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Introduction

In this paper we use relations amongst Toda brackets and a lot of detailed
information about the homotopy groups of spheres to show that there exists a
62-dimensional framed manifold with Kervaire invariant one. This paper, together
with [4, 5], represents an effort to supply full details for a number of the results
announced in [11], and to explore further some of the ideas behind that paper.

The general problem of whether or not there are elements 6n e 71̂ +1-2 w i t n n o n '
zero Kervaire invariant will not be solved by the methods of this paper. The first
three cases of this problem are trivial: 6X — rj2, 62 = v2, 03 = a2, where rj, v and a
are the three Hopf maps. It is known that #4 exists and indeed 04 is reasonably well
understood [13, 16, 8]. The point of this paper is to construct another non-obvious
example: 65 e n%2. However not even the most optimistic of us would claim that 65 is
well understood.

We begin this paper with some preliminaries on cell diagrams and Toda brackets.
In §2 we outline the proof of the existence of 95, and in §§3 and 4 we give the detailed
calculations needed to complete this proof. These calculations require constant
references to [3, 6,13,14, 20, 21] for information about rc^ and the E2 and E^ terms
of the mod 2 Adams spectral sequence. Some of this information is also contained in
[10,16] and the tables at the end of [22]. There is an appendix with a proof of a
general result on the vanishing of certain Toda brackets; a special case of this result
is used in the main body of this paper.

1. Preliminaries

We begin with a brief discussion of cell diagrams and give two lemmas on Toda
brackets.

Let X be a CW complex, then a cell diagram for X consists of nodes and edges.
The nodes are in one-one correspondence with the cells of X and may be labelled
with symbols to indicate the dimensions of the cells. When two nodes are joined by
an edge as in Figure 1, then it is possible to form a subquotient

(1.1) X'/X" = S " u ; e
m

FIG. 1
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such that the cells which are in the subcomplex X' but not in X" are just those
corresponding to the two nodes, and such that the attaching map is the map /
shown. Suppose we have two nodes labelled n and m with n < m and there is no edge
joining them. Then there are two cases.

(i) There is an integer k ^ 2 and a sequence of nodes labelled nh 0 ^ i ^ k,
with n = n0 < n1 < ... < nk = m and edges joining the node n{ to the node ni + l. In
this case we do not assert that there is a subquotient of the form (1.1); this does not
imply that there is no such subquotient.

(ii) There is no sequence of nodes as in (i). Then we assert that there exists a
subquotient of the form (1.1) with

X'/X" = SnvSm

For example consider the complex X = S" u em u el. Then a cell diagram for X
is given in Figure 2, and this simply tells us that X = {S" u fe

m) u g.e
l where, if

p: S" u fe
m -* Sm is the collapsing map, then g'p = g. This is the best we can do

without further information; however, if it happens that / is trivial or g is trivial
then, respectively, X admits the cell diagrams of Figure 3.

FIG. 3

We are usually only interested in complexes up to homotopy type so from now
on we use the phrase 'admits a cell diagram' to mean that there is a complex
homotopy equivalent to X with the given cell diagram, and we label the edges by the
homotopy classes of the appropriate maps. We can also form stable cell diagrams for
stable complexes and, in an analogous manner, cell diagrams for maps.

We always regard relations amongst Toda brackets as conditions for the
existence of complexes with specified cell diagrams. For example, Toda's relation
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FIG. 4

that if a e ns
n and 2a = 0 then not. e <2, a, 2> shows that there is a stable complex with

the cell diagram of Figure 4.
We come now to our lemmas on Toda brackets.

LEMMA 1.2. Suppose that aens
a, f$€ns

h, yens
c, then necessary and sufficient

conditions for forming the Toda bracket <a, /?, a, y> are that

(i) a 0 = ay = O,

(ii) 0e<a,i8,a>,0G<jS,a,y>.

Proof. Suppose we are given maps

cO ( J ca < 9 aa + b ( " c2a + 6 ( k 2 2 a + b + c

representing the stable homotopy classes a, /?, a, y respectively. We begin by
choosing null homotopies gh ~ 0, hk ~ 0 such that the resulting representative for
</?, a, y> is null-homotopic. The whole indeterminacy of <a, jS, a> is

oins
2a+b+l(S

a) + K+b+1(S
o)oL = ns

a+b+l(S
0)a,

so that we may now choose a null-homotopy fg^O such that the representative for
the Toda bracket <a, /?, a> obtained by using this null-homotopy of fg and our given
null-homotopy of gh is null-homotopic. Therefore we may form the bracket
<a, jM,y>.

LEMMA 1.3. Suppose that a e ns
2n and 2a = 0, then 0 G <a, 2, a>.

There are quick proofs available for this lemma; however, we choose to present it
as a corollary of a more general result which we discuss in detail in an appendix.

2. The Kervaire invariant in dimension 62—an outline of the argument

We use the usual notation, 0n „, for the secondary mod 2 cohomology operation
based on the Adem relation

n - l

; = o
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Our object is to construct 65 e if62 detected by 4>5 5. From now on we work stably
and at the prime 2 so we shall now write n-} for the 2-primary component of 7̂ -; all
cohomology groups are to have mod 2 coefficients.

To construct 6n e 7i2n+i_2 detected by (f)n „ we can try to construct a complex X
and maps

/ : s2n+l~2 > X, g : X > S°

satisfying the following conditions.

(i) Both / and g are zero in mod 2 cohomology.

(ii) For i ^ n — 1 the functional cohomology operations

> H2i'lX
are all zero.

(iii) Sqf: H°S° -> H2"~lX is non-zero.

(iv) The functional cohomology operation Sq2j is defined and non-zero on

If X, f and g satisfy these conditions the Peterson-Stein formula [17, 19] shows
that gf is detected by (f>n „. Note that this is not the only way in which we can use the
Peterson-Stein formula to prove that a composite gf is detected by $„ „—it is
simply the one which occurs in the examples we discuss.

THEOREM 2.1. There are a stable complex X and maps f: S62 -> X g : X -> S°
with the cell diagram of Figure 5 for some \j/lt i^2 e 7i32, i//3 € 7r44, i/f4 e n46. The maps

FIG. 5
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/ and g satisfy the hypotheses (i)-(iv) above with n = 5 so that the composite gf is
e5en62.

The notation for homotopy classes is that of [22, 3] with the minor change that
here we choose to write r\}e 7r2; [12] for the element called nj-1 in [3]. Thus rj, v and
a are the Hopf maps in nx, n3 and 7t7, 03 = a2, 04 is the unique non-trivial element
of TT30 = Z/2 [13], and K is the element of TT14 described in Toda's book.

In order to give some kind of motivation for this construction we go back to
explain a construction of 04. Suppose that we can form the Toda bracket
<03, 2, 03, 2>, then any element in this set factors as

-30 S°

with the cell diagram of Figure 6.

FIG. 6

Set n = 4, then evidently / and g satisfy conditions (i) and (ii). Adams's
decomposition of Sq16 [1], shows that / and g satisfy (iii) and (iv) so that gf = 04.

According to Lemma 1.2 the conditions for forming this bracket are

(a) = 0,

(b) Oe<2,03,2>,

(c) |Oe<0 3 ,2 ,0 3 > .

Now (a) is trivial. By Toda's formula ^03 e <2, 03, 2>, and rjd3 = 0 (compare [22])
so that (b) follows, and finally (c) follows from Lemma 1.3.

We now try and repeat this argument with 03 replaced by 04. We have 204 = 0
by [13] and so Lemmas 1.2 and 1.3 show that the only obstruction to forming
<04,2,04,2> is the set rj64 + 2n31. However ^04 is a non-zero element of TT31 of
minimal Adams filtration and so cannot be in 27r31. Therefore there is no map with
the cell diagram of Figure 7.
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O

FIG. 7

However the relation ^04e<2,04,2> shows that there is a map with the cell
diagram of Figure 8, but we meet the obstruction 9\ to finding a map of this 4-cell

O

FIG. 8

complex which restricts to 04 on the bottom cell. We do not prove that 04 = 0 as this
requires substantial further calculations; anyway if we did we would then use a better
line of argument which shows that 95 exists and 205 = 0 [11, 4]. We avoid this
problem by using a different decomposition of r\0^ [3, 3.2.1]:

(2.2) rjO^ e (rj4,2, 63y.

Thus we can find a map with the cell diagram of Figure 9, and this is the beginning of
Figure 5. Now we deal with the obstructions to find a map of this 5-cell complex
which restricts to 04 on the bottom cell.

FIG. 9
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LEMMA 2.3. There are elements \j/1, \\t2 e n22 such that

(i) # t = 0,

(ii)

539

LEMMA 2.4. (i) 6^(n, 2, rj4) = 0,

(ii) Suppose that i//l e n32 is such that rjij/l = 0, then \\/x(r\, 2, 03> = 0,

(iii) Oe<>7,2,K>.

LEMMA 2.5. Let a be any element of TI47 such that rja = 0. Then there exist
b e 7r47, c e 7i46, d e 7r44 5«c/i that a = 2b + rjc + 'vd.

Assuming these three lemmas, we complete the proof of Theorem 2.1. From
Lemmas 1.3 and 2.3 there is a complex Xo and a map g0 : Xo -> S° with the cell
diagram of Figure 10, where \jjy and i//2 are chosen to satisfy the conclusions of

FIG. 10

Lemma 2.3. There is a map h : S47 -> Xo of degree 2 in integral homology, and we
now deal with the obstruction to extending g0 over the cofibre of h. Write

S30v S32v S325

then this obstruction is the set

We aim to use Lemma 2.5, so multiply by rj:

(2.6) <51,5 0 1<03, 2, K, 2,
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We check indeterminacy to see that (2.6) is actually an equality. The indeterminacy
of the right-hand side is

0*1**2 + 0*1*1 7 + 'A 1 #3 n2 + 'Al 1*\ 5 + 'A 2 K7l2 + ̂ 2 Wl 5 •

Now since n2 is generated by rj2 this reduces to

and this is equal to the indeterminacy of the left hand side.
From Lemma 2.4 the right-hand side of (2.6) contains zero. Therefore

<<>!, <52, 2> contains an element a such that r\a = 0; its indeterminacy contains 27t47

and so by Lemma 2.5 it contains an element of V7i44 + >f7i46. We have now proved
that there exists a complex X and map g : X -> S° with the cell diagram of Figure 5
in Theorem 2.1; the primary obstructions 204, 2rj4, 203, 2K, 04f?4~ iAi03 — \I/2K all
vanish, and the secondary obstructions <04,2,04> and <<$!, <52,2> + v7t44 + ^7r46

both contain zero.
Next we consider the obstructions to the existence of a map f :S62 -> X with cell

diagram given in Figure 5. The primary obstructions 204, 203, rj92, v03 all vanish.
The secondary obstructions are the sets

< 2 , 0 4 , 2 > - < i 7 4 , 2 , 0 3 > <6>3,2,03> < /c ,2 ,0 3 > .

The first contains zero by (2.2), and the other two contain zero since n29 = 0.
Indeed the fact that n29 = 0 shows that there is no difficulty over choices of null-
homotopies, or co-extensions, needed to ensure more than one outcome.

It is straightforward, using Adams's decomposition of Sq32, to check that / and g
satisfy conditions (i)-(iv) with n = 5, so that gf = d5 e n62.

3. Some homotopy groups of spheres

In this section we discuss the 45, 46 and 47 stems and prove Lemma 2.5. We use
the Adams spectral sequence with E2 term

where A is the mod 2 Steenrod algebra. Diagram A is the usual kind of diagram of
this spectral sequence; vertical lines represent multiplication by h0, lines sloping to
the right represent multiplication by hx, and lines sloping to the left are differentials
dr. The chart is taken from Tangora's table [20].

The differentials defined on the 45 and 46 stems are obvious deductions from
1.1.4, 1.1.5 and 8.9 of [13]. The differentials on the elements h^Q' are determined
by consideration of the image of J [2, 9]. They are given by

d2Q! = h0P
2r = P2s, d3h

5
0Q' = h0PU0

(recall that hor = s). Next note that hlP
1u is a product of infinite cycles, and so is

an infinite cycle; therefore P2doeo is non-zero in £ 4 and [13, 1.1.4] shows that
dtP2doeQ = P*d0.
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48 49

t-s

DIAGRAM A

If a e E2 is an infinite cycle then we use the usual notation that {a} ^ n^ denotes
the set of homotopy classes detected by a. It can happen that 0 € {a}; this is the case
if and only if a is a boundary. We usually write {a} = a when there is a unique
element a in the set {a}; a similar convention applies to a Toda bracket with a
unique element.

We now prove that h5P
lc0 is an infinite cycle. Let pl5 e 7t15 be a generator of the

image of J, so that rjpl5 enl6 generates the image of J and rjpl5 e {Plc0}, compare
[3]. Form the Toda bracket <04, 2, rjpl5). Now 04 e {h^}, d2h5 = hQh\ and so the
theorem of Moss [18] relating Toda brackets in n^ and Massey products in the
Adams spectral sequence shows that there is an element of <04, 2, rjpl5y detected by
h5P

ic0, and so h5P
1c0 must be an infinite cycle.
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The differentials defined on the 47 stem now follow in a straightforward manner.
For the differentials on the 48 and 49 stems we need some preliminary results, most
of which are in Tangora's paper [21].

THEOREM 3.1. (i) rj{hl} n { B j f 0 ,

(ii)

(iii)

(iv) rj{w] £ {gj},

(v) 0*i/{eor},

(vi) fi{e0r}z{Plg2}.

The proofs of (i)—(iv) are in part 2 of [21]; (v) is proved in [7, Proposition 4.2]
using the relation gk = eol [20] and the differential d2gk = hyP

yu [13, 1.1.4].
Finally (vi) is the only possibility, given (v).

LEMMA 3.2. (i) 0 4 K = O,

(ii) <2, 04, K> n { M o } ^ 0 .

Proof, (i) We know that 04 e {h\} and K e {d0} and so we check the product
h\d0 e Ext,, (Z/2, Z/2); from [20], h^d0 = 0 since it lies in a zero group. Therefore
K04 has filtration ^ 7 in 7i44 and from E^ of the spectral sequence [13] it follows
that K9A = 0.

(ii) This follows from Moss's theorem and the differential d2h5 = hoh\.

THEOREM 3.3. (i) 4{/iJ} £ {^o^s^o},

(ii) TI45 = z/i6 e z/2 e z/2 e z/2.

(iii) It is possible to pick a e {/i4}, /? e <2, 04, K> n {h5d0}, y e { 2̂} s 7i44,
^ € {w} sucli that 4<x = 2fi and 7i45 is generated by

a order 16, 2a — /J order 2,

rjy order 2, 3 order 2.

Proof, (i) and (ii) are proved in part 2 of [21]. To prove (iii) pick a e {h4} and
/?e <2, 04, K> n {/i5rf0}- Then from (i) 4a — 2/? has filtration ^ 7 and so there are
integers x, y such that 4a — 2/7 = x<5 + 4j;/?. Multiply by >7 and use Theorem 3.1(iv) to
conclude that x<5 = 0, and now replace a by ct — yfl. We now get the relation
4a = 2/?. The rest of (iii) is trivial.

From now on we always use the notation of Theorem 3.3 for 7t45.

LEMMA 3.4.
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Proof. Since rj3 = 4v and 8v = 0 we get r]2p = 4v/? = 8va = 0.

Next we determine the only non-obvious differential we need; this was first found
by G. W. Whitehead.

LEMMA 3.5.

Proof. From Theorem 3.3, 4{h4} = 4a = 2/3, and so the relation rj3 = 4v shows
that rj3{hl) = 4va = 2v/?. We now show that 4oc + 87r45 contains a multiple of a. By
Moss's theorem <8c, 2, 04> n {/ioJi3h5} =/= 0 - However

(T<8<7,2,04> = <<7,8<r,2>04 = p 1 5 0 4 ,

where p1 5 G 7T15 generates the image of J. By [21, Corollary 2.8] p 1 5 0 4 e {hlh5d0}
and so

From [3] two elements of {^0^3^5} differ by a multiple of v2, so since ov = 0,

One easily deduces that c r ^ o ^ s } — {^o^s^o}' an<^ so from Theorem 3.3, if
£e{hlh3hs}, then

x,yeZ.

But we now check that rj2an28 = 0; from the structure of Ex of the mod 2 Adams
spectral sequence given in [13], taking account of the corrections in [3, 6], we see
that rj2n38 must be contained in the subgroup of nA0 generated by k2 and since
ok = 0 we see that rj2 an38 = 0. Therefore

but since r\25 =/= 0 (Theorem 3.1), we see that y is even so that yd = 0. Therefore
at, = 4a + 8xa, and

0 = va£ = 4va = rj3{h3
4} .

COROLLARY 3.6.

d2h0h5f0 = h2B1 =h2B2.

Proof. By Theorem 3.1 there exists an element t, e {fc4} such that rjt, G {BJ} and
so by Lemma 3.5,

Therefore h\Bx is a boundary and the only possibility is that

This proves the corollary. The differentials on the 48 and 49 stems follow.
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We now establish Lemma 2.5. The 47 stem is generated by the elements

y€{eor], r]2d€{Plu}, p^e{hlQ'},

where p4 7 is a generator of the image of J.
Now rjxe {h1P

1h5c0} and, in view of Corollary 3.6, h1P
lh5c0 is not a boundary.

By Theorem 3.1 rjye {Plg2}; from the properties of the image of J [2] we know that
r\pA1 is non-zero, and therefore r\p6fl e {P5c0}. It now follows that qx, rjy and rjp41

are independent over Z/2. However ^vy = 0 (since ^v = 0), rj3a. = 0 (see Lemma
3.5) and ^3<5 = 0 (since rj3 = 4v and 2<5 = 0) and therefore the kernel of
rj: 7i47 -*7r48 is generated by vy, rj2a, rj2d and 2p47. This completes the proof.

4. Final proofs

We finish by proving Lemmas 2.3 and 2.4; we begin with Lemma 2.4.

Proof of Lemma 2.4. (i) Pick v* e {/i2M — ^ISS ' e t ^9 e ^99 Mi7 e ^17 be the
unique elements of the Toda brackets <^, 2,8a>, <^9,2,8<r). Then n18 = Z/8 © 111
is generated by v*, of order 8, and ^/i17, of order 2. Since ^4 G {^!^4} Moss's theorem
shows that the sets (r], 2, rj4} and {(yh1 ^Q^^ h4>} have a common element, however

and a check on indeterminacy shows that

Therefore 04<^, 2,//4> £ {0, ^04^17} and we now manipulate Toda brackets to
show that rjO^p-n = 0:

e rj9t(ri, 2, 8<r>

= </704, >/, 2>8<T since ^ 2 0 4 = 0 [3]

= 0 since 87r33 = 0 [13] ;

, ^9, 2>8CT since rj6^fi9 = 0

= 0 since 87r41 = 0 [3] .

(N.B. The corrections to [13] given in [3] show that 7i41 = {Z/2)5.) Therefore
04<>7, 2, rj4y = 0 and this proves Lemma 2.4(i).
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(ii) We have tyx(r\, 2, 03> = <i/^l5 rj, 2>03 £ 93n34. and using the table of
generators of 7r34 given in [3] we see the only product of 03 with 7i34 which is not
obviously zero is

02<ri,2,r]5} = (93,r],2}ri5.

From Toda's tables we see that composition with rj defines an injective
homomorphism nl6 -> 7i17. However

<03, rj, T)r\ = 03</?, 2, /?> = d3(2v + rjn2) = 0 ,

and therefore <03, rj, 2> = 0. Thus 03TT34 = 0 and so Lemma 2.4(ii) is proved.

(iii) The group nl6 = Z/2 © Z/2 is generated by rjA and rjpl5. The Adams
filtration of any element of (rj, 2, K> is ^ 3 so (rj, 2, K> is contained in the subgroup
of nl6 generated by rjpl5; but this subgroup is the indeterminacy of <^, 2, K> and so
(r\, 2, K) contains zero.

We now start on the proof of Lemma 2.3.

LEMMA 4.1. (i) rj49iiGrj(93,2,64),

(ii)

Proof, (i) Moss's theorem and a check on indeterminacy show that

So ri4 e (rj, 63, 2> and ^ 4 0 4 e <^, 63, 2>04 = ^<03, 2, 04>. In fact one can check that
there is no indeterminacy, but we do not need this.

(ii) We use 3.2.1 and 3.3.2 of [3]; r\0A e <03, 2, ^4>, v\\ = 0, and so

e < 0 3 , 2 , /?4>»?4 = 0 3 < 2 , »y4> ^ 4 > .

Now, according to 3.3.3 and 3.3.5 of [3], there is an element £ e (2, rj^, rj4} such
that t, e {p}, also v04 G {p}. Obviously ^ —v04 has ^-invariant zero and filtration ^ 6
in 7r33. From Ex of the Adams spectral sequence [13], taking account of the
corrections 3.3.6 and 3.3.7 of [3], <!; — v04G^7r32. NOW, since v03 = rjd3 = 0, it
follows that 03<̂  = 0, and so 03<2, rj4, ^4> contains zero; since 03^4 has filtration
^ 4 in 7r3O it must be zero so there is no indeterminacy, 03<2, rj4, rj^y = 0, and

= 0.

LEMMA 4.2.

iP = Krls •

Proof. By Lemma 3.2, rjKn30 = 0, as n30 is generated by 04. Therefore

, 04 , K} = </?, 2, 0 4 > K = rj5K + rjKn30 = rj5K.
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LEMMA 4.3. There is an element ( € {dt} £ n32 such that rj(, = 0 and 62C = f2y-

Proof. There are relations in Ext^Z/2, Z/2) [20],

h\g2 = h3elf h1el = h3dlt h\n = h^t.

Next from [13] and [6, Theorem 4.1] we see that hlel and dx are infinite cycles, but
d3et = hxt = h\n.

It is straightforward to check that there is an element ( e {d{} such that nC, = 0,
see [13, p. 354] taking account of 3.3.4, 3.3.6 and 3.3.7 of [3]. We shall prove that
63( and rj2y are equal by showing that they both lie in the bracket (a, v, v^)r\, where
£ is any element of {n}, and that this bracket consists of a single element.

From the above Ext relations we see that a^e^^e^}. The differential
^3ei - hln shows that if £ e {n} then v2£ = 0. Now Moss's theorem and a simple
check on indeterminacy show that

Now, as in [3, p. 316], pick T in the set (rj, v, KK) n {«}, then

2T e 2<^, v, KK) = <2, >/, V>K/C = 0.

It now follows that the indeterminacy in the choice of T is the element of order 2 in
the image of J and, for all choices of T, the e-invariant of rjx is zero. From [3, p. 316]
we know that r\x and 2ic2 both lie in {hyu}. It is clear that 2K2 has e-invariant zero,
and so we conclude that r\x = 2k2.

The indeterminacy of the set {h^ey} is generated by fficejc^}, T e {u} and
P39 e {̂ *4 3̂} where p 3 9 is a generator of the image of J. Therefore there are integers
x, y, z such that

e <v, v^, n) .

The e-invariant of ok is zero so, since n21 is equal to the image of J [3, p. 355], this
shows that ak = 0. Next we show that ax = 0; suppose not, then for filtration
reasons ax e {gj}, and so nax 41 0> see Theorem 3.1(iii). But we have shown that
Y\X = 2K2, ak = 0 and so rjax = 0. Finally a check on filtration shows that ap29 is
zero and therefore

<72{e<x<v, vt,ny = (a,v

Now apply Moss's theorem and a simple check on indeterminacy to see that
(a, v, vO £ {^3^}. However hig2 = h3ei and so there are integers p and q such
that

<CT, V, V£> , n2y + qrj3 e <a, v,

Now >/3 = 4v, 4y = 0304 [3, 3.5.2] and so rj2y is zero. We have just proved that
<CT, v, v£}r] contains a multiple of a2 and therefore <<r, v, v<!;>>?2 contains zero (since
rja2 = 0, see [22, p. 190]); in the proof of Lemma 3.5 we checked that rj2an38 = 0 so
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this bracket has indeterminacy zero. Therefore qrj2d = 0 and since rj2d =£ 0 by
Theorem 3.1 we conclude that q is even, qrjd = 0 and rj2ye {a, v, v£)rj.

We have shown that rj2y and <72( are both elements of <CT, v, vOf and we must
now show that the indeterminacy of this bracket is zero. The only point which is
non-trivial is the proof that rjan38 = 0. However it is easy to check that if r}an3S =/= 0
then the only non-trivial element of rjan28 is <5. But, as we have noted, n2anZ8 = 0
whereas rjS =£ 0. Therefore <c, v, vO>? contains a single element and rj2y = a2( as
required.

We now put Lemmas 4.1, 4.2 and 4.3 together to complete the proof of
Lemma 2.3. By Moss's theorem, the differentials d1hdt = hoh\, d2h5 = hoh\ show
that in filtration 3 of the Adams spectral sequence, <03,2,04> is represented by
^4 + ^3^5 = 0. Therefore, using a simple check on indeterminacy, any element of
<03, 2, 04> has filtration ^ 4 and so this set is contained in the subgroup of 7r45

generated by 2<x, P,ny,d. Thus, by Lemma4.1(i), »?404 is in the subgroup of TT46

generated by r\fi, rj2y, rjd.

We checked, in the proof of Lemma 4.3, that rj3y = 0. We now verify that
r]2fi = 0. By definition, /?e (K, 04, 2> so that

= <>72, K, 04>2 since rj2K = 0

, K, 04> = <2, rj2, K > 04 £ TT1704 .

By Moss's theorem, <2, >/2, K:> n { îo
eo} ^ 0 a n ^ there is a relation in

Ext^Z/^, Z/2), h2d0 = hoeo. Now e- and ^-invariant considerations show that
VK e <2, ^2, K> and so 0 e <2, »y2, K> and therefore 04<2, rj2, K> = 0.

Now we have established that ^ 4 0 4 = xr}2 y + yr\fi + zr\b, x, y,zeZ/2, and the
facts that »w404 = 0> ^?2^ 7̂  0 (Theorem 3.1(ii), (iv)) show that z = 0. Therefore
using Lemmas 4.2 and 4.3, we take \J/1 = x( and \j/2 = yfs so that

APPENDIX

T/ie vanishing of certain Toda brackets

Let Pn + 1 be the truncated real projective space IRP°°/IRP" and let i: S" + 1 -> Pn

be the inclusion of the bottom cell.

THEOREM A.I. Suppose that a.ens
n, jS € n) with j < n and ajS = 0. / /

then 0 e <a, j?, a>.
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Lemma 1.2 is an immediate corollary of this theorem.
There are two approaches to such results, one we give here and the other we

intend to discuss in a future paper on the quadratic construction. The two
approaches give slightly different results; using the quadratic construction we need
additional hypotheses on a, for example, n is even, but can dispense with the
hypothesis that) < n. Incidentally the proof we give here shows that the condition
j < n may be replaced by a weaker but much more messy condition.

We begin work on the proof of Theorem A.I. Let Vn+l be the Stiefel manifold
O/O(n + 1), so there is a fibration

Let u: Pn + l -> Vn + i be the usual inclusion, then the hypothesis that j < n implies
that ns

j+n + lS
n + l = nj+n + iS

n + 1 and also that

is an isomorphism. Therefore

and so, from the long exact sequence of the above fibration, there is an element
(f>^Tij+n + 2Vn + 2 such that d(f) = /?. Write £e7E,.+ll + 2BO(n + 2) for the image of <f>
under the map Vn + 2 -> BO(n + 2). We identify t, with a stably trivial vector bundle
over Sj+n + 2 and write E for the sphere bundle of this vector bundle. Then E has cell
structure

LEMMA A.2. The sphere bundle E has the same stable homotopy type as

Proof. Since £ is a stably trivial sphere bundle over a sphere it is homeomorphic
to a stably parallelizable manifold and so the attaching map of the top cell is stably
trivial.

Now let BG be the classifying space for stable spherical fibrations. Then for any
CW complex A, [S/1,BG] is in one-one correspondence with the set {A,S0} of
stable homotopy classes of stable maps A -*• S°. So given aens

n such that a/? = 0,
there exists a stable map

extending a. This now corresponds to a map fx: X -> BG, where X is the j + n + 2
skeleton of E. Using Lemma A.2 and the fact that BG is an infinite loop space this
map fx extends to a map f:E-* BG; write T(f) for the Thorn spectrum determined
by the corresponding spherical fibration over E, normalized so that the inclusion of a
fibre determines an element in ns

0 T(f).
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FIG. 11

LEMMA A.3. The stable cell diagram of T(f) is as shown in Figure 11.

Proof. The n+j + 2 skeleton X of E is a suspension, and a standard result on
Thorn complexes over suspensions shows that T(fx) is the mapping cone of the
stable map

corresponding to fx. We conclude that the cell diagram for T( / ) is as shown in
Figure 12, for some y e ns

n. The diagonal map E -*• Ex E induces a stable map

A:T(f) > £ + A T ( / ) ,

where E+ means E with a disjoint base point adjoined. We can assume n ^ 1 and
then write O : H'(E; Z) -> H'{T{f); Z) for the Thorn isomorphism, so that the
homomorphism A*, in integral cohomology, is given by the formula

A*(x <g> O(y)) = ®{xy), x,ye H*{E ; Z).

Now write p: E+ -> Sn+j+2 for a stable map of degree one in integral cohomology;
such a map exists by Lemma A.2. This gives a stable map

q = (PAl)A:T(f) • Sj+n + 2T(f),

and this in turn gives a stable map

1) > Sn+j + 2T{f){n + 1).

FIG. 12
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Here we write Y{k) for the /c-skeleton of the CW spectrum Y. A cohomology
calculation shows that r is an equivalence, but

T{f)/T(f){n + l) = Sj+n+2 KjYe

2n+j+3l) _ $j + n + 2 u g2

and so a = ±y.
This proves Lemma A.3; Theorem A.I is an easy deduction.
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