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(To the memory of my Mother)

Introduction

Recently, there has been renewed interest in the homology of connective covers of the
classifying spaces BU and BO, and their associated Thom spectra—see e.g.
[4,6,9,10,15]. There are now numerous families of generators as well as structural
results on the action of the Steenrod algebra. However, these two areas have not been
well related since the methods used have tended to emphasise one goal rather than the
other. In this paper we show that there are in fact canonical Hopf algebra decompo-
sitions for the sub-Hopf algebras of the homology of BU, and BO constructed by S.
Kochman in [9], generalising those of [8]. Furthermore, these are clearly and
consistently related to the Steenrod algebra action, and provide canonical sets of algebra
generators. They should thus allow calculations of the type exemplified in Q6] to be
carried out in all cases, although of course the complexity of the answer increases
rapidly! A by-product of our approach is that we can easily obtain results on these
homologies as Hopf algebras, such as self-duality and a computation of endomorphism
groups over the Steenrod algebra. We feel that the methods will also give interesting
information in the case of some other familiar spaces even if their homology is not self
dual (or bipolynomial); we intend to return to this in a sequel.

The main results of this paper are the following. Theorems (1.11), (1.13) contain the
Hopf algebra decompositions of Kochman's algebras; (2.10) and (2.11) describe how to
calculate the (co)action of the (dual) Steenrod algebra on the homology algebras;
Theorem (3.1) describes the images of Kochman's algebras under the relevant Thom
isomorphisms; Theorem (4.3) which calculates all endomorphisms of these Hopf algebras
which commute with Steenrod operations.

I wish to thank the SERC for support whilst this work was completed, and the
following for correspondence and stimulation: David Pengelley, Vince Giambalvo, Stan
Kochman, Peter Hoffman, Arunas Liulevicius, Peter May and Clarence Wilkerson.

1.

Throughout, let p be a fixed prime. Then after localisation at p, BU splits as a
product (of infinite loop spaces)

n BUPI, [i].
OSiSp-2

We will denote BUP 0 by W, with cohomology (for a p-local ring R)
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where |uj| = 2(p —l)i. We can actually choose vt so that the (Whitney sum) diagonal is

Let skeH2k(BU;R) denote the standard primitive generator, given as the feth Newton
polynomial in the Chern classes ct. Then s(p_1)ieH*(VF;i?). The Husemoller-Witt
decomposition of [8] induces an 7?-Hopf algebra splitting

H*{W;R)= (X) (£[2fc(p-l)]®K). (1.1)
<*.p)=i

where

and \akJ\ = 2kpJ; we always assume (fc,p) = l when discussing such Hopf algebras. The
coproduct on B[2k] is such that the primitives PB[2fe] are generated by elements qkpj of
degree 2kpi with

(1.2)

The coproduct on the akJ then takes the form

T aK0,..., 1 ® akj

where Zf(Xo,...,X}\ Y0,...,Y}eZ(p)[X0,...,Xj,Y0,...,YJ is the jth Witt addition
polynomial (see for example [7]). Y.J can be computed recursively from the fact that qkpj

is primitive.
Each B[2k] is a self dual, bipolynomial, indecomposable Hopf algebra, possessing

several remarkable properties, some of which are discussed in [16]. We will make use of
two structure maps: the Frobenius F:B[2k]-+B[2fe], and the Verschiebung

F multiplies degrees by p, and V divides degrees by p. To define F, V we first
introduce elements ak]]eB[2k] of degree 2kpJ+1 and satisfying (see [3])

l\r-lMak%r. (1.3)
Then we define

V(akJ) = 0, 7=0

= akJ-1, 7>0.

These are both Hopf algebra endomorphisms (in the non-grade preserving sense)
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satisfying as basic relations

FV=VF = [p] (1.4)

where [p] denotes the p-fold sum in the abelian group of Hopf algebra endomorphisms
of B[2k]. Note also that upon dualising and making the identification

the adjoints of F and V are identified with V and F respectively.
We will make use of the elements aQ defined by

We define

Bir)[2k] = im Fr: B[2k] -*B[2k]

which is a sub-Hopf algebra of B[2fc], with Fr an isomorphism of Hopf algebras onto
B(r)[2fc]. Note that from the self duality map for B[2k] we obtain an isomorphism

,: 0 ̂ j < r] s (p)

We also have (see [3])

« w = J ^ W x « ; - i)P + - • • + M!i)p''1 +(4r.)o)p' (1-5)

a(£j=prakJ+r (mod decomposables) (1.6)

<>,=<, . (modp) (1.7)

(both relations in B[2k]).
From now on, let B[2fc] = B[2fc]<g>Fp.
We next describe the action of the Steenrod pth powers in H*(BU) = H*(BUJP).

Recall that for each s^O there is an additive operation 2/*, raising degree by 2(p—l)s.
We denote by &* the Hopf algebra generated by these, subject to the Adem relations.
Note that if p = 2, &s=Sq2s. (We will discuss the analogous situation for H*(BO) later).
Of course 9* is a quotient Hopf algebra of the p-primary Steenrod algebra A*.

Now according to [11] there exist integral lifts of the $P* to operations &" on
H*{BU;1(P)). These satisfy

( l » . (1-8)
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We will make use of the total operations

which are Hopf algebra homomorphisms; thus

= 0>(x)0>{y),

Now to calculate &akj (or more generally &ak
r)j) we can use (1.2) (or (1.5)) and (1.8)

recursively. Then ^sakJ (or ^a^j) is obtained by reduction (mod p).
We can also obtain induced maps on the indecomposable quotients (by

multiplicativity)

QH*(BU; R) = H*(BU; R)/H*(BU; R)2

for R = Z(p) or Fp. We will denote these by Q0>s and Q&>s respectively.
Of course, everything we have said for BU can be restricted to W.
We will use some notation from [9]. Let ap(/c) denote the sum V^n, where k = YJiUip

l

with O ^ U i g p - 1 . Let M(/c) = {t:p' divides k). Let

(note that since in general

when n = k(p— 1), we see that L(k) is an integer!).
Our most important technical result in this section is the following.

Lemma 1.9. Consider the restriction

with (fc, p) = 1. Suppose L(k) + r = n +1.

(a)
(b) There exists an s suc/i that a(p_ 1 ) t r £ im

Proof. We have, upon making the identification sk = qk in H*(BU;R) and using (1.2),
(1.8)

=p' ~ rl )am ,
/

_!, r =p ' ~ rl )am , (mod decomposables)
s
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where t = M{kf + s), and mp' = (kpr + s). But now it is easily checked that this becomes
congruent (mod p) to

k fk(p-l)pr-l

But now we can apply the argument used by Kochman in the proof of [9, Theorem 6.2]
to deduce our result.

We will also need a related result in the last section:

Lemma 1.10. If s<(p—\)pr,then

Proof. This reduces (see the last proof) to showing

= 0 (mod p).
J

But we have (p - l )p r -1 = (p - 2)pr + (p -

and if s = Zs;p' with O^s^p-2, then

( p - l ) p ' -

s

easily implies the result.
We are now ready to define inductively a family of quotient 0>* Hopf algebra C(n)*

of H*(W) and 9* Hopf ideals Jn of C(n)*.
Set C(0)* = H*(W), Jo = <0>*ap_1>o>. Now suppose we have defined C(n)* and Jn. Set

In this definition we use x to denote the reduction of xeH*{W) to C(ri)*, and <^*a> to
denote the ideal generated by the ̂ * module generated by aeC(x)*.

Theorem 1.11. (a) Each C(n)* is a 3?* quotient Hopf algebra of C(n-\)* and of
H*{W); each Jn is a 0>* Hopf ideal of C(n)*.
(b) There is a compatible decomposition of Fp Hopf algebras

C(n)*= (X) S[2(p-l)fc]//Fp[a(p_1))t,,:
(k,p) = l

where pn(k) = min {(: Ẑ /cp*) +1 > n).
(c) C{n)* agrees with Kochman's pB*(n) ([9, Section 6]).
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Proof, (a) is straightforward,

(b) Suppose the result holds for C(ri)*. We need to verify that as Fp vector spaces

where a[p_1)kj are non-zero indecomposables. But this is a consequence of Lemma 1.9.
We also need to note that the indecomposable elements of Jn are primitive, and hence
each one is contained in a factor B[2(p-l)fc]//Fp[a(p_1)t /. 0^;<pn(fe)] by a check on
the primitives of C(n)*.
(c) If we have the result that C{n)* = pB*(n), then because pB*(n) is 2 (p- l )p"- l con-
nected, a(p_D „ agrees with v^ (up to Fp unit) in B*{n). Thus by definition C(n + \)* =
pB*(n+l).

Of course, Kochman's Theorem 6.2 can be applied to our C(n)*, and we will
sometimes use results stated in his terminology.

Proposition 1.12. C(n)* is a bipolynomial, self dual ¥P-Hopf algebra.

Proof. The Verschiebung V iterated r times induces an isomorphism

We next describe the dual C(n)+ of C(n)*. Since C(ri)* is a quotient of H*(W), we will
consider Ciri)^ as canonically embedded in H^(W) as a sub-Hopf algebra. To avoid
doubling notation we will also use the self duality of B[2k~\, so that for example we have
from [8]

where we now regard B[2k~] as a sub-Hopf algebra of HJ^BU; Z(p)).

Theorem 1.13. (a) Cin)^ has a canonical decomposition as Fp Hopf algebras

C{n\= (X) B(""(t))[2(p-I)fc].
(fc.p)=i

(b) C(n)+ is a polynomial algebra on generators Xm(n) of degree 2m(p—1) whenever
Urn) + M(m) > n. Moreover, we can take

Xm{n) = a^f\r^a^ll),r (mod p)

(c) The primitives in C{n)+ are generated by the elements gm(p-i)6H2m(p_1)(W0 with
(m)>n, where qkeH2k(BU) is the canonical primitive generator.

Note that we can lift C{n)^ to an integral Z(p)-sub-Hopf algebra of HJi
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The dual of this, C(n)*, is of course a quotient #* Hopf algebra of H*{W;Zip)) in the
obvious sense. Notice that everything we have said about H*(W) can be mimicked in
the case of a complex oriented theory such as BP*( ) with p-local coefficients, and we
can then obtain analogous sub-Hopf algebras of the homology. We hope to return to a
"universal" description of the related splittings in later work.

Observe also that the above constructions have analogues for H*(BO;¥2)> with ^
replaced by Scf. This can be obtained directly from what we have described for the case
p = 2 (since then W = BU) by use of the "squaring" isomorphism. We leave the precise
details to the reader.

2.

We will now describe the (homology) action of the algebra of pth power operations
>* on C(n),., and the coaction

of the dual &+ of 0>*.
Recall that SP^ is a sub-Hopf algebra of the dual Steenrod algebra A^, with

where |<i;;| = |Ci| = 2(p' — 1), and d = x(ii) with X the canonical conjugation on SP^. The
coproduct ij/ on SPn is given by

ii= Z tf-,®s,
ousi i ( 2 1 )

t= Z Ci®Cf'-j

We will often make use of a power series (generating function) description of such
results. Thus if we write

C(T)= Z dT"'

then

^^(7^=(1 ® ^)o(^® 1)(T)
(2.2)
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where ° denotes the functional composition of power series. We use the standard
conventions for products in the tensor product of two graded algebras, and denote by
1 ® £, £ ® 1, etc., the series

and so on.
Now let Hif{BU) = ¥p\bi:i^1Y] where |b,| = 2i, with bt the standard generator coming

from BU{\) [1]. The diagonal is

and the primitives are generated by an element qieH2i(BU) given by the Newton
polynomial in the fe,-:

«, = &!««-!- M t - 2 + - + ( - l ) ' - 2 f t | - l « l + ( - l ) ' " 1 » « - (23)

Setting b('T)=Zosi^.^i with ^o = 1> w e c a n {Pve a generating function for the qh

(2.4)

(here b'(T) denotes the formal derivative).
The coaction ifz-.H^BU)-*^ ® H,(BU) now takes the form

(2.5)

or

where [ / (T)] r l denotes the coefficient of T* in f(T). This result can be found in [2] and
[17]. We need a formula for the coaction on the q:, which is probably well known to
the experts, but not easy to find in the literature in this form.

Proposition 2.6. We have

® qk.

Proof. This is just a formal manipulation with the logarithmic derivative. The
presence of torsion does not affect the result, since the whole calculation could in fact be
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lifted to an integral version using the methods of [11]; alternatively we could lift back
to BPm( ).

A simplification is actually possible, since

= 1.

Hence, (2.6) gives

^ (2.7)

We will need some rather technical results on the coproduct for certain elements of
HJ^W). Let

Then by Lagrange inversion, the series Xos*wJtTfc+1 is the composition inverse of the
series B{T) = Tb(T). Of course the above formula for mk means "work in characteristic 0
until the last possible moment!".

Lemma 2.8. qp,-l = —nip-^ inHJ^BU).

Proof. Suppose x1,x2,x3,... are formal indeterminates. Then set bi = 2,x1---xi (the
ith elementary symmetric function), hence

Now we have

But

K ' 1-2 ( s - l ) s

and so for s<pr, the exponent of p in this coefficient is r—MJ^s), and thus always at
least 1. But the coefficient of T^"1 in b(T)~^ is obtained by summing products (over
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various i) of such terms and at least one of the factors always an odd value of s. Thus,
the p exponent is always at least r+1 , except when only one value of i occurs. Hence,
(mod pr+1) we have

as the desired coefficient, and this yields

Finally, we recall that if bi = T,x1,...,xh then qi = Z,x[.
As a consequence we have

Corollary 2.9.

Proof. By the remark preceding (2.7) we need to calculate with

T£,\T)

Recall that there is a commuting diagram of spectra

where ix is the map including MU(l) into the second stage of the spectrum ~L2MU, ct is
the map classifying the universal first Chern class, and a is the universal orientation for
complex bundles. If {£>,} denotes the standard basis of HJ^BU{\)), we have

c1*bi+1=^T, if i+l=pr,

=0, otherwise.

On the other hand, il*bi+1 is identical with O(b,) where

is the Thom isomorphism induced by a, and H+(BU(l))<=:H (BU). But now we need
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only quote from [18] the result

M>K) = Cr, '=Pr-!>

= 0, otherwise

and we can safely leave the reader to complete the argument using (2.4) and (2.8)
together with the properties of a, which is a map of ring spectra.

Notice that in terms of (1.13b), C(n)+ has as the first generator of each factor of form

a power of m^-^.
We can now give an algorithm for computing if/a^j.

Algorithm 2.10. First interpret (1.5) and (2.6) as integral formulae (i.e. defined over
Hj.(BU;Z{p))). Treating ijj as a ring homomorphism, use the values of ipq^+i given by
(2.8) to recursively determine ipq^j. Finally, reduce (mod p).

This can be justified using the homology coproduct analogue of Lance's integral
lifting, or by pulling back to Brown-Peterson homology.

The homology action of &* on HJ^BU) can be computed by similar techniques from
the basic integral result of [11]:

An independent proof of this can be obtained by calculating the coefficient of
£i ® 4*-s(p-i) m ^"Ik a s given by (2.6) interpreted integrally rather than (mod p).

We have now given all of the necessary formulae for determining the coaction \j/ and
the actions of the Steenrod powers on the generators a^j of H^(BU) and hence of each
C(n)., by (1.13).

3.

In this section we will describe the corresponding ^ sub-comodule algebras of HJ^MU).
Recall that there is a multiplicative Thom isomorphism <^:H^(BU;R)-*Ht(MU;R),
and dually a coalgebra isomorphism <t>:H*(BU;R)->H*(MU;R). For a prime p, we
define

and

Then M(n)^ is a sub-algebra of H^(W) and M(n)* a quotient coalgebra of H*{W).
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The cohomology Thorn isomorphism is given by

for aeH*(BU), where UeH°(MU) is the canonical orientation class; the product in this
formula is an external pairing of BU with MU; then <& is by definition an H*(BU)
module homomorphism. However, it is not a &>* module homomorphism.

Theorem 3.1. (a) Each M(n)* is a quotient &* module coalgebra of M(n— 1)*, and
hence of H*(W). Dually, each M(n)^ is a 8?^ sub-module algebra of M(n—l)^, hence of

(b) M(n)* and M(n)+ agree with Kochman's pM(n)* and pM(n)^ ([10]).
(c) There is a coalgebra decomposition

M(n)*^ (X)
(fc,p) =

and an algebra decomposition

Note that there is no diagonal map for spectra in general, and hence no geometrically
induced product on H*(MU), or coproduct on HJ^MU). We can of course define such
structures with the aid of <S> in each case; then these become Hopf algebras and O is a
Hopf algebra isomorphism in both cases, and in (3.1c) the isomorphisms are of Hopf
algebras—although not over SP* or ^ . .

To avoid unnecessarily elaborate notation we will consider <D as identifying C(n)*
with M(n)* and C(«)% with M(n)^\ thus we can use the notation already established for
C(n) to label elements of M(n)^. With this convention we can regard M{n) as defining
new ^ * module (or ^ comodule) structures on C{n)* (or C(ri)J.

Next recall that for each n, there is a sub-Hopf algebra of 9*, generated by the &>",
l ^ s ^ p " " 1 . We will denote this by 3P{ri)*. Dually, there is a quotient Hopf algebra of

Proposition 3.2. <I>:C(n)*->M(n)* is a 0>(ri)* module homomorphism; dually, <S>: Qn)^-^
M{ri)^ is a ^"(n)* comodule homomorphism.

Proof. C(n)* is 2 (p - l )p" - l connected by (1.11), hence for 0<sgp""1 , &>sU=0 in
M(n)*. But then for
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OSigs

= 0>s(a- U) (by the Cartan formula)

Thus, the 0>(ri)* structure of M(n)* is determined by that of C(n)*. Indeed we have

Theorem 3.3 ([15,10]). Let /n = <gp(fr
1~

1):r^l> be the ideal in M{n)^ generated by
the bottom generators of the factors of form Blp"(pr~1))[2{pr-l)'] in (3.1c).

Then /„ is a ^ ( / I )* sub-comodule of M{n)+, and there is an isomorphism of left 9>%

comodule algebras

Furthermore, as algebras

M(n)JIn^ (X) B^
(*,P) = I

where

In(k) = 0, if (p - l)/c is not of form pr -1,

In the above, M(n) and M(ri)JIn have the obvious left ^(n)* comodule structures,
inherited from their 9^ structures; ^ similarly becomes a right SPiyi)^ comodule. Thus,
the cotensor product is defined.

The determination of the 0>(n)m structure of M(n)JIn is the main motivation for this
paper. We have now established all the basic ingredients for an investigation of this,
including the provision of canonical generators for M(n)JIn, for which the ^(n)^
coaction can in principle be calculated. For example, the calculations of [6] can be
redone with explicit choices of generators using our approach. We hope that our
techniques will prove useful in the so far unsolved case of the A2 structure of
H*(M0<8» which is currently under investigation.

We end this section by briefly stating the main results needed to compute the ^
coaction on M(ri)^.

Recall that

(with our convention about O!) Then let
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B(T)=ZbiTi+1.

(3.4)

i.e. 'A^r " •"""~-J-1"1 — *~

(see [17]).

Proposition 3.5.

The proof of these uses techniques analogous to those of Section 2; note that (3.3) can be
interpreted as an integral formula in the sense of [11]; (mod p) there is the usual simplification
resulting from <f(T) = 1. We record also the useful result:

Proposition 3.6 ([5, 13]).

(N.B. 9p,-i=ap,-i>0)-

4.

In this section we give some results on Hopf algebra endomorphis'ms which are easily
obtained in our current framework. We suspect that these are known to some experts (in
various guises) but can only find [14] in the literature. Once again we fix a prime p throughout.

Let B = E[2], and write ai = alij, y^O. We wish to compute the graded endomor-
phisms of B. Let u be an indeterminate of degree 2. Then we can consider the set of all
graded Fp algebra homomorphisms from B to Fp[u],

AlgF/B, F,[u])./

This is an abelian group with product induced from the diagonal A on B, i.e. the
composite

AlgFp(B, Fp[«]) x AlgFp(B, Fp[u]) s AlgF,(B ® B, F p [ « ] ) - ^ AlgFp(B, Fp[«

Actually, the functor on the category of graded Fp algebras

H~>Algf2(B,H)
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is an "abelian group scheme" with an obvious generalisation of the above product.

Lemma 4.1. As a group

AlgFp(B, ¥p[u]) s Zp (the p-adic integers).

Proof. Recall that Zp has maximal ideal (p), and residue field Fp. Furthermore, there
is a unique subgroup (7xc:Zp for which the canonical projection Zp->Fp induces an
isomorphism U" £ Fp . Let U = U x u {0}, identified with Fp.

Then for any p-adic integer c, there is a unique expansion

where c,eC/. The sequence ct is called the Teichmuller representation of c. Then the
essence of the Witt vector addition is that for

a = £ atp
l and b = £ bjp' with af, fc,- e U,

o s i o s i

a + b = £ 2r(flo> • • •, af; fto» • • •. fc.)P' ( s e e Section 1).
Ogi

Now define

by Q(9) = Y,osiO>P' w n e r e ^i is a h'ft t o ^ °f the coefficient of wpl in 0(a,). Then Q is
clearly an isomorphism of groups. It can actually be considered as an isomorphism of
topological groups if we define a suitable profinite topology on the domain.

Now we observe that any Hopf algebra endomorphism of B induces an endomor-
phism of the (topological) group Zp, and these are in one to one correspondence with
the elements of Zp. Hence, it is now easy to deduce.

Proposition 4.2. Ho-AlgFp(B, B) ̂  Zp.

In this description, a positive rational integer d corresponds to an endomorphism [d]
given by

B > B® • ® B - i — > B

where there are d copies of B, \p(i) and (j>{d) are the d-fold iterates of the coproduct and
product on B [ — 1 ] means (canonical) conjugation. More generally, for a p-adic integer
c, [c] can be obtained as the limit of a sequence of [d], for d positive rational integers.
By (1.4), we have
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(*/) = 0, ; = 0

Note that elements of Z* correspond to invertible endomorphisms (automorphisms).
We could have described the composition of endomorphisms in terms of Witt
multiplication, but refrain from this here.

We now want to describe the &* Hopf algebra endomorphisms of C(n)*.
Note that in (4.1) we can replace B by any B[2k].

Theorem 43. Ho-A]g^C(n)*,C(n)*)^Zp.

Proof. We will content ourselves with proving the case n = 0, the others being
similar.

For any 2?* Hopf algebra endomorphism ¥ of C(0)* we have

(a) *P(5[2(p - l)fc]) «= B[2(p - l)fc] for each (k, p) = \.
(b) *P restricted to B[2(p-1)] is [c] for some ceZp.

(a) is true for any Fp Hopf algebra endomorphism, by an easy induction and (b) then
follows with the aid of (4.2).

We must now link up the 5[2(p —l)fc] to B[2(p — 1)] by Steenrod operations. To do
this recall (1.10):

For

( r l ) i , s 0 (mod decomposables)

in H*(W).
We will now prove by induction that if *F is [0] on £[2(p-l)] , then 4* is [0] on each

B[2(p—l)k], hence is the trivial endomorphism

a(p_1)M) = 0, for (k,p) = l, j^O

on H*{W). Thus, if *¥ is any such endomorphism, it is determined by its restriction to
B[2(p — 1)], by a standard argument in the group of all such endomorphisms.

So suppose we have shown that for *P restricting to [0] on B[2(p—1)] we have that
V is [0] on

Then choose m = max{t:p'^«}.By (1.10) we have

in QH2ip-1)n(W); hence, since
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we have now demonstrated that *F agrees with [0] on

This completes the proof of (4.3).

Notice that for d a positive rational integer, we can realise [d] on H*(W) by using the
self map of BU classifying d times the canonical bundle on BU. If we complete W at p,
then [c] can be realised for all ceZp. Thus, all Steenrod preserving Hopf algebra
endomorphisms are geometrically realisable (cf. [14]).

Concluding remarks

In a planned companion paper we intend to discuss some examples of non-self dual
Hopf algebras whose structure can be elucidated with the aid of the Husemoller
splittings of BU, and which are important in Topology. We also intend to extend our
ordinary homology results to theories such as Brown-Peterson homology, by giving an
abstract description of the homology of BU as a universal object in a suitable sense.
One reason for developing such a point of view is that it should embody the tensor
product operation as well as Whitney sum—this is necessary for analysing various
problems which we hope to investigate.

Note that our decompositions for C(n)+ can be used to calculate the restriction of the
actions of the Dyer-Lashof algebra, using results in [11]; we leave the details to the
reader.
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