two exact ∞-categories. A functor C D
that preserves both cofibrations and fibrations will be said to be exact if both the
functor

(C ,C†) (D ,D†)

of Waldhausen ∞-categories and the functor

(C ,C †) (D ,D†)

of coWaldhausen ∞-categories are exact.

It turns out that either of these conditions suffices. See [2, Pr. 3.4].
Exact ∞-categories and exact functors between them organize themselves into

an ∞-category Exact∞. This is a full subcategory of the ∞-category Wald∞ that
is closed under direct sums.

2. The twisted arrow ∞-category

In this section we construct, for any exact ∞-category C , an ∞-category Q(C )
whose underlying simplicial set is a (single) delooping of K(C ). The construction
proceeds along the same principles as the ones used by Quillen; namely, we construct
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in Df. 3.8 an∞-category Q(C ) whose objects are the objects of C , whose morphisms
from X to Y are “spans”

U

X Y

in which the morphism U X is egressive and the morphism U Y is ingressive,
and whose composition law is given by the formation of pullbacks:

W

U 3 V

X Y Z.

More generally, an n-simplex of Q(C ) will be a diagram

X00

X01 3 X10

. .
.

3
. . .. .

.
3

. . .

X02 3 X13 3 X31 3 X20

X01 3 X12 3
. . .. .

.
3 X21 3 X10

X00 X11 X22 X22 X11 X00

of C in which every square is an ambigressive pullback/pushout. Here we write p
for n− p.

Some new machinery is involved in relating theQ-construction to the definition of
algebraic K-theory given by the first author [3]. To codify the relationship, we form
a Reedy fibrant straightening Q∗(C ) of an edgewise subdivision of the left fibration
ιN∆opS C N∆op [3, Rec. 3.6, Nt. 5.14, Th. 5.20]; then we show that Q∗(C ) is in
fact a complete Segal space in the sense of Charles Rezk [14], whence by a theorem
of André Joyal and Myles Tierney [7], the simplicial set Q(C ), whose n-simplices
may be identified with the vertices of the simplicial set Qn(C ), is a quasicategory
whose underlying simplicial set is equivalent to the geometric realization of Q∗(C ),
which is in turn equivalent to ιN∆opS C .

2.1. Proposition. The following are equivalent for a functor θ : ∆ ∆.

(2.1.1) The functor θop : N∆op N∆op is cofinal in the sense of Joyal [9, Df.
4.1.1.1].

(2.1.2) The induced endofunctor θ? : sSet sSet on the ordinary category of
simplicial sets (so that (θ?X)n = Xθ(n)) carries every standard simplex
∆m to a weakly contractible simplicial set.
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(2.1.3) The induced endofunctor θ? : sSet sSet on the ordinary category of
simplicial sets is a left Quillen functor for the usual Quillen model structure.

Proof. By Joyal’s variant of Quillen’s Theorem A [9, Th. 4.1.3.1], the functor θop is
cofinal just in case, for any integer m ≥ 0, the nerve N(θ/m) is weakly contractible.
The category θ/m is clearly equivalent to the category of simplices of θ?(∆m), whose
nerve is weakly equivalent to θ?(∆m). This proves the equivalence of the first two
conditions.

It is clear that for any functor θ : ∆ ∆, the induced functor θ? : sSet sSet
preserves monomorphisms. Hence θ? is left Quillen just in case it preserves weak
equivalences. Hence if θ? is left Quillen, then it carries the map ∆n ∼ ∆0 to
an equivalence θ?∆n ∼ θ?∆0 ∼= ∆0, and, conversely, if θop : N∆op N∆op is
cofinal, then for any weak equivalence X ∼ Y , the induced map θ?X θ?Y
factors up to homotopy as

θ?X ' hocolimnXθ(n) ' hocolimnXn

' X
∼ Y

' hocolimn Yn

' hocolimn Yθ(n) ' θ?Y,
which is a weak equivalence. This proves the equivalence of the third condition with
the first two. �

2.2. Definition. Let us call any functor θ : ∆ ∆ satisfying the equivalent con-
ditions above a combinatorial subdivision .

2.3. Katerina Velcheva has shown (in work to appear soon) that one may completely
classify combinatorial subdivisions: they are generated by the functors id and op
under the concatenation operation ? on ∆.

Any combinatorial subdivision can be used to doctor the S construction of
K-theory given in [3] in the following manner.

2.4. Construction. Suppose θ : ∆ ∆ a combinatorial subdivision. Then pull-
back along θ defines an endofunctor θ? : Waldcocart

∞/N∆op Waldcocart
∞/N∆op [3, Nt.

3.25]. Since θop is cofinal, the geometric realization in the derived ∞-category
D(Wald∞) of Waldhausen ∞-categories [3, Nt. 4.10] of a simplicial diagram X∗
of Waldhausen ∞-categories is naturally equivalent to the geometric realization of
θ?(X∗); that is, the following diagram commutes, up to equivalence:

Waldcocart
∞/N∆op Waldcocart

∞/N∆op

D(Wald∞).

θ?

| · |N∆op | · |N∆op

In particular, the additivization [3, Df. 7.9] of any pre-additive [3, Df. 7.11] theory
φ with left derived functor Φ can be computed as

Dφ(C ) ' ΩΦ|θ?S (C )|.

The motivating example of a combinatorial subdivision is the following.
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2.5. Example. Denote by ε : ∆ ∆ the combinatorial subdivision given by the
concatenation op ? id:

ε : [n] [n]
op
? [n] ∼= [2n + 1].

Including [n] into either summand of the join [n]
op
? [n] (either contravariantly or

covariantly) defines two natural transformations op ε and id ε. This functor
induces an endofunctor ε? on the ordinary category of simplicial sets, together with
natural transformations ε? op and ε? id.

For any simplicial set X, the edgewise subdivision of X (first invented by
Segal) is the simplicial set

Õ(X) := ε?X.

That is, Õ(X) is given by the formula

Õ(X)n = Mor(∆n,op ?∆n, X) ∼= X2n+1.

The two natural transformations described above give rise to a morphism

Õ(X) Xop ×X,

natural in X.

2.6. Suppose X an ∞-category. Then the vertices of Õ(X) are morphisms of X;

an edge of Õ(X) from u v to x y can be viewed as a commutative diagram
(up to chosen homotopy)

u x

v y.

When X is the nerve of an ordinary category C, Õ(X) is isomorphic to the nerve
of the twisted arrow category of C in the sense of [6].

Recall from [3] that when X is an ∞-category, we write O(X) for the arrow

∞-category Fun(∆1, X). The notation Õ(X) is meant to suggest a twisted version

of the arrow category. In fact, we will call Õ(X) the twisted arrow ∞-category
of X. This terminology is further justified by the following.

2.7. Proposition (Lurie, [10, Pr. 4.2.3]). If X is an ∞-category, then the functor

Õ(X) Xop ×X is a left fibration; in particular, Õ(X) is an ∞-category.
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2.8. Example. To illustrate, for any object n ∈ ∆, the ∞-category Õ(∆n) is the
nerve of the category

00

01 10

. .
. . . .. .

. . . .

02 13 32 20

01 12
. . .. .

.
21 10

00 11 22 22 11 00.

Here we write p for n− p.

3. The ∞-categorical Q-construction

We now use the edgewise subdivision to define a quasicategorical variant of
Quillen’s Q-construction.

3.1. Definition. For any∞-category C, denote by R∗(C) : ∆op sSet the func-
tor given by the assignment

[n] ιFun(Õ(∆n)op, C),

where ι : Cat0
∞ Kan0 denotes the right adjoint to the inclusion Kan0 Cat0

∞
[9, Pr. 1.2.5.3]. (Here the superscript (·)0 denotes that we are taking the ordinary
category of ∞-categories and of Kan complexes.)

3.2. Proposition. For any ∞-category C, the simplicial space R∗(C) is Reedy
fibrant, and the functor R∗ : Cat∞ Fun(∆op, sSet) carries equivalences of ∞-
categories to objectwise equivalences of simplicial spaces.

Proof. For any monomorphism K L, the map

ιFun(Õ(L)op, C) ιFun(Õ(K)op, C)

is a Kan fibration of simplicial sets; this follows immediately from Pr. 2.1 and [9,
Lm. 3.1.3.6]. The functor R∗ preserves weak equivalences, since for any integer

n ≥ 0, the Kan complex ιFun(Õ(∆n)op, C) respects weak equivalences in C. �

3.3. Definition. Suppose C an exact∞-category. For any integer n ≥ 0, let us say

that a functor X : Õ(∆n)op C is ambigressive if, for any integers 0 ≤ i ≤ k ≤
` ≤ j ≤ n, the square

Xij Xkj

Xi` Xk`

is an ambigressive pullback.
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Write Q∗(C ) ⊂ R∗(C ) for the subfunctor in which Qn(C ) is the full simplicial

subset of Rn(C ) spanned by the ambigressive functors X : Õ(∆n)op C . Note
that since any functor that is equivalent to an ambigressive functor is itself ambi-
gressive, the simplicial set Qn(C ) is a union of connected components of Rn(C ).

3.4. Proposition. For any exact ∞-category C , the simplicial space Q∗(C ) is a
complete Segal space.

Proof. The Reedy fibrancy of Q∗(C ) follows easily from the Reedy fibrancy of
R∗(C ).

To see that Q∗(C ) is a Segal space, it is necessary to show that for any integer
n ≥ 1, the Segal map

Qn(C ) Q1(C )×Q0(C ) · · · ×Q0(C ) Q1(C )

is an equivalence. Let Ln denote the ordinary category

00 01 11 12 · · · (n− 1)(n− 1) (n− 1)n nn;

equip NLn with the triple structure in which the maps (i− 1)i ii are ingressive,
and the maps i(i+ 1) ii are egressive. The target of the Segal map can then
be identified with the maximal Kan complex contained in the full subcategory of
Fun(NLn,C ) spanned by those functors NLn C that preserve both cofibrations
and fibrations. The Segal map is therefore an equivalence by the uniqueness of limits
in ∞-categories [9, Pr. 1.2.12.9].

Finally, to check that Q∗(C ) is complete, let E be the nerve of the contractible
ordinary groupoid with two objects; then completeness is equivalent to the assertion
that the Rezk map

Q0(C ) lim
[n]∈(∆/E)op

Qn(C )

is a weak equivalence. The source of this map can be identified with ιC ; its target

can be identified with the full simplicial subset of ιFun(Õ(E)op,C ) spanned by

those functors X : Õ(E)op C such that for any simplex ∆n E, the induced

functor Õ(∆n)op C is ambigressive. Note that the twisted arrow category of
the contractible ordinary groupoid with two objects is the contractible ordinary

groupoid with four objects. Hence the image of any functor X : Õ(E)op C is
contained in ιC , whence X is automatically ambigressive. Thus the target of the

Rezk map can be identified with ιFun(Õ(E)op,C ) itself, and the Rezk map is an
equivalence. �

Note that this result does not require the full strength of the condition that C
be an exact ∞-category; it requires only that C admit a triple structure in which
ambigressive pullbacks exist, the ambigressive pullback of an ingressive morphism
is ingressive, and the ambigressive pullback of an egressive morphism is egressive.

3.5. It is now clear that Q∗ defines a relative functor Exact0
∞ CSS0 [4, 3.1],

where CSS∆ ⊂ Fun(∆op, sSet) is the full subcategory spanned by complete Segal
spaces. It therefore defines a functor of ∞-categories Q∗ : Exact∞ CSS. We
may also regard Q∗ as a functor ∆op ×Exact0

∞ sSet.

Now we aim to show that for an exact∞-category C , the simplicial space Q∗(C )
is a straightening of the left fibration ιN∆opε?S C N∆op.
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3.6. Definition. For any integer n ≥ 0, denote by

τn : Õ(∆n)op O(∆n,op ?∆n) := Fun(∆1,∆n,op ?∆n)

the fully faithful functor obtained as the nerve of the ordinary contravariant functor
that carries an object i j of the twisted arrow category of [n] to the object j i
of the arrow category of [n]

op
? [n], where j is regarded as an object of [n]

op
, and i

is regarded as an object of [n].
It is easy to verify that the functors τn are compatible with all face and degener-

acy maps, so they fit together to form a natural transformation τ : op ◦ Õ O ◦ ε
of functors ∆ Cat∞.

Once again we employ the uniqueness of limits and colimits in ∞-categories [9,
Pr. 1.2.12.9] to deduce the following.

3.7. Proposition. The natural transformation τ induces an equivalence

ι ◦ ε?S̃∗ ∼ Q∗,

where S̃∗ is the functor described in [2, 4.16].

Passing to geometric realizations, we obtain, for any exact ∞-category C , equiva-
lences

|ι ◦ S̃∗(C )| ∼ |ι ◦ ε?S̃∗(C )| ∼ |Q∗(C )|;
in particular, in light of [2, 4.16] and [3, Pr. 10.6], we have the following.

3.7.1. Corollary. There is a zigzag of natural equivalences

K(C ) ∼ Ω|ι ◦ ε?S̃∗(C )| ∼ Ω|Q∗(C )|
for any exact ∞-category C .

Joyal and Tierney [7] show that the functor that carries a simplicial space X to
the simplicial set whose n-simplices are the vertices of Xn induces an equivalence
of relative categories CSS0 Cat0

∞. This leads us to the following definition and
theorem.

3.8. Definition. For any exact ∞-category C , denote by Q(C ) the ∞-category

whose n-simplices are vertices of Qn(C ), i.e., ambigressive functors Õ(∆n)op C .
This defines a relative functor Q : Exact0

∞ Cat0
∞ and hence a functor of ∞-

categories Q : Exact∞ Cat∞.

3.9. For any exact ∞-category, an n-simplex of Q(C ) is a diagram

X00

X01 3 X10

. .
.

3
. . .. .

.
3

. . .

X02 3 X13 3 X31 3 X20

X01 3 X12 3
. . .. .

.
3 X21 3 X10

X00 X11 X22 X22 X11 X00
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of C in which every square is an ambigressive pullback/pushout. (Here we write p
for n− p.)

Now we observe that we have a commutative diagram

sSetJoyal Fun(∆op, sSet)Rezk

sSetQuillen

of left Quillen functors, in which the functor on the left is the identity, the functor on
the top is the constant functor, and the functor on the right is the diagonal functor.
Since the functor on the top is the left adjoint of the Joyal–Tierney Quillen equiva-
lence we have employed, it follows that for any complete Segal space X∗, the diago-
nal of X∗ is naturally equivalent to the simplicial set X∗0 : [n] Mor(∆0,Xn). In
other words, X∗0 is a model for the homotopy colimit of X∗. We therefore obtain
the following.

3.10. Theorem. There is a zigzag of natural equivalences of simplicial sets

K(C ) ∼ Ω|ι ◦ ε?S̃∗(C )| ∼ Ω|Q∗(C )| ∼ ΩQ(C )

for any exact ∞-category C .

As a final note, let us note that the∞-categorical Q-construction we have intro-
duced here is an honest generalization of Quillen’s original Q-construction.

3.11. Proposition. If C is an ordinary exact category, then Q(NC) is canonically
equivalent to the nerve N(QC) of Quillen’s Q-construction.

Proof. Unwinding the definitions, we find that the simplicial set HomR
Q(NC)(X,Y )

of [9, §1.2.2] is isomorphic to the nerve of the groupoid G(X,Y ) in which an object
Z is a diagram

Z

X Y,

where Z X is an admissible epimorphism and Z Y is an admissible
monomorphism, and in which a morphism Z ′ Z is a diagram

Z ′

X Y

Z .

∼

It is now immediate that N(QC) is equivalent to the homotopy category of Q(NC),
and so it suffices by [9, Pr. 2.3.4.18] to verify that every connected component of
the groupoid G(X,Y ) is contractible. For this, we simply note that if f, g are two
morphisms Z ′ Z of G(X,Y ), then f = g since Z Y is a monomorphism. �
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4. An infinite delooping of Q

In this section, we describe an infinite delooping of the Q-construction of the
previous section. In effect, the direct sum on an exact ∞-category C induces a
symmetric monoidal structure on the∞-category Q(C ). Segal’s delooping machine
then applies to give an infinite delooping of the Q-construction. We will show that
this delooping coincides with the canonical one from [3, Cor. 7.4.1] by appealing
to the Additivity Theorem [3, Th. 7.2]. We thank Lars Hesselholt for his questions
about such a delooping; his hunch was right all along.

It is convenient to introduce some ordinary categories that control the combina-
torics of direct sums.

4.1. Notation. Denote by Λ(F) the following ordinary category. An object of Λ(F)
is a finite set; a morphism J I of Λ(F) is a map J I+, or equivalently a
pointed map J+ I+. Clearly Λ(F) is isomorphic to the category Γop of pointed
finite sets, but we shall regard the objects of Λ(F) simply as finite (unpointed) sets.

For any finite set I, denote by LI the following ordinary category. An object of
LI is a subset J ⊂ I. A morphism from an object K ⊂ I to an object J ⊂ I is a
map ψ : K J+ such that the square

J ×J+ K J

K I

commutes.

Any morphism φ : I ′ I of Λ(F) induces a functor φ? : LI ′ LI that carries
J ⊂ I to φ−1(J) ⊂ I ′. With this, one confirms easily that the assignments I LI
and φ φ? together define a functor L : Λ(F)op Cat.

If K ⊂ J , then write iK⊂J for the morphism K J of Λ(F) given by the
inclusion K J+, and write pK⊂J for the morphism J K of Λ(F) given
by the map J K+ that carries every j ∈ J \ K to the basepoint, and every
element j ∈ K to itself. If J ⊂ I, then it is easy to see that iK⊂J and pK⊂J define
morphisms (K ⊂ I) (J ⊂ I) and (J ⊂ I) (K ⊂ I) of LI .

4.2. Suppose I a finite set. A morphism ψ in LI from an object (K ⊂ I) to an object
(J ⊂ I) determines a subset M := K×J+ J ⊂ K∩J , and this subset determines the
morphism ψ as well. Indeed, the morphism ψ is simply the composite iM⊂J ◦pM⊂K .

The point here is that LI encodes the inclusion and projection maps that appear
naturally in a direct sum diagram. The inclusions iM⊂J

We now proceed to show that an exact ∞-category C admits an essentially
unique symmetric monoidal structure in which all the multiplication functors are
exact.

4.3. Notation. We write Exact⊕∞ for the full subcategory of Fun(NΛ(F),Exact∞)
consisting of those functors X : NΛ(F) Exact∞ such that for any finite set I,
the functors {X (I) X ({i})}i∈I induced by the morphisms p{i}⊂I : I {i}
together exhibit the exact ∞-category X (I) as a product (and thus a direct sum)
in the ∞-category Exact∞. Write U : Exact⊕∞ Exact∞ for the evaluation
functor X X ({1}).
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In the opposite direction, let us construct a functor DS : Exact∞ Exact⊕∞.
For any finite set I and any exact ∞-category C , denote by DS(I; C ) the full
subcategory of Fun(NLI ,C ) spanned by those functors X : NLI C such that,
for any subset J ⊂ I,

(4.4.1) the set of morphisms

{X(J) X({j})}j∈J
induced by the morphisms p{j}⊂J : J {j} of LI exhibit X(J) as a prod-
uct of the objects X({j}), and,

(4.4.2) dually, the morphisms {X({j}) X(J)}j∈J induced by the morphisms
i{j}⊂J : {j} J of LI exhibit X(J) as a coproduct of the objects X({j}).

In other words, the requirement on X is that the morphisms induced by p{j}⊂J and
i{j}⊂J together exhibit X(J) as the direct sum

⊕
j∈J X({j}).

The assignment (I,C ) DS(I; C ) defines a simplicial functor

NΛ(F)×Exact∆
∞ Cat∆

∞.

Indeed, for any morphism φ : I ′ I of Λ(F), we get an induced functor φ? : LI LI′ ,
which in turn defines a functor Fun(NLI′ ,C ) Fun(NLI ,C ); it is a simple mat-
ter to see that the direct sum conditions are preserved.

It follows from the uniqueness of limits and colimits in ∞-categories [9, Pr.
1.2.12.9] that for any finite set I, the functors

{DS(I; C ) DS({i}; C )}i∈I
induced by the morphisms p{i}⊂I : I {i} of Λ(F) together exhibit the ∞-
category DS(I; C ) as the product in Cat∞ of the ∞-categories DS({i}; C ), which
are each in turn equivalent to C . Consequently the ∞-categories DS(I; C ) are ex-
act∞-categories, and since direct sum in C preserves ingressives and any pushouts
that exist, the functors that appear in the diagram DS(−; C ) are all exact, and
thus one deduces that DS(−; C ) is an object of Exact⊕∞; this therefore defines a
functor DS : Exact∞ Exact⊕∞.

4.4. Proposition. The functor U exhibits an equivalence Exact⊕∞
∼ Exact∞,

and the functor DS exhibits a quasi-inverse to it.

Proof. In light of the discussion above, it suffices to prove that for any object
X ∈ Exact⊕∞, the cocartesian fibration X ⊕ NΛ(F) classified by the composite

NΛ(F) Exact∞ Cat∞

is a cartesian symmetric monoidal ∞-category [11, Df. 2.4.0.1]. It is obvious that
it is symmetric monoidal. Furthermore, since the map ∆0 'X (∅) X ({1}) is
exact, the unit object is a zero object, and since the functor

⊗ : X ({1})×X ({1}) 'X ({1, 2}) X ({1})

induced by the unique map {1, 2} {1}+ that does not hit the basepoint is exact,
when applied to pullback squares

X 0

X 0

and

Y Y

0 0,
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it yields a pullback square

X ⊗ Y Y

X 0.

Thus X ⊕ is cartesian. �

4.5. We may now lift the Q-construction to Exact⊕∞. Composition with the functors

Q : Exact∞ Cat∞ and Q∗ : Exact∞ CSS

defines functors

Fun(NΛ(F),Exact∞) Fun(NΛ(F),Cat∞)

and

Fun(NΛ(F),Exact∞) Fun(NΛ(F),CSS),

which restrict to functors

Q⊕ : Exact⊕∞ Cat⊗∞ and Q⊕∗ : Exact⊕∞ CSS⊗

where Cat⊗∞ (respectively, CSS⊗) denotes the full subcategory of the ∞-category
Fun(NΛ(F),Cat∞) (respectively, of Fun(NΛ(F),CSS)) spanned by those functors
Y : NΛ(F) Cat∞ (respectively, by those functors Y : NΛ(F) CSS) such
that for any finite set I, the morphisms {Y (I) Y ({i})}i∈I induced by the
morphisms p{i}⊂I : I {i} together exhibit Y (I) as a product of Y ({i}). We
thus have commutative squares

Exact⊕∞ Cat⊗∞

Exact∞ Cat∞

Q⊕

U U

Q

and

Exact⊕∞ CSS⊗

Exact∞ CSS

Q⊕∗

U U

Q∗

in which the vertical maps are evaluation at the vertex {1} ∈ Λ(F).

For any object X ∈ Exact⊕∞, the object Q⊕X ' |Q⊕∗X | is, in Segal’s termi-
nology, a special Γ-space, and, since the underlying space of QX ({1}) is connected,
it is grouplike. Segal’s delooping machine therefore provides an infinite delooping
of QX ({1}). Our goal is now to prove that this infinite delooping agrees with the
one guaranteed by [3, Cor. 7.4.1].

Roughly speaking, the approach is the following. For any very special Γ-space
X, the n-fold delooping of X({1}) can be obtained as the geometric realization of
X when precomposed with a certain multisimplicial object (∆op)×n Λ(F). We
now recall the construction of that multisimplicial object, and we show that when
X = Q⊕C for an exact ∞-category C , the n-fold delooping obtained in this way
coincides with the iterated S construction.

4.6. Notation. Write u : ∆op Λ(F) for the following functor. For any nonempty
totally ordered finite set S, let u(S) be the set of surjective morphisms S [1] of
∆. For any map g : S T of ∆, define the map u(g) : u(T ) u(S)+ by

u(g)(η) =

{
η ◦ g if η ◦ g is surjective;

∗ otherwise.
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Recall that Λ(F) admits a symmetric monoidal structure that carries a pair of
finite sets to their product. We shall denote this symmetric monoidal structure
(I, J) I ∧ J . We may therefore define, for any nonnegative integer n, the functor
u(n) : (∆op)×n Λ(F) as the composite

(∆op)×n
un

(Λ(F))×n
∧n

Λ(F).

For any nonempty totally ordered finite set S and any morphism α : [1] S of
∆, let ρS(α) ⊂ u(S) be the set of retractions of α, i.e., the morphisms β : S [1]
such that β ◦ α = id. This defines a functor ρS : Fun([1], S) Lu(S): if α ≤ α′,
then the map ρS(α) ρS(α′)+ carries a retraction β of α to the basepoint unless
β is also a retraction of α′.

More generally, for any nonnegative integer n, denote by O : ∆×n Cat the
multicosimplicial category given by

O(S1, S2, . . . , Sn) := Fun([1], S1)× Fun([1], S2)× · · · × Fun([1], Sn),

and write ρ : O L ◦ u(n),op for the natural transformation given by

ρS1,S2,...,Sn(α1, α2, . . . , αn) := ρS1
(α1) ∧ ρS2

(α2) ∧ · · · ∧ ρSn(αn).

This natural transformation induces a natural transformation

ρ? : DS ◦ (u(n),op × id) S̃
(n)
∗

between functors (∆op)×n ×Exact∞ Wald∞: for any exact ∞-category C ,
any (S1, S2, . . . , Sn) ∈ ∆×n, and any diagram

X : NLu(S1)∧u(Sn)∧···∧u(Sn) C

satisfying conditions (4.4.1–2), we form the composition

X ◦NρS1,S2,...,Sn : O(∆S1)× O(∆S2)× · · · × O(∆Sn) C .

To see that X ◦ NρS1,S2,...,Sn lies in S̃
(n)
∗ (C ), it is enough to assume that n =

1. If S = [p], then X is a direct sum diagram for objects X1, X2, . . . , Xp, and
X ◦Nρ[p] : O(∆p) C is equivalent to the diagram

0 X1 X1 ⊕X2 · · · X1 ⊕X2 ⊕ · · · ⊕Xp

0 X2 · · · X2 ⊕X3 ⊕ · · · ⊕Xp

0 · · · X3 ⊕X4 ⊕ · · · ⊕Xp

. . .
...

0

in which the morphisms are the obvious ones.
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Combined with the natural transformation τ from Df. 3.6, we obtain a diagram
of natural transformations

ι ◦ ε?S̃∗ ◦DS ◦ (u(n),op × id) ι ◦ ε?S̃∗ ◦ S̃
(n)
∗

Q⊕∗ ◦DS ◦ (u(n),op × id) Q⊕∗ ◦ S̃
(n)
∗

between functors ∆op × (∆op)×n ×Exact∞ Wald∞.

The following is now an immediate consequence of Pr. 3.7 and the Additivity
Theorem [3, Th. 7.2].

4.7. Proposition. For any positive integer n, the natural transformations above
give a natural equivalence

|Q⊕∗ ◦DS ◦ (u(n),op × id)| ' |ι ◦ ε?S̃∗ ◦ S̃
(n)
∗ |

of functors Exact∞ Kan.

In other words, the delooping of algebraic K-theory provided by the Q⊕ construc-
tion is naturally equivalent to the canonical delooping obtained in [3, Cor. 7.4.1].

5. Nilimmersions of stable ∞-categories and a relative
Q-construction

One of the original uses of theQ-construction was Quillen’s proof of the Dévissage
Theorem, which gives an effective way of determining whether an exact functor
ψ : B A induces a K-theory equivalence [12, Th. 4]. This theorem made it
possible for Quillen to identify the “fiber term” in his Localization Sequence for
higher algebraic K-theory [12, Th. 5]. The technical tool Quillen introduced for this
purpose was his celebrated Theorem A. Joyal proved the following ∞-categorical
variant of Quillen’s Theorem A.

5.1. Theorem (Theorem A for∞-categories [9, Th. 4.1.3.1]). Suppose G : C D
a functor between ∞-categories. If, for any object X ∈ D, the ∞-category

GX/ := DX/ ×D C

is weakly contractible, then the map of simplicial sets G is a weak homotopy equiv-
alence.

This form of Theorem A (or rather its opposite) directly implies a recognition
principle for K-theory equivalences in the ∞-categorical context:

5.2. Proposition. An exact functor ψ : B A between exact ∞-categories in-
duces an equivalence of K-theory spectra if, for every object X ∈ B, the simplicial
set

Q(ψ)/X := Q(B)×Q(A ) Q(A )/X

is weakly contractible.

There is also the following variant of Quillen’s Theorem B.

5.3. Theorem (Theorem B for ∞-categories). Suppose G : C D a functor
between ∞-categories. If, for any morphism f : X Y of D, the map

f? : GX/ GY/
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is a weak homotopy equivalence, then for any object X ∈ D, the square

GX/ C

DX/ D

is a homotopy pullback (for the Quillen model structure), and of course DX/ ' ∗.

Proof. Consider the diagram

GX/ Õ(D)×D C C

DX/ Õ(D) D

{X} Dop

in which every square is a pullback. The upper right and lower left squares are
homotopy pullbacks because opposite maps in these squares are weak homotopy
equivalences. It therefore remains to show that the large left-hand rectangle is

a homotopy pullback. For this, it is enough to show that Õ(D)×D C Dop

satisfies the conditions Waldhausen’s Theorem B for simplicial sets [15, Lm. 1.4.B]
or, equivalently, is a “fibrillation” in the sense of [5], i.e., a “sharp map” in the sense
of Hopkins and Rezk [13, §2].

To prove this, suppose σ : ∆n Dop an n-simplex. Denote by σ(0) its restriction
to the 0-simplex ∆{0} ⊂ ∆n. The pullback

Gσ/ ' (Õ(D)×D C)×Dop ∆n

is naturally equivalent as an∞-category to Gσ(0)/, and for any map η : ∆m ∆n,
the pullback

Gσ◦η/ ' (Õ(D)×D C)×Dop ∆m

is naturally equivalent to Gσ(η(0))/. Our hypothesis is precisely that the morphism
σ(η(0)) σ(0) induces a weak homotopy equivalence Gσ(0)/ Gσ(η(0))/, whence
η induces an equivalence

(Õ(D)×D C)×Dop ∆n ' Gσ/ ∼ Gσ◦η/ ' (Õ(D)×D C)×Dop ∆m,

as desired. �

The various conditions required in Quillen’s Dévissage Theorem [12, Th. 4] are
quite stringent, even for abelian categories. For stable∞-categories, they are simply
unreasonable. For example, the inclusion of the stable∞-category of bounded com-
plexes of finite-dimensional Fp-vector spaces into the stable∞-category of p-torsion
bounded complexes of finitely generated abelian groups is not full, and there is no
meaningful sense in which it is closed under the formation of subobjects.

Nevertheless, one can make use of the sort of filtrations Quillen employed in
his Dévissage Theorem. To this end, let us suppose that ψ : B A is an exact
functor between stable ∞-categories. Our aim is to reduce the study of the map
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Q(B) Q(A ) induced by ψ to the study of the weak homotopy type of a single∞-
category Z(ψ). The key lemma that makes this reduction possible is the following,
which is analogous to the proof of Quillen’s Dévissage Theorem [12, Th. 4].

5.4. Lemma. For any object U ∈ B and any pushout square

Y X

0 ψU

φ

of A , the functor φ! : Q(ψ)/Y Q(ψ)/X induced by φ is a weak homotopy equiv-
alence.

Proof. We define a functor φ? : Q(ψ)/X Q(ψ)/Y , functors

λφ : Q(ψ)/X Q(ψ)/X and µφ : Q(ψ)/Y Q(ψ)/Y ,

and natural transformations

φ! ◦ φ?
α

λφ
β

idQ(ψ)/X

φ? ◦ φ!
γ
µφ

δ
idQ(ψ)/Y .

These will exhibit φ? as a homotopy inverse of φ!.
For any object T of A , an n-simplex (W,Z, g) of Q(ψ)/T may be said to consist

of:

— a diagram W in B of the form

W0n W1n · · · W(n−1)n Wnn

W0(n−1) W1(n−1) · · · W(n−1)(n−1)

...
... . .

.

W01 W11

W00

in which every square is a pullback square,
— a sequence Z of edges in A/T of the form

Z0 Z1 · · · Zn T,

and
— a diagram g in A of the form

Z0 Z1 · · · Zn

ψW0n ψW1n · · · ψWnn

g0 g1 gn
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in which every square is a pullback.

In this notation, the functor φ! carries a simplex (W,Z, g) ∈ Q(ψ)/Y to (W,Z, g) ∈
Q(ψ)/X , where by an abuse of notation, we write Z also for the image of Z in A/X .

Now we may define the remaining functors as follows.

— Let φ? be the functor Q(ψ)/X Q(ψ)/Y that carries a simplex (W,Z, g) ∈
Q(ψ)/X to

(W,Z ×X Y, g ◦ prZ) ∈ Q(ψ)/Y ,

where (Z×X Y )i := Zi×X Y , and (prZ)i is the projection Zi ×X Y Zi.
— Let λφ be the functor Q(ψ)/X Q(ψ)/X that carries a simplex (W,Z, g) ∈

Q(ψ)/X to

(W ⊕ U,Z, jU ◦ g) ∈ Q(ψ)/X ,

where (W ⊕U)i := Wi⊕U , and (jU )i is the inclusion ψWi ψ(Wi ⊕ U).
— Let µφ be the functor Q(ψ)/Y Q(ψ)/Y that carries a simplex (W,Z, g) ∈

Q(ψ)/Y to

(W ⊕ ΩU,Z ⊕ ψΩU, g ⊕ idψΩU ) ∈ Q(ψ)/Y .

The composite φ! ◦ φ? : Q(ψ)/X Q(ψ)/X clearly carries (W,Z, g) ∈ Q(ψ)/X
to

(W,Z ×X Y, g ◦ prZ) ∈ Q(ψ)/X .

On the other hand, the canonical equivalence Y ×X Y ' Y ⊕ ψΩU permits us
to express the composite φ? ◦ φ! : Q(ψ)/Y Q(ψ)/Y as the functor that carries
(W,Z, g) ∈ Q(ψ)/Y to

(W,Z ⊕ ψΩU, g ◦ prZ) ∈ Q(ψ)/Y .

Now we are prepared to define the natural transformations α, β, γ, δ.

— The component at (W,Z, g) of the natural transformation α is the diagram

Z ×X Y Z X

ψW ψ(W ⊕ U)

ψW ;

prZ

g ◦ prZ jU ◦ g

jU

the square is a pullback since

Z ×X Y Z

Z Z ⊕ ψU

is so.



ON THE Q-CONSTRUCTION FOR EXACT ∞-CATEGORIES 19

— The component at (W,Z, g) of the natural transformation β is the diagram

Z Z X

ψ(W ⊕ U) ψ(W ⊕ U)

ψU.

jU ◦ g jU ◦ g

— The component at (W,Z, g) of the natural transformation γ is the diagram

Z ⊕ ψΩU Z ⊕ ψΩU Y

ψ(W ⊕ ΩU) ψ(W ⊕ ΩU)

ψU.

g ⊕ idψΩU g ⊕ idψΩU

— Finally, the component at (W,Z, g) of the natural transformation δ is the
diagram

Z Z ⊕ ΩU X

ψW ψ(W ⊕ ΩU)

ψW.

jZ

g g ⊕ idψΩU

jU

This completes the proof. �

5.5. It’s worthwhile to note now some distinctions between our argument and
Quillen’s. Our argument is more complicated in some ways and easier in others.
(We suspect that one should be able to prove a result for more general exact ∞-
categories that contains all the possible complications and specializes both to the
lemma above and to Quillen’s result, but the additional complications are unnec-
essary for our work here.) The functor µφ above, for instance, does not make an
appearance in Quillen’s argument. In effect, this is because on an ordinary abelian
category, the loop space functor Ω coincides the constant functor at 0. Furthermore,
Quillen has to make use of closure properties of the full subcategory in order to
check that suitable kernels and cokernels exist. In the stable setting, these issues
vanish. Finally, in Quillen’s case, Q(ψ)/0 is visibly contractible, and the lemma
above along with the existence of suitable filtrations imply the Dévissage Theorem.
In our situation, it is not always the case that Q(ψ)/0 weakly contractible; this
condition has to be verified separately. But we can find analogues of the filtrations
sought by Quillen.

5.6. Definition. A filtration

0 = X0 X1 · · · X
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of an object X ∈ A will be said to be ψ-admissible if the following conditions are
satisfied.

(5.6.1) The diagram above exhibits X as the colimit colimiXi.
(5.6.2) For any integer i ≥ 1, the cofiber Ci := Xi/Xi−1 is equivalent to ψUi for

some object Ui ∈ B.
(5.6.3) For any corepresentable functor F : A Kan, the diagram

0 = FX0 FX1 · · · FX

exhibits FX as the colimit colimi FXi.

We will say that ψ is a nilimmersion if every object of A admits a ψ-admissible
filtration.

5.7. Example. Suppose Λ an E1 ring, and suppose x ∈ π∗Λ a homogeneous element
of degree d. Suppose f : Λ Λ′ a morphism of E1 rings such that one has a cofiber
sequence

Λ[d]
x

Λ
f

Λ′

of left Λ-modules. Assume that the induced functor Mod`Λ′ Mod`Λ preserves

compact objects, so that it restricts to a functor Perf `Λ′ Perf `Λ. If the multi-
plicative system S ⊂ π∗Λ generated by x satisfies the left Ore condition, then by

[11, Lm. 8.2.4.13], the natural functor Perf `Λ′ Nil`,ω(Λ,S) is a nilimmersion [3, Pr.

11.15].

5.8. Example. As a subexample, when p is prime and Λ = BP〈n〉, we have a
nilimmersion

Perf `BP〈n−1〉 Nil`,ω(BP〈n〉,S)

where S ⊂ π∗Λ is the multiplicative system generated by vn. As suggested by [3,
Ex. 11.16], this particular nilimmersion is of particular import for a well-known
conjecture of Ausoni–Rognes [1, (0.2)].

5.9. Theorem (“Proto-dévissage”). Suppose ψ a nilimmersion. Then the square

Q(ψ)/0 Q(B)

Q(A )/0 Q(A )

is a homotopy pullback (for the Quillen model structure), and of course Q(A )/0 ' ∗.
In particular, the ∞-category Q(ψ)/0 is weakly contractible just in case the induced
map K(B) K(A ) is a weak equivalence.

Proof. We employ our variant of Theorem B (Th. 5.3). The conditions of this
theorem will be satisfied once we check that for any object X ∈ A , the∞-category
Q(ψ)/X is weakly equivalent to Q(ψ)/0. For this, we apply Lm. 5.4 to a ψ-admissible
filtration

0 = X0 X1 · · · X

to obtain a sequence of weak homotopy equivalences of ∞-categories

Z(ψ) ' Q(ψ)/0 = Q(ψ)/X0
∼ Q(ψ)/X1

∼ · · · Q(ψ)/X .
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The result now follows from the claim that the diagram above exhibits Q(ψ)/X
as the homotopy colimit (even in the Joyal model structure) of the ∞-categories
Q(ψ)/Xi .

To prove this claim, it is enough to show the following: (1) that the set π0ιQ(ψ)/X
is exhibited as the colimit of the sets π0ιQ(ψ)/Xi , and (2) that for any objects
A,B ∈ Q(ψ)/Xi , the natural map

colimj≥i MapQ(ψ)/Xj
(A,B) MapQ(ψ)/X

(A,B)

is an equivalence. The first claim follows directly, since any morphism Y X
factors through a morphism Y Xi for some integer i ≥ 0 by (5.6.3). For
the second, note that for any object Y ∈ A , one may identify a mapping space
MapQ(ψ)/Y

(A,B) as the homotopy fiber of the map

MapQ(ψ)/0
(A,B) MapA (s(A), s(Y ))

induced the source functor s : Q(ψ)/0 A and the given map s(B) s(Y ) over
the point corresponding to the given map s(A) s(Y ). So the natural map above
can be rewritten as the natural map

colimj≥i

(
MapQ(ψ)/0

(A,B)×MapA (s(A),s(Xj)) {φj}
)

MapQ(ψ)/0
(A,B)×MapA (s(A),s(X)) {φ};

where φj : s(A) s(Xj) and φ : s(A) s(X) are the given maps. Now since
filtered homotopy colimits commute with homotopy pullbacks, the proof is complete
thanks to (5.6.3). �

Let us study the ∞-category Q(ψ)/0 more explicitly.

5.10. Construction. The∞-category O(A ) := Fun(∆1,A ) is also stable, and the
cartesian and cocartesian fibration t : O(A ) A induces a cartesian fibration

p : Q(O(A )) Q(A ).

One observes that p is classified by a functor Q(A )op Cat∞ that carries an
object X ∈ A to the ∞-category A/X . We may now extract the maximal right
fibration

ιQ(A )p : ιQ(A )Q(O(A )) Q(A )

contained in p. Write

E(A ) := ιQ(A )Q(O(A )).

In light of [9, Cor. 3.3.4.6], the simplicial set E(A ) is the (homotopy) colimit of
the functor Q(A )op Kan that classifies ιQ(A )p. This functor carries an object
X ∈ A to the Kan complex ι(A/X), and it carries a morphism

Z

Y X

to the map ι(A/X) ι(A/Y ) given by T T ×X Z.
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Using the uniqueness of limits and colimits in ∞-categories [9, Pr. 1.2.12.9],
we obtain a trivial fibration Q(A )/0 ∼ E(A ); hence the ∞-category Q(ψ)/0 is
naturally equivalent to the ∞-category

Z(ψ) := E(A )×Q(A ) Q(B).

These equivalences are compatible with the maps to Q(B) and Q(A ), so the square

Z(ψ) Q(B)

E(A ) Q(A )

is a homotopy pullback (for the Quillen model structure), and of course E(A ) ' ∗
Again employing [9, Cor. 3.3.4.6], we find that the simplicial set Z(ψ) is the

(homotopy) colimit of the functor Q(B)op Kan that classifies the pulled back
right fibration ιQ(A )p ×Q(A ) Q(B). This functor carries an object U ∈ B to the
Kan complex ι(A/ψU ), and it carries a morphism of the form

W

V U

to the map ι(A/ψU ) ι(A/ψV ) given by T T ×ψU ψW .

5.11. Definition. We call the ∞-category Z(ψ) constructed above the relative
Q-construction for the nilimmersion ψ : B A .

5.12. To unpack this further, we may think of the objects of the ∞-category Z(ψ)
as pairs

(U, g) = (U, g : X ψU),

where U ∈ B, and g is a map of A . A morphism

(V, h : Y ψV ) (U, g : X ψU)

of this ∞-category is then a pair of diagrams
W U

V

,

Y X

ψW ψU

ψV


,

the first from B and the second from A , in which the square in the second diagram
is a pullback.

5.13. Waldhausen introduced a relative S• construction, which we described as a
virtual Waldhausen ∞-category K (ψ) in [3, Nt. 8.8]. This has the property that
the sequence

K(K (ψ)) K(B) K(A )



ON THE Q-CONSTRUCTION FOR EXACT ∞-CATEGORIES 23

is a (homotopy) fiber sequence. In effect, K (ψ) is the geometric realization of the
simplicial Waldhausen ∞-category K∗(ψ) whose m-simplices consist of a totally
filtered object

0 U1 U2 . . . Um

of B, a filtered object

X0 X1 X2 . . . Xm

of A , and a diagram

X0 X1 X2 . . . Xm

0 ψ(U1) ψ(U2) . . . ψ(Um)

of A in which every square is a pushout.
One may now point out that the relative Q-construction Z(ψ) can be identified

with the edgewise subdivision of (a version of) the simplicial space m ιKm(ψ)0.
So, in these terms, the argument above essentially ensures that the natural map

I(K (ψ)) ΩI(S K (ψ)) ' K(K (ψ))

is a weak homotopy equivalence, where I is the left derived functor of ι.

5.14. Example. Keep the notations and conditions of Ex. 5.7. In light of [3, Pr.
11.15], the resulting sequence

K(Λ′) K(Λ) K(Λ[x−1])

is a fiber sequence if and only if the ∞-category

Z(f?) = E(Nil`,ω(Λ,S))×Q(Nil`,ω
(Λ,S)

) Q(Perf `Λ′)

is weakly contractible. For the sake of clarity, let us state explicitly that the objects
of Z(f?) are pairs

(U, g) = (U, g : X f?U),

in which U is a perfect left Λ′-module, and g is a map of perfect x-nilpotent left
Λ-modules. A morphism

(V, h : Y f?V ) (U, g : X f?U)

of this ∞-category is then a pair of diagrams
W U

V

,

Y X

f?W f?U

f?V


,

the first in perfect left Λ′-modules and the second in perfect x-nilpotent left Λ-
modules, in which the square in the second diagram is a pullback.
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5.15. Example. As a subexample, let us note that for a prime p, when Λ = BP〈n〉
is the truncated Brown–Peterson spectrum, we find, using [3, Ex. 11.16], that the
conjecture of Ausoni–Rognes [1, (0.2)] that the sequence

K(BP〈n− 1〉) K(BP〈n〉) K(E(n)).

is a fiber sequence is equivalent to the weak contractibility of the ∞-category

Z(f?) = E(Nil`,ω(BP〈n〉,vn))×Q(Nil`,ω
(BP〈n〉,vn)

) Q(Perf `BP〈n−1〉).
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