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Introduction

The investigation of Brauer groups of commutative S-algebras is one aspect of the attempt to understand arithmetic
properties of structured ring spectra.

In classical algebraic settings, Brauer groups are defined in terms of Azumaya algebras over fields or more generally
over commutative rings [4,3,32] and are closely involved in Galois theoretic considerations. In this paper, we discuss some
ideas on Brauer groups for commutative S-algebras and in Section 3, we investigate their behaviour with respect to Galois
extensions of commutative S-algebras in the sense of John Rognes [29]. In earlier work, the first author and Andrey Lazarev
discussed notions of Azumaya algebras [5, sections 2, 4], but these appear to be technically problematic: there faithfulness
of the underlying module spectra was not required, but many of the standard constructions with Azumaya algebras rely on
this property. Also, the link with other definitions (for instance [35,20]) works only under this faithfulness assumption.

Since ourworkwas begun, other people have carried outwork onAzumaya algebras andBrauer groups in contexts related
to ours. Niles Johnson [20] discusses Azumaya objects for general closed autonomous symmetric monoidal bicategories,
and proves a comparison result [20, proposition 5.4] which compares our definition of Azumaya algebras with his.
In [20, theorem 1.5], he also shows that the derived Brauer group of a commutative ring in the sense of Bertrand Toën
agrees with our Brauer group of the corresponding Eilenberg–Mac Lane ring spectrum.

In [34, definition 4.6], the third author extends our current work to construct a Brauer space for commutative S-algebras
such that the fundamental group of that space agrees with our Brauer group. The approaches in [35,2,16] give descriptions
of Brauer groups in terms of étale cohomology groups in the derived context and the context of ring spectra, respectively.
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We present our definition of topological Azumaya algebras in Section 1 and show that such algebras are always
homotopically central (in the sense of Definition 1.2) and separable, and also that the Azumaya property is preserved under
base change.

In Section 2 we define Brauer groups of commutative S-algebras and in Section 3 we prove a version of Galois descent
for topological Azumaya algebras. This is applied in Section 4 where we explain how the classical theory of cyclic algebras
can be extended to the context of commutative S-algebras.

In the case of Eilenberg–Mac Lane spectra we show in Section 5 under some assumptions on the ring R that an extension
HR −→ HA is topologically Azumaya if and only if the extension of commutative rings R −→ A is an algebraic Azumaya
extension. Furthermore, using recent work of Bertrand Toën [35], we can deduce that the Brauer group Br(Hk) is trivial if k
is an algebraically or separably closed field.

Classically, the centre of an associative algebra A over a commutative ring R can be described as endomorphisms of A
in the category of modules over the enveloping algebra Ae

= A ⊗R Ao. For structured ring spectra, the direct analogue of
this definition does not yield a homotopy invariant notion. Instead one has to replace A by a cofibrant object in the category
of module spectra over the enveloping algebra spectrum, so the centre of an associative R-algebra spectrum A is given by
the topological Hochschild cohomology spectrum THHR(A, A). This spectrum is not strictly commutative in general, but due
to the affirmatively solved Deligne conjecture [26] it is an E2-spectrum. There are however exceptions and in Section 7 we
discuss some examples arising from group ring spectra and their homotopy fixed point spectra.

In Section 8 we offer a variant of the construction of Brauer groups in the K(n)-local context where it appears that
technical difficulties are minimized and we discuss some examples related to EO2 = LK(2)TMF in Section 9. In Section 10 we
describe a non-trivial element in the K(n)-local Brauer group of the K(n)-local sphere.

1. Azumaya algebras over commutative S-algebras

Throughout, let R be a cofibrant commutative S-algebra. We work in the categories of R-modules, MR, and associative
R-algebras, AR and for definiteness we choose the framework of [15]. Following [6,29], we will say that an R-module W is
faithful if for an R-module X , W ∧R X ≃ ∗ implies that X ≃ ∗.

We recall some ideas from [5]. If A is an R-algebra, we denote by Ao the R algebra whose underlying R-module is A but
whose multiplication is reversed. The topological Hochschild cohomology spectrum of A (over R) is

THHR(A) = THHR(A, A) = FA∧RAo(A,A),

whereA is a cofibrant replacement for A in the category of left A ∧R Ao-modules MA∧RAo . We write η : R −→ THHR(A) for
the canonical map into the R-algebra THHR(A); we also write µ : A∧R Ao

−→ FR(A, A) for the R-algebra map induced by the
left and right actions of A and Ao on A.
Definition 1.1. Let A be an R-algebra. Then A is aweak (topological) Azumaya algebra over R if and only if the first two of the
following conditions hold, while A is a (topological) Azumaya algebra over R if and only if all three of them hold.
(1) A is a dualizable R-module.
(2) µ : A ∧R Ao

−→ FR(A, A) is a weak equivalence.
(3) A is faithful as an R-module.
Note that this definition of Azumaya algebras over R differs from that in [5] since we demand faithfulness of A over R and
not just A-locality of R as an R-module.

If T is an ordinary commutative ring with unit and if B is an associative T -algebra, then the centre of B can be identified
with the endomorphisms of B as an B⊗T Bo-module. Therefore THHR(A) can be viewed as a homotopy invariant version of
the centre of A.
Definition 1.2. An R-algebra A is said to be homotopically central if the canonical map η : R −→ THHR(A) is a weak
equivalence.
For the followingwe recall a special case of theMorita theory developed in [5, section 1]. For a topological Azumaya algebra A
over Rwe consider the category of left modules over the endomorphism spectrum FR(A, A), MFR(A,A) and we take a cofibrant
replacement A of A in this category. The functor

F : MR −→ MFR(A,A)

that sends X to X ∧R A has an adjoint
G : MFR(A,A) −→ MR

with G(Y ) = FFR(A,A)(A, Y ). Then [5, theorem 1.2] implies that this adjoint pair of functors passes to an adjoint pair of
equivalences between the corresponding derived categories

DR

F //
DFR(A,A)

G
oo

and as a direct consequence we obtain the following result.
Proposition 1.3 ([5, proposition 2.3]). Every topological Azumaya algebra A over R is homotopically central.



A. Baker et al. / Journal of Pure and Applied Algebra 216 (2012) 2361–2376 2363

By proposition 2.3 and definition 2.1 of [5], we also see that any topological Azumaya algebra A over R is dualizable as an
A ∧R Ao-module and A ∧R Ao is A-local as a left module over itself.

In classical algebra, Azumaya algebras are in particular separable. Using Morita theory we can deduce the analogous
statement for topological Azumaya algebras. Here an R-algebra is separable in the sense of [29, definition 9.1.1] if the
multiplicationm : A ∧R A −→ A has a section in the derived category of left A ∧R Ao-modules, DA∧RAo .

Proposition 1.4. Let A be a topological Azumaya R-algebra. Then A is separable.

Proof. By the remark following [29, definition 9.1.1], it suffices to prove that the induced map

m∗ : THHR(A, A ∧R A) −→ THHR(A, A)

is surjective on π0(−). Denote byA a cofibrant replacement of A in the category of A ∧R Ao-modules. Morita equivalence
yields the two weak equivalencesG ◦F(R) ≃ THHR(A, A),G ◦F(A) ≃ THHR(A, A ∧R A).

The functoriality ofG ◦F ensures that the unit η : R −→ A induces a mapG ◦F(η) with

R ≃ //G ◦F(R)
G◦F(η)

//G ◦F(A) A.
≃oo

This is given by sending the coefficient module of THH ,A ≃ R ∧RA ≃ R ∧R A, to A ∧R A ≃ A ∧RA using η. Therefore

π0(m∗) ◦ π0(G ◦F(η)) = id,

and so π0(m∗) is surjective. �

We now describe the behaviour of Azumaya algebras under base change.

Proposition 1.5. Let A, B, C be R-algebras.

(1) If A is an Azumaya algebra over R and if C is a commutative R-algebra, then A ∧R C is an Azumaya algebra over C.
(2) Conversely, let C be a commutative R-algebra such that C is dualizable and faithful as an R-module. If A ∧R C is an Azumaya

algebra over C, then A is an Azumaya algebra over R.
(3) If A and B are Azumaya algebras over R, then A ∧R B is also Azumaya over R.

Proof. If A is an Azumaya algebra over R, then it is formal to verify that A ∧R C is dualizable and faithful over C (compare
[29, 4.3.3, 6.2.3]). It remains to show that

µA∧RC : (A ∧R C) ∧C (A ∧R C)o −→ FC (A ∧R C, A ∧R C)

is a weak equivalence. Note that since the multiplication in A ∧R C is defined componentwise,

(A ∧R C)o = Ao
∧R Co.

The diagram

(A ∧R C) ∧C (A ∧R C)o

≃

��

µA∧RC // FC (A ∧R C, A ∧R C)

≃

��

A ∧R Ao
∧R C

µA∧RC

))RRRRRRRRRRRRRR FR(A, A ∧R C)

FR(A, A) ∧R C

ν

66lllllllllllll

(1.1)

commutes. Here ν : FR(A, A) ∧R C −→ FR(A, A ∧R C) denotes the duality map. As A is Azumaya over R we know that ν and
µA are equivalences, and thus we obtain that the top map is an equivalence as well.

For the converse we assume that A ∧R C is Azumaya over C and C is faithful and dualizable as an R-module. If M is an
R-module, then A ∧R M ≃ ∗ implies that

(A ∧R C) ∧R M ≃ (A ∧R C) ∧C (C ∧R M) ≃ ∗.

Also, the faithfulness of A∧R C over C ensures that C ∧R M ≃ ∗. But as we assumed that C is faithful over R, we can conclude
thatM was trivial.

The fact that A is dualizable over R follows from [29, lemma 6.2.4]. Making use of diagram Eq. (1.1) we see that µA is also
a weak equivalence.

The proof of the third claim is straightforward. �
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Later we will consider Azumaya algebras in a Bousfield local setting. Let L be a cofibrant R-module.

Definition 1.6. An L-local R-algebra A is an (L-local) Azumaya algebra if

(1) A is a dualizable L-local R-module.
(2) The natural morphism of R-algebras A ∧R Ao

−→ FR(A, A) is an L-local equivalence.
(3) A is faithful as an L-local R-module.

Here dualizability as an L-local R-module means dualizability in the derived category of L-local R-modules. This is a
symmetric monoidal category with the L-localization of the smash product over R as the symmetric monoidal product,
so the definition of dualizability from [14] applies.

2. Brauer groups

Now suppose that M is a dualizable R-module as discussed in [29,6]; a more detailed discussion of dualizability can be
found in [14]. Let ER(M) = FR(M,M) be its endomorphism R-algebra. Then there is a weak equivalence

ER(M) ≃ FR(M, R) ∧R M. (2.1)

In order to identify endomorphism spectra of faithful and dualizable R-modules as trivial Azumaya algebras we need the
following auxiliary result.

Lemma 2.1. Let M be a dualizable R-module.

(1) If M is a faithful R-module, then the dual FR(M, R) is also faithful.
(2) If M is L-local with respect to a cofibrant R-module L, then FR(M, R) is L-local.

Proof. (1) Dualizability ofM implies that the composition

M ≃ R ∧R M
δ∧id
−−→ M ∧R FR(M, R) ∧R M

id∧ε
−−→ M ∧R R ≃ M

is the identity on M . Here δ : R −→ M ∧R FR(M, R) is the counit, and ε : FR(M, R) ∧R M −→ R is the evaluation map. Now
if N is an R-module for which FR(M, R) ∧R N ≃ ∗, then the identity ofM ∧R N factors through the trivial map, hence N ≃ ∗
by faithfulness ofM .
(2) A similar argument with the functor FR(W ,−) shows that if L ∧R W ≃ ∗, then the identity map on FR(W , FR(M, R))
factors through

FR(W , FR(M, R) ∧R M ∧R FR(M, R)) ≃ FR(W ∧R M ∧R M,M) ≃ ∗. �

It was shown in [5, proposition 2.11] that if M is a dualizable, cofibrant R-module, then ER(M) is a weak topological
Azumaya algebra in the sense of [5, definition 2.1].

Proposition 2.2. If M is a faithful, dualizable, cofibrant R-module, then (a cofibrant replacement of) ER(M) is an Azumaya
R-algebra.

Proof. As ER(M) is a weak Azumaya algebra, it suffices to show that ER(M) is a faithful R-module. Dualizability ofM ensures
that

ER(M) ≃ FR(M, R) ∧R M,

and this is a smash product of two faithful R-modules which is also faithful. �

This result shows that we can take the R-algebras of the form ER(M)withM faithful, dualizable and cofibrant, to be trivial
Azumaya algebras when defining a topological version of a Brauer group which we now do.

First we note that every Azumaya algebra is weakly equivalent to a retract of a cell R-module, so the following
construction yields a set of equivalence classes. Define Az(R) to be the collection of all Azumaya algebras. Nowwe introduce
our version of the Brauer equivalence relation≈ on Az(R).

Definition 2.3. Let R be a cofibrant commutative S-algebra. If A1, A2 ∈ Az(R), then A1 ≈ A2 if and only if there are faithful,
dualizable, cofibrant R-modulesM1,M2 for which

A1 ∧R FR(M1,M1) ≃ A2 ∧R FR(M2,M2)

as R-algebras. We denote the set of equivalence classes of these by Br(R) and we use the notation [A] for the equivalence
class of an R-Azumaya algebra A.

Theorem 2.4. The set Br(R) is an abelian groupwithmultiplication induced by the smash product∧R. Furthermore, Br is a functor
from the category of commutative S-algebras to abelian groups.
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Proof. The details involve routine modifications of the approach used in the case of Brauer groups of commutative rings
in [3, theorem 5.2].

Functoriality for morphisms of commutative S-algebras R −→ R′ is achieved by sending an R-algebra A to the R′-algebra
R′ ∧R A. �

Remark 2.5. Johnson’s work [20, lemma 5.7] shows that two Azumaya R-algebras are Brauer equivalent in the sense of
Definition 2.3 if and only if they are Eilenberg–Watts equivalent in the sense of [20, definition 1.1]. As a consequence any
Azumaya algebra that is Brauer equivalent to R is weakly equivalent to FR(M,M) for some dualizable faithful cofibrant
R-module spectrumM .

For a cofibrant R-module L, we can similarly define the sets of L-local Azumaya algebras AzL(R) and the associated L-local
Brauer group BrL(R).

In order to relate Azumaya algebras to Galois theory, we require the following notions modelled on algebraic analogues.

Definition 2.6. Let R −→ R′ be an extension of commutative S-algebras. Then the Azumaya algebra R −→ A is split by
R −→ R′ (or just by R′) if R′ ∧R A ≈ R′, or equivalently if [A] ∈ Ker(Br(R) −→ Br(R′)). We define the relative Brauer group

Br(R′/R) = Ker(Br(R) −→ Br(R′)).

Similarly we can define a relative L-local Brauer group

BrL(R′/R) = Ker(BrL(R) −→ BrL(R′)).

In practise, we will use this when R −→ R′ is a faithful G-Galois extension for some finite group G.

3. Galois extensions and Azumaya algebras

Consider a map of commutative S-algebras A −→ B, which we often denote by B/A. If A is cofibrant as a commutative
S-algebra, B is cofibrant as a commutative A-algebra, and if G is a finite groupwhich acts on B bymorphisms of commutative
A-algebras, then following Rognes [29], then we call B/A a G-Galois extension if the canonical maps i : A −→ BhG and
h : B ∧A B −→ F(G+, B) are weak equivalences.

In addition to these conditions, we will assume that B is faithful as an A-module spectrum. This is a further restriction as
there are examples of Galois extensions which are not faithful. The following example is due to Wieland (see [30]).

Remark 3.1. Let p be a prime. Then the Z/p-Galois extension

F(BZ/p+,HFp) −→ F(EZ/p+,HFp) ≃ HFp

is not faithful. To its eyes the Z/p-Tate spectrum of HFp appears trivial, but it is not.

Let B ⟨G⟩ be the twisted group algebra over B, i.e., the A-algebra whose underlying A-module is B ∧ G+ and whose
multiplication is the compositionµ

B ∧ G+ ∧ B ∧ G+
id∧∆∧id //

µ
//

B ∧ G+ ∧ G+ ∧ B ∧ G+
id∧ν∧id // B ∧ G+ ∧ B ∧ G+

(2,3)

��

B ∧ B ∧ G+ ∧ G+

µB∧µG

��

B ∧ G+

where ∆ is the diagonal, ν denotes the G-action on B, µB is the multiplication of B and µG the multiplication in G. Thenµ factors through (B ∧ G+) ∧A (B ∧ G+) and turns B ⟨G⟩ into an A-algebra. Note that B ⟨G⟩ is an associative algebra but in
general it lacks commutativity. More precisely, we know that the morphism j : B ⟨G⟩ −→ FA(B, B) is a weak equivalence of
A-algebras for every G-Galois extension A −→ B. In particular, B ⟨G⟩ gives rise to a trivial element in the Brauer group of A.

Lemma 3.2. Let B/A be a faithful G-Galois extension and let M be a B ⟨G⟩-module which is of the form B∧A N for some A-module
N, where the B ⟨G⟩-module structure is given by the B-factor of B∧A N. Then there is a weak equivalence of A-modules N ≃ MhG.

Proof. Consider B∧A M = B∧A B∧A N . As B is G-Galois over A, the latter term is equivalent to F(G+, B)∧A N and this in turn
is equivalent to F(G+, B∧A N) because G+ is finite. As B is dualizable over A, the homotopy fixed point spectrum (B∧A M)hG

is equivalent to B ∧A MhG.
There is a chain of equivalences of B-modules

B ∧A N
≃
−→ F(G+, B ∧A N)hG

≃
−→ (B ∧A B ∧A N)hG = (B ∧A M)hG

≃
←− B ∧A MhG,

and the result follows by faithfulness of B over A. �
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The following two results give analogues of Galois descent of algebraic Azumaya algebras as in [32, proposition 6.11].

Proposition 3.3. Suppose that C is an Azumaya algebra over B for which the natural morphism B ∧A ChG
−→ C is a weak

equivalence of B ⟨G⟩-modules. Then ChG is also an Azumaya algebra over A.

Proof. We know from [29, lemma 6.2.4] that the A-algebra ChG is dualizable as an A-module.
As C is Azumaya over B, we know that C ∧B Co

≃ FB(C, C). Also, dualizability of ChG over A guarantees that

B ∧A FA(ChG, ChG) ≃ FA(ChG, B ∧A ChG)

∼= FB(B ∧A ChG, B ∧A ChG)

≃ FB(C, C) ≃ C ∧B Co,

and so

C ∧B Co
≃ (B ∧A ChG) ∧B (B ∧A (ChG)o)

≃ B ∧A (ChG
∧A (ChG)o).

As B is faithful over A, this shows that

ChG
∧A (ChG)o ≃ FA(ChG, ChG).

Since C is faithful as a B-module and B is faithful as an A-module, we know that C is faithful as an A-module. Assume that
for an A-moduleM we have ChG

∧A M ≃ ∗. This is the case if and only if

B ∧A ChG
∧A M ≃ C ∧A M ≃ ∗

because B is a faithful A-module. Now faithfulness of C over A implies that ChG is also faithful over A. �

Suppose that B/A is a faithful G-Galois extension in the sense of Rognes [29], where G is a finite group. Now let H ▹K 6 G
so that B/BhH is a faithful H-Galois extension, K acts on BhH by BhK -algebra maps and BhK

−→ BhH is a faithful K/H-Galois
extension, in particular,

BhK
≃ (BhH)h(K/H). (3.1)

By [29, lemma 6.1.2(b)], the twisted group ring B ⟨H⟩ ≃ FBhH (B, B) is an Azumaya algebra over BhH , and K acts on B ⟨H⟩
by extending the action on B by conjugation on H , so we will write B ⟨Hc⟩ to emphasize this.

If K = Q n H is a semi-direct product or H is abelian, the quotient Q = K/H acts by conjugation on H .
Note that as in algebra, there is an isomorphism of A[K ]-modules

A[K ] ∼=

K

A.

The algebraic version of this isomorphism is given by
k∈K

akk↔ (ak−1)k∈K

and we will use the topological analogue of this.
Our next result is based on [32, proposition 6.11(b)].

Proposition 3.4. Suppose that K = QnH is a semi-direct product, or thatH is abelian. Then the BhK -algebra B ⟨Hc⟩
hQ is Azumaya,

and

BhH
∧BhK B ⟨Hc⟩

hQ
≃ B ⟨Hc⟩ .

Hence the Azumaya algebra B ⟨Hc⟩
hQ over BhK is split by BhH .

Proof. Note that we can assume that G = K and BhK
= A. Making use of a faithful base change, it suffices to assume that B

is the trivial K -Galois extension, B =


K A.
There are isomorphisms of A[K ]-modules

B ⟨Hc⟩ ∼= diag


K

A ∧A A[Hc]



∼= left


K

A ∧A A[H]


∼= left(A[K ] ∧A A[H])
∼= left(A[K × H]), (3.2)
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where diag(−) and left(−) indicate the diagonal and left K -actions respectively, the second isomorphism is the standard
equivariant shear map similar to the map sh of [29, section 3.5], and K × H is viewed as a K -set through the action on the
left hand factor. As a Q -set, K decomposes into free orbits indexed on H . On taking Q -homotopy fixed points we obtain an
equivalence of A-modules

B ⟨Hc⟩
hQ ∼= A[H × H]. (3.3)

There is a map of A-modules

BhH unit
−−→ BhH

∧A B ⟨Hc⟩
hQ
−→ B ⟨Hc⟩

which is also a map of BhH ⟨Q ⟩-modules. Applying π∗(−) and working algebraically with π∗(A)-modules, using [32,
proposition 6.11(b)] it follows that we have an isomorphism

π∗(BhH
∧A B ⟨Hc⟩

hQ ) ∼= π∗(B ⟨Hc⟩),

and therefore a weak equivalence

BhH
∧A B ⟨Hc⟩

hQ ≃
−→ B ⟨Hc⟩

of BhH ⟨Q ⟩-modules. Now Proposition 3.3 shows that B ⟨Hc⟩
hQ is Azumaya over BhK . �

4. Cyclic algebras

In this section, we will assume that K → L is a faithful Galois extension of commutative S-algebras, and that the Galois
group G = Gal(L/K) is generated by an element σ of order n, say. In particular, this group has to be cyclic. The choice of a
generator corresponds to an isomorphism Z/n ∼= G, whose inverse can be thought of as a (primitive) character of G. Last but
not least, we also need a strict unit u in K . For the time being, this just means that there is an action of the group Z of integers
on the spectrum K via maps of K -modules. We will extend this action to Lwithout change of notation. The strictness of u is
needed in order to ensure that relations hold on the nose and this in turn is necessary to obtain a strictly associative algebra
extension.

Cyclic K -algebras will be defined here via Galois descent from matrix algebras over L. As a model for the matrix algebra
we use

Mn(L) =
n

i,j=1

Li,j,

with all Li,j = L and multiplication given on summands

Li,j ∧K Lj,k −→ Li,k

by the multiplication in L. One could also work with the endomorphism K -algebra spectrum FK (


n L,


n L), but this mixes
covariant and contravariant behaviour in


n L and that is inconvenient for the explicit formulae that we need.

The cyclic group Z/n acts on the L-algebra Mn(L) component-wise, i.e., the generator acts as σ : Li,j −→ Li,j on each
summand. The multiplication and unit L −→ Mn(L) are equivariant, and we have equivalences

Mn(L)hZ/n
≃ Mn(LhZ/n) ≃ Mn(K)

of K -algebras. Something possibly more interesting happens when we twist this action with the chosen unit u: we define a
self-map onMn(L) as the composition

Li,j
id //Li+1,j+1

uδi,n−δj,n
//Li+1,j+1

σ //Li+1,j+1, (4.1)

where the indices i+ 1 and j+ 1 are read modulo n, and δ is the Kronecker symbol.

Lemma 4.1. The above self-map generates a Z/n-action on Mn(L) as an associative K-algebra.

Proof. This follows as in algebra using the fact that

u ∧K L = L ∧K u : L ∧K L −→ L ∧K L

since u is a unit in K . This guarantees that the K -algebra multiplication on L behaves well with respect to the twisted action.
Together with the naturality and symmetry of the fold map this proves the claim. �

Definition 4.2. The cyclic K-algebra

A(L, σ , u) = Mn(L)hZ/n,

associated with L, σ , and u is obtained from the matrix algebra Mn(L) with the twisted Z/n-action by passage to homotopy
fixed points.
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The following result shows that the cyclic K -algebra A(L, σ , u) defines a class in the relative Brauer subgroup Br(L/K)
of Br(K).

Theorem 4.3. The cyclic algebra A(L, σ , u) is an Azumaya algebra over K which splits over L.

Proof. Proposition 3.3 above says that if we have an Azumaya algebra B over L with a compatible G-action such that the
natural morphism

L ∧K BhG
−→ B

is an equivalence of L ⟨G⟩-modules, then A = BhG is also an Azumaya algebra over K . We want to apply this here to the
situation B = Mn(L) and G ∼= Z/n.

Since L is a dualizable K -module,

L ∧K Mn(L)hG ≃ (L ∧K Mn(L))hG,

where G acts only on the right hand factor in L ∧K Mn(L).
As L is a G-Galois extension of K , we have L ∧K L ≃ Map(G+, L), and therefore

L ∧K Mn(L) ∼= Mn(L ∧K L) ≃ Mn(Map(G+, L)) ≃ Map(G+,Mn(L)).

As the latter is equivariantly equivalent to L[G], we see that

L ∧K Mn(L)hG ≃ Mn(L)

and this yields the result. �

Of course, it may happen that a cyclic K -algebra A(L, σ , u) represents the trivial element in the Brauer group Br(K) of K .
This depends very much on the chosen unit u, for example. One way to prove non-triviality is to compute the homotopy
groups of A(L, σ , u), and to compare the result with the homotopy groups of the representatives of the elementary Azumaya
algebras.

For this and other reasons, it is useful to know that onemay calculate the homotopy groups of the cyclic algebra A(L, σ , u)
by means of the homotopy fixed point spectral sequence

Es,t
2 = Hs(Z/n, πtMn(L)) =⇒ πt−s(Mn(L)hZ/n). (4.2)

The action on πtMn(L) ∼= Mn(πtL) is generated by whatever the twisted action Eq. (4.1) induces in homotopy:

ai,j −→ σ∗u
δi,n−δj,n
∗ (ai+1,j+1).

But, if we identify (πtL)⊕n with the first row (or column) of πtMn(L), we easily find

πtMn(L) ∼= Z[Z/n] ⊗Z (πtL)⊕n,

which shows that πtMn(L) is an induced Z/n-module. Therefore the E2-term of the homotopy fixed point spectral
sequence Eq. (4.2) vanishes above the 0-line, which shows

πtA(L, σ , u) ∼= (πtL)⊕n,

additively. In fact, this determines the underlying homotopy type.

Theorem 4.4. If n = 2, and if the unit u has order 2 in the sense that it comes from a Z/2-action, then the class of A(L, σ , u) has
order at most 2 in the Brauer group of Br(K).

Proof. We prove that there is a Z/2-equivariant equivalence of K -algebras between M2(L) and M2(L)o. As in algebra, this
equivalence is given by the transposition of matrices, which we have to model by the permutation Li,j −→ Lj,i. Then the
same proof as in algebra shows that this is a map of associative K -algebras. In order to show that the action passes to the
homotopy fixed points we have to prove that it is compatible with the twisted action of Eq. (4.1) that we impose on M2(L).
But this is trivial except for the u-action, where we have to use that u = u−1 is a second root of unity. �

5. Azumaya algebras over Eilenberg–Mac Lane spectra

In this section we consider the case of Azumaya algebras over the Eilenberg–Mac Lane spectrum of a commutative ring.
In [35], Toën introduces the algebraic notion of a derived Azumaya algebra over a commutative ring as a special case of the
more general notion for simplicial rings. First we explain how the topological and algebraic notions are related.
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In [15, section IV.2], an equivalence of categories

Ψ : DHR −→ DR (5.1)

is constructed, whereΨ is defined on a CWHR-moduleM to be the cellular chain complex C∗(M). By [15, proposition IV.2.5],
for CW HR-modulesM,N there are isomorphisms of chain complexes of R-modules

C∗(M ∧HR N) ∼= C∗(M)⊗R C∗(N),

C∗(FHR(M,N)) ∼= HomR(C∗(M), C∗(N)).

The inverse functor Φ = Ψ−1 also preserves the monoidal structure, thus we have an equivalence of symmetric monoidal
categories.

Following Toën [35], see remark 1.2, and [20, theorem 1.5] we find that an Azumaya algebra A over HR, corresponds
to a derived Azumaya algebra over R. Note that as we are working with associative (but not commutative) HR-algebras, a
cofibrant HR-algebra is a retract of a cell HR-module relative to HR by [15, theorem VII.6.2].

We get the following correspondence whose assumptions are satisfied when R is a principal ideal domain for instance.

Proposition 5.1. Let R be a commutative ring such that for any finitely presented R-module M with TorRk (M,M) = 0 for k > 0
we can deduce that M is flat over R.

Let T be an R-algebra. Then the HR-algebra HT is a topological Azumaya algebra if and only if T is an algebraic Azumaya
R-algebra.

Proof. One direction is easy to see: if R −→ T is an algebraic Azumaya extension, thenHR −→ HT is topologically Azumaya
without any additional assumptions on R.

For the converse, from [15, theorem IV.2.1] we have

πn(HT ∧HR HT o) = TorRn (T , T o), (5.2)

πn(FHR(HT ,HT )) = Ext−nR (T , T ). (5.3)

Because TorRs = 0 = ExtsR when s < 0, the Azumaya condition

µ : HT ∧HR HT o ≃
−→ FHR(HT ,HT )

implies that for n ≠ 0,

πn(HT ∧HR HT o) = TorRn (T , T o) = 0 = ExtnR (T , T ) = πn(FHR(HT ,HT )). (5.4)

In particular,

T ⊗R T o
= π0(HT ∧HR HT o) ∼= π0(FHR(HT ,HT )) = HomR(T , T ). (5.5)

According to [35, remark 1.2], the R-module T is finitely presented and flat by assumption, therefore it is finitely generated
and projective by the corollary to [25, theorem 7.12].

For faithfulness, suppose thatM is a non-trivial R-module. Since HT is a faithful HR-module, HT ∧HR HM ≄ ∗. Flatness of
T over R together with [15, theorem IV.2.1] yields the isomorphisms

π∗(HT ∧HR HM) ∼= π0(HT ∧HR HM) ∼= T ⊗R M,

and therefore T ⊗R M is not trivial. �

Proposition 5.2. For any commutative ring with unit R there is a natural homomorphism

H : Br(R) −→ Br(HR)

induced by the functor which sends a ring to its Eilenberg–Mac Lane spectrum.

Proof. Let [A] be an element of Br(R), then Proposition 5.1 identifies HA as an HR-Azumaya algebra. If [A] = 0, i.e., if there
is a finitely generated faithful projective R-module M with A ∼= HomR(M,M), then

HA ≃ HHomR(M,M) ≃ FHR(HM,HM)

and therefore HA is trivial in Br(HR). �

Remark 5.3. Toën shows that the Brauer groupof derivedAzumaya algebras overR is parametrized byH2
ét(R, Gm)×H1

ét(R, Z)

whereas the ordinary Brauer group of R, Br(R), corresponds to the torsion part in H2
ét(R, Gm). Combining this with the

comparison result of Johnson [20, theorem 1.5] yields that the above homomorphism H is injective for any R corresponding
to H2

ét(R, Gm)tor ⊆ H2
ét(R, Gm).
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The situation is drastically different if we consider arbitrary HR-algebra spectra A. For instance, for every R, every
R-module spectrum ΣnHR is faithful and dualizable, and therefore FHR(HR ∨ ΣnHR,HR ∨ ΣnHR) is a trivial topological
Azumaya HR-algebra whose homotopy groups spread over positive and negative degrees. This indicates that the Eilenberg–
Mac Lane functor of Proposition 5.2 will not induce an isomorphism in general. The relationship with étale cohomology
groups in [35] in fact shows that there are derived Azumaya algebras that are not Brauer equivalent to an ordinary Azumaya
algebra. Toën describes a concrete example in [35, section 4] originating in an example by Mumford.

We will discuss the case of Hk for a field k. If A is Azumaya over Hk, then as A is dualizable over Hk we know that the
homotopy groups of A are concentrated in finitely many degrees, say πr(A) ≠ 0 only when−m 6 r 6 n for some m, n > 0.
As k is a field, we have

π∗(A ∧Hk Ao) ∼= π∗(A)⊗k π∗(A)o.

Using the fact that µ induces an isomorphism, we can deduce that n = m because otherwise the kernel of π∗(µ) would be
non-trivial.

A derived Azumaya algebra over the field k is a differential graded k-algebra B∗ whose underlying chain complex is a
compact generator of the derived category of chain complexes of k-vector spaces Dk such that the natural map

µB∗ : B∗ ⊗k Bo
∗
−→ Homk(B∗, B∗)

is an isomorphism in Dk . Here B∗ ⊗k Bo
∗
agrees with the derived tensor product because we are working over a field, and

similarly, Homk(B∗, B∗) is the graded k-vector space of derived endomorphisms of B∗. Now we can relate topological Hk-
Azumaya algebras to derived Azumaya algebras over k.

Proposition 5.4. If A is a topological Azumaya algebra over Hk, then π∗(A) is a derived Azumaya algebra over k.

Proof. As A is dualizable over Hk, its homotopy groups build a finite dimensional graded k-vector space and hence π∗(A)
is a compact generator of Dk . The weak equivalence

µ : A ∧Hk Ao
−→ FHk(A, A)

yields isomorphisms

µπ∗(A) : π∗(A)⊗k π∗(A)o ∼= π∗(A ∧Hk Ao) ∼= π∗FHk(A, A) ∼= Homk(A∗, A∗)

and so π∗(A) is a derived Azumaya algebra over k. �

Using Proposition 5.4 together with Toën’s results of [35, section 1] we obtain the following.

Theorem 5.5. For any algebraically closed field k, the Brauer group of Hk is trivial.

Proof. Let A be a derived Azumaya algebra over k. We know from [35, corollary 1.11] that every derived Azumaya algebra
over an algebraically closed field k, in particular π∗(A), is quasi-isomorphic to a graded k-vector spaceHomk(V , V ) for some
finite dimensional graded k-vector space V .

Let

M = HV =
n

i=1

ΣmiHk

be the Hk-module spectrum such that π∗M ∼= V as graded k-vector spaces. Then A is weakly equivalent to FHk(A, A) since
there are isomorphisms

π∗(A) ∼= Homk(V , V ) ∼= π∗(FHk(M,M)).

Therefore [A] is trivial in the Brauer group Br(Hk). �

Remark 5.6. Using [35, corollary 1.15] one can extend the result to obtain the triviality of the Brauer group Br(Hk) for any
separably closed field k.

6. Realizability of algebraic Azumaya extensions

Using Angeltveit’s obstruction theory [1, theorem 3.5], we can import algebraic Azumaya algebra extensions into
topology. Let R be a commutative S-algebra and let π0R −→ A0 be an algebraic Azumaya extension. Then

A∗ := π∗R⊗π0R A0

is a projective module over R∗ = π∗R and there is an R-module spectrum A′ with π∗(A′) ∼= A∗ which can be built as a
mapping telescope of an idempotent corresponding to viewing A∗ as a direct summand of a free R∗-module. The methods
of [6] carry over to give a homotopy associative R-ring spectrum A that realizes A∗ as the homotopy ring π∗A.

Angeltveit’s obstruction theory [1] then yields the following.

Theorem 6.1. There is a unique A∞ R-algebra structure on A, i.e., there is a unique rigidification r(A) of A to an associative
R-algebra. The resulting extension R −→ r(A) is an Azumaya algebra.
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Proof. The existence of the A∞ structure on A is given by [1, theorem 3.5], because π∗(A ∧R Ao) is separable over A∗ and
hence the possible obstructions to an A∞-structure on A (which live in Hochschild cohomology groups of π∗(A ∧R Ao) over
A∗) are trivial. The possibility of rigidification follows from [15, II.4]. Uniqueness also follows from the vanishing of all higher
Hochschild cohomology groups.

As A0 is finitely generated projective and faithful over π0R, r(A) is dualizable and faithful as an R-module spectrum. The
Azumaya condition

µ : A0 ⊗π0R Ao
0
∼= Homπ0R(A0, A0)

for A0 guarantees that the µ-map

µ : r(A) ∧R r(A)o −→ FR(r(A), r(A))

is a weak equivalence. �

Corollary 6.2. There is a natural group homomorphism

r : Br(π0R) −→ Br(R); [A] → [r(A)].

This result implies Proposition 5.2 but reaches further. For instance in the presence of enough roots of one, we can
build generalized quaternionic extensions of ring spectra or consider cyclic extensions. Note, however, that in many cases
Br(π0(R)) = 0, for instance if π0(R) is isomorphic to a finite field, Z (see [18]) or Z[A] for some finite abelian group A
(see [21]). We learned from David Gepner that the Brauer group for a connective commutative S-algebra R can be described
via the second étale cohomology group of π0(R) with coefficients in the units and the first étale cohomology group of π0(R)
with coefficients in Z via a short exact sequence.

John Rognes drew our attention to the non-trivial examples of Brauer groups in [31].

Proposition 6.3. There is a quaternionic extension of the sphere spectrum with 2 inverted that is not trivial in the Brauer group
and hence

Br(S[1/2]) ≠ 0.

Proof. The Brauer group of Z[1/2] is isomorphic to Z/2, see [31, 2.8]. Extension of scalars to R has to send the generator
of Br(Z[1/2]) to the generator of Br(R) ∼= Z/2 and hence this extension is equivalent to the R-algebra of quaternions H.
Thus we know that a representative of the generator of Br(Z[1/2]) is given by the class of the subring of localized Hurwitz
quaternions Z[1/2](i, j, k) ⊆ H with i2 = j2 = k2 = −1, k = ij = −ji, which is the quaternionic extension of Z[1/2]. We
can realize this extension topologically as an Azumaya algebra H over S[1/2].

Using base-change to HR we get the following commutative diagram.

Br(S[1/2]) // Br(HR)

Br(Z[1/2]) //

OO

Br(R)

OO
.

As the map from Br(R) to Br(HR) is injective (compare Remark 5.3), the image of the class of Z[1/2](i, j, k) in Br(S[1/2])
cannot be trivial. �

Remark 6.4. As the Brauer groups of Z[1/p] and Z(p) are non-trivial for odd primes as well (see [27] and [37, p.145]), the
above result can be used to obtain that other Brauer groups of connective commutative ring spectra are non-trivial. In
particular, the Brauer groups of the corresponding localized spheres are non-trivial.

7. Topological Hochschild cohomology of group rings

We will consider Azumaya algebra extensions that arise as follows. For a finite discrete group G and a commutative
S-algebra A, we consider the group A-algebra spectrum A[G] = A ∧ G+. Note, that if G is not abelian, then A[G] is not
commutative. We want to identify the extension THHA(A[G]) −→ A[G] as an Azumaya extension in good cases.

For ordinary commutative rings R and groups G, DeMeyer and Janusz describe in [12] conditions on R and G which
ensure that R[G] is an Azumaya algebra over its centre. First, we document a well-known identification of topological
Hochschild cohomology of group rings, see for instance [24, 4.2.10]. This canwe viewed as a topological version ofMac Lane’s
isomorphisms [23, 7.4.2].

Lemma 7.1. For A and G as above we have

THHA(A[G], A[G]) ≃ (A[G]c)hG = FG(EG+, A[G]c).

Here A[G]c denotes the naive G-spectrum A[G], where G acts by conjugation on G.
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Proof. Topological Hochschild cohomology of A[G] can be described as the totalization of the cosimplicial spectrum that
has

FA(A[G]q, A[G]) ∼= F(Gq
+, A[G])

as q-cosimplices [26]. First, we mimic the identification that is used in the Mac Lane isomorphism for usual Hochschild
cohomology in order to identify this cosimplicial spectrum with the one that has F(Gq, A[G]c) as q-cosimplices. In algebra
this identification is given by f → f ′ where

f ′(g1, . . . , gq) = f (g1, . . . , gq)g−1q . . . g−11 .

An analogous identification works on spectrum level. The cofacemaps in the cosimplicial structure in F(G•, A[G]c) are given
by

d0(f )(g1, . . . , gq) = g1f (g2, . . . , gq)g−11 ,

di(f )(g1, . . . , gq) = f (g1, . . . , gigi+1, . . . , gq), (0 < i < q)
dq(f )(g1, . . . , gq = f (g1, . . . , gq−1).

Consider the simplicial model of EG with q-simplices Gq+1, with diagonal G-action, and where the i-th face map in EG is
given by omitting the i-th group element. We can write the homotopy fixed point spectrum FG(EG+, A[G]c) as

FG(EG+, A[G]c) ∼= Tot([q] → FG(Gq+1, A[G]c)).

Let ϕ : F(G•, A[G]c) −→ FG(EG+, A[G]c) be the map that we can describe symbolically as

(ϕf )(g0, . . . , gq) = g0f (g−10 g1, . . . , g−1q−1gq)g
−1
0 .

It is then straightforward to check that ϕ in fact respects the cosimplicial structure. �

Now fix a prime p. Let k be an algebraically closed field of characteristic p and let Hk be the corresponding Eilenberg–
Mac Lane spectrum realized as a commutative S-algebra. We also adopt the notation of [8]. Thus En is the Lubin–Tate
spectrum associated with the prime p and the Honda formal group of height n and Enr

n is its maximal unramified Galois
extension. These commutative S-algebras have ‘residue fields’ in the sense of [6,7], namely Kn and Knr

n respectively, and
these are algebras over En and Enr

n respectively, but only homotopy commutative when p ≠ 2 and not even that when
p = 2.

Theorem 7.2. Let G be a non-trivial finite discrete group whose order is not divisible by p. Suppose that A is either Hk or Enr
n .

(1) If G is abelian, then (A[G]c)hG −→ A[G] and the trivial extension id : A[G] −→ A[G] are equivalent.
(2) If G is non-abelian, then A[G] is a non-trivial (A[G])hG-Azumaya algebra.

Proof. In all cases, we will consider the homotopy fixed point spectral sequence

Es,t
2 = H−s(G; At [G]c) =⇒ πs+t((A[G]c)hG).

If p does not divide the order of the group G, then this spectral sequence collapses and the only surviving non-trivial terms
are the G-invariants

E0,t
2 = (At [G]c)G

which can be identified with the centre of the group ring Z(A∗[G]). In particular, π∗((A[G]c)hG) is a graded commutative
A∗-algebra.

If G is abelian, then the conjugation action is trivial and as p does not divide |G|we obtain

(A[G]c)hG = F(BG+, A[G]) ≃ A[G],

so we have the trivial Azumaya extension. If G is not abelian, then the centre of the group ring A∗[G] is a proper subring
of A∗[G].

For A = Hk we can use Artin–Wedderburn theory to obtain a splitting of the semisimple ring k[G] into a product of
matrix algebras over the algebraically closed field k,

k[G] ∼=
r

i=1

Mmi(k),

where r agrees with the number of conjugacy classes in G. Thus the centre of k[G] is a product of copies of k and is therefore
an étale k-algebra. By the obstruction theory of Robinson or Goerss–Hopkins [28,17], there is a unique E∞ Hk-algebra
spectrum that isweakly equivalent to (A[G]c)hG. By abuse of notationwe denote the corresponding commutativeHk-algebra
by (A[G]c)hG.



A. Baker et al. / Journal of Pure and Applied Algebra 216 (2012) 2361–2376 2373

We have to describe A[G] as an associative (A[G]c)hG-algebra. For this we use [1, theorem 3.5] again. Starting with our
commutative model of (A[G]c)hG we can build a homotopy associative ring spectrum Bwith π∗(B) ∼= A∗[G], and as G is finite
and discrete this extension is of the form

π∗(B) ∼= π∗(A[G]c)hG ⊗π0(A[G]c )hG B0,

with π0(A[G]c)hG −→ B0 being algebraically Azumaya. Thus we can apply Theorem 6.1 to see that there is an associative
(A[G]c)hG-algebra Bwhich models A[G] and such that B is Azumaya over (A[G]c)hG.

For Enr
n we pass to the residue field Knr

n . The homotopy fixed point spectral sequence gives

π∗((Enr
n [G]

c)hG) ∼= Z((Enr
n )∗[G])

∼= Z(WFp[[u1, . . . , un−1]][G])[u±1].

Reducing modulo the maximal ideal m = (p, u1, . . . , un−1) gives the homotopy groups of the G-homotopy fixed points of
Knr
n [G]with respect to the conjugation action, Z(Fp[G])[u±1] and again we can identify this term as

r
i=1 Fp where r denotes

the number of conjugacy classes in G. The idempotents that give rise to these splittings can be lifted to idempotents for
Z(WFp[[u1, . . . , un−1]][G]) and WFp[[u1, . . . , un−1]][G] and therefore these two algebras also split into products with r
factors:

WFp[[u1, . . . , un−1]][G] ∼=
r

i=1

Bi,

Z(WFp[[u1, . . . , un−1]][G]) ∼=
r

i=1

Ci,

where
Bi/m ∼= Mmi(Fp),

while for 1 6 i 6 r , the Ci are commutative and satisfy
Ci/mCi ∼= Fp.

Additively we know that Z(WFp[[u1, . . . , un−1]][G]) is the free module on the conjugacy classes and so we can conclude
that (Enr

n [G]
c)hG is weakly equivalent to

r
i=1 E

nr
n and the latter spectrum can be modelled by a commutative Enr

n -algebra
spectrum and Enr

n [G] is dualizable over
r

i=1 E
nr
n .

Artin–Wedderburn theory gives a semisimple decomposition

Fp[G] ∼=
r

i=1

Mdi(Fp),

and the centre Z(Fp[G]) can be identified with the product of the centres of the matrix ring factors. There are associated
central idempotents of Fp[G] accomplishing this splitting. By the theory of idempotent lifting described in [22, section 21]
for example, these idempotents lift to give an associated splitting

WFp[[u1, . . . , un−1]][G] ∼=
r

i=1

Mdi(WFp[[u1, . . . , un−1]]),

and again the centre of WFp[[u1, . . . , un−1]][G] can be identified with the product of the centres of the matrix factors.
Notice that Mdi(WFp[[u1, . . . , un−1]]) is Azumaya over WFp[[u1, . . . , un−1]]. The rest of the proof involves realizing the
central idempotents as morphisms of S-algebras, but this is well known to be possible since the projections are Bousfield
localizations, see [33]. �

8. Azumaya algebras over Lubin–Tate spectra

From now on we will use E to denote En, Enr
n or any commutative Galois extension of En obtained as a homotopy fixed

point algebra E = (Enr
n )hΓ for some closed normal subgroup Γ ▹ Gal(Fp/Fpn). Similarly, K will denote the corresponding

residue field of E, so when E = En or Enr
n we have K = Kn or Knr

n .
We will work with dualizable K -local E-modules. By [8, section 7] we know that such modules are retracts of finite cell

E-modules. IfW ∈ ME,K , then since π∗(K ∧E W ) is a graded vector space over the graded field K∗ = π∗(K), it follows that

K ∧E W ≃ LK

i

Σd(i)K ,

where the right hand wedge is non-trivial if and only if W is non-trivial in DE,K . In particular, if W is dualizable this wedge
is finite and

K ∧E W ≃

i

Σd(i)K
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sinceW is K -local. For any X ∈ ME,K ,

K ∧E (W ∧E X) ≃ LK

i

Σd(i)K ∧E X,

soW ∧E X is trivial in DE,K if and only if both ofW and X are trivial in DE,K . Thus every E-moduleW which is non-trivial as
an element of DE,K is faithful and cofibrant as a K -local E-module; furthermore, every X ∈ ME,K is W -local.

By [1], there are many examples of K -local Azumaya algebras over E which have K as their underlying ring spectrum.
These examples have no analogue in the algebraic context since they are not projective E-modules, nor do they split
over suitable Galois extensions. Instead we focus on split examples. A good source of these can be found in the situation
of [29, section 5.4.3], based on work of Devinatz and Hopkins [13] and we will discuss these in Section 9.

For background ideas on Azumaya algebras graded on a finite abelian group, we follow [10] which generalizes work of
Wall [36] and others. Wewill only consider the case where the grading group is Z/2 with the non-trivial symmetric bilinear
map Z/2×Z/2 −→ {±1} determining the relevant signs, however in periodic topological contexts it may also prove useful
to modify the grading to other finite quotient groups lying between Z and Z/2, and the above reference should provide
appropriate generality for such algebra.

Over a field k, an (ungraded) Azumaya algebra A is a central simple algebra, so by Wedderburn’s theorem, there is an
isomorphism of k-algebras

A ∼= Mr(D),

where D is a central division algebra over k. If d = dimk D, then
dimk A = (rd)2,

so dimk A is a square. In the graded case, such restrictions do not always apply, and this has consequences for the topological
situation.
Theorem 8.1. Suppose that p is an odd prime and let A be a K-local Azumaya algebra over E. Then π∗(K ∧E A) is an Azumaya
algebra over K∗.
Proof. The ring K∗ is a 2-periodic graded field which we will view as Z/2-graded, and π∗(K ∧E A) will also be viewed as a
Z/2-graded K∗-algebra.

We have isomorphisms of K∗-algebras

π∗(K ∧E A)⊗K∗ π∗(K ∧E A)o ∼= π∗(K ∧E A)⊗K∗ π∗(K o
∧E Ao)

∼= π∗(K ∧E (A ∧E Ao))

∼= π∗(K ∧E FE(A, A)).

Since A and K are strongly dualizable, using results of [15] we have
K ∧E FE(A, A) ≃ FK (K ∧E A, K ∧E A),

so the universal coefficient spectral sequence over K yields
π∗(K ∧E FE(A, A)) ∼= EndK∗(π∗(K ∧E A)).

Therefore π∗(K ∧E A) is a K∗-Azumaya algebra. �

Corollary 8.2. If π∗(K ∧E A) is concentrated in even degrees then its dimension is a square, i.e., for some natural number m,
dimK∗ π∗(K ∧E A) = m2.

In fact we have
Proposition 8.3. If π∗(K ∧E A) is concentrated in even degrees then π∗(A) is a Z/2-graded algebra Azumaya algebra over E0. In
particular, as an E-module A is equivalent to a wedge of m2 copies of E, where

m2
= dimK∗ π∗(K ∧E A) = rankE∗π∗(A).

Proof. By [8] (see section 7 and the proof of theorem 5.1), the E∗-module π∗(A) is finitely generated, free and concentrated
in even degrees, hence

π∗(A)⊗E∗ π∗(A)o ∼= π∗(A ∧E Ao) ∼= π∗(FE(A, A)) ∼= HomE∗(π∗(A), π∗(A)),

where the last isomorphism follows from the collapsing of the universal coefficient spectral sequence. �

Recall that AzK (E) is the collection of all cofibrant K -local topological Azumaya algebras over E. The Brauer equivalence
relation≈ on AzK (E) is then given as follows:

• If A, B ∈ AzK (E), then A ≈ B if and only if there are faithful, dualizable, cofibrant E-modules U, V for which there is an
equivalence in the derived category of K -local E-algebras

A ∧E FE(U,U) ≃ B ∧E FE(V , V ).

The set of equivalence classes of ≈ is BrK (E); this is indeed a set since every dualizable K -local E-module is a retract of a
finite cell E-module.
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9. Some examples of Kn-local Azumaya algebras

We now recall Proposition 3.4. By work of Devinatz and Hopkins [13], and subsequently Davis [11], as explained
in [29, theorem 5.4.4], for each pair of closed subgroups

H 6 G 6 Gn = Gal(Fpn/Fp) n Sn

of the Morava stabilizer group, there is an associated pair of homotopy fixed point spectra EhG
−→ EhH , and if H ▹ G then

this is a K -local G/H-Galois extension. In particular, when H 6 Gn is finite, EhH
−→ E is a K -local H-Galois extension.

A particularly interesting source of examples is provided by taking G to be a maximal finite subgroup of Gn. If p is odd
and n = (p − 1)k with p - k, or p = 2 and n = 2k with k odd, then such maximal subgroups are unique up to conjugation
and then the homotopy fixed point spectrum EhG is denoted EOn. For p = 3 Behrens [9, remark 1.7.3] gives an argument for
the identification of EO2 with the K(2)-localization of the spectrum of topological modular forms, TMF . This can be adapted
to p = 2. We proceed with an example, studied in [29, section 5.4.3].

Example 9.1. At the prime p = 2, the group G2 has a maximal finite subgroup G48 of order 48 which is isomorphic to a
semi-direct product of the group HQ24 of order 24, which consists of the units in the ring of Hurwitz quaternions, with the
Galois group Gal(F4/F2) of order 2. Therefore E2/EO2 is a G48-Galois extension. Applying Proposition 3.4, we see that the
splitting of the group G48 yields an Azumaya algebra

(E2 ⟨HQ24⟩)
hC2

over EO2. There are two more examples like this: Of the 15 conjugacy classes of subgroups of G48, there are 7 which are
normal: 1, C2, C4, Q8, Syl2(G48), HQ24, and G48. The first and last of them are uninteresting here, as (E2)hG48 ≃ EO2 and
E2 ⟨G48⟩ ≃ FEO2(E2, E2) are trivial in the Brauer group of EO2. The second and third do not split the group, but the other three
do. The last of these yields the Azumaya algebra displayed above, but the other two give rise to further examples

(E2 ⟨Q8⟩)
hC6 (E2 ⟨Syl2(G48)⟩)

hC3

of Azumaya algebras over EO2.

10. The Brauer group of the K (n)-local sphere

In this section we discuss the K(n)-local Brauer group of the K(n)-local sphere LK(n)S.

Theorem 10.1. Suppose that p > 2 and n > 1. Then the K(n)-local Brauer group of LK(n)S is non-trivial.

Proof. As usual, let us write q = pn. The cyclic group C = F×q of order q− 1 consists of roots of unity, and the Galois group
G = Gal(Fq/Fp) is cyclic of order n, generated by the Frobenius. As n ≠ 1, the Galois group is non-trivial, and its Galois action
gives rise to an extension F = G n C .

Let Gn denote again the n-th extended Morava stabilizer group. We refer to section 2.3 and the appendix of [19] for
the following facts. The reduction of the determinant gives rise to a surjection Gn → F , a splitting of which is induced
by the Teichmüller character F×q −→ WF×q . Consequently, if we write N for the kernel of that surjection, then there is an
isomorphism Gn ∼= F n N .

We will now invoke Proposition 3.4 in order to get an Azumaya algebra

A = (EhN
n ⟨C⟩)

hG

over LK(n)S. That result also implies that the image of [A] automatically maps to zero in the local Brauer group of EhN
n . In

particular, it vanishes in BrK(n)(En) itself. It remains to show that [A] ≠ 0 in the local Brauer group of LK(n)S. In particular, it
suffices to prove that its image in BrK(n)(EhF

n ) is non-zero. That image is equivalent to (En ⟨C⟩)hG.
We assume on the contrary that there were an equivalence between our example (En ⟨C⟩)hG and FEhFn (W ,W ) for some

faithful, dualizable, cofibrant EhF
n -module W . We get a contradiction by looking at the centres of π0 ⊗ Q for both algebras.

The centre of π0(FEhFn (W ,W ))⊗ Q is just

π0(EhF
n )⊗ Q ∼= π0(En ⊗ Q)F .

As the groupof roots of unityC acts only on the grading, and theGalois groupG acts only on the coefficients, this is isomorphic
to Qp[[u1, . . . , un−1]]. However, as p is odd, the G-action on En ⟨C⟩ not only leaves the summand corresponding to the root 1
in C invariant, but also the one corresponding to the unique element−1 of order 2 in C . As a consequence,π0((En ⟨C⟩)hG)⊗Q
contains more than Qp[[u1, . . . , un−1]]. �

Summarizing, we know that localizations of the sphere (at an ordinary prime or at Morava-K -theory) possess non-trivial
Brauer groups, compareRemark6.4. However,we conjectured that theBrauer groupof the (global) sphere spectrum is trivial.
Antieau–Gepner’s [2], Gepner–Lawson’s [16] and Toën’s [35] results that relate Brauer groups of commutative S-algebras to
étale cohomology groups, allow to prove this conjecture, so

Br(S) = 0.
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