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Simply connected five-manifolds
By D. Barden

S. Smale, using his theory of handlebodies, has classified, under diffeomor-
phism closed, simply connected, smooth 5-manifolds with vanishing second

Stiefel-Whitney class. C.T.C. Wall has given a classification of (n - 1)-con-
nected (2n + 1)-manifolds which does not however cover the case n = 2. In
this paper we complete the classification of simply connected 5-manifolds.
A.A.Markov has proved that a general classification of 5-manifolds is impos-

sible, but it seems reasonable to hope for results in the case of 5-manifolds
with a given fundamental group.

The second Stiefel-Whitney class of a simply connected manifold may be
regarded as a homomorphism w: H2(M; Z) - Z, and we may arrange w to be

non-zero on at most one element of a 'basis' (0.5), this element having order

2i for some i (Lemma C). Then i is a diffeomorphism invariant i(M) of M.

If H2(X) -H(M), and i(X) = i(M), where X and M are simply connected
5-manifolds, then there are (0.8) isomorphisms 0: H2(X) - H2(M) which
preserve the linking form b on the torsion subgroups (0.7), and which satisfy
w(M)oO = w(X). The basic theorem (2.2) states that any such isomorphism
may be realized by a diffeomorphism of X with M. Thus H2(M) and i(M)
form a complete set of invariants for the diffeomorphism classification.

On the other hand b imposes restrictions on the second homology group
(Lemma E), and hence on the decomposability of the manifolds. Using results
of C.T.C.Wall on diffeomorphisms of 4-manifolds, it is possible to construct an

example of an indecomposable manifold for each possible homology group (? 1)

and, using these, to give a canonical manifold in each diffeomorphism class

(Theorem 2.3).

In addition to the main theorems, ?2 contains some corollaries and appli-

cations of them. The manner of construction of the indecomposable manifolds

and manifolds similar to them produces minimal handle decompositions and
allows the computation of embedding and immersion dimensions. The nature of
the invariants also allows an extension of the results.

The proof of Theorem 2.2 is omitted from ? 2 and occupies the remainder

of the paper. X and M as above are necessarily cobordant (Lemma F), and
the first step is to find a cobordism with minimal homotopy groups (? 3), i.e.,

one which is simply connected and with second homology group zero or, if

iw(X) # 0, Z2. In ?4 modifications are described of which one enlarges the
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366 D. BARDEN
second homology group in a controlled manner, and the other removes certain

elements of the third. These are used in ? 5 to obtain an h-cobordism V between

X and M such that, for all elements x in H,(X), x and 6(x) map to the same

element of H,(V). Since V is 6-dimensional, Smale's Theorem (A) applies to
give a diffeomorphism of V with X x I, and this induces the required diffeo-

morphism of X with M.

This paper constitutes a revision and enlargement of part of my thesis

(Cambridge, 1963). I am grateful to C.T.C.Wall for drawing my attention to
this problem, and for his helpful suggestions throughout. In particular, I am
indebted to him for making [23] and the results of [25] available to me before
their publication.

0. Preliminary results and definitions

We shall be concerned throughout with compact C--manifolds M" of
dimension n, though non-compact manifolds may occur as submanifolds of

compact ones. M, whose boundary OM need not be vacuous, will be assumed
orientable with chosen orientations 4t, Ott, generators respectively of
H,(M, OM; Z) and H,-,(1M; Z). Most of the fundamental definitions and results
required may be found in [24]. For the rounding of corners etc., see also [3].

0.1. There are several methods of combining two manifolds to form a

third. We let A U B denote the disjoint union of the two manifolds A", B".

If A and B have non-empty boundaries OA, OB, then A + B is formed from

A U B by embedding (n- 1)-discs in OA and OB, identifying them under an

orientation reversing diffeomorphism (the orientations of the embedded discs
being induced from those of OA and OB), and smoothing the corners. More
generally we form A + fB, where f is an orientation reversing diffeomorphism

of any (n - 1)-dimensional submanifold of OB with one of OA. A # B (see
[9], [11]) is formed from A U B by embedding an n-disc in each, avoiding the

boundaries, removing the interiors of these discs, identifying the bounding
(n - 1)-spheres of the resulting holes under an orientation reversing diffeo-
morphism and rounding the corners. Note that O(A + B) = OA # OB, the #

taking place between the boundaries of the discs across which the + was
effected.

0.2. The manifold An + hr. described as "A with an r-handle attached", is
formed from A U (Dr x Dn-r) by identifying St-1 x Dn-r with its image under
some embedding in OA, and rounding the corners. A decomposition of A on x

is the presentation of An as
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5-MANIFOLDS 367
Usually B would be Dn or Qn- x I for some submanifold Q of OA. The follow-
ing theorem is due to Smale ([18], see also [28]).

THEOREM A. If n > 5 and MB is compact and simply connected, all its

boundary components are simply connected, OM Q1 U Q2 where each Qi is
the union of connected components, and Hk(M, Q1; Z) has a direct sum de-
composition with 1k infinite cyclic summands and ak finite cyclic summands,
then M has a decomposition on Q x I with fk + 6k + ak,1 k-handles for each

k.

(If n = 5 under similar hypotheses, a decomposition may be found with
the stated number of k-handles for k = 0, 1, 4 and 5. This follows from the
methods used by Smale and is also proved explicity by A.H.Wallace in [28].)

There is a close connection between decompositions of a manifold M and
'nice functions' on it, that is non-degenerate differentiable real functions which

are transverse to OM on a neighborhood of it and which take values - 1/2 on

Q1, n + (1/2) on Q2, and k at each critical point of index k. To each such function

correspond decompositions of M on Q1 x I with exactly one k-handle for each

critical point of index k. Conversely for each decomposition there are nice
functions with the corresponding number of critical points.

If An has a decomposition on OA x I with ak k-handles and Be has one on

OB x I with /k k-handles, then for any orientation reversing diffeomorphism h

between AA and OB, A + h B has a decomposition with ak + /3n-k k-handles.

For, if f: A - R and f ': B R correspond to the given decompositions with
constants adjusted so that f(QA) =- f'(OB), then g defined by g(A) = f(A)
and g(B) -f'(B) has precisely ak + In-k critical points of index k, since
none are introduced along OA = OB. Then g may be modified to have the correct
critical and boundary values or, equivalently, the handles themselves may be

rearranged (see [18], [28].)

0.3. THEOREM B (Haefliger [5]). Let vV be a closed manifold and Mm an

arbitrary (Co-) manifold.
(a) If f: V-n M is a continuous map with ,( ff) = 0 for i < 2v - m + 2,

then f is homotopic to an embedding provided 2m > 3v + 2.

(b) If f, g: V - M are homotopic embeddings with wri(f) = wi(g) = 0
for i < 2v - m + 3, then g is isotopic to f provided 2m > 3v + 3.
Here ri(f) denotes ,ri(Cf, V) where Cf. the mapping cylinder of f, is formed
from (V x [0, 1]) U M by identifying, for each v in V, v x {1} with f(v).
V x {O} in Cf is referred to as V.

From this theorem it follows that any continuous map of a 3-sphere into

a simply connected 6-manifold is homotopic to an embedding, and that two
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368 D. BARDEN
2-spheres embedded in a simply connected 5-manifold are isotopic if and only if

they are homotopic (if and only if they are homologous).

0.4. In an orientable n-manifold, the second Stiefel-Whitney class w2 is

the obstruction to parallelisability over the 2-skeleton, since it is the obstruc-
tion to the existence of an (n - 1)-field over the 2-skeleton [21] and the com-
plementary 1-field must be continuous.

In a simply connected manifold M, H2(M; Z2) is isomorphic with
Hom (H2(M; Z), Z2) and so w2(M) may be regarded as a homomorphism
w2(M): H2(M; Z) Z2.

In a 6-manifold M the obstruction to s-parallelisability over an embedded
2-sphere is the obstruction to triviality of its normal bundle. For r(M) I S2 =

zr(S2) + V(S2 c M) and so Z-(M) I S2 + SI = S7= V(S C M) + S3 = 7; i e.
z(S c M) is stably trivial; but it is already stable. Thus, in a simply connected
6-manifold, the value of w2 on the homology class carried by an embedded

2-sphere is the obstruction to the triviality of the normal bundle of this sphere.
For orientable 5-manifolds <4a, w2 _~- W3> is the only possible non-zero Stiefel-

Whitney number, and thus the oriented cobordism group &Q? is Z2 (see [19]).
W3is the mod 2 reduction of the integer class W3 = 3*W2 where 03* is the Bockstein

associated with the coefficient sequence

0 > Z 2 > ->2 - 0.
The fifth spinor cobordism group is zero (see [14]).

0.5. In an abelian group G, a set of r non-zero elements will be termed
independent if the subgroup which they generate together is the direct sum

of the r cyclic subgroups which they generate separately. By a basis of a
finitely generated abelian group G will be meant an independent set which

generates G. The set of non-zero elements x1, **, x, is independent if and

only if f1xl + - * + nrxr = 0 implies nix, = 0 for each i. Any maximal pure
independent set forms a basis (see [8]).

Clearly the number of elements in a basis is not in general an invariant of

G. However the number of elements of infinite order is invariant, and for the
torsion subgroup the orders and the number of elements in a basis with the
most or fewest possible elements are invariants. In the first case the number

of elements of order pi is the i"t Ulm invariant of the p-primary component

of G, and in the second case we have the classical decomposition of a finite
abelian group as a direct sum Zk1 + *-- + Zkr' where k, divides k?,1.

1 Throughout this paper if A and B are abelian groups, we shall denote by A + B
the direct sum of A and B.
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5-MANIFOLDS 369
DEFINITION. In a finitely generated abelian group A, a basis with the most

possible elements will be called a U-basis; a basis with the fewest possible, a

minimal basis. If w is a homomorphism of A into a group B, a w-basis will

be a basis on all of whose elements except possibly one w is zero.

LEMMA C. If A is a finitely generated abelian group, and w a homo-
morphism into ZP, the cyclic group of order p, then A has a U-basis which
is also a w-basis. If the order of the exceptional element in such a basis is
piy 0 < i < a, then i depends only on w, and i(w) = i(w o a) for any a in
Aut(A).

PROOF. Let e1, e2 be elements of a U-basis {e1, *.., erl, of orders pr, ps

with r ? s and such that w(e1) = U, w(e2) = ku for some u in Zp. Then the

set {e2- ke1, e1, e3, *.., er4 is a U-basis and w(e2 - ke) = 0. (The set clearly

spans A and gp{el, e2} = gp{el, e2 - kel} = gp{el} + gp{e2 - kel}, since if n1el +
n2(e2- ke) = 0 then ps divides n2 and so also pr divides n2 and thence n1.)
Since the basis is finite, such changes will eventually produce a U-basis having
the required property. The possibilities r, s =x are not excluded.

If w is not the zero homomorphism, then in every basis there is at least
one element on which w is non-zero. If the distinguished element of a w-basis
is of infinite order, then w is zero on the torsion subgroup of A. Since w is
necessarily zero on q-primary components for q # p, to show that i(w) is well

defined it therefore suffices to consider AP, the p-primary component of A.

Let {f1, f2, * * fr} be a w-basis (and necessarily a U-basis) of AP such that
w(f1) + 0. If e is any element of AP with order less than that of f1, then
w(e) 0, since for e = n1fl + ... + nrfr to have order less than f1, p must
divide n1. Thus, if w(e) # 0, the order of e is at least as great as that of f1;

and if e is the exceptional element of a w-basis, then its order must be precisely
that of f1.

The image of a U-basis under an automorphism a of A is another U-basis.
For independent elements map to independent elements since a is monomorphic

and the images of the basis elements generate A since a is epirnorphic, and

clearly the new basis is also a U-basis. Thus the above argument also shows
that i(w) = i(w o a).

COROLLARY. If M is a simply connected 5-manifold then i(M) =
i(w2(M)) is a diffeomorphism invariant of M.

0.6. There are two 3-disc bundles over the 2-sphere since 1rl(SO3) = Z2;
denote these A, B where A is the trivial bundle D3 x S2. Thus8A = S2 x S2,

aB = P # Q where P denotes the complex projective plane, and Q is the same
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370 D. BARDEN
space with the opposite orientation (see [21]). H2(A) = Z = H2(B) and H2(OA) =

Z + Z -H2(QB) and we choose generators once for all as follows; choose
generators u of H2(A), v of H2(B) and then choose generators a, b of H2(OA)
corresponding to the factor S2's, and generators p, q of H2(OB) corresponding
to the summands P, Q, such that i(a) = u, i(b) = 0, i(p) = v = i(q), where i
is the homomorphism induced by the relevant inclusion. If denote the
intersection number of homology classes then a b = 1, pop 1, q~ q - 1,
and ada = bob = pq = 0.

Since S2 -DN + id DS, the union of its northern and southen hemispheres,

and since any bundle over a disc is trivial, both A and B are of the form
D + fD with identification f along certain D3 x S1's in the bounding S4 of each

disc; i.e., they are of the form D' + h2. Conversely any manifold of this form
is one or another of these disc bundles (cf. [17]).

w2(A) 0 0 and w2(B) # 0, i.e. w2(u) = 0 and w2(v) # 0 and so, if M is a
simply connected manifold with A z M or B c M, then w2(i(u)) 0 0 and
w2(i(v)) # 0 on account of the interpretation of w2 as the obstruction to paral-
lelisability over the 2-skeleton.

0.7. The following description of linking numbers is based on those of [16],
[9] and [23], and we refer to [2] and [6] for the properties of the-- and -
products that we require.

Let M be a manifold with boundary OM having orientations pA, Oa, so that
As and (va) -- are the duality isomorphisms in (M, OM) and OM respectively,

let f be the Bockstein in cohomology associated with the coefficient sequence

O - > Zjo Q Q/Z > 0.
and let e, e' denote the homomorphisms Ho(M; G) G and H,(OM; G) G
respectively, induced by the augmentations of the chain complexes.

Let d be an element of HP(M, OM; Z) and x' of Hq+l(M; Z) such that
x' = $, where p + q 4- 1 = n. If d is a torsion element so is x', and in

the exact sequence

Hq(M; Q) i* q(M; QIZ) : q+l(M; Z) k*q+l(M; Q)y

associated with the above coefficient sequence, k*(x') 0 0 so that x' = p(x) for

some x in Hq(M; Q/Z). For any 7y in Hq(M; Z), es(y)-x) is an element of Q/Z.

If 3(x1) = x', then x1 - x = j*y for some y in Hq(M; Q) and

-SQ) - I) - 6(y-- x) = -SQ) - j* y) = j * (7--Y) = is(yv) -

If 7y has finite order, this difference is zero since so(--y) is a homomorphism

from Hq(M; Z) to Q, and so in this case es(ry - x) is determined by 7y and 5; it
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5-MANIFOLDS 371
is called the linking number b(r), >) of 7y with t. The definition of b(t, 7)) is

similar and there is an obvious simplification when M = 0.

LEMMA D. (i) b is a non-singular bilinear form on the torsion sub-
groups of Hq(M; Z) and H,(M, &M; Z).

(ii) b(q, r) + (- 1)pqb(r, ) = 0 where I, C are torsion elements of
H,(M, OM; Z) and Hq(M; Z) respectively.

(iii) b(&t, r) = b(, iff) where A, r are torsion elements of H,(M, OM; Z)

and Hq(&M; Z) respectively and 8, i*, the corresponding homomorphisms of
the homology sequence of (M, OM).

Proofs are straightforward and we give here only that of (iii).

Let C= Op -Sy, then i * C = (,5y) = A a-1(6y). Thus

0.8. In particular when Mis a (4k + 1) -dimensional closed manifold, linking

numbers give a skew-symmetric non-singular bilinear form on tors(H2k(M)).
In [23] Wall shows that this form determines completely the possibility of
killing the middle homotopy groups of such manifolds. It also imposes
restrictions on decompositions of and diffeomorphisms between the manifolds.
We shall show (Theorem 2.2 and Corollary 2.2.1) that these and similar ones
imposed by w2 are, for 5-manifolds, the only restrictions. We need the follow-
ing notation and results.

Let b: G 0 G o Q/Z be a skew-symmetric non-singular bilinear form on

the finite abelian group G.

DEFINITION. A b-basis of G is a basis {z1, z, x1, Y1, * Xk, Yk} where z,
has odd order qA, z2 has order 29 and b(z1, z2) = 1/9 xi and yi have the same
order Oi and b(xi, y) = l/Oi, while all other linking numbers between these

elements are zero except possibly b(yi, yi) and b(z2, z2). If G is a finitely
generated abelian group and b is defined on its torsion subgroup, then a basis
of G will be called a b-basis if it contains a b-basis of tors(G).

Note. In general, G will not have a basis as above, either z1, or both z,
and z2 may be absent, but it will be convenient to insists on their presence and

allow z1 or both to be zero, adopting a similar convention for the terms 'basis',
'U-basis' and 'w-basis' when that is necessary. Note that the properties of b

imply b(z1, z1) = 0 and b(z2, z2) 1/2 if Z2 # 0.
For b as above the map x - b(x, x) determines a homomorphism of tors(G)

into the subgroup {0, 1/2} of Q/Z, which is isomorphic to Z2. We denote this
homomorphism of tors(G) to Z2 by w(b). A basis of G containing a w(b)-basis

of tors(G) will be called a w(b)-basis of G.

This content downloaded from 128.151.13.25 on Sat, 11 Jan 2025 18:24:11 UTC
All use subject to https://about.jstor.org/terms



372 D. BARDEN
LEMMA E. Let b: G (0 G - Q/Z be a skew-symmetric non-singular

bilinear form on the torsion subgroup of the finitely generated abelian group
G. Then G has a U-basis which is also a b-basis and w(b)-basis.

PROOF. The elements of infinite order in any U-basis may be left as they
are. It is shown in [23, Lemma 4(ii)] how to replace those of finite order by
a b-basis of the torsion subgroup. The proof there is carried out separately on

each p-primary component so the result is still a U-basis. If it is not a w(b)-
basis, then we have, say, b(y, y1) = 1/2 = b(y2, y2). Thus 2 divides 01 and 02
and, being the order of an element of a U-basis, each is a power of 2 and if,
say, 0, _ 02 we may define an automorphism of G by

X1, X2 > Xi - (02j01)x29 X2

Y1, Y2 - Y1, Y1 + Y2 + (01/2)xl

other basis elements being left fixed. The result is another U-, b-basis such
that w(b) is non-zero on one fewer element and, repeating this process as often

as possible and then replacing yt by y1 + z2 (z1 = 0 in a U-basis), we obtain a

U-, b-, w(b)-basis.

Complement. G has a b-, w(b)-, minimal basis.

PROOF. Start from the b-, w(b)-, U-basis of the lemma. If (01, 02) 1,
then there are k, q such that k(01 + 02) + q0102= 1. Then k(x1 + x2) and
(Y1 + Y2) form a basis of gp{xj, X2, y1, y2} and they have order 0102 and linking

number k/01 + k/02 = 1/0102 (in Q/Z). Similarly if 01 is odd x1, Y1, z2 may be
replaced by z', z' = x1, Y1 + z2 so that b(zl, Z2)= 1/0k and z2 has order 201. These

changes will not affect the property of being a w(b)-basis so we may use them
to obtain a b-, w(b)-, minimal basis.

COROLLARY. Tors(H2k(M4k1l)) - B + B or B + B + Z2 for some finite
abelian group B.

In [23] Wall proves (Propositions 1 and 2):

LEMMA F. Let M be a simply connected closed 5-manifold and x a
torsion element of H2(M; Z), then b(x, x) # 0 if and only if W2(X) # 0. The

extra Z2 appears in the above corollary if and only if M is in the non-zero
cobordism class.

Finally we note

LEMMA G. If M is a simply connected closed 5-manifold, then H2(M; Z)
has a W2-, b-, U-basis and a W2-, b-, minimal basis.

PROOF. By Lemma F we may start from the w(b)-, b-, U-basis of Lemma

E, respectively w(b)-, b-, minimal basis of its complement, and then make any
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5-MANIFOLDS 373
alternative choices of the elements of infinite order that are necessary to obtain
w-bases. These will clearly still be b- and U-, respectively minimal, bases.

1. The manifolds

For the notation used below see, 0.1, 0.6. Generators of the second
homology groups of various copies of the disc bundles A, B will carry the same

suffixes as the bundles.

Let M be an oriented 5-manifold and f an orientation preserving diffeo-

morphism of OM onto itself. Then, if M* is a second copy of M but with the
opposite orientation, f may be regarded as an orientation reversing diffeomor-

phism of &M* onto OM and we may form the oriented closed manifold M+ f M *.

We shall require f to realize given automorphismsf* of H2(&M), obtainingffrom

the results of Wall in [25].

We note first the matrices

1 0 0 -k- 1 n -n O- 1 n -n o-
A(l) 0 0 0 B (n) 0 n -A k 1 0 n 0 1 n n 0 1 n

O 0 0 1-j _ 0 -n n 1- Ln I 0 An-
Construction. M,=S5,Mo S2X S3and for 1 <k< c< , Mk= (Al + A2) +

fk (A, + A2)* where fk realizes the automorphism (fk)*(al, bl, a2, b2) =
(a,, bi, a2, b2)A(k).

X-1 = B + g-1 B*, X0 = S5 X. = B + gOO B* and for 0 < j < c, X, =
(B1 + B2) + gj (B1 + B2)* where g-1 realizes the automorphism (g4,)*(p, q) =
(p, - q), g?, realizes (gOO)*(p, q) = (p, q) and for 0 < j < ca , gj realizes

(gj)* (p1, q1, P2, q2) = (p1, q1, P2, q2)B(2j-1).

More generally construct X[B(n)] and X[C(n)] as were Xj, 0 < j < CA,
but using the matrices B(n) and C(n) respectively instead of B(2j-1).

LEMMA 1.1. All the manifolds are simply connected and

(i) H2(Mk) Zk + Zkfor k # 1,c .
(ii) H2(X-1) =Z29 H2(Xo) = Zen H2(M-o) = Zig
(iii) H2(X[B(n)])= Z2. + Z 2n H2(X[C(n)]) = Z2n-i + Z4n-2
(iV) W2(Mk) 0 for all k.
(V) w2(X) 0 0 for X = X-1, X,,, X[B(n)] or X[C(n)].

In particular for 0 < j < cc, H2(Xj) = Z2j + Z2j and w2(Xj) # 0.

PROOF. (i) Generators for H2(Mk) are carried by the images under inclusion
of u1 and u2. This can be seen for example from the decomposition of Mk

obtained from those of A1 + A2 and (A1 + A2)* as in 0.2. In this the only 2-
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374 D. BARDEN
handles are those corresponding to A, and A2. If i denote the homomorphism
induced by the relevant inclusion map into 1k, then by the choice of fk, i(b,*)=

i(ka, + b1) and since, by the choice of these generators, i(b1) = 0 = i(b1*) and

i(a2) = i(u2) we get k i(u2) = 0. Similarly k i(u1) = 0, and as there are no
other relations, (i) is proved; (ii) and (iii) follow by a similar argument. Thus
for 1 < j < cA, the relations i(p1*) = i(p1 + 2j-1q, + 2j-1p2) and i(q1*) =
i(2j-1p, + q1 - 2j-1q2) lead, since i(p1*) = i(q1*), i(p1) = i(q1) and i(p2) i(q2) =

i(v2), to the relation 2i i(v2) = 0. The other relations give 2i i(v1) = 0; (iv)
follows from 0.4 since, by the handle decompositions mentioned above, the Mk
are simply connected and generators of their second homology groups are car-
ried by copies of the trivial 3-disc bundle A; (v) is similar. In particular
w2(i(v1)) # 0.

Remark. (1) The manifolds Mk are those also called Mk by Smale in [19].
This follows from Lemma 1.1 and Smale's classification theorem.

(2) XO,. is the non-trivial 3-sphere bundle over the 2-sphere. This can be
seen by pulling the latter apart as in [21]. X1 is the Wu manifold (cf. [4]).

(3) X1 = X1 # X1, which will follow from Lemma 1.1 by Theorem 2.3,

but otherwise the manifolds Xj and Mk are not decomposable. Except for M2,

this follows from Lemma E. However if M2 were decomposable, one factor M'

would have H2(M') = Z2, w2(M') = 0 which, by Lemma F, is impossible.

LEMMA 1.2. (i) W3(Xj) is non-zero except when j = oo.
(ii) w3(Xj) is non-zero only when j =-1, 1.

PROOF. W3 = a*W2 and as w2 is known it is sufficient to calculate a*.

Corresponding to the obvious handle decompositions the Xj, for 0 < j < o,
have cell decompositions with cells el, e2, e', el, e', e5. Denote (ei) the integer

chain carried by ej, [ei] the dual cochain, [ei]2 its mod 2 reduction and let { }
denote the cohomology class. Thus (ei) represent the generators of H2(Xj; Z)
and 8(e') = 2j(ei); (cf. the proof of 1.1 (iii). For convenience we have swapped
the labels of the 3-cells.)

The Bockstein is calculated from

0 - > C2(Xj ; Z) - C2(Xj; Z)- > C2(Xj; Z2) 0
> C3(X x2I

0 > C3(Xj; Z) - C3(Xj; Z) > C3(Xj ; Z2)- >0?
Mefl2 lifts to [eW] in C2(Xj; Z) and, as [efl] = 2i[efl] = (2j-1[ef]) x 2, b*{[ei]2}
2j-1{[el]}. However the 2-cells ei correspond to the non-trivial bundles Bi, so
w2(X3) = {[el1]2} + {[e2]2} and W3(X3) = 8w2(X3) = 2j-l{[el] + [e3]}. w3(Xj) is
zero unless j = 1.
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5-MANIFOLDS 375
The results for j -1, oo are proved similarly, there being only one 2-

cell and one 3-cell and, in XOO, O[e3] = 0.

It remains to show how the diffeomorphisms required for building the
manifolds are realized. Using a diffeomorphism of CP(2) which reverses the

orientation of CP(1), it is clear how to realize g1, g,,. is of course realized by
the identity, and the automorphism determined by C(n) may be realized by a

diffeomorphism which realizes the automorphism given by B(n) followed by a
diffeomorphism which takes Q2 onto Q1 reversing the orientation of the projec-
tive line, takes Q1 naturally onto Q2 and leaves P1 and P2 alone.

For the rest, we need the results of Wall. We describe briefly the general

diffeomorphism of [25], referring to that paper for the details. Let T denote
S2 x S2 or P # Q with generators x, y of H2(T) taken respectively as b, a, and
p, p - q, i.e., such that x y = 1 and y y = 0. Then if N is a simply connected
4-manifold and 8 in H2(N) has 8. = 0 there is diffeomorphism of N # T onto

itself inducing the following automorphism of H2(N T):

y y
x - x + -

-i c H2(N) r>f 0(y .)y

To produce this diffeomorphism note that # T is equivalent to a spherical

modification in N of some circle f(S' x 0) isotopic to zero. It is shown in [25]
that /, being spherical, is also carried by an isotopy of f(S' x 0) finishing in
its original position. The extended isotopy of N gives a diffeomorphism
h: N Ntaking, after some adjustment, a tubular neighborhood of f(S' x O) to
itself. The required diffeomorphism d, of N # T = (N - f(S' x D3)) + id D2 x S2
is given by h on N - f(S' x D3) and the identity on D2 x S2. Clearly y,
carried by 0 X S2, is mapped to itself while x, carried in N# T by D2 x 0
together with an isotopy of f(S' x 1), 1 c &D3, to zero in N - f(S' x D3), maps
to x + 8. Now y y + ay since the identity is induced on H2(N) and 0
x. = d(x) d(y) shows that a =- -.

For N= T = S2 x S2 take = - ka. Then the resulting diffeomorphism
realizes the automorphism determined by A(k).

Similarly taking T = P1 # Q2, N= Q1, P2 and 8 = n(q, + P2) we may
realize the automorphism given by B(n).

2. The theorems

THEOREM 2.0 (Markov [10]). The class C of closed orientable C--, n-
manifolds (n > 4) is not classifiable under diffeomorphism, combinatorial
equivalence, homeomorphism or homotopy type.
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376 D. BARDEN
Here each element of C is given by a triangulation, and by a classification

would be understood the finding of a class of pairwise inequivalent manifolds
and a finite algorithm to determine, from its triangulation, to which canonical
manifold an arbitrary manifold of C is equivalent. The theorem follows trivial-
ly from

THEOREM 2.1. There is no algorithm for C to determine whether an
arbitrary member is simply connected.

OUTLINE PROOF (for details see [10]). Given any group G(r, k) with r
generators and k relations between them, construct the manifold M(r, k) =
Dn+ + hi + + hr + hl + *. + h 2 where the attaching maps for the 2-
handles wind around the 1-handles according to the k relations. Then such an

algorithm applied to M(r, k) + id M(r, k) would lead to an algorithm to
determine whether G(r, k) = 1. Adyan [1] has shown that this is not possible.

THEOREm 2.2. Let X and M be simply connected closed 5-manifolds and

O: H2(X) > H2(M) an isomorphism preserving linking numbers and such
that w2(M) o 0 = w2(X). Then there is an orientation preserving diffeomor-
phism f: X -M such that f* = 0.

The proof will occupy paragraphs 3, 4 and 5.

COROLLARY 2.2.1. For each b-basis {z1, Z2; XI, Y1, Xr, yr; e1, -* es}
of H2(M; Z), there is a diffeomorphism f of M onto N - l z2 # Mxll
# Mes, where, if (U, v) = (z1, Z2) or (xi, yi), f induces a b-preserving isomor-
phism of gp{u, v} onto H2(M.,,) and H2(Me,) = Z with W2(Mej) = 0 w2(ei) =
0.

Construction. Take Mz1,z2 X[C((9 - 1)/2)] if the order q of z1 is not 1,
and M X1if9 1. Take M = Ma Oi the order of xi and yi, when
b(yi, yi) = 0 and MxiYi = X[B(Oi72)] if b(yi, yi) # 0. Take Me, Mc. if w2(ei) =

0 and Me. =X if W2(ei) # 0.

PROOF. These manifolds have the correct second homology group and

second Stiefel-Whitney class. Thus, taking a b-, minimal basis u', v' of H2(M.,V),
the isomorphism u, v - u', v' is b-preserving by Lemma F. Taking these to-
gether with isomorphisms mapping each ei to either generator of H2(Me.) we
have an isomorphism of H2(M) onto H2(N) satisfying the hypotheses of the

theorem which we may therefore apply to obtain f.

COROLLARY 2.2.2. Corresponding to any b-basis of H2(M; Z), M has a
handle decomposition with one 0-handle, one 5-handle, and one 2-handle, and

one 3-handle for each element of the basis. In particular, M has a decom-
position with the minimum number of handles consistent with its homology.
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PROOF. This follows from the preceding corollary since each factor mani-

fold has such a decomposition, as is clear from their method of construction;
and, since # is equivalent to removing a 0-handle and a 5-handle from the

disjoint sum, the same is therefore true of M. To obtain a minimal decomposi-
tion, use a b-, minimal basis (Lemma G).

THEOREM 2.3. The class of simply connected, closed, smooth, oriented

5-manifolds is classifiable under diffeomorphism. A canonical set is
Xi # # -.-.- # M,, where -1 < j < o, s > 0, 1 < k1 and ki divides ki
or ki l l=c A complete set of invariants is provided by H2(M) and i(M).

Remark. When i(M) = 0, this reduces to the classification of Smale [19].

PROOF. For i(M) see 0.5. That this, with H2(M), distinguishes between

the canonical manifolds, follows from Lemma 1.1 and the restrictions on the
ki. For two of these manifolds can only have the same second homology group
if Xj in one is replaced by M2j in the other (j > 0), in which case i(M) is j for
the first, and zero for the second. That an arbitrary manifold of the class is
diffeomorphic to one of the canonical manifolds may be seen as follows. Take

a w2-, b-, U-basis of H2(M), remove from it z2 and x1, y1 if b(y1, y1) # 0 or e1 if

w2(e,) 0 0 and let G denote the group generated by the remaining elements.

Then w2(G) = 0 and b restricts to a non-singular form on G and a b-, minimal

basis of this (Lemma G) together with the excluded elements gives a basis of
H2(M) which determines an obvious b-preserving, w2-preserving isomorphism
onto the second homology group of one of the canonical manifolds and so, by
Theorem 2.2, a diffeomorphism of M onto this manifold. Note that in the
canonical decomposition Xj is determined by j =- 1 if z2 # 0 and j = i(M)
otherwise, the remaining factors being determined by H2(M).

There is no difficulty in describing an algorithm to determine H2(M) and

i(M) from the triangulation. For i(M), w2(M) must be calculated on a set of

generators of H2(M); this could be done using the Wu formulas or, from
Lemma F, by calculating the'linking numbers.

COROLLARY 2.3.1. The same classification is valid for homotopy type,
for combinatorial equivalence or for homeomorphism.

PROOF. The invariants, being obtainable from homology, cohomology and
cap-products, are homotopy type invariants. Conversely, diffeomorphism im-
plies each of the above relations.

COROLLARY 2.3.2. The same classification applies to closed, simply
connected combinatorial 5-manifolds.

PROOF. J. Cerf has shown that P4= 0, and so every combinatorial 5-
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manifold has a compatible differential structure.

LEMMA 2.4. Let M be a simply connected 5-manifold, then

( i ) M cc R8 (M is immersible in R8).

(ii) M cR7._ W3(M) =O.
(iii) M cR6 <=w2(M) =O.

PROOF (see Hirsch [7]). The only possible non-zero Stiefel-Whitney classes
are W3 and w2. Hence if v is the normal bundle of an embedding of M in R",
the total Whitney class (mod 2) is w(V) = 1 + W2 + w3. Moreover W3(V)

W3(M) since each is 65*(w2).

If w2 = 0. v has a 5-frame cross-section over the 2-skeleton. The obstruc-
tions to extending this over M which correspond to non-zero Hr(M) have
coefficients in wT2( V6,5) and T4( V6,5) which are both zero [15], so there is a 5-frame

field over all M. Thus by [7] it is possible to immerse M in space of five fewer

dimensions, that is in R6. Similarly if W3 = O. v has a 4-frame field over M
(wT4( V6,4) = 0), and there is always a 3-frame section of v. Thus if W3(M) = 0,
M is immersible in R7, and in any case it is immersible in R'.

Conversely if M cc R7 then, multiplying by RK, W cc R" with a 4-frame
field in the normal bundle and so W3(V) is zero. Similarly M cc R6 implies that

w2(v) is zero.

COROLLARY 2.4.1. (i) i(M) = 0 or M oc R7,
(ii) i (M) = 0 :, Muc R .

PROOF (By Lemmas 1.2 and 2.4 and Theorem 2.3). Since by the last M =

Xj M' with i(M') = 0 and so w2(Xj)=O =-w2(M) = 0, W3(Xj) = O0=_ W3(M) =
0.

THEOREM 2.5. Let M be a simply connected 5-manifold then

( i ) M c R9 (M is embeddable in R9).

(ii) Mc R8 i(M) =0 or 0.
(iii) M cR6 i(M)= 0 M cR7.
PROOF. (i) Follows from Haefliger's Theorem B.
(ii) By Theorem 2.3, if i(M) = DOA, then M = X.. # M' where i(M) = 0, so

assuming the embedding of (iii), it suffices to embed X.. in R8. Look at the
non-trivial disc bundle B. This has W3(B) = 0 and so by Lemma 2.4 B c R7.

After a suitable isotopy we may assume the zero cross-section of B, and with
it a sufficiently small tubular neighborhood, is embedded. But this neighborhood
is again B, so B ci R7. Now if h: B ) R7 is such an embedding then
(h(B) x {- 1}) + id (h(&B) x [- 1, 1]) + id (h(B) x {1}) is an embedding of XO. =
B + id B in R8 once it has been smoothed. Conversely by [13, Theorem 14] if
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5-MANIFOLDS 379
M5 c R5'+' with normal bundle v, then X(v) = 0, where X denotes the Euler

class. However if k = 3, then x(v) = W3(M) (cf. [13, Theorem 22]) and so by
Lemma 1.2, i(M) = 0 or co (cf. the proof of 2.4.1.).

(iii) By a similar argument M c R7 implies that w2(M) = 0 and so i(M)

0, and it remains to construct the embeddings of these manifolds in R6. Let
V ci R6 be D4 x S2. For any k, k times the generator of H2( V) is carried by a
2-sphere Sk embedded in the boundary. The closure X of the complement of
V in R' is 2-connected and So Sk is isotopic to zero in X by Theorem B. The

3-disc formed by the isotopy may intersect itself, however using Haefliger's
theorem again, it may be replaced by an embedded 3-disc. This disc together
with an embedded normal bundle form a 3-handle h3 on V and, if W = V + h3,

then Ho(W)= Z, H2(W) = Zk, and Hr(W) = 0 otherwise. &W is clearly
simply connected, and computation of the homology sequence of (W, S W)
shows that H2(&W) is an extension of Zk by Zk and so must be Zk + Zk since
it has an element of order k and is of the form B + B. Thus, since w2( W) =

w2(V) = 0, by Theorem 2.3, a W - Mk, and by the same theorem the connected
sum of these for suitable k gives the general M with the i(M) 0.

3. Cobordisms between the manifolds

We shall prove Theorem 2.2 by obtaining an h-cobordism between X and

M and then using Theorem A. The existence of a b-preserving w2-preserving

isomorphism between their second homology groups ensures that X and M are

cobordant by Lemma F, and the first step is to find a cobordism. which is simply

connected and has the smallest possible second homology group. This will then
be modified into an h-cobordism.

LEMMA 3.1. If X and M are cobordant simply connected 5-manifolds
with second Stiefel- Whitney classes either (i) both zero, or (ii) both non-zero,
then a simply connected cobordism V between them may be found with
H1(V) = 0 in case (i) and H2(V) =.Z2 in case (ii).

PROOF. (i) When w2(X) = 0, then since the 5-dimensional spinor cobordism

group is zero, there is a cobordism V' between Xand M with w2( V') =O. That

is V' is 2-parallelisable and, by [13, Theorem 3], may be replaced by a 2-connected
cobordism V. Alternatively we may use Lemma 1.3 of [19] to construct V directly;

that lemma says that each of X and M bounds a manifold of the form D6 + 3-
handles, and the connected sum of these with suitable orientations will provide
a V.

(ii) When w2(X) f 0, then neither is w2( V). For

i*w(V) = w(z(V)IX) = w(z(X)e3el) = w(X) w(e1) = w(X),
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where w is the total Stief el-Whitney class, and the trivial factor e1 is the inward

normal to V along X. In particular w2(X) = i*w2( V). Choosing any cobordism

V' then on account of dimensions, e.g., by Theorem B, any map of a 1-sphere
or 2-sphere into V' may be replaced by an embedding, and since V' is orientable
any embedded 1-sphere has trivial normal bundle. Surgery [12], [9], [27], can
therefore be applied to obtain a simply connected cobordism V". Now if S2
embedded in V" carries x in H2( V"), then w2(x) is the obstruction to triviality
of the normal bundle (see 0.4). Thus all the generators of H2( V") may be killed
except those on which w2 is non-zero. By 0.5 this need only be one, say x.

Since w2(2x) = 2. w2(x) = 0, 2x may also be removed leaving a cobordism V with

H2(V) = Z2.
4. Modification of the cobordisms

The cobordism of Lemma 3.1 is not necessarily an h-cobordism, having in
general too small a second homology group and too large a third. In this section
we describe the modification which will be used to rebuild the second homology

group, and that which is required to trim the third. For Theorem 2.2 we
require not just an h-cobordism but one V, such that the induced diffeomor-

phism between X and M will realize a given isomorphism of second homology

groups. Thus a corresponding pair of elements from these groups must map

to the same element of H2(V), or in other words their difference must lie in

the kernel of the homomorphism induced by inclusion. Lemma 4.3 is therefore
stated in a way which shows just how much control we have of this kernel
when each modification is made. Two preparatory lemmas are necessary.

LEMMA 4.1. If V is a simply connected 6-manifold, then any element

of H3(V) is carried by an embedded sphere.

PROOF. Since w1(V) = 1, it follows by G.W.Whitehead's extension of the
Hurewicz theorem [29] that the. Hurewicz homomorphism r3( V) H3( V) is an
epimorphism. That is, the elements of H3( V) are carried by maps of spheres
which, by Theorem A, are homotopic and so homologous to embedded spheres.

LEMMA 4.2. If 3: G > X + H is an epimorphism of finitely generated
abelian groups with X cyclic and 3(tors(G)) c H, and if there is an indivis-
ible element in the kernel of 3, then G may be written as the direct sum Z +
G' where Z is infinite cyclic and 3Z = X, 3G' = H.

PROOF. Let x be a generator of X, z' an indivisible element of the kernel

of 3, and write G = gp{z'} + A. Then x = 3a for some a in A and so x = 3z
where z = z' + a is an indivisible element of infinite order which therefore

generates an infinite cyclic direct summand Z of G. Let {z, y', * , y , tq, .. , t8}
be a basis of G with the y' of infinite and the tj of finite order. If 3y' =

This content downloaded from 128.151.13.25 on Sat, 11 Jan 2025 18:24:11 UTC
All use subject to https://about.jstor.org/terms



5-MANIFOLDS 381
Xix + hi with hi in H, and if y = y - xiz then {zY1, **, Yr t1, **Y, tJ} also
is a basis with 3yi in H by construction and 3tj in H by hypothesis. Thus if

G= gPg{y1, *, yr t1, * **, tl } the decomposition G = Z + G' satisfies the re-
quirements of the lemma.

We are now in a position to prove the main lemmas.

LEMMA 4.3. Let V be a simply connected compact 6-manifold with
H2(8 V) X + H where X is cyclic, the image of the torsion subgroup of
H3( V, a V) is contained in H and the kernel of i: H2( V) - H2( V) is the sum

of subgroups of X and H. Then there is a manifold U with the same bound-
ary such that ker(j) ker(i) n H, and there is a natural epimorphism
k: H2(U)* H2(V) with k oj i and ker(k) c j(X), wherej: H2(V) -H2(U)
is the homomorphism induced by the inclusion.

PROOF. Let x generate X and X be the least positive integer such that
i(\x) = 0, then by hypothesis ker(i) - XX + K with 8(tors(H3( V, a V))) ci Kcz
H, where a is the boundary homomorphism. Then, taking the connected sum of
V with S3 x S3 if necessary to provide an indivisible element in the kernel of
a, we may apply Lemma 4.2 to find a decomposition H3(V, &V) = Y + G such
that Y is infinite cyclic and &Y xX, &G = K. Choose a basis {y, g1, *. , gk}

of H3(V, &V) with y in Y and gi in G, and then find v in H3(V) with intersec-
tion number 1 with y and zero with each gi. By Lemma 4.1, v is carried by an
embedded 3-sphere S, and as this necessarily has a trivial normal bundle we
may carry out a spherical modification over it.

Let S, x D3 be a tubular neighborhood of S, avoiding 0 V, and form W
V - (S, x D3) and U = W + id(D4 x S2). Note that W and U are simply
connected and that, since U may be obtained from W by adding a 4--handle and

a 6-handle so that H2(U, W) 0, H,(U, W)= 0, the inclusion induces an
isomorphism of H2( W) onto H2( U). We shall use this isomorphism to identify

these groups and in particular replace j by the homomorphism H2(8 V) H2( W)
induced by inclusion. In the sequence

H3( V) HA(V, W) H2( W) HA(V) H2( V, W) Y
H2( V, W) 0 0 and H3( V, W) -Z with its generator carried by a disc which
is a fibre of the tubular neighborhood of S,,, the homomorphism from H3( V) is

given by the inclusion in H3( V, 0 V) followed by taking the intersection number

with v, and the image of H3( V, W) in H2( W) is generated by the element u

carried by the boundary of the above disc fibre. Thus k is an epimorphism with
kernel generated by u, and k o j i i since all three are induced by inclusions.

The element y in H3(V, 0V) has a representative chain which meets S, x
D3 just once, along a disc fibre * x D3; any representative is homologous to
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one 'pushed off' the disc (S, - *) x D3 and then copies of * x D3 with opposite
sign may be deleted from the result leaving eventually, since the intersection

number of y with v is one, the required chain (cf. [23]). Thus u, carried by

* x &D3, is homologous in W to &y = Xx, that is, j(Xx) = u and so the kernel

of k is in j(X).
Ker(i) n H = K, which by the choice of G is &G, so it remains to be shown

that &G = ker(j). But any element of G has, as above, a representative chain
avoiding S, x D3 so that the elements of OG are homologous to zero in W.

Conversely any element of ker(j) is the image of an element of H3( W, a V) any
representative chain of which, a fortiori, misses S, x D3. This chain represents

in H3( V, a V) an element paz + /2igi having intersection number p with v. Thus
0 = 0 and the chosen element of ker(j) is in &G.

Remark. The conclusions of the lemma concerning 'k' ensure that j will

be an epimorphism if i was.

LEMMA 4.4. Let V be a simply connected cobordism between simply con-

nected 5-manifolds X and M such that the inclusions induce isomorphisms

H2(X) > H2(V) and H2(M) -* H2(V) where j- o i = 0. Then V may be
replaced by an h-cobordism with the inclusions inducing the same isomor-
phism 0 between second homology groups.

PROOF. H3( V, X) and H3( V, M) are free, and intersection numbers provide

a non-singular pairing between them. Choose x in H3(V, X) and m in
H3(V, M) such that xm = 1. These elements lift into H3(V) and so, by
Lemma 4.1, may be carried by embedded spheres Sx, S. which we may assume
meet transversely and, using Whitney's method for the removal of intersections

[30], in just one point P. Moreover we may choose tubular neighborhoods Nx,

N. of the spheres which meet only over small discs about P in Sx and S. re-
spectively, the corresponding subbundles over these discs coinciding, with

fibres of one being cross-sections of the other. Let T' be Nx + Nm with the
natural identification across their intersection. ST' is a homotopy sphere and
so [17], [20], [31] a sphere and, since F, = 0 [11], by Theorem A diffeomorphic

to the standard sphere. Thus we may form T = T' + id D6, U = (V - T') +
id D6. Then V U # T and the inclusions of X and M in V factor through
that of (U - D6) in V. Thus i and j factor through the isomorphism
k: H2( U) H2( V) giving isomorphisms i' = k-a o i, j' = k-a o j onto H2( U), and
clearly (j')-l'o ' = 0. But H3(V, X) = H3(U, X) + H3(T) so H3(U, X) has
smaller rank than H3( V, X) and we may repeat this procedure until H3( U, X) =
0 when we shall have the required h-cobordismn.
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5. Proof of Theorem 2.2

Recall that X and M are simply connected closed 5-manifolds,
0: H2(X) H2(M) is a w2-preserving, b-preserving isomorphism and we require

an orientation preserving diffeomorphism f: X > M such that f* = 0. For any

cobordism V between X and M, H2(&V) = H2(X) + H2(M), and the homomor-
phisms of H2(X) and H2(M) into H2( V) induced by inclusions are just the restric-

tions of i : H2(& V) - H2( V). Note that the inclusion of M in a V is orientation

reversing and so the sign of all linking numbers is changed. Let {z, xi, yi, ek} be

a w2-, b-, U-basis of H2(X) (see Lemma G; we omit z1 which is necessarily zero),

and {O(z), O(xi), O(yi), 0(e1)} the corresponding basis of H2(M). Then starting from

the 'minimal' cobordism of Lemma 3.1, we construct by repeated application

of 4.3 a cobordism W such that H2( W) has a basis {i(z), i(xi), A(y), i(ek)} where,
for each x in H2(X), i(x) has the same order as x and i(x) = i(O(x)). We use
Lemma 4.4 to obtain an h-cobordism with the same property and then Theorem

A to obtain the diffeomorphism f.

Take the basis

{z, z - O(z), xi, xi - O(xi), yi, yi - O(yi), ek, ek - O(ek)}

for H2(&V) and adopt the convention that when Yis the cyclic subgroup
generated by one of these elements, then H shall be the subgroup generated
by the rest. We shall describe first the general step in the construction of W
and then indicate how the initial step may differ from this.

Assume V is a cobordism with H2( V) having a basis

i(z), A~x,), i(Yi), * * *, Atx.), i(Y.), i(el), * * *, i(eA)},

where all these elements have the same order as in H2(X), and i is zero on the
other basis elements of H2(8 V) chosen above. Thus in particular i(x) = i(O(x))
for all x in H2(X). Write H2(O V) = Y + H, with the above convention, where

Y = gp{xn?1}. Then the kernel of i is the sum of Y and a subgroup of H. For
the torsion elements i(z), i(xl), *, i(y,,) of the basis of H2(V), let t(z), t(xl),

** , t(yn) be the corresponding elements of the 'dual' basis of tors(H3( V, V)).
Then if & denotes the boundary homomorphism, using Lemma D(iii) we get

b(&t(x1),x1) = b(t(x1), i(x1)) = 1/01, b(&t(x1), 0(x1)) 1/01, b(&t(x1), y1) = 0, etc.,
where 01 is the order of x1 and y1. But, since we have b-bases of H2(X), and

H2(M), this identifies Ot(xl) as y1 - 0(y1) if b(yl, y1)= 0, or y1 - 0(y1) -
(01/2) (x1 - 0(x1)) if b(y1, y1) # 0. Similarly we may identify t(y1) = x1 - (x1),
Ot(z) z - 0(z), etc., all of which are in the group H. Thus we may apply
Lemma 4.3 to this decomposition of H2(O V). In the resulting cobordism U,

j: H2(&V)4H2( U) is monomorphic on all those generators on which i was and
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384 D. BARDEN
also, since ker(j) n Y= o, on xn+1 and, since i and j have the same kernel on H, j
is zero on the remaining generators. Moreover j is an epimorphism since i was
(cf. the remark after Lemma 4.3) and so H2( U) has a basis similar to that which

we started from in H2(V) but having one extra generator, that corresponding
to x,+l. The generators i(yl+l) and i(emji) are realized in a similar manner and
we may repeat the procedure until we have a cobordism W for which i restricts
to an isomorphism of H2(X) onto H2(W), and the kernel of i is generated by
those elements, z - 0(z), x1 - 0(x1), etc., which ensure that i(x) i i(O(x)) for
all x in H2(x).

If w2(X) = 0, the initial step in the construction of W does not differ from
the general one since the cobordism V of Lemma 3.1 then has zero second

homology group. When w2(X) ? 0, and so H2(V) = Z2, three cases can arise.
Note first that, writing second Stiefel-Whitney classes as homomorphisms,
w2(0V) = w2(V) o i (see the proof of 3.1(ii)), and so i(x) = 0 if and only if
w2(x) = 0 for any x in H2(X) and, by Lemma F, if and only if b(x, x) = 0 for

torsion elements. Thus if z # 0, i(z) is the generator of H2( V) and so is i(O(z))
and therefore all the chosen generators of H2(& V) except z are in the kernel of
i(recall that we chose a w2-basis) and we are ready to continue with the general

procedure. If z = 0 but b(y1, y1) # 0, then we work as above with Y = gp{y1}.
This time ker(i) is the sum of H and a subgroup of Y and &t(y1) =
(01/2) (x1 - 0(x1)). Again Lemma 4.3 may be used and it will replace i(y1) by a

generator of the same order as y1, i mapping all other generators to zero.
Similarly if z = 0, b(y1, y1) = 0 but w2(el) ? 0, i(e1) may be replaced by an

element of infinite order without disturbing the other elements of the basis,

and we are ready to continue as before.

Thus in all cases we shall obtain a cobordism W between X and M satisfy-

ing the hypotheses of Lemma 4.4, with 0 being the isomorphism between H2(X)

and H2(M) given in the hypotheses of Theorem 2.2. So there is an h-cobordism

W' between X and M inducing the same isomorphism. But by Theorem A, W'
is diffeomorphic to X x I. This induces an orientation preserving diffeomor-
phism f of X with M and clearly the isomorphism of second homology group

induced by f is 0.
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