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Abstract. We define and investigate a class of categories with formal proper-
ties similar to those of the homotopy category of spectra. This class includes
suitable versions of the derived category of modules over a commutative ring, or
of comodules over a commutative Hopf algebra, and is closed under Bousfield
localization. We study various notions of smallness, questions about repre-
sentability of (co)homology functors, and various kinds of localization. We
prove theorems analogous to those of Hopkins and Smith about detection of
nilpotence and classification of thick subcategories. We define the class of Noe-
therian stable homotopy categories, and investigate their special properties.
Finally, we prove that a number of categories occurring in nature (including
those mentioned above) satisfy our axioms.
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1. Introduction and definitions

In algebraic topology, one has many different homology and cohomology theories
that one can apply to spaces (such as ordinary cohomology, real or complex K-
theory, various kinds of cobordism, and so on). Homotopy theorists realized around
1960 that one could map the category of spaces to the so-called “stable homotopy
category,” whose objects are known as spectra. In this category all cohomology
theories become representable functors, and it is often more convenient to study
the representing spectra rather than the cohomology theories themselves. Moreover,
many groups of algebraic or geometric interest (such as algebraic K-theory of rings
or spaces, or groups of cobordism classes of manifolds) occur as the homotopy
groups of spectra.

Of course, cohomology theories occur in many other areas of mathematics. It is
our contention that, for many such cohomology theories, there is a stable homotopy
category where the cohomology theory in question becomes a representable functor.
Just as in algebraic topology, working in this stable homotopy category makes many
arguments much simpler and clearer, and suggests new questions. The theory of
stable homotopy categories also brings out similarities between different situations.

Our motivation for writing this paper came from three important examples,
arising from homological algebra, algebraic topology, and their intersection.
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• It is well-known that the derived category of a commutative ring [Ver77,
Wei94] has many formal similarities to the stable homotopy category, and
Hopkins has proved a nilpotence theorem and a thick subcategory theorem
in this algebraic setting (when the ring is Noetherian)—see [Hop87, Nee92a,
Tho]. Just how formal are these similarities? That is, is there a common
context for both the category of spectra and the derived category so that
standard properties of both can be derived simultaneously?
• There are somewhat similar nilpotence theorems for modules over certain

Hopf algebras B, including group algebras [QV72] and the Steenrod alge-
bra [Pala]. Over the Steenrod algebra, there are also examples of Bousfield
localizations (Margolis’ killing construction [Mar83, Pal92]). Is there a good
setting—for example, chain complexes of B-modules, or the stable category
of [Mar83]—in which to view these results, a setting that would allow one to
do “homotopy theory over a Hopf algebra”?
• Fix n > 0 and consider the category of K(n)-local spectra, much studied by

Hopkins and coauthors, for example in [HMS94]. Here K(n) denotes the nth
Morava K-theory, one of the most important objects in the ordinary stable
homotopy category. How similar is this category to the ordinary category?
What sorts of standard homotopy theoretic results hold? Can one represent
(co)homology functors or do Bousfield localization? Is there a nilpotence
theorem or a thick subcategory theorem?

In this paper, we present a theory of stable homotopy categories to answer these
(and many other) questions.

An outline of the paper is as follows. In Section 1.1 we give our axioms for
a stable homotopy category. Essentially, a stable homotopy category is a trian-
gulated category (see Appendix A.1) with a smash product and function objects,
together with a set of (weak) generators that satisfy Spanier-Whitehead duality.
In Section 1.2, we briefly describe some examples, though we postpone all details
to Section 9. Section 1.3 has some brief comments about multigrading, needed for
example in the derived category of a graded ring or of a graded Hopf algebra. We
close the first section with some definitions and easy lemmas that we use throughout
the paper, in Section 1.4.

We begin Section 2 with a discussion, in Section 2.1, of various notions of finite-
ness in a stable homotopy category. These all coincide in the homotopy category
of spectra or in the derived category of a ring, but can be different in general. The
most important is the condition that X be small, which means that the functor
[X,−] preserves coproducts. In Section 2.2, we consider the (weak) colimits and
(weak) limits that exist in a stable homotopy category. In Section 2.3, we combine
the previous two sections to construct arbitrary objects from small objects, and
to construct certain functors from their restrictions to the subcategory of small
objects. Many standard constructions of stable homotopy theory can be found in
this section.

Section 3 is about Bousfield localization. This extremely useful construction de-
serves to be more widely known outside algebraic topology. Section 3.1 contains
the basic definitions and properties of localization and colocalization functors; then
in Section 3.2, we consider when localization functors exist. Section 3.3 is about
various special kinds of localization functors, namely smashing localizations and lo-
calizations at or away from a set of small objects. Section 3.4 contains our notion of
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a morphism of stable homotopy categories, which we call a “geometric morphism.”
Localization functors provide the main example of such, as we show in Section 3.5.
This section also contains the proof that a localization of a stable homotopy cat-
egory is again a stable homotopy category. In Section 3.6, we consider the notion
of Bousfield class; in Section 3.7 we discuss ring objects, field objects, and module
objects in a stable homotopy category, and their relation to Bousfield classes. In
Section 3.8 we discuss some properties of the collection of smashing localizations.

Section 4 is concerned with the representability of homology functors. This
turns out to be a very subtle issue, as the history of Brown representability in
the homotopy category of spectra suggests. In Section 4.1 we define the notion
of a “Brown category,” in which homology functors and maps between them are
representable. We also give some conditions that guarantee that a stable homotopy
category is a Brown category. In Section 4.2, we discuss some consequences of
representability of homology functors. In Section 4.3, we show that a smashing
localization of a Brown category is again a Brown category. In Section 4.4, we
point out that there is a natural topology on the morphisms in a stable homotopy
category.

Section 5 contains a generic approach to nilpotence and thick subcategory the-
orems analogous to those of Devinatz, Hopkins and Smith [DHS88, HS]. Our the-
orems are less powerful and more general. Section 5.1 contains our nilpotence
theorem, and Section 5.2 contains our thick subcategory theorem.

In Section 6, we discuss the special case of a Noetherian stable homotopy cate-
gory. A stable homotopy category is Noetherian if the unit of the smash product
(i.e., the zero-sphere) is small and the only generator, and if the homotopy of the
sphere is a graded Noetherian ring. This case is far simpler than the category of
spectra, and includes the derived category of a Noetherian ring and the derived
category of comodules over a finite Hopf algebra. In Section 6.1, we show how to
split many problems in this context into problems strongly localized at one prime
ideal in the homotopy ring of the unit object. In particular, we get can apply our
nilpotence theorem to detect nilpotence one prime at a time. In Section 6.2, we
apply our thick subcategory theorem. In Section 6.3, we prove an analogue of the
telescope conjecture; in certain cases, we can do even better and classify all the
localizing subcategories.

Section 7 and Section 8 consider the special cases of connective and semisim-
ple stable homotopy categories, respectively. The connective case, in which the
homotopy of the sphere forms a Z-graded ring which is zero in negative gradings,
is similar to the homotopy category of spectra. The semisimple case is analogous
to the category of rational spectra, which is equivalent to the category of graded
rational vector spaces, and is thus well-understood.

In Section 9, we consider some examples in more detail. Section 9.1 contains a
general approach for constructing stable homotopy categories, commonly known as
“cellular approximation.” All of our algebraic examples are constructed from chain
complexes of some kind, so in Section 9.2, we briefly recall basic facts about chain
complexes. Then in Section 9.3, we apply these ideas to show that the derived
category of a commutative ring is a stable homotopy category. In Section 9.4
we consider the homotopy category of G-spectra over a complete G-universe U,
as in [LMS86] and show how to make it into a stable homotopy category. It is
necessary here that U be complete, although we have a related but unsatisfactory
result in the incomplete case. Section 9.5 contains our construction of a stable
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homotopy category built from comodules over a commutative Hopf algebra. In
Section 9.6 we relate this to the commonly studied stable category of modules over
a finite cocommutative Hopf algebra, such as a group ring.

Section 10 contains some ideas that we do not as yet fully understand, and some
suggestions for future work. For example, Section 10.1 discusses a way to grade a
stable homotopy category so that the sphere is the only generator. In the homotopy
category of G-spectra, this leads to the theory of Mackey functors. Section 10.2
contains a list of other probable stable homotopy categories that we do not consider
in this paper.

We close the paper with two appendices. Appendix A.1 contains a brief dis-
cussion of triangulated categories. Triangulated categories are essential for our
work, and the reader who has not thought about them in some time would do
well to glance at this appendix. Appendix A.2 is a discussion of closed symmetric
monoidal categories.

In this paper, we have chosen to work only on the level of homotopy categories.
However, we would certainly be interested in a corresponding theory of stable closed
model categories [Qui67, DS95]. Ideally there should be a theorem saying that
the homotopy category of a closed model category satisfying certain conditions
is a stable homotopy category in our sense. There should also be theorems that
construct a stable model category from an arbitrary model category, by analogy
with the way in which spectra are constructed from spaces. The approach of [Smi]
looks particularly promising here. In this connection, we mention the paper [Sch].

We have not attempted to give minimal hypotheses for our theorems, as this
would make the paper even more technical than it already is. Many of our results
can be proved with much weaker assumptions.

The authors would like to thank many colleagues for their help and support while
this paper was being written. These include Hans-Werner Henn, Mike Hopkins,
Dan Kan, Chun-Nip Lee, Haynes Miller, Charles Rezk, Hal Sadofsky, and Brooke
Shipley. Particular gratitude is due Dan Christensen, who taught us about phantom
maps and read many early drafts, and Gaunce Lewis, who helped us considerably
with equivariant stable homotopy theory and corrected many of our mistakes.

1.1. The axioms. In this section we give our axioms for a stable homotopy cat-
egory. The central idea is that stable homotopy theory is the study of sufficiently
well-behaved triangulated categories.

We shall essentially take as known the concept of a triangulated category, and
also the concept of a closed symmetric monoidal category; for details, see Appen-
dices A.1 and A.2 below. The theory of triangulated categories has real content,
and familiarity with it is a prerequisite for this paper. The theory of closed symmet-
ric monoidal categories is much more formal—while the definition is complicated,
it is an axiomatization of a very familiar and quite simple situation. In a closed
symmetric monoidal category, we will usually write X∧Y for the monoidal product,
S for the unit, and F (X,Y ) for the internal function object. In Appendix A.2, we
also list a number of natural compatibility requirements between a triangulation
and a closed symmetric monoidal structure.

We make three preliminary definitions:

Definition 1.1.1. A localizing subcategory of a triangulated category C is a full
subcategory D such that:
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(a) Whenever X −→ Y −→ Z −→ ΣX is a cofiber sequence with two of X, Y , and
Z objects of D, the third also lies in D.

(b) Any coproduct of objects in D also lies in D.
(c) If Y ∈ D and we have maps X i−→ Y

p−→ X with pi = 1, then X ∈ D.

Definition 1.1.2. Let C be a closed symmetric monoidal additive category, with
monoidal product X ∧ Y , unit S, and internal function objects F (X,Y ). We write
[X,Y ] for the set of morphisms in C from X to Y . An object X ∈ C is strongly
dualizable if the natural map F (X,S)∧ Y −→ F (X,Y ) is an isomorphism for all Y .
An object X is small if the natural map

⊕
i[X,Yi] −→ [X,

∐
i Yi] is an isomorphism,

for all coproducts that exist in C.

Definition 1.1.3 (Homology and cohomology functors). Let C be a triangulated
category, and let Ab denote the category of Abelian groups.

(a) An additive functor H : C −→ Ab is exact if, whenever

X
f−→ Y

g−→ Z
h−→ ΣX

is a cofiber sequence, the sequence

H(X)
H(f)−−−→ H(Y )

H(g)−−−→ H(Z)

is exact; and similarly for contravariant additive functors.
(b) An exact functor H : C −→ Ab is a homology functor if it takes coproducts to

direct sums. An exact contravariant functor H : Cop −→ Ab is a cohomology
functor if it takes coproducts to products.

(c) Given any object Y of C, we denote the functor X 7→ [X,Y ] by Y 0; then
Y 0 is a cohomology functor. Given a cohomology functor H, we say that H
is representable if there is an object Y of C and a natural isomorphism of
functors between H and Y 0.

There is also a notion of representability for homology functors, analogous to
the definition used in ordinary stable homotopy theory but not to the category
theorists’ definition of representability. Because this is much more subtle than
representability of cohomology functors, we defer all definitions and results about
it to Section 4.

We can now state the axioms. The following definition was inspired by the axioms
in [Mar83, Chapter 2] and the presentation of stable homotopy theory which follows
them.

Definition 1.1.4. A stable homotopy category is a category C with the following
extra structure:

(a) A triangulation.
(b) A closed symmetric monoidal structure, compatible with the triangulation

(as in Definition A.2.1).
(c) A set G of strongly dualizable objects of C, such that the only localizing

subcategory of C containing G is C itself.

We also assume that C satisfies the following:

(d) Arbitrary coproducts of objects of C exist.
(e) Every cohomology functor on C is representable.
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We shall say that such a category C is algebraic if the objects of G are small.
If, in addition, the unit object S is small, we say that C is unital algebraic. If,
in addition, we have G = {S}, we say that C is monogenic. An algebraic stable
homotopy category such that all homology functors and natural transformations
between them are representable is called a Brown category (see Section 4 for the
precise definition).

We abuse notation and call the elements of G generators—this is inconsistent
with the usual definition in category theory, but is close to the standard meaning
in stable homotopy theory. We will also write Σ∗G = {ΣnZ | Z ∈ G, n ∈ Z}.

In the rest of this paper, C will denote a stable homotopy category unless other-
wise stated.

Not every algebraic stable homotopy category is a Brown category. In fact,
not even every monogenic stable homotopy category is a Brown category. See
Section 4.1 for details.

Remark 1.1.5.

(a) We were led to this choice of axioms through a long process of generalization.
The most familiar stable homotopy categories are monogenic, and even Brown
categories. But, as is illustrated in Section 1.2, there are many categories
one would like to call stable homotopy categories that are not monogenic or
even algebraic. We can as yet prove little about the non-algebraic examples,
however.

(b) It is somewhat artificial to insist on a choice of a set G rather than talking
about the thick subcategory generated by G; this is rather like insisting that
a manifold come equipped with an atlas rather than an equivalence class
of atlases or a maximal atlas. However, the philosophical issues are fairly
transparent, and a more philosophically correct approach would entail more
verbiage in many places. An enriched triangulated category admits at most
one structure as an algebraic stable homotopy category up to a suitable kind
of equivalence; see Section 3.4. This is because there is a canonical maximal
choice of G, viz. the collection of all small objects (which is essentially a set
by Corollary 2.3.6 and Theorem 2.1.3). However, the K(n)-local category can
be made into a non-algebraic stable homotopy category (with G = {LK(n)S})
or an algebraic one (with G = {LK(n)F}, where F is any finite complex of
type n).

(c) There are a number of interesting examples of categories satisfying only a sub-
set of our axioms. In particular, there are examples where the generators are
not strongly dualizable, but all the other axioms hold. This is the case for the
homotopy category of G-spectra indexed on an incomplete universe [LMS86],
or sheaves of spectra on a space [BL95]. There are also derived categories of
bimodules (where the smash product is not commutative) or of modules over
a noncommutative ring (where there is no smash product at all). It would be
interesting to work how much of the theory works in these cases (particularly
the first). However it turns out that this would increase the complexity of
the paper by an unexpectedly large amount, so we have chosen not to address
this here.

We shall sometimes want to consider a somewhat weaker notion.
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Definition 1.1.6.

(a) An enriched additive category is an additive category with arbitrary products
and coproducts and an additive closed symmetric monoidal structure. We will
sometimes denote the coproduct by ⊕ rather than q, the symmetric monoidal
product by ⊗ rather than ∧, the unit by R and the function objects by Hom.

(a) An enriched triangulated category is a triangulated category with arbitrary
products and coproducts and a compatible closed symmetric monoidal struc-
ture in the sense of Appendix A.2.

1.2. Examples. In practice, stable homotopy categories seem to arise in two dif-
ferent ways, as indicated by the following two theorems. The following result will
be proved as Theorem 2.3.2.

Theorem 1.2.1. Let C be an enriched triangulated category, with a given set G of
small, strongly dualizable objects. Suppose also that whenever [Z,X] = 0 for all
Z ∈ Σ∗G, we have X = 0. Then C is an algebraic stable homotopy category.

The following result is a subset of Theorems 3.5.1 and 3.5.2; see Section 3 for
the definitions.

Theorem 1.2.2. Suppose that C is a stable homotopy category, and that L : C −→ C

is a localization functor. Then the category CL of L-local objects has a natural
structure as a stable homotopy category. If C is algebraic and L is smashing then
CL is algebraic.

We (briefly) present a few examples. These are intended to motivate the defini-
tions above, but they can only do that if the reader is familiar with them; so we do
not give details of these examples now.

Example 1.2.3. We discuss most of these in detail in Section 9, except for the
first one, which we take to be well-known (although we give a few references in
Section 9.4).

(a) The homotopy category S of spectra is a monogenic Brown category: here we
have the usual notions of suspension, cofiber sequences (which are the same as
fiber sequences, at least up to sign), a smash product, and function spectra.
We take G = {S}. It is well-known that S is a graded weak generator of S

(in other words, if [ΣnS,X] = 0 for all n then X = 0) so that Theorem 1.2.1
applies.

(b) Fix a compact Lie group G. The homotopy category SG of G-spectra (based
on a complete G-universe), is a unital algebraic, non-monogenic Brown cat-
egory. Once again we have the usual constructions of suspension, cofiber
sequences, a smash product, and function spectra. The sphere S is again
small. However, it is no longer true that a spectrum X with [ΣnS,X] = 0 for
all n is zero; we have instead to require that [ΣnG/H+, X] = 0 for all n and
all closed subgroups H. We may therefore take

G = {G/H+ | H a closed subgroup of G}.
(c) The (unbounded) derived category D(R) of a commutative ring R is a mono-

genic stable homotopy category. An object here can be thought of in many
different ways, but all are related to chain complexes of R-modules. So we
have a (shift) suspension, cofiber sequences (from the triangulated structure
in the homotopy category of chain complexes), a smash product derived from
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the tensor product of R-modules, and function objects derived from Hom
of R-modules. The unit of the smash product is R, and mapping out of R
just gives ordinary homology. An object with no homology is trivial. If R
is countable, then D(R) is a Brown category, but this fails in general. Am-
non Neeman [Nee95] has shown that if D(R) is a Brown category, then every
flat R-module M has projective dimension at most one, which is false for
R = C[x, y] and M = C(x, y).

(d) Let B be a commutative Hopf algebra over a field k. Let C(B) be the category
whose objects are (unbounded) cochain complexes of injective B-comodules,
with morphisms given by cochain homotopy classes of maps. Then C(B) is
a unital algebraic stable homotopy category. We have a (shift) suspension,
cofiber sequences and a smash product derived from the tensor product (over
k) of B-comodules. A slightly less well-known construction gives function
objects. The unit S of the smash product is an injective resolution of k, and S
is small. As in the G-equivariant stable homotopy category, S is not a graded
weak generator; we have to take G to be the set of injective resolutions of
simple comodules. Note that if I and J are injective resolutions of comodules
M and N , respectively, then [I, J ]∗ ' Ext∗B(M,N). The category C(B) is
monogenic if k is the only simple comodule (say, if B = (kG)∗ for G a p-
group, k a field of characteristic p). Note that if B is graded connected, then
C(B) will not be monogenic, because the set of simple comodules is the set of
all of the internal suspensions of k. It will be monogenic in the multigraded
sense defined in Section 1.3. In general, C(B) will probably not be a Brown
category.

(e) Let B be a finite-dimensional commutative Hopf algebra over a field k. A
B-comodule is just the same thing as a module over the cocommutative Hopf
algebra B∗. We can construct the stable comodule category StComod(B)
from the category of B-comodules by killing maps that factor through in-
jective comodules. This can also be described as StMod(B∗), of course, in
which we kill off maps that factor through projectives. It is a unital algebraic
stable homotopy category, and if k is countable then it is a Brown category.
The suspension functor takes M to the cokernel of any inclusion of M into
an injective comodule. Because B is finite, it turns out that this functor is
an equivalence. The cofiber sequences are derived from exact sequences, the
smash product from the tensor product (over k), and the function objects
from Hom. The unit of the smash product is k, and k is small. In the case
B = (kG)∗, the homotopy groups π∗M = [k,M ]∗ are the Tate cohomology
groups of M . Just as in part (d), there are nontrivial objects with no ho-
motopy. We take the set G in StComod(B) to be the set of non-projective
simple comodules. Note that [M,N ]s = ExtsB(M,N) if s > 0. The category
StComod(B) is monogenic if k is the only simple comodule.

(f) Let E be a commutative S-algebra in the sense of [EKMM95] (this is morally
the same as an E∞ ring spectrum in older foundational settings). It follows
easily from the results of [EKMM95] that the derived category of E-modules
is a monogenic stable homotopy category. The smash products and function
objects are analogous to the tensor product and Hom over a ring. The unit is
E itself, and the resulting homotopy groups π∗X = [E,X]∗ of X agree with
the homotopy groups of the underlying spectrum. In particular, E is small,
and an object with no homotopy is trivial. However, this category will not
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be a Brown category in general. Similar things can be done equivariantly, in
which case the resulting category will be unital algebraic but not monogenic.

(g) In the homotopy category of spectra S, one often considers Bousfield local-
ization functors L : S −→ S (Definition 3.1.1). Let SL denote the category of
local spectra, i.e., spectra X that are equivalent to LY for some Y . As stated
above in Theorem 1.2.2, SL is a stable homotopy category. Consider in par-
ticular the localization functor L = LK(n) with respect to Morava K-theory.
In this case, SL is algebraic, and in fact a Brown category, but not unital. If
F is a finite spectrum of type n then LF is small and we can take G = {LF},
but LS is not small. This is our primary example of an algebraic, non-unital
stable homotopy category, and it is studied more closely in [HSS]. However,
there are many analogous examples. One could take the localization of D(Z)
with respect to Fp, for example.

1.3. Multigrading. In some parts of this paper, we will allow our categories to
be multigraded. In other words, we shall assume that (for some d ≥ 1) we have a
family of “spheres” Sk for each k ∈ Zd, with coherent isomorphisms Sk∧Sl ' Sk+l
and S(j,0,...,0) = ΣjS. We shall also assume the usual sign rule, that the composite

Sk+l ' Sk ∧ Sl twist−−−→ Sl ∧ Sk ' Sk+l

is just multiplication by (−1)m, where m =
∑
i kili. Given k ∈ Zd, we shall write

ΣkX = Sk ∧X. In this context, if we say that f : X −→ Y is a graded morphism,
we mean that f : ΣkX −→ Y for some k ∈ Zd.

If C is a Zd-graded unital algebraic stable homotopy category with G = {Sk | k ∈
Zd}, then we say that C is monogenic in the multigraded sense.

1.4. Some basic definitions and results. In this section, we give some basic
definitions we will use throughout the paper. We also draw some basic consequences
of our axioms. These include the fact that the generators detect isomorphisms
(Lemma 1.4.5) and the existence of arbitrary products (Lemma 1.4.7).

For most of this section, C will be a stable homotopy category, though many of
the definitions and results will hold in greater generality.

For the definition of homology and cohomology functors, see Definition 1.1.3.
We have defined homology and cohomology functors to be ungraded, but of course
we will sometimes need to consider gradings.

Definition 1.4.1 (Grading).

(a) If H is a homology functor on C, we make H into a graded functor by defin-
ing HnX = H(Σ−nX). If H is a cohomology functor, we define HnX =
H(Σ−nX). If H and K are both homology functors and τ : H −→ K is a nat-
ural transformation, then τ induces a natural transformation τ∗ : H∗ −→ K∗
compatible with the suspension. We have a similar remark for cohomology
functors.

(b) Similarly, we define the graded Abelian group [X,Y ]∗ by [X,Y ]n = [ΣnX,Y ].
(c) We write Sk = ΣkS and πk(X) = [Sk, X]. We refer to πk(X) as the kth

homotopy group of X. This is not a homology functor unless S is small.

Definition 1.4.2. A category D is essentially small if it has only a set of isomor-
phism classes. Note that this has nothing to do with the objects of D being small
in the sense of Definition 1.1.2.
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Definition 1.4.3 (Types of subcategories of C). Let C be a stable homotopy cat-
egory.

(a) A subcategory D of C is called thick if D is closed under cofibrations and
retracts. That is, if there is an exact triangle X −→ Y −→ Z −→ ΣX with
two of X, Y , Z in D, then so is the third; and if we have Y ∈ D and maps
X

i−→ Y
p−→ X with pi = 1 then X ∈ D. Thus, if X q Z ∈ D then X,Z ∈ D.

(b) A subcategory D is a localizing subcategory if it is thick and closed under
arbitrary coproducts. That is, if we have a set of objects {Xi} of D, then∐
Xi is in D.

(c) Dually, a subcategory D is a colocalizing subcategory if it is thick and closed
under arbitrary products (C has arbitrary products, by Lemma 1.4.7).

(d) A thick subcategory D is an ideal if Y ∧X ∈ D for all Y ∈ C whenever X ∈ D.
We call D a localizing ideal if it is both a localizing subcategory and an ideal.

(e) A thick subcategory D is a coideal if F (Y,X) ∈ D for all Y ∈ C whenever
X ∈ D. We call D a colocalizing coideal if it is both a colocalizing subcategory
and a coideal.

(f) A thick subcategory D is a G-ideal if Y ∧X ∈ D whenever X ∈ D and Y ∈ G.
(g) A thick subcategory D is a G-coideal if F (Y,X) ∈ D whenever X ∈ D and

Y ∈ G.

The reason for the names “localizing” and “colocalizing” will become clear in
Section 3.

We point out that there is a real difference between localizing subcategories and
localizing ideals. If G is a compact Lie group and C is the category of G-spectra,
then D = {X ∈ C | XG = 0} is a localizing subcategory but not a localizing
ideal (because G+ ∈ D but F (G+, G+) = F (G+, S) ∧ G+ 6∈ D). However in the
monogenic case, every localizing subcategory is a localizing ideal.

For any collection S of objects of a triangulated category C, the intersection D

of all thick subcategories containing S is itself a thick subcategory, and it is clearly
the smallest thick subcategory that contains S. We refer to D as the thick subcat-
egory generated by S. Similar comments apply to the other types of subcategories
considered above. We write

loc〈S〉 = localizing subcategory generated by S

coloc〈S〉 = colocalizing subcategory generated by S

locid〈S〉 = localizing ideal generated by S

colocid〈S〉 = colocalizing coideal generated by S

thick〈S〉 = thick subcategory generated by S

The last of these is characterized more constructively in the proof of Proposi-
tion 2.3.5. Similar characterizations could be given using transfinite recursion in
the other cases, but this does not seem very useful.

Remark 1.4.4. For any objects X and Y in a stable homotopy category C, it is
clear that {Z | Z ∧Y ∈ loc〈X ∧Y 〉} is a localizing subcategory containing X, and
thus that loc〈X〉 ∧ Y ⊆ loc〈X ∧ Y 〉.

Lemma 1.4.5. Let C be a stable homotopy category.
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(a) Suppose that τ : H(W ) −→ K(W ) is a morphism of homology or cohomol-
ogy functors, which is an isomorphism whenever W ∈ Σ∗G. Then τ is an
isomorphism for all W ∈ C.

(b) Suppose that X ∈ C is such that [W,X] = 0 for all W ∈ Σ∗G. Then X = 0.
(c) Suppose that f : Y −→ Z is a map that induces an isomorphism [W,Y ] −→

[W,Z] for every W ∈ Σ∗G. Then f is an isomorphism.

Proof. (a): Write

D = {W | τ∗ : H∗W −→ K∗W is an isomorphism }.
This is a localizing subcategory, and contains G, so it is all of C.

(b): By a similar argument, [W,X] = 0 for all W ∈ C. In particular, [X,X] = 0,
so X = 0.

(c): Apply (b) to the fiber of f .

Lemma 1.4.6. Let C be a stable homotopy category. Then any localizing G-ideal in
C is an ideal, and any colocalizing G-coideal is a coideal. If G = {S} (in particular,
if C is monogenic) then every (co)localizing subcategory is a (co)ideal.

Proof. Suppose that D is a localizing G-ideal. Write

E = {W | W ∧X ∈ D for all X ∈ D}.
Then E is a localizing subcategory containing G, so it is the whole of C. Similarly,
if D is a colocalizing G-coideal, then let

E = {W | F (W,X) ∈ D for all X ∈ D}.
Then E is a localizing subcategory containing G, so is all of C. The last sentence
follows trivially.

We shall say that a triangulated category is complete if it has arbitrary products,
and cocomplete if it has arbitrary coproducts. Thus, a stable homotopy category is
by definition cocomplete. Note that this is inconsistent with the usual definition in
category theory: (co)completeness usually means that all (co)limits exist. Only in
rather uninteresting cases do triangulated categories have equalizers or coequalizers.
We will see in Propositions 2.2.4 and 2.2.11 that they do have “weak” limits and
colimits.

Lemma 1.4.7. Every stable homotopy category is complete.

Proof. Given a family {Yi} of objects, we need to construct their product. To do
so, we represent the cohomology functor that takes X to

∏
[X,Yi].

Another useful fact is that idempotents in a stable homotopy category always
split.

Lemma 1.4.8. Let X be an object in a stable homotopy category C. Suppose that
e ∈ [X,X] is idempotent (that is, e2 = e). Then there is an isomorphism f : X −→
Y q Z for some Y,Z ∈ C, such that the following diagram commutes.

Y q Z Y Y q Z

X X

- -

-

? ?

f ' ' f

e
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(The maps on the bottom row are the obvious ones.)

Proof. Observe that X0U = [U,X] is a cohomology functor, which splits as a direct
sum of two cohomology functors

[U,X] ' e[U,X]⊕ (1− e)[U,X].

By the definition of a stable homotopy category, the two cohomology functors on
the right are representable, say e[U,X] ' [U, Y ] and (1 − e)[U,X] ' [U,Z]. We
immediately get a diagram as above with X, Y and Z replaced by the functors X0,
Y 0 and Z0, to which we can apply the Yoneda lemma.

This has the following entertaining corollary:

Lemma 1.4.9 (The Eilenberg swindle). Let C be a stable homotopy category, and
D a subcategory closed under coproducts and cofibrations. Then D is also closed
under retracts, and thus is a localizing subcategory.

Proof. Suppose that W ∈ D and we have maps X i−→ W
p−→ X with pi = 1.

Then ip : W −→W is an idempotent, and the lemma shows that there is a splitting
W = X q Y for some Y . Write

Z = X q (Y qX)q (Y qX)q · · · = (X q Y )q (X q Y )q . . . .

From the second description, we see that Z ∈ D. There is an evident isomorphism
Z ' X q Z, so X q Z ∈ D. The cofiber of the inclusion map Z −→ X q Z is just
X, so X ∈ D.

Because triangulated categories are additive, finite coproducts and finite prod-
ucts coincide. In an algebraic stable homotopy category, many infinite coproducts
and products coincide as well:

Proposition 1.4.10. In an algebraic stable homotopy category C, the natural map∐
Yi −→

∏
Yi is an equivalence if and only if, for all Z ∈ Σ∗G, we have [Z, Yi] = 0

for all but finitely many i.

Proof. Since the generators are small, the map

[Z,
∐

Yi] =
⊕

[Z, Yi] −→
∏

[Z, Yi] = [Z,
∏

Yi]

will be an equivalence if and only if the condition of the proposition is satisfied.
Lemma 1.4.5 completes the proof.

Remark 1.4.11. It is possible to use representability of cohomology functors and
the smash product to construct function objects; indeed, one just represents the
cohomology functor Z 7→ [Z ∧ X,Y ] to get the function object F (X,Y ). This
will make any symmetric monoidal triangulated category such that cohomology
functors are representable into a closed symmetric monoidal category, but this
structure may not be compatible with the triangulation (though we do not have a
counterexample). The difficulty comes in proving that F (X,Y ) is an exact functor
of X.
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2. Smallness, limits and constructibility

In this section, we address three related questions. Firstly, we examine various
different notions of smallness or finiteness for an object X in a stable homotopy
category. Secondly, we consider different kinds of limits and colimits that might
exist in such a category. Finally, we study various possible senses in which an object
X can be constructed from a family A of small objects.

2.1. Notions of finiteness. We collect here various definitions that restrict the
size of an object Z in a stable homotopy category. Some of these have been given
before, but we repeat them for ease of reference.

Definition 2.1.1 (Notions of finiteness). Consider an object Z of C. We say that
Z is:

(a) small if for any collection of objects {Xi}, the natural map
⊕

[Z,Xi] −→
[Z,

∐
Xi] is an isomorphism.

(b) F -small if for any collection of objects {Xi}, the natural map
∐
F (Z,Xi) −→

F (Z,
∐
Xi) is an isomorphism.

(c) S-finite (for any family S of objects of C) if Z lies in the thick subcategory
thick〈S〉 generated by S.

(d) strongly dualizable if for any X, the natural map DZ ∧X −→ F (Z,X) is an
equivalence.

Remark 2.1.2. The most important case of part (c) is the case S = G, but other
cases do arise. In the K(n)-local category, for instance, it is most natural to take
G = {Z}, where Z = LK(n)Z

′ for some finite type n spectrum Z ′, while it is more
natural to take “finite” to mean {S}-finite rather than {Z}-finite.

In any case, in this paper we often use F (or FC) to denote the full subcategory
of small objects of C; by Theorem 2.1.3 below, if C is algebraic, then F = thick〈G〉.
Theorem 2.1.3. Let C be a stable homotopy category.

(a) Suppose that X is small (respectively F -small, or strongly dualizable) and Y
is strongly dualizable. Then X ∧ Y is also small (or F -small, or strongly
dualizable). Thus, the categories of small, F -small, and strongly dualizable
objects are all G-ideals.

We also have the following implications.
(b) G-finite ⇒ strongly dualizable ⇔ F -small.
(c) If C is algebraic, then small ⇔ G-finite ⇒ strongly dualizable ⇔ F -small.
(d) If C is unital algebraic, then small ⇔ G-finite ⇔ strongly dualizable ⇔ F -

small.
(e) If C is algebraic, any G-ideal of small objects is closed under the Spanier-

Whitehead duality functor D.

Proof. (a): Suppose that X is small and Y is strongly dualizable. We then have

[X ∧ Y,
∐

Zi] = [X,DY ∧
∐

Zi]

= [X,
∐

DY ∧ Zi]
=

⊕
[X,DY ∧ Zi]

=
⊕

[X ∧ Y,Zi].
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Thus X ∧Y is small. The proof when X is F -small is similar. Now suppose instead
that X is strongly dualizable. We find that

F (X ∧ Y,Z) = F (X,F (Y, Z))
= DX ∧DY ∧ Z
= F (X,DY ) ∧ Z
= D(X ∧ Y ) ∧ Z.

Thus, X ∧ Y is strongly dualizable. It is easy to see that the categories of small,
F -small and strongly dualizable objects are all thick; as they are closed under
smashing with a strongly dualizable object, they are in fact G-ideals.

(b): The category of strongly dualizable objects is thick and contains G, so it
contains all G-finite objects. If X is strongly dualizable then

F (X,
∐

Yi) = DX ∧
∐

Yi =
∐

DX ∧ Yi =
∐

F (X,Yi).

Thus X is F -small.
Conversely, suppose that X is F -small, and let D be the category of those Y for

which the natural map DX ∧ Y −→ F (X,Y ) is an isomorphism. Using part (e) of
Theorem A.2.5, we see that every strongly dualizable object lies in D, in particular
G ⊂ D. Moreover, it is easy to see that D is localizing, so D = C. Thus X is
strongly dualizable.

(c): First note that G consists of small objects because C is algebraic, so every
G-finite object is small. The converse will be proved as Corollary 2.3.12 below.
Thus small ⇔ G-finite. The other claims in (c) are covered by (b).

(d): Suppose that X ∈ C is F -small; it is enough to show that X is small.
This follows immediately by applying the homology functor [S,−] to the equality
F (X,

∐
Yi) =

∐
F (X,Yi).

(e): Now suppose that C is algebraic, D is a G-ideal of small objects, and X ∈ D.
ThenX is strongly dualizable, so by Lemma A.2.6, DX is a retract ofDX∧X∧DX.
In particular, using part (a), we find that DX is small. This means DX is G-finite,
by part (c). Since D is a G-ideal, we conclude that DX ∧ X ∧ DX ∈ D, so
DX ∈ D.

Note that this theorem gives evidence that the choice of generators in an algebraic
stable homotopy category is not very relevant, although we shall not attempt to
make this precise here.

One might ask whether every G-finite object lies in the triangulated category
generated by G, or whether one really needs to use retractions as well as cofibers.
Retractions are necessary when C is the derived category of the ring Q × Q (a
connective, semisimple, monogenic Brown category). However, suppose that C is
a connective stable homotopy category, and write R = π0S. If R is Noetherian
and has finite global dimension, and finitely generated projective R-modules are
free, then every G-finite object lies in the triangulated category generated by G (see
Section 7).

2.2. Weak colimits and limits. In this section, we discuss colimits and limits in
a stable homotopy category. Almost never will actual colimits and limits exist, but
weak versions always exist.

Definition 2.2.1. Let C be a triangulated category. Fix a small category I; we
will write i for a typical object. Given an object X of C, let cX denote the functor
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I −→ C which is constant at X. Given a map g : X −→ Y in C, let cg : cX −→ cY
denote the obvious natural transformation.

Given any functor i 7→ Xi from I to C, we say that a pair (X, τ) is a weak colimit
of (Xi) if

1. X is an object of C.
2. τ is a natural transformation from (Xi) to cX .
3. Given any natural transformation ρ : (Xi) −→ cY , there is a map g : X −→ Y

so that ρ = cgτ . Equivalently, the natural map

[X,Y ] −→ lim←− i[Xi, Y ]

is surjective for all Y .

Note that the map g need not be unique. The pair (X, τ) will be called a minimal
weak colimit if the map lim−→ iHXi −→ HX induced by τ is an isomorphism for
all homology functors H : C −→ Ab. (This definition is mainly useful when C is
algebraic.)

Our definition of minimal weak colimit is not the obvious generalization of the
one given in [Mar83, Chapter 3]. However, our definition is often equivalent to that
of Margolis. Indeed, we have the following proposition, whose proof we will defer
to Proposition 4.2.1.

Proposition 2.2.2. Let C be a Brown category. Suppose that I is a small category,
i 7→ Xi is a functor from I to C, and (τi : Xi −→ X) is a weak colimit. Then X is
the minimal weak colimit if and only if the induced map

lim−→[Z,Xi]∗ −→ [Z,X]∗

is an isomorphism for all Z ∈ G.

The definition could be modified in various ways when C is not a Brown category.
At present we know few examples in that context; our present definition handles
them better than any of the variants, but that could easily change if more examples
come to light.

The question of existence of a minimal weak colimit for a given diagram is subtle
(except when the diagram is a sequence). Even if the diagram can be rigidified in
some underlying closed model category, there is no reason in general that the homo-
topy colimit should be a weak colimit in the homotopy category. See Theorem 4.2.3
for a result in this direction.

We also make the following more constructive definition.

Definition 2.2.3. Given a sequence

X0
f0−→ X1

f1−→ X2
f2−→ . . .

in a stable homotopy category C, define the sequential colimit to be the cofiber of
the map

F :
∐

Xi −→
∐

Xi

that takes the summand Xi to Xi q Xi+1 by 1Xi − fi. This is often called the
telescope of the Xi, but we prefer a more consistent terminology for the various
different kinds of colimits.
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In particular, given a self-map f : ΣdX −→ X of an object X, we write f−1X for
the sequential colimit of the sequence

X
f−→ Σ−dX

f−→ Σ−2dX . . . .

We have the following proposition.

Proposition 2.2.4. Let I be a small category and C a stable homotopy category.
(a) Every functor i 7→ Xi from I to C has a weak colimit.
(b) Suppose that (τi : Xi −→ X) and (σi : Yi −→ Y ) are weak colimits, and that

(ui : Xi −→ Yi) is a natural transformation. Then there is a compatible map
u : X −→ Y (typically not unique) such that the following diagram commutes:

Xi
τi−−−−→ X

ui

y
yu

Yi
σi−−−−→ Y

(c) Suppose that C is algebraic and that (Xi −→ X) is a minimal weak colimit.
Then any compatible map (as in (b)) from X to any other weak colimit X ′ is
a split monomorphism, so X is a retract of X ′. If X ′ is also minimal, then
X is non-canonically isomorphic to X ′.

(d) The sequential colimit of a sequence is a minimal weak colimit. In fact, for
any Y there is a Milnor exact sequence

0 −→ lim←−
1
i [ΣXi, Y ] −→ [X,Y ] −→ lim←− i[Xi, Y ] −→ 0.

(e) If Y ∈ C and (τi : Xi −→ X) is a (minimal) weak colimit then (τi∧1: Xi∧Y −→
X ∧ Y ) is a (minimal) weak colimit.

(f) Suppose that C is algebraic and D ⊆ C is a localizing subcategory. If (Xi −→ X)
is a minimal weak colimit in C with each Xi ∈ D, then X ∈ D.

Proof. The proof of most of this is the same as for the analogous propositions
in [Mar83, Chapter 3]. That is, to construct a weak colimit of (Xi), we consider
the cofiber of the map

∐

α∈mor I

Xdom(α)
F−→

∐

i∈ob I

Xi

where Xdom(α) maps to Xdom(α) by the identity and to Xcodom(α) by −α. It is easy
to verify that this is a weak colimit (proving (a)), but it is almost never minimal.
Part (b) follows easily.

Suppose we have a compatible map u : X −→ X ′ as in part (c). By (b), we also
have a compatible map v : X ′ −→ X. Thus vu : X −→ X is compatible with the
identity map of (Xi). It follows that for any Z ∈ Σ∗G, the map vu induces the
identity on [Z,X] = lim−→[Z,Xi]. By Lemma 1.4.5 we see that vu is an isomorphism,
so u is a split monomorphism. If X ′ is also minimal then uv is an isomorphism by
the same argument, so u and v are isomorphisms. This proves (c).

Next, consider a sequence (Xi : i ∈ N) as in (d), and write X for the sequential
colimit. By applying [−, Y ] to the cofibration which defines X, we obtain a long
exact sequence

[
∐

i

Xi, Y ] F∗←−− [
∐

i

Xi, Y ]←− [X,Y ]←− [
∐

i

ΣXi, Y ] F∗←−− [
∐

i

ΣXi, Y ].
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From this we extract a short exact sequence A∗+1 −→ [X,Y ]∗ −→ B∗, where A∗
and B∗ are the cokernel and kernel of the map

∏
i[Xi, Y ]∗ −→

∏
i[Xi, Y ]∗. These

are by definition just lim1
i [Xi, Y ]∗ and limi[Xi, Y ]∗, so we get a Milnor exact se-

quence as stated in (d). For the right hand map to be surjective means precisely
that X is a weak colimit of the Xi. Now suppose that H is a homology func-
tor, so that H(

∐
Xi) =

⊕
iHXi. One can check directly that the induced map

F∗ : H(
∐
Xi) −→ H(

∐
Xi) is injective, with cokernel lim−→ iH(Xi). It follows easily

that X is the minimal weak colimit. This proves (d).
Suppose that (τi : Xi −→ X) is a weak colimit. We claim that (τi ∧ 1: Xi ∧ Y −→

X ∧ Y ) is also a weak colimit. To see this, suppose we have compatible maps
Xi ∧ Y −→ Z. By adjunction we get maps Xi −→ F (Y,Z); as X is a weak colimit
of the Xi, we get a map X −→ F (Y,Z); by adjunction we get a map X ∧ Y −→ Z.
It is easy to check that this has the required property. Suppose moreover that X
is the minimal weak colimit, and that H is a homology functor. Then H(−∧ Y ) is
also a homology functor, so H(X ∧ Y ) = lim−→ iH(Xi ∧ Y ). It follows that X ∧ Y is
the minimal weak colimit of the objects Xi ∧ Y . This proves (e).

By the proof of (a), if each object in a diagram is in a localizing subcategory,
then that diagram has a weak colimit that is also in the localizing subcategory. A
minimal weak colimit is a retract of any other weak colimit, so it will also be in the
localizing subcategory. This proves (f).

Remark 2.2.5. As observed by Boardman (see [Bou83]), the result of part (f) is
true for homotopy colimits. Suppose that C is a stable homotopy category that
arises from a suitable closed simplicial model category. Let {Xi} be a diagram
in this underlying category, such that each object Xi lies in a given localizing
subcategory D ⊆ C. The claim is that the homotopy colimit (X, say) also lies in
D. Indeed, one can show that X is homotopy equivalent to the sequential colimit
of a sequence X(0) −→ X(1) −→ . . . of cofibrations, such that X(k)/X(k − 1) is a
coproduct of suspensions of Xi’s.

We pause to prove two useful facts about sequential colimits.

Lemma 2.2.6. If f : ΣdX −→ X is an isomorphism, then there is a natural iso-
morphism X −→ f−1X.

Proof. We will omit the suspensions from this proof. Write Y =
∐∞
i=0X, and let

Xi be the ith copy of X inside Y . Recall that f−1X is the cofiber of the map
F : Y −→ Y that takes the summand Xi to Xi qXi+1 by (1,−f). Let J : X −→ Y
be the inclusion of X0, and let Q : Y −→ X be the map that is f−k : X −→ X on
Xk. Finally, let G : Y −→ Y be the map that sends Xk to X0 q . . . q Xk−1 by
(−f−k, . . . ,−f−1). One can then check that QJ = 1, QF = 0, GJ = 0, GF = 1
and FG+ JQ = 1. Thus F is a split monomorphism, and J identifies X with the
cokernel (or cofiber) of F .

Let N denote the natural numbers, N = {0, 1, 2, . . . }.
Lemma 2.2.7. Let {Xk}k∈N be a directed system of objects of a stable homotopy
category C. Suppose that u : N −→ N is a weakly increasing map, such that u(k) −→
∞ as k −→∞. Then we have an isomorphism of sequential colimits

lim−→ kXu(k)

∼=−→ lim−→ kXk
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Proof. We define two maps

G,H :
∐

k

Xu(k) −→
∐

k

Xk

as follows. The map G just sends the kth summand Xu(k) in the source to the
u(k)th summand in the target by the identity. The map H sends Xu(k) to Xu(k) q
. . . q Xu(k+1)−1; the component Xu(k) −→ Xm is just the map provided by the
direct system. We also write F for the usual map, whose cofiber is by definition the
sequential colimit. It is straightforward to check that we get a commutative square
as on the left of the following diagram, and thus a map

f : lim−→ kXu(k) −→ lim−→ kXk

as indicated.
∐
kXu(k)

F−−−−→ ∐
kXu(k) −−−−→ lim−→ kXu(k) −−−−→ Σ

∐
kXu(k)

H

y
yG

yf
yΣH

∐
kXk

F−−−−→ ∐
kXk −−−−→ lim−→ kXk −−−−→ Σ

∐
kXk

Consider the resulting Milnor exact sequences for [lim−→ kXk, Y ] and [lim−→ kXu(k), Y ].
It is well-known that the relevant lim←− and lim←− 1 terms are isomorphic, so that

[lim−→ kXk, Y ] = [lim−→ kXu(k), Y ].

As this holds for all Y , Yoneda’s lemma tells us that f is an isomorphism.

Remark 2.2.8. One might ask whether the sequential colimit of cofiber sequences
is a cofiber sequence. Provided that there is a suitable underlying closed model
category, it turns out that this is true, in the following weak sense. Suppose that
we have cofiber sequences Xk

uk−→ Yk
vk−→ Zk

wk−−→ ΣXk and commutative diagrams

Xk
uk−−−−→ Yk

fk

y
ygk

Xk+1
uk+1−−−−→ Yk+1

Then it is possible to choose maps hk : Zk −→ Zk+1, and compatible maps

X∞
u∞−−→ Y∞

v∞−−→ Z∞
w∞−−→ ΣX∞

of the sequential colimits, such that (fk, gk, hk) is a morphism of triangles, and
(u∞, v∞, w∞) is a cofiber sequence.

Indeed, we can make a telescope construction to replace the sequence {Xk} by
a weakly equivalent sequence of cofibrations (with Xk cofibrant). We can then
inductively modify the Y ’s, u’s and g’s to get a weakly equivalent diagram in which
the g’s and u’s are cofibrations and the X−Y squares commute on the nose. Having
done this, the claim is fairly clear.

We do not know whether this is true in an arbitrary stable homotopy category.

We also have the notion of a weak limit, dual to that of a weak colimit.

Definition 2.2.9. Let I be a small category. Given any functor i 7→ Xi from I to
C, we say that a pair (X, τ) is a weak limit of (Xi) if

1. X is an object of C.
2. τ is a natural transformation from cX to (Xi).
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3. Given any natural transformation ρ : cY −→ (Xi), there is a map g : Y −→ X
so that ρ = τcg. Equivalently, the natural map

[Y,X] −→ lim←− i[Y,Xi]

is surjective for all Y .
Note that the map g need not be unique.

We also have the simpler definition of a sequential limit. Recall that stable
homotopy categories always have arbitrary products, by Lemma 1.4.7.

Definition 2.2.10. Let C be a stable homotopy category Given a sequence of ob-
jects of C,

X0
f0←−− X1

f1←−− X2
f2←−− . . .

define the sequential limit to be the fiber of the map

F :
∏

Xi ←−
∏

Xi

such that πi ◦ F = πi − fi ◦ πi+1.

We do not know a good notion of a minimal weak limit in any of our settings.
However, we do have the following two propositions, whose proofs are analogous to
that of Proposition 2.2.4. We leave the proofs to the interested reader.

Proposition 2.2.11. Let I be a small category, and C a stable homotopy category.
(a) Every functor i 7→ Xi from I to C has a weak limit.
(b) Suppose that (τi : X −→ Xi) and (σi : Y −→ Yi) are weak limits, and that

(ui : Xi −→ Yi) is a natural transformation. Then there is a compatible map
u : X −→ Y (typically not unique).

(c) The sequential limit of a sequence is a weak limit. In fact, for any Y there is
a Milnor exact sequence

0 −→ lim←−
1[Y,Σ−1Xi] −→ [Y,X] −→ lim←−[Y,Xi] −→ 0.

(d) If Y ∈ C and (τi : X −→ Xi) is a weak (resp., sequential) limit then the
diagram

(F (Y, τi) : F (Y,X) −→ F (Y,Xi))

is a weak (resp., sequential) limit.

Proposition 2.2.12. Suppose that (τi : Xi −→ X) is a weak (resp., sequential)
colimit in a stable homotopy category C, and Y is an object of C; then the diagram

(F (τi, Y ) : F (X,Y ) −→ F (Xi, Y ))

is a weak (resp., sequential) limit.

Sequential limits are exact in a limited sense, analogous to Remark 2.2.8.

2.3. Cellular towers and constructibility. In this section, we consider the prob-
lem of constructing an object from a given family of objects A. We first consider
the case A = Σ∗G.

Proposition 2.3.1. Suppose that C is an algebraic stable homotopy category. Then
every object X can be written as the sequential colimit of a sequence 0 = X0 −→
X1 −→ . . . , in which the cofiber of each map Xk −→ Xk+1 is a coproduct of objects
of Σ∗G.
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Proof. Suppose that X ∈ C. Let X0 = X, and let S0 be the coproduct∐

Z∈Σ∗G

∐

f∈[Z,X0]

Z.

There is an obvious map S0 −→ X0 which induces a surjection [Z, S0] −→ [Z,X0] for
all Z ∈ Σ∗G. Let X1 be the cofiber of this map. By iterating this construction, we
get cofibrations Sk −→ Xk −→ Xk+1 in which Sk is a coproduct of copies of objects
in Σ∗G, and the map [Z,Xk] −→ [Z,Xk+1] is zero for every Z ∈ Σ∗G.

Now let Xk denote the fiber of the map X −→ Xk. Using the octahedral axiom,
we get a diagram as follows:





Á




Á





À

J
J

J
Ĵ

J
J

J
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J
J

J
J]

¾¾

-

J
J
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J
J

J
J

J
J

J
JJ


À

c

c

cXk Xk Sk

X Xk+1

Xk+1

In particular, we get a sequence of maps 0 = X0 −→ X1 −→ . . . −→ X, in which
the cofiber of Xk−1 −→ Xk is Sk. Let CX be the sequential colimit. By the weak
colimit property, we get a map CX −→ X compatible with the given maps Xk −→ X.

Suppose that Z ∈ Σ∗G. By construction, the map [Z,X] −→ [Z,Xk] is zero for
k > 0, so the map [Z,Xk] −→ [Z,X] is surjective. Moreover, the map [ΣZ, Sk] −→
[ΣZ,Xk] is surjective; after a diagram chase, we conclude that the kernel of the
map [Z,Xk] −→ [Z,X] goes to zero in [Z,Xk+1]. It follows easily that [Z,CX] =
lim−→ k[Z,Xk] = [Z,X], and thus (by lemma 1.4.5) that the map CX −→ X is an
isomorphism.

This construction is called the cellular tower for X.
We now restate and prove Theorem 1.2.1.

Theorem 2.3.2. Let C be an enriched triangulated category. Suppose that G is a
set of small strongly dualizable objects of C. Suppose also that whenever [Z,X] = 0
for all Z ∈ Σ∗G, we have X = 0. Then C is an algebraic stable homotopy category.

Proof. We need to show both that the only localizing subcategory of C that contains
G is C itself, and that every cohomology functor is representable. Suppose that
X ∈ C. As in the proof of Proposition 2.3.1, we construct a sequence of objects
0 = X0 −→ X1 −→ X2 −→ . . . . We define CX to be the sequential colimit, and
obtain a map CX −→ X, with cofiber LX, say. Just as above, we find that this
induces an isomorphism [Z,CX] −→ [Z,X] for all Z ∈ Σ∗G, so that [Z,LX]∗ = 0 for
all such Z. Thus LX = 0 and X ' CX. By construction, CX lies in the localizing
subcategory loc〈G〉 generated by G.

Now let H be a cohomology functor on C. We need to show that H is rep-
resentable. This is much the same as [Mar83, Theorem 4.11]. We shall define
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recursively a sequence of objects

X(0) i0−→ X(1) i1−→ X(2) i2−→ . . .

and elements u(k) ∈ H(X(k)) such that i∗ku(k + 1) = u(k). We start with

X(0) =
∐

Z∈Σ∗G

∐

v∈H(Z)

Z.

We take u(0) to be the element of

H(X(0)) =
∏

Z∈Σ∗G

∏

v∈H(Z)

H(Z)

whose (Z, v)th component is v. We then set

T (k) = {(Z, f) | Z ∈ Σ∗G, f : Z −→ X(k), f∗u(k) = 0}.
We define X(k + 1) by the cofiber sequence

∐

(Z,f)∈T (k)

Z −→ X(k) ik−→ X(k + 1).

By applying H to this, we obtain a three-term exact sequence (with arrows re-
versed). It is clear by construction that u(k) maps to zero in the left hand term,
so that there exists u(k + 1) ∈ H(X(k + 1)) with i∗ku(k + 1) = u(k) as required.

We now let X be the sequential colimit of the objects X(k). The cofibration
defining this sequential colimit gives rise to a short exact sequence

0 −→ lim←−
1
kH(ΣX(k)) −→ H(X) −→ lim←− kH(X(k)) −→ 0.

Using this, we find an element u ∈ H(X) that maps to u(k) in each H(X(k)). As
in Yoneda’s lemma, this induces a natural map τU : [U,X] −→ H(U). It is easy to
see that τZ is an isomorphism for each Z ∈ Σ∗G (using the fact that these objects
are small). It is also easy to see that

{Z | τΣkZ is an isomorphism for all k}
is a localizing category. It contains G, so it must be all of C; thus τ is an isomor-
phism.

We now prove some technical results about the cardinality of various categories.
Recall that for infinite cardinals κ and λ we have

κ+ λ = κλ = max(κ, λ).

Definition 2.3.3. Given X ∈ C, we define a cardinal number c(X) by

c(X) =
∑

Z∈Σ∗G

|[Z,X]|.

Note that c(X) ≥ max(|G|,ℵ0). We also define

Cκ = {X ∈ C | c(X) ≤ κ}
and

c(C) =
∑

Z∈G

c(Z) =
∑

Z,W∈G,n∈Z

|[W,Z]n|.
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It is not hard to see that Cκ is a thick subcategory. Moreover, if {Xi}i∈I is a family
of objects in Cκ and |I| ≤ κ, then

∐
iXi ∈ Cκ. Finally, if κ ≥ max(|G|,ℵ0) then

Cκ = {X | |[Z,X]| ≤ κ for all Z ∈ Σ∗G}.
Proposition 2.3.4. Suppose that C is an algebraic stable homotopy category, and
that κ ≥ c(C). Then

(a) X ∈ Cκ if and only if X is the sequential colimit of a cellular tower

0 = X0 −→ X1 −→ . . .

such that the cofiber of Xi −→ Xi+1 is a coproduct of suspended generators
indexed by a set of cardinality at most κ.

(b) Cκ is essentially small. That is, the isomorphism classes of objects of Cκ form
a set.

Proof. Certainly if X is such a sequential colimit, then |[Z,X]| ≤ κ for all Z ∈ Σ∗G,
since the generators are small. Conversely, if X ∈ Cκ, then in the construction of
the cellular tower as in Proposition 2.3.1, we only need to take coproducts over
sets of cardinality at most κ. These cellular towers give us explicit models for
isomorphism classes of objects of Cκ so we can use them to construct a small
skeleton. More precisely, let A0 denote the set of all coproducts of suspensions of
generators indexed by sets of size at most κ. Having defined An, for each map from
an object of A0 to an object of An, choose a cofiber. Denote the set of such choices
by An+1. Let A∞ be the union of the An, and for each sequence X1 −→ X2 −→ . . .
in A∞, choose a sequential colimit. Let A denote the set of such choices. Then the
cellular tower constructed above shows that any object of Cκ is isomorphic to an
element of A.

Proposition 2.3.5. Let C be a stable homotopy category, and S a set of objects of
C. Then the thick subcategory generated by S is essentially small, as is the G-ideal
generated by S.

Proof. Without loss of generality, we may assume that S is closed under suspensions
and desuspensions. We shall recursively define sets Sk ⊆ C for each integer k ≥ 0,
closed under suspensions and desuspensions, starting with S0 = S. Suppose that
we have constructed Sk. Every retract of an object X ∈ Sk corresponds to an
idempotent e ∈ [X,X], so there are only a set of these, up to isomorphism; choose
one in each isomorphism class. Similarly, there are only a set of maps f : X −→ Y
with X,Y ∈ Sk, and thus only a set of cofibers, up to isomorphism; choose one
in each isomorphism class. Let Sk+1 be the union of Sk with the set of all these
choices, so that Sk+1 is again a set, closed under suspensions and desuspensions. It
is easy to see that the set

⋃
k Sk is equivalent to the thick subcategory generated

by S.
The proof for G-ideals is similar.

Corollary 2.3.6. The thick subcategory of G-finite objects is essentially small.

We now return to the problem of constructing objects in a stable homotopy
category from a given set of small objects.

Definition 2.3.7. Let A be an essentially small thick subcategory of small objects
in C. Let X ∈ C be an arbitrary object. Write ΛA(X) for the category whose
objects are maps (Z u−→ X) with Z ∈ A, and whose morphisms are maps Z v−→ Z ′
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such that u′v = u. This again has only a set of isomorphism classes. We often
write Xα for a typical object of ΛA(X). If H : A −→ Ab is an exact functor, write

ĤA(X) = lim−→ ΛA(X)H(Xα).

Note that ĤA is a functor on all of C. If C is algebraic, we can let A be the category
of G-finite objects (which is essentially small by Corollary 2.3.6). In this case, we
write Λ(X) for ΛA(X) and Ĥ(X) for ĤA(X).

Before stating the properties of ΛA(X) and ĤA, we need to recall a definition.

Definition 2.3.8. A category I is filtered if
1. For any i, j ∈ I there exists an object k ∈ I and maps i −→ k ←− j.
2. Given any two maps u, v : i −→ j in I, there is an object k ∈ I and a map
w : j −→ k with wu = wv.

A functor F : J −→ I of filtered categories is cofinal if
1. For any i ∈ I there exists an object j ∈ J and a map u : i −→ Fj.
2. Given any two maps u, v : i −→ Fj in I, there is an object k ∈ J and a map
w : j −→ k with (Fw)u = (Fw)v.

If I is filtered, then it is well-known and easy to see that the colimit functor from
I-indexed diagrams of Abelian groups to Abelian groups is exact. If F : J −→ I is
cofinal, and A : I −→ Ab, then it is also well-known that

lim−→ IAi = lim−→ JAFj .

Proposition 2.3.9. ΛA(X) is a filtered category, functorial in X. It has a termi-
nal object if X lies in A. Moreover, ĤA is a homology functor, which agrees with
H on A.

Proof. A is triangulated, so it has finite weak colimits. These can also be used as
finite weak colimits in ΛA(X), so ΛA(X) is a filtered category.

Suppose we have a map f : X −→ Y . This gives an evident functor ΛA(X) −→
ΛA(Y ), sending (U u−→ X) to (U

fu−→ Y ). If X ∈ A then it is immediate that
(X 1−→ X) is the terminal object in ΛA(X).

Next we show that ĤA is additive. Suppose that U ∈ A and a ∈ H(U). Then,
for any map u : U −→ X we get an object (U, u) = (U u−→ X) of ΛA(X), and thus an
element of ĤA(X), which we shall call [u, a]. Suppose that we have two different
maps u, v : U −→ X; we claim that [u + v, a] = [u, a] + [v, a]. To see this, consider
the following diagram in ΛA(X).

(U, u) i0−−−−→ (U q U, uq v) i1←−−−− (U, v)

∆

x
(U, u+ v)

It is clear that

[u+ v, a] = [uq v,∆∗a] = [uq v, (a, a)] = [uq v, (a, 0)] + [uq v, (0, a)].
Similarly, we have [u, a] = [u q v, i0∗a] = [u q v, (a, 0)] and [U, v] = [u q v, (0, a)],
which proves the claim.
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It follows that ĤA is an additive functor. Thus, when I is finite we have

ĤA

(∐

i∈I
Xi

)
=

⊕

i∈I
ĤA(Xi)(2.3.1)

On the other hand, if I is infinite then one sees (using the smallness of objects of
A) that

ĤA

(∐

i∈I
Xi

)
= lim−→ JĤA

(∐

i∈J
Xi

)

where J runs over finite subsets of I. It follows that (2.3.1) holds even when I is
infinite; i.e., ĤA takes arbitrary coproducts to direct sums.

We now show that ĤA is an exact functor. Let X
f−→ Y

g−→ Z be a cofiber
sequence. Suppose that y′ ∈ ĤA(Y ). Then there is an object V v−→ Y of ΛA(Y )
and an element y ∈ H(V ) which represents y. Now suppose that y′ maps to
zero in ĤA(Z). By examining the definitions, we see that there is a factorization

(V v−→ Y
f−→ Z) = (V m−→ W

w−→ Z) such that W ∈ A and H(m)(y) = 0. Let
U

k−→ V be the fiber of m, so we can choose a map u : U −→ X making the following
diagram commute:

U
k−−−−→ V

m−−−−→ W

u

y v

y w

y
X

f−−−−→ Y
g−−−−→ Z

Because H(m)(y) = 0, we see that y = H(k)(x) for some x ∈ H(U). This defines
an element x′ ∈ ĤA(X), whose image in ĤA(Y ) is y′. This means that ĤA is an
exact functor, and in fact a homology functor.

If we restrict to A, there is an evident natural transformation ĤA(X) −→ H(X).
For X ∈ A, the colimit of H over ΛA(X) is just the value at the terminal object,
in other words H(X).

Remark 2.3.10. If H and A are as in Definition 2.3.7, and if H ′ is any homology
functor extending H, there is a natural transformation ĤA −→ H ′ of homology
functors that is an isomorphism on the localizing subcategory loc〈A〉 generated by
A.

For convenience, we record the most important special case separately.

Corollary 2.3.11. Let C be an algebraic stable homotopy category, and F the sub-
category of G-finite objects. If H is an exact functor F −→ Ab, then

Ĥ(X) = lim−→ Λ(X)H(Xα)

defines a homology functor C −→ Ab extending H. Moreover, any other extension
of H is canonically isomorphic to Ĥ.

We can finally finish the proof of Theorem 2.1.3

Corollary 2.3.12. An object X in an algebraic stable homotopy category is small
if and only if it is G-finite.



26 MARK HOVEY, JOHN H. PALMIERI, AND NEIL P. STRICKLAND

Proof. Suppose that X is small, so that [X,−] is a homology theory. It follows
by Proposition 2.3.9 that [X,X] = lim−→ Λ(X)[X,Xα]. In particular, 1X ∈ [X,X]
must factor through some Xα ∈ Λ(X), in other words X is a retract of Xα. By
the definition of Λ(X), Xα is G-finite, so X is G-finite. We have already seen the
converse in Theorem 2.1.3.

We would like to prove an analogous result for cohomology functors, but the
failure of the inverse limit functor to be exact prevents us from doing so in general.
However, there is one situation when the inverse limit is exact.

Definition 2.3.13. Given a ring R, a linear topology on an R-module M is a
topology such that the cosets U + m of open submodules U form a basis of open
sets. A module M with a linear topology is linearly compact if it is Hausdorff, and
for every family of closed cosets {Aα}, the intersection

⋂
Aα is empty if and only if

some finite subintersection is empty (see for example [Jen72, p. 56]). In particular,
if M is compact Hausdorff then it is linearly compact.

Note that products and closed subspaces of linearly compact modules are lin-
early compact [Jen72], so the inverse limit over a filtered category of linearly com-
pact modules under continuous maps is again linearly compact. Moreover, [Jen72,
Théorème 7.1] implies that the inverse limit functor (taken over any filtered cat-
egory) is exact on the category of linearly compact R-modules and continuous
homomorphisms. Jensen only states this theorem for inverse limits over directed
sets, but the proof works for filtered categories as well. However, we give a different
proof here, because we need its stronger statement in what follows.

Proposition 2.3.14. Suppose that R is a ring, I is a filtered category, and M : α 7→
Mα is a functor from I to the category of linearly compact R-modules and contin-
uous homomorphisms. Suppose that for each object α of I, Cα is a (necessarily
nonempty) closed coset of Mα such that C forms a subfunctor of M . (That is, for
any map α −→ β, the induced map Mβ −→ Mα takes Cβ to Cα.) Then lim←−Cα is
nonempty.

Proof. As mentioned above,
∏
Mα is linearly compact. Given any finite collection

J 6= ∅ of morphisms of I, let D denote the set of domains of r ∈ J and R the set of
codomains of r ∈ J . For each β ∈ D∪R, let Tβ denote the subset of

∏
Mα consisting

of all (mα) such that mβ ∈ Cβ . Then Tβ is a closed coset in
∏
Mα. For each

morphism r : β −→ γ ∈ J , let Ur denote the subset of
∏
Mα consisting of all (mα)

such that r(mγ) = mβ . Then Ur is the kernel of the continuous homomorphism
∏

Mα −→Mβ ×Mγ
(1,−r)−−−−→Mβ .

In particular, Ur is a closed subgroup.
Now let SJ =

⋂
α∈D∪R Tα ∩

⋂
r∈J Ur. We claim that SJ 6= ∅. Because I is

filtered, there is an object γ and maps α sα−→ γ for every α ∈ D ∪ R such that
sα = sβ ◦ r for every r : α −→ β in J . One can now choose a class c ∈ Cγ and
define mα = Msα(c) for α ∈ D ∪ R and 0 otherwise. Clearly (mα) ∈ SJ , so SJ
is nonempty as claimed. As it is a nonempty intersection of closed cosets, it is a
closed coset. Note that any finite intersection of SJ ’s is again an SJ . Thus, by
linear compactness, the intersection of the SJ ’s is nonempty. This intersection is
precisely lim←−Cα.



AXIOMATIC STABLE HOMOTOPY THEORY 27

The exactness of the inverse limit on linearly compact modules is then immediate:

Corollary 2.3.15. Let R be a ring, and let I be a filtered category. Consider
the (Abelian) category [Iop,M] of contravariant functors from I to the category M

of linearly compact R-modules and continuous homomorphisms. Then the inverse
limit functor [Iop,M] −→M is exact.

Proof. Suppose that Mα
fα−→ Nα

gα−→ Pα is an exact sequence of inverse systems
of linearly compact R-modules. Suppose (nα) ∈ lim←−Nα, and gαnα = 0 for all α.
Let Cα = f−1

α {nα}. Then Cα is nonempty, and thus a closed coset in Mα. By the
preceding proposition, lim←−Cα is nonempty. Any element in it is a class in lim←−Mα

mapping to (nα).

We can now prove the following proposition.

Proposition 2.3.16. Suppose that A is an essentially small thick subcategory of
small objects in a stable homotopy category C. Let R be a ring, and let M be the
category of linearly compact R-modules and continuous homomorphisms. Suppose
that H : Aop −→M is an exact functor. Then

ĤA(X) = lim←− ΛA(X)H(Xα)

defines a cohomology functor Cop −→M, which agrees with H on A.

Proof. We first claim that Ĥ takes coproducts to products. The proof does not use
linear compactness, and is similar to the proof of the analogous part of Proposi-
tion 2.3.9 (see also [Mar83, Proposition 4.8]).

It therefore suffices to check that Ĥ is exact. Let X
f−→ Y

g−→ Z be a cofiber
sequence. Define ΛA(g) to be the category of commutative squares

U −−−−→ Vy
y

Y
g−−−−→ Z

where U and V are in a small skeleton of A. The morphisms are commutative
diagrams. There are then obvious functors from ΛA(g) to ΛA(Y ) and ΛA(Z), and
it is straightforward to verify that these are cofinal. We write Yα −→ Zα for a typical
object of ΛA(g). Thus Ĥ(Y ) = lim←− ΛA(g)H(Yα), and similarly for Ĥ(Z).

Now suppose that we are given a class y ∈ Ĥ(Y ) such that Ĥ(f)y = 0. The class
y is given by a compatible family yα ∈ H(Yα) for each α ∈ ΛA(g). Then for each
α ∈ ΛA(g), we have a map Yα

gα−→ Zα, so we can let Cα = H(gα)−1(yα). We claim

that Cα is nonempty. Indeed, let Xα
fα−→ Yα denote the fiber of gα. Then Xα ∈ A,

and the induced map Xα −→ Y factors through X. Therefore, since Ĥ(f)y = 0, we
must have H(fα)(yα) = 0, so, by the exactness of H, Cα is nonempty. It is then
clear that Cα is a closed coset, so, by Proposition 2.3.14, lim←−Cα is nonempty. A

class in this inverse limit is a z ∈ Ĥ(Z) such that Ĥ(g)(z) = y.

We now discuss when an object X can be constructed from a given set of finite
objects.

Proposition 2.3.17. Suppose that B = {Fi} is a set of small objects in a stable
homotopy category C. Let A = thick〈B〉 be the thick subcategory generated by B,
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which is essentially small by Proposition 2.3.5. Consider the following conditions
on an object X of C:

(a) X is the sequential colimit of a sequence

0 = X0 −→ X1 −→ X2 −→ . . .

such that the cofiber of Xk −→ Xk+1 is a coproduct of suspensions of elements
of B.

(b) X is in the localizing subcategory loc〈B〉 generated by B.
(c) For every homology functor H defined on C, the natural map ĤA(X) −→ H(X)

is an isomorphism.
Then we have (a)⇔(b)⇒(c), and if C is algebraic then (c)⇒(b). Moreover, a small
object X is in loc〈B〉 if and only if it lies in A.

Proof. Write D = loc〈A〉 = loc〈B〉.
We first make a construction for arbitrary X ∈ C. This is very similar to the

construction in Proposition 2.3.1, to which we refer for more details. Let X0 = X
and let A0 be the coproduct

∐

Z∈Σ∗B

∐

f∈[Z,X0]

Z.

There is an obvious map A0 −→ X0 which induces a surjection [Z,A0] −→ [Z,X0]
for all Z ∈ A. Let X1 be the cofiber of this map. Iterating, we get cofibrations
Ak −→ Xk −→ Xk+1 in which Ak is a coproduct of suspensions of copies of objects
in B, and the map [Fi, Xj ]∗ −→ [Fi, Xj+1]∗ is zero for every Fi.

Now let Xk be the fiber of the map X −→ Xk, and CX the sequential colimit
of the Xk, so we get a map CX −→ X. As in Proposition 2.3.1, we see that
[Z,CX] ' [Z,X] for all Z ∈ A. Let LX be the cofiber of CX −→ X, so that
[Z,LX] = 0 for all Z ∈ A. As the category of those Z for which [Z,LX]∗ = 0 is
localizing, we conclude that [Z,LX] = 0 for all Z ∈ D.

We now turn to the main part of the proof. It is clear that (a)⇒(b).
Suppose that (b) holds. We claim that LX = 0. Indeed, LX ∈ D and [Z,LX] =

0 when Z ∈ D, so [LX,LX] = 0, so LX = 0. Thus X = CX, and so (a) holds.
Suppose again that (a) holds, and that H : C −→ Ab is a homology functor. To

prove that (a)⇒(c), we need to show that ĤA(X) = H(X). Both ĤA and H

are homology functors, so the subcategory D′ on which the map ĤA −→ H is an
isomorphism, is localizing. As A ⊆ D′, we see that D ⊆ D′, in particular X ∈ D′.
Thus (a)⇒(c).

Now suppose that C is algebraic, and that (c) holds. Let H be a homology
theory. Because [Z,LX] = 0 when Z ∈ A, we see that ĤA(LX) = 0, and thus
ĤA(CX) = ĤA(X). On the other hand, ĤA(X) = H(X) by assumption, and
ĤA(CX) = H(CX) because (b)⇒(c). Thus H(CX) = H(X) for every homology
theory H. Because C is algebraic, the functor [Z,−] is a homology theory whenever
Z ∈ G, so [Z,CX] = [Z,X]. It follows that CX = X, and so (c)⇒(a).

Finally, suppose that X is small and in D. Then [X,−] is a homology theory,
so, since (b)⇒(c), [X,X] = lim−→Λ(X)[X,Xα]. It follows that 1 ∈ [X,X] factors
through some Xα ∈ A; in other words X is a retract of Xα, so X ∈ A.

Remark 2.3.18.
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(a) The map X −→ LX constructed in this proof is finite localization away from
A. See Theorem 3.3.3 for details.

(b) Suppose that C is an algebraic stable homotopy category, A is an essentially
small thick subcategory, and X ∈ loc〈A〉. Then the natural map ĤA(X) −→
H(X) is an isomorphism for all homology functors H defined on A, making
it look as though X should be the minimal weak colimit of the diagram
ΛA(X). Indeed, if ΛA(X) has a minimal weak colimit X ′, then we have a
map X ′ −→ X which gives an isomorphism under any homology functor, so
that [Z,X ′] ' [Z,X] for every Z ∈ Σ∗G. It follows thatX ′ ' X. In particular,
this holds if C is a Brown category (see Definition 4.1.4 and Theorem 4.2.3).

3. Bousfield localization

We now present some basic results on Bousfield localization in a stable homo-
topy category; in particular, we define localization functors and investigate their
properties, and we show that, in an algebraic stable homotopy category, one can
localize with respect to any homology functor. We also discuss the properties of
the full subcategory of L-local objects, for various kinds of localization functors L.

The first definition of this kind of localization was given by Adams [Ada74]. Cer-
tain set-theoretic problems with Adams’ definition were cured by Bousfield [Bou79a,
Bou79b, Bou83]. See [Rav84, Rav92] for an analysis of some particularly important
and interesting examples in the homotopy category of spectra.

3.1. Localization and colocalization functors. See Section A.1 for the defini-
tion of an exact functor between triangulated categories.

Definition 3.1.1.

(a) Suppose that i : 1 −→ L is a natural transformation of exact functors from C

to itself. We say that the pair (L, i), or just L, is a localization functor if
(i) The natural transformation Li from L to L2 is an equivalence.
(ii) For all objects X,Y the map

[LX,LY ]
i∗X−→ [X,LY ]

is an isomorphism.
(iii) If LX = 0 then L(X ∧ Y ) = 0 for all Y .

(b) Dually, suppose that q : C −→ 1 is a natural transformation of exact functors
from C to itself. We say that (C, q), or just C, is a colocalization functor if
(i) The natural transformation Cq from C2 to C is an equivalence.
(ii) For all objects X,Y the map

[CX,CY ]
qY ∗−−→ [CX, Y ]

is an isomorphism.
(iii) If CX = 0 then CF (Y,X) = 0 for all Y .

(c) A morphism of localization functors is a natural transformation u : L −→ L′

of exact functors such that ui = i′ (and similarly for colocalization functors).
(d) If M : C −→ C is an exact functor and MX is trivial, we say that X is M -

acyclic. A map X
f−→ Y is called an M -equivalence if Mf is an isomorphism.

(e) If L is a localization functor and iX : X −→ LX is an isomorphism, we say
that X is L-local ; we let CL denote the full subcategory of L-local objects.
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(f) Dually, if C is a colocalization functor and jX : CX −→ X is an isomorphism,
we say that X is C-colocal ; we let CC denote the full subcategory of C-colocal
objects.

We start by proving a basic fact.

Lemma 3.1.2. Let L be a localization functor on a stable homotopy category C.
Then an object Y ∈ C is L-local if and only if Y ' LX for some X. A similar
statement holds for colocalization functors.

Proof. If Y is local, then Y ' LY . For the converse, we need only prove that LX
is local for all X. By naturality of i, we have

(LiX) ◦ iX = iLX ◦ iX : X −→ L2X.

It follows from condition (ii) that LiX = iLX , so iL is an equivalence as required.

Remark 3.1.3. Much of the theory can be developed without conditions (a)(iii)
and (b)(iii), but we do not know of interesting applications for this. We have
therefore included these conditions so as to simplify the hypotheses for various
results below.

Remark 3.1.4. We have followed the usual practice in category theory by defining
colocalization functors to be the dual thing to localization functors. Unfortunately,
this conflicts with the language used by Bousfield in [Bou79b, Bou79a]. His “colo-
calization with respect to E” is actually a localization functor in our language. The
associated category of acyclics is the localizing subcategory loc〈E〉 generated by E.

It turns out that there are rather few morphisms of localization functors.

Lemma 3.1.5. Let L and L′ be localization functors on a stable homotopy category
C. If iL′ : L′ −→ LL′ is an isomorphism (equivalently, if L′-local objects are L-local),
then there is a unique morphism of localization functors u = (iL′)−1 ◦ Li′ from L
to L′; otherwise, there are no such morphisms.

Proof. Firstly, suppose that iL′ is an isomorphism. (By Lemma 3.1.2, it is equiva-
lent to say that CL′ ⊆ CL.) It is easy to check that u = (iL′)−1 ◦Li′ is a morphism
from L to L′. Suppose that v is another such morphism. Then ui = i′ = vi but
L′X is L-local, so i∗ : [LX,L′X] −→ [X,L′X] is an isomorphism, so u = v.

Conversely, suppose that we have a morphism u : L −→ L′. First, we claim that

(iL′) ◦ u = Li′ : L −→ LL′.

As the target is L-local, it is enough to check this after composing with i. Using
the naturality of i, we find that

(iL′) ◦ u ◦ i = (iL′) ◦ i′ = (Li′) ◦ i,
as required.

Next, consider the composite

w = (LL′ uL′−−→ L′L′
(i′L′)−1

−−−−−→ L′).

It is easy to see that the composite L′X iL′−−→ LL′X w−→ L′X is the identity, so L′X
is a retract of the L-local object LL′X and thus is L-local. Thus L′-local objects
are L-local.

Lemma 3.1.6. Suppose that C is a stable homotopy category.
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(a) There is a natural equivalence between localization and colocalization functors,
in which L and C correspond if and only if CX −→ X −→ LX is a cofiber se-
quence. More precisely, consider the following category B. An object consists
of exact functors (C,L) and morphisms (q, i, d) of exact functors such that
(C, q) is a colocalization, (L, i) is a localization, and

CX
q−→ X

i−→ LX
d−→ ΣCX

is exact. The morphisms are the evident thing. Then the forgetful functors
from B to the categories of localization and colocalization functors are equiv-
alences.

In the following statements, we assume that C and L correspond as above.
(b) The following are equivalent :

(i) X is L-local.
(ii) iX : X −→ LX is an equivalence.
(iii) X ' LY for some Y .
(iv) [Z,X] = 0 (or [Z,X]∗ = 0, or F (Z,X) = 0) for all L-acyclic (equiva-

lently, C-colocal) objects Z.
(v) X is C-acyclic.
(Of course, (i) ⇔ (ii) by definition.) Dually, the following are equivalent :
(i) X is C-colocal.
(ii) qX : CX −→ X is an equivalence.
(iii) X ' CY for some Y .
(iv) [X,Z] = 0 (or [X,Z]∗ = 0, or F (X,Z) = 0) for all C-acyclic (equiva-

lently, L-local) objects Z.
(v) X is L-acyclic.

(c) iX : X −→ LX is initial among L-local objects under X, and terminal among
L-equivalences out of X. Dually, qX : CX −→ X is terminal among L-acyclic
objects over X, and initial among C-equivalences into X.

(d) The class of L-acyclics (= C-colocals) forms a localizing ideal, and the class
of L-locals (=C-acyclics) forms a colocalizing coideal.

(e) As a functor from C to CL, L is left adjoint to the inclusion of the L-local
objects into C; similarly, C is right adjoint to the inclusion of the C-colocal
objects into C. In particular, L and C are uniquely determined by the subcat-
egory of L-acyclics, or by the subcategory of L-locals.

Proof. First we observe that if X is L-acyclic and Y is L-local, then [X,Y ]∗ = 0.
Indeed, LY = Y and LX = 0 and i∗ : [LX,LY ]∗ ' [X,LY ]∗ so

[X,Y ]∗ = [X,LY ]∗ = [LX,LY ]∗ = 0.

Also, we recall from Lemma 3.1.2 that LX is always L-local.
(a): Suppose that (L, i) is a localization functor. For each X we can choose a

cofiber sequence

CX
q−→ X

i−→ LX
d−→ ΣCX.

By applying L, we see that LCX = 0. On the other hand, suppose that LU = 0.
Then [U,LX]∗ = 0, so by applying [U,−]∗ to the above sequence we find that
[U,CX] ' [U,X]. It follows that CX is terminal among L-acyclic objects over X.
Next, consider a morphism f : X −→ Y . The axioms for a triangulated category give
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a commutative diagram as follows, in which g is a priori not uniquely determined.

Σ−1LX
d−−−−→ CX

q−−−−→ X
i−−−−→ LX

Lf

y g

y
yf

yLf

Σ−1LY
d−−−−→ CY

q−−−−→ Y
i−−−−→ LY

However, because of the universal property of CY
q−→ Y , we see that g is unique

after all. As it is unique, it is clearly functorial, and we can call it Cf . (If we simply
used the universal property to produce g in the first place, we would not know that
the left square commutes.)

As L is an exact functor, it comes equipped with an equivalence LΣ ' ΣL. As
i is a morphism of exact functors, we have iΣ = Σi under this identification. It is
standard that LX −d−−→ ΣCX

Σq−→ ΣX Σi−→ ΣLX is a cofiber sequence. An argument
similar to the above shows that there is a unique natural equivalence CΣ ' ΣC
making the following diagram commute.

Σ−1LΣX Σ−1dΣ−−−−→ CΣX
qΣ−−−−→ ΣX Σi−−−−→ LΣX

y
y

y1

y
LX

−d−−−−→ ΣCX
Σq−−−−→ ΣX Σi−−−−→ ΣLX

We now show that C is exact. Suppose that

X
f−→ Y

g−→ Z
h−→ ΣX

is a cofiber sequence, and let Z ′ denote the cofiber of Cf : CX −→ CY . Since L is
exact, Z ′ is L-acyclic. We have a morphism of exact sequences

CX
Cf−−−−→ CY

α−−−−→ Z ′
β−−−−→ ΣCX

q

y q

y r

y Σq

y
X

f−−−−→ Y
g−−−−→ Z

h−−−−→ ΣX
where we have identified ΣCX with C(ΣX) as above.

Applying the 5-lemma, we see that r∗ : [W,Z ′] −→ [W,Z] is an isomorphism for
all L-acyclic W . Thus Z ′ is terminal among L-acyclic objects over Z, and we can
therefore identify Z ′ with CZ and r with q. The proof of the functoriality of C
then shows that α and β are uniquely determined, and so must be Cg and Ch
respectively.

This makes C into an exact functor, and q and d into morphisms of exact func-
tors.

We need to show that C is a colocalization functor. We saw above that LC = 0.
It then follows from the cofibration CCX

qC−−→ CX
i−→ LCX = 0 that qC is an

isomorphism, verifying condition (i). We also saw above that if LCX = 0, then
[CX,CY ] = [CX, Y ], verifying condition (ii). Finally, suppose that CX = 0 and
Y is arbitrary; we need to show that CF (Y,X) = 0. As CF (Y,X) is terminal
among L-acyclics over F (Y,X), it is enough to show that CF (Y,X)

q−→ F (Y,X) is
the zero map, or equivalently that the adjoint map Y ∧ CF (X,Y ) −→ X is zero.
However, CF (X,Y ) and hence Y ∧ CF (X,Y ) is L-acyclic, and X is L-local, so
[Y ∧ CF (X,Y ), X] = 0 as required.
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Next, consider a morphism u : L −→ L′. An evident comparison of cofibrations
gives a map v : CX −→ C ′X compatible with u. The indeterminacy is measured by
[CX,Σ−1L′X], but Lemma 3.1.5 tells us that Σ−1L′X is L-local, so this group is
zero. Thus v is unique, and therefore functorial. Similarly, it is compatible with
ΣC ' CΣ and ΣC ′ ' C ′Σ.

We have now seen that the functor from B to the category of localization functors
is full, faithful and essentially surjective, hence an equivalence. The argument for
colocalization functors is dual.

(b): We prove only the first statement; the proof for the second is dual. By
definition, (i) is equivalent to (ii), which is equivalent to (iii) by Lemma 3.1.2. If
(iii) holds and LZ = 0 then [Z,X] = [Z,LY ] = [LZ,LY ] = 0. We also have
L(U ∧Z) = 0 for any U , so [U,F (Z,X)] = [U ∧Z,X] = 0. By taking U = F (Z,X),
we see that F (Z,X) = 0, and therefore [Z,X]∗ = π∗F (Z,X) = 0. Thus (iii)
implies (iv), except that we have not yet verified that L-acyclic means the same
as C-colocal. If (iv) holds then 0 = q : CX −→ X but Cq : CCX −→ CX is an
isomorphism, so CX = 0; thus (iv) implies (v). Suppose that (v) holds, so CX = 0.
Then the cofiber sequence CX

q−→ X
i−→ LX shows that iX is an isomorphism, so

X is L-local. Thus (v) implies (i). By part of the dual, we see that Z is C-colocal
if and only if it is L-acyclic, giving the equivalence of the two versions of (iv).

(c): If f : X −→ Y and Y is L-local, then Y = LY so i∗X : [LX, Y ] ' [X,Y ], so f
factors uniquely through iX . Thus iX : X −→ LX is initial among L-local objects
under X. Next, suppose that g : X −→ Z is an L-equivalence. By naturality we
have Lg ◦ iX = iZ ◦ g, so h ◦ g = iX where h = (Lg)−1 ◦ iZ : Z −→ LX. If also
h′ ◦ g = iX then h − h′ : Z −→ LX factors through the cofiber of g. As this is
L-acyclic it has no nonzero maps to LX, so h = h′. It follows that iX is terminal
among L-equivalences out of X. The claims about C are dual.

(d): All the functors in question are exact, so all the categories in question are
thick. Using description (iv) above of the L-local objects, it is immediate that CL
is closed under arbitrary products, and hence a colocalizing subcategory. Similarly,
description (iv) of CC shows that it is closed under coproducts and hence localizing.

(e): This follows immediately from (c).

One quite often needs to consider the fiber of a morphism between localiza-
tion or colocalization functors. This kind of situation is analyzed in the following
proposition.

Proposition 3.1.7. Consider a morphism u : L −→ L′ of localization functors. By
part (a) of Lemma 3.1.6, there is a unique morphism v : C −→ C ′ of the correspond-
ing colocalization functors such that the diagram

CX
q−−−−→ X

i−−−−→ LX
d−−−−→ ΣCX

v

y 1

y
yu

yΣv

C ′X
q′−−−−→ X

i′−−−−→ L′X d′−−−−→ ΣC ′X

commutes. Let MX be the fiber of u : LX −→ L′X; then M can be made into a
functor in a canonical way, and the various composites of the above functors are
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given by the following table.

◦ L L′ C C ′ M

L L L′ 0 M M

L′ L′ L′ 0 0 0

C 0 0 C C 0

C ′ M 0 C C ′ M

M M 0 0 M M

(In particular, FG = GF for any two of these functors.) Moreover, there is
an octahedral diagram (as in Definition A.1.1) of natural maps as follows, so in
particular MX is also the cofiber of CX v−→ C ′X.
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CX LX MX

X L′X

C ′X

ui

i′

d′q′

q

d qL′ = Lq′

d′L
= Ld′

v iC ′ = C ′i

dC ′ = C ′d

Proof. We saw in Lemma 3.1.5 that LL′ = L′ and that L′-local objects are L-
local. It follows that CL′ = 0, and thus (using the fibration C ′ −→ 1 −→ L′)
that CC ′ = C. By a dual argument, C ′C = C, L′C = 0 and L′L = L′. After
identifying L′ = L′L = LL′ as above, one finds that u = Li′ = i′L : L −→ L′ and
thus that the fiber MX of uX is LC ′X = C ′LX. This makes M a functor. More
precisely, given a map f : X0 −→ X1 and cofibrations M0 −→ LX0 −→ L′X0 −→ ΣM0

and M1 −→ LX1 −→ L′X1 −→ ΣM1, there is a unique map M0 −→ M1 compatible
with the cofibrations and the maps Lf, L′f . Thus, if we choose a fiber MX for
each map uX , then we can make M into a functor in a unique way such that the
maps Σ−1L′ −→ M −→ L are natural. The resulting functor is, up to canonical
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isomorphism, independent of the choices made. One choice is to take MX = LC ′X
and another is to take MX = C ′LX, so these are canonically isomorphic. Dually,
we have v = C ′q = qC ′ : C −→ C ′. It follows that the cofiber of v is C ′L =
LC ′, which is the same as M again. This justifies all of our table of compositions
except for the last row and column. These follow from the rest of the table after
substituting M = C ′L = LC ′. The octahedral axiom guarantees the existence
of an octahedral diagram of the stated kind, except that the bottommost region
might not commute and the arrows marked v and C ′i = iC ′ might be something
else. However, one can check by naturality that the bottom region commutes,
and that v and C ′i = iC ′ are the unique maps with the required commutativity
properties.

We conclude this section by observing that localization functors interact well
with the smash product.

Proposition 3.1.8. For any localization functor L, there is a natural map LX ∧
LY −→ L(X ∧ Y ), which interacts with the isomorphisms S ∧ X = X = X ∧ S,
X ∧Y = Y ∧X, and (X ∧Y )∧Z = X ∧ (Y ∧Z) in the obvious way. In particular,
LS is a commutative ring object in C, and every L-local object Y is a module over
LS in a natural way.

Proof. First, observe that the map

L(iX ∧ iY ) : L(X ∧ Y ) −→ L(LX ∧ LY )

is an equivalence, as one sees easily using the cofibrations X ∧ CY −→ X ∧ Y −→
X∧LY and CX∧LY −→ X∧LY −→ LX∧LY . It follows that the map LX∧LY −→
L(LX ∧LY ) factors uniquely through a map LX ∧LY −→ L(X ∧Y ). We leave it to
the reader to check that this has the right coherence properties. In particular, we
get a multiplication map LS ∧ LS −→ L(S ∧ S) = LS and a unit map iS : S −→ LS
which make LS into a ring object. Moreover, if Y is L-local, we get a multiplication
map

LS ∧ Y = LS ∧ LY −→ L(S ∧ Y ) = LY = Y,

which makes Y into a module over LS.

3.2. Existence of localization functors. We have so far not touched on one
basic question: given a localizing ideal D, when is there a localization functor
L such that the category of L-acyclics is precisely D? We know by part (e) of
Lemma 3.1.6 that such a functor is essentially unique if it exists.

Definition 3.2.1. If D is a localizing ideal, and there is a localization functor L
such that the category of L-acyclics is precisely D, then we shall write LD = L. If
H is a homology or cohomology functor, and D = {X | H(X ∧ Y ) = 0 for all Y },
and LD exists, then we shall write LH = LD. We will refer to LH -acyclic and
LH -local objects as H-acyclic and H-local , respectively. Note that H(X) = 0 does
not imply that X is H-acyclic if C is not monogenic.

The first result here is due to Bousfield [Bou79b] (see also [Bou83]), who works
in a closed model category. Margolis [Mar83] has given a proof that will work in
an arbitrary algebraic stable homotopy category.

See Definitions 1.1.3 and 3.1.1 for the relevant definitions in the following.
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Theorem 3.2.2 (Bousfield localization). For any homology functor H : C −→ Ab
on an algebraic stable homotopy category C, the localization functor LH exists.

Proof. For each X ∈ C, we need to construct a map X −→ LX where LX is H-local
and the fiber is H-acyclic. The methods of Lemma 3.1.6 will then show that L is
automatically a functor and in fact a localization functor. The construction of LX
in [Mar83, Chapter 7], applied to the homology functor

X 7→
⊕

Z∈G

H(X ∧ Z),

relies only on basic properties of triangulated categories and homology functors,
together with Corollary 2.3.11 and Brown representability of cohomology functors.

We do not know of any example of a localizing subcategory for which a local-
ization functor can be proved not to exist. Nick Kuhn has suggested to us that
the question of whether localizations always exist may not be decidable using only
the usual axioms of set theory. Certainly the proof in [Mar83] involves finding big
cardinal numbers, so maybe some of the large cardinal axioms are relevant.

In the homotopy category of spectra, Bousfield has shown [Bou79a] that a lo-
calization functor exists for any localizing subcategory generated by a set (not a
proper class) of objects. (If the subcategory is generated by {Ei} and E =

∐
iEi

then the localization functor is what Bousfield calls E-colocalization.) The proof
probably generalizes to any stable homotopy category derived from a closed model
category satisfying suitable axioms.

3.3. Smashing and finite localizations. We now define a particularly important
special class of localization functors (compare [Rav84, Definition 1.28]). First, we
need a lemma.

Lemma 3.3.1. Suppose that L is a localization functor on a stable homotopy cate-
gory C. Then there is a natural map αX : LS ∧X −→ LX, which is an isomorphism
when X is strongly dualizable.

Proof. The map is much as in Proposition 3.1.8: by applying L to the cofibration
CS ∧X −→ S ∧X −→ LS ∧X, we get an equivalence LX ' L(LS ∧X). We define
αX to be the composite LS ∧X i−→ L(LS ∧X) ' LX. Suppose that X is strongly
dualizable. Using part (b)(iv) of Lemma 3.1.6, we see that LS ∧X = F (DX,LS)
is L-local, and thus that αX is an isomorphism.

Definition 3.3.2. A localization functor L : C −→ C is smashing if it satisfies the
following equivalent conditions:

(a) The natural map αX : LS ∧X −→ LX defined in Lemma 3.3.1 is an isomor-
phism for all X.

(b) L preserves coproducts.
(c) The colocalizing subcategory CL of L-local objects is also a localizing subcat-

egory.

Proof of equivalence. It is easy to see that (a)⇒(b)⇒(c). Suppose that (c) holds.
Given a family of objects {Xi}, we have a cofiber sequence

∐
CXi −→

∐
Xi −→

∐
LXi
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in which the first term is L-acyclic and the last is L-local. By applying L, we see
that L(

∐
Xi) =

∐
LXi, so that (b) holds. Finally, suppose that (b) holds. It is

then easy to see that the category of those X for which αX is an isomorphism, is
localizing. By Lemma 3.3.1, it contains G, so it is all of C.

As a special case of smashing localizations, we have the finite localizations, first
considered by Miller [Mil92].

Theorem 3.3.3 (Finite localization). Suppose that {Xi} is a set of small objects
in a stable homotopy category C. Let A denote the G-ideal generated by {Xi} and
let D denote the localizing ideal generated by {Xi}. Then there is a smashing
localization functor L = LfA, which depends only on A, whose acyclics are precisely
D. Moreover, the small objects in D are precisely the objects of A.

Definition 3.3.4. We refer to localization functors of this type as finite localiza-
tions. Note that there is a finite localization functor for every essentially small
G-ideal of small objects. We refer to LfA as finite localization away from {Xi}. If B

is a set of small objects of C and A is the G-ideal generated by B, we often abuse
notation and write LfB for LfA.

Proof. First, note that, by Theorem 2.1.3(a), A consists of small objects. In fact,
it is easy to see that A is the thick subcategory generated by the set B = {Z1 ∧
· · · ∧ Zr ∧Xi} where 0 ≤ r < ∞, and Zj ∈ G. (In the algebraic case, we can just
take r ≤ 1.) Moreover, A is essentially small by Proposition 2.3.5. Note as well
that D is the localizing subcategory generated by B, by Lemma 1.4.6.

Applying Proposition 2.3.17 to the set of small objects of B, we construct (for
each X ∈ C) a cofiber sequence CX

q−→ X
i−→ LX, in which CX is in D and

[Z,LX] = 0 for Z ∈ D. It follows that CX
q−→ X is terminal among objects of D

over X. It follows in turn that C can be made into a functor, and q into a natural
transformation. Moreover qX is an isomorphism for all X ∈ D, in particular qCX is
an isomorphism. We also see that CX = 0 if and only if [Z,X] = 0 for all Z ∈ D.
The set of such X is a coideal, because D is an ideal. By assembling these facts,
we conclude that C is a colocalization functor, and that L is the complementary
localization functor.

The collection of acyclics for L forms a localizing subcategory containing B,
and thus D. On the other hand, if LX = 0 then X = CX, which lies in D by
construction. Thus D is precisely the category of L-acyclics.

An object X is L-local if and only if CX = 0, if and only if [Z,X] = 0 for all
Z ∈ A. Using the fact that these objects Z are small, we see that the category of
L-local objects is closed under coproducts, so that L is smashing.

Finally, suppose that X is small and lies in D. Then X ∈ A by the last part of
Proposition 2.3.17.

Because the functor LfA is smashing, its image is a localizing subcategory. We
can thus hope to find another localization functor, whose acyclic category is LfAC.
We have quite a good understanding of this situation, as expressed by the following
theorem. Readers who are familiar with chromatic topology may like to bear the
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following example in mind.

F (n) = a finite type-n spectrum

C = the E(n)-local category

A = the thick subcategory generated by LnF (n)
D = the nth monochromatic category

E = the K(n)-local category.

LfA = Ln−1

LA = LK(n).

Theorem 3.3.5. Let A be a G-ideal of small objects in a stable homotopy category
C. Suppose that A is essentially small, consists of strongly dualizable objects, and is
closed under the Spanier-Whitehead duality functor D (all of which are automatic
if C is algebraic). Write

Z = A⊥ = {Y | ∀W ∈ A [W,Y ] = 0}
D = ⊥Z = {X | ∀Y ∈ Z [X,Y ] = 0}
E = Z⊥ = {X | ∀Y ∈ Z [Y,X] = 0}

Then there are (co)localization functors

CfAX −→ X −→ LfAX

CAX −→ X −→ LAX

with the following properties.

(a) LfAX = LfAS ∧X and CfAX = CfAS ∧X.
(b) LAX = F (CfAS,X) and CAX = F (LfAS,X).
(c) ker(CfA) = ker(LA) = image(LfA) = image(CA) = Z.
(d) ker(LfA) = image(CfA) = D, and this is the localizing subcategory generated

by A.
(e) ker(CA) = image(LA) = E, and this is the colocalizing subcategory generated

by

A′ = {W ∧ U | W ∈ A , U ∈ C}.
(f) There are isomorphisms LAC

f
A = LA and CfALA = CfA.

(g) The functors LA : D −→ E and CfA : E −→ D are mutually inverse equivalences.

Remark 3.3.6. As with the functor LfA, if B is a set of small objects in C and A

is the G-ideal generated by B, we often abuse notation and write LB for LA.

Proof. We first justify the comments at the beginning of the statement of the the-
orem. If C is algebraic, then Corollary 2.3.6 assures us that A is essentially small,
and Theorem 2.1.3 implies that the objects of A are strongly dualizable, and that
A is closed under D. We shall first prove (a)–(f), and only verify afterwards that
LA is a localization functor and CA is a colocalization functor.

Because A is a G-ideal of dualizable objects closed under D, we see (with an
obvious notation) that

Z = {Y | F (A, Y ) = {0}} = {Y | A ∧ Y = {0}}
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and thus that Z is an ideal. It follows that

D = {X | F (X,Z) = {0}}
(which is an ideal), and that

E = {X | F (Z, X) = {0}}
(which is a coideal).

The functors LfA and CfA were defined in Theorem 3.3.3, where it was also proved
that LfAX = LfAS ∧X; the other half of (a) follows easily, as does the fact that

LfAS = LfAS ∧ LfAS
and

CfAS ∧ CfAS = CfAS.

We define LAX = F (CfAS,X) and CAX = F (LfAS,X), so that (b) holds by
definition. Clearly these are idempotent exact functors, and the cofibration CfAS −→
S −→ LfAS gives rise to natural cofibrations

CAX −→ X −→ LAX −→ ΣCAX.

It follows that ker(CA) = image(LA) and that ker(LA) = image(CA), and similarly
that ker(CfA) = image(LfA) and that ker(LfA) = image(CfA). Thus, we need only
prove half of (c),(d) and (e).

It follows from Theorem 3.3.3 that

ker(CfA) = image(LfA) = Z,

image(CfA) = ker(LfA) = D,

and that D is the localizing subcategory generated by A.
(c): All that is left to prove is that ker(LA) = Z. Suppose that Y ∈ Z. Then

{W | F (W,Y ) = 0} is a localizing subcategory containing A and therefore also
containing D = image(CfA). In particular, it contains CfAS, so LAY = 0. Con-
versely, suppose that LAY = 0. For W ∈ A we have CfAS ∧W = CfAW = W , so
that

[W,Y ] = [CfAS ∧W,Y ] = [W,F (CfAS, Y )] = [W,LAY ] = 0.

Thus Y ∈ Z.
(d): This was all proved in Theorem 3.3.3, as remarked above.
(e): Suppose that X ∈ E, so that F (Y,X) = 0 for all Y ∈ Z = image(LfA). In

particular, CAX = F (LfAS,X) = 0, so that X = LAX ∈ image(LA). Conversely,
suppose that X = LAX = F (CfAS,X). Then for Z ∈ Z = ker(CfA) we have
CfAS ∧ Z = 0 and thus

F (Z,X) = F (Z,F (CfAS,X)) = F (Z ∧ CfAS,X) = 0.

It follows that X ∈ E.
We still need to show that E is the same as the colocalizing subcategory E′

generated by A′. Consider an object X = W ∧ U ∈ A′, so that W ∈ A. We have
CfAS ∧DW = DW , so

LA(X) = F (CfAS,W ∧ U) = F (CfAS ∧DW,U) = F (DW,U) = X.
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Thus X ∈ E. It follows that E is a colocalizing subcategory containing A′, so
E′ ⊆ E.

On the other hand, suppose that X ∈ E, so that X = F (CfAS,X). Using an
A-based cellular tower for CfAS, we see that X lies in the colocalizing subcategory
generated by F (A, X) = D(A) ∧X ⊆ A′. Thus X ∈ E′.

(f): We saw in (c) that ker(LA) = image(LfA). Thus, by applying LA to the
cofibration CfAX −→ X −→ LfAX, we see that LAC

f
A = LA. The proof that CfALA =

CfA is similar.
(g): On E = image(LA) we have LAC

f
A = LA = 1 (using (f)). Similarly, on D

we have CfALA = 1. The claim follows.
We still need to show that LA is a localization functor. We have already seen that

it is idempotent and exact, so we need only check that [X,LAY ] = [LAX,LAY ],
or equivalently that [CAX,LAY ] = 0. This holds because CAX ∈ Z by (c), and
LAY ∈ E by (e), and [Z,E] = {0} by the definition of E.

It follows as in Lemma 3.1.6 that CA is a colocalization functor.

Theorem 3.3.7 (Algebraic localization). Let C be a unital algebraic stable homo-
topy category, and let T be a set of homogeneous elements in the graded ring
π∗S. Then there is a finite localization functor LT and a natural equivalence
π∗(LTX) = T−1π∗(X).

Proof. Each element t ∈ T is a map Sd −→ S, say; write S/t for the cofiber, and
A = {S/t | t ∈ T}. Write LT = LfA, and CT for the corresponding colocalization
functor. Because inverting T is a coproduct-preserving exact functor on π∗(S)-
modules, we see that T−1π∗(X) is a homology functor of X. It vanishes on A, and
thus on CTX for all X. It follows that T−1π∗(X) = T−1π∗(LTX). On the other
hand, we know that [S/t, LTX] = 0. By considering the cofibration Sd

t−→ S −→
S/t, we conclude that multiplication by t is an isomorphism on π∗(LTX). Thus
T−1π∗(LTX) = π∗(LTX).

In this case, the functor LA should be thought of as a kind of completion at the
ideal generated by T . See part (c) of Lemma 6.3.5 for a more precise statement
along these lines.

We now discuss the telescope conjecture. This was first stated by Ravenel
in [Rav84], as a conjecture about spectra. It was reformulated in many differ-
ent ways, and finally shown by Ravenel to be false. Nonetheless, it can be shown
that analogues are true in many interesting stable homotopy categories. Inciden-
tally, this conjecture is mislabeled as the smashing conjecture in [Nee92a]. See
Definitions 1.4.3, 3.1.1, 3.3.2, and Definition 3.3.4 for the relevant terms.

Definition 3.3.8. Suppose that C is a stable homotopy category. We shall say
that the telescope conjecture holds in C if every smashing localization of C is a
finite localization. If so, there is a one-to-one correspondence between essentially
small G-ideals of small objects and smashing localizations. The essentially small
hypothesis is automatic in case C is algebraic.

3.4. Geometric morphisms. Consider a localization functor L on a stable ho-
motopy category C. Recall that CL is the category of L-local objects in C, or
equivalently the image of L. In the next section, we shall study the properties of
CL, and of L considered as a functor from C to CL. The answer will be that L is
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a “geometric morphism” from C to CL. The purpose of the present section is to
explain this concept.

Definition 3.4.1. Let C and D be enriched triangulated categories. A geometric
morphism from C to D is an exact functor L : C −→ D which admits a right adjoint
J , together with natural isomorphisms

α : SD ' LSC

µ : LX ∧D LY ' L(X ∧C Y ).

The maps µ and α are required to commute in the evident sense with the symmetric
monoidal structures on C and D. If L has a right adjoint J and maps α, µ as above
which are not necessarily isomorphisms, we say that L is a lax geometric morphism.
If C and D are stable homotopy categories and L : C −→ D is a (lax) geometric
morphism, we say that L is a (lax) stable morphism if L takes G-finite objects of C

to G-finite objects of D.

The terminology is stolen from topos theory. It is justified by the fact that
a map X −→ Y of schemes gives rise to a geometric morphism D(Y ) −→ D(X)
of derived categories (and also a geometric morphism of the corresponding topoi
of sheaves). In some special cases, a geometric morphism (of topoi or of stable
homotopy categories) will also admit a left adjoint. The functors which arise in
equivariant stable homotopy theory from a change of group or universe [LMS86,
Chapter II] are all either geometric morphisms or adjoints of geometric morphisms.

We point out that it is straightforward to compose (lax) geometric morphisms
and (lax) stable morphisms. We can therefore form a (very large) category of
stable homotopy categories, where the morphisms are stable morphisms, or lax
stable morphisms if we prefer.

We can now make more precise our claim that the choice of generators is not
very important in an algebraic stable homotopy category. Indeed, suppose C is
an algebraic stable homotopy category with two sets of small generators G and G′.
Then the identity functor is a stable isomorphism between (C,G) and (C,G′).

Let L : C −→ D be a geometric morphism, with right adjoint J . Let X and Y
denote objects of C, and U and V objects of D. By juggling adjoints, one can
construct natural maps as follows.

β : SC −→ JSD

ν : JU ∧C JV −→ J(U ∧D V )

µ# : LFC(X,Y ) −→ FD(LX,LY )

ν# : JFD(U, V ) −→ FC(JU, JV )

π : X ∧C JU −→ J(LX ∧D U)

π# : L(X ∧C JU) −→ LX ∧D U

ρ : FC(X, JU) ' JFD(LX,U)

ρ# : LFC(X, JU) −→ FD(LX,U)

The isomorphism ρ is a sort of internal version of the adjunction [X,JU ] ' [LX,U ].
None of the other maps need be isomorphisms. We refrain from listing any of their
commutativity and coherence properties.

If L is merely a lax geometric morphism then we can still construct µ#, ρ and
ρ#, but ρ need not be an isomorphism.
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Proposition 3.4.2. Let L : C −→ D be a geometric morphism, with right adjoint J .
Then L preserves coproducts, and J is an exact functor which preserves products.

Proof. It is well-known that left adjoints preserve coproducts and right adjoints
preserve products. It is proved in [Mar83, Proposition A2.11] that adjoints of exact
functors are exact.

3.5. Properties of localized subcategories. In this section we show that any
localization of a stable homotopy category is a stable homotopy category.

Theorem 3.5.1. Suppose that C is a stable homotopy category, and that L : C −→ C

is a localization functor. Then CL has a natural structure as a stable homotopy cat-
egory, such that L : C −→ CL is a stable morphism (the right adjoint is the inclusion
J : CL −→ C). Considered as a functor from C to CL, L preserves the following
structure:

(a) cofibrations
(b) the smash product and its unit
(c) coproducts
(d) (minimal) weak colimits, and in particular sequential colimits
(e) strong dualizability.

(Of course, (a) and (b) are part of the claim that L is a geometric morphism.) The
inclusion functor J : CL −→ C preserves the following structure:

(a) cofibrations
(b) function objects
(c) products
(d) sequential limits.

The following maps are isomorphisms:

ν# : JFL(U, V ) −→ F (JU, JV )

π# : L(X ∧ JU) −→ LX ∧L U
ρ : F (X, JU) −→ JFL(LX,U)

(where the subscript L indicates structure in CL). Moreover, LJ ' 1.

Theorem 3.5.2. Suppose in addition that C is algebraic. Then L preserves small-
ness if and only if L is smashing. Suppose that this holds. Then CL is also algebraic,
and J is a lax geometric morphism. The following maps are isomorphisms:

ν : JU ∧C JV −→ J(U ∧L V )

π : X ∧C JU −→ J(LX ∧L U)

(Again, the subscript L indicates structure in CL). If C is a Brown category, then
CL is also a Brown category.

Proof of Theorem 3.5.1. First, we can triangulate CL by declaring that X −→ Y −→
Z −→ ΣX is a triangle in CL if and only if it is a triangle in C (and X, Y and Z lie
in CL). Using the fact that CL is a thick subcategory of C, we see that this makes
CL into a triangulated category.

Next, we define a smash product X ∧L Y on CL by X ∧L Y = L(X ∧ Y ). It is
easy to check (using Proposition 3.1.8) that SL = LS is a unit for this product,
and that it makes CL into a symmetric monoidal category. If X is arbitrary and
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Y is L-local, we can see that F (X,Y ) = F (LX, Y ), and that this object is L-local.
Using this, we see that CL can be made into a closed symmetric monoidal category
by defining FL(X,Y ) = F (X,Y ). It is again easy to check that this structure is
compatible with the triangulation.

Suppose that {Xi} is a family of objects of CL. Write
∐
Xi for their coproduct

in C. For Y ∈ CL, we have

[L
(∐

Xi

)
, Y ] = [

∐
Xi, Y ] =

∏
[Xi, Y ].

It follows that
∐
LXi = L(

∐
Xi) is the categorical coproduct in CL of the objects

Xi.
We see directly from these constructions that L (considered as a functor C −→ CL)

preserves cofibrations, the smash product and its unit, and coproducts. We know
from part (e) of Lemma 3.1.6 that L is left adjoint to J . It follows that L is a
geometric morphism.

If H is a cohomology functor on CL, then H ◦ L is a cohomology functor on
C (because L preserves coproducts). There is therefore an object X of C and a
natural equivalence [Y,X] −→ H(LY ). By choosing Y to be L-acyclic, we find that
X is L-local, and therefore represents H as a functor on CL.

Suppose that Z ∈ C is strongly dualizable. We claim that LZ is strongly dual-
izable in CL; in other words, for every Y ∈ CL we claim that

FL(LZ, Y ) = FL(LZ, SL) ∧L Y.
Indeed, the left hand side is just F (LZ, Y ) = F (Z, Y ). The right hand side is
L(F (LZ,LS)∧Y ). We know that F (LZ,LS) = F (Z,LS) = DZ ∧LS, which is L-
equivalent to DZ. Thus, the right hand side is L(DZ ∧Y ) = LF (Z, Y ) = F (Z, Y ),
as required.

We now define GL = {LZ | Z ∈ G}, thereby making L into a stable morphism.
If D is a localizing subcategory of CL which contains GL, then {X ∈ C | LX ∈ D}
is a localizing subcategory of C which contains G, hence all of C. It follows that
D = CL. Thus, with all this structure, CL becomes a stable homotopy category.

We still need to show that L preserves (minimal) weak colimits. Suppose that
(τi : Xi −→ X) is a weak colimit. This means that [X,Y ] −→ lim←−[Xi, Y ] is an
epimorphism for all Y . As L is a functor, we certainly have compatible maps
(Lτi : LXi −→ LX). If Y ∈ CL then [LX, Y ] = [X,Y ] and [LXi, Y ] = [Xi, Y ], so we
have an epimorphism [LX, Y ] −→ lim←−[LXi, Y ]. Thus LX is a weak colimit in CL of
{LXi}.

Now suppose that (τi : Xi −→ X) is a minimal weak colimit, and that H is a
homology functor on CL. Then H ◦L is a homology functor on C, so we must have
H(LX) ' lim−→H(LXi). Thus (Lτi : LXi −→ LX) is a minimal weak colimit in CL.

The claims about the inclusion functor J are now easy. We have already seen
that ν# and ρ are isomorphisms, and it is easy to see that π# is also. As L ' 1 on
CL, we see that LJ ' 1.

Proof of Theorem 3.5.2. In this proof we assume that C is algebraic.
Suppose that L is smashing. Then, for any family {Xi} of objects of CL, the

coproduct in C is already local, and so is the same as the coproduct in CL. Thus,
if Z ∈ C is small we have

[LZ,
∐

L
Xi] = [Z,

∐
L
Xi] = [Z,

∐
Xi] =

⊕
[Z,Xi] =

⊕
[LZ,Xi]
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so that LZ is small in CL.
Conversely, suppose that L preserves smallness. Let {Xi} be a family of L-local

objects. Then, for all Z ∈ Σ∗G, we have isomorphisms

[Z,
∐

Xi] =
⊕

[Z,Xi] =
⊕

[LZ,Xi] = [LZ,L
(∐

Xi

)
] = [Z,L

(∐
Xi

)
].

Therefore the natural map
∐
Xi −→ L(

∐
Xi) is an isomorphism, so L is smashing.

Suppose again that L is smashing. Define K : C −→ C by KX = F (LS,X). We
claim that KX is actually L-local. Indeed, suppose that Z is L-acyclic; then

[Z,KX] = [LS ∧C Z,X] = [LZ,X] = [0, X] = 0,

which implies the claim. We may thus regard K as a functor C −→ CL, and as such
it is easily seen to be right adjoint to J . It follows that J , equipped with the maps

β : SC −→ JSL

ν : JU ∧C JV −→ J(U ∧L V )

is a lax geometric morphism. It is immediate from the definitions that ν and π are
isomorphisms.

We defer to Theorem 4.3.4 the proof that CL is a Brown category when C is a
Brown category.

We next consider the local category obtained by localizing at a set of small
objects.

Theorem 3.5.3. Let A ⊂ C be a thick subcategory of small objects as in Theo-
rem 3.3.5. Let L = LA : C −→ CL be the localization functor constructed there,
whose category of acyclics is

Z = {Y | ∀W ∈ A [W,Y ] = 0}.
Then we can make CL into an algebraic stable homotopy category with G = A, and
L into a geometric morphism (but not a stable morphism in general). Moreover,
L admits a left adjoint M = CfA as well as a right adjoint J . Thus L preserves
products, function objects, and sequential limits (as well as the other structure listed
in Theorem 3.5.1). The following maps are isomorphisms, where the subscript L
indicates structure in CL.

µ# : LFC(X,Y ) ' FL(LX,LY )

ν# : JFL(U, V ) ' FC(JU, JV )

π# : L(X ∧C JU) ' LX ∧L U
ρ : FC(X,JU) ' JFL(LX,U)

ρ# : LFC(X, JU) ' FL(LX,U)

Moreover, LM ' 1 ' LJ : CL −→ CL.

Proof. We know from Theorem 3.5.1 that CL is an enriched triangulated category
with all cohomology functors representable, and that L : C −→ CL is a geometric
morphism. It follows easily from Theorem 3.3.5 that L = 1 on A, so that A ⊂ CL.
It also follows that if Z ∈ C is such that [W,Z] = 0 for all W ∈ A, then LZ = 0. If
in addition we have Z ∈ CL, then clearly Z = 0. It now follows from Theorem 2.3.2
that CL is an algebraic stable homotopy category with generators A.
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Recall from Theorem 3.3.5 that LX = F (MS,X) and that MU = MS ∧ U . It
follows that

[U,LX] = [U,F (MS,X)] = [MS ∧ U,X] = [MU,X].

Thus M is left adjoint to L, which implies that L preserves products and sequential
limits.

We know from Theorem 3.3.5 thatML = M , and it follows easily thatMU∧X =
M(U ∧ LX). We therefore have

[U,LF (X,Y )] = [MU,F (X,Y )] = [M(U ∧ LX), Y ]

= [U ∧ LX,LY ] = [U,F (LX,LY )].

It follows that LF (X,Y ) = F (LX,LY ), in other words that µ# is an isomorphism.
It follows in turn that ρ# is an isomorphism. We saw in Theorem 3.5.1 that ν#, π#

and ρ are isomorphisms, and that LJ = 1. We saw in Theorem 3.3.5 that LM ' L
on C, so that LM ' 1 on E = CL.

There are many properties one would like CL to have that it does not enjoy in
general.

Example 3.5.4.

(a) In the homotopy category of spectra S, let L denote localization with respect
to MU or with respect to the wedge of all the Morava K-theories K(n) (where
0 ≤ n <∞). Then there are no nonzero small objects in SL [Str].

(b) While every object in thick〈LG〉 is strongly dualizable, there will be other
strongly dualizable objects in general. Indeed, any interesting element of the
Picard group in the K(n)-local category will be strongly dualizable yet not
in thick〈LK(n)S〉. There are many examples already when n = 1 [HMS94].

Note that the subcategory of colocal objects will not, in general, form a stable
homotopy category even though coproducts of colocal objects are always colocal.
The problem is that colocalization functors would preserve cogenerators, but there
is no reason to expect them to preserve generators. This is the main reason that
localization functors arise more often than colocalizing functors in stable homotopy
theory. See, however, Theorem 9.1.1 for a situation in which the subcategory of
colocal objects does form a stable homotopy category.

Next we point out that any localization L, even if it is not smashing, induces
correspondences between the full subcategories of CL and certain full subcategories
of C.

Definition 3.5.5. Suppose that C is a triangulated category and L is a localization
functor. We say that a subcategory D of C is L-replete if it is full, and whenever
X −→ Y is an L-equivalence, then X ∈ D⇔ Y ∈ D.

Lemma 3.5.6. Suppose that C is a triangulated category and L is a localization
functor. There is a bijection between replete subcategories of CL and L-replete sub-
categories of C. This correspondence sends thick subcategories to thick subcategories
and localizing subcategories to localizing subcategories.

Proof. If D is an L-replete full subcategory of C, then define F (D) = D ∩ CL. If
E is a full subcategory of CL, then define G(E) to be the full subcategory of C

with objects {X | LX ∈ E}. It is trivial to check that F ◦ G(E) = E, and using
L-invariance that G ◦ F (D) = D. We also leave it to the reader to check that if
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D ⊆ C and E ⊆ CL correspond, then D has the appropriate structure (is thick
or localizing) if and only if E does. The crucial point is that L always preserves
coproducts as a functor from C to CL.

We point out that localization functors rarely preserve products (except in the
situation of Theorem 3.5.3), so L-replete colocalizing subcategories of C will not
correspond to colocalizing subcategories of CL.

3.6. The Bousfield lattice. In this section we define Bousfield classes and discuss
a few of their basic properties; see [Bou79a] and [Rav84] for the proofs and for other
useful results.

Definition 3.6.1.

(a) Fix an object X in a stable homotopy category C. We say that an object Y
is X-acyclic if X ∧ Y = 0, and that an object Z is X-local if F (Y, Z) = 0 for
all X-acyclic objects Y .

(b) We define the Bousfield class of X (written 〈X〉) to be the collection of X-
local objects. This forms a colocalizing coideal (Definition 1.4.3). We say
that two objects X and Y are Bousfield equivalent if 〈X〉 = 〈Y 〉.

(c) The collection of Bousfield classes then defines a partially ordered class under
inclusion. Write 〈X〉q〈Y 〉 for 〈X q Y 〉, and 〈X〉∧〈Y 〉 for 〈X ∧ Y 〉. (We shall
see later that this is well-defined. It is easy to see that 〈X〉∧〈Y 〉 ⊆ 〈X〉∩〈Y 〉,
but in general they are not equal—see [Bou79a, Lemma 2.5].)

It is more common to define the Bousfield class of X to be the localizing ideal of
X-acyclics. We have chosen to use X-locals instead so that the ordering 〈X〉 ≥ 〈Y 〉
just means that the category of X-locals contains the category of Y -locals.

The partially ordered class of Bousfield classes is contained in an apparently
more fundamental lattice called the Bousfield lattice, which we now define.

Let C be a stable homotopy category. Given two objects X and Y , we write
X ⊥ Y if F (X,Y ) = 0. More generally, if D is a class of objects, we write X ⊥ D

if X ⊥ Y for all Y ∈ D, and so on. We define the left and right annihilators of a
class D as follows:

⊥D = {X | X ⊥ D},
D⊥ = {X | D ⊥ X}.

Definition 3.6.2. A class D ⊆ C is a closed localizing ideal if D = ⊥E for some E.
(It is easy to check that such a class is indeed a localizing ideal.) Dually, D is a
closed colocalizing coideal if D = E⊥ for some E.

The purely formal theory of Galois correspondences tells us that the closed lo-
calizing ideals form a lattice under inclusion, antiisomorphic to the lattice of closed
colocalizing coideals. (We make the lattice operations explicit in the definition be-
low.) Moreover, the smallest closed localizing ideal containing a class D is ⊥(D⊥).

Definition 3.6.3. The Bousfield lattice of C is the lattice L of closed colocalizing
coideals. The meet operation is just intersection, and the join operation is

Dq E = (⊥D ∩ ⊥E)⊥.

We will refer to an element of the Bousfield lattice as a generalized Bousfield
class. Note that Bousfield classes are generalized Bousfield classes, because 〈X〉 =
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{Z | X∧Z = 0}⊥. Note also that if we think of L as the lattice of closed localizing
ideals ordered by reverse inclusion, then the join operation is just intersection.

We do not know whether every generalized Bousfield class is in fact a Bousfield
class, although there are a number of generalized Bousfield classes that can only be
proved to be Bousfield classes by quite subtle arguments. We do not know whether
the collection of Bousfield classes is closed under intersections.

The Bousfield lattice is analogous to the lattice of torsion theories in an Abelian
category [Gol86]. However, the lattice of torsion theories has many good properties
which we have been unable to prove in our context.

Lemma 3.6.4. If L : C −→ C is a localization functor, then {X | LX = 0} is a
closed localizing ideal, and CL is the corresponding closed colocalizing coideal.

Proof. See part (b)(iv) of Lemma 3.1.6.

We do not know in general whether the converse of the above lemma holds, nor
do we know whether all localizing ideals are closed. We also do not know whether
the closed localizing ideals form a set or a proper class.

We have shown how to associate a Bousfield class to an object X of a stable
homotopy category C, and a generalized Bousfield class to a localization functor
L. We can also associate a generalized Bousfield class to a homology functor H.
Indeed, recall the localizing ideal D of H-acyclics:

D = {X : H(X ∧ Y ) = 0 for all Y }.
Then define 〈H〉 = D⊥, the closed colocalizing coideal of H-local objects.

Another way to say this, when C is algebraic, is that 〈H〉 is equal to the gener-
alized Bousfield class of the localization functor LH . In this case, there is also a
way to associate a homology functor to an object X. Recall that we defined the
category Λ(X) in Definition 2.3.7.

Definition 3.6.5. Let C be an algebraic stable homotopy category. Write

π̂0(X) = lim−→ Λ(X)[S,Xα].

This is a homology functor by Corollary 2.3.11. If C is unital algebraic, then
π̂0(X) = π0(X). Given an object X ∈ C, we define

HX(Y ) = π̂0(X ∧ Y ).

This is again a homology functor. There is an obvious natural map HX(Y ) =
HY (X) −→ π0(X ∧ Y ) = X0Y , which is an isomorphism when C is unital algebraic.

Thus, in an algebraic stable homotopy category, there are two generalized Bous-
field classes associated to an object X. The following lemma shows they are in fact
equal.

Lemma 3.6.6. Let X be an object of an algebraic stable homotopy category C.
Then for any Y ∈ C we have X ∧ Y = 0 if and only if Y is HX-acyclic, and thus
〈X〉 = 〈HX〉. The category of such Y is a closed localizing subcategory.

Proof. If Y is X-acyclic, then X∧Y = 0, so HX(Y ∧Z) = π̂0(X∧Y ∧Z) = 0 for all
Z. Thus Y is HX -acyclic. Conversely, suppose Y is HX -acyclic. By Lemma 4.1.2,
we find that π0(X ∧ Y ∧ Z) = 0 for all small Z. By Spanier-Whitehead duality,
we find that [Z,X ∧ Y ] = 0 for all small Z, and in particular for all Z ∈ G. Thus,
by Lemma 1.4.5, X ∧ Y = 0 and so Y is X-acyclic. The localizing category of
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HX -acyclics is closed by Theorem 3.2.2 and Lemma 3.6.4. The categories 〈X〉 and
〈HX〉 are by definition the right annihilators of the X-acyclics and the HX -acyclics,
so they are the same.

Because of this lemma, we denote the localization functor LHX
simply by LX .

An annoying feature of this lemma is that we have to define the acyclics of HX

by requiring that HX(Y ∧ Z) = 0 for all Z. It is sometimes useful to avoid this.

Definition 3.6.7. An object X in an algebraic stable homotopy category C is
monoidal if HX∗(Y ) = 0 implies HX∗(Y ∧ Z) = 0 for all Z. (Note the grading on
HX .)

Lemma 3.6.8. Suppose C is an algebraic stable homotopy category, and X is an
object of C. Let X ′ =

∐
Z∈GX ∧ Z. Then 〈X〉 = 〈X ′〉 and X ′ is monoidal.

Proof. This proof is very similar to that of the preceding lemma. Clearly

X ∧ U = 0 ⇒ X ′ ∧ U = 0 ⇒ HX′∗(U) = 0.

Both claims in the lemma will follow if we prove that HX′∗(U) = 0 implies X∧U =
0. To see this, we note that

HX′∗(U) =
⊕

Z∈G

π̂∗(X ∧ U ∧DZ) =
⊕

Z∈G

HDZ∗(X ∧ U).

Furthermore, HDZ∗(X ∧ U) = π∗(DZ ∧ X ∧ U) = [Z,X ∧ U ]∗ by Lemma 4.1.2.
Lemma 1.4.5 completes the proof.

The following proposition is very similar to results in [Bou79a] and [Rav84].

Proposition 3.6.9. Suppose that C is an algebraic stable homotopy category.
(a) 〈X〉 ≥ 〈Y 〉 if and only if X ∧ Z = 0 ⇒ Y ∧ Z = 0. Hence 〈S〉 is the largest

Bousfield class, and 〈0〉 is the smallest.
(b) For any X and Y we have 〈X q Y 〉 = 〈X〉 q 〈Y 〉 and 〈X ∧ Y 〉 ≤ 〈X〉 ∩ 〈Y 〉.
(c) If X −→ Y −→ Z is a cofiber sequence, then 〈Y 〉 ≤ 〈X〉 q 〈Z〉.
(d) If f : ΣdX

f−→ X is a self map with cofiber X/f and telescope f−1X (see
Definition 2.2.3), then 〈X〉 = 〈X/f〉 q 〈f−1X〉.

(e) Given two objects X and Y , we have LX ' LY if and only if 〈X〉 = 〈Y 〉.
(f) If 〈X〉 = 〈Y 〉 then 〈X ∧ Z〉 = 〈Y ∧ Z〉 (so we can define 〈U〉∧ 〈V 〉 = 〈U ∧ V 〉

unambiguously).
(g) The class D of Bousfield classes 〈X〉 for which 〈X〉 ∧ 〈X〉 = 〈X〉 forms a

distributive lattice with operations q and ∧ (but we do not know whether
∩ = ∧).

Proof. (a): Suppose that 〈X〉 ≥ 〈Y 〉, so that Y -local objects are X-local. Suppose
that X ∧ Z = 0. As LXZ is initial among X-local objects under Z, we find that
the map Z −→ LY Z factors through LXZ, which is zero. As Z −→ LY Z becomes
the identity after applying LY , we see that LY Z = 0. This means that Y ∧ Z = 0
as claimed. The converse is easy.

(b): This is clear using (a).
(c): Suppose that U ∧ (X q Y ) = 0, so that U ∧ X = 0 = U ∧ Z. From the

cofiber sequence U ∧X −→ U ∧ Y −→ U ∧Z, we see that U ∧ Y = 0 also. The claim
follows using (a).
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(d): Suppose that U ∧ X/f = 0 and U ∧ f−1X = 0. It is easy to see that
(1 ∧ f)−1(U ∧X) = U ∧ f−1X = 0. On the other hand, using the cofibration

ΣdU ∧X 1∧f−−→ U ∧X −→ U ∧X/f,
we see that 1 ∧ f is an isomorphism. Thus, by Lemma 2.2.6, we have U ∧ X =
(1 ∧ f)−1(U ∧ X) = 0. It follows using (a) that 〈X〉 ≤ 〈X/f〉 q 〈f−1X〉. The
opposite inequality is easy (again using (a)).

(e): The category 〈X〉 is the image of LX , and LX is the left adjoint of the
inclusion 〈X〉 −→ C. Thus 〈X〉 and LX determine each other.

(f): This follows easily from (a).
(g): Clearly D is a partially-ordered class, closed under the stated operations.

Clearly q is the join operation; in other words, 〈X q Y 〉 ≤ 〈Z〉 if and only if
〈X〉 ≤ 〈Z〉 and 〈Y 〉 ≤ 〈Z〉. Similarly, if 〈Z〉 ≤ 〈X〉 and 〈Z〉 ≤ 〈Y 〉 then 〈Z〉 =
〈Z〉∧〈Z〉 ≤ 〈X〉∧〈Y 〉. The converse is trivial, so ∧ is the meet operation in D.

Note that, if C is not algebraic, part (a) of Proposition 3.6.9 might fail. We do
not have examples which tell us whether to worry about this. Note also that in the
homotopy category of spectra, the Brown-Comenetz dual of the sphere (written I)
has I ∧ I = 0 but I 6= 0, showing that the inequality in (b) can be strict.

3.7. Rings, fields and minimal Bousfield classes. In this section we consider
some criteria which guarantee that a Bousfield class is minimal. We first need to
define rings, modules and fields.

Definition 3.7.1. Let C be a stable homotopy category.

(a) A ring object in C is an object R equipped with an associative multiplication
map µ : R ∧ R −→ R and a unit η : S −→ R. Note that this makes π∗(R)
into a graded ring. If R is commutative in the evident sense, then π∗(R) is a
graded-commutative ring. For any object X, the object F (X,X) is a (usually
noncommutative) ring under composition.

(b) If R is a ring object, there is an obvious notion of R-module objects. If M
and N are left R-module objects and X is arbitrary then M q N , M ∧ X
and F (X,M) are left R-module objects. Moreover, F (M,X) is a right R-
module object. However, the cofiber of a map of R-modules need not admit
an R-module structure.

(c) We say that an R-module M is free if it is isomorphic as an R-module to a
coproduct of suspensions of R.

(d) A skew field object in C is a ring object R such that every R-module is free.
A field object is a skew field object that is commutative.

(e) An object X ∈ C is smash-complemented if there is an object Y such that
X ∧ Y = 0 and 〈X q Y 〉 = 〈S〉.

We next give a convenient (and well-known) criterion for recognizing fields.

Proposition 3.7.2. Let R be a ring object in a monogenic stable homotopy cate-
gory C, and suppose that every homogeneous element in π∗(R) is invertible. Then
R is a skew field object.

Proof. Let M be a left R-module object, so that π∗M is a left module over π∗R.
Recall that every left module over a division ring is free. A simple modification of
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the proof of this shows that every left module over π∗R is a direct sum of suspensions
of π∗R. Choose a basis {ei} for π∗M , where ei has degree di. Each ei gives a map

ΣdiR = R ∧ Sdi
1∧ei−−−→ R ∧M −→M.

Putting these together, we get a map

f :
∐

i

ΣdiR −→M

which induces an isomorphism
⊕

i π∗−di
R ' π∗M . It follows that f is an equiva-

lence.

It follows that if R is a commutative ring and K is an R-algebra and a skew field
then K defines a skew field object in the derived category of R-modules. It also
follows that the Morava K-theory spectrum K(n) (which depends on a prime p not
written explicitly in the notation) is a skew field object in the category of spectra.
Indeed, it is known [HS] that every skew field object in this category is a free module
over some K(n), provided that we allow K(0) = HQ and K(∞) = HFp.

An important property of skew field objects is given by the next result.

Proposition 3.7.3. Let R be a smash-complemented skew field object in an al-
gebraic stable homotopy category C. Then locid〈R〉 is minimal among nonzero
localizing ideals of C, and 〈R〉 is minimal among nontrivial Bousfield classes.

Proof. Let C be a complement for R, so that R ∧ C = 0 and 〈R q C〉 = 〈S〉.
Suppose that 〈X〉 ≤ 〈R〉. As R ∧ C = 0, we also have X ∧ C = 0. Thus 〈X〉 =
〈X〉∧〈R q C〉 = 〈X ∧R〉. On the other hand, X∧R is a (possibly empty) coproduct
of copies of R, so 〈X ∧R〉 is either 0 or 〈R〉. Thus 〈R〉 is minimal.

Now suppose that 0 6= Y ∈ locid〈R〉. As {Z | 〈Z〉 ≤ 〈R〉} is a localizing ideal,
we see that 0 < 〈Y 〉 ≤ 〈R〉. As above, we deduce that R is a retract of R ∧ Y ,
so R ∈ locid〈Y 〉. It follows that locid〈R〉 is minimal among nontrivial localizing
ideals.

It seems likely that the Bousfield class of the Brown-Comenetz dual of the sphere
is minimal, and it is certainly not represented by a field. This also seems likely for
〈Cnv−1

n F 〉, where F is a finite complex of type n; note that this is nonzero by
the failure of the telescope conjecture. Conversely, the Eilenberg-MacLane spec-
trum HFp is a skew field object (that is not smash-complemented), yet neither
locid〈HFp〉 nor 〈HFp〉 is minimal.

We next relate the two kinds of minimality that we have considered.

Proposition 3.7.4. Let {K(n) | n ∈ I} be a family of objects in an algebraic
stable homotopy category C. Suppose that

〈S〉 =
∐

n∈I
〈K(n)〉

and

K(n) ∧K(m) = 0 when n 6= m.

Suppose also that locid〈K(n)〉 is minimal among nontrivial localizing ideals. Then
〈K(n)〉 is minimal among nontrivial Bousfield classes.
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Proof. Suppose that 〈X〉 < 〈K(n)〉. This means that there exists an X-acyclic
object U such that K(n) ∧ U 6= 0. Note that K(n) ∧ U ∈ locid〈K(n)〉, and that
locid〈K(n)〉 is minimal; this implies that

locid〈K(n)〉 = locid〈K(n) ∧ U〉 ⊆ locid〈U〉.
On the other hand, locid〈U〉 is clearly contained in the category of X-acyclics. Thus
K(n) ∧X = 0. Moreover, if m 6= n then K(n) ∧K(m) = 0 and 〈X〉 ≤ 〈K(n)〉 so
X ∧K(m) = 0. Using the decomposition 〈S〉 =

∐ 〈K(m)〉, we see that X = 0. The
claim follows.

We finish this section with a very simple observation.

Proposition 3.7.5. Let {K(n) | n ∈ I} be a family of objects in an algebraic
stable homotopy category C. Suppose that

〈S〉 =
∐

n∈I
〈K(n)〉

and

K(n) ∧K(m) = 0 when n 6= m.

Suppose also that for each n, 〈K(n)〉 is minimal among nontrivial Bousfield classes.
For any X ∈ C, define

supp(X) = {n ∈ I | K(n) ∧X 6= 0}.
Then

〈X〉 =
∐

n∈supp(X)

〈K(n)〉.

Proof. First, we have

〈X〉 = 〈S ∧X〉 =
∐

n∈I
〈K(n) ∧X〉.

Next, observe that K(n) ∧ X = 0 unless n ∈ supp(X). If n ∈ supp(X) then
〈K(n) ∧X〉 6= 0, so 〈K(n) ∧X〉 = 〈K(n)〉 by minimality. The claim follows.

3.8. Bousfield classes of smashing localizations. Let C be an algebraic stable
homotopy category, and write L for the associated Bousfield lattice. Let Ls be
the subclass of colocalizing subcategories of the form CL, where L is a smashing
localization. Note that CL = 〈LS〉 in this context, and that CL = CL′ if and only
if L is isomorphic to L′. In this section, we shall prove various good properties of
Ls. We start with a simple lemma.

Lemma 3.8.1. Let L be a smashing localization, and X an arbitrary object of C.
Then 〈LX〉 = 〈LS〉 ∩ 〈X〉.
Proof. It is a general fact that 〈LX〉 = 〈LS ∧X〉 ≤ 〈LS〉 ∩ 〈X〉. Suppose that
Y ∈ 〈LS〉 ∩ 〈X〉, so that Y = LY ∈ CL and F (Z, Y ) = 0 whenever X ∧ Z = 0.
We need to show that Y is LX-local, in other words that F (W,Y ) = 0 whenever
LS ∧X ∧W = 0. By taking Z = LS ∧W = LW , we see that F (LW,Y ) = 0, but
F (LW,Y ) = F (W,Y ) as Y is L-local, so F (W,Y ) = 0 as required.

We can now prove the main properties of Ls.
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Proposition 3.8.2. The class Ls is a sublattice of L, closed under countable
meets. Moreover, Ls is distributive.

Proof. Let L and L′ be smashing localization functors, with corresponding colocal-
izations C and C ′. We first show that CL ∩ CL′ and CL q CL′ lie in Ls. Define

L0X = LL′X = L′LX = LS ∧ L′S ∧X.
Clearly L0X ∈ CL ∩ CL′ . Moreover, suppose that Y ∈ CL ∩ CL′ . We then have

[X,Y ] = [LX, Y ] = [L′LX, Y ],

the first equality because Y ∈ CL and the second because Y ∈ CL′ . Thus L0 : C −→
CL ∩ CL′ is left adjoint to the inclusion. It follows easily that L0 is a smashing
localization functor with CL0 = CL ∩ CL′ , as required.

We next show that CL q CL′ lies in Ls, or equivalently that CC ∩ CC
′

is the
category of colocal objects for a smashing colocalization functor. We define

C1X = CC ′X = C ′CX = CS ∧ C ′S ∧X.
We write L1X = L1S ∧X for the cofiber of the natural map C1X −→ X; note that
this is not the same as L0X. An argument similar to the above shows that C1 is
right adjoint to the inclusion of CC ∩CC

′
in C, so it is a colocalization functor with

CC1 = CC ∩CC
′
. It follows that L1 is a (smashing) localization with CL1 = CLqCL′

as required.
It follows from Lemma 3.8.1 that the operations ∧ and ∩ agree on Ls, and ∧

clearly distributes over q, so Ls is distributive.
Now consider a countable family of smashing localizations {Lk}, whose meet we

wish to construct. We may replace Lk by the meet of L0, . . . , Lk and thus assume
that we have a descending sequence

〈L0S〉 ≥ 〈L1S〉 ≥ 〈L2S〉 ≥ . . .
By Lemma 3.1.5, there is unique morphism Lk −→ Lk+1 for each k. We define
L∞S to be the sequential limit of the objects LkS, so there is an obvious map
i∞ = (S i0−→ L0S −→ L∞S). Write L∞X = L∞S ∧X, which is clearly a functor of
X. We also see that L∞X is the sequential colimit of the sequence LkX.

For each k, we have a map of cofiber sequences
CkS −−−−→ S −−−−→ LkSy =

y
y

Ck+1S −−−−→ S −−−−→ Lk+1S

We would like to take the sequential colimit of these maps to get a cofiber sequence,
but the sequential colimit is not always exact. Nonetheless, we get a commutative
diagram

∐
k CkS −−−−→

∐
k S

‘
k ik−−−−→ ∐

k LkS

f

y g

y
∐
k CkS −−−−→

∐
k S

‘
k ik−−−−→ ∐

k LkS

p

y q

y
S L∞S
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Here the maps f and g are the usual ones, whose cofibers are the respective se-
quential colimits. By the analysis in Lemma 2.2.6, we see that pj0 = 1, where
j0 : S −→ ∐

k S includes the first factor. The 3 × 3 Lemma A.1.2 now gives us a
diagram

∐
k CkS −−−−→

∐
k S

‘
k ik−−−−→ ∐

k LkSy p

y
yq

C∞S −−−−→ S −−−−→
i

L∞S

Here the rows are exact, and C∞S is a the cofiber of some self-map of
∐
k CkS and

i is some map S −→ L∞S. In fact, we have

i = ipj0 = q
(∐

ik

)
j0 = qi0 = i∞.

We can restate this as follows: the fiber C∞S of i∞ : S −→ L∞S lies in the localizing
subcategory generated by the objects CkS.

Note that CkS ∧LmS = 0 for m ≥ k, so CkS ∧L∞S = lim−→mCkS ∧LmS = 0. It
follows that L∞S ∧ C∞S = 0.

We write C∞X = C∞S ∧X, and D = {X | C∞X = 0}. By the above, L∞ can
be considered as a functor C −→ D. We claim that D =

⋂
k CLk

. Indeed, suppose
that X ∈ ⋂

k CLk
, so that CkS∧X = 0 for all k <∞. As C∞S lies in the localizing

subcategory generated by the CkS, we see that C∞S ∧ X = 0 and thus X ∈ D.
Conversely, suppose that X ∈ D. Then X = L∞X = lim−→mLmX. We may start
the colimit at the kth stage; as CkLmX = 0 for k ≤ m < ∞, we conclude that
CkX = CkL∞X = 0. Thus X ∈ ⋂

k CLk
.

Next, we claim that [C∞X,L∞Y ] = 0 for all X and Y . Indeed, we have just
seen that L∞Y is Lk-local for all k, so [CkX,L∞Y ] = 0 for all k. As C∞X ∈
loc〈CkX | k ≥ 0〉, we see that [C∞X,L∞Y ] = 0.

Next, we claim that L∞ is left adjoint to the inclusion of D in C. Indeed, suppose
that Y ∈ D, so Y = L∞Y , so [C∞X,Y ] = 0 for all Y . Thus the cofibration
C∞X −→ X −→ L∞X shows that [X,Y ] = [L∞X,Y ] as required. This implies that
L∞ is a smashing localization with CL∞ =

⋂
k CLk

as required.

The sublattice Ls of the Bousfield lattice is not closed under countable joins.
Indeed, in the category of spectra, the join of the smashing Bousfield classes 〈E(n)〉
is the harmonic Bousfield class, which is not smashing.

The situation is even better for finite localizations, as expressed by the following
result.

Proposition 3.8.3. Let C be an algebraic stable homotopy category, and let Lf be
the collection of Bousfield classes of the form 〈LfA〉, where LfA is a finite localization
functor. Then Lf is closed under finite joins and arbitrary meets. It is a distributive
lattice, antiisomorphic to the lattice of G-ideals of small objects (which is a set
rather than a proper class).

Proof. Let F be the category of small objects in C, and L′f the collection of G-ideals
of F. This is clearly a lattice with arbitrary meets (given by intersection) and joins
(given by taking the G-ideal generated by the union). As C is algebraic, there is
only a set of small objects up to isomorphism, so L′f is a set. Suppose that A ∈ L′f .
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Because A is a G-ideal, it is easy to see that loc〈A〉 = locid〈A〉. Theorem 3.3.3
gives a smashing localization functor LfA with

〈LfAS〉 = CLf
A

= loc〈A〉⊥

and

ker(LfA) = loc〈A〉.
Moreover, it tells us that loc〈A〉 ∩ F = A. It follows directly that the map j : A 7→
〈LfA〉 is an order-reversing map from L′f to the Bousfield lattice L. If we view L

as the opposite of the lattice of closed localizing subcategories, then j becomes the
map A 7→ loc〈A〉, and this makes it easy to see that j sends arbitrary joins to
meets. Also, as A = loc〈A〉 ∩ F, we see that j is a monomorphism. The image is
by definition Lf , so Lf is closed under arbitrary meets.

Now consider two elements A0,A1 of L′f , and write A2 = A0∩A1. We claim that
j(A2) is the join of j(A0) and j(A1) in the Bousfield lattice. It will suffice to show
that loc〈A2〉 = loc〈A0〉∩ loc〈A1〉. It is immediate that loc〈A2〉 ⊆ loc〈A0〉∩ loc〈A1〉.
For the converse, we first recall that small objects in an algebraic stable homotopy
category are G-finite, which implies that W ∧ X ∈ A2 whenever W ∈ A0 and
X ∈ A1 (or in other words, A0 ∧ A1 ⊆ A2). By considering {Z | Z ∧ A1 ⊆
loc〈A2〉}, we conclude that loc〈A0〉 ∧ A1 ⊆ loc〈A2〉. A similar argument then
shows that loc〈A0〉 ∧ loc〈A1〉 ⊆ loc〈A2〉. In particular (if we write Ci for CfAi

) we
have C0S ∧ C1S ∈ loc〈A2〉. If X ∈ loc〈A0〉 ∩ loc〈A1〉 then X = C0X = C1X so
X = X ∧ (C0S ∧ C1S), so X ∈ loc〈A2〉 as required.

This shows that Lf is closed under the lattice operations in Ls, so it is a dis-
tributive lattice.

4. Brown representability

In this section we discuss the representability of homology functors and related
issues. Throughout this section, C will be an algebraic stable homotopy category.

4.1. Brown categories. We begin with the definition of a representable homology
functor and of a Brown category. The first part of the definition below appeared
as Definition 3.6.5, but we repeat it here for convenience.

Definition 4.1.1. Write

π̂0(X) = lim−→ Λ(X)[S,Xα].

This is a homology functor by Corollary 2.3.11. If C is unital algebraic, then
π̂0(X) = π0(X). Given an object X ∈ C, we define

HX(Y ) = π̂0(X ∧ Y ).

This is again a homology functor. There is an obvious natural map HX(Y ) =
HY (X) −→ π0(X ∧ Y ).

A homology functor H on C is representable if there is an object Y of C and
an isomorphism of homology functors HY ' H. Note that this definition is incon-
sistent with the usual categorical terminology, in which a covariant functor is said
to be representable if and only if it is equivalent to a functor of the form [Y,−].
Nonetheless, it is close to the standard usage in stable homotopy theory.

Lemma 4.1.2. If X is small then the natural map HX(Y ) −→ π0(X ∧ Y ) is an
isomorphism.
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Proof. Recall from Theorem 2.1.3 that the subcategory of small objects is closed
under smash products and the duality functor DX = F (X,S).

Suppose that X is small. Then π0(X ∧ Y ) = [DX,Y ] is a homology functor of
Y , by the smallness of DX. When Y is also small, then so is X ∧ Y , so HX(Y ) =
π0(X ∧ Y ). Thus the natural map HX(Y ) −→ π0(X ∧ Y ) is a map of homology
functors which is an isomorphism for small Y , and thus for all Y .

Lemma 4.1.3. There is a natural isomorphism

HX(Y ) ' lim−→ Λ(Y )π0(X ∧ Yα).

Proof. Both sides are homology functors of Y (by Corollary 2.3.11). They are
isomorphic for small Y by Lemma 4.1.2 and the fact that HXY = HYX. Thus,
they are isomorphic for all Y .

We can now define a Brown category.

Definition 4.1.4. A Brown category is an algebraic stable homotopy category C

such that every homology functor is representable and every natural transformation
HX −→ HY of homology functors is induced by a (typically nonunique) mapX −→ Y .

Naturally one would like to be able to tell when an algebraic stable homotopy
category is a Brown category. Neeman shows in [Nee95] that the derived category
of modules over C[x, y] is not a Brown category, although it is a monogenic stable
homotopy category, so it seems that the Brown condition is a genuinely subtle one.

Recall, from Definition 2.3.3, that c(C) denotes the (necessarily infinite) cardi-
nality of the disjoint union of the sets [W,Z]n for all W,Z ∈ G and n ∈ Z.

Theorem 4.1.5. If C is an algebraic stable homotopy category with c(C) = ℵ0,
then C is a Brown category.

Proof. Suppose that C is algebraic and c(C) = ℵ0. Let H : Fop −→ Ab be an exact
functor. We claim that this can be extended to give a cohomology functor defined
on all of C. The proof of this fact is complicated, but it is also the same, mutatis
mutandis, as the proof in [Mar83, Chapter 4] (which in turn follows [Ada71]). We
give a brief outline. First, we define a functor Ĥ : Cop −→ Ab by

Ĥ(Y ) = lim←− Λ(Y )H(Yα).

This converts coproducts to products, minimal weak colimits to limits, and with
considerable work one can show that is exact on a restricted class of cofibrations.
This uses the that fact a countable filtered diagram of nonempty sets and surjections
has nonempty inverse limit; it is here that the countability hypothesis is used. (The
analogous statement is false for an inverse system indexed by the first uncountable
ordinal.) In any case, this restricted exactness suffices to carry through most of the
proof of representability as in Theorem 2.3.2. This gives an object X and a natural
map [Y,X] −→ Ĥ(Y ) which is an equivalence when Y ∈ Σ∗G and thus when Y ∈ F.
Of course, when Y ∈ F we also have Ĥ(Y ) = H(Y ). We may therefore take [−, X]
as an extension of H to all of C.

Now suppose that we have two contravariant exact functors H ′,H ′′ : Fop −→ Ab
and a natural map f : H ′ −→ H ′′. Choose objects X ′, X ′′ representing H ′ and H ′′

as above. Margolis also proves that f arises from a map g : X ′ −→ X ′′.
Now let H : C −→ Ab be a homology functor. By applying the above to H ′ =

H ◦D (where D is the Spanier-Whitehead duality functor), we obtain an object X
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and an equivalence H(Z) = H ′(DZ) = [DZ,X] = X0Z = HX(Z) for small objects
Z. Using Corollary 2.3.11, we see that H(Z) = HX(Z) for all Z, so that H is
representable. The previous paragraph shows that maps are also representable.

In a Brown category, every natural transformation of homology functors is in-
duced by a map of the representing objects, but there may be more than one such
map inducing the same natural transformation.

To investigate this nonuniqueness, we adopt a somewhat abstract approach.
Suppose that C is an algebraic stable homotopy category, and let F be the full
subcategory of small objects. We write F• and F• for the categories of covariant
and contravariant exact functors F −→ Ab. Similarly, we write C• and C• for the
categories of homology and cohomology functors from C to Ab. Composition with
the Spanier-Whitehead duality functor D gives an equivalence F• ' F•, which we
also call D. Restriction gives functors U• : C• −→ F• and U• : C• −→ F•. We also
have functors V• : C −→ C• and V • : C −→ C•, sending X to HX and X0 respectively.
Finally, we define a functor L : F• −→ C• by LH = ĤF. Recall from Section 2.3
that LH(X) is the colimit of H(Y ) for all small objects Y over X.

Note that all of these functors except V• and L are defined on any stable homo-
topy category.

Definition 4.1.6. A map f : X −→ Y in a stable homotopy category C is phantom
if, for all small objects Z and maps g : Z −→ X, the composite f ◦ g is trivial.
Equivalently, f is phantom if and only if U•V •f = 0.

Remark 4.1.7. Margolis [Mar83] calls these maps f -phantom maps; his definition
of phantoms is slightly different.

The phantom maps clearly form an ideal, in the following sense: if f, g : X −→ Y
are phantom, and u : W −→ X and v : Y −→ Z are arbitrary, then f + g, fu and vf
are phantom. We denote the subgroup of [X,Y ] consisting of phantom maps by
P(X,Y ).

The above functors fit into a commutative diagram as follows:

C

C•

C•

F•

F•

¡
¡
¡µ

@
@
@R

-
¾

-

6

?V •

V•

U•

U•

L

D

The following theorem is mainly a compendium of results and definitions that
we have already seen.

Theorem 4.1.8. Suppose that C is a Brown category. Then the functors D, U•
and V • are equivalences, and L is inverse to U•. The functors U• and V• are full
and essentially surjective, and reflect isomorphisms. The kernel of V• (or U•) is a
square-zero ideal. To make some of these claims more explicit :

(a) Any homology functor H on F extends to a homology functor LH on C, unique
up to canonical isomorphism.
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(b) The group of natural maps f : HX −→ HY is isomorphic to [X,Y ]/P(X,Y ). A
map f : X −→ Y is an isomorphism if and only if the induced map f0 : HX −→
HY is an isomorphism.

(c) Any homology functor H on C is equivalent to HX for some X ∈ C. The
representing object X is unique up to isomorphism, but the isomorphism is
only canonical up to the addition of a phantom map.

(d) The composite of any two phantom maps is zero.

Proof. The functor V • is an equivalence in any stable homotopy category. Indeed,
Yoneda’s lemma tells us V • is full and faithful, and since every cohomology func-
tor is representable, it is essentially surjective. Thus V • is an equivalence. As
D : Fop −→ F satisfies D2 ' 1, we see that D : F• −→ F• is an equivalence in any
stable homotopy category. It follows easily from Propositions 2.3.9 and 2.3.1 that
U• and L are inverse equivalences in any algebraic stable homotopy category.

In view of the above and our commutative diagram of functors, our claims about
U• are equivalent to the corresponding claims about V•. Now V• is full and essen-
tially surjective by the definition of a Brown category. It is also clear that the kernel
of V• is the same as that of U•V •, which is the ideal of phantoms. In other words,
a map f : X −→ Y induces the zero map HX −→ HY if and only if f is phantom.

We next observe that V• reflects isomorphisms. In other words, if a map f : X −→
Y is such that f0 : HX −→ HY is an isomorphism, then f is an isomorphism. Indeed,
for Z ∈ Σ∗G we observe that f gives an isomorphism between [Z,X] = HXDZ and
[Z, Y ] = HYDZ, so the claim follows by Lemma 1.4.5.

This leaves only the claim that the composite of two phantom maps is zero. We
will prove this as Theorem 4.2.5 below.

4.2. Minimal weak colimits. The goal of this section is to show that an algebraic
stable homotopy category is a Brown category if and only if all filtered minimal
weak colimits of small objects exist. We use this, following Christensen [Chr], to
show that the composite of any two phantom maps in a Brown category is trivial.

We begin by restating and proving Proposition 2.2.2, which gives an easier cri-
terion for a weak colimit to be minimal in a Brown category.

Proposition 4.2.1. Let C be a Brown category. Suppose that I is a small filtered
category, i 7→ Xi is a functor from I to C, and (τi : Xi −→ X) is a weak colimit.
Then X is the minimal weak colimit if and only if the induced map

lim−→[Z,Xi]∗ −→ [Z,X]∗
is an isomorphism for all Z ∈ G.

Proof. Suppose that X is the minimal weak colimit, and that Z ∈ G. Then Z is
small, so [ΣkZ,−] is a homology theory. It follows immediately that

lim−→[Z,Xi]∗ −→ [Z,X]∗
is an isomorphism.

Conversely, suppose that the above map is an isomorphism for all Z ∈ G. We
need to prove that lim−→ iH(Xi) = H(X) for all homology functors H on C. As C is
a Brown category, we need only show that

HU (X) = lim−→ iHU (Xi)

for all U ∈ C. The left hand side is the same as HX(U), and the right hand side
is lim−→ iHXi(U). These are both homology functors of U (using the exactness of
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filtered colimits). By hypothesis, they agree when U ∈ G, so they agree for all
U .

We also recall the following lemma, whose proof we have given in Remark 2.3.18.

Lemma 4.2.2. Suppose that C is an algebraic stable homotopy category, and X is
an object of C. If the diagram Λ(X) of small objects over X has a minimal weak
colimit Y , then X ' Y .

We can now prove the main theorem of this section.

Theorem 4.2.3. Let C be an algebraic stable homotopy category, and F ⊂ C the
subcategory of small objects. Then C is a Brown category if and only if any functor
i 7→ Xi from a small filtered category I to F has a minimal weak colimit.

Proof. First suppose that C is a Brown category. Just as in [Mar83, Theorem 5.13],
we define a functor H : C −→ Ab by

H(U) = lim−→ I HXi(U) = lim−→ I π0(U ∧Xi).

Here the latter isomorphism holds since Xi is small. Then H is a homology functor,
since filtered colimits of exact sequences of Abelian groups are exact. Let X be the
representing object for H. There are maps Xi

fi−→ X induced by including one
factor into the colimit. This map is uniquely determined up to a phantom map,
but since Xi is small, there are no phantom maps out of Xi. By the uniqueness, the
maps fi are compatible. That is, given a map s : i −→ j in I, we have fj ◦Xs = fi.

Now if we have a compatible family of maps gi : Xi −→ Y , we get a natural
transformation of homology functors HX −→ HY since HX is just the colimit of the
HXi . This map is induced by a map X

h−→ Y , which is unique up to a phantom
map. Again, since the Xi are small, we must have hfi = gi. Thus X is a weak
colimit.

To see that X is the minimal weak colimit, suppose that Z ∈ Σ∗G. It suffices to
show that lim−→[Z,Xi] = [Z,X] by Proposition 4.2.1. But

lim−→[Z,Xi] = lim−→HXi(DZ) = HX(DZ) = [Z,X]

as required.
Now suppose that C is algebraic, and every filtered diagram of small objects has

a minimal weak colimit. To show that C is a Brown category, we will work with
contravariant exact functors on F (the class of small objects) rather than homology
functors. This is equivalent to working with homology functors by the argument of
Theorem 4.1.5 or Theorem 4.1.8. So, suppose that we have a contravariant exact
functor H : Fop −→ Ab. We will show that H is representable. Define a category IH
whose objects are pairs (Z, z) where Z ∈ F and z ∈ H(Z). A map (Z, z) −→ (Z ′, z′)
is a map f : Z −→ Z ′ such that H(f)(z′) = z. Since the class of small objects is
essentially small, and H(Z) is a set for each Z, IH is also essentially small. We
claim that IH is filtered. Indeed, given two objects (Z, z) and (Z ′, z′), we have
the obvious morphisms (Z, z) −→ (Z q Z ′, (z, z′)) ←− (Z ′, z′). Also, if we have
two morphisms f, g : (Z, z) −→ (Z ′, z′), we let h : Z ′ −→ W denote the cofiber of
f − g. Since H(f − g)(z′) = 0, there is a w ∈ H(W ) such that H(h)(w) = z′, so a
morphism h : (Z ′, z′) −→ (W,w) coequalizing f and g.

We have an evident functor IH −→ F that takes (Z, z) to Z. Let X denote the
minimal weak colimit of this functor. Then we have compatible maps i(Z,z) : Z −→ X
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for all objects (Z, z) of IH . We will construct a natural equivalence X0 −→ H on F.
To do so, recall that we can extend H to C by defining

Ĥ(Y ) = lim←− Λ(Y )H(Yα).

(This is not generally a cohomology functor on C.) We define a canonical class
x ∈ Ĥ(X) as follows. Since X is a minimal weak colimit, a map W

g−→ X in Λ(X)
factors as g = i(Z,z) ◦ g′ for some object (Z, z) of IH and some map g′ : W −→ Z.
We can then define x(W,g) = H(g′)(z) ∈ H(W ). Then x(W,g) is well-defined and
defines a class x ∈ Ĥ(X).

We then have a natural transformation X0 −→ Ĥ that takes a map W
g−→ X

to Ĥ(g)(x). To see that this natural transformation is always surjective, suppose
w ∈ Ĥ(W ). Then for each (Zα −→ W ) ∈ Λ(W ), we have a class wα ∈ H(Zα), and
the wα are compatible. This gives us compatible maps i(Zα,wα) : Z −→ X. Since W
is a weak colimit of Λ(W ), by Lemma 4.2.2, there is a map W

g−→ X extending the
i(Zα,wα). It is then easy to see that Ĥ(g)(x) = w.

Now suppose that W is small, and we have a map g : W −→ X such that
Ĥ(g)(x) = 0. Then there is an object (Z, z) of IH and a map g′ : W −→ Z such that
g = i(Z,z) ◦ g′. In particular, H(g′)(z) = 0, so g′ is a morphism in the category IH
from (W, 0) to (Z, z). Thus we have i(W,0) = i(Z,z) ◦ g′. Thus g = i(W,0). On the
other hand, the zero map is a morphism in IH from (W, 0) to itself, and from this
it follows that i(W,0) is trivial.

Therefore, the natural transformation X0 −→ Ĥ is an isomorphism on F. Thus
every exact contravariant functor on F is representable. To complete the proof
that C is a Brown category, we must show that any natural transformation of
contravariant exact functors on F is representable. So suppose that H and K are
exact contravariant functors on F, and τ : H −→ K is a natural transformation. We
then get a functor IH −→ IK that takes (Z, z) to (Z, τ(z)). If we let X denote
the minimal weak colimit of IH −→ F, and Y denote the minimal weak colimit of
IK −→ F, then we get a (non-unique) induced map X −→ Y . This is the required
representation of τ .

Theorem 4.2.4. Suppose that C is a Brown category. Then any object X ∈ C is
the minimal weak colimit of the diagram Λ(X) (defined in Definition 2.3.7).

Proof. This is immediate from Lemma 4.2.2 and Theorem 4.2.3.

The following result is well-known in the case of spectra with countable homotopy
groups, or with a slightly different notion of phantom maps defined in terms of finite-
dimensional spectra rather than finite spectra. However, it seems less well-known
in full generality. It is probably due to Boardman, but we learned how to prove it
from Dan Christensen [Chr]. It is also proved in [Nee95].

Theorem 4.2.5. In a Brown category C, the composite of two phantom maps is
trivial.

Proof. We have seen that X is the minimal weak colimit of Λ(X). Let us write Xα

for a generic object of Λ(X), and u : Xα −→ Xβ for a generic morphism.
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As in the proof of Proposition 2.2.4, we have a non-minimal weak colimit C,
defined as the cofiber in a sequence

∐
u

Xα −→
∐
α

Xα −→ C.

Let F denote the fiber of the evident map
∐
αXα −→ X. Because X is the

minimal weak colimit, we get a split monomorphism a : X −→ C of objects under∐
αXα (using part (c) of 2.2.4). Applying the octahedral axiom to the morphisms∐
αXα −→ X

a−→ C, we get a diagram as follows.





Á




Á





À

J
J

J
Ĵ

J
J

J
Ĵ

J
J

J
J]

¾¾

-

J
J












-

J
J

J
J

J
J

J
JJ


À

c

c

c

F X E

∐
αXα C

∐
uXα

0

a

Because X −→ C is a split monomorphism, we see that E −→ X is zero, so E −→ F
is zero, so F −→ ∐

uXα is a split monomorphism, so F is a retract of
∐
uXα. As∐

uXα is a coproduct of finite objects, we see that there can be no phantom maps
out of F .

We have just put an arbitrary object X in a cofiber sequence

F
u−→

∐
α

Xα
v−→ X

w−→ ΣF

where there are no phantom maps out of F or
∐
αXα. Now if g : X −→ Y is a

phantom map, then gv = 0 so g = f ′w, say. If h : Y −→ Z is another phantom map,
then hf ′ is a phantom map out of ΣF , so is trivial. Thus hg = hf ′w is trivial as
well.

4.3. Smashing localizations of Brown categories. In this section we show
that a smashing localization of a Brown category is again a Brown category, and
we also prove some slightly sharper statements.

Let C be a Brown category, and L a smashing localization functor on C. As usual,
we write C for the corresponding colocalization functor, and J for the inclusion of CL
in C. We know by Theorem 3.5.2 that CL is an algebraic stable homotopy category,
and that L : C −→ CL is a geometric morphism that preserves small objects.

Proposition 4.3.1. Let X be an object of CL. Then X is the minimal weak colimit
of the objects LYα, where Yα runs over Λ(JX). Moreover, X is small in CL if and
only if it is a retract of LY for some small object Y in C.

Proof. Suppose that X is small in CL. By Theorem 4.2.4, we see that JX is
the minimal weak colimit of the Yα. As L preserves minimal weak colimits (by
Theorem 3.5.1), we see that X = LJX is the minimal weak colimit of the LYα.
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Now suppose that X is small. As [X,−] is a homology theory on CL, we see that
[X,X] = lim−→ α[X,LYα]. This means that the identity map of X factors through
some LYα, so that X is a retract of LYα, and Yα is small in C.

Conversely, we know that L preserves smallness (by Theorem 3.5.2), so any
retract of a localization of a small object is small.

We now write PL for the ideal of phantoms in CL. We let C/P be the quo-
tient category of C in which the phantoms are sent to zero, so that V• induces an
equivalence C/P ' C•.

Proposition 4.3.2. Consider objects X ∈ C and U ∈ CL. Then a map f : X −→
JU is phantom in C if and only if the adjoint map g : LX −→ U is phantom in CL.
Thus, the functors L and J induce an adjoint pair of functors between C/P and
CL/PL.

Proof. Suppose that f is phantom. Consider a map u : W −→ LX, where W is small
in CL. We can write X as the minimal weak colimit of a diagram of small objects
Xα in C, so LX is the minimal weak colimit of the LXα, so u factors through some
LXα. However, LXα −→ LX

g−→ U is adjoint to Xα −→ X
f−→ JU , which is zero as

f is phantom. Thus gu = 0 for all such u, which means that g is phantom.
Conversely, suppose that g is phantom. For any small Z in C and any map

Z −→ X, the composite Z −→ X
f−→ JU is adjoint to LZ −→ LX

g−→ U , which is zero
as LZ is small in CL. This means that f is phantom.

The second statement of the proposition follows easily.

Given an object X ∈ C, we write HX for the represented homology functor
C −→ Ab, defined using small objects in C. Given an object U ∈ CL, we write HL

U

for the represented homology functor CL −→ Ab, defined using small objects in CL.

Proposition 4.3.3. For objects X ∈ C and U ∈ CL, there are natural isomor-
phisms HX ◦ J = HL

LX and HL
U ◦ L = HJU .

Proof. We first show that HX ◦ J = HL
LX . Consider a small object Z in C. Then

LZ is small in CL, so HL
LXLZ = π0(LX ∧LZ) = π0(LX ∧Z) (because LX ∧LZ =

LX ∧ LS ∧ Z = LLX ∧ Z = LX ∧ Z). On the other hand,

HXJLZ = π̂0(X ∧ LS ∧ Z) = π̂0(LX ∧ Z) = π0(LX ∧ Z)

(using the smallness of Z). There is thus an isomorphism HXJLZ = HL
LXLZ,

natural in Z. Moreover, we can write any W ∈ CL as the minimal weak colimit
over Λ(JW ) of the objects LZα, in a functorial way; it follows that there is an
isomorphism

HXJW = HL
LXW = lim−→ Λ(JW )π0(LX ∧ Zα),

natural in W . Thus HX ◦ J = HL
LX as claimed.

We now show that HL
U ◦ L = HJU . It is enough to check this on small objects

of C; let Z be such an object. Then HJUZ = π0(U ∧ Z). Moreover, LZ is small in
CL, so HL

ULZ = π0(U ∧ LZ). As U ∧ LZ = U ∧ LS ∧ Z = U ∧ Z, this is the same
as HJUZ, as required.

Theorem 4.3.4. Let C be a Brown category and L a smashing localization functor.
Then CL is a Brown category. Moreover, there is a commutative diagram of functors
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as follows:

CL/PL
J−−−−→ C/P

L−−−−→ CL/PL

V L
•

y V•

y
yV L

•

CL• −−−−→
L∗

C• −−−−→
J∗

CL•

Here V L• is the functor U 7→ HL
U , L∗ is the functor H 7→ H ◦ L, and everything

else should be clear. The vertical functors are equivalences, the functors L∗ and
J are full and faithful, and the functors L and J∗ are essentially surjective. The
horizontal composites are identity functors.

Proof. Proposition 4.3.2 tells us that the functors marked J and L are well-defined.
Proposition 4.3.3 says that the squares commute up to natural isomorphism. As
LJ = 1, the horizontal composites are identity functors. It follows that L∗ and
J are full and faithful, and that L and J∗ are essentially surjective. As C is a
Brown category, the functor V• is an equivalence. As three sides of the left hand
square are full and faithful, it follows that the fourth side V L• is full and faithful.
As V L• ◦ L = J∗ ◦ V• is essentially surjective, the same is true of V L• . Thus V L• is
an equivalence, as claimed.

4.4. A topology on [X,Y ]. In this brief section, we point out that there is a
natural topology on the morphisms in an algebraic stable homotopy category C,
which enriches the category over topological Abelian groups.

Recall that a linear topology on an Abelian group A is a topology such that
the cosets of open subgroups form a basis of open sets. Given a family {Ai} of
subgroups of A, there is a unique linear topology on A such that subgroups Ai are
open and form a basis of neighborhoods of 0. We write A′ ≤O A to indicate that
A′ is an open subgroup of A.

There is a natural map α : A −→ lim←−A′≤OAA/A
′. We shall say that A is complete

if α is surjective. Moreover, A is Hausdorff if and only if α is injective, if and only
if the intersection of the open subgroups is zero, if and only if {0} is closed.

Fix two objects X and Y of C. For any map F
f−→ X from a small object to X,

let Uf = Uf (X,Y ) denote the kernel of f∗ : [X,Y ] −→ [F, Y ]. We give [X,Y ] the
linear topology determined by the subgroups Uf , and refer to this as the natural
topology .

Proposition 4.4.1. Let C be an algebraic stable homotopy category.
(a) The composition map [X,Y ]× [Y,Z] −→ [X,Z] is continuous.
(b) Any pair of maps X ′ −→ X and Y −→ Y ′ induces a continuous map [X,Y ] −→

[X ′, Y ′].
(c) If X is small then [X,Y ] is discrete.
(d) The closure of 0 in [X,Y ] is the set of phantom maps, so [X,Y ] is Hausdorff

if and only if P(X,Y ) = 0.
(e) If C is a Brown category then [X,Y ] is always complete.
(f) [

∐
iXi, Y ] is homeomorphic to

∏
i[Xi, Y ] with the product topology, but the

natural topology on [X,
∏
Yi] is strictly finer than the product topology in

general.

Proof. (a): Call the composition map γ. Suppose that we have maps X u−→ Y
v−→ Z,

and a neighborhood vu+ Uf of γ(u, v) in [X,Z] (so f : F −→ X for some small F ).
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Then one sees easily that γ((u+Uf )× (v+Uuf )) ⊆ vu+Uf , so that γ is continuous
at (u, v).

(b): This follows immediately from (a).
(c): Immediate from the definitions.
(d): Immediate from the definitions.
(e): This is equivalent to the statement that X is a weak colimit of Λ(X), which

is Theorem 4.2.4.
(f): The first part is easy to see using the fact that any map from a small object

to a coproduct factors through a finite sub-coproduct. For the second part, suppose
that we have a map f : F −→ X from a small object F to X. Then

Uf (X,
∏

i

Yi) =
∏

i

Uf (X,Yi).

This product is therefore open in the natural topology, but rarely in the product
topology.

This construction gives an enrichment of C over topological Abelian groups. This
becomes very important in the K(n)-local category, where even homotopy groups
can have interesting topology [HSS]. If S is small then many of the groups which
arise are discrete.

We should point out that Brown representability is not compatible with this
enrichment. That is, there are cohomology functors to the category of topological
Abelian groups which are not representable. Indeed, given an infinite family {Yi}
of objects in a stable homotopy category C, define a cohomology functor H by
H(X) =

∏
[X,Yi] with the product topology. This functor cannot be representable,

since if it were, H(X) would have to have the discrete topology for all small X. In
general, a cohomology functor H is representable if and only if, for all X, a subset
U of H(X) is a neighborhood of 0 if and only if there exists a small object F and
a map f : F −→ X such that U ⊇ H(f)−1(0).

5. Nilpotence and thick subcategories

In this section we present analogues of the nilpotence theorems of Devinatz,
Hopkins and Smith [DHS88], and the thick subcategory theorems of Hopkins and
Smith [HS]. None of our theorems imply the theorems just mentioned; we require
stronger finiteness conditions than are available in their context. Our nilpotence
theorems require a unital algebraic stable homotopy category C, but our thick sub-
category theorems will hold in an arbitrary algebraic stable homotopy category. We
allow C to be multigraded, and we will often consider graded maps—see Section 1.3.

5.1. A näıve nilpotence theorem. In this section we prove a nilpotence theorem.
We first present some miscellaneous definitions.

Definition 5.1.1.

(a) We write X(m) = X ∧ · · · ∧X (with m factors), and similarly for maps.
(b) We say that a graded map f : X −→ Y is smash nilpotent if f (m) : X(m) −→

Y (m) is null for mÀ 0.
(c) Suppose that we have a map f : S −→ Σ−dX. We then get a sequence

S = X(0) f−→ Σ−dX(1) f∧1−−→ Σ−2dX(2) . . . .(5.1.1)
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We write X(∞) for the sequential colimit, and f (∞) for the evident map
S −→ X(∞).

(d) We say that a graded self-map f : X −→ X is composition nilpotent or just
nilpotent if the mth composition power fm : X −→ X is null for mÀ 0.

Here is a rather generic nilpotence theorem. See Definitions 2.1.1 and 3.6.1 for
the relevant definitions.

Theorem 5.1.2 (Nilpotence theorem I). Let C be a unital algebraic stable homo-
topy category. Suppose that we have objects {K(n) | n ∈ I} (for some indexing
set I), so that

〈S〉 =
∐

n∈I
〈K(n)〉.(5.1.2)

Then the objects K(n) detect nilpotence:

(a) Let F be small, and X arbitrary. A graded map f : F −→ X is smash nilpotent
if 1K(n) ∧ f = 0 for all n.

(b) Let X be a small object. A graded map f : X −→ X is nilpotent if 1K(n)∧f = 0
for all n.

(c) Suppose that each K(n) is monoidal, and let X be a small object. A graded
map f : X −→ X is nilpotent if and only if for each n, the map K(n)∗(f) is
nilpotent.

Equation (5.1.2) simply means that whenever K(n) ∧X = 0 for all n, we have
X = 0. For part (c), we can always replaceK(n) by a Bousfield-equivalent monoidal
object, using Lemma 3.6.8. If the objects K(n) are ring objects (Definition 3.7.1),
then we have results more like those in [HS].

Theorem 5.1.3 (Nilpotence theorem II). Suppose, in addition, that each K(n) is
a monoidal ring object.

(a) Let R be a ring object. An element α ∈ π∗R is nilpotent if and only if
K(n)∗(α) is nilpotent for all n.

(b) Let X be a small object. A graded map f : S −→ X is smash nilpotent if
K(n)∗(f) = 0 for all n.

Remark 5.1.4.

(a) Neither of these results implies the nilpotence theorems of [DHS88] and [HS],
because Equation (5.1.2) does not hold in the homotopy category of spectra,
with MU , BP , or the wedge of the Morava K-theories on the right hand
side. Theorems 5.1.2 and 5.1.3 seem to be useful mainly in a stable homotopy
category satisfying certain strong finiteness conditions.

(b) Note that Theorem 5.1.3(b) is weaker than the smash nilpotence result in [HS].
Hopkins and Smith’s theorem applies to maps f : F −→ X where F is small.
They reduce to the case F = S using Spanier-Whitehead duality to convert
f to a map f̂ : S −→ DF ∧ X, and the Künneth isomorphism for K(n)∗ to
see that K(n)∗(f) = 0 ⇒ K(n)∗(f̂) = 0. This application of the Künneth
isomorphism seems to be necessary, and one cannot expect it to hold in an
arbitrary stable homotopy category.

We need three lemmas before we begin the proofs.
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Lemma 5.1.5. (a) A graded map f : S −→ X is smash nilpotent if and only if
X(∞) is contractible.

(b) If f : S −→ X and E are such that 1E ∧ f = 0, then E ∧X(∞) = 0.

Proof. (a): Certainly if f is smash nilpotent, then X(∞) is contractible. Conversely,
we have

X(∞) ' 0⇒ [S,X(∞)]∗ = 0

⇒ S −→ X −→ X(2) −→ . . . −→ X(∞) is null

⇒ S −→ X −→ X ∧X −→ . . . −→ X(n) is null for nÀ 0
⇒ f is smash nilpotent.

(b): Smash the diagram (5.1.1) with E. The sequential colimit is E ∧X(∞), and
each map in the diagram is null.

Lemma 5.1.6. Suppose that f : ΣdX −→ X is a graded self-map of a small ob-
ject X. Recall (Definition 2.2.3) that f−1X denotes the sequential colimit of the

sequence X
f−→ Σ−dX −→ Σ−2dX −→ . . . . Let E ∈ C be any object.

(a) f is nilpotent if and only if f−1X = 0.
(b) If E∗(f) is nilpotent, then E∗(f−1X) = 0.

Proof. (a): Certainly if f is nilpotent, then f−1X is trivial. On the other hand,
since X is small we have [X, f−1X] = lim−→[X,X], where the maps in the colimit are
composition with f . Hence if f−1X = 0, the identity map of X must be 0 at a
finite stage of the colimit. In other words, f must be nilpotent.

(b): If E∗(f) is nilpotent, say E∗(fr) = 0, then the maps in the sequence

E ∧X 1∧fr

−−−→ E ∧X 1∧fr

−−−→ . . .

all induce zero on the homology functor [S,−]∗. Hence the minimal weak colimit
is S∗-acyclic. In other words, E∗(f−1X) = 0.

Proof of Theorem 5.1.2. For part (a), we use Lemma 5.1.5. First, using Spanier-
Whitehead duality, we can reduce to the case where F = S, so assume we have a
map f : S −→ X. Let X(∞) be as above. By assumption, 1K(n) ∧ f = 0 for all n,
so K(n) ∧X(∞) = 0 for all n. As 〈S〉 =

∐
n 〈K(n)〉, we conclude that X(∞) = 0.

Thus f is smash nilpotent.
Part (b) follows from (a), as in [HS].
For part (c), we use Lemma 5.1.6, so we have to show that f−1X = 0. The

hypothesis implies immediately that K(n)∗f−1X = 0; as K(n) is monoidal, we see
that K(n) ∧ f−1X = 0. As this holds for all n, we have f−1X = 0.

Suppose that R is a ring object. Fix α ∈ π∗(R), and let α̂ denote the “multipli-
cation by α” self-map µ ◦ (α ∧ 1) of R.

Lemma 5.1.7. With notation as above, α is nilpotent in π∗(R) if and only if
α̂−1R = 0.

Proof. Because C is unital algebraic, we know that α̂−1R = 0 if and only if

π∗(α̂−1R ∧DZ) = 0
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for all Z ∈ G. The right hand side is just the direct limit of the R-module π∗(R∧DZ)
under left multiplication by α. This vanishes if α is nilpotent, and the converse
holds by the special case Z = S.

Proof of Theorem 5.1.3. Part (a) follows from Lemma 5.1.7—if β = K(n)∗(α) is
nilpotent, then

K(n) ∧ α̂−1R = β̂−1(K(n) ∧R) = 0.

If this holds for all n, then by the decomposition (5.1.2), we see that α̂−1R = 0, so
α is nilpotent.

(b): Let η : S −→ K(n) denote the unit map, and µ : K(n) ∧K(n) −→ K(n) the
product. Suppose that f : S −→ X induces zero on K(n)∗; then the composite S

η−→
K(n)

1∧f−−→ K(n)∧X is null. But K(n)
1∧f−−→ K(n)∧X factors as K(n)∧S (1∧f)◦η−−−−−→

K(n)∧K(n)∧X µ∧1−−→ K(n)∧X, and so is null. Now apply Theorem 5.1.2(b).

5.2. A thick subcategory theorem. In this section we present a classification
of the G-ideals of small objects in an algebraic stable homotopy category; the basic
argument is of course inspired by [HS], and a few of the details are drawn from [Ric].

Definition 5.2.1. Suppose that C is a stable homotopy category. Fix a collection
of objects {K(n) | n ∈ I} (for some indexing set I). Given an object X, we
define the support of X (with respect to the K(n)’s) to be the set supp(X) =
{n | K(n) ∧X 6= 0}. Similarly, given a replete subcategory D, define the support
of D to be the set supp(D) =

⋃
X∈D suppX. We say that the K(n)’s determine

G-ideals if whenever D is a G-ideal of small objects, we have

D = {X | X finite, supp(X) ⊆ supp(D)}.
Theorem 5.2.2. Suppose that C is an algebraic stable homotopy category, and that
we have objects {K(n)} such that

1. If R is a nontrivial ring object, then there is some n such that K(n) ∧ R is
nontrivial (in other words, the objects K(n) detect ring objects).

2. If X is finite and K(n) ∧X 6= 0, then 〈K(n)〉 = 〈K(n) ∧X〉.
Then the objects K(n) determine G-ideals.

Note that we always have 〈K(n)〉 ≥ 〈K(n) ∧X〉. If C is monogenic, then every
thick subcategory is a G-ideal, and vice versa, so we get a classification of thick
subcategories in this setting.

Note as well that any collection of ring objects that detect nilpotence, as in
Theorem 5.1.3, automatically detects ring objects. Theorem 5.2.2 tells us what else
we need to know to get a thick subcategory theorem from a nilpotence theorem. In
particular, we recover the Hopkins-Smith thick subcategory theorem [HS] from the
Devinatz-Hopkins-Smith nilpotence theorem [DHS88].

Corollary 5.2.3. Suppose that C is monogenic, so that thick subcategories are the
same as G-ideals. If the family {K(n)} detects ring objects and each K(n) satisfies
one of the following conditions, then the K(n)’s determine thick subcategories:

(i) For X and Y arbitrary objects, K(n)∗(X∧Y ) = 0 if and only if K(n)∗(X) = 0
or K(n)∗(Y ) = 0.

(ii) K(n)∗ satisfies a Künneth isomorphism: K(n)∗(X ∧ Y ) ' K(n)∗(X)⊗K(n)∗
K(n)∗(Y ).
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(iii) K(n) is a skew field object (Definition 3.7.1).
(iv) 〈K(n)〉 is a minimal nonzero Bousfield class.

Proof of Theorem 5.2.2. Suppose that D is an G-ideal, and supp(Y ) ⊆ supp(D).
We need to show that Y ∈ D. Note first that Y and F (Y, Y ) = Y ∧DY generate
the same thick subcategory (by Lemma A.2.6), so we can replace Y by the ring
object F (Y, Y ). We therefore assume that Y is a ring object.

Since C is algebraic, every G-ideal of small objects is essentially small, so we can
use the finite localization functors of Definition 3.3.4. Thus, it suffices to show that
Y ∧LfDS = LfDY = 0. Fix n. If K(n)∧Y = 0, then certainly K(n)∧Y ∧LfDS = 0.
If K(n) ∧ Y 6= 0, then (because supp(Y ) ⊆ supp(D)) there is some X ∈ D such
that K(n) ∧X 6= 0. Since X ∧ LfDS = 0, we have (K(n) ∧X) ∧ (Y ∧ LfDS) = 0;
and since 〈K(n)〉 = 〈K(n) ∧X〉, we have K(n) ∧ (Y ∧ LfDS) = 0. So for all n, we
have K(n)∧ (Y ∧LfDS) = 0; hence, since Y ∧LfDS is a ring object, it is trivial.

6. Noetherian stable homotopy categories

In this section we consider a multigraded stable homotopy category C—see Sec-
tion 1.3. We shall assume that C is monogenic in the multigraded sense.

Definition 6.0.1. If C is a monogenic stable homotopy category such that π∗(S) =
[S, S]∗ is Noetherian (as a multigraded-commutative ring), then we say that C is a
Noetherian stable homotopy category.

We shall use a number of standard theorems that are proved in the literature
for ungraded commutative rings. These will all apply to multigraded-commutative
rings, when suitably interpreted. On the one hand, one has to keep track of the
grading, but this is trivial if we insist that everything in sight be homogeneous.
On the other hand, we need to think about the fact that odd-dimensional elements
anticommute instead of commuting. If 2 is invertible in R, then all odd-dimensional
elements square to zero and thus lie in every prime ideal, and this makes everything
work as expected. If we work modulo 2, then R is strictly commutative. By
combining these observations, we see that everything works as expected integrally.
The very cautious reader may wish to assume thatR is concentrated in even degrees,
as we could not honestly claim to have checked every detail otherwise.

The derived category of a Noetherian ring is a Noetherian stable homotopy
category. If B is a finite-dimensional commutative Hopf algebra, then C(B) is often
a Noetherian stable homotopy category (see Section 9.5). In particular, this holds
if B = (kG)∗ with G a finite p-group and char(k) = p, or if B is graded and
connected.

For the rest of this section, we assume that C is a Noetherian stable homotopy
category. We write R for the graded ring π∗S = [S, S]∗. We also let SpecR
(respectively, MaxR) denote the space of prime (maximal) homogeneous ideals ofR,
under the Zariski topology. Given an R-module M and a prime ideal p ∈ SpecR we
write the localization, completion and completed localization of M at p as follows:

Mp = (R \ p)−1M

M∧
p = lim←− kM/pkM

M¦
p = (Mp)∧p
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(We need M¦
p because M∧

p need not be p-local in general. There does not seem to
be a standard notation for this, so we have invented one.)

We also write E(R/p) for the injective hull of R/p, which is well-defined up to
non-canonical isomorphism.

We record some basic facts from commutative algebra.

Proposition 6.0.2. R¦p and Rp are flat over R, and R¦p is faithfully flat over Rp.
For any M , we have Mp = Rp ⊗RM ; hence M 7→Mp is an exact functor. If M is
finitely generated, we have M∧

p = R∧p ⊗RM and M¦
p = R¦p ⊗RM .

Proposition 6.0.3. A module M is zero if and only if Mm = 0 for all m ∈ Max(R),
if and only if Mp = 0 for all p ∈ SpecR.

The following less well-known result is proved in [Mat89, Section 18].

Proposition 6.0.4. E(R/p) is a p-torsion module; more precisely, for all x ∈
E(R/p), there is a t ≥ 1 so that ptx = 0. The localizations of E(R/p) are

E(R/p)q =

{
E(R/p) p ≤ q,

0 otherwise.

Moreover, there is a natural isomorphism R¦p = HomR(E(R/p), E(R/p))

The following fact is standard, but seldom stated explicitly.

Proposition 6.0.5. In a Noetherian ring, any nonempty collection of prime ideals
has a minimal element.

Proof. If R is a Noetherian local ring, then it has finite Krull dimension (bounded
by dimR/m m/m2). Given an arbitrary Noetherian ring R, and a collection T of
prime ideals, choose p ∈ T such that the Krull dimension of Rp (also called the
height of p) is minimal. It is easy to see that any q < p has strictly smaller height,
so p is minimal in T .

We now start to apply these results to stable homotopy theory.

Proposition 6.0.6. If X and Y are small objects in a Noetherian stable homotopy
category C, then [X,Y ]∗ is finitely generated as a module over R = π∗S.

Proof. By Spanier-Whitehead duality it suffices to show that if Y is small, then
π∗Y is a finitely generated R-module. This is proved by showing that the category
of all Y such that π∗Y is a finitely generated R-module is thick, which follows from
well-known properties of finitely-generated modules over a Noetherian ring.

For example, if X is small, then the noncommutative ring [X,X]∗ is finitely
generated as a module over the image of R −→ [X,X]∗.

A basic technique in Noetherian ring theory is to work one prime at a time
by localizing. Fortunately, we have an analogous procedure in Noetherian stable
homotopy theory.

Proposition 6.0.7. For each p ∈ SpecR, there is a ring object Sp such that
π∗(Sp ∧ X) = π∗(X)p. Moreover, the functor Lp : X 7→ Xp = Sp ∧ X is an al-
gebraic localization.

Proof. This is an immediate consequence of Theorem 3.3.7 and Proposition 3.1.8.
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It follows that the category of local objects, which we denote Cp, is again a
Noetherian stable homotopy category. We call it the p-localization of C.

Now we define a number of other objects associated to a prime ideal p ≤ R = π∗S.

Definition 6.0.8. Fix a prime ideal p ≤ R.
(a) S/p: Write the prime ideal p as p = (y1, . . . , yn). Define S/yi as the cofiber

of the (graded) map S
yi−→ S, and let

S/p = S/y1 ∧ · · · ∧ S/yn.
Note that S/p depends on the choice of generators {yi}. We shall show in
Lemma 6.0.9 that any two choices generate the same thick subcategory, and
thus have the same Bousfield class.

(b) K(p): Let K(p) = Sp ∧ S/p = (S/p)p. Using Lemma A.2.6, we see that this
generates the same thick subcategory as the ring object F (K(p),K(p)) =
Sp ∧D(S/p) ∧ S/p.

(c) Ip: As E(R/p) is an injective module, the functor

X 7→ HomR(π∗X,E(R/p))

is a cohomology functor. We let Ip denote the representing object. Note that
π∗Ip = E(R/p).

(d) S¦p : Define S¦p = F (Ip, Ip). Note that π∗S¦p = R¦p, by Proposition 6.0.4.
(e) MpS: Let Lp be the p-localization functor; this is a finite localization, and

the corresponding subcategory of finite acyclics is

{Z ∈ F | π∗(Z)p = 0} = {Z ∈ F | π∗(Z)q = 0 for all q ≤ p}.
We let L<p be the finite localization determined by the set of small objects
Z with π∗(Z)q = 0 for q < p. There is then a unique morphism Lp −→ L<p,
and we write Mp for the fiber. The objects MpX are used in [BCR].

(See also Proposition 9.3.2 for yet another object associated to p. This one is
only defined when working in the derived category of a ring; it is a field, and its
coefficient ring is the residue field of p.)

We owe the reader a proof that S/p is essentially well-defined.

Lemma 6.0.9. The thick subcategory generated by S/p (and thus its Bousfield
class) is independent of the choices made. Moreover, if p ≤ q then S/q ∈ thick〈S/p〉.
Proof. Suppose that we chose generators (y1, . . . , yn) for p, so the resulting model
of S/p is Y =

∧
i S/yi. One can check that y2

i = 0 as a self-map of S/(yi), and
thus that every element of p acts nilpotently on Y . Now choose a different set of
generators (z1, . . . , zm). For large N we see that each zNi acts trivially on Y , and
thus that Y is a retract of Y ∧ S/(zN1 , . . . , zNm). It follows easily that Y lies in
the thick subcategory generated by Z = S/(z1, . . . , zm), as required. An evident
extension of this argument gives the second claim.

6.1. Monochromatic subcategories. Let C be a Noetherian stable homotopy
category. We will need to investigate certain subcategories that are strongly con-
centrated at a single prime ideal p of R = π∗(S).

Definition 6.1.1. The monochromatic category Mp is the localizing subcategory
generated by K(p).
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Theorem 6.1.8 gives a number of other descriptions of this category.
We make the following conjectures:

Conjecture 6.1.2. For each prime p, the category Mp is minimal among nonzero
localizing subcategories of C.

Conjecture 6.1.3. For each p, the Bousfield class 〈K(p)〉 is minimal among non-
trivial Bousfield classes.

We shall show in Proposition 6.1.7 and Theorem 6.1.9 that

〈S〉 = qp〈K(p)〉, and

K(p) ∧K(q) = 0 for p 6= q.

This means that eachK(p) is smash-complemented. Thus, if eachK(p) is (or gener-
ates the same thick subcategory as) a skew field object, then both conjectures follow
from Proposition 3.7.3. We shall show in Proposition 6.1.11 that Conjecture 6.1.2
implies Conjecture 6.1.3.

Example 6.1.4. Both conjectures hold in the derived category D(R) of a Noether-
ian ring R. Indeed, let kp denote (the representative in D(R) of) the residue field
kp = (R/p)p at p. We will see in Proposition 9.3.2 that loc〈K(p)〉 = loc〈kp〉 and
〈K(p)〉 = 〈kp〉. We will show also that kp is a smash-complemented field object, so
both conjectures follow from Proposition 3.7.3. Hence we recover the thick subcat-
egory theorem of [Hop87, Nee92a] from Theorem 5.2.2. The telescope conjecture
also holds in this setting. This was proved in [Nee92a] for the derived category, and
will be proved in a more general context in Theorem 6.3.7.

The thick subcategory theorem is also known to be true for C((kG)∗) when G
is a p-group, as proved in [BCR]. Their method is to verify that the objects MpS
(defined in Definition 6.0.8) satisfy

MpS ∧ (X ∧ Y ) = 0⇔MpS ∧X = 0 or MpS ∧ Y = 0.

In this context, this also implies that 〈Mp〉 is minimal. (They write κ(p) for
MpS, essentially, and [BCR, Theorem 10.8], is precisely the above statement. See
also [BCR, Lemma 10.3].) We shall show in Theorem 6.1.8 that 〈K(p)〉 = 〈MpS〉.

Assuming Conjecture 6.1.2, we can state our results quite simply. Recall that a
subset T ⊆ SpecR is said to be closed under specialization if whenever p ∈ T and
p ≤ q, we also have q ∈ T . This is (easily) equivalent to T being a union of Zariski
closed sets. The following theorem is a summary of Theorem 6.2.3, Corollary 6.1.10,
Corollary 6.3.4 and Theorem 6.3.7.

Theorem 6.1.5. Suppose that Conjecture 6.1.2 holds for C. Then the Bousfield
lattice is isomorphic to the lattice of subsets of SpecR. Moreover, every generalized
Bousfield class is a Bousfield class, and 〈X〉∩〈Y 〉 = 〈X ∧ Y 〉 for all X and Y . Every
smashing localization is a finite localization, and the lattice of such is isomorphic
to the lattice of thick subcategories of small objects, or to the lattice of subsets of
SpecR that are closed under specialization. The objects K(p) detect nilpotence and
determine thick subcategories.

We still have strong results in the absence of Conjecture 6.1.2, but they cannot
be stated so succinctly. A major rôle is played by the following definition.
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Definition 6.1.6. For any object X, we define

supp(X) = {p | K(p)∗(X) 6= 0} ⊆ SpecR.

Similarly, if D is a thick subcategory of C, we define

supp(D) =
⋃

X∈D

supp(X).

For a general object X, this can be an arbitrary subset of SpecR, but for small
objects it is constrained by the following result.

Proposition 6.1.7.

(a) If p 6= q, then K(p) ∧K(q) = 0.
(b) Fix a small object X and a prime ideal q. Then K(q)∗X = 0 if and only if

Xq = 0. In particular (taking X = S), the K(q) are all nontrivial.
(c) If X is small then supp(X) is Zariski closed (and thus closed under special-

ization).
(d) supp(S/p) = V (p) = {q | p ≤ q}.

Proof. (a): Without loss of generality p 6≤ q, so there exists y ∈ p \ q. As y ∈ p,
it is nilpotent as a self-map of K(p), while it is an equivalence on K(q). It is both
nilpotent and an equivalence on K(p) ∧K(q), so this object must be zero.

(b): Certainly, if Xq = 0 then K(q) ∧X = S/q ∧Xq = 0. Conversely, suppose
that S/q ∧Xq = 0. Choose a set of generators (y1, . . . , yn) for q. We will show by
downward induction on i that Yi = S/(y1, . . . , yi) ∧Xq is trivial. Suppose that Yk
is trivial. By considering the cofibration sequence

Yk−1
yk−→ Yk−1 −→ Yk,

we find that multiplication by yk on π∗Yk−1 is an isomorphism. Now Yk−1 is the q-
localization of a small object. Hence π∗Yk−1 is a finitely generated module over the
Noetherian local ring Rq by Proposition 6.0.6. The element yk is in the Jacobson
radical, and ykπ∗Yk−1 = π∗Yk−1. Hence π∗Yk−1 = 0 by Nakayama’s lemma.

(c): By (b), we have supp(X) = {p | π∗(X)p 6= 0}. As π∗(X) is finitely
generated, a well-known algebraic lemma identifies this with the Zariski closed set
V (ann(π∗X)).

(d): If q 6≥ p then (S/p)q = 0 by the argument of (a). If q ≥ p thenK(p) = (S/p)p

is a further localization of (S/p)q, and K(p) 6= 0 by (b), so (S/p)q 6= 0. The claim
follows, using (b).

We can now give a number of new characterizations of the category Mp =
loc〈K(p)〉.
Theorem 6.1.8. We have loc〈MpS〉 = loc〈K(p)〉 = Mp, and 〈MpS〉 = 〈K(p)〉.
Moreover, for any object X ∈ C, the following are equivalent.

(a) X = Xp and Xq = 0 for all q < p.
(b) π∗(X) is p-local and p-torsion.
(c) X = MpX.
(d) 〈X〉 ≤ 〈MpS〉 = 〈K(p)〉.
(e) X ∈ loc〈MpS〉 = loc〈K(p)〉 = Mp.

Proof. Consider the following auxiliary statements:
(d′) 〈X〉 ≤ 〈MpS〉.
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(e′) X ∈ loc〈MpS〉.
(e′′) X ∈ loc〈K(p)〉.
We shall prove that

(e′′)⇒ (e′)⇒ (c)⇒ (d′)⇒ (a)⇒ (b)⇒ (e′′).

This implies everything except that 〈MpS〉 = 〈K(p)〉. However, for any U , the
category {V | 〈V 〉 ≤ 〈U〉} is localizing. Using this and the equality loc〈MpS〉 =
loc〈K(p)〉, we easily deduce that 〈MpS〉 = 〈K(p)〉.

Before we start, note that any of (a)–(e) (or the primed versions) implies that
X is p-local. Nothing changes if we replace C by the p-local category Cp, so we
may assume that R = π∗(S) is local with maximal ideal p. This implies that
K(p) = S/p, and that Mp is just the finite colocalization functor C<p defined by
the thick subcategory

A = {Z small | Zq = 0 for all q < p}.
Having made these assumptions, we can drop the explicit p-local hypotheses in (a)
and (b).

(e′′) ⇒ (e′): For any q < p we have (S/p)q = 0. Thus S/p ∈ A, so S/p =
C<pS ∧ S/p ∈ loc〈C<pS〉.

(e′)⇒ (c): If X ∈ loc〈C<pS〉 then L<pX = 0 so X = C<pX.
(c)⇒ (d′): This is clear, as C<pX = C<pS ∧X.
(d′) ⇒ (a): For q < p we have LqA = 0 (by the definition of A) and thus

Sq∧C<pS = 0 (as C<pS ∈ loc〈A〉). Thus, if 〈X〉 ≤ 〈C<pS〉, then Xq = Sq∧X = 0.
(a) ⇒ (b): If (a) holds, then π∗(X)q = 0 for q < p. A well-known piece of

algebra implies that π∗(X) is then p-torsion (use the following fact: an element
x ∈ N is nonzero in Nq if and only if the radical of the annihilator of x is contained
in q).

(b)⇒ (e′′): Suppose that π∗(X) is p-torsion. The localizing category

D = {Y | π∗(Y ) is p-torsion }
contains X, so it also contains Y = LfS/pS ∧ X = LfS/pX. Choose generators
(y0, . . . , yn−1) for p, and set Yk = F (S/(y0, . . . , yk−1), Y ) = D(S/(y0, . . . , yk−1))∧
Y . Note that Yn = F (S/p, LfS/pX) = 0 by the definition of LfS/p. If Yk =
Yk−1/yk−1 = 0 then yk−1 acts isomorphically on π∗(Yk−1), but it also acts nilpo-
tently as yk−1 ∈ p and Yk−1 ∈ D. It follows that π∗(Yk−1) = 0, and thus
that Yk−1 = 0. By downwards induction, we conclude that Y = Y0 = 0, so
X = CfS/pX ∈ loc〈S/p〉 as required.

Theorem 6.1.9. We have an equality of Bousfield classes

〈S〉 =
∐

p∈SpecR

〈K(p)〉.

(Note also that 〈K(p)〉 ∧ 〈K(q)〉 = 0 for p 6= q, by Proposition 6.1.7.)

Proof. Suppose that K(p) ∧ X = 0 for all p; we need to show that X = 0. By
Theorem 6.1.8, we have 〈Mp〉 = 〈K(p)〉, so MpX = 0 for all p. We claim that
Xp = 0 for all p; we prove this by induction on p. Fix p and suppose that Xq = 0
for all q < p. Then by the implication (a)⇒(c) of Theorem 6.1.8 (applied to Xp),
we find that Xp = MpX = 0. Thus Xp = 0 for all p; using Lemma 6.0.3, we
conclude that π∗(X) = 0 and thus X = 0.
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It follows that the nilpotence results of Section 5 apply:

Corollary 6.1.10. Let C be a Noetherian stable homotopy category. Then the
objects {K(p) | p ∈ SpecR} detect nilpotence, in the sense that Theorem 5.1.3
applies. Moreover, Theorem 5.1.2 applies with K(p) replaced by Mp.

We pause briefly to deduce the claimed relation between our two conjectures.

Proposition 6.1.11. If Mp is minimal among nontrivial localizing subcategories,
then 〈K(p)〉 is a minimal Bousfield class.

Proof. This now follows from Proposition 3.7.4, Theorem 6.1.9, and part (a) of
Proposition 6.1.7.

6.2. Thick subcategories. We next attempt to classify thick subcategories of
small objects in a Noetherian stable homotopy category C; we succeed completely
if each 〈K(p)〉 is a minimal Bousfield class. We first recall some convenient termi-
nology.

Definition 6.2.1. Let A
f−→ B

g−→ A be maps of partially ordered sets. We say
that g is left adjoint to f (and write g ` f) if g(b) ≤ a is equivalent to b ≤ f(a).
(It is equivalent to say that g is left adjoint to f when A and B are regarded as
categories, and f and g as functors, in the usual way.)

The particular lattices of interest are as follows.

Definition 6.2.2. We define

L
op
f = { thick subcategories of small objects },

Lt = { subsets T ⊆ SpecR that are closed under specialization }.
Note that L

op
f is antiisomorphic to the lattice of finite localization functors, by

Proposition 3.8.3. We define f : Lt −→ L
op
f by

f(T ) = thick〈S/p | p ∈ T 〉 = {Z ∈ F | supp(Z) ⊆ T}.
(We shall verify below that these two definitions are equivalent.) We also define
maps g, g′ : L

op
f −→ Lt by

g(A) = supp(A), g′(A) = {p | S/p ∈ A}.
(We shall verify below that these sets are closed under specialization).

Theorem 6.2.3. The two definitions of f given above are the same, and the sets
g(A) and g′(A) are closed under specialization. Moreover, we have

g ` f ` g′, g ≤ g′,
gf = 1 = g′f, fg′ ≤ 1 ≤ fg.

If each 〈K(p)〉 is a minimal Bousfield class, then f, g and g′ are isomorphisms with
g = g′ = f−1.

Proof. We first show that the two definitions of f are equivalent. Consider a set
T ∈ Lt, and write A = thick〈S/p | p ∈ T 〉 and B = {Z ∈ F | supp(Z) ⊆ T}.
If p ∈ T then supp(S/p) = V (p) ⊆ T (because T is closed under specialization).
It follows that A ⊆ B. For the converse, write C = CfA and L = LfA. Suppose
that Z ∈ B. If p 6∈ T we have Z ∧ K(p) = 0 (by the definition of B) and thus
LZ ∧ K(p) = LS ∧ Z ∧ K(p) = 0. On the other hand, if p ∈ T then we have
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S/p ∈ A, so LS/p = 0 (by the definition of L), so LZ ∧K(p) = Z ∧Sp ∧LS/p = 0.
It follows that LZ∧K(p) = 0 for all p, so LZ = 0 by Theorem 6.1.9. Theorem 3.3.3
now tells us that Z ∈ A. Thus A = B as claimed.

We next show that g(A) and g′(A) are closed under specialization. For g(A) =
supp(A), this is immediate from Proposition 6.1.7. For g′(A), it is immediate from
Lemma 6.0.9.

Using our first definition of f , we see that T ⊆ g′(A) if and only if f(T ) ⊆ A,
so that f ` g′. Using the second definition, it is clear that g(A) ⊆ T if and only if
A ⊆ f(T ), so that g ` f . It is clear that g′ ≤ g. By setting T = g(A) or T = g′(A)
or A = f(T ) in the adjunctions above, we obtain (co)unit inequalities

fg′(A) ⊆ A ⊆ fg(A)

gf(T ) ≤ T ≤ g′f(T )

By combining the latter with the inequality g′ ≤ g, we conclude that gf(T ) = T =
g′f(T ).

Now suppose that all the Bousfield classes 〈K(p)〉 are minimal. We can then
apply Theorem 6.1.9 and Corollary 5.2.3 to show that the collection of K(p)’s
determines thick subcategories, in other words that the map g is injective. As
gf = 1, we conclude that g is also surjective, in fact that f and g are inverse
isomorphisms. As g′f = 1, we see that g′ = f−1 = g.

6.3. Localizing subcategories. We next study localizing subcategories of C. We
start with the following lemma.

Lemma 6.3.1. Suppose that T ⊆ SpecR is closed under specialization, and let
A = f(T ) = thick〈S/p | p ∈ T 〉. Then

CfAK(p) =

{
K(p) if p ∈ T,
0 otherwise.

Proof. If p ∈ T then S/p ∈ A, so K(p) ∈ loc〈S/p〉 ⊆ loc〈A〉, so CfAK(p) = K(p).
On the other hand, if p 6∈ T = supp(A) then for all Z ∈ A we have Zp = 0, so
[Z,K(p)] = [Zp,K(p)] = 0. It follows that CfAK(p) = 0.

The key fact for our understanding of localizing subcategories is as follows.

Proposition 6.3.2. For any object X ∈ C we have

X ∈ loc〈K(p) ∧X | p ∈ SpecR〉.
Proof. Write D = loc〈K(p)∧X | p ∈ SpecR〉, which is the same as loc〈MpX | p ∈
SpecR〉, because loc〈MpS〉 = loc〈K(p)〉. Write T = {p ∈ SpecR | S/p ∧ X ∈
D}; this is closed under specialization by Lemma 6.0.9. Define A = f(T ) =
thick〈S/p | p ∈ T 〉 and CT = CfA. Note that CTX ∈ loc〈S/p ∧X | p ∈ T 〉 ⊆ D,
by the definition of T .

We claim that T = SpecR. If not, then as R is Noetherian, we can choose a
maximal element p of SpecR \ T . Maximality means that T ′ = T ∪ {p} is closed
under specialization. There is a morphism CT −→ CT ′ of colocalization functors;
call the cofiber M . By Lemma 6.3.1, we have CTK(q) = CT ′K(q) (and thus
MS ∧ K(q) = MK(q) = 0) unless q = p. It follows from Theorem 6.1.9 that
〈MS〉 ≤ 〈K(p)〉, and thus from Theorem 6.1.8 that MS ∈ loc〈MpS〉, and thus that
MX ∈ loc〈MpX〉 ⊆ D (by the definition of D). We observed above that CTX ∈ D,
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so we conclude from the cofibration that CT ′X ∈ D. As S/p ∧ CT ′S = CT ′S/p =
S/p, we conclude that S/p ∧ X ∈ D, contradicting our assumption that p 6∈ T .
Thus T = SpecR as claimed.

We thus have A = f(SpecR) = {Z | supp(Z) ⊆ SpecR} = F, so X = CTX ∈
D, as required.

We can deduce the following splitting of the Bousfield lattice.

Corollary 6.3.3. Let Bp be the lattice of localizing subcategories that are contained
in Mp, and B the lattice of all localizing subcategories. Then there is a natural
isomorphism B =

∏
p Bp.

Proof. The map B −→ ∏
p Bp sends D to the collection of subcategories Dp =

D ∩Mp. The map the other way sends a collection of subcategories Ep to E =
loc〈⋃p Ep〉. It is clear that Ep ⊆ E ∩Mp. Conversely, if X ∈ E ∩Mp then

X = MpS ∧X ∈ loc〈
⋃
q

MpS ∧ Eq〉 = MpS ∧ Ep = Ep,

so E∩Mp = Ep. It is also clear that loc〈⋃p Dp〉 ⊆ D, and Proposition 6.3.2 implies
the opposite inequality. It follows that these two constructions are mutually inverse,
as required.

Corollary 6.3.4. If Conjecture 6.1.2 holds for C, then every localizing subcategory
of C is closed, and the lattice of such subcategories is isomorphic to the lattice of
subsets of SpecR (and antiisomorphic to the Bousfield lattice).

Proof. Conjecture 6.1.2 says that each Mp is minimal, so that each lattice Bp is
isomorphic to the two-element lattice {0, 1}, so that B =

∏
p∈SpecR Bp is isomorphic

to the lattice of subsets of SpecR. We can describe the maps more explicitly. Let
T be a subset of SpecR, and write X =

∐
q 6∈T K(q). Then the corresponding

localizing subcategory is

loc〈K(p) | p ∈ T 〉 = {Y | X ∧ Y = 0}.
It follows from Lemma 3.6.6 that this is a closed localizing subcategory; thus all
localizing subcategories are closed. In any stable homotopy category, the Bousfield
lattice is antiisomorphic to the category of closed localizing subcategories.

We now turn to the telescope conjecture, in other words, the classification of
smashing localization functors. For this, we need to study the objects S¦p .

Lemma 6.3.5.

(a) There is a natural isomorphism π∗(S¦p ∧X) = R¦p⊗Rp π∗(Xp), and this is the
same as π∗(X)¦p if π∗(Xp) is finitely generated over Rp.

(b) 〈S¦p〉 = 〈Sp〉 =
∐

q≤p 〈K(q)〉.
(c) LK(p)S = S¦p .

Proof. (a): There is an obvious pairing π∗(Y ) ⊗R π∗(X) −→ π∗(Y ∧ X). Taking
Y = S¦p gives a map R¦p ⊗R π∗(X) −→ π∗(S¦p ∧X). As S¦p is p-local, the left hand
side is the same as R¦p⊗Rp π∗(Xp). This is a homology functor of X, because R¦p is
flat over Rp, and π∗(S¦p ∧X) is also a homology functor for more obvious reasons.
We thus have a map of graded homology functors that is an isomorphism when
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X = S, and thus for all X. It is well-known that R¦p ⊗Rp N = N¦
p for finitely

generated modules over Rp, which gives the last statement.
(b): Using (a) and the fact that R¦p is faithfully flat over Rp, we see that 〈S¦p〉 =

〈Sp〉. By smashing the equivalence 〈S〉 =
∐

q 〈K(q)〉 with Sp, we see that this is
the same as

∐
q≤p 〈K(q)〉.

(c): Observe that π∗K(p) is a p-torsion module, finitely generated over Rp, so
that π∗(S¦p∧K(p)) = π∗(K(p))¦p = π∗(K(p)) by (a). Thus the obvious map S −→ S¦p
gives an equivalence S ∧ K(p) = S¦p ∧ K(p) and thus LK(p)S = LK(p)S

¦
p . It will

therefore be enough to show that S¦p is K(p)-local. Suppose that K(p) ∧ X = 0,
so we need to prove that [X,S¦p ] = 0. Recall that S¦p = F (Ip, Ip), so it is enough
to show that X ∧ Ip = 0. However, π∗Ip is p-local and p-torsion, so Theorem 6.1.8
tells us that 〈Ip〉 ≤ 〈K(p)〉, and K(p) ∧X = 0, so Ip ∧X = 0 as required.

Corollary 6.3.6. If L is a smashing localization functor and 〈LS〉 ≥ 〈K(p)〉, then
〈LS〉 ≥∐

q≤p 〈K(q)〉.
Proof. If 〈K(p)〉 ≤ 〈LS〉, then LK(p)S is LLS-local, which is the same as being
L-local, as L is smashing; in other words LS ∧ LK(p)S = LK(p)S. It follows that

∐

q≤p

〈K(q)〉 = 〈LK(p)S〉 = 〈LS ∧ LK(p)S〉 ≤ 〈LS〉.

We can now prove the promised classification theorem.

Theorem 6.3.7. Suppose that each Bousfield class 〈K(p)〉 is minimal. Then the
telescope conjecture holds for C—every smashing localization is a finite localization.
The lattice of finite localizations is antiisomorphic to the lattice of thick subcate-
gories of small objects, which is isomorphic to the lattice of subsets of SpecR that
are closed under specialization.

Proof. Let L be a smashing localization functor, and write

T = {p ∈ SpecR | LK(p) = 0}.
If LS ∧K(p) 6= 0 then 〈LS〉 ≥ 〈K(p)〉 by minimality, and thus LS ∧K(q) 6= 0 for
q ≤ p by Corollary 6.3.6. It follows that T is closed under specialization. Let LT
be the corresponding localization functor. By Lemma 6.3.1, we have LTK(p) = 0 if
and only if p ∈ T , and LTK(p) = K(p) otherwise. By smashing the decomposition
〈S〉 =

∐
p 〈K(p)〉 with LS and LTS, we see that 〈LS〉 = 〈LTS〉. As a localization

functor is determined by the corresponding category of local objects, we have L =
LT . Thus, every smashing localization is a finite localization. The rest follows from
Proposition 6.2.3 and Proposition 3.8.3.

7. Connective stable homotopy theory

In this section, we discuss stable homotopy categories with a good notion of
connectivity. These share many features with the homotopy category of spectra.

Definition 7.1.1. Suppose that C is a monogenic stable homotopy category. We
say that C is connective if πnS = 0 for n < 0.
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Of course, this is the case for ordinary stable homotopy theory. In fact, it is the
case for many of our examples in Section 1.2 (including D(R) and C(B)). However,
Bousfield localizations of connective categories are rarely connective. Here we do
little more than summarize the properties of connective categories and briefly sketch
a proof, referring to the work of Margolis for details.

Proposition 7.1.2. Let C be a connective monogenic stable homotopy category.
(a) Suppose that X ∈ C has πmX = 0 for m < k (in this case, we say X is

bounded below). Then there is a cellular tower

Xk
fk−→ Xk+1

fk+1−−−→ Xk+2
fk+2−−−→ . . .

whose minimal weak colimit is X, such that Xk is a coproduct of copies of
Sk, and such that the cofiber of fn is a coproduct of copies of Sn+1.

(b) Suppose that R = π0S is a Noetherian ring of finite global dimension, and
that every projective R-module is free. Then every small object of C has a
finite cellular tower as in (a).

(c) Given an object X ∈ C and an integer k, there is a diagram X[k,∞]
f−→ X

g−→
X[−∞, k − 1] such that πmX[k,∞] = 0 for m < k, πmX[−∞, k − 1] = 0
for m ≥ k, πmf is an isomorphism for m ≥ k, and πmg is an isomorphism
for m < k. Furthermore, [X[k,∞], X[−∞, k − 1]] = 0. In the terminology
of [BBD82], C admits a t-structure.

(d) Using the diagram in part (c), we can construct a Postnikov tower for any
object X:

. . . −−−−→ X[−∞, r] −−−−→ X[−∞, r − 1] −−−−→ X[−∞, r − 2] −−−−→ . . .x
x

x
X[r] X[r − 1] X[r − 2]

The sequential colimit of X[−∞, r] is 0 and the sequential limit of X[−∞, r]
is X. (See [Mar83, Chapter 5].)

(e) Let R denote the ring π0S. Let A denote the full subcategory of C consisting
of objects X such that πmX = 0 unless m = 0. Then A is a closed symmetric
monoidal Abelian category, and is equivalent as such to the category of R-
modules. In the terminology of [BBD82], the category of R-modules forms the
heart of C. We call elements of A Eilenberg-MacLane objects.

(f) Let H = S[0] denote the object of A corresponding to R. We call H∗X =
π∗(H ∧ X) the ordinary homology of X. Then H is a ring object, and if
πmX = 0 for all m < k, then the natural (Hurewicz ) map πkX −→ HkX is
an isomorphism.

Proof. Given an object X and an integer k, we construct X[−∞, k] as follows. We
set X0 = X, choose a system of generators {xi} for πk+1X0 as a module over R,
let B1 be a coproduct of copies of Sk+1 (one for each i), and consider the evident
map B1 −→ X0. We define X1 to be the cofiber of this map. One can check that
πmX1 = πmX for m ≤ k, and πkX1 = 0. In a similar way, one can construct
a coproduct B2 of copies of Sk+2 and a cofibration B2 −→ X1 −→ X2, such that
π∗X2 = π∗X below degree k, and πk+1X2 = πk+2X2 = 0. Continuing in this
manner and passing to the sequential colimit, we get X∞ = X[−∞, k]. This comes
equipped with a natural map X −→ X[−∞, k], and we define X[k+ 1,∞] to be the
fiber. We also define X[k, l] = X[k,∞][−∞, l] and X[k] = X[k, k].
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The proof of (a) is essentially identical to the construction above. We refer
to [Mar83, Chapter 5] for the proofs of (c), (d) and (f). For (e), observe that π0

is a functor from A to the category M of R-modules. This is essentially surjective:
for any module M , we can choose a presentation

⊕
iR −→

⊕
j R −→ M , construct

a corresponding cofiber sequence
∐
i S −→

∐
j S −→ X, and then X[0] ∈ A and

π0X[0] = M . Small modifications of the arguments of Margolis show that this is
also full and faithful.

For (b), suppose that R is Noetherian with finite global dimension, and that all
projective R-modules are free. Let X be a small object in C. It is easy to see that
H∗X is then a finitely generated graded module over R, and that πkX = 0 for
k ¿ 0. We may assume without loss of generality that πkX = 0 for k < 0. Write
X0 = X. Much as above, we let B0 be a finite coproduct of copies of S0 and choose
a map B0 −→ X that is surjective on π0 (which agrees with H0 by (f)). We let X1

be the cofiber, and note that H∗X1 is the same as H∗X0 except in dimension zero
(where H0X

1 = 0) and dimension one. Continuing in this way, we get a sequence of
cofibrations Bk −→ Xk −→ Xk+1, where H∗Xk is zero below dimension k and agrees
with H∗Xk−1 above dimension k. It follows that for large k, the groups H∗Xk are
concentrated in a single degree. After that point, the projective dimension of the
single group in question decreases by one at each stage, until it becomes zero, so the
group is free. At that point, we can choose the map Bk −→ Xk so that it induces
an isomorphism in homology, so that H∗Xk+1 = 0. As π∗Xk+1 = 0 for k ¿ 0,
part (f) implies that π∗Xk+1 = 0, and thus Xk+1 = 0. Now let Xj be the fiber of
the evident map X −→ Xj , to get a finite cellular tower of the required type.

8. Semisimple stable homotopy theory

In this section we give conditions under which a stable homotopy category is
actually an Abelian category. The most familiar example is the category of rational
spectra, which is equivalent to the category of graded rational vector spaces. We
will allow C to be multigraded as in Section 1.3.

Definition 8.1.1. Suppose that C is an algebraic stable homotopy category. We
say that C is semisimple if, for every pair Y,Z ∈ G, we have

(a) If Y 6= Z, then [Y, Z]∗ = 0; and
(b) [Z,Z]∗ is a (multigraded) division algebra kZ , where the multiplication is

given by composition.

Example 8.1.2. Consider the category C(kG) of chain complexes of projective kG-
modules where G is a finite group and p = char(k) does not divide |G|. Then kG
is semisimple, so every kG-module is a direct sum of simple modules. Also, every
simple module appears as a summand of kG; hence every kG-module is projective.
Schur’s lemma says that if S and T are non-isomorphic simple kG-modules, then
HomkG(S, T ) = 0, while kS = HomkG(S, S) is a division algebra.

In this case we are doing something just a bit more complicated than rational
stable homotopy (equivalently, graded rational linear algebra).

Proposition 8.1.3. If C is a semisimple stable homotopy category , then every
object X of C is equivalent to a coproduct of suspensions of elements of G.
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Proof. Given an object X of C and Z ∈ G, note that [Z,X]∗ is a right module over
the division algebra kZ ; let BZ denote a basis. We have a map F given by

∐

Z∈G

∐

f∈BZ

|f |=n

ΣnZ F−−→ X.

Here n could be a multi-index. We claim that F is an equivalence. It suffices to
show that [Y, F ]∗ is an isomorphism for each Y ∈ G. This is clear, though:

(8.1.1) [Y,
∐

Z

∐

f∈BZ

Σ|f |Z]∗ = [Y,
∐

f∈BY

Σ|f |Y ]∗ =

⊕

f∈BY

Σ−|f |[Y, Y ]∗ =
⊕

f∈BY

Σ−|f |kY = [Y,X]∗.

We can extend this proposition a little as follows.

Definition 8.1.4. Given a semisimple stable homotopy category C, a G-module is
an assignment of a graded right kZ-module to each Z ∈ G. The class of G-modules
forms an Abelian category G-Mod in the obvious way, where a sequence is exact if
and only if it is exact for each Z.

There is a natural functor F from C to G-Mod that assigns to X and Z the
kZ-module [Z,X]∗.

Proposition 8.1.5. The functor F is an equivalence of categories.

The proof is clear. Note that the induced triangulation on G-Mod is a very simple
one. Given a f : M −→ N and a generator Z, the cofiber of f at Z is the direct sum
of the suspension of the kernel of f and the cokernel of f as a kZ-vector space.

So, for example, the set of maps between finite objects W and X is in one-to-one
correspondence with matrices of the appropriate shape—if rZW is the kZ-rank of
[Z,W ]∗ (and similarly for rZX), then

[W,X]∗ =
⊕

Z∈G

MrZX×rZW (kZ)

(where Mr×s(k) is the set of r × s matrices with coefficients in k).
Note that one can define the product of two stable homotopy categories C and

C′ in the obvious way, and this again gives a stable homotopy category: the objects
are pairs (X,X ′), and all of the structure in the axioms is defined coordinate-wise.
For example (X,X ′)∧ (Y, Y ′) is defined to be (X ∧ Y,X ′ ∧ Y ′). We point out that
a semisimple stable homotopy category will not in general be decomposable into a
product of stable homotopy categories, one for each element of G. In the case of
C(kG) where p does not divide |G|, if Z is a simple kG-module, then Z ⊗ Z does
not necessarily decompose as a direct sum of copies of Z (as it would if the category
split). Similarly, the function object in C(kG) will not behave “coordinate-wise,”
as it would in a product stable homotopy category. Thus, the induced symmetric
monoidal structure on G-Mod might be complicated. Indeed, this is the content of
classical representation theory.

One can describe the G-ideals in a semisimple stable homotopy category in the
following way. Draw a graph with one vertex for each generator, and an edge joining
Z to W if and only if Z ∧W 6= 0, and let T be the set of components of this graph.
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One can check that the G-ideals biject with the subsets of T . In the case of a group
algebra, T bijects with the set of blocks of kG.

9. Examples of stable homotopy categories

9.1. A general method. Suppose that one wants to do homotopy theory in a
category C, which has a natural notion of homotopy on its morphism sets. The first
step is to consider the category hC in which the morphisms are homotopy classes
of maps. It is by now familiar that this is insufficient to give a good theory. One
must instead formally invert a suitable class of weak equivalences to get a category
called hC. This procedure cures such pathologies as the long line, which is a non-
contractible topological space whose homotopy groups all vanish. However, there is
no guarantee a priori that the morphism sets hC(X,Y ) are actually sets rather than
proper classes. In many cases it can be shown that hC is equivalent to some full
subcategory D ⊂ hC. If C is a closed model category [Qui67, DS95] we can take D

to be the subcategory of objects which are both cofibrant and fibrant. In some other
cases one can use a category of cell objects. This general approach has been much
used by May and his coauthors [LMS86] in more recent work [EKMM95, KM95]
they have also given closed model structures.

We now state a theorem which codifies these ideas. See Definitions 1.1.1, 1.1.4,
1.1.6, and 3.4.1 for the relevant terms.

Theorem 9.1.1 (Cellular approximation). Let C be an enriched triangulated cat-
egory , and G a set of small strongly dualizable objects containing the unit S. Let
D denote the localizing subcategory generated by G. Suppose in addition that if
X,Y ∈ G, then X ∧ Y and DX are in D. Then:

(a) D is a unital algebraic stable homotopy category with generating set G.
(b) The inclusion functor J : D −→ C is a geometric morphism, with right adjoint

C say.
(c) The functor C preserves coproducts and the unit.
(d) Let S be the class of morphisms f : X −→ Y in C such that f∗ : [Z,X]∗ '

[Z, Y ]∗ for all Z ∈ G. Then C induces an equivalence C[S−1] ' D.

Note that if C is an enriched triangulated category in which S is small, then we
can take G = {S} and the hypotheses of the theorem are satisfied. In particular,
in any unital algebraic stable homotopy category, the localizing subcategory loc〈S〉
is a monogenic stable homotopy category. One might wonder why we need more
general sets G at all. A good example of this is provided by the homotopy category
of G-spectra discussed in Section 9.4. There, if we just take G = {S} we only get
spectra on which G acts trivially, which is equivalent to the homotopy category of
non-equivariant spectra. Therefore, in that case, to get anything new we must take
a larger set G.

Proof of Theorem 9.1.1. Let X be an object of C. As in the proof of Theorem 2.3.2,
we construct a cofibration CX

q−→ X
i−→ LX with CX ∈ D, and [Z,LX]∗ = 0 for

all Z ∈ G (and therefore all Z ∈ D). It follows as in Lemma 3.1.6 that C and L are
functorial, and indeed are exact functors of X. Clearly, if Y ∈ D then [Y, LX] = 0
so [Y,X] = [Y,CX]. It follows that C is right adjoint to J .

We can now show that D is a unital algebraic stable homotopy category. Since
D is localizing, it is certainly a cocomplete triangulated category. By definition,
the localizing subcategory generated by G is D, and the objects of G are small. It
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remains to show that D has a compatible closed symmetric monoidal structure, and
that the generators are strongly dualizable. It will then follow from Theorem 1.2.1
that cohomology functors are representable.

We will first show that D is closed under the smash product in C (clearly this
smash product is compatible with the triangulation and the coproduct). We begin
by showing that if X ∈ D and Y ∈ G, then X ∧Y ∈ D. This is immediate since the
subcategory of such X is localizing and contains G. Similarly, given an arbitrary
X ∈ D, we consider the set of all Y such that X ∧ Y ∈ D. This is again localizing,
and we have just seen that it contains G, so it is all of D as claimed. Moreover, the
unit S lies in G ⊂ D.

We still need to construct function objects and show that elements of G are
strongly dualizable. Define FD(X,Y ) to be CF (X,Y ). If X ∈ D we have

[X,FD(Y,Z)] = [X,F (Y, Z)] = [X ∧ Y, Z].

Therefore FD(X,Y ) is adjoint to the smash product on D. Since C is exact,
FD(−,−) is exact as well.

Each object Z ∈ G is strongly dualizable in C, so that the map S
η−→ F (Z,Z)

factors through an isomorphism F (Z, S) ∧ Z ' F (Z,Z). It follows from our as-
sumptions on G and the closure of D under smash products that all the objects just
discussed lie in D. Thus

FD(Z,Z) = F (Z,Z) = F (Z, S) ∧ Z = FD(Z, S) ∧ Z,
which means that Z is strongly dualizable in D.

This proves that D is a unital algebraic stable homotopy category. It is clear
that J : D −→ C is a geometric morphism, with right adjoint C, and that C preserves
the unit.

Consider a family {Xi} of objects of C. We then have a cofibration
∐

i

CXi −→
∐

i

Xi −→
∐

i

LXi.

The first term lies in D. Moreover, for any Z ∈ G we have

[Z,
∐

i

LXi] =
⊕

i

[Z,LXi] = 0.

Thus
∐
i CXi has the universal property characterizing C

∐
iXi, which means that

C preserves coproducts.
Recall that the category of fractions C[S−1] has the same objects as C, and that

there is a functor Q : C −→ C[S−1] which sends the maps in S to isomorphisms.
Moreover, Q is the initial example of such a functor: given any functor F : C −→ E

which inverts S, there is a factorization F ' F ′Q, unique up to natural isomorphism.
Clearly C : C −→ D inverts S, so C ' C ′Q for some functor C ′ : C[S−1] −→ D. We
also write J ′ = QJ : D −→ C[S−1]. It follows that

C ′J ′ ' C ′QJ ' CJ ' 1: D −→ D.

On the other hand, for any object X = QX ∈ C[S−1], we have a map J ′C ′QX =
CX

q−→ X = QX which lies in S. Thus q is an isomorphism in C[S−1], so J ′C ′ ' 1.
Thus D ' C[S−1] as claimed.
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9.2. Chain complexes. Most of the non-topological examples of stable homotopy
categories we will consider involve chain complexes of objects in additive categories.
If an additive category A is sufficiently nice, the category of chain complexes of
objects of A and chain homotopy classes of maps will satisfy the hypotheses of
Theorem 9.1.1. Since all of our algebraic examples fit this description, we follow a
somewhat abstract approach, just as we did for triangulated categories.

For this section we assume that A is an enriched additive category (Defini-
tion 1.1.6). If A happens to be graded, we assume that the closed symmetric
monoidal structure has the usual sign conventions. In particular, the symmetric
monoidal structure is graded-commutative rather than commutative.

Given any additive category A, we can form the category Ch(A) of (Z-graded)
chain complexes and chain maps. As usual, if X is such a chain complex, we
denote its nth component by Xn and its differential by d. It is essentially irrelevant
whether the differential raises or lowers degree, but for concreteness we assume it
lowers degrees.

Proposition 9.2.1. If A is an enriched additive category, then Ch(A) is an en-
riched additive category. The obvious inclusion functor A −→ Ch(A) (sending an
object M to a complex concentrated in degree zero) is full and faithful, and preserves
all structure in sight. If A is Abelian, then so is Ch(A).

Proof. This is all well-known. We can define products and coproducts dimension-
wise, so Ch(A) is complete and cocomplete. If X and Y are chain complexes, we de-
fine (X∧Y )n =

⊕
kXk⊗Yn−k. The differential on Xk⊗Yn−k is dX⊗1+(−1)k⊗dY .

It is easy to check, and standard, that this gives a symmetric monoidal structure
on Ch(A). The component of the twist map X ∧ Y −→ Y ∧X sending Xn ⊗ Ym to
Ym ⊗Xn involves a sign (−1)nm as usual.

Similarly, we define F (X,Y )n =
∏
k Hom(Xk, Yn+k). The component of the

differential landing in Hom(Xk, Yn−1+k) is the composite
∏

Hom(Xl, Yn+l) −→ Hom(Xk−1, Yn−1+k)⊕Hom(Xk, Yn+k)

(−1)n+1 Hom(dX ,1)⊕Hom(1,dY )−−−−−−−−−−−−−−−−−−−−−→ Hom(Xk, Yn−1+k).

It is then straightforward to check that this structure makes Ch(A) an enriched
additive category. If A is Abelian then we can define kernels and cokernels dimen-
sionwise, and Ch(A) becomes an Abelian category.

There is an evident notion of chain homotopy in Ch(A). For later use, we will
describe this somewhat differently than usual. Define I to be the chain complex
consisting of R in dimension 1, R⊕R in dimension 0, and 0 everywhere else. The

differential is given by R
(1,−1)−−−−→ R⊕R. There are two evident chain maps R

i0,i1−−−→ I.
Two chain maps f0, f1 : X −→ Y are then said to be chain homotopic if there is a
map H : X ∧ I −→ Y such that H(1 ∧ ik) = fk for k = 0, 1.

It is easy to see that a homotopy X ∧ I −→ Y is the same thing as a map
X −→ F (I, Y ). This is just a formalization of the standard equivalent notions of
chain homotopy.

The resulting category of chain complexes and chain homotopy classes of maps
will be denoted K(A).
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Proposition 9.2.2. If A is an enriched additive category , then K(A) is an en-
riched triangulated category. Furthermore, every small (resp., strongly dualizable)
object of A is small (resp., strongly dualizable) in K(A).

Proof. The coproduct in Ch(A) descends to K(A), as is easy to check. The trian-
gulation on K(A) is of course well-known. That is, we define the suspension ΣX
by (ΣX)n = Xn−1 with dΣX = −dX . An exact triangle is a sequence isomorphic
in K(A) to one of the form

X
f−→ Y

g−→ Z
h−→ ΣX

where Zn = Yn ⊕ Xn−1, dZ =
(
dY f
0 −dX

)
, g is the evident inclusion, and h is the

evident projection.
There is also a slightly more flexible way to define triangles. Suppose that X

f−→
Y

g−→ Z is a sequence of chain complexes, such that in each degree Xn
f−→ Yn

g−→ Zn
is a split short exact sequence. (Note that this makes sense even if A is not Abelian.)
This means that we can choose maps X r←− Y s←− Z (usually not chain maps) such
that

rf = 1, rs = 0, gf = 0, gs = 1, sg + fr = 1.

It turns out that h = rdY s defines a chain map Z −→ ΣX, which is independent of
the choice of r and s up to homotopy. Moreover, the sequence X

f−→ Y
g−→ Z

h−→ ΣX
is a triangle. For more details, see [Ive86], for example.

It is straightforward to check that the symmetric monoidal structure defined on
Ch(A) descends to K(A). Although we have assumed nothing about the exact-
ness of the symmetric monoidal structure on A, cofiber sequences in K(A) split
dimensionwise, so the smash product will automatically be exact on K(A).

Using the alternative description of a chain homotopy as a map X −→ F (I, Y ),
it is easy to check that the function object construction F (X,Y ) descends to the
homotopy category and is exact there. One must check that the adjointness also
descends of course.

It is immediate that strongly dualizable objects of A give strongly dualizable
objects of K(A), since the relevant function objects and smash product are the
same in both categories. To see that a small object M of A remains small in K(A),
one need only check that M ∧ I is small in Ch(A). This is easy to do using the
standard definition of chain homotopy.

There is also a natural notion of weak equivalences in Ch(A) (or K(A)):

Definition 9.2.3. A quasi-isomorphism is a chain map f : X −→ Y which induces
an isomorphism H∗X −→ H∗Y .

9.3. The derived category of a ring. Let R be a commutative ring, and M(R)
the enriched Abelian category of R-modules. We write K(R) for K(M(R)). Note
that the unit in this category is R, so that

π∗X = [R,X]∗ = H∗X.

Theorem 9.3.1. Let R be a commutative ring. Let D(R) be the category of frac-
tions obtained from K(R) by inverting quasi-isomorphisms, so that we have a func-
tor Q : K(R) −→ D(R). Then D(R) can be identified with a subcategory of K(R),
and Q with the right adjoint of the inclusion functor. Moreover :
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(a) D(R) is a monogenic stable homotopy theory (with small Hom sets).
(b) There is a geometric morphism J : D(R) −→ K(R), with right adjoint Q, with

the property that Q(X ⊗ JY ) = (QX)⊗ Y .
(c) Let X be a bounded-below complex of projectives, and Y an arbitrary complex.

Then [QX,QY ] = [X,Y ].
(d) Let X be an arbitrary complex, and Y a bounded-above complex of injectives.

Then [QX,QY ] = [X,Y ].
(e) For any short exact sequence X −→ Y −→ Z of bounded-below complexes in

Ch(R), there is a natural exact triangle QX −→ QY −→ QZ −→ ΣQX.
(f) A map R −→ R′ induces a stable morphism D(R) −→ D(R′).

We refer to D(R) as the derived category of R. Our approach to the derived
category was inspired by [BN93].

Note that in this category S = R, so π∗S = R. Thus, if R is Noetherian, then
the results of Section 6 apply. Note also that if R is countable, then D(R) is a
Brown category.

Of course, most of the axioms are well-known for the derived category. See for
example [Ver77, Har66, Wei94].

Proof. Parts (a) and (b) are an immediate corollary of Theorem 9.1.1 (with G =
{R}) and Proposition 9.2.2. The only point to check is thatQ(JX⊗Y ) = (QX)⊗Y .
This really means that if Y is a cell object then the functor (−)⊗Y preserves weak
equivalences, or equivalently, preserves acyclic complexes. The category of those Y
for which this is true is clearly a localizing subcategory, and it clearly contains S;
it is therefore the whole of D(R).

(c): Suppose that X is a bounded-below complex of projectives. Let Z be an
exact complex; it is well-known that any chain map X −→ Z is null-homotopic. The
null-homotopy is constructed as usual by induction on the dimension, and we have a
place to start becauseX is bounded below. In particular, ifQX = CX −→ X −→ LX
is the usual cofibration (as in the proof of Theorem 9.1.1), we find that the map
X −→ LX is zero. As L is idempotent, we find that 0 = 1: LX −→ L2X = LX, so
that LX = 0 and X = CX = QX. It follows that [X,Y ] = [QX,QY ] as claimed.

(d): Suppose that Y is a bounded-above complex of injectives, andX is arbitrary.
By the adjoint property of C, we have [CX,CY ] = [CX, Y ]. Any map from an
exact complex (such as LX) to Y is null-homotopic, so [CX, Y ] = [X,Y ].

(e): It is well-known (see [Ive86, Proposition 6.10], for example) that such a
sequence can be replaced by a quasi-isomorphic sequence X ′ −→ Y ′ −→ Z ′, which is
a dimensionwise-split short exact sequence of bounded-below complexes of projec-
tives, and thus a cofiber triangle. Thus, CX = CX ′ = X ′ (using (c)). The claim
follows.

(f): Given a map R −→ R′, we get a functor T = R′ ⊗R (−) : D(R) −→ D(R′).
This clearly preserves the tensor product and the unit, and sends G = {R} to
G′ = {R′}. In the other direction, we can start with an object of D(R′), regard it
as a complex of modules over R, and apply Q; it is not hard to see that this gives
a right adjoint to T , so that T is indeed a stable morphism.

For the interested reader, we describe the closed model structure [Qui67] on
the category of chain complexes and chain maps that gives rise to D(R); this is,
essentially, in [Wei94]. We need to identify the weak equivalences, the fibrations,
and the cofibrations. A morphism is a weak equivalence if and only if it is a
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homology isomorphism, a fibration if and only if a dimensionwise surjection, and a
cofibration if and only if a dimensionwise injection where the dimensionwise cokernel
is cofibrant. A complex is cofibrant if it can be written as an increasing union of
complexes so that the associated quotients are complexes of projectives with zero
differential.

Notice as well that we can do this same construction if R is a graded ring, using
chain complexes of graded R-modules. In that case, we will have two orthogonal
directions in which to suspend, so we should consider D(R) as a multigraded stable
homotopy category as in Section 1.3.

We record the following result for use in Section 6.
Let p ≤ R be a prime ideal, and let kp denote the residue field (R/p)p of p. We

also write kp = Q(kp) ∈ D(R).

Proposition 9.3.2. Suppose that R is Noetherian. Then we have

loc〈kp〉 = loc〈K(p)〉 = loc〈Ip〉
and

〈kp〉 = 〈K(p)〉 = 〈Ip〉.
Proof. First note that, by [Nee92a, Lemma 2.12], we have

〈S〉 =
∐
〈kp〉.

The homotopy groups of kp are p-local and p-torsion. It follows from Theorem 6.1.8
that 〈kp〉 ≤ 〈K(p)〉, so that kp ∧ kq = 0 when p 6= q. This means that each kp is
smash-complemented.

Next, we can use the pairing QX ⊗ QY −→ Q(X ⊗ Y ) to make kp into a ring
object, such that π∗kp = kp is a field. It follows from Propositions 3.7.2 and 3.7.3
that kp is a field object, that 〈kp〉 is a minimal Bousfield class, and that loc〈kp〉 is
a minimal localizing subcategory.

We next claim that K(p) ∈ loc〈kp〉. It is easy to reduce to the case in which
R is a local ring with maximal ideal p, so we shall assume this. Let M be a p-
torsion R-module. Write Mk = {m ∈ M | pkm = 0}, so that M =

⋃
kMk and

Mk/Mk−1 is a vector space over kp. It follows (using part (e) of Theorem 9.3.1)
that Q(Mk) ∈ loc〈kp〉. The map from the sequential colimit of the objects Q(Mk)
to QM is a quasi-isomorphism of bounded-below complexes of projectives, hence
a homotopy equivalence, which shows that QM ∈ loc〈kp〉. Now suppose that
X ∈ D(R) is such that πk(X) = 0 for k < 0 and πkX is p-torsion for all k. We
define X0 = X, and observe that there is a natural map Q(π0X0) −→ X0; we write
X1 for the cofiber. Note that πkX1 = 0 for k < 1, and π∗X1 is p-torsion. We define
objects Xk and cofibrations Q(πkXk) −→ Xk −→ Xk+1 in the evident way. We write
Xk for the fiber of the map X −→ Xk. It is easy to see that Xk ∈ loc〈kp〉, and that
πmX

k = πmX for k > m+ 1. By arguments similar to those of Proposition 2.3.1,
we see that X is the sequential colimit of the Xk, and thus X lies in loc〈kp〉.

In particular, this shows that Ip and K(p) lie in loc〈kp〉 (recall that π∗S = R

is concentrated in degree zero in this context). As K(p) 6= 0 6= Ip and loc〈kp〉 is
minimal, we see that loc〈kp〉 = loc〈K(p)〉 = loc〈Ip〉 as claimed. It follows that
〈kp〉 = 〈K(p)〉 = 〈Ip〉.
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Example 9.3.3. Let k be a field, and R = k[[x, y]]/(xy). Let p = (x, y) be the
maximal ideal. Then K(p) is the finite complex

R
(x,y)←−−− R2

( y
−x )←−−−− R←− 0←− . . .

and kp is the infinite complex

R
(x,y)←−−− R2

ş
y 0
0 x

ť

←−−−− R2

ş
x 0
0 y

ť

←−−−− R2

ş
y 0
0 x

ť

←−−−− R2 ←− . . .
As R is not regular, k has infinite projective dimension as an R-module, and kp is
not a small object.

9.4. Homotopy categories of equivariant spectra. In this section, we will
recall enough equivariant stable homotopy theory from [LMS86] to conclude that
the homotopy category of G-spectra (based on a complete G-universe, where G is
a compact Lie group) satisfies our axioms. We will not adopt the most modern
approach [EKMM95, Smi] because it is not necessary for the results of this section.
We should also point out that the homotopy category of non-equivariant spectra
(the case G = 1) has been known for a long time to satisfy the axioms for a
monogenic stable homotopy category [Vog70, Ada74, Mar83, EKMM95, Smi].

Fix a compact Lie group G.

Definition 9.4.1. Let U be an inner product space isomorphic to R∞, with an or-
thogonal action ofG. U is aG-universe if every finite-dimensional subrepresentation
of U occurs infinitely often in U and if the trivial representation is a subrepresen-
tation of U. A G-universe is complete if every finite-dimensional representation of
G is a subrepresentation of U.

If G is trivial, all universes are isomorphic to each other, though non-canonically.
However, if G is nontrivial, each isomorphism class of universes will give rise to a
distinct stable homotopy category. It turns out to be important to consider the set
of isotropy groups of points of U, or equivalently

Isotropy(U) = {H | G/H embeds in U}.
This is clearly closed under conjugation, and it is also closed under intersection.
Indeed, the isotropy subgroup of (x, y) ∈ U × U is just the intersection of the
isotropy subgroups of x and y, and U× U is G-isomorphic to U.

To discuss, even briefly, G-spectra, we need first to recall G-spaces. A G-space
is a compactly generated weak Hausdorff space with a continuous action of G. A
G-map between two G-spaces is just a G-equivariant continuous map. A based G-
space is a G-space with a distinguished point which is fixed by G. A based G-map is
a G-map that preserves the basepoints. Given two G-spaces X and Y , X×Y is the
G-space on which G acts diagonally. This allows us to define the smash product
X ∧ Y of two based G-spaces as the quotient of X × Y by the one-point union
X ∨ Y . We can also define F (X,Y ), the space of based maps from X to Y , with
G acting by conjugation. Given a representation V of G, we have the associated
one-point compactification SV ; we consider this as a based G-space, with basepoint
at infinity. We denote SV ∧X by ΣVX, and call this the V th suspension of X. As
usual, suspension has an adjoint ΩVX = F (SV , X).

Given a G-space X and a subgroup H of G, we denote the H-fixed point space
by XH . A weak equivalence of based G-spaces is a based G-map f : X −→ Y that
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induces isomorphisms π∗(XH) −→ π∗(Y H) of all homotopy groups (relative to the
basepoint) of all fixed point sets by closed subgroups H.

Definition 9.4.2. Suppose that U is a G-universe. A prespectrum X is a collec-
tion of based G-spaces X(V ) for each finite-dimensional subrepresentation V of U,
together with G-equivariant maps σV,W : ΣW−VX(V ) −→ X(W ) for each V ≤ W .
Here W −V denotes the orthogonal complement of V in W . The maps σV,W are re-
quired to satisfy the transitivity conditions: σV,V is the identity, and if U ≤ V ≤W
then σU,W = σV,W ◦ (ΣW−V σU,V ). A spectrum is a prespectrum such that the ad-
joints X(V ) −→ ΩW−VX(W ) of the structure maps are homeomorphisms.

Note that the notions of prespectrum and spectrum depend on both the group
G and the universe U. Note as well that there is an evident notion of maps of
prespectra and spectra, which are simply maps that commute with the structure
maps. This makes the category of spectra GSU a full subcategory of the category
of prespectra. One of the most important points in this theory is that the inclusion
functor from spectra to prespectra has a left adjoint L. This makes the category of
spectra have both arbitrary limits and arbitrary colimits, by taking colimits in the
category of prespectra and then applying L. One can also use L to define the smash
product of a G-space and a spectrum, by smashing space-wise and then applying
L.

The category of spectra is enriched over the category of G-spaces, so we can
define X∧Y when X is a G-space and Y is a spectrum. This gives a natural notion
of homotopy in the category of spectra. Indeed, by allowing G to act trivially on
the unit interval I, we have cylinder objects I+ ∧X. We can then define homotopy
in the usual way.

For an integer n ≥ 0, we define the spectrum Sn by applying L to the prespec-
trum which is SV ∧ Sn at the representation V , where we are thinking of Sn as
a based G-space with trivial G-action, and where the structure maps are isomor-
phisms. For n < 0, we define the spectrum Sn by applying L to the prespectrum
which is SV−n for all representations V which contain n, the sum of n copies of the
trivial representation, and which is the basepoint otherwise, with the evident struc-
ture maps. We then define SnH for all closed subgroups H ≤ G by SnH = G/H+∧Sn.
Given a spectrum X, we then define its homotopy group πnH(X) as the homotopy
classes of maps from SnH to X. A map f : X −→ Y of spectra is then defined to
be a weak equivalence if it induces an isomorphism on all homotopy groups. We
denote the category of spectra with weak equivalences inverted by hGSU . This is
an honest category with small Hom sets, by [LMS86, Section I.6].

The next theorem follows from the first three chapters of [LMS86].

Theorem 9.4.3. The category hGSU is an enriched triangulated category (Def-
inition 1.1.6). For any closed subgroup H of G, the object S0

H = G/H+ ∧ S
is small, and the localizing subcategory generated by the S0

H is all of hGSU. If
H ∈ Isotropy(U), then G/H+ ∧ S is strongly dualizable.

Given the last statement of the theorem, it is natural to define

G = {G/H+ ∧ S | H ∈ Isotropy(U)}.

Proof. This is all contained in the first three chapters of [LMS86], but we recall
some of the structure. It is easy to see that the coproduct in spectra descends to
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the homotopy category. A cofiber sequence is any sequence isomorphic in hGSU to
a sequence

X
f−→ Y

g−→ Z
h−→ ΣX

where Z = Y ∪f CX is defined as the evident pushout in the category of spectra
(as is CX), g is the inclusion, and h is the map obtained by collapsing Y . Then
the results of [LMS86, III, Section 2] show that this gives a triangulation on KU

G,
and that fiber sequences, defined analogously using pullbacks and function spaces,
are equivalent to cofiber sequences (up to a sign).

The symmetric monoidal structure is a little tricky in [LMS86] because it does
not come from a symmetric monoidal structure on the category of spectra. This
problem has been fixed more recently [EKMM95, Smi]. The problem is that the
smash product of two prespectra indexed on U is naturally indexed on U×U, rather
than on U. But one can choose an equivariant linear isometry between U× U and
U and use this, together with L, to make a structure that becomes symmetric
monoidal on hGSU. This, and the analogous function spectrum construction, is all
contained in [LMS86, II,Section 3].

We learn from [LMS86, Lemma I.5.3] that G/H+ ∧ S is always small. The CW
approximation theorem [LMS86, Chapter I] implies that any object in hGSU is in
the localizing subcategory generated by the S0

H . Moreover, when H ∈ Isotropy(U),
we see from [LMS86, Theorem III.2.7] that G/H+ ∧ S is strongly dualizable.

Unfortunately, the category hGSU is not a stable homotopy category as we have
defined it, unless the universe is complete, since otherwise some of the generators SH
need not be strongly dualizable. In fact, Lewis has shown (personal communication)
that SH is never strongly dualizable unless H ∈ Isotropy(U). This may be a
flaw with our axiom system, or one could interpret it as an unpleasant feature of
incomplete universes.

One can always take the “stable hull” of the category hGSU to obtain a stable
homotopy category.

Corollary 9.4.4. Let SU
G be the localizing subcategory generated by the SH such

that H ∈ Isotropy(U). Then SU
G is a unital algebraic Brown category.

Proof. First, we claim that

G/H+ ∧G/K+ ∧ S = (G/H ×G/K)+ ∧ S ∈ SU
G

whenever H and K are in Isotropy(U). From [LMS86], we find that G/H × G/K
is a finite G-CW complex. If there is a cell of type G/L× en in G/H ×G/K, then
there must be a point with isotropy group L. But then L is an intersection of a
conjugate of H with a conjugate of K, so L ∈ Isotropy(U). Thus G/H+∧G/K+∧S
is a finite G-CW spectrum built from the G/L+ ∧ Sn where L ∈ Isotropy(U), and
in particular is in SU

G.
Similarly, the Wirthmüller isomorphism [LMS86, Chapter II] shows that

D(G/H+ ∧ S) ∈ SU
G.

Thus Theorem 9.1.1 applies, showing that SU
G is a unital algebraic stable homo-

topy category. To see that SU
G is actually a Brown category, we use Theorem 4.1.5.

The maps between the generators are given by the values of the Burnside ring
Mackey functor, which is countable, by the results of [LMS86, Chapter 5], in par-
ticular [LMS86, Corollary V.9.4].
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There is a closed model structure on the category of spectra whose associated
homotopy category is SU

G, at least when U is complete. The fibrations are spacewise
fibrations, and the weak equivalences are spacewise weak equivalences of G-spaces.
(A weak equivalence of G-spaces is a weak equivalence on each fixed point set.)
The cofibrations are defined by the left lifting property. Hopkins [Hop] has given a
proof that this does indeed give a closed model structure.

9.5. Cochain complexes of B-comodules. Let B be a commutative Hopf al-
gebra over a field k. Write Comod(B) for the category of left B-comodules, and
K(B) for the homotopy category of chain complexes in Comod(B). As with the
derived category of modules over a ring, this needs a little modification before it
becomes a stable homotopy category. In this case the right thing to consider is the
homotopy category C(B) of chain complexes of injective comodules.

We work with chain complexes (so that the differential decreases degrees), for
consistency with previous sections. Thus, an injective resolution of a comodule will
be concentrated in negative degrees. Of course, everything can be translated by
the usual prescription Ci = C−i.

Recall that a comoduleM is simple if it is nontrivial, but has no proper nontrivial
subcomodules.

Theorem 9.5.1. Let B be a commutative Hopf algebra over a field k. Then C(B) is
a unital algebraic stable homotopy category, with a geometric morphism L : K(B) −→
C(B), whose right adjoint is the inclusion functor. We may take

G = {LM | M is a simple comodule }.
Moreover, L sends complexes of finite total dimension over k to strongly dualizable
objects.

If B = (kG)∗ where G is a p-group and p = char(k), then C(B) is monogenic.
The same applies if B is graded and connected (and we consider only graded co-
modules).

If M and N are comodules then

[LM,LN ]∗ = Ext∗B(M,N).

A map B −→ B′ of Hopf algebras gives rise to a stable morphism (see Defini-
tion 3.4.1) C(B) −→ C(B′).

This theorem will be proved after a number of auxiliary results.
Note that in C(B) we have L(k) = S and thus

π∗S = [S, S]∗ = Ext∗B(k, k).

If B is finite-dimensional, then Friedlander and Suslin have shown that this is
Noetherian [FS]. (This was known in special cases earlier: for B = (kG)∗ where G
is a finite group [Eve61], for B a finite-dimensional graded connected commutative
Hopf algebra [Wil81], and for B = V (L)∗ where L is a finite-dimensional restricted
Lie algebra [FP87]). If in addition, k (along with its suspensions, in the graded
case) is the only simple comodule, then the results of Section 6 apply. For instance,
the nilpotence theorem (Corollary 6.1.10) provides a new way to detect nilpotence
in Ext∗kG(M,M) for G a finite p-group and M a finitely generated kG-module.

We begin with some results about the category of B-comodules. It is well-
known that the category of modules over a commutative ring is enriched, but it is
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less well-known that the category of comodules over a commutative Hopf algebra
is also enriched.

Note that the dual vector space B∗ is a (typically non-commutative) k-algebra.

Definition 9.5.2. A B∗-module M is tame if for every m ∈ M , the generated
submodule B∗m has finite dimension over k.

Lemma 9.5.3. Let B be a Hopf algebra over a field k.

(a) Given a left B-comodule M and m ∈ M , then the subcomodule generated by
m is finite-dimensional over k.

(b) There is an isomorphism of categories (which is the identity on objects) be-
tween (left) B-comodules and the full subcategory of tame (left) B∗-modules.

(c) The resulting inclusion functor J from the category of (left) B-comodules to
the category of (left) B∗-modules has a right adjoint R.

(d) The category of (left) B-comodules is complete and cocomplete.
(e) If B is commutative, then the category of (left) B-comodules is enriched.

Proof. (a): Choose a basis {bi} for B. Relative to this basis, write ψ(m) =
∑
bi ⊗

mi, where all but finitely many of themi are 0. LetM ′ denote the vector space span
of the mi; we claim that M ′ is a comodule. This is a consequence of coassociativity,
and we leave it to the reader.

(b): Given a left B-comodule M , define a B∗-module structure by the composite

B∗ ⊗M 1⊗ψ−−−→ B∗ ⊗B ⊗M ev⊗1−−−→M

where ev: B∗⊗B −→ k is the evaluation map. One can check that the subcomodule
generated by m coincides with the sub B∗-module generated by m, so by part (a)
these are all finite-dimensional. This correspondence clearly defines a functor.

We now define the inverse functor. Let N be a B∗-module, with action map
B∗ ⊗ N −→ N . By adjunction we get a map N −→ Homk(B∗, N). There is an
inclusion B ⊗ N i−→ Homk(B∗, N) whose adjoint is the evaluation map tensored
with N . The image of i is precisely the set of maps f which factor through a
finite-dimensional quotient of B∗. In particular, if N is tame then the map N −→
Homk(B∗, N) will factor through i and give a B-comodule structure on N .

(c): Given an arbitrary B∗-module N , define RN to be the set of all n ∈ N such
that the submodule generated by n is finite-dimensional. Then RN is clearly a
submodule, and R is both a left inverse and a right adjoint to the inclusion functor.

(d): Coproducts of comodules can be defined in the usual way, by just taking
the direct sum of the underlying vector spaces and giving it the evident comodule
structure. To define products, we use R. Given a family of comodules {Mi},
define

∏
Mi = R(

∏
JMi). Then adjointness guarantees that this is a product in

the category of B-comodules. Note however that the product of infinitely many
nontrivial comodules could easily be trivial. Since the category of B-comodules is
Abelian, it has arbitrary (co)limits whenever it has arbitrary (co)products.

(e): The symmetric monoidal structure on the category of B-comodules is well-
known. Given B-comodules M and N , we define the comodule structure on M⊗kN
by the composite

M ⊗N ψ⊗ψ−−−→ B ⊗M ⊗B ⊗N 1⊗T⊗1−−−−→ B ⊗B ⊗M ⊗N µ⊗1⊗1−−−−→ B ⊗M ⊗N.
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To make the category of B-comodules enriched, we also need a notion of function
object. It is easier to do this for B∗-modules, so suppose that M and N are B∗-
modules such that every principal submodule is finite-dimensional. Dual to the
multiplication and conjugation on B we have maps ∆∗ : B∗ −→ Homk(B,B∗) and
χ∗ : B∗ −→ B∗. We are going to define a B∗-module structure on Homk(M,N)
by a horrendous formula, which is necessary since we are not assuming that B is
finite-dimensional. Recall we have chosen a basis {bi} for B; we let {b∗i } denote
the dual basis for B∗. Given f ∈ Homk(M,N) and u ∈ B∗, we define uf by the
formula

uf(x) =
∑

i

b∗i f [χ∗((∆∗u)(bi))x].

Since M and N are both tame, this sum is in fact finite. Indeed, B∗x is finite-
dimensional, so f(B∗x) is as well; thus b∗i f(B∗x) is zero for almost all i. We leave
it to the reader to check that this gives a B∗-module structure on Homk(M,N).

Now, given B-comodules M and N , let us define the function comodule F (M,N)
to be RHomk(JM, JN). Then one can verify that the function comodule is right
adjoint to the tensor product as required.

We next investigate the structure of injective comodules.

Lemma 9.5.4.

(a) The forgetful functor U from comodules to vector spaces has a right adjoint
V 7→ B ⊗ V , with coaction map ψ = ∆⊗ 1. We refer to B ⊗ V as the cofree
or extended comodule on V .

(b) For any comodule M we have B⊗M ' B⊗UM . Here the left hand side has
the structure described in part (e) of Lemma 9.5.3, and the left hand side has
the comodule structure described in (a).

(c) A comodule I is injective if and only if it is a retract of a cofree comodule.
(d) If {Iα} is a collection of injective comodules, then

∐
Iα and

∏
Iα are injective.

(e) If I is an injective comodule and M is arbitrary, then I⊗M and F (M, I) are
injective.

Proof. (a): This is well-known, and easy to check.
(b): The isomorphism is as follows (cf. [Mar83, Proposition 12.4]):

B ⊗M ←→ B ⊗ UM
b⊗m 7−→

∑

i

bbi ⊗mi

∑

i

bχ(bi)⊗mi ←− b⊗m

(c): It is clear from the adjunction Comod(B)(M,B ⊗ V ) ' Homk(M,V ) that
cofree comodules (and thus their retracts) are injective. Conversely, suppose that I
is injective. We have an embedding of comodules k −→ B, and thus an embedding

I = k ⊗ I −→ B ⊗ I ' B ⊗ UI.
Because I is injective, this splits, so I is a retract of the cofree comodule B ⊗ UI.

(d): It is formal (in any category) that products of injectives are injective. For
coproducts, use (c).
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(e): Let M be an arbitrary comodule. Using (b) and (c), we find that B ⊗M is
injective. Using (b) again, we conclude that I ⊗M is injective whenever I is. We
also have

Comod(B)(N,F (M, I)) = Comod(B)(N ⊗M, I).

This is clearly an exact functor of N , so F (M, I) is injective.

Lemma 9.5.5. Every simple comodule is finite-dimensional, and the collection of
isomorphism classes of simple comodules forms a set.

Proof. Let S be a simple comodule, and m ∈ S a nonzero element. We know by
part (a) of Lemma 9.5.3 that m lies in a finite-dimensional subcomodule of S. This
must be all of S, because S is simple. It follows that S is a cyclic B∗-module; there
is clearly only a set of these (up to isomorphism).

Proof of Theorem 9.5.1. The strategy of the proof is very similar to that of Theo-
rem 9.3.1, except we have to localize rather than colocalize. That is, we begin with
the category K(B) of chain complexes of B-comodules and chain homotopy classes
of chain maps. By Proposition 9.2.2, K(B) is an enriched triangulated category.
Note as well that any finite-dimensional comodule is small and strongly dualizable
in the category of comodules, so will also be in K(B). Indeed, if M and N are
finite-dimensional, so is Hom(jM, jN), so F (M,N) = Hom(jM, jN). In partic-
ular, since any simple comodule is necessarily finite-dimensional by Lemma 9.5.5,
simple comodules are small and strongly dualizable.

But, of course, the simple comodules do not generate K(B). Ordinarily in this
situation we would look at the localizing subcategory generated by the simple co-
modules, but if we did that in this case we would not get ExtB(k, k) as the homotopy
of S. So instead we look at C(B), the full subcategory of K(B) consisting of (all
complexes chain homotopy equivalent to) complexes of injectives. (This is in fact
a Bousfield localization.)

Using Lemma 9.5.4, we see that C(B) is a localizing ideal and a colocalizing
coideal in K(B). In particular, it is closed under products, coproducts, tensor
products and function objects. However, it does not contain the unit k.

Let k −→ L be the cobar resolution of the comodule k. (Any other resolution
would do, but we take the cobar resolution to be definite.) Thus L is a complex
of injectives, whose homology is k, concentrated in degree zero. The complex L
itself is concentrated in degrees less than or equal to zero. We also write C for the
fiber of the map k −→ L, so that H∗C = 0. This means that C is contractible as a
complex of vector spaces, so that H∗(C ⊗X) = 0 for any complex X. Finally, we
write CX = C ⊗X and LX = L⊗X.

Note L is a functor K(B) −→ C(B). We next show that it is left adjoint to the
inclusion J : C(B) −→ K(B).

To do so, we first recall the well-known fact that if Y is a bounded-above chain
complex (of objects in any Abelian category) with no homology, and U is a complex
of injectives, then every map from Y to U is chain homotopic to the zero map. This
is proved, as usual, by induction, and since X is bounded above there is a place to
start.

Now suppose that X ∈ K(B) and U ∈ C(B). Then C is bounded above and
acyclic, and F (X,U) is a complex of injectives, so

[CX,U ] = [C,F (X,U)] = 0.
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It follows from the fibration C −→ k −→ L that

[LX,U ] = [X,U ] = [X, JU ].

In other words, L is left adjoint to J , as claimed.
It follows immediately that L ' 1 on C(B), in other words that L ⊗ U ' U

whenever U ∈ C(B). Thus L is the unit of the smash product on C(B), and C(B)
becomes an enriched triangulated category. This also means that L is a geometric
morphism.

It follows by juggling adjunctions that we have an internal version of the adjunc-
tion: F (LX,U) ' F (X,U) whenever U is a complex of injectives.

Now let X be a complex of finite total dimension over k, so that X is strongly
dualizable in K(B). We now show that LX is strongly dualizable in C(B). The
dual of LX in C(B) is

DC(B)(LX) = F (LX,L) ' F (X,L) = F (X, k)⊗ L.
More generally, for any U ∈ C(B) we have

F (LX,U) ' F (X,U) = F (X, k)⊗ U.
On the other hand, L⊗ U ' U so

DC(B)(LX)⊗ U ' F (X, k)⊗ L⊗ U ' F (X, k)⊗ U ' F (LX,U).

Thus LX is strongly dualizable as claimed. In particular, this applies to LM when
M is a simple comodule.

Now we must show that injective resolutions of simple comodules form a set of
weak generators for C(B). Suppose that

X = (. . .
dn−1←−−− Xn−1

dn←−− Xn
dn+1←−−− . . . )

is a complex of injectives, and [LM,X]∗ = [M,X]∗ = 0 for every simple comodule
M . Let ZXn denote the cocycles in dimension n and let BXn denote the boundaries
in dimension n. The exact sequence

0 −→ ZXn+1
i−→ Xn+1

p−→ BXn −→ 0

(where p is just the coboundary d) gives rise to an exact sequence

0 −→ HomB(M,ZXn+1)
f−→ HomB(M,Xn+1)

g−→ HomB(M,BXn) −→ Ext1B(M,ZXn+1) −→ 0

since Xn is injective. On the other hand, any map M
α−→ ZXn is a chain map

from M (as a complex in degree 0) to X of degree n. Thus, since [M,X]∗ = 0, it
must be null-homotopic. That is, there must be a lift of α to β : M −→ Xn−1. The
composite HomB(M,Xn+1)

g−→ HomB(M,BXn)
h−→ HomB(M,ZXn) is therefore

surjective. Since h is monic, it follows that h is an isomorphism and g is surjective.
In particular, Ext1B(M,ZXn+1) = 0 for every simple comodule M .

Lemma 9.5.7 then shows that ZXn−1 is injective. There are then splittings
r : Xn−1 −→ ZXn−1 of i and q : BXn −→ Xn−1 of p. In particular, BXn is also
injective. By considering the exact sequence

0 −→ BXn −→ ZXn −→ HnX −→ 0
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we find an exact sequence

0 −→ HomB(M,BXn)
h−→ HomB(M,ZXn) −→ HomB(M,HnX) −→ 0.

Since h is an isomorphism for any simple comodule M , we find that

HomB(M,HnX) = 0

for every such M . By Lemma 9.5.6, HnX = 0, so ZXn = BXn.
We can now define a chain homotopy D : Xn −→ Xn−1 by the composite Xn

r−→
ZXn ' BXn

q−→ Xn−1. It is then easy to see that dD+Dd is the identity of X, so
X is a contractible chain complex.

It follows that C(B) is a unital algebraic stable homotopy category, with

G = {LM | M is a simple comodule }.
If k is the only simple comodule, then C(B) is monogenic. It is well known that
this is the case when G is a p-group with p = char(k), and B = (kG)∗. Similarly if
B is graded and connected.

Let M and N be comodules. Then LN is a complex of injectives with homology
H∗(L⊗N) = H∗(L)⊗N = N , in other words an injective resolution ofN . Moreover,
we know that [LM,LN ]∗ = [M,LN ]∗. It follows that

[LM,LN ]∗ = Ext∗B(M,N)

as claimed.
Finally, suppose we have a map f : B −→ B′ of Hopf algebras. Given a complex of

injective B-comodules, we can think of it as a complex of B′-comodules through f .
We then apply L to get a complex of injective B′-comodules. This gives a functor
C(B) −→ C(B′), which we claim is a stable morphism; we leave the details to the
reader.

We still owe the reader Lemmas 9.5.6 and 9.5.7.

Lemma 9.5.6. The set {M} of simple comodules weakly generates Comod(B). In
other words, for every nonzero comodule N , there is an inclusion M ↪→ N of a
simple comodule into N .

Proof. By Lemma 9.5.3, every B-comodule N 6= 0 has a finite-dimensional subco-
module N ′ 6= 0. Clearly every finite-dimensional B-comodule N ′ 6= 0 has a simple
sub-comodule (by induction on dimension).

Lemma 9.5.7. Suppose that J is a comodule such that Ext1B(M,J) = 0 for all
simple comodules M . Then J is injective.

Proof. We first note that Ext1B(F, J) = 0 for all finite-dimensional (over k) comod-
ules F . Indeed, we prove this by induction on the dimension. Any comodule of
dimension 1 is simple. Given a nonzero finite-dimensional comodule F , there is a
nonzero simple comodule M ≤ F . By considering the short exact sequence

0 −→M −→ F −→ F/M −→ 0

we find an exact sequence

Ext1B(F/M, J) −→ Ext1B(F, J) −→ Ext1B(M,J)

and so, by induction, Ext1B(F, J) = 0.
Now, suppose that we have an arbitrary inclusion of comodules M ≤ N , and

a map f : M −→ J . We must extend f to N . Consider the set of pairs (P, g)
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where M ≤ P ≤ N and g : P −→ J is an extension of f , ordered in the evident
way. By applying Zorn’s lemma, we find a maximal such extension (N ′, g′). We
claim that N ′ = N . Indeed, suppose not. Then choose an element n ∈ N but
not in N ′. Let N ′′ denote the subcomodule generated by N ′ and n. Then N ′′/N ′

is generated by n, and hence, by Lemma 9.5.3, N ′′/N is finite-dimensional. Thus,
Ext1B(N ′′/N ′, J) = 0, and so the map HomB(N ′′, J) −→ HomB(N ′, J) is onto. Thus
there is an extension of g′ to N ′′, violating the fact that (N ′, g′) is maximal. Hence
N ′ = N , as required.

Note that the homotopy groups in C(B) of a complex of injectives X are

π∗X = [L,X]∗ = H∗(PX),

where P denotes the primitive functor. If k is the only simple comodule, as will
occur for example when B is graded connected, then H∗(PX) = 0⇔ X = 0.

As usual, C(B) is the homotopy category of a closed model structure on the
Abelian category of chain complexes of comodules. We will describe the structure
without giving proofs. The cofibrations are dimensionwise inclusions, and the fibra-
tions are dimensionwise surjections with kernel a complex of injectives. The weak
equivalences are generalized homotopy isomorphisms—that is, a map f : X −→ Y is
a weak equivalence if and only if it induces isomorphisms [Z,L ∧X] −→ [Z,L ∧ Y ]
for all finite-dimensional comodules Z.

Remark 9.5.8. Suppose that A is a finite-dimensional graded connected cocom-
mutative Hopf algebra over a field k; suppose also that A is a Koszul algebra [Pri70,
BGS] with Koszul dual A!. Then by [BGS, Theorem 16] there is an equivalence of
triangulated categories between FC(A∗) and FD(A!). Therefore we have a classifica-
tion of the thick subcategories of these, by Example 6.1.4. Note that this agrees
with the classification of thick subcategories of FC((kG)∗), for G a p-group.

9.6. The stable category of B-modules. In this section, we let B be a finite-
dimensional commutative Hopf algebra over a field k, and we study comodules over
B. It would be equivalent to consider modules over a finite-dimensional cocommu-
tative Hopf algebra, in view of the following result.

Proposition 9.6.1. There is an isomorphism (which is the identity on objects)
between the categories of B-comodules and B∗-modules.

Proof. Any B∗-comodule is clearly tame (Definition 9.5.2), given that B∗ has finite
dimension. The claim therefore follows from part (b) of Lemma 9.5.3.

We can now define the stable categories which we wish to study.

Definition 9.6.2. Given two comodules M and N over B, write

HomB(M,N)0 = {f ∈ HomB(M,N) | f factors through an injective comodule }.
This is a subspace of HomB(M,N), so we can define

HomB(M,N) = HomB(M,N)/HomB(M,N)0.

The composition map HomB(L,M) ⊗ HomB(M,N) −→ HomB(L,N) descends to
give a well-defined composition

HomB(L,M)⊗HomB(M,N) −→ HomB(L,N).

We can therefore define a category StComod(B) whose objects are B-comodules,
and whose morphisms are the sets HomB(M,N).
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In this section we prove the following theorems, and we also make a few remarks
about classifying thick subcategories and detecting nilpotence.

Theorem 9.6.3. Suppose that B is a finite-dimensional commutative Hopf algebra
over a field k; then StComod(B) is a unital algebraic stable homotopy category. If
k is countable then it is a Brown category. If k is the only simple B-comodule, then
StComod(B) is monogenic.

It turns out that StComod(B) is equivalent to a Bousfield localization (in fact,
a finite localization—Definition 3.3.4) of C(B). Because of this, there is a strong
relation between the two categories; see Lemma 3.5.6 and Proposition 9.6.8, for
example.

Theorem 9.6.4. Let B be a finite-dimensional commutative Hopf algebra over a
field k. Let LfB : C(B) −→ C(B) denote finite localization with respect to the thick
subcategory generated by B (as a complex of injectives concentrated in degree 0).
Then we have an equivalence of stable homotopy categories

LfBC(B) ' StComod(B).

Before proving Theorems 9.6.3 and 9.6.4, we need three lemmas.

Lemma 9.6.5. There is an isomorphism B ' Hom(B, k) of B-comodules. A co-
module is projective if and only if it is injective.

Proof. See [LS69, p. 85].

Lemma 9.6.6. A chain complex X in C(B) is LfB-local if and only if H∗(X) = 0.

Proof. X is LfB-local if and only if [B,X]∗ = 0. But H∗(X) = π∗(B ∧ X) =
[DB,X]∗ = [B,X]∗, since B is self-dual.

Recall that L denotes the cobar resolution of the ground field k (which has finite
dimension in each degree). Given any comodule M , we have both an injective
resolution

M −→ L⊗M
and a projective resolution

Hom(L, k)⊗M = Hom(L,M) −→M.

We can then splice these resolutions together to form the Tate complex tB(M):

. . . −→ Hom(L−1,M) −→ Hom(L0,M) −→ L0 ⊗M −→ L−1 ⊗M −→ . . . .

Here L0 ⊗M is in degree zero, so Hom(L−k,M) is in degree k + 1.
Because projectives and injectives are the same, tB(M) is an element of C(B).

Since projective and injective resolutions of M are unique up to chain equivalence,
tB(M) is independent of our choice of L. Since tB(M) clearly has no homology, it
is LfB-local by the preceding lemma.

Lemma 9.6.7. For any comodule M , tB(M) is the LfB-localization of LM .

Proof. There is certainly a map LM
f−→ tB(M), and we have already seen that

tB(M) is LfB-local. The cofiber of f is the projective resolution Hom(L,M) of M ,
and it suffices to show that Hom(L,M) is in the localizing subcategory D = loc〈B〉
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generated by B. We prove more generally that any bounded below complex of
injectives lies in D.

First consider an injective comodule J thought of as a complex concentrated in
a single degree. Then J is a retract of a coproduct of copies of B, so it lies in D.

Next, let I be a bounded-below complex of injectives. Let I(k) be the truncated
complex

. . . −→ 0 −→ Ik −→ Ik−1 −→ . . . .

Note that I(k) = 0 for k ¿ 0, and there are cofibrations I(k) −→ I(k + 1) −→
I(k+1)/I(k). By the previous paragraph, I(k+1)/I(k) ∈ D, so I(k) ∈ D for all k.
Let I(∞) be the sequential colimit of the I(k)’s, so that we have a map I(∞) −→ I
with cofiber I ′ say. It is not hard to see that I ′ is a bounded below complex of
injectives with H∗I ′ = 0, so I ′ is contractible and I(∞) ' I. It follows that I ∈ D

as claimed.

We now prove Theorems 9.6.3 and 9.6.4 simultaneously.

Proof of Theorems 9.6.3 and 9.6.4. The strategy of the proof is first to define struc-
tures on StComod(B), then to construct an equivalence of categories between
LfBC(B) and StComod(B) that preserves these structures. Since LfB is smashing, as
finite localizations always are, this shows that with these structures StComod(B) is
a stable homotopy category. We leave it to the reader to check that the structures
we define on StComod(B) are equivalent to similar structures on StMod(B∗).

We begin by defining the standard structures on StComod(B) that will make it
into a stable homotopy category. First, the coproduct of stable comodules is the
same as the coproduct of comodules. The suspension of a stable comodule M is
defined by embedding M into the injective module B⊗M and taking the cokernel.
A cofiber sequence in StComod(B) is any sequence isomorphic to

M
f−→ N

g−→ P
h−→ ΣM

where

0 −→M
f−→ N

g−→ P −→ 0

is a short exact sequence of comodules, and where h is any map such that the
following diagram commutes:

0 −−−−→ M −−−−→ B ⊗M −−−−→ ΣM −−−−→ 0

=

y
y −h

y
0 −−−−→ M

f−−−−→ N
g−−−−→ P −−−−→ 0.

The smash product of two stable comodules is just the tensor product M ⊗ N
and the function object is just Homk(M,N). (Since B is finite, the subtleties in
Lemma 9.5.3 do not arise.) We leave it to the reader to check that these do define
functors in the stable category and that they remain adjoint.

We still have to prove that with these structures and with generating set consist-
ing of the simple comodules, StComod(B) is a stable homotopy category. Rather
than proving this directly, we will construct an equivalence of categories between
StComod(B) and LfBC(B) that preserves coproducts, cofiber sequences, smash
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products, and function objects. Since LfB is a finite localization, it is in partic-
ular smashing, so LfBC(B) is a unital algebraic stable homotopy category, and the
result follows.

We begin by considering the functor G : Comod(B) −→ C(B) that takes M to
L ⊗ M . This functor preserves coproducts and takes the tensor product to the
smash product. Also, if

0 −→M
f−→ N

g−→ P −→ 0

is a short exact sequence, then the cofiber of G(f) is a complex of injectives begin-
ning in degree 0 whose only homology group is P , so it is equivalent to G(P ).

The composite functor LfBG is equivalent to tB by Lemma 9.6.7. Since any
injective module lies in loc〈B〉, the functor tB factors through the stable category
to give a functor

tB : StComod(B) −→ LfBC(B).

Since LfB preserves the coproduct and the smash product, so does tB . By consid-
ering the short exact sequence

0 −→M
f−→ B ⊗M −→ ΣM −→ 0

we find that the cofiber of tB(f) is tB(ΣM). But tB(B ⊗M) is trivial, so this
cofiber is ΣtB(M). Thus tB preserves the suspension, and it is then easy to see
that it preserves cofiber sequences as well.

We now construct an inverse to tB . Consider an object X = (. . . −→ X1 −→
X0 −→ X−1 −→ . . . ) which is LfB-local, i.e., which is an acyclic chain complex of
injectives. Define

u(X) = ker(X0 −→ X−1) = image(X1 −→ X0).

This is clearly functorial for chain maps. Moreover, if f : X −→ Y is null-homotopic
then u(f) factors through the injective comodule Y1. It follows that u gives a functor
LfBC(B) −→ StComod(B). It is easy to check that tB and u define an equivalence of
categories. It follows by adjointness that tB preserves function objects, so in fact
tB is an equivalence of stable homotopy categories.

The proof of Theorem 9.6.4 makes it clear that the homotopy of S in the stable
module category of kG is just the Tate cohomology of G, hence the notation tB .
For a general commutative Hopf algebra B, the category of complexes of injectives
with no homology will not in general be colocalizing, so there is no way one could
perform Bousfield localization and land in it. On the other hand, one can always
perform Bousfield localization LH with respect to the ordinary homology functor H
on C(B). Denote the fiber of the localization map X −→ LHX by CHX. Then one
could define the Tate cohomology of a general Hopf algebra B to be [CHS,CHS].
This agrees with the usual Tate cohomology of a finite group. Mislin [Mis] has
recently given an extension of Tate cohomology to arbitrary groups. We have not
checked whether his definition agrees with ours.

Theorem 9.6.4 implies that there is a strong tie between the two categories C(B)
and StComod(B). Here is one example, motivated by Rickard’s classification [Ric]
of thick subcategories of small objects in StMod(kG), for G a p-group.

Proposition 9.6.8. There is a one-to-one correspondence between the thick sub-
categories of FStComod(B) and the nonzero thick subcategories of FC(B).
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Before proving this proposition, we need a lemma.

Lemma 9.6.9. A comodule M is small in StComod(B) if and only if M is iso-
morphic in StComod(B) to a finite-dimensional comodule.

Proof. First suppose M is a finite-dimensional comodule. Then tB(M) = LfBLM is
small in LfBC(B), since LM is small in C(B). ThusM is small in StComod(B). Con-
versely, any comodule M which is small in StComod(B) is in the thick subcategory
generated by the simple comodules, since StComod(B) is a unital algebraic stable
homotopy category. Any simple comodule is finite-dimensional, and the property of
being isomorphic to a finite-dimensional comodule is preserved under suspensions,
cofibrations, and retracts. The only one of these claims that is not immediately
clear is the closure under retracts. To see this, we use [Mar83, Proposition 13.13]
(and the comments immediately following it) to write any comodule M uniquely as
I ⊕M ′, where I is injective and M ′ has no injective summands. Of course, M and
M ′ are isomorphic in StComod(B), and conversely, if M and N are isomorphic in
StComod(B), then M ′ and N ′ are isomorphic as comodules [Mar83, Proposition
14.1]. Thus, if N is a retract of M in StComod(B), then N ′ is a retract of M ′

as comodules. In particular, if M is isomorphic to a finite-dimensional comodule,
then M ′ must be finite-dimensional, and so N ′ is as well.

Proof of Proposition 9.6.8. Let L = LfB , so that StComod(B) is equivalent to
C(B)L. We claim that there is a correspondence

{
nonzero thick subcats

in FC(B)

}
←→

{
thick subcats

in FC(B)L

}

D 7−→ thick〈LD〉
L−1D′ ∩ FC(B) ←− D′

To see that these maps give a one-to-one correspondence, note first that the pre-
ceding lemma shows that LfB : FC(B) −→ FStComod(B) is surjective on objects. From
this, it is straightforward to check that, if D′ is a thick subcategory of FStComod(B),
then thick〈L(L−1D′ ∩ FC(B))〉 = D′.

Conversely, suppose that D is a thick subcategory of FC(B), and let D = L−1LD

be the L-replete thick subcategory generated by D. By Lemma 3.5.6 it suffices to
show that D ∩ FC(B) = D.

For all X ∈ D, we have LfDX = 0. Note that if Y
f−→ Z is an L-equivalence,

then it is also an LfD-equivalence; it follows that the full category of all objects X
satisfying LfDX = 0 is thick and L-replete, so it contains D. By Theorem 3.3.3,
then, if X is finite and in D, then X ∈ D.

We finish by pointing out a familiar result which is an application of the fact
that StMod(kG) is a stable homotopy category.

Theorem 9.6.10 ([QV72, Car81]). Fix a finite group G, a field k of characteristic
p > 0, and a finitely-generated kG-module M . Then an element z ∈ Ext∗kG(M,M)
is nilpotent if and only if resG,E(z) ∈ Ext∗kE(M,M) is nilpotent for every elemen-
tary Abelian p-subgroup E of G.

Proof. Chouinard’s theorem [Cho76] says that a kG-module M is projective (i.e.,
zero in StMod(kG)) if and only if M↓E is a projective kE-module for all elementary
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Abelian p-subgroups E of G (here, M↓E denotes M restricted to kE). Now, one
can easily show that M↓E is a projective kE-module if and only if k[G/E]∗⊗M is a
projective kG-module. In other words, we have the following equality of Bousfield
classes:

〈S〉 =
∐

E≤G
elem.ab.

〈k[G/E]∗〉.

Hence Theorem 5.1.2 applies. On the other hand, these modules k[G/E]∗ represent
the homology functors

M 7→ Ext∗kE(k,M).

This finishes the proof.

Remark 9.6.11.

(a) One can also give a proof of Chouinard’s theorem in the language of stable
homotopy theory. Of course one needs to use Serre’s characterization of el-
ementary Abelian p-groups via products of Bocksteins [Ser65]; given that,
however, it is straightforward.

(b) We have shown that Theorem 9.6.10 is a formal consequence of Chouinard’s
theorem. This is perhaps different from the usual point of view on this result.

(c) A similar result (with the same proof) holds in the category of chain complexes
of projective kG-modules—one can imitate the arguments in Section 9.5 to
show that this is a stable homotopy category. We leave the details to the
reader. If G is a p-group, then this category is monogenic; so since Ext∗kG(k, k)
is Noetherian, then the results of Section 6 apply, giving a different nilpotence
theorem in this setting.

(d) One can also use the same arguments to recover the nilpotence theorem for a
finite-dimensional cocommutative Hopf algebra B∗—see [Wil81, Palb]. Again,
one can work either in StMod(B∗) or C(B∗).

10. Future directions

We close the paper by briefly discussing some topics we feel merit further study.
One such topic is the Adams spectral sequence. Given a ring object E in the

ordinary stable homotopy category, we can construct a spectral sequence that at-
tempts to calculate [X,Y ] in terms of E-homology information [Ada74]. One needs
some hypotheses on E to determine the E2-term of this spectral sequence, and
some hypotheses on E, X, and Y to guarantee convergence. This construction of
the Adams spectral sequence will certainly work in a monogenic Brown category,
but one might hope to be able to construct it more generally. Convergence will cer-
tainly be delicate, as it is even with spectra. One might hope for a construction in
an algebraic stable homotopy category, and for some convergence results analogous
to those in [Bou79b], but we have not investigated this question. It is certainly an
important one. It also seems likely that many familiar spectral sequences (such as
the Cartan-Eilenberg spectral sequence associated to an extension of Hopf algebras)
can be presented in these terms.
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10.1. Grading systems on stable homotopy categories. There are times
when we would like to allow a stable homotopy category to have a more gen-
eral grading than the Z-grading enjoyed by any triangulated category, or even than
the multigrading discussed in Section 1.3. In this section we briefly discuss such
grading systems. The basic examples are the possibility of grading over the Picard
group (Definition A.2.7), and, in the setting of G-equivariant stable homotopy the-
ory, grading so that [X,Y ]∗ is a Z-graded Mackey functor. The main advantage
of this more complicated grading is that one can make any unital algebraic sta-
ble homotopy category monogenic, if one is willing to modify the grading of the
category.

Suppose that we have a stable homotopy category C. Consider (Z,+) as a
symmetric monoidal category with the only maps being the identity map 1m and
(−1)m on each object m, with the evident composition. The symmetric monoidal
structure is just addition on the objects and multiplication on the maps. It is
strictly associative and unital, but not strictly commutative. The commutativity
natural transformation is (−1)mn on m ∧ n.

Recall that a strict symmetric monoidal functor F : C −→ D between symmetric
monoidal categories is a functor equipped with natural isomorphisms FX ∧ FY '
F (X ∧ Y ) and FS ' S, which are compatible in the evident sense with the com-
mutativity, associativity and unity maps in C and D. We shall simply refer to such
a thing as a monoidal functor.

If C is an enriched triangulated category, then we can define a monoidal functor
(Z,+) S−→ C, which takes m to Sm.

Definition 10.1.1. Let C be an enriched triangulated category.

(a) A pointed symmetric monoidal category is a symmetric monoidal category
C equipped with a commutative monoidal functor (Z,+) −→ C. There is an
evident notion of a pointed functor of pointed symmetric monoidal categories.

(b) A grading system on an closed symmetric monoidal triangulated category C

is a small pointed symmetric monoidal category I and a pointed commutative
monoidal functor G : I −→ C such that Ga is strongly dualizable for all a ∈ I.

(c) Given a grading system G on an closed symmetric monoidal triangulated
category, we write Sa for Ga, and we write ΣaX for Sa ∧ X. Furthermore,
we define [X,Y ]a = [ΣaX,Y ]. If H is a homology functor, we define HaX =
H(DSa∧X) and if H is a cohomology functor we define HaX = H(DSa∧X).

(d) Given a grading system G on an closed symmetric monoidal triangulated
category, we modify the definitions of thick, localizing, and colocalizing sub-
categories so as to require them to be closed under smashing with all the Sa,
which we think of as a generalized suspension.

(e) An I-graded stable homotopy category is a category C equipped with
(i) Arbitrary coproducts
(ii) A triangulation
(iii) A closed symmetric monoidal structure compatible with the triangulation
(iv) A grading system G : I −→ C such that the localizing subcategory (in the

above sense) generated by S is all of C.
such that all cohomology functors are representable.

Example 10.1.2. (a) Every closed symmetric monoidal triangulated category
admits a grading system where I = Z.
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(b) If C is a unital algebraic stable homotopy category, then there is always a
choice of grading system on C so that C becomes an I-graded stable homotopy
category. Indeed, we can take for I a small equivalent subcategory of F and
for G the inclusion functor.

(c) If the Picard category (see Definition A.2.7) of an closed symmetric monoidal
triangulated category C is small, then the inclusion functor Pic −→ C defines
a grading system on C. Grading over the Picard group is not always possible,
but can be done if and only if one can choose a monoidal section of the map
from the Picard category to the Picard group. In particular, one can always
grade over free Abelian subgroups of the Picard group. A bigraded category
is an example of this, as is the RO(G) grading on the homotopy category
of G-spectra defined over a complete universe [LMS86]. Note, however, that
the category of G-spectra is not an RO(G)-graded stable homotopy category,
because the localizing subcategory generated by the “representation spheres”
is not usually the whole category.

(e) Let G be a finite group. The homotopy category of G-spectra (based on a
complete universe) admits a grading system over (Z,+) × L where L is the
Lindner category of finite G-sets. Here objects are finite G-sets, but maps are
arbitrary maps of G-sets together with transfers. The symmetric monoidal
structure is given by the product. In this case [X,Y ]∗, as a contravariant
functor from (Z,+)×L to Abelian groups, is a graded Mackey functor, and the
category of G-spectra becomes a (Z,+)×L-graded stable homotopy category.
See [LMS86] for details.

(f) In any I-graded stable homotopy category, there is a symmetric monoidal
structure on the category of contravariant functors from I to Ab so that π∗S
becomes a commutative ring object. In the equivariant case, one recovers the
notion of Green functors.

The approach outlined here is a useful one in equivariant stable homotopy theory,
but we do not know if it is useful in other stable homotopy categories.

10.2. Other examples. To conclude the paper, we provide a partial list of coho-
mology theories that we think are associated with stable homotopy categories. We
have not considered these, for reasons of space, time, and energy.

(a) Ext of modules over a commutative S-algebra in the sense of [EKMM95],
possibly in a G-equivariant setting. These certainly form a stable homotopy
category, but we have not studied any examples in depth.

(b) Ext of differential graded modules over a commutative differential graded
algebra. This example should be very similar to the derived category of an
ordinary ring. It is likely that the Adams spectral sequence in this category
is the spectral sequence of Eilenberg-Moore that goes from ordinary Ext to
differential Ext.

(c) Ext of sheaves of OX -modules, where X is a scheme.
(d) Continuous cohomology of a topological group, especially of a profinite group.
(e) Ext of comodules over a commutative Hopf algebroid, such as BP∗BP .
(f) Ext of Mackey functors which are modules over a Green functor. This example

might help one to understand what to expect for a thick subcategory theorem
in equivariant stable homotopy theory.

(g) Motivic cohomology in any of its various guises.
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We have also considered generalizing the definition of a stable homotopy category
to allow for a non-commutative smash product. This would cover the derived
category of bimodules over a non-commutative ring, for example. One might hope
to be able to put the following things in this context:

(a) Cyclic cohomology.
(b) Hochschild cohomology.
(c) Ext of bimodules over a noncommutative S-algebra.

It is possible that Hochschild cohomology should be thought of in the same
way as Tate cohomology of spectra [GM95]. That is, given an algebra A over
a commutative ring B, we should construct the Hochschild cohomology of A as
a ring object in the derived category of B-modules. We do not yet understand
the relationship between this approach and the idea of making a stable homotopy
category of bimodules.

Appendix A. Background from category theory

A.1. Triangulated categories. We recall the notion of a triangulated category.
We give the definition from [Mar83]; this definition is equivalent to the more usual
one as in [Ver77], and see [Nee92b] for yet another set of axioms.

Definition A.1.1. A triangulation on an additive category C is an additive (sus-
pension) functor Σ: C −→ C giving an automorphism of C, together with a collection
4 of diagrams, called exact triangles or cofiber sequences, of the form

X −→ Y −→ Z −→ ΣX

such that

1. Any diagram isomorphic to a diagram in 4 is in 4.
2. Any diagram of the following form is in 4:

0 −→ X
1−→ X −→ 0

3. If the first of the following diagrams is in 4, then so is the second:

X
f−→ Y

g−→ Z
h−→ ΣX

Y
g−→ Z

h−→ ΣX
−Σf−−−→ ΣY.

4. For any map f : X −→ Y , there is a diagram of the following form in 4.

X
f−→ Y −→ Z −→ ΣX

5. Suppose we have a diagram as shown below (with h missing), in which the
rows lie in 4 and the rectangles commute. Then there exists a (nonunique)
map h making the whole diagram commutative.

X Y Z ΣX

U V W ΣU

- - -

- - -

? ? ??

hf Σf
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6. Verdier’s octahedral axiom holds: Suppose we have maps X v−→ Y
u−→ Z, and

cofiber triangles (X,Y, U), (X,Z, V ) and (Y,Z,W ) as shown in the diagram.
(A circled arrow U −→◦ X means a map U −→ ΣX.) Then there exist maps
r and s as shown, making (U, V,W ) into a cofiber triangle, such that the
following commutativities hold:

au = rd es = (Σv)b sa = f br = c





Á




Á





À

J
J

J
Ĵ

J
J

J
Ĵ

J
J

J
J]

¾¾

-

J
J












-

J
J

J
J

J
J

J
JJ


À

c

c

cU Y W

X Z

V

uv

uv

ab

c

d e

f

r s

(If u and v are inclusions of CW spectra, this essentially just says that
(Z/X)/(Y/X) = Z/Y . The diagram can be turned into an octahedron by
lifting the outer vertices and drawing an extra line from W to U .)

A category equipped with a triangulation is called a triangulated category . Given
an exact sequence Σ−1Z −→ X

f−→ Y −→ Z, we say that Z is the cofiber and Σ−1Z
the fiber of f . The cofiber of f is only determined up to unnatural isomorphism in
the category of objects under Y and over ΣX. If Z is the cofiber of f : X −→ Y ,
we will often abuse notation by referring to the sequence X

f−→ Y −→ Z as a cofiber
sequence.

An exact functor between triangulated categories is a functor L which is equipped
with an equivalence LΣ ' ΣL, and which preserves cofiber sequences. More pre-
cisely, suppose that X −→ Y −→ Z −→ ΣX is a cofiber sequence. We can apply L
and use the given equivalence LΣX = ΣLX to get a sequence LX −→ LY −→ LZ −→
ΣLX. The requirement is that this should again be a cofiber sequence.

A natural transformation of exact functors is required to commute with the given
suspension equivalences in the obvious sense.

We will use a number of well-known properties of triangulated categories with-
out proof, and usually without explicit mention; see [Mar83] and [Ver77] for more
complete references. In particular, in any triangulated category, coproducts and
products, when they exist, preserve cofiber sequences.

We will state the (perhaps poorly named) 3 × 3 lemma here, however. A proof
can be found in [BBD82] and an interesting discussion of related matters can be
found in [Nee92b].



AXIOMATIC STABLE HOMOTOPY THEORY 105

Lemma A.1.2 (3× 3 lemma). Let C be a triangulated category. Consider a com-
mutative square as shown, in which the rows and columns are cofiber sequences.

Σ−1X ′ Σ−1Y ′
y

y
Σ−1Z ′′ −−−−→ X ′′ −−−−→ Y ′′ −−−−→ Z ′′

y
y

Σ−1Z −−−−→ X −−−−→ Y −−−−→ Z
y

y
X ′ Y ′

Then there exists an object Z ′ and maps Y ′ −→ Z ′ ←− Z, such that the following
diagram commutes (except that the top left square anticommutes) and the rows and
columns are exact.

Σ−2Z ′ −−−−→ Σ−1X ′ −−−−→ Σ−1Y ′ −−−−→ Σ−1Z ′y
y

y
y

Σ−1Z ′′ −−−−→ X ′′ −−−−→ Y ′′ −−−−→ Z ′′y
y

y
y

Σ−1Z −−−−→ X −−−−→ Y −−−−→ Zy
y

y
y

Σ−1Z ′ −−−−→ X ′ −−−−→ Y ′ −−−−→ Z ′

It is understood that the map X ′ −→ Y ′ is the suspension of the map Σ−1X ′ −→
Σ−1Y ′, and so on.

A.2. Closed symmetric monoidal categories.

Definition A.2.1. A closed symmetric monoidal category is a category C equipped
with:

1. A unit object S.
2. A functor (X,Y ) 7→ X ∧ Y from C × C to C, which is associative and com-

mutative up to coherent natural isomorphism, such that S ∧ X = X up to
coherent natural isomorphism. We shall call this functor the smash product,
by analogy with the category of spectra.

3. Function objects F (X,Y ), which are functorial contravariantly in X and co-
variantly in Y , such that [X,F (Y,Z)] ' [X ∧ Y,Z], naturally in all three
variables.

We shall say that this structure is compatible with a given triangulation on C if:

1. The smash product preserves suspensions. That is, there is a natural equiv-
alence eX,Y : ΣX ∧ Y −→ Σ(X ∧ Y ). Furthermore, if we let rX denote the
unital equivalence X ∧S −→ X, then we have ΣrX ◦eX,S = rΣX , and if aX,Y,Z
denotes the associativity isomorphism (X ∧ Y )∧Z −→ X ∧ (Y ∧Z), then the
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following diagram commutes:

(ΣX ∧ Y ) ∧ Z

Σ(X ∧ Y ) ∧ Z

Σ((X ∧ Y ) ∧ Z)

ΣX ∧ (Y ∧ Z) Σ(X ∧ (Y ∧ Z))

´
´

´
´

´
´́3 Q

Q
Q

Q
Q

QQs

B
B
B
B
B
B
BBN

-

£
£

£
£

£
£

££°

eX,Y ∧ 1Z eX∧Y,Z

aΣX,Y,Z

eX,Y ∧Z

ΣaX,Y,Z

One can easily construct from e isomorphisms F (ΣX,Y ) ' Σ−1F (X,Y ) and
F (X,ΣY ) ' ΣF (X,Y ).

2. The smash product is exact. More precisely, suppose that X
f−→ Y

g−→ Z
h−→

ΣX is an exact triangle, and that W is an object of C. If we use eX,W to
identify (ΣX)∧W with Σ(X ∧W ), then the following triangle is required to
be exact:

X ∧W f∧1−−→ Y ∧W g∧1−−→ Z ∧W h∧1−−→ Σ(X ∧W )

3. The functor F (X,Y ) is exact in the second variable in a similar sense, and is

exact in the first variable up to sign. That is, suppose X
f−→ Y

g−→ Z
h−→ ΣX

is an exact triangle, and that W is an object of C. If we use the adjoint of e to
identify F (ΣX,W ) with Σ−1F (X,W ), then the following triangle is required
to be exact:

Σ−1F (X,W )
−F (h,1)−−−−−→ F (Z,W )

F (g,1)−−−−→ F (Y,W )
F (f,1)−−−−→ F (X,W )

4. The smash product interacts with the suspension in a graded-commutative
manner. That is, the following diagram is commutative for all integers r
and s, where T is the twist map (i.e., the commutativity equivalence for the
smash product), Sr = ΣrS, and the horizontal equivalences come from the
equivalence e above together with the symmetric monoidal structure.

Sr ∧ Ss '−−−−→ Sr+s

T

y
y(−1)rs

Ss ∧ Sr '−−−−→ Sr+s

We really need only require that the last diagram commute with r = s = 1;
it then follows that each transposition in the symmetric group Σn acts as −1 on
Sn = S1 ∧ . . . ∧ S1, so every permutation acts as its signature. One can deduce
from this that the diagram commutes for all r and s.
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There are a number of theorems which say approximately the following: if dia-
grams of a certain type commute in the category of (possibly infinite-dimensional)
vector spaces over C, then they commute in any closed symmetric monoidal cate-
gory. See for example [Sol95].

One way to interpret the sign that prevents F (X,Y ) from being exact in the first
variable is that mapping out of a cofiber sequence should produce a fiber sequence,
not a cofiber sequence, and in the stable case, cofiber sequences differ from fiber
sequences only by a sign. This sign can usually be ignored, since most of our
arguments do not rely on the features of the maps in an exact triangle, but only
on the existence of the exact triangle.

Remark A.2.2. Note that, in a closed symmetric monoidal category C, the smash
product is always compatible with coproducts. That is, given a family {Xi} of
objects of C such that

∐
Xi exists, and given another object Y of C, the coproduct∐

(Xi∧Y ) exists, and the natural map
∐

(Xi∧Y ) −→ (
∐
Xi)∧Y is an isomorphism.

Indeed, we have, for any object Z of C,

[(
∐

Xi) ∧ Y, Z] = [
∐

Xi, F (Y, Z)] =
∏

[Xi, F (Y, Z)] =
∏

[Xi ∧ Y, Z],

as required.

Proposition A.2.3. Suppose that C is a closed symmetric monoidal category.
(a) There is an associative composition map

F (X,Y ) ∧ F (Y,Z) ◦−→ F (X,Z).

For all X, there is a map S
η−→ F (X,X) which is a two-sided unit for the

composition. This makes C a category enriched over itself, as in [Kel82].
(b) Both the smash product and the function object functor are (canonically) en-

riched functors, and they are adjoint as enriched functors. That is, there is a
natural isomorphism

F (X,F (Y, Z)) ' F (X ∧ Y, Z).

(c) Coproducts and products in C are enriched coproducts and products as well.
That is, we have equivalences

F (
∐

Xα, Y ) −→
∏

F (Xα, Y )

and

F (X,
∏

Yα) −→
∏

F (X,Yα).

Proof. The unit map S −→ F (X,X) is adjoint to the unit equivalence S ∧X −→ X.
Because of the adjunction, we have evaluation maps

F (X,Y ) ∧X ev−→ Y

and we use these to define the composition map as the adjoint of the composite

F (X,Y ) ∧X ∧ F (Y,Z) ev∧1−−−→ Y ∧ F (Y,Z) ev−→ Z.

We leave it to the reader to check that this composition is associative and unital.
To say that the smash product is an enriched functor means that we have a natural
map

F (X,X ′) ∧ F (Y, Y ′) −→ F (X ∧ Y,X ′ ∧ Y ′)
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compatible with the composition and the unit. To construct this map, we take the
adjoint to the map

F (X,X ′) ∧X ∧ F (Y, Y ′) ∧ Y ev∧ev−−−→ X ′ ∧ Y ′.
We leave it to the reader to check that this is compatible with composition and the
unit and to construct analogous maps for the function object functor.

One way to see that F (X ∧ Y,Z) is naturally equivalent to F (X,F (Y,Z)) is to
show that they represent the same functor. That is, we have

[W,F (X ∧ Y,Z)] = [W ∧X ∧ Y, Z] = [W ∧X,F (Y, Z)] = [W,F (X,F (Y,Z))].

One can use a similar method to show that coproducts and products behave as
expected.

Recall from [LMS86, Chapter III] the definition of strongly dualizable objects in
a closed symmetric monoidal triangulated category: Z is strongly dualizable if the
natural map

F (Z, S) ∧X −→ F (Z,X)

is an isomorphism for all X. We can now see that this natural map is nothing
more than composition, if we interpret X as F (S,X). This motivates the following
definition.

Definition A.2.4. In a closed symmetric monoidal category C, we denote F (X,S)
by DX and refer to it as the Spanier-Whitehead dual of X. Note that D is an exact
contravariant functor that takes coproducts to products.

Strongly dualizable objects were studied in [LMS86, Chapter III], and are the ba-
sis for Spanier-Whitehead duality. We recall the results of [LMS86] in the following
theorem.

Theorem A.2.5. Let C be a category with a triangulation and a closed symmetric
monoidal structure compatible with the triangulation.

(a) The full subcategory of strongly dualizable objects is thick and closed under
smash products and function objects. In particular, if X is strongly dualizable,
so is DX.

(b) If X is strongly dualizable, the natural map X −→ D2X adjoint to the evalu-
ation map

X ∧DX −→ S

is an isomorphism.
(c) If Y is strongly dualizable and X and Z are arbitrary objects of C, there is a

natural isomorphism

F (X ∧ Y, Z) −→ F (X,DY ∧ Z).

(d) The natural map

F (X,Y ) ∧ F (X ′, Y ′) −→ F (X ∧X ′, Y ∧ Y ′)
is an equivalence when X and X ′ are strongly dualizable, and also when X is
strongly dualizable and Y = S. In particular, if X is strongly dualizable, the
map

DX ∧DY −→ D(X ∧ Y )

is an isomorphism for all Y .
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(e) If X or Z is strongly dualizable, the natural map

F (X,Y ) ∧ Z −→ F (X,Y ∧ Z)

is an isomorphism.
(f) If X is strongly dualizable and {Yα} is a family of objects, then the natural

map

X ∧
∏

Yα −→
∏

(X ∧ Yα)

is an isomorphism.

With the exception of the fact that strongly dualizable objects form a thick
subcategory, this theorem holds in an arbitrary closed symmetric monoidal category.

Proof. This is all proved in [LMS86] except for two things: the fact that strongly
dualizable objects form a thick subcategory, and part (f). The former follows easily
from the exactness of F (−, Y ). For the latter, we have the equivalences

X ∧
∏

Yα ' F (DX,
∏

Yα) '
∏

F (DX,Yα) '
∏

(X ∧ Yα),

completing the proof.

Another useful lemma proved in [LMS86] (see Proposition III.1.3 and its proof)
is the following.

Lemma A.2.6. Suppose that X is a strongly dualizable object in a closed symmet-
ric monoidal category. Then X is a retract of X ∧DX ∧X.

Of course, S is always strongly dualizable in any closed symmetric monoidal
category. The Picard category, first introduced into stable homotopy theory by
Hopkins [HMS94, Str92], provides another source of strongly dualizable objects.

Definition A.2.7. Let C be a closed symmetric monoidal category. We say that
an object X ∈ C is invertible if there is an object Z and an isomorphism X∧Z −→ S.
Define the Picard category to be the full subcategory of invertible objects. We refer
to the isomorphism classes of this category with the operation ∧ as the Picard
group, though in general it may be a proper class rather than a set. We will denote
the Picard group by Pic.

Proposition A.2.8. Let C be a closed symmetric monoidal category. Then any
object X of the Picard category is strongly dualizable. Furthermore, the inverse of
X is DX.

Proof. Let Y denote an inverse of X. Then smashing with Y is an equivalence of
C with itself. Therefore, for all Z, we have

[Z,DX] ' [Z ∧X,S] ' [Z ∧X ∧ Y, Y ] ' [Z, Y ].

Hence Y = DX. Now for all W and Z we also have

[W,F (X,Z)] ' [W ∧X,Z] ' [W,Z ∧ Y ] ' [W,DX ∧ Z],

Thus F (X,Z) ' DX ∧ Z and so X is strongly dualizable.
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smashing, 36, 42, 51, 60, 61, 76

S¦p , 69, 75

S/p, 69

Sp, 68
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suspension, 103
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symmetric monoidal category
pointed, 101

t-structure, 77
tame, 90
Tate cohomology, 98
Tate complex, 96
tB(M), 96
telescope, 16, 18, 48, 65
telescope conjecture, 40, 70, 75, 76
thick subcategory, 11, 23, 73, 95, 98
thick subcategory theorem, 63, 66, 70
thick〈S〉, 11
triangulated category, 104

cocomplete, 12
complete, 12
enriched, 8, 21, 80, 83

triangulation, 103

U•, U•, 56
Uf , 62
unital algebraic, 7
universe, 86

complete, 86
incomplete, 88

V•, V •, 56, 61, 62

weak colimit, 16, 17
weak limit, 19

〈X〉, 46–48, 50, 51, 64

X(∞), 64
X(n), 63
X ∧ Y , 5
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