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A FACTORIZATION HOMOLOGY PRIMER

DAVID AYALA & JOHN FRANCIS

Abstract. This article amalgamates some foundational developments and calculations in factor-
ization homology, including natural (co)filtrations thereof.

1. Introduction

This article is an introduction to factorization homology—or factorization algebras—in the topo-
logical setting; see also Lurie [Lu2]. For introductions in the closely related algebro-geometric or Rie-
mannian settings, see Beilinson–Drinfeld [BD], Francis–Gaitsgory [FG], and Costello–Gwilliam [CG].

Factorization homology takes:

• a geometric input: an n-manifold M ;
• an algebraic input: an n-disk algebra A, or a stack X over n-disk algebras, in a symmetric
monoidal ∞-category V;1

The resulting factorization homology
∫

M

A

is an object of V. It can be thought of as the integral of the algebra A over the manifold M , in
the same sense that ordinary homology H∗(M,A) is given by integrating an abelian group A over a
space M .2 The functor

∫

A is covariant with respect to open embeddings in the manifold variable:
for each fixed M , the functor on the poset of opens

∫

A : Opens(M) → V, sending U ⊂ M to
∫

U
A, defines a factorization algebra on M , both in the definitions of Beilinson–Drinfeld [BD] and

Costello–Gwilliam [CG].

Factorization homology has three essential features making it technically advantageous:

(1) Local-to-global principle: ⊗-excision, generalizing the Eilenberg–Steenrod axioms;
(2) Filtration: a generalization of the Goodwillie–Weiss embedding calculus;
(3) Duality: Poincaré/Koszul duality.

The algebraic input A can arise from a variety of sources: as an n-fold loop space in classical
algebraic topology; or as a formal deformation of an n-Poisson algebra. This latter class of examples
arises in higher quantization in mathematical physics, a major source of contemporary interest in
factorization methods.

The following is a table of values for factorization homology, as the algebra input varies, which
we will explain through this article.
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Manifold input Algebra input Factorization homology output

M = S1 the circle A an associative algebra

∫

S1

A ≃ HH•(A)

Hochschild homology

M an n-manifold A an abelian group

∫

M

A ≃ H∗(M,A)

ordinary homology

M an n-manifold A a spectrum

∫

M

A ≃ Σ∞
∗ M ∧ A

generalized homology

M an n-manifold A a commutative algebra
(e.g., Sym(V ))

∫

M

A ≃M ⊠A

categorical tensoring

(e.g.,

∫

M

Sym(V ) ≃ Sym(C∗(M)⊗ V ) )

M an n-manifold A = FnV a free n-disk al-
gebra

∫

M

FnV ≃
⊕

k≥0

C∗(Conf
fr
k (M)) ⊗

Σk ≀O(n)
V ⊗k

M an n-manifold A = ΩnK the n-fold loop
space of an n-connective
space

∫

M

ΩnK ≃ Mapc(M,K)

space of compactly-supported maps

M an n-manifold A = Un(g) an n-disk en-
veloping algebra of a Lie
algebra

∫

M

Un(g) ≃ CLie
∗

(

C∗
c (M, g)

)

Lie algebra homology

M an n-manifold A = Obs(Rn) the local ob-
servables in a TQFT

∫

M

Obs(Rn) −→ Obs(M)

⊗-excisive left-approximation to global
observables

The last row is not a genuine equivalence in general: the result of alpha factorization homology
is not always the genuine global observables, but only those observables that are determined by the
point-local ones. Additionally, the alpha version of factorization homology does not compute the
state space of a field theory. This motivates a beta version of factorization homology, developed in
[AFR], where the algebraic input is a more general object, an (∞, n)-category, and which satisfies a
more general, and nuanced, form of excision. As this beta version of factorization homology is more
involved, it will not be discussed in this article.

While the subject of factorization homology is relatively new in name, it has important roots
and antecedents. It derives foremost from the algebro-geometric theory of chiral and factorization
algebras developed by Beilinson and Drinfeld in conformal field theory in [BD]. Secondly, it has an
antecedent in the labeled configuration space models of mapping spaces dating to the 1970s; it is
closest to the models of Salvatore [Sa] and Segal [Se4], but see also [Ka], [Bö], [Mc1], [Ma], and [Se1].
Aspects appear implicitly in other works, particularly Bott–Segal [BS], in realizing the Gelfand–
Fuks cohomology of vector fields as the homology of a section space, and in foliation theory [Mc2].
Factorization homology thus arises from the broad nexus of Segal’s ideas on conformal field theory
[Se3], on mapping spaces [Se1] and [Se4], on foliations [Se2], and on Lie algebra homology [BS].3

1.0.1. Outline of contents. We briefly outline the contents of this article. Section 2 concerns
n-manifolds and certain topological structures thereon. In §2.2-2.5 we discuss a classification of
sheaves on an ∞-category Mfldn of n-manifolds and embeddings among them: sheaves on Mfldn
are n-dimensional tangential structures. In §2.5-2.7 we undergo a similar examination concerning

3More recent works include [AKZ], [An], [BZBJ1], [BZBJ2], [DCK], [GTZ1], [GTZ2], [Gw], [Ho], [Kl], [Kn1],
[Kn2], among many others.
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Weiss sheaves, thereby motivating and introducing an ∞-category Diskn, which plays a key role in
factorization homology. In §2.8 we extend these developments to manifolds with boundary; in §2.9

we record a technical result concerning localizing with respect to isotopies, which plays a key role
in essentially all of the technical results concerning factorization homology.

Section 3 concerns homology theories for manifolds, and introduces factorization homology.
In §3.2 we relate factorization homology to factorization algebras. The remainder of this section
is devoted to establishing a pushforward formula for factorization homology, and characterizing
homology theories in terms of factorization homology. Section 4 applies this characterization to
prove nonabelian Poincaré duality. Section 5 is devoted to a few formal calculations of factorization
homology.

Section 6 concerns filtrations and cofiltrations of factorization homology, whose layers are ex-
plicit in terms of configuration spaces. These (co)filtrations offer access to identifying and controlling
factorization homology. Section 7 demonstrates this with a statement for how factorization homol-
ogy intertwines Poincaré duality and Koszul duality. This Poincaré/Koszul duality (Theorem 7.8)
is the deepest result discussed in this article, and supplies a physical interpretation to factorization
homology as observables of perturbative sigma-models.

Section 8 is a synopsis of an adaptation of factorization homology for singular manifolds with
coefficients in disk -algebras and module data among such.

Implementation of ∞-categories. In this work, we use Joyal’s quasi-category model of ∞-
category theory [Jo]. Boardman and Vogt first introduced these simplicial sets in [BV], as weak
Kan complexes, and their and Joyal’s theory has been developed in great depth by Lurie in [Lu1]
and [Lu2], our primary references; see the first article of [Lu1] for an introduction. We use this model,
rather than model categories or simplicial categories, because of the great technical advantages for
constructions involving categories of functors, which are ubiquitous in this work.

More specifically, we work inside of the quasi-category associated to this model category of Joyal’s.
In particular, each map between quasi-categories is understood to be an iso- and inner-fibration;
(co)limits among quasi-categories are equivalent to homotopy (co)limits with respect to Joyal’s
model structure. As we work in this way, we refer the reader to these sources for ∞-categorical
versions of numerous familiar results and constructions among ordinary categories. In particular, we
will make repeated use of the∞-categorical adjoint functor theorem (Corollary 5.5.2.9 of [Lu1]); the
straightening-unstraightening equivalence between Cartesian fibrations over an ∞-category C and
Cat∞-valued contravariant functors from C (Theorem 3.2.0.1 of [Lu1]), and likewise between right
fibrations over C and space-valued presheaves on C (Theorem 2.2.1.2 of [Lu1]); the ∞-categorical
version of the Yoneda functor C→ PShv(C) ≃ RFibC as it evaluates on objects as c 7→ C/c (see §5.1
of [Lu1]).

We will also make use of topological categories, such as Mfldn of n-manifolds and embeddings
among them. By a functor S → C from a topological category to an ∞-category C we will always
mean a functor NSing S → C from the simplicial nerve of the Kan-enriched category obtained by
applying the product preserving functor Sing to the morphism topological spaces.

The reader uncomfortable with this language can substitute the words “topological category”
for “∞-category” wherever they occur in this paper to obtain the correct sense of the results, but
they should then bear in mind the proviso that technical difficulties may then abound in making
the statements literally true. The reader only concerned with algebras in chain complexes, rather
than spectra, can likewise substitute “pre-triangulated differential graded category” for “stable ∞-
category” wherever those words appear, with the same proviso.

2. Manifolds with tangential structure

In this section, we first introduce a topological category of n-manifolds and embeddings among
them. We then define the tangent classifier functor. Using this tangent classifier, we then introduce
tangential structures, and define an ∞-category of such structured n-manifolds.
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2.1. Manifolds and embeddings.

Definition 2.1. A smooth manifold M is finitary if it admits a good cover, which is to say it
admits a finite open cover U := {U ⊂M} with the property that, for each finite subset S ⊂ U, the
intersection

⋂

U∈S

U is either empty or diffeomorphic to Euclidean space.

Observation 2.2. A smooth manifold M is finitary if and only if it is the interior of a compact
smooth manifold with (possibly empty) boundary.

Terminology 2.3. In this article, by “manifold” we will mean “finitary smooth manifold”, unless
otherwise stated.

Remark 2.4. The size restriction of Terminology 2.3 is not an essential requirement. Indeed, each
non-compact manifold is built as sequential colimit of finitary manifolds. Correspondingly, this
smallness condition could be removed and one could instead add to Definition 3.28 the requirement
that a homology theory preserves sequential colimits. With this modification to that definition, the
main results are still valid.

Definition 2.5. The symmetric monoidal topological category Mfldn has as objects smooth n-
manifolds. The space of morphisms in Mfldn from M to N is

MapMfldn
(M,N) := Emb(M,N)

the set of embeddings of M into N equipped with the compact-open C∞ topology. The symmetric
monoidal structure is disjoint union.

Note that disjoint union is not the coproduct in Mfldn; in fact, there are almost no nontrivial
colimits in Mfldn.

We will make ongoing use of the following result.

Proposition 2.6. The continuous homomorphism of topological monoids O(n) → Emb(Rn,Rn) is
a homotopy equivalence.

Proof. This continuous homomorphism factors as a composite of continuous homomorphisms:

O(n) −→ GL(n) −→ Emb0(R
n,Rn) −→ Emb(Rn,Rn) ;

where GL(n) is the topological group of linear automorphisms of Rn, and Emb0(R
n,Rn) is the sub-

monoid of Emb(Rn,Rn) consisting of those smooth embeddings that preserve the origin. The result
is established upon showing each of these continuous homomoprhisms is a section of a deformation
retraction. Well, the Gram–Schmidt process demonstrates a deformation retraction to the inclusion

O(n)→ GL(n). Translation (Rn
x 7→f(x)
−−−−−→ Rn) 7→ (Rn

x 7→f(x)−tf(0)
−−−−−−−−−→ Rn) demonstrates a deformation

retraction to the inclusion Emb0(R
n,Rn)→ Emb(Rn,Rn). The expression

f 7→

{

f(tx)
t for t > 0

D0f(x) for t = 0

demonstrates a deformation retraction to the inclusion GL(n)→ Emb0(R
n,Rn).

�

Now, temporarily consider the full ∞-subcategory

Eucn ⊂ Mfldn

consisting of the object Rn; this ∞-category is a delooping of the topological monoid Emb(Rn,Rn)
We draw an immediate consequence of Proposition 2.6. First, note that there exists a natural
functor

BO(n) −→ Eucn , ∗ 7→ R
n ,

from the classifying space of the orthogonal group, defined by the inclusion O(n) →֒ Emb(Rn,Rn).
4



Corollary 2.7. The functor

BO(n) −→ Eucn ,

is an equivalence between ∞-categories. In particular, there is a canonical equivalence between the
∞-category of presheaves

PShv(Eucn) ≃ Spaces/BO(n)

and spaces over BO(n).

2.2. Sheaves on n-manifolds. Proposition 2.6 offers a classification of sheaves on the∞-category
of B-framed n-manifolds, with respect to a standard Grothendieck topology.

Definition 2.8. The symmetric monoidal category Mfldn has objects n-manifolds; its morphisms
are smooth embeddings; the symmetric monoidal structure is disjoint union. The full subcategory
Eucn ⊂ Mfldn consists of the object Rn. In the standard Grothendieck topology on Mfldn, a sieve

U ⊂ Mfldn/M is a covering sieve exactly if, for each element x ∈M , there is an object (U
e
−→M) ∈ U

for which {x} ⊂ e(U). The ∞-category of sheaves on Mfldn is the full ∞-subcategory

Shv(Mfldn) ⊂ PShv(Mfldn)

consisting of those presheaves F : Mfldopn → Spaces for which, for each standard covering sieve
U ⊂ Mfldn/M , the canonical functor

(Uop)⊳ ≃ (U⊲)op −→ (Mfldn/M )op −→ Mfldopn
F
−−→ Spaces

is a limit diagram, where

U⊲ := U× [1] ∐
U×{1}

∗

is the right-cone of U and likewise U⊳ is the left-cone.

Note the evident functor between ∞-categories

Mfldn −→Mfldn

defined by the natural identity mapping from sets of embeddings, with the discrete topology, to the
same sets of embeddings endowed the compact-open C∞ topology.

Definition 2.9. The ∞-category of sheaves on Mfldn is the pullback among ∞-categories:

Shv(Mfldn) //

��

PShv(Mfldn)

restriction

��
Shv(Mfldn) // PShv(Mfldn).

The next result serves to contextualize the recurring role of spaces over BO(n). This result is not
essential for the overall logic of this paper, so we do not supply a proof. The result and its proof is,
however, analogous to (and simpler than) Proposition 2.22 and its proof.

Proposition 2.10 ([AFT1]). Restriction along the functor BO(n)→Mfldn defines an equivalence
between ∞-categories

Shv(Mfldn)
≃
−−→ PShv

(

BO(n)
)

≃ Spaces/BO(n) .

Remark 2.11. Proposition 2.10 is notable in that the∞-topos Shv(Mfldn) is free on its completely
compact objects, which is a connected ∞-groupoid: BO(n). Consequently, a sheaf on the ∞-
category Mfldn is uniquely determined by its value on R

n as an O(n)-space, or equivalently a space
over BO(n), without reference to a sheaf condition.
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Remark 2.12. Proposition 2.10 asserts that a sheaf on Mfldn is precisely the datum of a space B
equipped with a map B → BO(n), which is equivalent to a rank-n vector bundle E → B over B.
In this equivalence, the value of the sheaf corresponding to B → BO(n) on an object M ∈Mfldn is
the space Map/BO(n)

(

M,B
)

of lifts:

B

��
Emb(Rn,M)O(n)

//

ϕ

55❥
❥

❥
❥

❥
❥

❥
❥

❥

BO(n),

where the bottom left space is the O(n)-coinvariants of the space of morphisms in Mfldn from Rn to

M . Corollary 2.31 will identify the bottom horizontal arrow as the tangent classifier,M
τM−−→ BO(n).

Through that identification, such a lift is equivalent data to a map ϕ : M → B together with an
isomorphism TM ∼= ϕ∗E between vector bundles over M .

Remark 2.13. The canonical functor Mfldn → Mfldn carries morphisms U →֒ V that are isotopy
equivalences to equivalences in the ∞-category Mfldn. It follows that the restriction functor factors

Shv(Mfldn) −→ Shvl.c.(Mfldn) ⊂ Shv(Mfldn)

through the ∞-subcategory of locally constant sheaves. We warn the reader that this first functor
is not an equivalence. Indeed, it follows from a result of Segal ([Se2]) that the shape of the∞-topos

Shv(Mfldn) is the classifying space of the groupoid completion BEmbδ(Rn,Rn) of the discrete monoid
of smooth self-embeddings of Rn. As such, through Proposition 2.10, this functor can be identified
as

PShv
(

BO(n)
)

−→ PShv
(

BEmbδ(Rn,Rn)
)

,

which is restriction along the canonical functor BEmbδ(Rn,Rn) → BEmb(Rn,Rn) ≃ BO(n). The
work [Ha] establishes that this map is not an equivalence.

The following result, proved in [AFT1], contrasts with Remark 2.13. Indeed, the shape of the∞-
topos Shv(Mfldn/M ) is the underlying space ofM , while Shv(Mfldn/M ) is identified, as a consequence
of Corollary 2.31, as the ∞-category Spaces/M of local systems on M .

Proposition 2.14. For each n-manifold M , the restriction functor Shv(Mfldn/M )→ Shv(Mfldn/M )
factors through an equivalence between ∞-categories

Shv(Mfldn/M )
≃
−−→ Shvl.c.(Mfldn/M ) .

2.3. Tangent classifier. We will be particularly interested in n-manifolds that are equipped with
the additional structure of a section of a given sheaf on Mfldn. Through Proposition 2.10, such a
section is a continuous system of linear structures on each tangent space, such as an orientation,
spin structure, or a framing. Tangential structure of this sort can be swiftly accommodated by way
of the tangent classifier : each n-manifold M has a tangent bundle, and it is classified by a map
τM : M → BO(n) to the classifying space of the topological group O(n) of linear isometries of Rn.
For B → BO(n) a map between spaces, a B-framing on M is a homotopy commutative diagram
among spaces

B

��
M τM

//

ϕ

77♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥
BO(n).

Example 2.15. Consider the surjective homomorphism

O(n)
determinant
−−−−−−−−−→ O(1) .

The kernel of this homomorphism is SO(n) ⊂ O(n), and a BSO(n)-framing on a topological n-
manifold is precisely an orientation.

6



Toward defining an∞-categoryMfldBn of B-framed n-manifolds, we next explain how to make the
tangent classifier continuously functorial among open embeddings. Namely, through Corollary 2.7,
we define the tangent classifier as the restricted Yoneda functor:

(1) τ : Mfldn
Yoneda
−−−−→ PShv(Mfldn)

restriction
−−−−−−→ PShv(Eucn) ≃

Cor 2.7
Spaces/BO(n) .

We postpone to Corollary 2.31 justification that the value τM is indeed the familiar tangent classifier,
namely that the functor τ sends a manifold M to the map of spaces M → BO(n), homotopy-
coherently among embeddings in the manifold variable.

Observation 2.16. Because Rn is connected, this tangent classifier τ : Mfldn → Spaces/BO(n) is
symmetric monoidal with respect to coproducts in the codomain. In other words, τ carries finite
disjoint unions to finite coproducts over BO(n).

2.4. B-framed manifolds. In this section, we fix a spaceB as well as a map B → BO(n) ≃ BGL(n),
which is equivalent to a rank-n vector bundle E → B over B. Through Proposition 2.10, such data
defines a sheaf on Mfldn. We now consider an ∞-category MfldBn , of n-manifolds equipped with
sections of this sheaf.

Definition 2.17. The symmetric monoidal∞-category MfldBn of B-framed n-manifolds is the limit
in the following diagram:

MfldBn
//

��

Spaces/B

��
Mfldn

τ // Spaces/BO(n) .

With coproduct as the symmetric monoidal structure on Spaces/B and Spaces/BO(n), the right
vertical functor is canonically symmetric monoidal. Observation 2.16 grants that the bottom hor-
izontal functor τ in the diagram in Definition 2.17 is canonically symmetric monoidal. Formally,
the forgetful functor Cat⊗∞ → Cat∞ from symmetric monoidal∞-categories to ∞-categories creates
and preserves limits. We conclude that Definition 2.17 indeed defines an∞-category equipped with
a symmetric monoidal structure, as claimed.

Remark 2.18. We describe the objects and spaces of morphism spaces in the ∞-category MfldBn .

• An object is a B-framed n-manifold, which is the data of an n-manifold M and a lift

B

��
M τM

//

ϕ

77♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥
BO(n)

of its tangent classifier. Here, we understand that this is a commutative diagram in the ∞-
category Spaces, i.e., a homotopy coherently commutative diagram of spaces. Equivalently,
for E → B the rank-n vector bundle over B classified by the given map B → BO(n), such

a commutative diagram is the data of a map M
ϕ
−→ B between spaces together with an

isomorphism TM ∼= ϕ∗E between vector bundles over M .
• Let (M,ϕ) and (N,ψ) be B-framed n-manifolds, as above. The space of morphisms in

MfldBn from (M,ϕ) to (N,ψ) is the space of B-framed embeddings, which is the limit space:

(2) EmbB(M,N) //

��

Map/B(M,N)

��
Emb(M,N) // Map/BO(n)(M,N).

7



Here, for M
ϕ
−→ X

ψ
←− N a diagram in Spaces, then Map/X(M,N) is the space of maps from

M to N over X : it is the limit space:

Map/X(M,N) //

��

Map(M,N)

−◦ψ

��
∗

{ϕ} // Map(M,X).

That is, a point in Map/X(M,N) is represented by a mapM → N and a homotopy between
the two resulting maps from M to X

Proposition 2.6 yields the following.

Observation 2.19. The space of B-framings on Rn is the fiber of the given map B → BO(n)

over the point ∗
{Rn}
−−−→ BO(n) selecting the vector space Rn. For ϕ a B-framing on Rn, there is a

canonical equivalence between monoid-objects in Spaces:

ΩϕB ≃ EmbB(Rn,Rn) ;

here, ΩϕB is the monoid in Spaces, via concatenation, of loops in B based at the point ∗
ϕ
−→

fiber
(

B → BO(n)
)

→ B.

2.5. Examples and discussion of B-framings.

Framings. In the case that
(

B → BO(n)
)

:=
(

∗
{Rn}
−−−→ BO(n)

)

, then a B-framing on an n-manifold
M is a framing of M , i.e., a trivialization of its tangent bundle. Such a trivialization is a sequence
of n linearly independent vector fields (X1, . . . , Xn) on M .

Now, let (M,ϕ) and (N,ψ) be framed n-manifolds, with corresponding vector fields (Xi)1≤i≤n
and (Yi)1≤i≤n. A naive definition of the space of framed embeddings might be the subspace,

{

M
e
→֒ N | De(Xi) = Yi for each 1 ≤ i ≤ n

}

⊂ Emb(M,N) ,

of those smooth embeddings that strictly respect the framings. However, for the purposes of defining
manifold invariants from algebraic input (e.g., factorization homology), this naive definition of
framed embeddings is deficient:

(1) for (N,ψ) a framed n-manifold with N compact, it receives no framed embeddings from Rn

(with its standard framing) since it receives no isometric embeddings from Rn;
(2) for each i ≥ 0, this space of framed embeddings from (Rn)⊔i to R

n (each with its standard
framing) is not equivalent to the space En(i) of i-ary operations of the little n-disk operad.

One might try to fix the above naive definition of framed embeddings by weakening the condition

De(Xi) = Yi to the data of a sequence of smooth functions M
λi−→ R>0 subject to the condition of

an equality De(Xi) = λiYi. But this, too, has similar shortcomings.
Practically, the essential feature of the ‘correct’ space of framed embeddings is so that there is a

homotopy equivalence

Embfr
(

(Rn)⊔i, (N,ψ)
)

≃ Confi(N)

with the configuration space of injections from {1, . . . , i} into N . Lemma 2.30, to come, grants that
this is the case for the definition (2) of framed embeddings (in this case that B = ∗) as a homotopy
pullback.

Linear structures. More generally, for G a Lie group and ρ : G→ GL(n) a smooth homomorphism,
consider the composite map BG → BGL(n) ≃ BO(n). A BG-framing on an n-manifold M is a
compatible system of lifts D(α−1β) : U ∩ V → G along ρ of the derivatives of the transition maps
of a smooth atlas for M . So a BSO(n)-framing on M is a smooth structure on M together with an
orientation on M ; a B∗-framing on M is a framing, as discussed above; a BSpin(n)-framing on M
is a spin structure on M .

8



General structures. In general, for B a space, the space of maps B → BO(n) is a moduli space of
rank-n vector bundles on B. So, given such a vector bundle E → B, a B-framing on an n-manifold
M is a continuous map f : M → B together with an isomorphism TM ∼= f∗E between vector

bundles over M . In the case that
(

B → BO(n)
)

≃
(

X × BO(n)
pr
−→ BO(n)

)

, then a B-framing on
an n-manifold M is simply a map M → X to X from the underlying space of M .

2.6. Weiss sheaves on n-manifolds.

Definition 2.20 ([We]). In the Weiss Grothendieck topology on the category Mfldn, a sieve U ⊂
Mfldn/M is a covering sieve if, for each finite subset S ⊂ M , there is an object (U →֒ M) ∈ U for
which S ⊂ e(U). The ∞-category of Weiss sheaves on Mfldn is the full ∞-subcategory

ShvWeiss(Mfldn) ⊂ PShv(Mfldn)

consisting of those presheaves F : Mfldopn → Spaces for which, for each Weiss covering sieve U ⊂
Mfldn/M , the canonical functor

(Uop)⊳ ≃ (U⊲)op −→ (Mfldn/M )op −→ Mfldopn
F
−−→ Spaces

is a limit diagram. The ∞-category of Weiss sheaves on Mfldn is the pullback among∞-categories:

ShvWeiss(Mfldn) //

��

PShv(Mfldn)

restriction

��
ShvWeiss(Mfldn) // PShv(Mfldn).

We next exhibit generators the for the ∞-category of Weiss sheaves.

Definition 2.21. The symmetric monoidal ∞-categories

Diskn ⊂ Mfldn and Diskn ⊂Mfldn

are the full ∞-subcategories consisting of disjoint unions of n-dimensional Euclidean spaces.

Notice the evident symmetric monoidal functors

Diskn −→ Diskn and Mfldn −→Mfldn .

We insert the next result to contextualize the fundamental role of disks’, though this result is
not essential for the overall logic of this paper. Its proof makes use of results established later on,
which of course do not logically depend on it.

Proposition 2.22. Restriction along Diskn →֒Mfldn defines an equivalence between ∞-categories:

ShvWeiss(Mfldn)
≃
−−→ PShv(Diskn) .

Proof. Denote the fully-faithful inclusion ι : Diskn →֒Mfldn. This functor determines an adjunction

ι∗ : PShv(Mfldn) ⇄ PShv(Diskn) : ι∗

in which the left adjoint is restriction along ι and the right adjoint is right Kan extension along ι.
It is enough to show that this adjunction restricts as an equivalence:

ι∗ : ShvWeiss(Mfldn) ⇄ PShv(Diskn) : ι∗ .

This amounts to verifying two assertions.

(1) For each F ∈ ShvWeiss(Mfldn), and each M ∈Mfldn, the unit map

F(M)
unit
−−−−→ lim

(

(Diskn/M )op → Diskopn
ι
−→Mfldopn

F
−→ Spaces

)

is an equivalence between spaces.
9



(2) For each G ∈ PShv(Diskn), and for each Weiss covering sieve U ⊂ Mfldn/M , the canonical
map

ι∗G(M) −→ lim
(

U
op → Mfldopn →Mfldopn

ι∗G−−→ Spaces
)

is an equivalence between spaces.

We first establish (1). The canonical functor Diskn/M → Diskn/M determines the sequence of maps
among spaces

F(M)
unit //

++❱❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱ lim

(

(Diskn/M )op → Diskopn
ι
−→Mfldopn

F
−→ Spaces

)

��

lim
(

(Diskn/M )op → Diskopn → Diskopn
ι
−→Mfldopn

F
−→ Spaces

)

.

Because smooth open embeddings from disjoint unions of n-dimensional Euclidean spaces to each
smooth n-manifold is a basis for the Weiss Grothendieck topology thereon, the full subcategory
Diskn ⊂ Mfldn is a basis for the Weiss Grothendieck topology. It follows that the diagonal map in the
above diagram is an equivalence between spaces. Furthermore, Proposition 2.38 implies the functor
(Diskn/M )op → (Diskn/M )op is initial. It follows that the downward map in the above diagram is
an equivalence. We conclude that the horizontal map in the above diagram is an equivalence, as
desired.

We now establish (2). The Weiss covering sieve U ⊂ Mfldn/M determines a functor between
∞-categories

(3) colim
(

U→ Mfldn
Diskn/−
−−−−−→ Cat∞

)

−→ Diskn/M

from the colimit indexed by U. Through the standard formula computing values of right Kan
extension as limits indexed by ∞-undercategories, the map in (2) is canonically identified as the
map between spaces

lim
(

(Diskn/M )op → Diskopn
G
−→ Spaces

)

−→

lim
(

colim
(

U→ Mfldn
Diskn/−
−−−−−→ Cat∞

)op
→ (Diskn/M )op → Diskopn

G
−→ Spaces

)

.

It is therefore enough to show that the functor (3) is final. Observe that, for each n-manifold W ,
the ∞-category Diskn/W is canonically a right fibration over Diskn. To assess finality of (3), it is
enough to compute the relevant colimit in the ∞-category RFibDiskn of right fibrations over Diskn,
and show that the morphism between right fibrations over Diskn

colim
(

U→ Mfldn
Diskn/−
−−−−−→ RFibDiskn

)

−→ Diskn/M

is an equivalence. A morphism between right fibrations over an ∞-category is an equivalence if
and only if it is so when base changed over the maximal ∞-subgroupoid of the base. Through
Lemma 2.30, the maximal ∞-subgroupoid of Diskn is the coproduct

∐

i≥0

B
(

Σi ≀ O(n)
)

. For each n-

manifold W , Lemma 2.30 identifies the base change of Diskn/M over the i-cofactor as Confi(W )Σi ,
the unordered configuration space. So let i ≥ 0. So we are to show that the canonical map between
spaces

(4) colim
(

U→ Mfldn
Confi(−)Σi−−−−−−−→ Spaces

/B
(

Σi≀O(n)
)

)

−→ Confi(M)Σi

is an equivalence between spaces over B
(

Σi ≀ O(n)
)

. This is simply to show that this map is an

equivalence between spaces, ignorant to the structure maps to B
(

Σi ≀ O(n)
)

. Consider the smallest

sieve Ui ⊂ Mfldni/Confi(M)Σi
containing, for each U ∈ U, the object

(

Confi(U)Σi →֒ Confi(M)Σi

)

∈
Mfldni/ Confi(M)Σi

. Precisely because U is a Weiss covering sieve, the sieve Ui is a standard covering

sieve. Using that the underlying topological space of Confi(M)Σi is paracompact and Hausdorff,
10



Theorem A.3.1 [Lu2] can be applied to Ui with the result that the above map (4) between ∞-
groupoids is an equivalence. This completes the proof.

�

Definition 2.23. Let C be a presentable∞-category. The ∞-category of C-valued Weiss cosheaves
on Mfldn is the full ∞-subcategory

cShvWeiss
C (Mfldn) ⊂ Fun(Mfldn,C)

consisting of those functors A : Mfldn → C for which, for each Weiss covering sieve U ⊂ Mfldn/M ,
the canonical functor

U
⊲ −→ Mfldn/M −→ Mfldn

A
−−→ C

is a colimit diagram. The ∞-category of C-valued Weiss cosheaves on Mfldn is the pullback among
∞-categories:

cShvWeiss
C (Mfldn) //

��

Fun(Mfldn,C)

restriction

��
cShvWeiss

C (Mfldn) // Fun(Mfldn,C).

The next result is routine consequence of Proposition 2.22.

Corollary 2.24. Let C be a presentable ∞-category. Restriction along Diskn → Mfldn defines an
equivalence between ∞-categories:

cShvWeiss
C (Mfldn)

≃
−−→ Fun(Diskn,C) .

Remark 2.25. Corollary 2.24 says that a C-valued Weiss cosheaf on Mfldn is simply a functor
Diskn → C, without regard to a cosheaf condition.

Remark 2.26. We follow up on Remark 2.13 and Remark 2.14. Namely, restriction along Mfldn →
Mfldn factors

cShvWeiss
C (Mfldn) −→ cShv

Weiss,l.c.
C

(Mfldn) ⊂ cShvWeiss
C (Mfldn)

through the ∞-subcategory of locally constant Weiss cosheaves. This first functor is not an equiv-
alence. However, for each n-manifold M , the restriction functor factors as an equivalence between
∞-categories,

cShvWeiss
C (Mfldn/M )

≃
−−→ cShv

Weiss,l.c
C

(Mfldn/M ) ⊂ cShvWeiss
C (Mfldn/M ) ,

involving the locally constant Weiss cosheaves on M .

2.7. Disks. Prompted by the results in §2.6, we now turn to consider B-framed n-disks, as they
organize as a symmetric monoidal ∞-category. We identify the maximal ∞-subgroupoid of the
∞-category DiskBn/M in terms of configuration spaces in a B-framed n-manifold M .

Definition 2.27 ([AF1]). The symmetric monoidal ∞-category DiskBn ⊂ MfldBn is the full ∞-

subcategory ofMfldBn whose objects are disjoint unions of B-framed n-dimensional Euclidean spaces.

Remark 2.28. Consider the framing structure, which is the map ∗ → BO(n) selecting the basepoint
of BO(n). As discussed in §2.5, a ∗-framing on an n-manifold M is a trivialization of the tangent

bundle of M . We denote the associated ∞-category of framed n-disks as Diskfrn. This symmetric

monoidal ∞-category Diskfrn is equivalent to the PROP associated to the operad En, of Boardman-
Vogt [BV]. This is the case because the inclusion of rectilinear embeddings as framed embeddings

determines an equivalence En(i)
∼
−→ Embfr

(

(Rn)⊔i,Rn
)

from the space of i-ary operations of the
operad En; see, e.g., [AF1] for a presentation of this equivalence.
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Example 2.29. Consider the structure
(

B → BO(n)
)

:=
(

BO(n)
id
−→ BO(n)

)

. The symmetric

monoidal ∞-category Diskn = DiskBO(n)
n is equivalent to the PROP associated to the unoriented

version of the ribbon, or “framed,” En-operad; see [SW] for a treatment of this operad.4 This
equivalence follows from Proposition 2.6.

Given a topological space X and a finite cardinality i, the configuration space of i (ordered)
points in X is the subspace

Confi(X) :=
{

{1, . . . , i}
c
−→ X | c is injective

}

⊂ X×i .

This configuration space has an evident free action of the symmetric group Σi, as given by precom-
position. The unordered configuration space is the Σi-coinvariants: Confi(X)Σi .

In the next result, for M a B-framed n-manifold, we consider the ∞-overcategory

DiskBn/M := DiskBn ×
MfldBn

MfldBn/M .

An object in this ∞-category is given by a B-framed embedding (Rn)⊔i →֒M for some i.

Lemma 2.30 ([AF1]). The maximal ∞-subgroupoid of DiskBn is canonically identified as the space
∐

i≥0

B×i
Σi ≃

(

DiskBn
)∼

where the coproduct is indexed by finite cardinalities and each cofactor is the Σi-homotopy coin-
variants of the i-fold product of the space B. In particular, the symmetric monoidal functor
[−] : DiskBn → Fin, given by taking sets of connected components of underlying manifolds, is conser-
vative.

For M a B-framed n-manifold, the maximal ∞-subgroupoid of DiskBn/M is canonically identified
as the space

∐

i≥0

Confi(M)Σi ≃
(

DiskBn/M
)∼

where the coproduct is indexed by finite cardinalities, and each cofactor is an unordered configuration
space.

We conclude this section by justifying the term tangent classifier for the functor Mfldn
τ
−→

Spaces/BO(n) from (1).

Corollary 2.31. The value of the tangent classifier (1) on an n-manifold M is the map between

spaces M
τM−−→ BO(n) classifying its tangent bundle.

Proof. First, recognize Eucn ⊂ Diskn as the full ∞-subcategory consisting of the connected n-
manifolds. Next, specialize the second statement of Lemma 2.30 at i = 1 to obtain an identification

M ≃
Lem 2.30

Eucn/M ≃
Prop 2.6

Emb(Rn,M)O(n) −→ BO(n)

involving the homotopy O(n)-coinvariants. Unwinding the equivalences above recognizes this map
in terms of the frame bundle for M , as

M ≃ Fr(M)O(n) −→ BO(n) .

Evidently, this map classifies the tangent bundle of M .
�

4The historical use of “framed” here is potentially misleading, since in the “framed” En operad the embeddings
do not preserve the framing, while in the usual En operad the embeddings do preserve the framing (up to scale). It
might lead to less confusion to replace the term “framed En operad” with “unoriented En operad.”
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2.8. Manifolds with boundary. We will also employ the category of n-manifolds with boundary.

Definition 2.32. A smooth manifold M with boundary is finitary if it admits a good cover, which
is to say it admits a finite open cover U := {U ⊂M} with the property that, for each finite subset
S ⊂ U, the intersection

⋂

U∈S

U is either empty, diffeomorphic to Euclidean space, or diffeomorphic

to Euclidean half-space, R≥0 × Rn−1.

Terminology 2.33. In this article, by “manifold with boundary” we mean “finitary smooth man-
ifold with boundary,” unless otherwise stated.

Definition 2.34. Mfld∂n is the symmetric monoidal topological category of n-manifolds, possibly
with boundary. The topological space of morphisms between two is the set of smooth open embed-
dings equipped with the compact-open C∞ topology. The symmetric monoidal structure is disjoint
union. The full symmetric monoidal topological category Disk∂n ⊂Mfld∂n is that consisting of finite
disjoint unions of Rn and R≥0 × Rn−1.

Remark 2.35. The category Disk∂n is minimal with respect to the condition that any finite subset

of an n-manifold with boundary has an open neighborhood diffeomorphic to an object of Disk∂n. In

particular, the closed n-disk Dn is not an object of Disk∂n.

The following result is an application of the Alexander trick.

Proposition 2.36 ([AF1]). The symmetric monoidal functor

R≥0 ×− : Mfldn−1 −→Mfld∂n

is fully-faithful. Namely, for each pair of (n− 1)-manifolds M and N , the map

Emb(M,N) −→ Emb
(

R≥0 ×M,R≥0 ×N
)

is an equivalence between spaces.

Remark 2.37. Together with Proposition 2.6, the previous proposition implies that the continuous
homomorphism between topological monoids

O(n− 1) →֒ Emb(R≥0 × R
n−1,R≥0 × R

n−1)

is a homotopy equivalence. Consequently, Disk∂n is an unoriented variant of the Swiss cheese operad

of Voronov [Vo]. Specifically, the framed variant Disk∂,frn is equivalent to the PROP associated to
the Swiss cheese operad.

2.9. Localizing with respect to isotopy equivalences. Here we show that the ∞-category
DiskBn/M is a localization of its more discrete version DiskBn/M on the collection of those embeddings
that are isotopic to isomorphisms. This comparison plays a fundamental role in recognizing certain
colimit expressions in this theory, for instance those that support the pushforward formula of §3.5.

Recall Definition 2.21, and the symmetric monoidal functors:

Diskn −→ Diskn and Mfldn −→Mfldn

We denote the pullback symmetric monoidal ∞-categories:

DiskBn

��

// DiskBn

��

MfldBn
//

��

MfldBn

��
Diskn // Diskn and Mfldn // Mfldn .

For each n-manifold M , we denote the ∞-subcategory

(5) IM ⊂ DiskBn/M := DiskBn ×
MfldBn

MfldBn/M

that consists of the same objects but only those morphisms (U →֒ M) →֒ (V →֒ M) whose image

in DiskBn/M is an equivalence.
13



Proposition 2.38 ([AF1]). The functor DiskBn/M −→ DiskBn/M witnesses a localization between
∞-categories:

(

DiskBn/M
)

[I−1
M ] ≃ DiskBn/M .

Let M be a B-framed n-manifold. Each of the ∞-categories DiskBn/M and DiskBn/M is naturally

the active∞-subcategory of an∞-operad,5 each of which we again denote as DiskBn/M and DiskBn/M ,
respectively.

• The ∞-operad structure on DiskBn/M is such that the ∞-category of colors is the poset in
which an object is an open subset U ⊂ M that is abstractly diffeomorphic to Euclidean
space. There is a unique i-ary morphism from an i-fold collection (Uk)1≤k≤i of such to
another V precisely if the Uk are pairwise disjoint and their union

⋃

1≤k≤i Uk ⊂ V is
contained in V .
• The∞-operad structure on DiskBn/M is such that the∞-category of colors is the∞-groupoid

Emb(Rn,M)O(n) ≃ M of an open disk in M . The space of i-ary morphisms from an i-fold
collection (Uj)1≤j≤i of such to another V is the fiber of the composite map

Emb
(

i
⊔

j=1

Uj , V
)

−→
i

∏

j=1

Emb(Uj , V ) −→
i
∏

j=1

Emb(Uj ,M)

over the point selecting the given sequence of embeddings (Uj)1≤j≤i.

The next result also appears in [Lu2] as Theorem 5.4.5.9.

Corollary 2.39. Let V be a symmetric monoidal ∞-category. For each B-framed n-manifold M ,
restriction along the morphism DiskBn/M → DiskBn/M defines a fully-faithful functor

AlgDiskB
n/M

(V)
f.f.
−−−→ AlgDiskB

n/M
(V) .

In the case M = Rn, Corollary 2.39 can be used to prove that locally constant factorization
algebras on R

n are equivalent to En-algebras—see §3.2 for a discussion of factorization algebras.
The next construction is made possible using Proposition 2.38.

Construction 2.40. Let M be a B-framed n-manifold, and let N be a B′-framed k-manifold
possibly with boundary. Let f : M → N be a continuous map that satisfies the following regularity
condition:

Each of the restrictions

f| : f
−1(N r ∂N)→ N r ∂N and f| : f

−1(∂N)→ ∂N

is a smooth fiber bundle.

We produce a composite morphism between ∞-operads

f−1 : Disk
∂,B′

k/N −→ MfldBn/M −→MfldBn/M ,

in which the second morphism is the standard one. We now describe the first functor. For formal
reasons, we can assume the maps B → BO(n) and B′ → BO(k) are equivalences. For this case,
the first functor is given by (U →֒ N) 7→ (U ×

N
M →֒ M), which is evidently a multi-functor. By

inspection, this functor f−1 carries isotopy equivalences to equivalences. Through Proposition 2.38,
there results a multi-functor

(6) f−1 : DiskB
′

k/N −→MfldBn/M ,

as desired.

5Recall, §2 of [Lu2], that a morphism of finite based sets I∗
f
−→ J∗ is active if f−1{∗} = {∗}, and is inert if the

restriction f| : f
−1J → J is injective. A morphism in an ∞-operad O → Fin∗ is active or inert if its image in Fin∗ is.
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3. Homology theories for manifolds

The value of factorization homology over an n-manifold M of an n-disk algebra A is a sort of
average, indexed by n-disks embedded in M , of the value of A on such n-disks. We make this def-
inition precise, as well as observe a property of this definition for which it is universal, by defining
factorization homology as left Kan extension of an n-disk algebra A : Diskn → V along the inclusion
Diskn →֒Mfldn.

Through out this entire section, we fix a space B → BO(n) over BO(n) as well as a symmetric
monoidal ∞-category V that is ⊗-presentable in the following sense.

Definition 3.1. A symmetric monoidal ∞-category V is ⊗-presentable if it satisfies both of the
following conditions.

• The underlying ∞-category of V is presentable: V admits colimits and every object is a
filtered colimit of compact objects.6

• The symmetric monoidal structure of V distributes over colimits: for each object V ∈ V,
the functor V ⊗− : V→ V carries colimit diagrams to colimit diagrams.

Example 3.2. Let S be a presentable ∞-category. Consider the Cartesian symmetric monoidal
∞-category (S,×), in which the symmetric monoidal structure is categorical product. Provided
S is Cartesian closed, then this symmetric monoidal ∞-category is ⊗-presentable. In particular,
(Spaces,×) is ⊗-presentable; for X any ∞-topos, then (X,×) is ⊗-presentable; also, (Cat∞,×) is
⊗-presentable.

Example 3.3. Let R be a commutative ring. The symmetric monoidal ∞-category
(

ModR,⊗
R

)

, of

R-modules with tensor product overR is ⊗-presentable. Note, however, that its opposite
(

Mod
op
R ,⊗

R

)

is not ⊗-presentable.

Remark 3.4. The results in §3 (in particular, the Eilenberg–Steenrod axioms for factorization
homology) only require that the symmetric monoidal structure of V distributes over sifted colimits.
(This generality is established as a special case of §2 of [AFT2].) However, the calculations of §5
onwards require the symmetric monoidal structure to distribute over all colimits, so for simplicity
of exposition we enforce this stronger hypothesis throughout.

3.1. Disk algebras.

Definition 3.5. The ∞-category of DiskBn -algebras in V is that of symmetric monoidal functors

from DiskBn to V:

AlgDiskBn
(V) := Fun⊗(DiskBn ,V) .

Remark 3.6. Let G → O(n) be a morphism between group-objects in the ∞-category Spaces

(equivalently, a map of loop spaces). Through this representation, change-of-framing defines an

action of G on the symmetric monoidal ∞-category Diskfrn. As such, the symmetric monoidal
forgetful functor

Diskfrn −→ DiskBGn

witnesses the G-coinvariants:
(

Diskfrn
)

G

≃
−→ DiskBGn . Consequently, for each symmetric monoidal

∞-category V, the restriction functor canonically factors through the G-invariants,

AlgDiskBGn
(V)

≃
−−→

(

AlgEn
(V)

)G
−→ AlgEn

(V)

as an equivalence. In particular, there is a canonical equivalence from the ∞-category of Diskn-
algebras

AlgDiskn
(V)

≃
−−→

(

AlgEn
(V)

)O(n)

and that of O(n)-invariant En-algebras.

6This is with respect to an understood fixed uncountable cardinal κ, i.e., V admits κ-small colimits and every
object is a κ-filtered colimit of κ-compact objects.
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We denote the restricted Yoneda functor

E : MfldBn
Yoneda
−−−−−−→ PShv(MfldBn )

restriction
−−−−−−−→ PShv(DiskBn ) .

Definition 3.7. Let M be a B-framed n-manifold. Let A be a DiskBn -algebra in V. Factorization
homology (of M with coefficients in A) is the object in V given either as the colimit (provided it
exists), or the coend (provided it exists):

∫

M

A := colim
(

DiskBn/M → DiskBn
A
−→ V

)

≃ EM

⊗

DiskBM

A .

Remark 3.8. We comment on the two equivalent expressions defining factorization homology: as
a colimit indexed by an overcategory, and as a coend. This is analogous to the familiar fact that,
for X• : ∆op → Spaces a simplicial space, its geometric realization can be expressed

|X•| := colim
(

∆/X•
→∆

∆•

−−→ Spaces
)

≃ X•

⊗

∆

∆•

as a colimit of topological simplices indexed by the category of simplices in X•, or as the standard
coend expression which is a quotient of

∐

p≥0

Xp ×∆p.

The fully-faithful symmetric monoidal functor ι : DiskBn →֒MfldBn gives the restriction functor

AlgDiskBn
(V):= Fun⊗(DiskBn ,V) ←− Fun⊗

(

MfldBn ,V
)

: ι∗ .

The next result, proved in [AF1], identifies factorization homology as the values of a left adjoint to
this restriction functor, provided V is ⊗-presentable.

Proposition 3.9 ([AF1]). Let V be ⊗-presentable ∞-category. The restriction functor ι∗ admits a
left adjoint,

ι! : AlgDiskBn
(V) ⇄ Fun⊗

(

MfldBn ,V
)

: ι∗ ,

over a left adjoint ι! : Fun(DiskBn ,V) ⇄ Fun(MfldBn ,V) : ι
∗. Furthermore, this left adjoint evaluates

on a DiskBn -algebra A as factorization homology:

ι!(A) : M 7→

∫

M

A .

Remark 3.10. Proposition 3.9 implies factorization homology can be expressed as a symmetric
monoidal left Kan extension, at least when V is ⊗-presentable. Consequently, the definition of
factorization homology given above is equivalent to operadic left Kan extension (after parsing Defi-
nitions 3.1.1.2 and 3.1.2.2 of [Lu2]), which is the definition of factorization homology, or topological
chiral homology, given by Lurie [Lu2] (Definition 5.5.2.6).

The next result explains how factorization homology transforms under change of tangential struc-
ture.

Proposition 3.11. Let B
α
−→ B′ be a map between spaces over BO(n). Let M = (M,ϕ) be a B-

framed n-manifold. Consider the B′-framed n-manifold αM := (M,αϕ). Let A be a DiskB
′

n -algebra

A : DiskB
′

n → V. Consider the DiskBn -algebra αA : DiskBn → DiskB
′

n
A
−→ V. The canonical morphism

in V
∫

M

αA
≃
−−→

∫

αM

A

is an equivalence.
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Proof. Note the canonical commutative diagram among ∞-categories:

DiskBn/M
//

��

DiskB
′

n/αM

��

DiskBn
//

αA
##❋

❋❋
❋❋

❋❋
❋❋

DiskB
′

n

A
{{✈✈
✈✈
✈✈
✈✈
✈✈

V .

For formal reasons, the top horizontal functor is an equivalence between ∞-categories. It follows
that the canonical morphism in V
∫

M

αA := colim
(

DiskBn/M → DiskBn
αA
−−→ V

)

−→ colim
(

DiskB
′

n/αM → DiskB
′

n
A
−→ V

)

=:

∫

αM

A

is an equivalence, as desired.
�

3.2. Factorization algebras. We now use factorization homology to construct factorization alge-
bras over each B-framed n-manifold, as in the sense used by Costello–Gwilliam (see Definition 3.12).

Namely, Proposition 3.14 shows that DiskBn -algebra A in V determines a factorization algebra FA

on each B-framed n-manifold M whose value FA(U) on an open subset U ⊂ M is factorization
homology of A,

FA(U) ≃

∫

U

A ,

over U (with its B-framing inherited from that of M).
For the next definition, for each n-manifoldM , we observe the following multi-category structure

on the poset Opens(M) := Mfldn/M of open subsets in M ordered by inclusion. Namely, an object
is an open subset ofM , and there is a multi-morphism from (Ui)i∈I to V , which is unique, provided
the collection {Ui}i∈I is pairwise disjoint and provided

⋃

i∈I

Ui ⊂ V . Recall from §2.6 the definition

of (locally constant) Weiss cosheaves.

Definition 3.12 ([CG]). Let V be a symmetric monoidal ∞-category. Let M be an n-manifold.
The ∞-category of (V-valued) factorization algebras (on M) is the full ∞-subcategory of algebras
in V over the multi-category Opens(M) as in the pullback among ∞-categories:

AlgM (V) //

��

AlgOpens(M)(V)

��
cShvWeiss

V (M) // Fun
(

Opens(M),V
)

.

The ∞-category of locally constant factorization algebras is the full ∞-subcategory of factorization
algebras as in the pullback diagram among ∞-categories:

Algl.c.M (V) //

��

AlgM (V)

��
cShv

Weiss,l.c.
V

(M) // cShvWeiss
V (M).

Remark 3.13. In other words, a factorization algebra is a multi-functor F : Opens(M)→ V whose
restriction to the poset Opens(M) is a Weiss cosheaf on M . Informally, a factorization algebra
is likewise a functor F : Opens(M) → V from the poset of open subsets of M to the underlying
∞-category of V that satisfies codescent with respect to Weiss covers, together with a system of
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compatible equivalences in V: for each finite sequence (Ui)i∈I of pairwise disjoint open subsets of
M , an equivalence F

(
⋃

i∈I

Ui
)

≃
⊗

i∈I

F(Ui).

Proposition 3.14. Let V be a ⊗-presentable ∞-category, and let B be a space over BO(n). For
each B-framed n-manifold M , factorization homology defines a functor

AlgDiskBn
(V) −→ Algl.c.M (V) , A 7→

(

U 7→

∫

U

A
)

from DiskBn -algebras to locally constant factorization algebras on M .

Proof. Notice the evident diagram among ∞-operads

DiskBn
ι
−−→MfldBn ←− MfldBn ←− Opens(M).

This diagram determines the diagram among ∞-categories:

AlgDiskBn
(V)

forget

��

Fun⊗(MfldBn ,V)
ι∗oo //

forget

��

Fun⊗(MfldBn ,V)
//

forget

��

AlgOpens(M)(V)

forget

��
Fun(DiskBn ,V) Fun(MfldBn ,V) //ι∗oo Fun(MfldBn ,V) // Fun

(

Opens(M),V
)

.

Proposition 3.9 gives the commutative diagram involving left adjoints to each instance of ι∗:

AlgDiskBn
(V)

forget

��

ι! // Fun⊗(MfldBn ,V) //

forget

��

Fun⊗(MfldBn ,V) //

forget

��

AlgOpens(M)(V)

forget

��
Fun(DiskBn ,V)

ι! // Fun(MfldBn ,V)
// Fun(MfldBn ,V)

// Fun
(

Opens(M),V
)

.

Corollary 2.24 gives the factorization of the bottom horizontal sequence of functors:

AlgDiskBn
(V)

forget

��

restrict ◦ ι! // AlgOpens(M)(V)

forget

��
Fun(DiskBn ,V)

ι! // cShvWeiss
V (MfldBn ) // cShvWeiss,l.c.

V
(MfldBn ) // cShvWeiss,l.c.

V
(M).

The result follows.
�

Remark 3.15. Proposition 3.14 grants the commutative diagram among ∞-categories:

AlgDiskn
(V)

Prop 3.14

A 7→FA //

∫
M $$■

■■
■■

■■
■■

■
AlgM (V)

global cosections
{{✇✇
✇✇
✇✇
✇✇
✇

V .

In other words, for FA the factorization algebra determined by the Diskn-algebra A, its global
cosections is factorization homology:

∫

M

A ≃ FA(M) .

In the case that M is equipped with a framing, A need only be a En-algebra (see Remark 3.6).

Terminology 3.16. For X a stratified space, a factorization algebra F on X is constructible if, for
each stratum Xp ⊂ X of X , the restricted factorization algebra F|Xp

on Xp is locally constant.
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Remark 3.17. Let X be a stratified space. Consider the ∞-category BX of singularity-types in
X , and stratified open embeddings among them. Consider the symmetric monoidal ∞-category
Disk(BX) in which an object is a finite-fold disjoint union of objects in BX , and a morphism
between them is a stratified open embedding. Established in [AFT2] is a similar construction to
that of Proposition 3.14 as it concerns symmetric monoidal functors from Disk(BX) to constructible
factorization algebras on X . See that reference for a thorough development, and §8 of this article
for a synopsis.

3.3. Factorization homology over oriented 1-manifolds with boundary. We show that fac-
torization homology over a closed interval is a two-sided bar construction.

Recall from §2.8 the symmetric monoidal ∞-category Mfld∂1 and its symmetric monoidal full ∞-

subcategory Disk∂1 consisting of finite disjoint unions of Euclidean and half-Euclidean spaces. In this
subsection we consider, similarly, the symmetric monoidal ∞-category and its symmetric monoidal
full ∞-subcategory,

Disk
∂,or
1 ⊂ Mfld

∂,or
1 .

An object in the latter is a 1-manifold with boundary equipped with an orientation, while such
an object belongs to the smaller if each connected component of its underlying 1-manifold with
boundary is diffeomorphic to Euclidean space or half-Euclidean space. The space of morphisms
between two such objects therein is the space of smooth open embeddings that preserve orientations,
equipped with the compact-open C∞ topology. The symmetric monoidal structure is disjoint union.

Remark 3.18. The 1-manifold with boundary [−1, 1], equipped with its standard orientation de-

termined by the non-vanishing vector field ∂t, is an object in Mfld
∂,or
1 that does not belong to

Disk
∂,or
1 .

We next articulate a sense in which Disk
∂,or
1 is entirely combinatorial.

Definition 3.19 ([AFT2]). AssocRL is the ∞-operad corepresenting triples (A;P,Q) consisting of
an associative algebra together with a unital right and a unital left module. Specifically, it is a
unital multi-category whose space of colors is the three-element set {M,R,L}, and with spaces of

multi-morphisms given as follows. Let I
σ
−→ {M,R,L} be a map from a finite set.

• AssocRL(σ,M) is the set of linear orders on I for which no element is related to an element
of σ−1({R,L}). In other words, should σ−1({R,L}) be empty, then there is one multi-
morphism from σ to M for each linear order on σ−1(M); should σ−1({R,L}) not be empty,
then there are no multi-morphisms from σ to M .
• AssocRL(σ, L) is the set of linear orders on I for which each element of σ−1(L) is a minimum,
and no element is related to an element in σ−1(R). In other words, should σ−1({R}) be
empty and σ−1({L}) have cardinality at most 1, then there is one multi-morphism from σ
to M for each linear order on σ−1(M); should σ−1({R}) not be empty or σ−1({L}) have
cardinality greater than 1, then there are no multi-morphisms from σ to M .
• AssocRL(σ,R) is the set of linear orders on I for which each element of σ−1(R) is a maximum,
and no element is related to an element in σ−1(L). In other words, should σ−1({L}) be
empty and σ−1({R}) have cardinality at most 1, then there is one multi-morphism from σ
to M for each linear order on σ−1(M); should σ−1({L}) not be empty or σ−1({R}) have
cardinality greater than 1, then there are no multi-morphisms from σ to M .

Composition of multi-morphisms is given by concatenating linearly ordered sets.

The next result references the symmetric monoidal envelope of the colored operad AssocRL. It is
initial among symmetric monodal∞-categories equipped with an AssocRL-algebra. In other words, it
is a symmetric monoidal∞-category Env

(

AssocRL
)

corepresenting the copresheaf on the∞-category
of symmetric monoidal ∞-categories

Map⊗
(

Env(AssocRL),−
)

: Cat∞
⊗ −→ Spaces , V 7→

(

AlgAssocRL(V)
)∼

,
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whose value on a symmetric monoidal ∞-category is the moduli space of AssocRL-algebras in it.

Lemma 3.20. Taking connected components defines an equivalence between symmetric monoidal
∞-categories,

(7) [−] : Disk
∂,or
1

≃
−−→ Env

(

AssocRL
)

to the symmetric monoidal envelope, where the values on the symmetric monoidal generators are:
[R] =M , [R≥0] = R, and [R≤0] = L.

Proof. Evidently, this defines a symmetric monoidal functor. We now show that it is an equivalence.
Because it is so on symmetric monoidal generators, (7) is essentially surjective on spaces of objects.

It remains to show that (7) is fully-faithful. So let U and V be objects in Disk
∂,or
1 . We must show

that the map between spaces

(8) Map
Disk

∂,or
1

(U, V ) −→ MapEnv(AssocRL)([U ], [V ])

is an equivalence. For V =
⊔

α∈[V ]

Vα the partition as connected components, direct inspection of the

definition of these two symmetric monoidal ∞-categories yields an identification of this map is as
the [V ]-indexed product of such maps

Map
Disk

∂,or
1

(U, V )
≃
−→

∐

[U ]
f
−→[V ]

∏

α∈[V ]

Map
Disk

∂,or
1

(U|f−1α, Vα)

−→
∐

[U ]
f
−→[V ]

∏

α∈[V ]

MapEnv(AssocRL)(f
−1α, [Vα])

≃
←− MapEnv(AssocRL)([U ], [V ]) .

We are therefore reduced to the case that V is non-empty and connected. By direct inspection, the

space of morphisms in Disk
∂,or
1 from U to V is a 0-type. So we are left to show that the map (8) is

a bijection (on connected components). There are three cases to consider.

• In the case that V ∼= (−1, 1) is oriented-diffeomorphic to an open interval, this 0-type is
empty if U has non-empty boundary, and otherwise it is the set of linear orders on the set
[U ] of connected components.
• In the case that V ∼= [−1, 1) is oriented-diffeomorphic to a left-cosed/right-open interval,
this 0-type is empty if U has non-empty outward-pointing boundary, and otherwise it is
the set of linear orders on [U ] for which each connected component with inward-pointing
boundary is a minimum.
• In the case that V ∼= (−1, 1] is oriented-diffeomorphic to a left-open/right-closed interval,
this 0-type is empty if U has non-empty inward-pointing boundary, and otherwise it is
the set of linear orders on [U ] for which each connected component with outward-pointing
boundary is a maximum.

Inspecting Definition 3.19, and the description of the symmetric monoidal functor [−] under exam-
ination, reveals that the map (8) between 0-types is an equivalence, as desired.

�

Example 3.21. Note the functor AlgaugAssoc(V)→ AlgAssocRL(V) from augmented associative algebras,
given by (A → 1) 7→ (A;1,1). Concatenating with the equivalence of Lemma 3.20 results in a

functor AlgaugAssoc(V)→ Fun⊗
(

Disk
∂,or
1 ,V

)

.

Recall from §2.8 the ∞-operad structure on Diskn/M .

Observation 3.22. Consider the ordinary category ORL in which an object is a finite linearly
ordered set (I,≤) together with a pair of disjoint subsets R ⊂ I ⊃ L for which each element in R
is a minimum and each element in L is a maximum; a morphism (I,≤, R, L)→ (I ′,≤′, R′, L′) is an

order preserving map I
f
−→ I ′ for which f(R ⊔ L) ⊂ R′ ⊔ L′. Concatenating linear orders endows
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ORL with the structure of a multi-category. Note the evident forgetful morphism between multi-
categories ORL → Env

(

AssocRL
)

. By direct inspection, the equivalence (7) lifts to an equivalence
between ∞-operads:

(9) Disk
∂,or
1/[−1,1]

≃

[−]
//❴❴❴❴❴❴❴❴

forget

��

ORL

��
Disk

∂,or
1

≃

[−]
// Env(AssocRL).

Corollary 3.23. Let (A;P,Q) be an AssocRL-algebra in V; which is to say an associative algebra A
together with a unital left and a unital right A-module. Through Lemma 3.20, regard (A;P,Q) as

a symmetric monoidal functor (A;P,Q) : Disk
∂,or
1 → V. There is a canonical equivalence in V from

the balanced tensor product to factorization homology over the closed interval:

Q ⊗
A
P

≃
−−→

∫

[−1,1]

(A;P,Q) .

Proof. Recognize the opposite of the simplex category as the full subcategory ∆op ⊂ ORL consisting
of those objects (I,≤, R, L) for which R 6= ∅ 6= L. Adjoining minima and maxima gives a left adjoint
ORL → ∆op to the inclusion. Therefore, the inclusion ∆op → ORL is final. Concatenating this final

functor with the equivalence of Observation 3.22 results in a final functor ∆op → Disk
∂,or
1/[−1,1]. By

inspection, the resulting simplicial object

Bar•
(

Q,A, P
)

: ∆op → Disk
∂,or
1/[−1,1] → Disk

∂,or
1

[−]
−−→ Env

(

AssocRL
) (A;P,Q)
−−−−−→ V

is identified as the two-sided bar construction, as indicated. We conclude the equivalence in V:

Q⊗
A
P ≃

∣

∣Bar•(Q,A, P )
∣

∣

≃
−−→ colim

(

∆op
Bar•

(

Q,A,P
)

−−−−−−−−→ V
) ≃
−−→

∫

[−1,1]

(A;P,Q) .

�

Note that the given multi-functor ORL → Env(AssocRL) witness an equivalence Env(ORL)
≃
−→

Env(AssocRL) between symmetric monoidal ∞-categories. After Observation 3.22, this offers the
following consequence, which refers to Terminology 3.16.

Corollary 3.24. Factorization homology defines an equivalence of ∞-categories,
∫

: AlgAssocRL(V)
≃
−−→ Alg

Disk
∂,or
1/[−1,1]

(V) ,

between associative algebra equipped with a unital left and right module and constructible factoriza-
tion algebras over the closed interval.

3.4. Homology theories: definition. We now define homology theories forB-framed n-manifolds.

Definition 3.25 (Collar-gluing). Let M be a B-framed n-manifold. A collar-gluing of M is a
continuous map

f : M → [−1, 1]

to the closed interval for which the restriction f| : M|(−1,1) → (−1, 1) is a smooth fiber bundle. We

will often denote a collar-gluing M
f
−→ [−1, 1] simply as the open cover

M−

⋃

M0×R

M+
∼= M ,

where M− = f−1[−1, 1) and M+ = f−1(−1, 1] and M0 = f−1{0}.
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Remark 3.26. We think of a collar-gluing ofM as a codimension-1 properly embedded submanifold
M0 ⊂ M whose complement is partitioned by connected components: M rM0 =M− ⊔M+. Such
data is afforded by gluing two manifolds with boundary along a common boundary. The actual
data of a collar-gluing specifies that named just above, in addition to a bi-collaring of the common
boundary.

Construction 2.40 and the results of §3.3 give the following.

Corollary 3.27. Let F : MfldBn −→ V be a symmetric monoidal functor. Let M be a B-framed n-
manifold. A collar-gluing M−

⋃

M0×R

M+
∼=M determines an associative algebra F(M0) together with

a unital left module structure on the object F(M+) and a unital right module structure on F(M−),
as well as a morphism in V:

(10) F(M−)
⊗

F(M0)

F(M+) −→ F(M) .

Proof. The collar-gluing is a continuous map M
f
−→ [−1, 1]. Construction 2.40 gives the the first

morphism in the composible sequence of morphisms among of ∞-operads:

f∗F : Disk
∂,or
1/[−1,1]

f−1

−−→MfldBn/M →MfldBn
F
−→ V .

Through Corollary 3.24, this morphism between ∞-operads is equivalent to an algebra in V over
the operad AssocRL. Unwinding that equivalence reveals that its underlying associative algebra is
F(M0), whose underlying object is the value F(M0 × R) and whose associative algebra structure
is given by oriented embeddings among the R-coordinate, and its underlying unital modules are
the values F(M±). Furthermore, the definition of factorization homology as a colimit supplies the
canonical morphism in V:

F(M−)
⊗

F(M0)

F(M+) ≃
Cor 3.23

∫

[−1,1]

f∗F −→ F
(

f−1([−1, 1])
)

= F(M) .

�

Definition 3.28. A symmetric monoidal functor F : MfldBn → V satisfies ⊗-excision if, for each
collar-gluing M−

⋃

M0×R

M+
∼=M of B-framed n-manifolds, the canonical morphism in V,

F(M−)
⊗

F(M0×R)

F(M+)
≃
−−→
(10)

F(M) ,

is an equivalence. The ∞-category of V-valued homology theories for B-framed n-manifolds is the
full ∞-subcategory

H(MfldBn ,V) ⊂ Fun⊗(MfldBn ,V)

consisting of those symmetric monoidal functors that satisfy ⊗-excision.

Remark 3.29. We emphasize that a V-valued homology theory depends on the symmetric monoidal
structure ⊗ of V. For instance, let k a field and consider the ∞-category Modk of k-modules. There
are two natural symmetric monoidal structures on Modk: direct sum ⊕; tensor product ⊗

k

. As

established in §5.1, a homology theory valued in (Modk,⊕) evaluates on an n-manifold M as the
k-chains, C∗(M ; k). On the other hand, in §5.2, specifically Remark 5.17, shows that a homology
theory valued in (Modk,⊗

k

) typically does not factor through the forgetful functor Mfldn → Spaces

to the underlying homotopy type of manifolds.
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3.5. Pushforward. We prove that factorization homology satisfies ⊗-excision in the sense of Def-
inition 3.28. We realize this as an instance of a general construction of a pushforward.

The following result is the technical crux of the later results of this article; through this result
one can access the values of factorization homology. We state the the result now, and prove it at
the end of this section.

Lemma 3.30 ([Fra2], [AF1]). Let M be a B-framed n-manifold, and let A be a DiskBn -algebra
in V, for V a ⊗-presentable ∞-category. For each collar-gluing M−

⋃

M0×R

M+
∼= M , the canonical

morphism in V,
∫

M−

A
⊗

∫

M0×R

A

∫

M+

A
≃
−−→
(10)

∫

M

A

is an equivalence.

Lemma 3.30 specializes to to the following special case of n = 1, B ≃ ∗, and M = S1, which
demonstrates the utility of ⊗-excision.

Corollary 3.31 ([AF1], [Lu2]). Let A be an associative algebra in a ⊗-presentable ∞-category V.
There is a canonical equivalence between objects in V:

HH•(A) ≃

∫

S1

A

between the Hochschild homology of A and factorization homology of A over the circle.

Proof. Consider the collar-gluing Rop
⋃

Rop⊔R

R ∼= S1, where the ‘op’ superscripts denote the opposite

orientation from the standard orientation on Euclidean space, which is the map prom : S1 → [−1, 1]
which projects unit vectors in R2 to the first coordinate. Lemma 3.30, applied to this collar-gluing,
states the last of the equivalences in the sequence of equivalences in V:

HH•(A) ≃ A
⊗

A⊗Aop

A ≃

∫

R

A
⊗

∫

S0×R

A

∫

R

A
≃
−−→

∫

S1

A .

The middle equivalence is by inspecting values, while the first is definitional.
�

The next definition makes use of the multi-functor f−1 : Disk∂k/N →MfldBn/M of Construction 2.40
associated to each continuous map M → N for which each of the restrictions, M|Nr∂N → N r ∂N
and M|∂N → ∂N , are smooth manifold bundles.

Definition 3.32 ([AF1]). LetM be an B-framed n-manifold, and let N be an oriented k-manifold,
possibly with boundary. For f :M → N a map such that the restrictions of f over both the interior
of N and the boundary of N are fiber bundles, then the∞-categoryDiskf is the limit of the diagram
among ∞-categories

DiskBn/M

%%❏
❏❏

❏❏
❏❏

❏❏
Ar(MfldBn/M )

ev0xxqqq
qq
qq
qq
q

ev1 &&▼▼
▼▼

▼▼
▼▼

▼▼
Disk∂k/N

f−1
zztt
tt
tt
tt
t

MfldBn/M MfldBn/M ,

where Ar(MfldBn/M ) is the ∞-category of functors [1]→MfldBn/M .
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Remark 3.33. Informally, an object in the ∞-category Diskf is a triple (V, U, β) for which: U is
an open subset of N that is diffeomorphic to a disjoint union of Euclidean spaces; V is an open
submanifold of M that is diffeomorphic to a disjoint union of Euclidean spaces; and β is an isotopy
among embeddings of V into M from the given inclusion to one that factors through f−1U →֒M .

The following result is stated and proved in §3 of [AF1]. Its proof amounts to a partition-of-unity
argument (specifically Theorem 1.1 [DI] or Theorem A.3.1 [Lu2]), applied to unordered configuration
spaces.

Lemma 3.34 ([AF1]). In the situation of Definition 3.32, the functor

ev0 : Diskf → DiskBn/M , (U, V, β) 7→ V ,

is final.

Lemma 3.34 applied to the fold mapM⊔M →M gives the following important technical property
to the ∞-category of disks in M .

Corollary 3.35 (Corollary 3.22 in [AF1], Proposition 5.5.2.16 in [Lu2]). For M a B-framed n-

manifold, the ∞-overcategory DiskBn/M is sifted.

We now apply Lemma 3.32 to factorization homology in the next result. In the statement of this
result we use the notation

f∗A : Disk∂k/N
f−1

// MfldBn/M

∫
A // V

for the composite functor, where f−1 is as in Construction 2.40.

Proposition 3.36 (Proposition 3.23 in [AF1])). Fix a map of spaces B → BO(n). Let M be a

B-framed manifold, and let A be a DiskBn -algebra in a ⊗-presentable ∞-category V. Let f : M → N
be a continuous map to a smooth k-manifold with boundary whose restriction over the boundary and
interior of N is a smooth fiber bundle. There is a canonical map in V,

∫

N

f∗A := colim
(

Disk∂k/N
f∗A
−−−−→ V

)

≃
−−→

∫

M

A ,

which is an equivalence.

Proof of Lemma 3.30. Let f :M → [−1, 1] be a collar-gluing. There are canonical morphisms in V
∫

M−

A
⊗

∫

M0×R

A

∫

M+

A
≃
−−→

Cor 3.23

∫

[−1,1]

f∗A
≃
−−→

Prop 3.36

∫

M

A .

Corollary 3.23 states that the first arrow is an equivalence. Proposition 3.36 states that the second
morphism is an equivalence.

�

3.6. Homology theories: characterization. We characterize factorization homology, analo-
gously to Eilenberg–Steenrod’s characterization of homology theories for spaces.

Theorem 3.37 ([AF1]). Let V be ⊗-presentable ∞-category. Let B → BO(n) be a map from a
space. There is a canonical equivalence between ∞-categories,

∫

: AlgDiskBn
(V)

≃

⇄ H(MfldBn ,V) : evRn ,

between DiskBn -algebras in V and homology theories for B-framed n-manifolds with coefficients in
V. This equivalence is implemented by the factorization homology functor

∫

and the functor of
evaluation on Rn.
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Proof. Proposition 3.9 identifies factorization homology as the values of symmetric monoidal left
Kan extension, thereby implementing the left adjoint in an adjunction

i! : AlgDiskBn
(V) ⇄ Fun⊗

(

MfldBn ,V
)

: i∗ .

The unit of this adjunction is an equivalence because DiskBn → MfldBn is fully-faithful, and Kan
extension along a fully-faithful functor restricts as the original functor.

Now let F : MfldBn → V be a symmetric monoidal functor. The counit of this adjunction evaluates

on F as a morphism
∫

A → F, where A = F|Rn is the DiskBn -algebra defined by the values of
F on disjoint unions of B-framed Euclidean n-spaces. It remains to verify that this counit is an
equivalence. To that end, consider the full∞-subcategoryM ⊂MfldBn consisting of those objectsM

for which this counit
∫

M
A

≃
−→ F(M) is an equivalence. We wish to show the inclusion M →֒MfldBn

is an equivalence.
Both

∫

A and F are symmetric monoidal functors. So the full ∞-subcategory M ⊂ MfldBn is
symmetric monoidal. By definition, M contains B-framed Euclidean spaces. We conclude the
containment DiskBn ⊂M.

Now, for each 0 ≤ k ≤ n, consider the base change Bk of B → BO(n) along the map BO(k) ×

BO(n − k)
⊕
−→ BO(n) then projected Bk → BO(k) × BO(n − k)

proj
−−→ BO(k). We will show, by

induction on k, that M contains the image of the evident functor MfldBk

k → MfldBn . The previous
paragraph gives that this is the case for k = 0.

By assumption, F satisfies ⊗-excision, while Lemma 3.30 states that
∫

A satisfies ⊗-excision as
well. We conclude that M is closed under collar-gluings. Therefore M contains the image of any Bk-
framed k-manifold that can be witnessed by a finite iteration of collar-gluings from disjoint unions
of Bk−1-framed (k − 1)-manifolds. By induction on k, we are therefore reduced to showing each
Bk-framed k-manifold can be witnessed as a finite iteration of collar-gluings involving Bk-framed

k-manifolds in the image of Mfld
Bk−1

k−1 →MfldBk

k →MfldBn .
Well, the reigning assumption that manifolds be finitary guarantees, for each Bk-framed k-

manifold M , the existence of a compactification M of the underlying manifold of M as a smooth k-
manifold with boundary. Choose a proper Morse function f : M → [−R,R] for which f−1({±R}) =
∂M . Such a Morse function witnesses M as a finite collar-gluing involving Bk-framed k-manifolds
of whose underlying manifold is diffeomorphic to M0 × R for some (k − 1)-manifold M0. Such a
(k − 1)-manifold is therefore isomorphic to one that is equipped with a Bk−1-framing.

�

Remark 3.38. In [AFT2] a version of Theorem 3.37 is established for structured singular manifolds
equipped with a stratified tangential structure – this will be surveyed in §8. The result, as it appears
there, is slightly more general than Theorem 3.37 above: the assumption that V be ⊗-presentable
can be weakened to the assumption that the underlying ∞-category of V is presentable yet the
symmetric monoidal structure distributes only over geometric realizations and filtered colimits (i.e.,
over sifted colimits).

Remark 3.39. In [AF1] a version of Theorem 3.37 is established for topological manifolds in place
of smooth manifolds. In essence, the only feature of the smooth category used in the proof of
Theorem 3.37 was the existence of open handlebody decompositions, granted by Morse functions.
But such open handlebody decompositions are guaranteed in the topological setting, through the
results of [Mo] for n = 3, of [Qu] as it concerns the complement of a point for n = 4 together with
smoothing theory [KS], of [Qu] for n = 5, and of [KS] for n > 5.

For much of this article, we will primarily concern ourselves with homology theories in the sense of
Definition 3.28. We point out, however that there are very interesting functors symmetric monoidal
functors Mfldn → V that are not ⊗-excisive. For instance, as detailed in [BFN], for X a derived
(commutative) stack over a fixed field k, cotensoring to X followed by taking ring of functions
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defines a symmetric monoidal functor:

Mfldn
M 7→XM

−−−−−−−→ Stacks(k)
O
−−→ Modk

As the case n = 1, the value of this functor on the circle is the Hochschild homology of X : O(XS1

) ≃
HH•(X) (compare with Corollary 3.31). If X is not affine, the above functor will generically fail to
be ⊗-excisive. Now, the cotensor XM only depends on the underlying homotopy type of M , as we
shall see in Proposition 5.7. This is a feature of X being a derived commutative stack. Should X
be a derived stack over Diskn-algebras as in [Fra1], there is a refined version of the cotensor XM

that is sensitive to the manifold structure of M . Derived stacks over Diskn-algebras arise as the
outcome of deformation quantization of a shifted symplectic derived (commutative) stacks, such as
in Rozansky–Witten theory.

4. Nonabelian Poincaré duality

Applying Theorem 3.37, we offer a slightly different perspective, and proof, of the nonabelian
Poincaré duality of Salvatore [Sa], Segal [Se4], and Lurie [Lu2], which calculates factorization ho-
mology of iterated loop spaces as compactly-supported mapping spaces.

Definition 4.1. For a space B, SpacesB := (Spaces/B)
B/ is the ∞-category of retractive spaces

over B, i.e., spaces over B equipped with a section. The ∞-category Spaces
≥n
B is the full ∞-

subcategory of SpacesB consisting of those X ⇄ B for which the retraction is n-connective, that is,
the homomorphism πqX → πqB is an isomorphism for q < n with any choice of base-point of B.

Remark 4.2. Equivalently, an object X ∈ Spaces
≥n
B may be thought of as a fibration X → B

equipped with a section for which, for each b ∈ B, the fiber Xb is n-connective.

Definition 4.3. Fix X ∈ SpacesB. LetM be a manifold, equipped with a map M → B. The space
of compactly-supported sections of X over M is the colimit in the ∞-category Spaces:

Γc(M,X) := colim
K ⊂

compact
M
Map/B

(

(M rK →M), (B → X)
)

,

where the colimit is indexed by the filtered poset of compact codimension-0 submanifold with
boundary in M , and where the space indexed by a compact subset K ⊂M is the pullback:

Map/B
(

(M rK →M), (B → X)
)

//

��

Map/B(M,X)

��
∗ ≃ Map/B(M rK,B) // Map/B(M rK,X)

For B → BO(n) a map between spaces, note that Γc(−, X) defines a covariant functor MfldBn →
Spaces. By inspection, this functor carries finite disjoint unions to finite products of spaces, which
is to say that Γc(−, X) is symmetric monoidal with respect to the Cartesian monoidal structure on
the ∞-category Spaces of spaces. In particular, the restriction

(11) ΩnBX : DiskBn →֒MfldBn
Γc(−,X)
−−−−−−→ Spaces

is a symmetric monoidal functor, i.e., a DiskBn -algebra in Spaces. Each point ∗
{b}
−−→ B determines

a B-framed n-dimensional vector space (V, b), which can be regarded as an object (V, b) ∈ DiskBn .
The value of the above functor ΩnBX on this object is equivalent to the n-fold loop space ΩnXb of
the fiber Xb of the map X → B over b ∈ B.

We introduce the following terminology in order to state Theorem 4.5. Consider the base point

∗
{Rn}
−−−→ BO(n). Each lift of this point ∗

{b}
−−→ B, which is a point in the fiber fiber

(

B → BO(n)
)

,
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canonically determines a symmetric monoidal functor Diskfrn → DiskBn . Thereafter, each symmetric

monoidal functor A : DiskBn → Spaces restricts as an associative monoid

π0(A, b) : Diskfr1
R

n−1×−
−−−−−→ Diskfrn −→ DiskBn

A
−−→ Spaces

π0−−−→ Set .

We say A is group-like if, for each point b ∈ fiber
(

B → BO(n)
)

, this monoid π0(A, b) is a group.

Example 4.4. In the caseB ≃ ∗, a B-framing is a framing in the standard sense andDiskBn = Diskfrn.

A symmetric monoidal functor A : Diskfrn → Spaces is then the data of an En-algebra, and this En-
algebra is group-like in the sense of [Ma] if and only if A is group-like in the the above sense.

Theorem 4.5 ([AF1]). Restricting the functor Γc : SpacesB → Fun⊗(MfldBn , Spaces) defines a fully-
faithful inclusion

Spaces
≥n
B →֒ H(MfldBn , Spaces)

of n-connective retractive spaces over B into homology theories. The essential image consists of
those F for which the restriction F|DiskBn

is group-like.

Remark 4.6. The fully-faithfulness of the above functor is given by Theorem 5.1.3.6 of [Lu2].

This is a parametrized form of May’s theorem from [Ma], identifying n-connective spaces as Diskfrn-
algebras.

The following result is the technical crux in the proof of Theorem 4.5; it asserts that, for each
n-connective retractive space X ⇄ B, the assignment of compactly-supported sections Γc(−, X) is
⊗-excisive.

Lemma 4.7 ([AF1]). Let X ∈ Spaces
≥n
B be an n-connective retractive space over B. Let M be

B-framed n-manifold. For M ′
⋃

M0×R

M ′′ ∼=M a collar-gluing, the canonical map between spaces,

Γc(M
′, X) ×

Γc(M0×R,X)
Γc(M

′′, X)
≃
−−→ Γc(M,X) ,

from the quotient of the product Γc(M
′, X)×Γc(M

′′, X) by the diagonal action of Γc(M0×R, X), is
an equivalence.

Proof given in [AF1]. Since M0 →֒ M is a proper embedding, a compactly-supported section over
M can be restricted to obtain a compactly-supported section over M0, as well as over M rM ′ and
over M rM ′′. Namely, there is a diagram among spaces of compactly-supported sections

Γc(M
′, X)× Γc(M

′′, X)

))❚❚❚
❚❚

❚❚
❚❚❚

❚❚
❚❚

❚
//

��

Γc(M
′′, X)

��
Γc(M,X) //

�� ((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘
Γc(M rM ′, X)

��
Γc(M

′, X) // Γc(M rM ′′, X) // Γc(M0, X).

By inspection, the bottom horizontal sequence is a fiber sequence, as is the right vertical sequence, as
is the diagonal sequence. Also, the inner square is pullback because M ′

⋃

M0×R

M ′′ ∼=M is a pushout.

Because M0 ⊂ M is equipped with a regular neighborhood, these fiber sequences are in fact Serre
fibration sequences, and so the inner square is a weak homotopy pullback square. In particular,
there is a right homotopy coherent action of ΩΓc(M0, X) on Γc(M

′, X), a left homotopy coherent
action of ΩΓc(M0, X) on Γc(M

′′, X), and a continuous map of topological spaces

(12) Γc(M
′, X) ×

ΩΓc(M0,X)
Γc(M

′′, X) −→ Γc(M,X)

from the balanced homotopy coinvariants. Because X → B is n-connective and M0 is (n − 1)-
dimensional, the base Γc(M0, X) is connected. It follows that the map (12) is in fact a weak homotopy
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equivalence. The assertion follows after the canonical identification ΩΓc(M0, X) ∼= Γc(M0 × R, X)
as group-like E1-spaces.

�

Theorem 3.37 implies the nonabelian Poincaré duality theorem of Salvatore [Sa], Segal [Se4],

and Lurie [Lu2]. First, recall from (11) the DiskBn -algebra ΩnBX determined by a retractive space
X ⇄ B.

Corollary 4.8 (Nonabelian Poincaré duality [AF1]). Let B → BO(n) be a map from a space. Let
X ⇄ B be an n-connective retractive space over B. For each B-framed n-manifold M , there is a
canonical equivalence

∫

M

ΩnBX
≃
−−→ Γc(M,X)

from the factorization homology over M of ΩnBX to the space of compactly-supported sections of X
over M .

We now explain how this result specializes to familiar Poincaré duality between homology and
compactly-supported cohomology. Let A be an abelian group. Consider the product space X ≃
BO(n)×K(A, n). Observe that the values of the n-disk algebra

ΩnBO(n)X : Diskn −→ Spaces ,
⊔

0≤i≤k

Vi 7→
∏

1≤i≤k

Map∗
(

V +
i ,K(A, n)

)

≃
noncanonical

A×k ,

are non-canonically identified as products of A. Furthermore, the restriction of this n-disk algebra
along the standard symmetric monoidal functor Diskfrn → Diskn, which selects Euclidean spaces, is
the En-algebra forgotten from the commutative algebra structure on A. The O(n)-action on A is
that inherited from the infinite-loop structure of the Eilenberg–MacLane spectrum HA through the
J-homomorphism. LetM be an n-manifold. An A-orientation ofM defines a natural transformation
making the diagram of ∞-categories commute:

(13) Diskn/M //

π0

��

Diskn

Ωn
BO(n)X

��
Fin

I 7→AI
// Spaces;

here, the bottom horizontal functor is the symmetric monoidal functor from finite sets with disjoint
union, which is the free symmetric monoidal ∞-category generated by a point, determined by the
commutative algebra A in the Cartesian symmetric monoidal ∞-category Spaces. So choose an
A-orientation of M (supposing one exists). Corollary 4.8 then yields an equivalence between spaces

(14)

∫

M

A ≃
(13)

∫

M

ΩnBO(n)X ≃
Cor 4.8

Mapc
(

M,K(A, r)
)

.

Note that each space in this display is equipped with a base point, and the maps in this display
are canonically based maps. As the En-algebra A is forgotten from a commutative algebra, we
recognize

∫

M A as the free A-module in the ∞-category Spaces generated by the underlying space
of M . Therefore, applying homotopy groups to (14) gives an isomorphism between graded abelian
groups,

H∗(M ;A) ∼= π∗

∫

M

A ∼= π∗ Mapc
(

M,K(A, n)
)

∼= H
n−∗

c (M ;A) ,

from reduced homology to reduced cohomology.

Remark 4.9. The factorization homology
∫

M ΩnBX is built from configuration spaces of disks in
M with labels defined by X → B, and the preceding result thereby has roots in the configuration
space models of mapping spaces dating to the work of Segal, May, McDuff and others in the 1970s;
see [Se1], [Ma], [Mc1], and [Bö]. However, the classical configuration-space-with-labels, as described
in [Bö], models a mapping space with target the n-fold suspension of X , rather than into X itself.
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Factorization homology thus more closely generalizes the configuration spaces with summable or
amalgamated labels of Salvatore [Sa] and Segal [Se4].

Proof of Theorem 4.5. Corollary 4.8 identifies the functor Γc : Spaces
≥n
B → H(MfldBn , Spaces) as the

composition Γc : Spaces
≥n
B

Ωn
B−−→ DiskBn

∫

−→ H(MfldBn , Spaces). Theorem 3.37 gives that
∫

is fully-

faithful, so it remains to argue that ΩnB is fully-faithful with essential image the group-like DiskBn -
algebras in spaces. This is immediate because, for instance, Spaces/B is an ∞-topos (Theorem

5.1.3.6 of [Lu2]).
�

5. Calculations

In §4, we identified values of factorization homology ofDiskn-algebras in spaces, with its Cartesian
monoidal structure, as twisted compactly-supported mapping spaces. Here we identify more values
of factorization homology of Diskn-algebras in chain complexes, and spectra, notably with monoidal
structure given by tensor product – these cases are closest to the physical motivation given in the
introduction.

In this section, we fix a map B → BO(n) from a space. Two cases of notable interest are

∗
{Rn}
−−−→ BO(n) and BO(n)

id
−→ BO(n).

5.1. Factorization homology for direct sum. We now show that in the simple case of Diskn-
algebras in chain complexes with direct sum, factorization homology recovers ordinary homology.

Fix a presentable ∞-category V, such as the ∞-category Spectra of spectra, or the ∞-category
Modk of chain complexes over a fixed commutative ring k. Coproduct, which in the case that V is
stable is direct sum, endows V with the coCartesian symmetric monoidal structure: (V,∐). Consider
the commutative diagram among∞-categories, in which each functor is implemented by the evident
restriction:

AlgDiskBn
(V,∐)

≃

��

Fun⊗
(

MfldBn , (V,∐)
)

oo

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐✐

Fun(B,V) .

In this case of a coCartesian symmetric monoidal structure, the downward functor is an equivalence,
as indicated. In other words, a DiskBn -algebra in (V,∐) is precisely a functor B → V. 7

Example 5.1. Let G be a topological group equipped with a continuous representation G
ρ
−→

GL(n) ≃ O(n). Then a DiskBGn -algebra in (V,∐) is a G-module BG→ V. In the case that G = e is
the trivial group, such a G-module is simply an object in V.

Through Proposition 3.9, which identifies factorization homology as a left adjoint to the top
horizontal functor in the preceding diagram, we conclude that factorization is identified as a left
adjoint to the downleftward functor, which is restriction along the fully-faithful inclusion B →MfldBn
of B-framed Euclidean spaces. Left adjoints to restriction functors evaluate as left Kan extensions.
The standard formula for left Kan extensions therefore identifies, for each B-framed n-manifold

M = (M,ϕ) and each DiskBn -algebra B
V
−→ V, the value of factorization homology as the colimit in

V:
∫

M

V ≃ colim
(

B/M → B
V
−→ V

)

7Here and always, the space B is taken as an ∞-groupoid and thereafter as an ∞-category. In this way, we make
sense of a functor B → V, which is simply a B-indexed local system of objects in V.
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Corollary 2.31 identifies the functor B/M → B appearing in this expression as the given functor

M
ϕ
−→ B from the underlying ∞-groupoid, or homotopy type, of M :

∫

M

V ≃ colim
(

M
ϕ
−→ B

V
−→ V

)

.

Remark 5.2. Note that the value of factorization homology in (V,∐) over a B-framed manifold

M
ϕ
−→ B only depends on the underlying space of M equipped with its given map to B.

Example 5.3. Let G be a topological group equipped with a continuous representation G
ρ
−→

GL(n) ≃ O(n). Let V be a G-module in V. Let M be an n-manifold. A BG-framing on M is
a principal G-bundle P → M equipped with a ρ-equivariant map P → Fr(M) over M to the
frame-bundle of M . Given such a BG-framing on M , we identify the factorization homology

∫

M

V ≃ P ⊗
G
V

as the diagonal G-quotient of the tensor of V ∈ V with the space P . In particular, in the case that
G

=
−→ O(n), the factorization homology is the diagonal O(n)-quotient with the frame-bundle of M

tensored with the O(n)-module V in V:
∫

M

V ≃ Fr(M) ⊗
O(n)

V .

In the case that G = e is a trivial group, then V ∈ V is simply an object and the principal bundle
P

=
−→M is identical to M , so that factorization homology

∫

M

V ≃ M ⊗ V

is simply the tensor of the object V ∈ V with the underlying space of M .

Example 5.4. Suppose B = ∗, so that a B-framing on an n-manifold is exactly a framing. Suppose
V = Modk is the∞-category of chain complexes over a fixed commutative ring k. As discussed above,
a En-algebra in (Modk,⊕) is simply a chain complex, V ∈ Modk. Furthermore, the factorization
homology

∫

M

V ≃ M ⊗ V ≃ C∗(M ;V ) ∈ Modk

is the singular chain complex of M with coefficients in V .

Example 5.5. Again suppose B = ∗, so that a B-framing on an n-manifold is exactly a framing.
Suppose V = Spectra is the∞-category of spectra. As discussed above, an En-algebra in (Spectra,⊕)
is simply a spectrum V ∈ Spectra. Furthermore, the factorization homology

∫

M

V ≃ M ⊗ V ≃ Σ∞
+M ∧ V ∈ Spectra

is the smash product of V with the suspension spectrum of M .

Remark 5.6. Taking products with Euclidean spaces defines a sequence of symmetric monoidal
∞-categories:

Mfldfr0 −→Mfldfr1 −→ · · · −→Mfldfrn −→ . . . .

Forgetting to underlying spaces defines, for each k, a symmetric monoidal functor Mfldfrk → Spacesfin

to the ∞-category of finite spaces8 and coproduct among them. Via the canonical equivalence
between underlying spaces M ≃ M × R for each framed manifold M , these forgetful functors
assemble as a symmetric monoidal functor from the colimit

(15) colim
k≥0

Mfldfrk −→ Spacesfin .

We argue that this symmetric monoidal functor is an equivalence.

8i.e., finite CW complexes
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• Essentially surjective. Each finite space is equivalent to the underlying space of the
geometric realization of a finite simplicial complex. Such a geometric realization can be
piecewise-linearly embedded into Euclidean space. A regular open neighborhood of such
an embedding is a finitary smooth manifold that is homotopy equivalent to this geometric
realization. In this way we conclude that the functor (15) is essentially surjective.
• Fully-faithful. Let M and N be n-manifolds. It follows from Whitney’s embedding theo-
rem that the map between spaces

colim
k≥0

Embfr(M × R
k−n, N × R

k−n) −→ MapSpaces(M,N)

is a weak homotopy equivalence.

Through the equivalence (15), Theorem 3.37 applied to V = (Modk,⊕) recovers to the formulation of
the Eilenberg–Steenrod axioms given in the introduction. If one sets V to be the opposite (Mod

op
k
,⊕),

then one likewise recovers the Eilenberg–Steenrod axioms for cohomology.

5.2. Factorization homology with coefficients in commutative algebras. Here, we examine
factorization homology of commutative algebras, otherwise known as E∞-algebras.

Fix a symmetric monoidal ∞-category V that is ⊗-presentable.
There is a canonical identification of the symmetric monoidal envelope of the commutative ∞-

operad

Env(Comm) ≃ Fin = (Fin,∐)

with the coCartesian symmetric monoidal category of finite sets. 9 This is to say that restriction
along the commutative algebra in Fin whose underlying object is ∗ ∈ Fin defines an equivalence
between ∞-categories:

Fun⊗(Fin,V)
≃
−−→ AlgCom(V)

So restriction along the symmetric monoidal functor given by taking connected components

[−] : DiskBn → Diskn
[−]
−−→ Fin

defines a forgetful functor

fgt : AlgCom(V) −→ AlgDiskBn
(V) .

Via Corollary 3.2.3.3 of [Lu2], the assumed ⊗-presentability of V implies the ∞-category AlgCom(V)
is presentable. In particular, it is tensored over the ∞-category of spaces:

Spaces×AlgCom(V)
⊗
−−→ AlgCom(V) , (X,A) 7→ colim

(

X
!
−→ ∗

{A}
−−→ AlgCom(V)

)

.

Proposition 5.7. The following diagram among ∞-categories canonically commutes:

MfldBn ×AlgCom(V)
forget×id //

id×fgt

��

Spaces×AlgCom(V)
⊗ // AlgCom(V)

forget

��
MfldBn ×AlgDiskBn

(V)

∫

// V.

In particular, for each B-framed n-manifoldM , and each commutative algebra A, there is a canonical
equivalence

∫

M

A ≃ M ⊗A

between the factorization homology of A over M and the tensor of the commutative algebra A with
the underlying space of M .

9 See the discussion just above Lemma 3.20 for a quick description of a symmetric monoidal envelope.
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Proof. Observe the commutative diagram among symmetric monoidal ∞-categories:

DiskBn
//

[−]

��

MfldBn

forget

��
Fin // Spaces

in which the bottom two are endowed with their coCartesian symmetric monoidal structures. Re-
striction defines the commutative diagram among ∞-categories of symmetric monoidal functors

(16) AlgDiskBn
(V) Fun⊗(MfldBn ,V)

oo

AlgCom(V)

fgt

OO

Fun⊗(Spaces,V).oo

OO

It follows from Proposition 3.2.4.7 of [Lu2] that the forgetful functor AlgCom(V) → V canonically
lifts as a symmetric monoidal functor

(

AlgCom(V),∐
)

→
(

V,⊗
)

from the coCartesian symmetric
monoidal structure on AlgCom(V). Postcomposing by this symmetric monoidal functor determines
the commutative diagram among ∞-categories:

(17) AlgCom
(

AlgCom(V),∐
)

��

Fun⊗
(

Spaces, (AlgCom(V),∐)
)

��

oo

AlgCom(V) Fun⊗(Spaces,V).oo

It follows from §5.1 that the right downward functor in this diagram is an equivalence. From the
same proposition cited in [Lu2] above, the right downward functor preserves colimits. From §5.1,
we conclude that the left adjoint to the bottom horizontal functor in (16) is the composite functor

AlgCom(V)
A 7→(X 7→X⊗A)
−−−−−−−−−−−→ Fun⊗

(

Spaces,AlgCom(V)
) forget
−−−−−→ Fun⊗(Spaces,V)

of first tensoring followed by the forgetful functor. Now, taking left adjoints of the horizontal
functors results in a lax-commutative diagram among ∞-categories:

AlgDiskBn
(V)

∫

%%
⇓ Fun⊗(MfldBn ,V)

AlgCom(V)

fgt

OO

⊗ // Fun⊗
(

Spaces, (AlgCom(V),∐)
) forget // Fun⊗(Spaces,V).

OO

The proof is complete once we show the 2-cell in this diagram is invertible. This 2-cell is invertible
if and only if, for each commutative algebra A ∈ AlgCom(V) and each B-framed n-manifold M , the
resulting morphism in V,

(18)

∫

M

A −→M ⊗A ,

is an equivalence. (Here, and in what follows, we are not giving notation to the functor fgt.) Because
the underlying space of each B-framed Euclidean n-dimensional space is contractible, this mor-

phism (18) is an equivalence in such cases. By construction, the tensoring functor Spaces
X 7→X⊗A
−−−−−−→

AlgCom(V) preserves colimits. Because collar-gluings amongB-framed n-manifolds forget as pushouts

among their underlying spaces, it follows that the functor MfldBn
M 7→M⊗A
−−−−−−−→ AlgCom(V)

forget
−−−→ V is

⊗-excisive, and in particular it is symmetric monoidal. It follows from Theorem 3.37 that the
morphism (18) is an equivalence, as desired.
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Proposition 5.7, together with the universal property of tensoring over spaces, yields the following.

Corollary 5.8. Let A ∈ AlgCom(V) be a commutative algebra in a symmetric monoidal ∞-category
that is ⊗-presentable. Let M be a B-framed n-manifold. There is a canonical commutative al-
gebra structure on the factorization homology

∫

M
A. Furthermore, as a commutative algebra, it

corepresents the copresheaf

MapCom

(

∫

M

A,−
)

: AlgCom(V) −→ Spaces , C 7→ MapCom(A,C)
M ,

whose value on a commutative algebra is the the cotensor, or mapping space, of M to the space of
morphisms from A to C.

Proposition 5.7 and Corollary 5.8, together with the fact that left adjoints compose, yields the
following.

Corollary 5.9. In the situation of Corollary 5.8, for V ∈ V an object with Sym(V ) ∈ AlgCom(V)
the free commutative algebra on V , there is a canonical equivalence between commutative algebras
in V:

∫

M

Sym(V ) ≃ Sym(M ⊗ V ) .

Example 5.10. In the case that V = (Modk,⊗
k

), Corollary 5.9 specializes as an equivalence

∫

M

Sym(V ) ≃ Sym
(

C∗(M ;V )
)

,

the graded-commutative algebra on the chain complex of singular chains on the underlying space of
M with coefficients in V .

The next result, proved as Proposition 5.3 in [AF1], further identifies factorization homology of
commutative algebras, in a suitably infinitesimal case: the cohomology of suitably nilpotent spaces.
Its proof amounts to using Proposition 5.7, then arguing via an Eilenberg–Moore spectral sequence.

Proposition 5.11 ([AF1]). Let M be an n-manifold. Let X be a nilpotent space whose first n
homotopy groups are finite, |πiX | < ∞ for i ≤ n, and let k be a commutative ring. There is a
natural equivalence of k-modules

∫

M

C∗(X ; k) ≃ C∗(XM ; k)

between the factorization homology of M with coefficient in the k-cohomology of X and the k-
cohomology of the space of maps to X from the underlying space of M .

Remark 5.12. In the work [GTZ1], the authors lay out a similar approach, by way of Hochschild
homology-type invariants, to the study of the cohomology of mapping spaces.

5.3. Factorization homology from Lie algebras. We now identify factorization homology of
Diskn-algebras coming from Lie algebras. The results that follow are closely analogous to those above
concerning the factorization homology of Diskn-algebras coming from based topological spaces. For
simplicity, we assume our Lie algebras are defined over a fixed field k of characteristic zero.

As we proceed, we use that the ∞-category AlgLie(Modk) of Lie algebras over k are cotensored
over spaces:

Spacesop×AlgLie(Modk)
(X,g) 7→g

X

−−−−−−−−→ AlgLie(Modk) , (X, g) 7→ lim
(

X
!
−→ ∗

{g}
−−−→ AlgLie(Modk)

)

.
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This limit indeed exists because, for instance, the ∞-category AlgLie(Modk) admits products, cofil-
tered limits, and totalizations. More explicitly, gX ≃ C∗(X ; g) = Homk

(

C∗(X ; k), g
)

, with a canon-
ically inherited Lie algebra structure. For M an n-manifold, we define the kernel Lie algebra,

Mapc(M, g) //

��

g
M+

ev+

��
0 // g,

where M+ is the 1-point compactification of M . More explicitly, Mapc(M, g) ≃ C∗
c (M ; g), the

compactly-supported cochains on M with coefficients in g. In the case that M = Rn, we notate
Ωng := Mapc(R

n, g), and observe that this Lie algebra assembles as a Diskn-algebra,

Ωng : Diskn −→
(

AlgLie(Modk),×
)

,

to the Cartesian symmetric monoidal structure on Lie algebras. Postcomposing this symmetric
monoidal functor by that of Lie algebra chains, which indeed carries finite products of Lie algebras
to finite tensor products (over k) of k-modules, results in a composite symmetric monoidal functor

CLie
∗

(

Ωng
)

: Diskn
Ωn

g

−−−−→
(

AlgLie(Modk),×
) CLie

∗−−−→
(

Modk,⊗
k

)

.

The next identification is also discussed in [Gw] and [CG], and appears in the present form
in [AF1]. Its proof amounts to applying Lie algebra chains, which is a geometric realization-
preserving functor, to the Poincaré/Koszul duality equivalence

∫

M
Ωng ≃ Mapc(M, g) of [AF2].

Proposition 5.13. Let M be an n-manifold. Let g be a Lie algebra over k. There is a canonical
identification between k-modules,

∫

M

CLie
∗

(

Ωng
)

≃ CLie
∗

(

Mapc(M, g)
)

.

Remark 5.14. Let g be a Lie algebra over k. The Diskn-algebra CLie
∗

(

Ωng
)

appearing above
has an interesting interpretation, established by Knudsen [Kn2]. There is a forgetful functor from
En-algebras to Lie algebras,

AlgLie(Modk)←− AlgEn
(Modk) : fgt .

For n = 1, there is the standard forgetful functor; For n > 1, Kontsevich’s formality result (see [Ko]
for a sketched outline, and [LV] for a more detailed account) identifies the operad C∗(En;R) in Modk
is equivalent to the Poisson operad Pn, to which the Lie operad in ModR maps.10 (See [Coh] for an
account at the level of homology.) The adjoint functor theorem (Corollary 5.5.2.9 of [Lu1]) applies
to this forgetful functor, thereby offering a left adjoint:

Un : AlgLie(Modk) ⇄ AlgEn
(Modk) : fgt .

In the case n = 1, this left adjoint U1 agrees with the familiar universal enveloping algebra functor.
In general, there is an identification between En-algebras,

Ung ≃ CLie
∗

(

Ωng
)

proved by Knudsen [Kn2]. Through this identification, Proposition 5.13 can be reformulated as an
equivalence of chain complexes over k,

∫

M

Ung ≃ CLie
∗

(

Mapc(M, g)
)

,

in the case that M is equipped with a framing.

10The operad Pn in Modk represents: a Modk-module with a commutative and associative multiplication ·; an
(n− 1)-shifted binary operation [−,−] that satisfies the Jacobi identity; the structure of this Lie bracket [−,−] being
a derivation over · in each variable.
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5.4. Factorization homology of free DiskBn -algebras. We now identify the factorization ho-

mology of free DiskBn -algebras. The results here are extracted from §5.2 of [AF1], §4.3 of [AFT2],
and §2.4 of [AF3].

For this section, we fix a symmetric monoidal ∞-category V that is ⊗-presentable. Also, for
simplicity restrict our attention to the case the space B is connected, and equipped with a base
point. This condition, and structure, on B identify the tangential structure

(B → BO(n)) = (BG
Bρ
−→ BO(n))

as the classifying space of a morphism ρ : G→ O(n) between group-objects in Spaces.
For each B-framed n-manifoldM , and for each finite cardinality i ≥ 0, consider the configuration

space

Confi(M) :=
{

{1, . . . , i}
c
−→M | c is injective

}

⊂ M×i ,

which is an open subspace of the i-fold product ofM . As an open subspace, it inherits the structure
of a smooth ni-manifold. The BG-framing on M then determines a B(Σi ≀G)-framing on Confi(M):

B(Σi ≀G)

��
Confi(M)

τConfi(M) //

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧
BO(ni).

This lift of the tangent classifier of Confi(M) selects a principal Σi ≀G-bundle

ConfGi (M) −→ Confi(M) ,

which we refer to as a G-framed configuration space. In the extremal case of G
=
−→ O(n), then we

have ConfGi (M) = Confi(M). In the extremal case that G = e is the trivial group then ConfGi (M) =

Conf fri (M) is the framed configuration space, a point in which is an injection c : {1, . . . , i} →֒ M
together with a choice of the basis for each tangent space Tc(j)M .

The free DiskBn -algebra functor is the left adjoint

FreeBn : ModG(V) := Fun(B,V) ⇄ AlgDiskBn
(V)

to the restriction along the fully-faithful inclusion B → DiskBn of the B-framed Euclidean spaces.

The next result identifies the factorization homology of free DiskBGn -algebras in terms of G-framed
configuration spaces.

Proposition 5.15. Let ρ : G→ O(n) be a morphism between group-objects in Spaces. Let M be a
BG-framed n-manifold. Let V ∈ ModG(V) be a G-module in V. There is a canonical equivalence in
V,

∫

M

FreeBGn (V ) ≃
∐

i≥0

ConfGi (M) ⊗
Σi≀G

V ⊗i

between the factorization homology of the free DiskBGn -algebra and the coproduct of G-framed con-
figuration spaces of M labeled by V .

The proof of Proposition 5.15, which appears in the above-mentioned citations, amalgamates the
following key observations. First, the result is true for M a Euclidean space. Second, a hypercover-
type argument (as in Theorem A.3.1 of [Lu2]), applied to V -labeled configuration spaces, gives that
the righthand term satisfies ⊗-excision.

Using that left adjoints compose, Proposition 5.15 applied to a free G-module on an objectW ∈ V

gives the following result.
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Corollary 5.16. In the case that V ≃ G⊗W is the free G-module on an object W ∈ V, there is a
canonical equivalence in V:

∫

M

FreeBGn (G⊗W ) ≃
∐

i≥0

Confi(M) ⊗
Σi

W⊗i .

Remark 5.17 (On homotopy invariance). The work of Longoni–Salvatore [LS] shows that con-
figuration spaces of a manifold are sensitive to simple-homotopy type of the manifold. Based on
Proposition 5.15, this has the following consequence, that factorization homology is not a homotopy
invariant of manifolds, even in the weakest sense. The strongest form of homotopy invariance for
the functor

∫

A, for a fixed Diskn-algebra A, would be the structure of a factorization

Mfldn

∫
A //

forget

��

V

Spaces

77♦
♦

♦
♦

♦
♦

♦

of
∫

A through the forgetful functor Mfldn → Spaces. This structure of homotopy invariance is
equivalent to the Diskn-algebra A being commutative. Likewise, a strong form of proper-homotopy
invariance would be a factorization

Mfldn

∫
A //

(−)+

��

V

Spacesop∗

77♥
♥

♥
♥

♥
♥

♥

where (−)+ : Mfldn → Spacesop∗ is 1-point compactification: sending a manifold M to the 1-point
compactification M+, and an open embedding M →֒ N to the collapse map N+ → M+. The
existence of this second factorization is roughly equivalent to A being the n-disk enveloping algebra
of a Lie algebra.

6. Filtrations

In this section, we establish two filtrations of factorization homology: in the manifold variable, one
can filter by bounding the cardinality of the number of embedded disks; in the algebra variable, one
can filter by bounding the number of multiplications allowed by elements of the algebra. Filtrations
of the first kind generalize the Goodwillie–Weiss embedding calculus [We]; filtrations of the second
kind are an instance of the Goodwillie functor calculus [Go]. These filtrations are exchanged under
Koszul duality, as is described in the following section. For simplicity, we have written these sections
for the case of framed n-manifolds—see [AF3] and [AF2] for the case of unoriented n-manifolds, and
the case of B-framed n-manifolds is analogous.

For the rest of this section, we fix a symmetric monoidal ∞-category V which is stable and
⊗-presentable.

6.1. Cardinality filtrations.

Definition 6.1. The ∞-category Mfldfr,surjn is the ∞-subcategory of Mfldfrn whose objects are
nonempty framed n-manifolds and whose morphisms consist of those embeddings which induce
surjections on the set of connected components. Mfldfr,≤kn ⊂ Mfldfr,surjn is the full ∞-subcategory

whose objects have at most k components. The∞-categories Diskfr,surjn and Diskfr,≤kn are the further

∞-subcategories of Mfldfr,surjn whose objects are nonempty finite disjoint unions of Euclidean spaces.

That is, an embedding f : M →֒ N belongs to Mfldfr,surjn if and only if π0f : π0M → π0N is
surjective.
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Definition 6.2. For a functor A : Diskfrn → V, the kth truncation of factorization homology is the
colimit of the composite functor

τ≤k

∫

M

A := colim
(

Disk
fr,≤k
n/M

A
−→ V

)

.

The difference between the subsequent truncations has a concrete description in terms of config-
uration spaces:

Lemma 6.3 ([AF3]). Let A be an En-algebra in V. For each closed framed n-manifold M , there is
a canonical cofiber sequence in V:

τ≤k−1

∫

M

A // τ≤k

∫

M

A // Confk(M)+
⊗

Σk

A⊗k .

Here, Confk(M)+ ∈ Spaces∗ is the 1-point compactification of Confk(M), regarded as a based Σk-
space; the cofiber is the reduced tensor with this based Σk-space.

Example 6.4. Consider the case that V = mod k and n = 1, so that
∫

S1 A ≃ HC∗(A) is the
Hochschild chain complex of the associative algebra A. After Lemma 6.3, Poincaré duality applied
to the the framed k-manifold Confk(S

1) with coefficients in the local system A⊗k, identifies, for
k > 0, the cofibers of the cardinality filtration as

Confk(S
1)+

⊗

Σk

A⊗k ≃ cIndTCk
(A[1]⊗k) .

Here, A[1] is chain complex over k which is the suspension of A; Ck is the cyclic group of order k,
regarded as the closed subgroup of kth roots of unity in the Lie group T of unit complex numbers;
cIndTCk

is the coinduction from the standard action of Ck on the k-fold tensor product A[1]⊗k.

The next series of results lead to the proof of Proposition 6.9, that factorization homology can be
computed as a sequential colimit of its truncated values. To do this, we will use a comparison of our
disk categories with the Ran space Ran(M). This is the space of finite subsets of M , topologized so
that points can collide.

Definition 6.5. Finsurj is the category of finite nonempty sets and surjections among them. The
Ran space of a topological space M is the topological space

Ran(M) := colim
(

Finsurj,op
M
−→ Top

)

which is the colimit of the diagram sending a set J to the space MJ , and a surjection J → I to the
diagonal map M I →֒MJ . For finite subset S ⊂M , the topological space

Ran(M)S ⊂ Ran(M)

is the subspace consisting of those finite subsets ofM which contain S. The cardinality stratification
of Ran(M)S → N sends a finite subset T to its cardinality |T |.

We will make use of the exit-path ∞-category of a stratified space: see [Lu2] or [AFT1].

Lemma 6.6 ([AF3]). There is contravariant equivalence

Disk
fr,surj
n/M ≃ Exit

(

Ran(M)
)op

with the opposite of the exit-path∞-category of the Ran space ofM . More generally, fix an embedding
S ⊂

∐

S R
n →֒M for S ⊂M . Then there is an equivalence

Disk
fr,surj
n/M ×

Diskfr
n/M

Disk
fr,

∐
S R

n/inj

n/M ≃ Exit
(

Ran(M)S
)op

.

where Disk
fr,

∐
S R

n/inj

n/M is the ∞-subcategory of (Diskn/M )
∐

S R
n/ whose objects are those

∐

S R
n →֒

U →֒M such that S → π0U is injective.
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Lemma 6.7 (Lemma 2.3.2 [AF3]). The functor

Disk
fr,surj
n/M −→ Diskfrn/M

is final.

Proof. By Quillen’s Theorem A, it suffices to show that for each g :
∐

k R
n →֒ M , an object of

Diskn/M , the ∞-undercategory

Disk
fr,surj
n/M ×

Diskfr
n/M

(

Diskfrn/M

)

∐
k R

n/

has a contractible classifying space. There exists an adjunction

Disk
fr,surj
n/M ×

Diskfr
n/M

Disk
fr,

∐
S R

n/inj

n/M ⇆ Disk
fr,surj
n/M ×

Diskfr
n/M

(

Diskfrn/M

)

∐
k R

n/

hence an equivalence between their classifying spaces. By Lemma 6.7, we obtain

B
(

Disk
fr,surj
n/M ×

Diskfr
n/M

Disk
fr,

∐
S R

n/inj

n/M

)

≃ BExit
(

Ran(M)S
)

≃ Ran(M)S .

The result now follows from the contractibility of this form of the Ran space—to see this, we use
a now standard argument from [BD]: the Ran space carries a natural H-space structure, given by
taking unions of subsets, for which the composition of the diagonal and the H-space multiplication
is the identity. Consequently, its homotopy groups must be zero. �

Remark 6.8. Combining the equivalence

Disk
fr,surj
n/M ≃ Exit

(

Ran(M)
)op

together with the finality of Lemma 6.7, we obtain that factorization homology (or any colimit

indexed by Diskfrn/M ) is equivalent to the global sections of an associated cosheaf on the Ran space
of M .

Together with Lemma 6.3, the following is the main conclusion of this section, describing a
complete filtration of factorization homology with layers given by twisted homologies of configuration
spaces.

Proposition 6.9. The natural map from the sequential colimit of truncations

lim−→
k

τ≤k

∫

M

A −→

∫

M

A

is an equivalence.

Proof. The finality of Lemma 6.7 implies the equivalence
∫

M

A := colim
(

Diskfrn/M

∫
A
−−→ V

)

≃ colim
(

Disk
fr,surj
n/M

A
−→ V

)

.

There is then a sequence of equivalences

colim
(

Disk
fr,surj
n/M

A
−→ V

)

≃ colim
((

lim−→
k

Disk
fr,≤k
n/M

)

A
−→ V

)

≃ lim−→
k

colim
(

Disk
fr,≤k
n/M

A
−→ V

)

= lim−→
k

τ≤k

∫

M

A

from which the result follows. �

A dual result holds for factorization cohomology with coefficients in an En-coalgebra.

Definition 6.10. For C an En-coalgebra in V (i.e., an En-algebra in Vop), the factorization coho-
mology of M with coefficients in C is the limit

∫ M

C := lim
(

Disk
op

n/M

C
−→ V

)

.
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Proposition 6.11. For M a closed framed n-manifold and C an En-coalgebra in V, there exists a

cofiltration of
∫M

C,
∫ M

C −→ τ≤•

∫ M

C

whose associated graded is
∐

k

(

(

C⊗k
)Confk(M)+

)Σk

.

6.2. Goodwillie filtrations. Fixing a manifold M , one can apply the Goodwillie functor calculus,
as developed in [Go], [Ku], and [Lu2], to the functor

∫

M

: Algaug
En

(V) −→ V .

The output is a cofiltration of factorization homology whose kth term is the polynomial approxi-
mation Pk

∫

M .

Proposition 6.12 ([AF3]). Let A an augmented En-algebra in V with cotangent space LA. For
each closed framed n-manifold M , the following is a fiber sequence

Confk(M) ⊗
Σk

LA⊗k

��

// Pk

∫

M

A

��

1

// Pk−1

∫

M

A

where Pk is Goodwillie’s kth polynomial approximation [Go] applied to the functor
∫

M , and LA is
the cotangent space of A at the augmentation (see [Fra1]). In particular, the Goodwillie derivative
∂k

∫

M
is canonically equivalent with Confk(M)⊗ 1, the tensor of the space Confk(M) with the unit

object in the symmetric monoidal ∞-category V.

7. Poincaré/Koszul duality

Koszul duality, in its most basic form, interchanges two forms of algebra, determined by the form
of algebraic structure that the cotangent space at an augmentation naturally inherits. There are
two classical forms of Koszul duality: commutative algebra is Koszul dual to Lie algebra; associative
algebra is dual to associative algebra. In particular, associative algebra is Koszul self-dual. This
second assertion generalizes to the situation of En-algebra, where the Koszul self-duality dates to
Getzler–Jones [GJ]. This Koszul duality for En-algebra can be expressed in terms of factorization
homology for manifolds with boundary. See [Lu4] for another treatment of Koszul self-duality of
En-algebra, in terms of twisted arrow categories.

Theorem 7.1 ([AF3], [AF2]). Let V be a stable ⊗-presentable ∞-category. There is a functor
∫

Dn/∂Dn

: Algaug
En

(V) −→ cAlg
aug
En

(V)

sending an augmented En-algebra A to an En-coalgebra structure on
∫

Dn/∂Dn

A ≃ A
⊗

∫

Sn−1×R

A

1 .
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There is a natural transformation, the Poincaré/Koszul duality map, in Fun(N⊲,V):

P•

∫

M

A

��

// τ≤•

∫ M(

∫

Dn/∂Dn

A
)

��
∫

M

A //
∫ M(

∫

Dn/∂Dn

A
)

.

This map is an equivalence when restricted to Fun(N,V).

Remark 7.2. The coalgebra structure of
∫

Dn/∂Dn A is given in [AF2] by showing that factorization

homology with coefficients in an augmented En-algebra is functorial with respect to the fold map

D
n/∂Dn −→ D

n/∂Dn ∨ D
n/∂Dn .

More generally, the theory of zero-pointed manifolds of [AF2] exhibits an additional functoriality
for factorization homology of augmented algebras, of extension-by-zero maps.

In particular, the Goodwillie completion lim
←−

P•

∫

M A is equivalent to factorization cohomology
with the coefficients in the coalgebra which is Koszul-dual to A. The natural map to the completion

∫

M

A −→ lim
←−

P•

∫

M

A

need not be an equivalence, however.11 A generalization of factorization homology, taking coefficients
in formal moduli problems, gives a way to correct the failure of Poincaré/Koszul duality to be an
equivalence in general.

Definition 7.3. Let V be a ⊗-presentable ∞-category. Let B → BO(n) be a map from a space.
Let X : AlgDiskBn

(V)→ Spaces be a functor. LetM be a B-framed n-manifold M . The factorization
homology of M with coefficients in X is the object in V

∫

M

X := lim
A∈Aff

op

/X

∫

M

A ,

where Aff := AlgDiskBn
(V)op ⊂ Fun

(

AlgDiskBn
(V), Spaces

)

is the image of the Yoneda embedding.

Remark 7.4. Intuitively, the object
∫

M X is Γ(X,
∫

M O), the global sections of the presheaf on
X obtained by applying factorization homology of M to the structure sheaf of X . We interpret
this form of factorization homology as the observables in a topological quantum field theory: a
sigma-model with algebraic target X .

There is a modification of the above definition for a formal moduli problem, i.e., a space-valued
functor on an ∞-category of Artin En-algebras.

Definition 7.5 (ArtinEn). The full ∞-subcategory TrivEn ⊂ Alg
aug,≥0
En

(Modk) is the essential image

of connective perfect k-modules Perf≥0
k

under the functor that assigns a complex V the associated
square-zero extension k⊕ V . The ∞-category ArtinEn of local Artin En-algebras is the smallest full

∞-subcategory of Algaug,≥0
En

(Modk) that contains TrivEn and is closed under small extensions. That
is:

If B is in ArtinEn , k⊕ V is in TrivEn , and the following diagram

A

��

// B

��
k // k⊕ V

11One should only expect this map to be an equivalence if V carries a t-structure, suitably compatible with the
monoidal structure, for which the augmentation ideal of A is either connected or n-coconnected.
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forms a pullback square in Alg
aug,≥0
En

(Modk), then A is in ArtinEn .

Definition 7.6. Fix a field k, and let X : ArtinEn → Spaces be a functor of local Artin En-algebras
over k. The factorization homology of X over M is the k-module

∫

M

X := lim
R∈Artin

op

En/X

∫

M

R .

Such formal moduli problems X are defined by the generalization of the Maurer–Cartan functor
from classical Lie theory. In the following definition, we use the Koszul duality functor Dn given as
the composite of linear duality with factorization homology of Dn/∂Dn.

D
n : Algaug

En
(Modk) // cAlgaug

En
(Modk) // Algaug

En
(Modk)

op .

That is, the Koszul-dual En-algebra is

D
nA =

(

∫

Dn/∂Dn

A
)∨

.

Definition 7.7. For an Artin En-algebra R and an augmented En-algebra A over a field k, the
Maurer–Cartan space

MCA(R) := Alg
aug
En

(DnR,A)

is the space of maps from the Koszul dual of R to A. The Maurer–Cartan functor MC : Alg
aug
En
→

Fun(ArtinEn , Spaces) is the adjoint of the pairing

ArtinEn × Alg
aug
En

(Modk)
D

n×id
−−−−→ Alg

aug
En

(Modk)
op × Alg

aug
En

(Modk)
Map(−,−)
−−−−−−→ Spaces .

MC sends A to the functor MCA : ArtinEn → Spaces.

The following is the framed version of the main theorem of [AF3].

Theorem 7.8 (Poincaré/Koszul duality [AF3]). Let M be a closed framed n-manifold; let A be an
augmented En-algebra over a field k with MCA the associated formal moduli functor of En-algebras.
There is a natural equivalence

(

∫

M

A
)∨

≃

∫

M

MCA

between the k-linear dual of the factorization homology of M with coefficients in A and the factor-
ization homology of M with coefficients in the moduli functor MCA.

Remark 7.9. One can regard the failure of the duality map in Theorem 7.1 to be an equivalence to
be related to the non-affineness of the formal moduli problem MCA. Were MCA to be affine, it would
be equivalent to the formal spectrum of the Koszul dual, Spf(DnA), in which the case the duality
map of Theorem 7.1 would be an equivalence. In terms of topological quantum field theory, we regard
MCA as determining a sigma-model whose target X = MCA is formal, but not necessarily affine.
Theorem 7.8 then describes the observables

∫

M
X in this sigma-model in terms of the factorization

homology with coefficients in a shift of the cotangent space of the point Spec(k)→ X .

8. Factorization homology for singular manifolds

We briefly outline an extension of factorization homology to singular manifolds, such as mani-
folds equipped with defects. The notion of singular manifolds, and structured versions thereof, is
developed in [AFT1]. The development of factorization homology of such can be found in [AFT2].
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8.1. Singular manifolds. Heuristically, a singular manifold is a stratified space in which each
stratum is endowed with the structure of a smooth manifold, and in which each stratum has a
canonically associated link which is itself a singular manifold. Informally, the ∞-category Snglr of
singular manifolds and open (stratified) embeddings among such is minimal with respect to the
following features.

(1) The empty set ∅ is a singular manifold.
(2) For L a compact singular manifold, the open cone

C(L) := ∗
∐

L×{0}

L× [0, 1)

is a singular manifold, with the cone-point ∗ a stratum.
(3) For X and Y singular manifolds, their product X × Y is a singular manifold.
(4) For U ⊂ X an open subset of a singular manifold, then U is canonically a singular manifold.
(5) For U an open cover by singular manifolds of a paracompact Hausdorff space X , then X is

a singular manifold.
(6) For L a compact singular manifold, the continuous homomorphism

Aut(L)
≃
−−→ Aut

(

C(L)
)

, f 7→ C(f) ,

is equipped with a deformation retraction whose retraction D∗ : Aut
(

C(L)
)

→ Aut(L) is a
continuous homomorphism.

A rigorous definition of Snglr is given in §1 of [AFT1]. That definition is distractingly inductive,
and so we elect to not spell it out here.

Terminology 8.1. In this article, by “singular manifold” we will mean “finitary singular manifold
with boundary,” in the sense of [AFT1].

Remark 8.2. The first two axioms give that ∗ is a singular manifold, and thereafter that C(∗) =
[0, 1) is a singular manifold with strata {0} and (0, 1). The third and fifth axiom gives that (0, 1)×n ∼=
Rn is a singular manifold. The fifth axiom thereafter gives that each manifold is a singular manifold.
The second and third axiom then give that Rk × C(L) is a singular manifold for each compact
manifold L. In general, an arbitrary singular manifold is a paracompact Hausdorff topological space
that admits a basis for its topology consisting of open embeddings from singular manifolds of the
form R

k × C(L), where k is an integer and L is a compact singular manifold.

A basic is a singular manifold of the form Rk × C(L) for k an integer and L a compact singular
manifold.

Remark 8.3. We follow up on the previous remark. Namely, the definition of a singular manifold
detailed in [AFT1] is in analogy with that of a smooth manifold: it is a paracompact Hausdorff
topological space equipped with a maximal atlas by basics.

Remark 8.4. The sixth axiom above reflects the regularity of singular manifolds. The retraction
map can be interpreted as taking the ‘derivative at the cone-point’. A consequence of this structure
is that one can ‘resolve singularities’ of a singular manifold. Specifically, for X a singular manifold,
and for Xd ⊂ X a stratum that is closed as a subspace, there is a well-defined blow-up of X along
Xd, as well as link of Xd in X , which assemble as the pullback and pushout diagram consisting of
singular manifolds and continuous stratified maps among them:

LinkXd
(X) //

��

BlXd
(X)

��
Xd

// X.

This diagram has the feature that the left vertical map is a bundle of singular manifolds, while the
right vertical map restricts as a bundle of singular manifolds over each stratum of X , and over the
complement X rXd the right vertical map is an isomorphism.
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Example 8.5. Let M be an n-manifold with boundary. Regard M as a stratified space, whose
strata are the connected components of the boundary ∂M and the connected components of of the
interior M :=M r ∂M . As a stratified space, M is a singular manifold. Indeed, it admits an atlas
by basics of the form R

n and R
n−1 × C(∗).

Example 8.6. Let M be an n-manifold. Let W ⊂ M be a properly embedded d-submanifold.
Consider the stratified space (W ⊂ M) whose strata are the connected components of W and the
connected components of M rW . This stratified space (W ⊂ M) is a singular manifold. Indeed,
it admits an atlas by basics of the form Rn and Rd × C(Sn−d−1). A singular manifold of this form
is a defect, or refinement, of the manifold M . In particular, a knot in a 3-manifold determines a
stratified space that refines onto the given 3-manifold.

Example 8.7. Following up on Example 8.6, consider a sequence W0 ⊂ W1 ⊂ M of properly
embedded d0-submanifold in a properly embedded d1-submanifold in an n-manifold. Consider
the stratified space (W0 ⊂ W1 ⊂ M) whose strata are the connected components of W0, the
connected components of W1 r W0, and the connected components of M r W1. This stratified
space (W0 ⊂W1 ⊂M) is a singular manifold. Indeed, it admits an atlas by basics of the form Rn,
Rd1 × C(Sn−d1−1), and Rd0 × C(Sn−d0−1) where Sn−d0−1 = (Sd1−d0−1 ⊂ Sn−d0−1) is the singular
manifold of Example 8.6 applied to an equatorially embedded sphere.

Example 8.8. Let p ≥ 0, and consider the topological simplex ∆p. Consider the stratification
of ∆p in which the i-dimensional strata comprise the connected components of the complement of
skeleta ski(∆

n)r ski−1(∆
n). This stratified space is a singular manifold. Indeed, it admits an atlas

by basics of the form Rn−p × C(∆p−1) for 0 ≤ p ≤ n. As a consequence, the geometric realization
|Z| of a finite simplicial complex is canonically endowed with the structure of a singular manifold.

Example 8.9. The Grassmannian Grk(n) of k-planes in Rn admits the Schubert stratification, for
which, for each cardinality k-subset S ⊂ {1, . . . , n}, the S-stratum consists of those V for which S

is minimal (in the Schubert poset) for which the linear map V →֒ Rn
proj
−−→ RS is an isomorphism.

This Schubert stratification of Grk(n) is a singular manifold.

Example 8.10. The orthogonal group O(n) admits the Bruhat stratification, for which, for each
element ϕ ∈ Σn ≀ (Z/2Z) = Aut(nCube) ⊂ O(n) of the group of symmetries of the n-cube, the
ϕ-stratum consists of those orthogonal matrices that, via row elimination and scaling by positive
scalars, have ϕ as its matrix of pivots. This Bruhat stratification of O(n) is a singular manifold.

Recall from §2.2 that we classified sheaves on the ∞-category Mfldn as space over BO(n); for
B → BO(n) such a thing, the space of sections of the associated sheaf on an n-manifold M is the
space of lifts of the tangent classifier:

B

��
M

τM //

ϕ

77♥
♥

♥
♥

♥
♥

♥
♥

BO(n).

This was the context supporting the constant consideration of spaces over BO(n) in the developments
above.

In [AFT1] there appears a similar classification. Namely, consider the full ∞-subcategory Bsc ⊂
Snglr consisting of the basic singular manifolds.

Theorem 8.11 ([AFT1]). Restriction along the inclusion Bsc →֒ Snglr defines an equivalence
between ∞-categories

Shv(Snglr)
≃
−−→ PShv(Bsc) .

Through the straightening-unstraightening equivalence of §2 of [Lu1], Theorem 8.11 gives that a
sheaf on Snglr is equivalent data to a right fibration among ∞-categories:

B −→ Bsc ;
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a section of the space of sections of the associated sheaf on a singular manifold X is the space of
lifts

B

��
Exit(X)op

τX //

ϕ

66♠
♠

♠
♠

♠
♠

♠
♠

Bsc;

we call such a lift a B-structure. Here, Exit(X) is the exit-path ∞-category of X , and the functor
τX carries a point in X to a basic neighborhood of it. In [AFT1] it is shown that the functor

Exit(X)op
τX−−→ Bsc is the unstraightening of the presheaf Bscop

U 7→Emb(U,X)
−−−−−−−−−→ Spaces. In particular,

Exit(X)op → Bsc is a right fibration.

Example 8.12. Let B → BO(n) be a map from a space. The composite map B → BO(n)→ Bsc

is a right fibration. A singular manifold X admits a B-structure if and only if X is an n-manifold.
Furthermore, should X be an n-manifold, the space B-structures is the space of B-framings on that
n-manifold.

Example 8.13. Let Dd⊂n ⊂ Bsc be the full ∞-subcategory consisting of the two objects Rd ×
C(Sn−d−1) and Rn. The inclusion Dd⊂n →֒ Bsc is a right fibration. A singular manifold X admits a
Dd⊂n-structure if and only if the singular manifold is of the form (W d ⊂Mn), a properly embedded
d-submanifold in an n-manifold (see Example 8.6). Furthermore, if X admits a Dd⊂n-structure,
then it is unique.

Example 8.14. Choose, once and for all, an orientation-preserving diffeomorphism R ∼= (0, 1).
Consider the right fibration Dfr

n−1,n := {n − 1 < n} → Bsc that selects out the morphism Rn =

Rn−1×R ∼= Rn−1×(0, 1) →֒ Rn−1×C(∗), which is the standard open embedding of the complement
of the cone-locus. A Dfr

n−1,n-manifold is an n-manifold with boundary, equipped with a framing of
its interior and a splitting of its framing along the boundary for which the last vector field points
inward.

Example 8.15. Let Dfr
d⊂n ⊂ Bsc be the right fibration Exit

(

Rd×C(Sn−d−1)
)op τ
−→ Bsc. A singular

manifold X admits a Dfr
d⊂n-structure if and only if the singular manifold is of the form (W d ⊂Mn),

a properly embedded d-submanifold in an n-manifold (see Example 8.6). Furthermore, for X =
(W ⊂M) such a singular manifold, a Dfr

d⊂n-structure on it is a framing of M and a splitting of the
framing along W via the first d-coordinates.

Example 8.16. The representable right fibrations over Bsc are particularly tractable. Let U =

Rd×C(L) be a basic. Notate the right fibration Exit(U)op
τU−−→ Bsc asDU → Bsc. A singular manifold

X admits a DU -structure if and only if X admits an atlas by open subsets of U . Furthermore, for
X such a singular manifold, a DU -structure on X determines the structure of a framed d-manifold
on the lowest-dimensional strata Xd of X , as well as a trivialization of the link,

LinkXd
(X) ∼=

over Xd

Xd × L ,

and thereafter, upon the choice of a collar-neighborhood of LinkXd
(X) in the blow-up BlXd

(X), an
open stratified embedding

Xd × L× R →֒ X rXd .

Observation 8.17. Let U = Rd × C(L) be a basic. Consider the right fibration DU → Bsc of
Example 8.16. Consider the full ∞-subcategory Exit(U r Rd)op := D>U → DU consisting of those
objects, which are points in U , that do not belong to the cone-locus Rd. The composite functor
D>U → DU → Bsc is again a right fibration. For X a singular manifold equipped with a DU -
structure, the complement X r Xd of its lowest-dimensional strata is a singular manifold, and it
canonically inherits a D>U -structure from the given DU -structure on X . Through the conclusion

44



of Example 8.16, the product Rd×L×R ∼= Rd+1×L is canonically endowed with a D>U -structure.
Thereafter, taking products with Euclidean-(d+ 1)-spaces defines a symmetric monoidal functor

(19) Diskfrd+1
−×L
−−−−→Mfld(D>U ) , (Rd+1)⊔I 7→ (Rd+1)⊔I × L ∼= (Rd × L× R)⊔I .

Definition 8.18. Let B → Bsc be a right fibration. The ∞-category Mfld(B) of B-manifolds is
the pullback among ∞-categories:

Mfld(B) //

��

PShv(Bsc)/B

��
Snglr

τ : X 7→
(

Exit(X)op
τX−−→Bsc

)

// PShv(Bsc).

The ∞-category of B-disks is the full ∞-subcategory

Disk(B) ⊂ Mfld(B)

consisting of those B-structured singular manifolds X for which X is a finite disjoint union of basics.
Disjoint union of underlying singular manifolds makes both Disk(B) and Mfld(B) into symmetric
monoidal ∞-categories.

So a B-manifold is a pair (X,ϕ) consisting of a singular manifold together with a B-structure
on it. The space of morphisms between two such are open (stratified) embeddings that respect
B-structures.

Example 8.19. Consider the basic U = C(∆n−1), where ∆n−1 is the compact singular manifold of
Example 8.8. A DU -manifold is an n-manifold M with corners equipped with a framing as well as
compatible splittings of the framing along each face. We call an n-manifold with corners equipped
with such framing data a framed 〈n〉-manifold. (This notion of 〈n〉-manifolds, which are n-manifolds
with corners with certain corner structure, is thoroughly developed in [La].) For this case of U , we
use the simplified notation:

Dfr
〈n〉 := DU and Diskfr〈n〉 := Disk(Dfr

〈n〉) .

8.2. Homology theories for structured singular manifolds. In analogy with §3.6, one can
define factorization homology of a Disk(B)-algebra over a B-manifold, and factorization homology
can be characterized as homology theories for B-manifolds.

In this subsection, we fix a right fibration B→ Bsc, as well as a symmetric monoidal∞-category
V that is ⊗-presentable.

Definition 8.20. The ∞-category of Disk(B)-algebras in V is

AlgDisk(B)(V) := Fun⊗
(

Disk(B),V
)

.

Remark 8.21. Recall the identification with the symmetric monoidal envelope Env(En) ≃ Diskfrn.

This identification can be read as Diskfrn being initial among symmetric monoidal ∞-categories
equipped with an En-algebra therein. There is a likewise identification Env

(

E(B)
)

≃ Disk(B) where
E(B) is an ∞-operad whose underlying∞-category of 1-ary operations is B, and whose space I-ary
morphisms from (Ui)i∈I ∈ BI to V ∈ B is the space of B-structured embeddings from the I-fold
disjoint union: MapDisk(B)

(
⊔

i∈I

Ui, V
)

.

The Definition 3.7 of factorization homology for n-manifolds is adequately formal, defined through
a universal property, to imitate for singular manifolds.

Definition 8.22. For A ∈ AlgDisk(B)(V), and X a B-manifold, the factorization homology of A over
X is the colimit in V,

∫

X

A := colim
(

Disk(B)/X → Disk(B)
A
−−→ V

)

,

should it exist.
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Restriction along the fully-faithful symmetric monoidal functor ι : Disk(B) →֒Mfld(B) defines a
functor

(20) AlgDisk(B)(V)←− Fun⊗
(

Mfld(B),V
)

: ι∗ .

Proposition 8.23. Factorization homology exists, and defines a left adjoint to (20):
∫

: AlgDisk(B)(V) ⇄ Fun⊗
(

Mfld(B),V
)

: ι∗ .

Furthermore, the a priori lax-commutative diagram among ∞-categories involving a left adjoint ι!
of the restriction functor ι∗,

AlgDisk(B)(V)

∫

//

forget

��

Fun
(

Disk(B),V
)

forget

��
Fun

(

Disk(B),V
) ι! // Fun

(

Mfld(B),V
)

,

is in fact a commutative diagram.

The Definition 3.25 of a collar-gluing for n-manifolds can be imitated for singular manifolds: for
X a singular manifold, a collar-gluing of X is a continuous map f : X → [−1, 1] for which the
restriction f| : f

−1(−1, 1)→ (−1, 1) is a fiber bundle among singular manifolds. We denote such a

collar-gluing as X−

⋃

X0×R

X+
∼= X where we understand that X− := f−1[−1, 1), X+ := f−1(−1, 1],

and X0 := f−1(0), while X0×R ∼= X0× (−1, 1) ∼= f−1(−1, 1). Such a collar-gluing of a B-manifold
X determines an algebra in the symmetric monoidal ∞-category Mfld(B) over the multi-category

AssocRL:
(

X0;X+, X−

)

∈ AlgAssocRL
(

Mfld(B)
)

.

Thereafter, each symmetric monoidal functor F : Mfld(B) → V determines, for each such collar-
gluing, a canonical morphism in V from the 2-sided bar construction:

(21) F(X−) ⊗
F(X0)

F(X+) −→ F(X) .

Definition 8.24. The ∞-category of homology theories for B-manifolds is the full ∞-subcategory

H
(

Mfld(B),V
)

⊂ Fun⊗
(

Mfld(B),V
)

consisting of those symmetric monoidal functors F that are ⊗-excisive:

For which, for each collar-gluing X−

⋃

X0×R

X+
∼= X of a B-manifold, the canonical morphism

in V,

F(X−) ⊗
F(X0)

F(X+)
(21)
−−−−→ F(X)

is an equivalence.

The following foundational characterizing factorization homology is result is proved in [AFT2].

Theorem 8.25. Factorization homology defines an equivalence between ∞-categories,
∫

: AlgDisk(B)(V) ≃ H
(

Mfld(B),V
)

,

with inverse given by restriction.
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8.3. Characterizing some Disk(DU )-algebras. Recall from §2.5 that, for B = ∗ so that a B-

framing on an n-manifold is a framing thereof, then a Diskfrn-algebra was precisely an En-algebra,
which is a rather algebraic entity. In the same spirit, we characterize some Disk(B)-algebras in
algebraic terms. Through Theorem 8.25, this gives algebraic input for invariants of B-manifolds.

In this subsection, we fix a commutative ring spectrum k, and consider its symmetric monoidal
∞-category (Modk,⊗

k

) of k-modules and tensor product over k among them.

The next result is an immediate consequence of the main result of [Th] after the observation that
Disk(Dfr

n−1,n) is the symmetric monoidal envelope of the swiss cheese operad. To state the result,
recall that, for B a Ek-algebra in (Modk,⊗

k

), its (derived) center is

Z(B) := Hom∫
Sk−1 B(B,B) ,

the endomorphisms of B as a module over the E1-algebra
∫

Sk−1 B. Deligne’s conjecture, as stated
and proved in §5 of [Lu2], endows Z(B) with a canonical structure of a Ek+1-algebra structure in
(Modk,⊗

k

).

Proposition 8.26. Recall from Example 8.5 the right fibration Dfr
n−1,n → Bsc. A Disk(Dfr

n−1,n)-
algebra in (Modk,⊗

k

) is equivalent to the following data.

(1) An En-algebra A in (Modk,⊗
k

).

(2) An En−1-algebra B in (Modk,⊗
k

).

(3) An action of A on B, instantiated as a morphism between En-algebras

A −→ Z(B)

to the (derived) center of B.

The above result is typical of its kind. The next result appears in [AFT2].

Proposition 8.27. Consider the right fibration Dfr
d⊂n → Bsc of Example 8.15. A Disk(Dfr

d⊂n)-
algebra in (Modk,⊗

k

) is equivalent to the following data.

(1) A En-algebra A in (Modk,⊗
k

).

(2) A Ed-algebra B in (Modk,⊗
k

).

(3) An action of
∫

Sn−d−1 A on B, instantiated as a morphism between Ed+1-algebras
∫

Sn−d−1

A −→ Z(B) .

Example 8.28. Consider the case (d, n) = (1, 3). A compact Dfr
1⊂3-manifold is a link in a 3-

manifold, equipped with a framing of the 3-manifold and a splitting of this framing along the link
via the first coordinate. A Disk(Dfr

1⊂3)-algebra is an E3-algebra A, a E1-algebra B, and a morphism
between E2-algebras

α : HH•(A) −→ HH•(B)

from the Hochschild chains to the Hochschild cochains. Through Theorem 8.25, such algebraic
data determines, via factorization homology, a k-module associated to each framed link in a framed
3-manifold, L ⊂M :

∫

(L⊂M)

(A,B, α) ∈ Modk .

The above two results are specific instances of a more general paradigm.

Proposition 8.29. Let U = Rd × C(L) be a basic. Consider the right fibration DU → Bsc from
Example 8.16. Consider the right fibration D>U → Bsc from Observation 8.17. A Disk(DU )-algebra
in (Modk,⊗

k

) is equivalent to the following data.
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(1) A Disk(D>U )-algebra A in (Modk,⊗
k

).

Note how restriction along (19) in Observation 8.17, followed by factorization homol-
ogy, defines a Ed+1-algebra in (Modk,⊗

k

):

∫

L

A : Diskfrd+1
×L
−−−→
(19)

Mfld(D>U )

∫
A

−−−→ Modk .

(2) A Ed-algebra B in (Modk,⊗
k

).

(3) An action of
∫

LA on B, instantiated as a morphism between Ed+1-algebras
∫

L

A −→ Z(B) .

The next result references Example 8.19, notably the right fibration Dfr
〈n〉 → Bsc for which a

Dfr
〈n〉-manifold is a framed 〈n〉-manifold.

Corollary 8.30. The following data canonically determines a Diskfr〈n〉-algebra in (Modk,⊗
k

).

(1) For each 0 ≤ i ≤ n, a Ei-algebra Ai in (Modk,⊗
k

).

(2) For each 0 < i ≤ n, a morphism between Ei-algebras

αi : Ai −→ Z(Ai−1) .

Remark 8.31. Suppose k is an algebraically closed field whose characteristic is 0. Recall from [PTVV]
the notions of a shifted symplectic algebraic stack over k, and of a Lagrangian map to one. We
also use the result therein which states that the derived intersection of two Lagrangian maps to an
n-shifted symplectic stack canonically inherits the structure of a (n−1)-shifted symplectic stack. We
expect that the data of Corollary 8.30 can be supplied through a parametrized version of deformation
quantization from the following input.

• A sequence
L0 −→ L1 −→ · · · −→ Ln

of morphisms between algebraic stacks over k.
– Now, denote Xn := Ln, and for each 0 < i < n, inductively denote the derived

intersection Xi := Li ×
Xi+1

Li.

• Ln is equipped with an n-shifted structure.
• For each 0 ≤ i < n, the diagonal map

Li−1 −→ Li ×
Xi+1

Li

is equipped with a Lagrangian structure.
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