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ON REEDY MODEL CATEGORIES

by

Clark Barwick

The sole purpose of this note is to introduce some elementary results on the struc-
ture and functoriality of Reedy model categories. Presumably experts will have known
most of the results produced here for some time, but it may be the case that there
are one or two results that have not become part of the conventional wisdom.

This very brief note was culled — with only mild changes — from my forthcoming
books [2] and [3] on higher categories and weak enrichments. I have decided to make
some results available separately, in deference those who apparently wish to use the
some of the techniques before the long process of editing the books is complete.

After a very brief reprise of well-known facts about the Reedy model structure, I
give a very useful little criterion to determine whether composition with a morphism
of Reedy categories determines a left or right Quillen functor. I then give three easy
inheritance results, and the paper concludes with a somewhat more difficult inheri-
tance result, providing conditions under which the Reedy model structure on diagrams
valued in a symmetric monoidal model category is itself symmetric monoidal.

Thanks to J. Bergner, P. A. Østvær, and B. Toën for persistent encouragement and
hours of interesting discussion. Thanks especially to M. Spitzweck for a profound and
lasting impact on my work; were it not for his insights and questions, there would be
nothing for me to report here or anywhere else.
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2 CLARK BARWICK

1. Inverse, direct, and Reedy categories

Suppose X a universe, M a model X-category. The Reedy model structure on the
category of sM of simplicial objects of M is well-known in the context of resolutions,
but in fact the Reedy model structure for categories of diagrams indexed by any
Reedy category has significant applications in homotopy coherent algebra as well.

I begin by reviewing some definitions and results of [5, §5.1]. Let X be a universe.

Definition 1.1. — Suppose A an X-small category, λ an X-small ordinal.

(1.1.1) For any X-small category A, a functor d : A //λ is called a linear extension
of A if it refects identities, that is, if a morphism f of A is an identity if and
only if d(f) is.

(1.1.2) An X-small category A is said to be a direct category if there exists a linear
extension d : A //λ .

(1.1.3) An X-small category A is said to be an inverse category if Aop is a direct
category.

Theorem 1.2. — Suppose M a model X-category.

(1.2.1) For any direct category A, the functor category MA has its projective model
structure, in which the weak equivalences and fibrations are defined objectwise.

(1.2.2) For any inverse category A, the functor category MA has its injective model
structure, in which the weak equivalences and cofibrations are defined object-
wise.

Proof. — This is [5, Theorem 5.1.3]. ,

Proposition 1.3. — Suppose f : A //B a functor of X-small categories, M a
model category.

(1.3.1) If A and B are direct categories, then the adjunction

f! : MA //
MBoo : f⋆

is a Quillen adjunction between the projective model categories.
(1.3.2) If A and B are inverse categories, then the adjunction

f⋆ : MB //
MAoo : f⋆

is a Quillen adjunction between the injective model categories.

Proof. — It is obvious that f⋆ preserves any types of morphisms that are defined
objectwise. ,

Definition 1.4. — Suppose C any X-complete and X-cocomplete X-category.

(1.4.1) Suppose A a direct category, α and object of A.
(1.4.1.1) The latching category at α is the full subcategory ∂(A/α) of the

category (A/α) consisting of the nonidentity morphisms β //α .
There are two forgetful functors:

Fα : (A/α) //A and ∂Fα : ∂(A/α) //A.
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(1.4.1.2) The latching functor Lα for C is the composite functor

CA
∂F ⋆

α // C∂(A/α)
colim // C ,

and the image of a diagram X : A //C is called the latching object
LαX of X at α.

(1.4.2) Suppose A an inverse category, α and object of A.
(1.4.2.1) The matching category at α is the opposite category ∂(α/A) :=

(∂(Aop/α))op of the latching category at α for Aop. There are two
forgetful functors:

Fα : (α/A) //A and ∂Fα : ∂(α/A) //A.

(1.4.2.2) The matching functor Mα for C is the composite functor

CA ∂F α,⋆

// C∂(α/A)
lim // C ,

and the image of a diagram X : A //C is called the matching
object MαX of X at α.

Proposition 1.5. — Suppose M a model X-category.

(1.5.1) For any direct category A, a morphism X //Y of the functor category MA

is a cofibration or trivial cofibration in the projective model structure if and
only if for any object α of A, the induced morphism

Xα ∐LαX LαY //Yα

is so.
(1.5.2) For any inverse category A, a morphism X //Y of the functor category MA

is a fibration or trivial fibration in the projective model structure if and only
if for any object α of A, the induced morphism

Xα
//MαX ×MαY Yα

is so.

Proof. — This is [5, Theorem 5.1.3]. ,

Definition 1.6. — A Reedy category consists of the following data:

(1.6.A) an X-small category A,
(1.6.B) two lluf subcategories A→ and A← of A, and
(1.6.C) a functorial factorization of every morphism into a morphism of A← followed

by a morphism of A→.
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These data are subject to the following condition: there exist an ordinal λ and two
linear extensions A→ //λ and (A←)op //λ such that the diagram

A→

%%LL
LL

LL
L

ObjA

77ooooooo

''OO
OOO

O
λ

(A←)op

99ssssss

commutes. Write i→ (respectively, i←) for the inclusion A→ //A (resp., for the

inclusion A← //A).

1.7. — In other words, a Reedy category consists of a category with a degree function
on its objects, so that any morphism can be factored in a functorial fashion as a
morphism that decreases the degree followed by a morphism that increases the degree.

Lemma 1.8. — If A is a Reedy category, then Aop is as well, with (Aop)→ := (A←)op

and (Aop)← := (A→)op.

Proof. — The unique factorization for A will work for Aop. ,

Lemma 1.9. — Suppose A a Reedy category, C an arbitrary category, and A //C
a fully faithful functor.

(1.9.1) For any object γ of C, the slice category (A/γ) is a Reedy category, wherein
(A/γ)→ (respectively, (A/γ)←) is the lluf subcategory consisting of those mor-
phisms mapping to A→ (resp., to A←) under the obvious forgetful functor
(A/γ) //A .

(1.9.2) For any object γ of C, the slice category (γ/A) is a Reedy category, wherein
(γ/A)→ (respectively, (γ/A)←) is the lluf subcategory consisting of those mor-
phisms mapping to A→ (resp., to A←) under the obvious forgetful functor
(γ/A) //A .

Proof. — By the previous lemma, it suffices to show that (A/γ) is a Reedy category.
It is clear that the composites (A/γ)→ //A→ //λ and (A/γ)←,op //A←,op //λ
are linear extensions. The unique functorial factorization for A gives a unique functo-
rial factorization for (A/γ). ,

Theorem 1.10. — Suppose A an X-small Reedy category. Then for any model X-
category M, the diagram category MA has its Reedy model structure, in which a
morphism φ : X //Y is a weak equivalence, cofibration, or fibration if and only if

both i→,⋆φ in MA→ and i←,⋆φ in MA← are so.

Proof. — This is [6, Theorem A] and [4, Theorems 15.3.4 and 15.3.15]. ,

1.11. — Note in particular that the weak equivalences are the objectwise weak equiv-
alences.
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Lemma 1.12. — The Reedy model structure is functorial in the model category; that
is, suppose A an X-small Reedy category, M and N model X-categories, and F :
M //N a left Quillen functor. Then the induced functor MA //NA — which will
also be denoted F — is left Quillen as well.

Proof. — Since F is a left adjoint, it commutes with all latching functors. ,

2. Left and right fibrations of Reedy categories

I now address the question of the functoriality of the Reedy model structure in
the Reedy category. That is, I will describe the circumstances under which a functor
A //B induces a Quillen adjunction between MA and MB.

Definition 2.1. — Suppose A and B X-small Reedy categories.

(2.1.1) A morphism f : A //B is a strictly commutative diagram of functors

A→

��

// B→

��
A // B

A←

OO

// B←.

OO

(2.1.2) A morphism f : A //B is a left fibration if for any model X-category M,
the adjunction

f! : MA //
MBoo : f⋆

is a Quillen adjunction. If B = ⋆, then one says that A is left fibrant.
(2.1.3) A morphism f : A //B is a right fibration if for any model X-category M,

the adjunction
f⋆ : MB //

MAoo : f⋆

is a Quillen adjunction. If B = ⋆, then one says that A is right fibrant.

2.2. — A Reedy model category is thus left (respectively, right) fibrant if and only
if it has fibrant (resp., cofibrant) constants in the sense of Hirschhorn [4, Defini-
tion 15.10.1]. The notion of a left or right fibration is merely a relative version of
Hirschhorn’s concepts.

The Reedy model structure lives between the injective model structure and pro-
jective model structure on MA, if they exist. That is, the identity functor induces a

right Quillen functor MA
Reedy

//MA
proj and a left Quillen functor MA

Reedy
//MA

inj .

If A is direct (respectively, inverse), then the former (resp., latter) of these is an iso-
morphism of model categories. If A is left fibrant (respectively, right fibrant), then
the fact that the constant functor is right (resp., left) Quillen is an indication that the
Reedy model structure is closer to the projective (resp., injective) model structure.

Lemma 2.3. — If A and B are direct (respectively, inverse) categories, any mor-
phism f : A //B is a left (resp., right) fibration.
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Proof. — Immediate from 1.3. ,

Lemma 2.4. — For any Reedy categories A and B, a morphism f : A //B is a

left fibration if and only if the functor fop : Aop //Bop is a right fibration.

Proof. — This follows from 1.8. ,

Lemma 2.5. — For any Reedy categories A and B, a morphism f : A //B is a

left (respectively, right) fibration if and only if the functor f← : A← //B← (resp.,

the functor f→ : A→ //B→ ) is so.

Proof. — By the previous lemma, it suffices to prove the statement for left fibrations.
Since Reedy cofibrations and fibrations are defined be restriction to the direct and
inverse subcategories, it follows that f is a left fibration if and only if f→ and f← are
left fibrations. But f→ is automatically a left fibration by 2.3. ,

Lemma 2.6. — For any Reedy categories A and B, a morphism f : A //B is a left
(respectively, right) fibration if and only if for any object β of B, the Reedy category
(f/β) (resp., (β/f)) is left (resp., right) fibrant.

Proof. — Again it suffices to prove the statement for left fibrations, and by the pre-
vious lemma, it suffices to assume that A and B are inverse categories. Now f is a
left fibration if and only if, for any model category M and any (trivial) cofibration
φ : X //Y of MA, the induced morphism f!φ : f!X //f!Y is a (trivial) cofibra-

tion of MB. But (trivial) cofibrations are defined objectwise; hence this is in turn
equivalent to the assertion that for any model category M, any (trivial) cofibration
φ : X //Y of MA, and any object β of B, the morphism

f!φβ : (f!X)β = colimα∈(f/β) Xα // colimα∈(f/β) Yα = (f!Y )β

is a (trivial) cofibration of M. This is precisely the statement that the adjunction

colim : M(f/β) //Moo : const

is a Quillen adjunction, i.e., that (f/β) is left fibrant. ,

Theorem 2.7. — For any Reedy categories A and B, a morphism f : A //B is a
left (respectively, right) fibration if and only if for any object α of A and any morphism
f(α) //β (resp., β //f(α)) of B, the nerve of the category ∂(α/(f←/β)) (resp.,
of the category ∂((β/f→)/α)) is either empty or connected.

Proof. — This now follows from the previous lemma and Hirschhorn’s necessary and
sufficient condition for a Reedy category to have (co)fibrant constants [4, Proposition
15.10.2(1) and Corollary 15.10.5]. ,

Corollary 2.8. — Suppose A a Reedy category, C an arbitrary category with all fi-
nite products (respectively, finite coproducts), A //C a fully faithful functor. Suppose
that for any object γ of C, the Reedy category (A/γ) (resp., (γ/A)) is left (resp., right)
fibrant. Then for any morphism γ //γ′ of C, the forgetful functor (A/γ) //(A/γ′)

(resp., (γ′/A) //(γ/A)) is a left (resp., right) fibration.
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Proof. — Again it suffices to prove the assertion for left fibrations. Using the char-
acterization of the theorem, one sees that the forgetful functor (A/γ) //(A/γ′) is a
left fibration if any only if for any object α of (A/γ′), the Reedy category (A/(α×γ′))
is left fibrant. ,

3. Lemmata of inheritance

I now reiterate some familiar but nevertheless useful facts on the subject of the
Reedy model structure. In particular, it inherits many good formal properties of M
(3.1, 3.10, 4.2, and 4.3).

Suppose A a Reedy category, M a model X-category. For the sake of consistency
with the case A = ∆, I consider the Reedy model structure on the category M(A) of
functors Aop //M .

Lemma 3.1. — If M is left (respectively, right) proper, then so is the Reedy model
category M(A).

Proof. — This follows immediately from the observation that the Reedy weak equiv-
alences, cofibrations, and fibrations are in particular objectwise weak equivalences,
cofibrations, and fibrations. ,

3.2. — The Reedy model structure on M(A) is frequently compatible with a natu-
ral symmetric monoidal structure, which arises from the use of objects yM(α) that
represent evaluation at an object α of A. The category M(A) of M-valued presheaves
Y on A comprise the representable SetX(A)-valued presheaves on C, whose value on
an object X of M is the presheaf that assigns to any object α of A the morphisms in
M(A) from a presheaf y(α)�X to Y . Extending this correspondence to all presheaves
on A in the usual fashion, one arrives at a fundamental adjunction of two variables
(3.5) on M(A) with M over SetX(A).

Notation 3.3. — Suppose X an object of M, and Y : Aop //M a presheaf.

(3.3.1) Write morM(A),�(−, Y ) for the right Kan extension a⋆Y of Y along the op-

posite a : Aop //SetX(A)op of the Yoneda embedding.
(3.3.2) The copower functor

SetX // M

S
� // S · X

induces the functor − �M(A) X : SetX(A) //M(A).

(3.3.3) The object X corepresents a functor M //SetX and thus induces a functor

Mors
M(A),�(X,−) : M(A) //SetX(A) .

Lemma 3.4. — For any presheaf K : Aop //SetX and any presheaf Y :

Aop //M , there is an isomorphism

morM(A),�(K, Y ) ∼=

∫
α∈A

mor(Kα, Yα).

Proof. — This is the usual end formula for right Kan extensions. ,
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Lemma 3.5. — The triple (�M(A), morM(A),�, Mors
M(A),�) is an adjunction of two

variables: for any presheaf K : Aop //SetX , any object X of M, and any presheaf

Y : Aop //M , there are natural isomorphisms

MorM(X, morM(A),�(K, Y )) ∼= MorM(A)(K �M(A) X, Y )
∼= MorSetX(A)(K, Mors

M(A),�(X, Y )).

Proof. — This follows from the relevant universal properties. ,

Notation 3.6. — Write y : A //SetX(A) for the Yoneda embedding.

Corollary 3.7. — Suppose Y : Aop //M a presheaf; then for any object α of A,
there is a natural isomorphism

Yα
∼= morM(A),�(y(α), Y ).

Corollary 3.8. — Suppose Y : Aop //M a presheaf; then for any object α of A,

there is a presheaf ∂y(α) : Aop //M and a natural isomorphism

MαY ∼= morM(A),�(∂y(α), Y ).

Proof. — Set

∂y(α) := colimα′∈(α/A←) y(α′).

Then one shows easily that morM(A),�(∂y(α), Y ) is the desired limit. ,

Notation 3.9. — For any set K of morphisms of M, write

Λ2K := {(y(α) � X) ⊔∂y(α)�X (∂y(α) � Y ) //y(α) � Y | α ∈ A, [X //Y ] ∈ K}.

Lemma 3.10. — For any X-small Reedy category A, the Reedy model category
M(A) is X-combinatorial [1, 1.3.1] if M is.

Proof. — Since M is X-combinatorial, it is possible to choose X-small sets of generat-
ing cofibrations and generating trivial cofibrations IM and JM such that the domains
and codomains of IM (respectively, of JM) are small with respect to IM (resp., to JM);
then Λ2IM and Λ2JM are X-small sets of generating cofibrations and generating triv-
ial cofibrations of the Reedy model structure on M(A) [4, Theorem 15.6.27]. Local
presentability is inherited by functor categories; hence M(A) is X-combinatorial. ,

Lemma 3.11. — For any X-small Reedy category A, the Reedy model category MA

is X-tractable [1, 1.3.1] if M is.

Proof. — I claim that if X //Y is a cofibration with cofibrant source in M, then

(y(α) � X)⊔∂y(α)�X (∂y(α) � Y ) is cofibrant. Suppose that T //S is an objectwise

trivial fibration. Then by adjunction, a morphism y(α) � X //S has a lifting if and
only if the diagram

Tα

��
X // Sα
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has a lifiting. It follows from the cofibrancy of X and [4, Proposition 15.3.11]
that y(α) � X is cofibrant in the Reedy model structure on M(A). It is easy
to see by a similar argument that ∂y(α) � X //∂y(α) � Y is a cofibration, so

y(α) � X //(y(α) � X) ⊔∂y(α)�X (∂y(α) � Y ) is a cofibration, whence follows the
claim, and thus the lemma. ,

4. Reedy diagrams in a symmetric monoidal model category

Suppose now A an X-small Reedy category and (M,⊗M, MorM
M

) a symmetric
monoidal model X-category.

Notation 4.1. — Suppose X and Y objects of M(A) and Z an object of M. Set

MorM
M(A)(X, Y ) :=

∫
α∈Aop

Mor
M

(Xα, Yα),

(Z ⊗M

M(A) X)α := Z ⊗M Xα,

morM
M(A)(Z, Y )α := Mor

M
(Z, Yα),

for any object α of A. This gives M(A) the structure of an M-category.

Lemma 4.2. — With the M-structure of 4.1, the Reedy model category M(A) is an
M-model category.

Proof. — To verify the pushout-product axiom, suppose f : Z //Z ′ a cofibration of

M, and i : X //Y a cofibration of M(A); then for any object α of A, the morphism

((Z ⊗ Y ) ⊔Z⊗X (Z ′ ⊗ X))α ⊔Mα((Z⊗Y )⊔Z⊗X(Z′⊗X)) Mα(Z ′ ⊗ Y )

��
(Z ′ ⊗ Y )α

is isomorphic to the morphism

(Z ⊗ Yα) ⊔Z⊗(Xα⊔
MαXMαY ) (Z ′ ⊗ (Xα ⊔MαX MαY ) //Z ′ ⊗ Yα ,

which, by the pushout-product axiom for M, is a cofibration that is trivial if either f
or i is. ,

Corollary 4.3. — If, in addition, M is a model V-category [1, 3.2.4] for some sym-
metric monoidal model X-category V, then M(A) is also.

Lemma 4.4. — There is a functor yM : A //M(A) such that for any object α of

A and any Y : Aop //M , there is a canonical isomorphism

Mor
M(A)(yM(α), Y ) ∼= Yα.

Moreover, if the unit 1M for the symmetric monoidal structure on M is cofibrant,
then for every such object α, yM(α) is cofibrant.

Proof. — Set yM(α) := y(α) � 1M. The first part of the result now follows from the
enriched Yoneda lemma. ,
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Corollary 4.5. — If F : M //N is a left Quillen functor of symmetric monoidal

model X-categories such that F (1M) ∼= 1N,(1) then F (yM(α)) ∼= yM(α) for every
object α of A.

Corollary 4.6. — For any object α of A, there is a simplicial object ∂yM(α) of M
— which is cofibrant if 1M is — such that for any Y : Aop //M , there is a canonical
isomorphism

MorM(A)(∂yM(α), Y ) ∼= MαY.

4.7. — The exterior tensor product M(A) × M(A) //M(A × A) is part of a
Quillen adjunction of two variables. In order to see this, I quote the following result
of Hirschhorn.

Theorem 4.8 (Hirschhorn, [4, Theorem 15.5.2]). — The category A × A has a
natural Reedy category structure, for which the Reedy model structure on M(A × A)
coincides with the “Reedy-Reedy” model structure on M(A)(A).

Notation 4.9. — Denote by

�M(A) : M(A) × M(A) // M(A × A)

Mor
�,M(A) : M(A)op × M(A × A) // M(A)

mor�,M(A) : M(A)op × M(A × A) // M(A)

the functors defined by the formulæ

(X �M(A) Y )(α,α′) := Xα ⊗M Yα′ ,(4.9.1)

Mor
�,M(A)(Y, F )α := MorMM(A×A)((yM(α) �M(A) Y ), F ),(4.9.2)

mor�,M(A)(X, F )α := MorM
M(A×A)((X �M(A) yM(α)), F ),(4.9.3)

for any objects X and Y of M(A), any F : Aop × Aop //M , and any objects α, α′

of A.

Proposition 4.10. — The triple (�, Mor
�,M(A), mor�,M(A)) is an adjunction of two

variables from M(A) × M(A) to M(A × A).

Proof. — This is an easy consequence of the Fubini theorem for ends and the repre-
sentability properties of yM(α). ,

Lemma 4.11. — For any pair of objects α and β of A, there is a canonical isomor-
phism

yM(α) � yM(β) ∼= yM(α, β)

in the category M(A × A).

(1)Note that one need not assume that F itself is symmetric monoidal.
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Proof. — This follows from the observation that for any X-small sets S and T , there
is a canonical isomorphism

(S · 1) ⊗ (T · 1) ∼= (S × T ) · 1

in M. ,

Corollary 4.12. — For any object α of A and any F : Aop × Aop //M , there is
a canonical isomorphism

Mor
�,M(A)(y(α), F ) ∼= F (α,−)

in M(A).

Corollary 4.13. — For any object β of A, any object X of M(A), and any F :
Aop × Aop //M , there is a canonical isomorphism

Mor
�,M(A)(X, F )β

∼= MorM
M(A)(X, F (−, β))

in M.

Corollary 4.14. — For any object β of A, any object X of M(A), and any F :
Aop × Aop //M , there is a canonical isomorphism

Mβ Mor
�,M(A)(X, F ) ∼= MorM

M(A)(X, M(−,β)F )

in M.

Proposition 4.15. — The adjunction of two variables (�, Mor
�,M(A), mor�,M(A))

is a Quillen adjunction of two variables.

Proof. — Now suppose i : X //Y a cofibration of M(A), and suppose p : F //G
a (trivial) fibration of M(A). Now by 4.8, for any object β of A, p induces a (trivial)
fibration

F (−, β) //M(−,β)(p)

of M(A), where

M(−,β)(p) := M(−,β)F ×M(−,β)G G(−, β).

Since M(A) is a model M-category, it follows that the induced morphism

MorM(A)(Y, F (−, β)

��
(MorM(A)(Y, M(−,β)(p)) ×Mor

M(A)(X,M(−,β)(p)) MorM(A)(X, F (−, β))

is a fibration of M, which is trivial if either i or p is. But this morphism is isomorphic
to the morphism Uβ

//MβU ×MβV Vβ , wherein

U := Mor
�,M(A)(Y, F );

V := Mor
�,M(A)(X, F ) ×Mor

�,M(A)(X,G) Mor
�,M(A)(Y, G).

Hence U //V is a fibration of M(A), which is trivial if i or p is. ,
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Proposition 4.16. — Suppose

F : M(A × A) //M(A)oo : U

a Quillen adjunction. Then the triple (⊗M(A),F , Mor
M(A),F , morM(A),F ), defined by

the formulæ

X ⊗M(A),F Y := F (X �M(A) Y ),(4.16.1)

Mor
M(A),F (Y, Z) := Mor

�,M(A)(Y, UZ),(4.16.2)

morM(A),F (X, Z)α := mor�,M(A)(X, UZ),(4.16.3)

for any objects X, Y , and Y of M(A), is a Quillen adjunction of two variables from
M(A) × M(A) to M(A).

Proof. — Suppose i : U //V and j : X //Y cofibrations of M(A). Then
i2M(A),F j = F (i2�,M(A)j), which is a cofibration that is trivial if either i or j
is. ,

Corollary 4.17. — Suppose A monoidal, with a structure

◦ : A × A //A

that defines a right fibration of Reedy categories. Then the Day convolution product

⊗M(A),◦ := ◦!(− �M(A) −)

is part of a Quillen adjunction of two variables on M(A).

Theorem 4.18. — If A is left fibrant and the morphisms of A← are epimorphisms,
then the diagonal symmetric monoidal structure given by

(X ⊗
M(A)
M(A) Y )α := Xα ⊗ Yα,(4.18.1)

Mor
M(A)
M(A)(X, Y )α := MorM

M(A)(yM(α) ⊗
M(A)
M(A) X, Y ),(4.18.2)

for any objects X and Y of M(A) and an object α of A, gives M(A) the structure of
a symmetric monoidal model category.

Proof. — The unit axiom follows from the fact that the constant functor is symmetric
monoidal and preserves cofibrant objects and equivalences.

It now suffices to show that the diagonal functor ∆ : A //A × A is a left fibration.
This is equivalent to showing, for any objects α, β, γ of A, and any pair of morphisms
α //β and α //γ of A←, that the nerve of the category ∂(α/(∆←/(β, γ))/) is
either empty or connected. Since A is left fibrant, the nerve of the category δ(α/A←)
is either empty or connected. Hence if

(δ, δ)

$$JJ
JJ

(α, α)

::tttt

//

$$JJ
JJ

(β, γ)

(ǫ, ǫ)

::uuuu
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is a commutative diagram of A← × A←, then there exists a zig-zag of morphisms of
A← × A← connecting (δ, δ) to (ǫ, ǫ) under (α, α). To see that these morphisms are
morphisms over (β, γ) as well, we can, without loss of generality, suppose that there
is a morphism (δ, δ) //(ǫ, ǫ) of ((α, α)/(A← × A←)). Hence the left half and the
exterior square of the diagram

(δ, δ)

��

$$JJ
JJ

(α, α)

::tttt

$$JJ
JJ

(β, γ)

(ǫ, ǫ)

::uuuu

commute. But since (α, α) //(ǫ, ǫ) is an epimorphism, it follows that the left half of
this diagram commutes as well. ,

Example 4.19. — For any X-small simplicial set or category K, the category
M(∆/K) is symmetric monoidal with the diagonal symmetric monoidal structure.
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