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ORIENTABLE SMOOTH MANIFOLDS ARE ESSENTIALLY

QUASIGROUPS

CHARLOTTE ATEN AND SEMIN YOO

Abstract. We introduce an n-dimensional analogue of the construction of tes-
sellated surfaces from finite groups first described by Herman and Pakianathan.
Our construction is functorial and associates to each n-ary alternating quasi-
group both a smooth, flat Riemannian n-manifold which we dub the open
serenation of the quasigroup in question, as well as a topological n-manifold
(the serenation of the quasigroup) which is a subspace of the metric comple-
tion of the open serenation. We prove that every connected orientable smooth
manifold is serene, in the sense that each such manifold is a component of the
serenation of some quasigroup. We prove some basic results about the variety
of alternating n-quasigroups and note connections between our construction
and topics including Latin hypercubes, Johnson graphs, and Galois theory.
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1. Introduction

This work builds on the ideas behind the construction of tessellated surfaces
from finite groups given by Herman and Pakianathan[8]. They produced a functor
from a category of nonabelian finite groups equipped with certain homomorphisms
preserving noncommutativity to a category of singular, oriented 2-manifolds. They
then desingularized these manifolds into compact orientable surfaces. The group
used in this construction (or a subquotient, or its automorphism group) would then
act on the cells of a functorially-occurring polyhedral tessellation of the resulting
manifold, yielding a faithful, orientation-preserving group action. Herman and
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2 C. ATEN AND S. YOO

Pakianathan’s motivation was the manufacture of these actions and the study of
finite groups through these associated surfaces.

Our motivation is the exact opposite. In higher dimensions the orientable mani-
folds are much less well understood so we reverse course by showing that the same
method allows us to understand higher-dimensional manifolds by working with
certain discrete algebraic structures. In order to extend this technique to dimen-
sions 3 and above a radically different formalism is needed, although we will see in
section 6 that when applied to a finite group it produces the same results Herman
and Pakianathan saw. We hope that the reader will agree that it is morally the
correct generalization. The appropriate analogue of a group must be found (which
is not an n-ary group in the sense Post introduced in [12], as one might’ve guessed)
and one must find a new technique for desingularization of singular n-manifolds.
We supply these concepts.

We construct smooth n-dimensional manifolds from n-quasigroups. For each
n we produce an open serenation functor OSern from a subcategory NCAQn

of a variety of n-quasigroups to a category of smooth n-manifolds. Given any
alternating quasigroup A we will find that OSern(A) is orientable and consists
of a (perhaps uncountable) collection of second countable connected components.
Moreover, OSern(A) inherits a metric from the quasigroup structure on A which
makes OSern(A) into a Riemannian manifold. Certain homomorphisms A →
B of n-quasigroups yield smooth maps OSern(A) → OSern(B) which are local
isometries everywhere with respect to these metrics.

We can use this metric structure to manufacture another functor, the serenation
functor denoted by Sern, from the same category of n-quasigroups to a category of
topological manifolds. This functor is in a sense the metric completion of OSern.
Although in dimensions 4 and above we can’t upgrade the codomain of this functor
to again be a category of smooth manifolds, it does have a redeeming property,
which is that every connected orientable triangulable topological n-manifold is a
component of the serenation of a quasigroup. This is theorem 1, which has as an
immediate corollary corollary 1, which says that every connected orientable smooth
n-manifold is a component of the serenation of an alternating n-quasigroup.

The varieties of n-quasigroups which we utilize have not to our knowledge been
studied before. However, there is a long history of interplay between certain vari-
eties of n-quasigroups and both combinatorics and topology. On the combinatorial
side, varieties of n-quasigroups often correspond to certain nice classes of Latin
squares or Latin (hyper)cubes[4, 5]. Even when the algebraic viewpoint is not
present, as in [9], we will see in section 7 that we encounter very similar problems
in our setting. Historically the study of loops (quasigroups with identity) and finite
projective planes have been closely intertwined[1]. Recently there has been a great
deal of interplay between ternary quasigroups and knot theory[11]. The present
work may be taken as evidence that the aforementioned connection between quasi-
groups and knot theory is an example of a general pattern in which topology and
quasigroup theory inform each other, rather than a special quirk of the theory of
knots.

Perhaps most evocatively, we propose a program for the classification of all
smooth orientable n-manifolds up to homeomorphism. By corollary 1 we have that
every orientable smooth manifold M is a component of the serenation Ser(A) for
some alternating n-quasigroup A. Since the category of alternating n-quasigroups
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AQn is a variety of algebras we have that every member of the class of alter-
nating n-quasigroups AQn can be expressed as a subdirect product of subdirectly
irreducible alternating n-quasigroups. See section 3 for more discussion of the rel-
evant algebraic notions. The upshot is that the subdirectly irreducible alternating
n-quasigroups play a role somewhat analogous to that of simple groups in group
theory so a classification of them amounts, via serenation, to a classification of the
possible underlying topological manifolds of the smooth orientable n-manifolds.

The task of describing all subdirectly irreducible alternating n-quasigroups, in-
cluding the infinite ones, may be unattainably difficult. In the case that n = 2 we
would want to classify all subdirectly irreducible quasigroups, which include all the
(even infinite) simple groups. This would appear to be an algebraic analogue of
the situation where describing all possible noncompact orientable surfaces is con-
founded by the difficulty of classifying an uncountable possible collection of ends
for a surface. The situation where the manifolds in question are compact is much
mellower. Indeed, one may determine all compact orientable surfaces up to homeo-
morphism without knowing the classification of the finite simple groups, much less
the classification of all subdirectly irreducible quasigroups.

Our problem 1 asks whether it is possible to realize every connected compact
orientable smooth manifold as a homeomorphic copy of a component of the serena-
tion of some alternating quasigroup. An affirmative answer to this question would
be implied by that to a combinatorial question, which is our problem 2 and which is
a generalized version of the Evans conjecture about the completion of partial Latin
squares. In the case that the answer to both of these questions is “yes”, then we
may attain a great deal of insight into compact orientable manifolds by determining
the finite subdirectly irreducible alternating quasigroups. The additional condition
of finiteness brings us into a setting similar to the classification of the finite simple
groups, which has been done. We also know that the classification of the compact
surfaces was easier than that of the finite simple groups, so it is conceivable that
we may find a few families of subdirect irreducibles which suffice to manufacture
all compact manifolds without having to give a complete classification.

We are concerned with the actions of the symmetric and alternating groups on
n-tuples from a set A. Here we give our conventions in this direction. We take N :=
{1, 2, 3, . . .} and W := {0, 1, 2, . . .}. Given n ∈ N we define [n] := {1, 2, 3, . . . , n}.
Given a set S we denote by PermS (or Perm(S)) the set of permutations of S, we
denote by PermS (or Perm(S)) the group of permutations of S, we denote by
AltS the set of even permutations of S, and we denote by AltS the group of even
permutations of S. When S = [n] for some n ∈ N we write Permn, Permn, Altn,
and Altn rather than Perm[n], Perm[n], Alt[n], and Alt[n], respectively. Given a
group G and an action h : G → PermS of G on a set S we denote by Orb(h) the
collection of orbits of S under the action h and we denote by Orbh(s) the orbit of
s ∈ S under the action h. When h is understood by context we write OrbG(S)
(or even just Orb(S)) instead of Orb(h). Similarly we write OrbG(s) (or even just
Orb(s)) instead of Orbh(s) for s ∈ S when context makes the action clear. We
denote by Sb(S) the collection of all subsets of the set S and we denote by |S| the
cardinality of the set S. We write A ≤ B to indicate that an algebra A (such as a
group) is a subalgebra of the algebra B (which is necessarily of the same signature).
More (universal) algebra definitions are reviewed in section 3.
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Here a manifold is a finite-dimensional real manifold without boundary which,
while not necessarily second countable, is taken to consist of a collection (whose
cardinality is unconstrained) of second countable connected components. A smooth
manifold is a manifold in the previous sense equipped with a smooth atlas. A
Riemannian manifold is a pair (M, g) whereM is a smooth manifold in the previous
sense and g is a smooth Riemannian metric on M. We write Riemn to indicate
the class of n-dimensional Riemannian manifolds and we write Riemn to indicate
the category whose objects are n-dimensional Riemannian manifolds and whose
morphisms are smooth maps which are local isometries everywhere.

We outline here the structure of the paper. In section 2 we give some prelimi-
naries on simplicial complexes and pseudomanifolds. We do the same for algebraic
structures in section 3. We introduce the algebras of primary concern for us, which
are alternating quasigroups, in section 4. With the basic algebra and topology in
place, we define and see examples of open serenation, our Riemannian manifold
construction, in section 5. The following section, section 6, details the serenation
functor, which is a sort of metric completion of the open serenation functor. It
is in this section that we prove our theorem 1, which says that all connected ori-
entable triangulable topological manifolds may be produced via this construction.
In section 7 we examine similar questions to those answered in the preceding sec-
tion, but with finiteness and compactness constraints added. This rolls into our
closing discussion in section 8, where we consider the next steps that may be taken
using the tools described in this paper.

2. Pseudomanifolds

In this section we detail the basic tools pertaining to pseudomanifolds which
we will use in our construction. We refer to Munkres[10] for basic topological
definitions but we deviate from his terminology in several places.

2.1. Simplicial complexes. Pseudomanifolds are a family of particularly well-
behaved simplicial complexes, so we begin by discussing this latter class of combi-
natorial objects.

Definition 1 (Simplicial complex). Given a set S and a set Γ ⊂ S we refer to
S := (S,Γ) as a simplicial complex when

(1) for each γ ∈ Γ and each γ′ ⊂ γ we have that γ′ ∈ Γ and
(2) for each γ ∈ Γ we have that |γ| ∈ W.

Our simplicial complexes are elsewhere known as abstract simplicial complexes
which have only finite-dimensional faces. By this definition a simplicial complex
may have faces of unbounded (but finite) dimension, but we will only consider
examples where there is a finite global bound on the dimension of a face. See below
where we recall the formal definition of dimension.

Definition 2 (Finite simplicial complex). We say that a simplicial complex S :=
(S,Γ) is finite when S is a finite set.

We will need to consider simplicial complexes whose vertices can be any set, no
matter how large, but finite simplicial complexes play an important role.

Definition 3 (Face). Given a simplicial complex S := (S,Γ) we refer to an element
γ ∈ Γ as a face of S. Given two faces γ, γ′ ∈ Γ we say that γ′ is a face of γ when
γ′ ⊂ γ.
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Our simplicial complexes always have the empty set as a face.

Definition 4 (Simplicial map). Given simplicial complexes S1 := (S1,Γ1) and
S2 := (S2,Γ2) we say that a function h : S1 → S2 is a simplicial map from S1 to S2

and write h : S1 → S2 when for each γ ∈ Γ1 we have that {h(s) ∈ S2 | s ∈ γ } is a
face of S2.

Simplicial maps are the morphisms in the category associated to simplicial com-
plexes.

Definition 5 (Class of simplicial complexes). We denote by SCmplx the class of
all simplicial complexes.

Definition 6 (Category of simplicial complexes). The category of simplicial com-
plexes SCmplx is the category whose objects form the class SCmplx, whose mor-
phisms are simplicial maps, and whose identities and composition are those induced
by the underlying functions of those simplicial maps.

We will fix a natural number n and focus our attention on complexes which are
in the following sense n-dimensional.

Definition 7 (Dimension of a face). Given a simplicial complex S := (S,Γ) and
a face γ ∈ Γ with |γ| ∈ W we say that the dimension of γ is |γ| − 1, that γ is an
(|γ| − 1)-face, or that γ is (|γ| − 1)-dimensional.

In particular this means that every simplicial complex has exactly one (−1)-
dimensional face, the empty face. On the opposite end of the size spectrum we
have facets.

Definition 8 (Facet). Given a simplicial complex S := (S,Γ) we say that a face
γ ∈ Γ is a facet of S when γ is maximal with respect to subset inclusion among
faces of S.

Definition 9 (Facets of a simplicial complex). We denote the set of all facets of a
simplicial complex S by Fct(S).

It is possible that a simplicial complex has no facets or that a simplicial complex
has some facets but there are faces which are not contained in any facet. These
pathologies won’t arise in the cases we actually consider.

Definition 10 (Pure simplicial complex). We say that a simplicial complex S :=
(S,Γ) is pure when

(1) given any γ, γ′ ∈ Fct(S) we have that |γ| = |γ′| and
(2) given any γ ∈ Γ there exists some γ′ ∈ Fct(S) such that γ ⊂ γ′.

Definition 11 (Dimension of a pure simplicial complex). When S := (S,Γ) is a
pure simplicial complex such that each γ ∈ Fct(S) is n-dimensional we say that S
is an n-dimensional simplicial complex.

2.2. Pseudomanifolds. Pseudomanifolds are an even more special class of simpli-
cial complexes contained within the class of pure simplicial complexes. Intuitively,
n-pseudomanifolds look like n-dimensional manifolds, except that their (n − 2)-
skeleta may be highly singular.

Definition 12 (Pseudomanifold). We say that an n-dimensional simplicial complex
S := (S,Γ) is an n-pseudomanifold when given an (n − 1)-face γ1 ∈ Γ there exist
exactly two n-faces γ2, γ3 ∈ Γ such that γ2 ∩ γ3 = γ1.
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We want to consider morphisms of pseudomanifolds which respect the pseudo-
manifold structure, so general simplicial maps will not suffice.

Definition 13 (Pseudomanifold morphism). Given pseudomanifolds S1 and S2 we
say that a simplicial map h : S1 → S2 is a morphism of pseudomanifolds when for
each maximal face γ of S1 we have that h(γ) is a maximal face of S2.

Pseudomanifolds and their morphisms form a category.

Definition 14 (Class of n-pseudomanifolds). We denote by PMfldn the class of all
n-pseudomanifolds.

Definition 15 (Category of n-pseudomanifolds). We refer to the subcategory of
SCmplx whose objects form the class PMfldn and whose morphisms are all pseu-
domanifold morphisms as the category of n-pseudomanifolds, which we denote by
PMfldn.

2.3. Geometric realization. We collect here the terminology we need about geo-
metric realization of simplicial complexes. We denote by Top the class of all topo-
logical spaces and Top the category whose objects are spaces, whose morphisms
are continuous maps, whose identities are the usual identity functions, and whose
composition is the usual composition of functions.

Given a set S we denote by R
S the S-fold Cartesian power of the real line

equipped with the Euclidean topology. Given X ⊂ R
S we denote by Cvx(X) the

(closed) convex hull of X and by OCvx(X) the interior of Cvx(X) in the affine hull
of X . Given any γ ⊂ S we identify each member of γ with the corresponding basis
element of RS so that OCvx(γ) is the interior (in the appropriate affine subspace)
of the simplex in R

S whose vertices form the set γ.
We make use of a nonstandard geometric realization of pseudomanifolds, in the

sense that this geometric realization is not the restriction of the usual geometric
realization of simplicial complexes to the category of n-pseudomanifolds. Our geo-
metric realization of pseudomanifolds drops the (n−2)-skeleton of a pseudomanifold
in order to dispose of the singularities present there.

Definition 16 (Open geometric realization functor). Fix n ∈ N. The open geo-
metric realization functor

OGeon : PMfldn → Top

is defined as follows. Given an n-pseudomanifold S := (S,Γ) we define

OGeon(S) := (OGeon(S), τ)

where OGeon(S) ⊂ R
S is given by

OGeon(S) :=
⋃

γ∈Γ
|γ|∈{n,n+1}

OCvx(γ)

and τ is the subspace topology which OGeon(S) inherits from R
S .

Given an n-pseudomanifold morphism h : S1 → S2 we define

OGeon(h) : OGeo(S1) → OGeon(S2)

by linear extension of the rule

OGeon(h)(s) := h(s)

for s ∈ S1.
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For a general simplicial complex we have the usual (closed) geometric realization
functor.

Definition 17 (Geometric realization functor). The geometric realization functor

Geo : Sim → Top

is defined as follows. Given a simplicial complex S := (S,Γ) we define

Geo(S) := (Geo(S), τ)

where Geo(S) ⊂ R
S is given by

Geo(S) :=
⋃

γ∈Γ

Cvx(γ)

and τ is the subspace topology which Geo(S) inherits from R
S .

Given a simplicial map h : S1 → S2 we define

Geo(h) : Geo(S1) → Geo(S2)

by linear extension of the rule

Geo(h)(s) := h(s)

for s ∈ S1.

3. Algebraic preliminaries

The inputs in our construction are a family of algebras equipped with a particular
class of homomorphisms between them. In this section we set up all the pertinent
algebraic machinery.

3.1. Magmas. We introduce the basic notation and terminology we will need with
respect to magmas. We use Bergman[2], Smith and Romanowska[14], and Burris
and Sankpanavar[3] as general references for universal algebra.

Definition 18 (Magma). Given some n ∈ N we refer to an algebra A := (A, f)
where f : An → A is an n-ary operation on the set A as a magma (or as an n-magma
when we want to emphasize the arity of f).

Note that this definition is broader than what is traditionally meant by “binar”,
“groupoid”, or “magma” (in the sense of Bourbaki), which all refer to only the case
where f : A2 → A is a binary operation.

Definition 19 (Class of magmas). We denote by Magn the class of all n-ary
magmas.

Magma homomorphisms are defined analogously to those for more familiar al-
gebras.

Definition 20 (Magma homomorphism). Given n-magmas A := (A, f) and B :=
(B, g) we say that a function h : A→ B is a homomorphism from A to B when for
all a1, . . . , an ∈ A we have that

h(f(a1, . . . , an)) = g(h(a1), . . . , h(an)).

We write h : A → B to indicate that h is a homomorphism from A to B.

Magmas are the objects of a category whose morphisms are magma homomor-
phisms.
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Definition 21 (Category of magmas). The category of n-magmas Magn is the
category whose objects form the class Magn, whose morphisms are n-ary magma
homomorphisms, and whose identities and composition are those induced by the
underlying functions of those homomorphisms.

As is standard in universal algebra, we fix a signature ρ : I → W and write
t1(x1, . . . , xn) ≈ t2(x1, . . . , xn) (or t1(x) ≈ t2(x), or even t1 ≈ t2) to indicate the
formal expression (or identity)

(∀x1, . . . , xn)(t1(x1, . . . , xn) = t2(x1, . . . , xn))

where t1 and t2 are terms obtained by formally composing basic operation symbols
{fi}i∈I where the arity of fi is ρ(i).

Given an algebraA of signature ρ we write fA
i to indicate the ith basic operation

of A. If A is the universe of A then we say that A models t1(x) ≈ t2(x) when

(∀x1, . . . , xn ∈ A)(tA1 (x1, . . . , xn) = tA2 (x1, . . . , xn))

where tAj is the term tj viewed as an actual operation on A obtained by replacing

each fi appearing in tj by the basic operation fA
i of A. In the case that A models

t1 ≈ t2 we write A |= t1 ≈ t2.
We associate to each n-magma a particular group of permutations of [n].

Definition 22 (Permutomorphism). Given a magma A := (A, f) we say that a
permutation α ∈ Permn is a permutomorphism of A when

A |= f(x1, . . . , xn) ≈ f(xα(1), . . . , xα(n)).

Definition 23 (Set of permutomorphisms). We denote by Perm(A) the set of all
permutomorphisms of the magma A.

One immediately verifies that Perm(A) is closed under taking composites and
inverses and also contains the identity permutation idA of A.

Definition 24 (Permutomorphism group). Given an n-magma A we denote by
Perm(A) the permutomorphism group of A, which is the subgroup of Permn with
universe Perm(A).

We write Aut(A) to indicate the automorphism group of A, which is in general
a different group from the permutomorphism group Perm(A) of A. Elements of
Aut(A) are permutations of A while elements of Perm(A) are permutations of [n].

We are particularly interested in the cases where Perm(A) is either Permn or
Altn.

Definition 25 (Commutative magma). We say that an n-magmaA is commutative
when Perm(A) = Permn.

Definition 26 (Alternating magma). We say that an n-magma A is alternating
when Perm(A) ≥ Altn.

It will turn out that most of the examples of alternating magmas we care to
look at do have Perm(A) = Altn, but we only require that Altn is a subgroup of
Perm(A) in order to say that A is alternating. In particular, every commutative
magma is alternating.
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3.2. Quasigroups. Intuitively, quasigroups are magmas in which division is always
possible. We recall the definition of an n-quasigroup. Our definition is in analogy
with Birkhoff’s equational axioms for binary quasigroups[2, p.5].

Definition 27 (Quasigroup). Given n ∈ N we say that an algebra

A := (A, f, g1, . . . , gn)

of signature (n, . . . , n) is a quasigroup (or an n-quasigroup when we want to em-
phasize the arity of f) when for each i ∈ [n] we have that

A |= f(x1, . . . , xi−1, gi(x1, . . . , xi−1, xi+1, . . . , xn, y), xi+1, . . . , xn) ≈ y

and
A |= gi(x1, . . . , xi−1, xi+1, . . . , xn, f(x1, . . . , xn)) ≈ xi.

Definition 28 (Class of quasigroups). We denote by Quasn the class of all n-
quasigroups.

It follows immediately from the definition of an n-quasigroup that for each n ∈ N

we have that Quasn is an equational class and hence a variety.
We think of f as the multiplication of the n-quasigroup A := (A, f, g1, . . . , gn)

and we think of gi as the i
th-coordinate division operation. That is,

gi(x1, . . . , xi−1, xi+1, . . . , xn, y)

is taken to indicate the division of y simultaneously by xj in the jth coordinate for
each j 6= i. The impetus for this will be made clear by the following characterization
of n-quasigroups.

Definition 29 (n-quasigroup magma). Given n ∈ N we say that an n-ary magma
A := (A, f) is an n-quasigroup magma when given

x1, . . . , xi−1, xi+1, . . . , xn, y ∈ A

there exists a unique xi ∈ A such that f(x1, . . . , xn) = y.

The n-quasigroups are in bijective correspondence with the n-quasigroup mag-
mas, allowing us to freely switch between these two definitions when it suits us.

Proposition 1. Given an n-quasigroup A := (A, f, g1, . . . , gn) the n-ary magma
reduct B := (A, f) is an n-quasigroup magma. Conversely, given an n-quasigroup
magma B := (A, f) there exists a unique n-quasigroup expansion

A := (A, f, g1, . . . , gn)

of B. In this expansion gi : A
n → A is defined so that

gi(x1, . . . , xi−1, xi+1, . . . , xn, y)

is the unique xi ∈ A such that f(x1, . . . , xn) = y.

Proof. Suppose that A := (A, f, g1, . . . , gn) is an n-quasigroup. We show that
B := (A, f) is an n-quasigroup magma. Suppose that f(x1, . . . , xn) = y for some
x1, . . . , xn, y ∈ A. It suffices to show that xi = gi(x1, . . . , xi−1, xi+1, . . . , xn, y) as
this implies that xi is uniquely determined by the xj for j 6= i and y. Observe that

xi = gi(x1, . . . , xi−1, xi+1, . . . , xn, f(x1, . . . , xn))

= gi(x1, . . . , xi−1, xi+1, . . . , xn, y),

as claimed.
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On the other hand, consider an n-quasigroup magma B := (A, f). Suppose that

A := (A, f, g1, . . . , gn)

is an n-quasigroup expansion of B. If f(x1, . . . , xn) = y for some x1, . . . , xn, y ∈ A
we must have that

gi(x1, . . . , xi−1, xi+1, . . . , xn, y) = xi

by the n-quasigroup axioms. As there is a unique xi for which f(x1, . . . , xn) = y
the operation gi is well-defined.

It remains to show that A with the gi so defined does in fact satisfy all the
n-quasigroup axioms. Given x1, . . . , xi−1, xi+1, . . . , xn, y ∈ A let

xi := gi(x1, . . . , xi−1, xi+1, . . . , xn, y).

By definition xi is the unique element of A such that f(x1, . . . , xn) = y. This
implies that

f(x1, . . . , xi−1, g(x1, . . . , xi−1, xi+1, . . . , xn, y), xi+1, . . . , xn) = y.

Similarly, given x1, . . . , xn ∈ A let y := f(x1, . . . , xn). By definition

g(x1, . . . , xi−1, xi+1, . . . , xn, y)

is the unique member of A such that

f(x1, . . . , xi−1, gi(x1, . . . , xi−1, xi+1, . . . , xn, y), xi+1, . . . , xn) = y.

Since we also have that f(x1, . . . , xn) = y it must be that

gi(x1, . . . , xi−1, xi+1, . . . , xn, y) = xi

and hence

gi(x1, . . . , xi−1, xi+1, . . . , xn, f(x1, . . . , xn)) = xi,

as desired. �

We will speak of an n-quasigroup and its n-quasigroup magma reduct as though
they are the same object. Traditionally a quasigroup is assumed to be binary, but
we will default to our more expansive terminology and emphasize when we are
talking about a binary quasigroup as opposed to an n-quasigroup for a general n.

Since we can view n-quasigroups as magmas without losing any information we
can take the variety of all n-quasigroups to be a subcategory of Magn.

Definition 30 (Category of quasigroups). The category of n-quasigroups Quasn
is the full subcategory of Magn whose objects form the class Quasn.

4. Alternating quasigroups

We are ready to name the class of quasigroups we will study.

Definition 31 (Alternating quasigroup). An alternating quasigroup is a quasigroup
which is also an alternating magma.

Definition 32 (Class of alternating quasigroups). We denote by AQn the class of
all alternating n-quasigroups.
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Note that since the classes of alternating n-magmas and n-quasigroups are de-
fined by universally quantified equations we have that AQn is equational and hence
a variety of algebras. When n = 2 we have that Alt2 is trivial and hence AQ2 is the
variety of binary quasigroups. Every group is thus a binary alternating quasigroup.

Since every variety of algebras forms a category whose morphisms are the usual
homomorphisms of those algebras we have a category of alternating n-quasigroups
for each n ∈ N whose structure doesn’t depend on whether we consider our quasi-
groups as magmas or as algebras of signature (n, . . . , n).

Definition 33 (Category of alternating quasigroups). The category of alternating
n-quasigroups AQn is the full subcategory of Magn (or of Quasn) whose objects
form the class AQn.

Given any variety of algebrasV (viewed as a category) and any setX there exists
a free algebra FrV(X), which is a member of the object class V of V, satisfying

homV(FrV(X),A) ∼= homSet(X,A)

for any A ∈ V . In particular, for any set X there exists a free alternating n-
quasigroup FrAQ

n

(X) freely generated by X . See section 4.3 of [2] for more infor-
mation.

Instead of looking at the whole category of alternating n-quasigroups, we restrict
our attention to a subcategory whose morphism sets are restricted to those which
preserve noncommutativity.

Definition 34 (Commuting tuple). Given A := (A, f) ∈ AQn we say that a ∈ An

commutes (or is a commuting tuple) in A when we have for each σ ∈ Permn that

f(a) = f(aσ(1), . . . , aσ(n)).

Definition 35 (Noncommuting tuple). Given A := (A, f) ∈ AQn we say that
a ∈ An does not commute (or is a noncommuting tuple) in A when a is not a
commuting tuple in A.

The collection of all noncommuting tuples will be important for us.

Definition 36 (Set of noncommuting tuples). Given A := (A, f) ∈ AQn we define
the noncommuting tuples NCT(A) of A by

NCT(A) := { a ∈ An | a does not commute in A } .
The particular class of homomorphisms we will examine consists of those which

preserve these sets of noncommuting tuples.

Definition 37 (NC homomorphism). We say that a homomorphism h : A1 → A2

of alternating quasigroups is an NC homomorphism (or a noncommuting homomor-
phism) when for each a ∈ NCT(A1) we have that

h(a) = (h(a1), . . . , h(an)) ∈ NCT(A2).

Note that while embeddings are always NC homomorphisms the converse is not
true. A typical NC homomorphism is not injective (or surjective, for that matter).

We can now define the category of quasigroups we will be using in our construc-
tion of manifolds.

Definition 38 (Category of NC alternating quasigroups). Given n ∈ N we define
the category of NC alternating n-quasigroups to be the category NCAQn whose
object class is AQn and whose morphisms are NC homomorphisms.
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We associate to each alternating n-quasigroup two sets of elements, which we
will use when we produce pseudomanifolds from quasigroups.

Definition 39 (Input elements). Given a quasigroup A we define the input ele-
ments of A to be

In(A) := { ai ∈ A | ∃(a1, . . . , an) ∈ NCT(A) } .
Definition 40 (Output elements). Given a quasigroup A we define the output
elements of A to be

Out(A) := { f(a) | a ∈ NCT(A) } .
Although we leave a more thorough analysis of the structure of the variety AQn

for another time, we illustrate that notions from binary quasigroup theory may
generalize nicely to the n-ary case by way of the proceeding proposition.

Proposition 2. The variety of n-quasigroups is congruence permutable.

Proof. We provide a Mal’cev term, which is an n-ary analogue of the Mal’cev term
for binary quasigroups. The usual Mal’cev term for binary quasigroups is, in our
notation,

p(x, y, z) := f(g1(g2(y, y), x), g2(y, z)).

This term is usually given as

p(x, y, z) := (x/(y\y))(y\z),
as one can find in Burris and Sankpanavar[3, p.79].

Let

p(x, y, z) := f(g1(x, . . . , x, gn(y, . . . , y), x), x, . . . , x, gn(y, . . . , y, z)).

We claim that p is a Mal’cev term for Quasn, which means that for anyA ∈ Quasn
we have that

A |= p(x, y, y) ≈ x ≈ p(y, y, x).

To see this, first observe that any n-quasigroup A models both

f(g1(x, . . . , x, gn(x, . . . , x), x), x, . . . , x, gn(x, . . . , x)) ≈ x

and
f(x, . . . , x, gn(x, . . . , x)) ≈ x,

which implies that

A |= g1(x, . . . , x, gn(x, . . . , x), x) ≈ x

as both g1(x, . . . , x, gn(x, . . . , x), x) and x are candidates for the solution y to the
equation

f(y, x, . . . , x, gn(x, . . . , x)) = x.

We then compute that in Quasn we have

p(x, y, y) ≈ f(g1(x, . . . , x, gn(y, . . . , y), x), x, . . . , x, gn(y, . . . , y, y))

≈ x

≈ f(y, . . . , y, gn(y, . . . , y, x))

≈ f(g1(y, . . . , y, gn(y, . . . , y), y), y, . . . , y, gn(y, . . . , y, x))

≈ p(y, y, x),

as claimed. �
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This implies thatAQn is congruence permutable, as well. Since every congruence
permutable variety is congruence modular we may apply the theory of commutators
for congruence modular varieties to the variety AQn. We refer the reader to the
Freese and McKenzie text on this subject[6]. Commutators will appear again in
section 8.

So far we have not investigated whether the quasigroups under consideration may
be associative or not. Associative n-quasigroups are the n-ary groups introduced
by Post[12]. Certainly it is possible for a binary alternating quasigroup to be a
group without being commutative, as any noncommutative group is an example.
For higher arities it turns out that associativity implies commutativity.

Proposition 3. Every alternating n-ary group for n ≥ 3 is commutative.

Proof. Suppose that A := (A, f) is an alternating n-ary group where n ≥ 3 and let
a1, . . . , an+1 ∈ A. Observe that

f(f(a1, . . . , an), an−1, . . . , an−1, an+1) =

f(a1, a2, . . . , an−2, f(an−1, an, an−1, . . . , an−1), an+1) =

f(a1, a2, . . . , an−2, f(an, an−1, an−1, . . . , an−1), an+1) =

f(f(a1, a2, . . . , an−2, an, an−1), an−1, . . . , an−1, an+1),

which implies that

f(a1, . . . , an) = f(a1, . . . , an−2, an, an−1),

so A is in fact commutative. �

4.1. Examples of alternating quasigroups. We give three classes of examples
of alternating quasigroups:

(1) A particular order 5 ternary alternating quasigroup.
(2) Alternating n-quasigroups which are given as alternating products of com-

mutative ones.
(3) Any binary quasigroup, which includes all groups.

After the authors laboriously produced (1) they prevailed upon Jonathan Smith
for other examples of alternating n-quasigroups. Although no one had, to Smith’s
knowledge, studied the varieties of alternating n-quasigroups for n > 2 before he
nonetheless provided a special case of (2), which we generalized. Other varieties
of n-quasigroups have been investigated before, as discussed in the introduction
as well as in section 6. Since binary quasigroups, and in particular groups, are
well-known we won’t discuss (3) any more in this section.

We are especially interested in alternating quasigroups which are not commuta-
tive. Although commutative quasigroups are an input for the alternating product
construction in (2), we will focus on examples of noncommutative alternating quasi-
groups since these will yield nontrivial manifolds and appear more difficult to find.

Example 1. Take S := (Z/5Z)3 and define h : Z/5Z×Alt3 → PermS by

(h(k, σ))(x1, x2, x3) := (xσ(1) + k, xσ(2) + k, xσ(3) + k).

There are 7 members of Orb(h). One system of orbit representatives is:

{000, 011, 022, 012, 021, 013, 031}
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where we follow the convention that xyz indicates (x, y, z) for x, y, z ∈ Z/5Z. Let
A := Z/5Z and define a ternary operation f : A3 → A so that

f((h(k, σ))(x1, x2, x3)) = f(x1, x2, x3) + k

and f is defined on the above set of orbit representatives as follows.

xyz f(x, y, z)
000 0
011 0
022 0
012 3
021 4
013 4
031 2

One may verify that the above values and the symmetry imposed on f completely
define a ternary alternating quasigroup operation on A.

Since ternary alternating quasigroups are an equational class the above example
yields infinitely many others. For example, if we take A to be the ternary alternat-
ing quasigroup in example 1 then we have that any algebra of the form

∏

j∈J Aj

where Aj := A for all j ∈ J where J is any set is a ternary alternating quasigroup.
Our next class of examples makes use of a product-like construction which we

now define.

Definition 41 (Alternating map). Given sets A and B we say that a function
α : An → B is an n-ary alternating map from A to B when for each σ ∈ Altn and
each a ∈ An we have that

α(a) = α(aσ(1), . . . , aσ(n)).

The prototypical example of an alternating map is the determinant map

det: (Fn)n → F

where F is any field. This is an n-ary alternating map from F
n to F.

Definition 42 (Alternating product). Given an n-ary commutative quasigroup
U := (U, g), an (n + 1)-ary commutative quasigroup V := (V, h), and an n-ary
alternating map α : An → B the alternating product of U and V with alternating
map α is the alternating n-quasigroup

U⊠α V := (U × V, g ⊠α h : (U × V )n → U × V )

where for (u1, v1), . . . , (un, vn) ∈ U × V we define

(g ⊠α h)((u1, v1), . . . , (un, vn)) := (g(u), h(α(u), v1, . . . , vn))

where u := (u1, . . . , un).

Example 2. Let F be a field of odd characteristic or characteristic 0 and let n ∈ N.
Define U := (Fn, g) where

g(u1, . . . , un) :=

n
∑

i=1

ui,
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when u1, . . . , un ∈ F
n
q , take V := (F, h) where

h(v1, . . . , vn+1) :=

n+1
∑

i=1

vi

when v1, . . . , vn+1 ∈ F, and define α := det : (Fn)n → F. The alternating n-
quasigroup U ⊠α V, which we will also denote by F

(n), is the example Jonathan
Smith indicated.

Note the similarity between this construction and the decomposition of an al-
gebra A in a congruence modular variety as Q ⊗T B where Q is Abelian and
B := A/ζA[6, p.53].

We could have allowed F to have characteristic 2 as well, but the resulting al-
ternating quasigroup F

(n) would again be commutative, which will not give us
an interesting object when we proceed to construct manifolds from quasigroups,
although of course such commutative quasigroups may be used as the inputs in
another alternating product.

The smallest n-quasigroup of the form of example 2 we can produce has F = F3

and hence has order 3n+1. This is still slightly too large for us to work with “by
hand”, so we consider instead a more contrived example of smaller order.

Example 3. Define U := (Z/3Z, g) where

g(u1, u2, u3) := u1 + u2 + u3

for u1, u2, u3 ∈ Z/3Z and define V := (Z/2Z, h) where

h(v1, v2, v3, v4) := v1 + v2 + v3 + v4

for v1, v2, v3, v4 ∈ Z/2Z. Define an alternating map α : (Z/3Z)3 → Z/2Z by

α(x) :=

{

1 when x ∈ OrbAlt3(0, 2, 1)

0 otherwise.

We then have a ternary alternating quasigroup U⊠α V of order 6.

Observe that our example 1 cannot be given as an alternating product since the
order of an alternating product of two nontrivial commutative quasigroups must be
composite and if at least one of the input quasigroups U or V is trivial then the
resulting quasigroup will be commutative.

5. Open serenation

We are now ready to begin our construction of manifolds from quasigroups. We
have already described the functor OGeon : PMfldn → Top. It remains to define
a functor Simn : NCAQn → PMfldn and to give an appropriate smooth atlas
to (OGeon ◦Simn)(A) for each A ∈ AQn. These tasks are performed in the
subsections on simplicization and open serenation, respectively.

5.1. Simplicization. From each alternating quasigroup of arity n we obtain a
pseudomanifold of dimension n.

Definition 43 (Simplicization functor). We define a simplicization functor

Simn : NCAQn → PMfldn
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as follows. Given A ∈ AQn we define

Simn(A) := (Sim(A), SimFace(A))

where
Sim(A) := { a | a ∈ In(A) } ∪ { a | a ∈ Out(A) }

and

SimFace(A) :=
⋃

a∈NCT(A)

Sb
({

a1, . . . , an, f(a)
})

.

Given an NC homomorphism h : A1 → A2 we define

Simn(h) : Simn(A1) → Simn(A2)

by
Simn(h)(a) := h(a)

and
Simn(h)(a) := h(a).

We will begin to drop the subscript n going forward unless we need to explicitly
refer to the arity or dimension under consideration. We refer to Sim(A) as the
simplicization of A and use similar language for the simplicial maps Sim(h).

5.2. Open serenation. Finally we can give describe our functor taking NCAQn

to SMfldn. We give the relevant coordinate charts first. The domain for all of
our coordinate charts is a particular bipyrimid situated on the origin and standard
basis points in R

n.

Definition 44 (Bipyrimid). The standard open bipyrimid (or just bipyrimid) in
R

n is

Bipyrn := OCvx

({

(0, . . . , 0),

(

2

n
, . . . ,

2

n

)}

∪ {e1, . . . , en}
)

where ei is the i
th standard basis vector of Rn.

We have two types of charts, but they’re quite similar to each other. Given
a ∈ NCT(A) let a′ ∈ NCT(A) be a permutation of a obtained by swapping two
entries.

Definition 45 (Serene chart of input type). Given an alternating n-quasigroup A

and a = (a1, . . . , an) ∈ NCT(A) the serene chart of input type for a is

φ
a
: Bipyrn → OSern(A)

where we set

φ
a
(u1, . . . , un) :=

n
∑

i=1

uiai +

(

1−
n
∑

i=1

ui

)

f(a)

when
∑n

i=1 ui ≤ 1 and

φ
a
(u1, . . . , un) :=

2

n

n
∑

i=1



1 +
n− 2

2
ui −

∑

j 6=i

uj



 ai +

(

−1 +
n
∑

i=1

ui

)

f(a′)

when
∑n

i=1 ui > 1.

The reader may find that the formula for φ
a
(u1, . . . , un) when

∑n
i=1 ui > 1 is

not entirely obvious. We sketch its derivation, which is visualized in figure 1.
A point u ∈ Bipyrn either has
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f(a) a1

a2 f(a′)

(

1
n
, . . . , 1

n

)

w

v

u

Figure 1. A bipyrimid

(1)
∑n

i=1 ui < 1, in which case it is mapped to a point in the open convex hull

of the ai and f(a),
(2)

∑n
i=1 ui = 1, in which case it is mapped to a point in the open convex hull

of the ai, or
(3)

∑n
i=1 ui > 1, in which case it is mapped to a point in the open convex hull

of the ai and f(a
′).

It is this last case which we need to consider carefully. Note that

φ−1

a

(

OCvx
({

a1, . . . , an, f(a
′)
}))

is the reflection of

φ−1

a

(

OCvx
({

a1, . . . , an, f(a)
}))

over the affine hyperplane through the point
(

1
n
, . . . , 1

n

)

orthogonal to the vector
(

1
n
, . . . , 1

n

)

. A point u ∈ Bipyrn with
∑n

i=1 ui > 1 has a mirror image v ∈ Bipyrn
with

∑n
i=1 vi < 1 where

u = v + γ

(

1

n
, . . . ,

1

n

)

for some γ ∈ R. Since we set

φ
a
(v) =

n
∑

i=1

viai +

(

1−
n
∑

i=1

vi

)

f(a)



18 C. ATEN AND S. YOO

we should analogously set

φ
a
(u) =

n
∑

i=1

viai +

(

1−
n
∑

i=1

vi

)

f(a′).

We would like to find a formula for the vi in terms of the ui. We accomplish this
by finding the point w ∈ OCvx({e1, . . . , en}) which also lies on the line determined
by u and v. We can then write v = u− 2(u− w). For any i 6= n we have that

(u− w) · (ei − en) = 0

so wi−wn = ui−un. We also know that
∑n

i=1 wi = 1 so taking the ui as constants
we have a system of n linear equations in the n unknowns w1, . . . , wn. Solving this
system yields that

wi =
1

n



1 + (n− 1)ui −
∑

j 6=i

uj



 .

Since v = u− 2(u− w) = 2w − u we obtain

vi =
2

n



1 + (n− 1)ui −
∑

j 6=i

uj



− ui =
2

n



1 +
n− 2

2
ui −

∑

j 6=i

uj



 .

The coefficient of f(a′) in φ
a
(u) is then

1−
n
∑

i=1

vi = 1− 2

n

n
∑

i=1



1 +
n− 2

2
ui −

∑

j 6=i

uj





= −1 +

n
∑

i=1

ui.

We produce another family of charts. Given a ∈ NCT(A) let an+1 ∈ A be the
unique solution to f(a) = f(b) where

bi :=











ai when 1 ≤ i ≤ n− 2

an+1 when i = n− 1

an−1 when i = n

.

Definition 46 (Serene chart of output type). Given an alternating n-quasigroup
A and a = (a1, . . . , an) ∈ NCT(A) the serene chart of output type for a is

φa : Bipyrn → OSern(A)

where we set

φa(u1, . . . , un) :=

n−1
∑

i=1

uiai + unf(a) +

(

1−
n
∑

i=1

ui

)

an
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when
∑n

i=1 ui ≤ 1 and

φa(u1, . . . , un) :=
2

n

n−1
∑

i=1



1 +
n− 2

2
ui −

∑

j 6=i

uj



 ai

+
2

n



1 +
n− 2

2
un −

n−1
∑

j=1

uj



 f(a)

+

(

−1 +

n
∑

i=1

ui

)

an+1

when
∑n

i=1 ui > 1.

Definition 47 (Open serenation functor). We define an open serenation functor

OSern : NCAQn → SMfldn

as follows. Given A ∈ AQn we define

OSern(A) := (OSern(A), τ, SerAtn(A))

where

(OSern(A), τ) := (OGeon ◦Simn)(A)

is the underlying topological space of OSern(A) and the atlas of OSern(A) is
given by

SerAtn(A) :=
⋃

a∈NCT(A)

{

φ
a
, φa

}

.

Given an NC homomorphism h : A → B where A,B ∈ AQn we define

OSern(h) := (OGeon ◦Simn)(h).

Note that by our definition OSern(A) = OGeon(Simn(A)). As in the case of
the simplicization functor we’ll generally omit the dimension subscript unless it’s
germane to the discussion at hand.

The tangent spaces of OSer(A) can be described directly in terms of the quasi-
group A. Given a point x in a manifold we denote by Tx the set of tangent vectors
at x and by Tx the tangent space at x.

Proposition 4. Given a quasigroup A, a ∈ NCT(A), and x ∈ OSer(A) with

x ∈ OCvx
({

a1, . . . , an, f(a)
})

we have that

Tx = Span
({

ai − f(a)
∣

∣

∣ i ∈ [n]
})

.

Proof. We obtain the same tangent space with any chart so take a = (a1, . . . , an) ∈
NCT(A) and consider that by our assumption

φ−1

a
(x) = (x1, . . . , xn)

where
∑n

i=1 xi < 1. It follows that near φ−1

a
(x) the map φ

a
is given by

φ
a
(u1, . . . , un) =

n
∑

i=1

uiai +

(

1−
n
∑

i=1

ui

)

f(a).
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Note that φ
a
is a smooth map from R

n to R
Sim(A) near φ−1

a
(x). For each i ∈ [n]

we have a tangent vector of the form

∂

∂ui
φ
a
= ai − f(a),

as claimed. �

The points addressed by the previous proposition cover almost all of OSer(A).
We have a similar description of the tangent space to a point on one of the remaining
“creases”, of which there are two types: those which are the open convex hull of an
(n− 1)-face containing an output vertex and those which are the open convex hull
of an (n− 1)-face containing only input vertices.

Proposition 5. Given a quasigroup A, a ∈ NCT(A), and x ∈ OSer(A) with

x ∈ OCvx
({

a1, . . . , an−1, f(a)
})

we have that

Tx = Span
({

a1, . . . , an−1, f(a)
})

.

Proof. Fix some k ∈ [n] and let ǫ > 0 be sufficiently small that

x+ tek ∈ Bipyrn

for all t ∈ (−ǫ, ǫ). Let γ : (−ǫ, ǫ) → OSern(A) be given by

γ(t) := φ
a
(x+ tek).

We have a corresponding tangent vector

d(φ−1

a
◦ γ)

dt

∣

∣

∣

∣

∣

t=0

= ek,

which we naturally identify with ak when k < n and with f(a) when k = n. �

Proposition 6. Given a quasigroup A, a ∈ NCT(A), and x ∈ OSer(A) with

x ∈ OCvx ({a1, . . . , an})
we have that

Tx = Span ({a1, . . . , an}) .
Proof. The argument here is identical to that for the preceding proposition with

the label f(a) replaced with an and the chart φ
a
is replaced with φa. �

5.3. Examples of open serenation. We give some small examples of open sere-
nation. Our first illustrates the distinction between open serenation and the con-
struction for groups described by Herman and Pakianathan[8].

Example 4. Let G := {±1,±i,±j,±k} and let G be the quaternion group of order
8 with universe G. We have that

NCT(G) =

{

(±u,±v)
∣

∣

∣

∣

{u, v} ∈
({i, j, k}

2

)}

so
In(G) = {±i,±j,±k}

and
Out(G) = {±i,±j,±k} .
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(a, b) ∈ NCT(G) σ ∈ SimFace(G)

(i, j)
{

i, j, k
}

(i,−j)
{

i,−j,−k
}

(−i, j)
{

−i, j,−k
}

(−i,−j)
{

−i,−j, k
}

(i, k)
{

i, k,−j
}

(i,−k)
{

i,−k, j
}

(−i, k)
{

−i, k, j
}

(−i,−k)
{

−i,−k,−j
}

(j, i)
{

j, i,−k
}

(j,−i)
{

j,−i, k
}

(−j, i)
{

−j, i, k
}

(−j,−i)
{

−j,−i,−k
}

(j, k)
{

j, k, i
}

(j,−k)
{

j,−k,−i
}

(−j, k)
{

−j, k,−i
}

(−j,−k)
{

−j,−k, i
}

(k, i)
{

k, i, j
}

(k,−i)
{

k,−i,−j
}

(−k, i)
{

−k, i,−j
}

(−k,−i)
{

−k,−i, j
}

(k, j)
{

k, j,−i
}

(k,−j)
{

k,−j, i
}

(−k, j)
{

−k, j, i
}

(−k,−j)
{

−k,−j,−i
}

Figure 2. Facets of Sim(G)

We see that

Sim(G) = {±u | u ∈ {i, j, k} } ∪ {±u | u ∈ {i, j, k} } .
The table in figure 2 gives the facet of Sim(G) associated with each (a, b) ∈
NCT(G).

The induced subcomplex on {±u | u ∈ {i, j, k} } is the graph pictured in figure 3.
We may decompose this graph into three 4-cycles, which are

(i, j,−i,−j), (i, k,−i,−k), and (j, k,−j,−k).
Any pair of these 4-cycles intersect at two vertices and each 4-cycle can be viewed as
the equator of an octohedron in Sim(G) whose poles are ±u for some u ∈ {i, j, k}.
For example, the first of the aforementioned 4-cycles bounds an octohedron whose
poles are ±k.

Note that Sim(G) is the simplicial complex Herman and Pakianathan called
X(Q8)[8, p.18]. The geometric realization of Sim(G) consists of three 2-spheres,
each pair of which is glued at two points. SinceOSer(G) is the geometric realization
of Sim(G) minus its 0-skeleton, we find that OSer(G) is the disjoint union of three
copies of a 2-sphere which has had 6 points removed. This is not the desingularized
complex Y (Q8) of Herman and Pakianathan, which is simply the disjoint union of
three 2-spheres.
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i

jk

−i

−j −k

Figure 3. A subcomplex of Sim(G)

Our next example uses the alternating 3-quasigroup from example 1.

Example 5. Let A be the alternating 3-quasigroup of order 5 introduced in
example 1. We have that

NCT(A) =

{

(a, b, c)

∣

∣

∣

∣

{a, b, c} ∈
(

A

3

)}

so

In(A) = A = Out(A).

We see that

Sim(A) = {u | u ∈ A } ∪ {u | u ∈ A } .
The table in figure 4 gives the facet of Sim(A) associated with each (a, b, c) ∈
NCT(A), up to the action of the alternating group. That is, if (0, 1, 2) is listed
then we don’t also give the facet corresponding to (1, 2, 0), as they are the same
facet of Sim(A).

Observe that if

{u0, u1, u2, u3, u4} = {0, 1, 2, 3, 4}
then Sim(A) has a subcomplex S whose facets form the set

{

ui, uj , uk, u4

∣

∣

∣

∣

{i, j, k} ∈
(

0, 1, 2, 3

3

)}

.

Note that Geo(S) is homeomorphic to the 3-simplex whose vertices are u0, u1, u2,
and u3. It follows that Sim(A) is the subdivided complex obtained by adding a
single vertex to the center of each facet of the boundary of the 4-simplex whose
vertices are the ui for i ∈ {0, 1, 2, 3, 4}. This implies that Geo(Sim(A)) is homeo-
morphic to the 3-sphere. Thus, OSer(A) is homeomorphic to the 3-sphere minus
the 1-skeleton of Sim(A). That 1-skeleton is the graph pictured in figure 5, which
is homotopy equivalent to the join of 21 circles.

For our penultimate example we consider the order 6 alternating 3-quasigroup
from example 3.
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(a, b, c) ∈ NCT(A) σ ∈ SimFace(A)

(0, 1, 2)
{

0, 1, 2, 3
}

(1, 2, 3)
{

1, 2, 3, 4
}

(2, 3, 4)
{

2, 3, 4, 0
}

(3, 4, 0)
{

3, 4, 0, 1
}

(4, 0, 1)
{

4, 0, 1, 2
}

(0, 2, 1)
{

0, 2, 1, 4
}

(1, 3, 2)
{

1, 3, 2, 0
}

(2, 4, 3)
{

2, 4, 3, 1
}

(3, 0, 4)
{

3, 0, 4, 2
}

(4, 1, 0)
{

4, 1, 0, 3
}

(0, 1, 3)
{

0, 1, 3, 4
}

(1, 2, 4)
{

1, 2, 4, 0
}

(2, 3, 0)
{

2, 3, 0, 1
}

(3, 4, 1)
{

3, 4, 1, 2
}

(4, 0, 2)
{

4, 0, 2, 3
}

(0, 3, 1)
{

0, 3, 1, 2
}

(1, 4, 2)
{

1, 4, 2, 3
}

(2, 0, 3)
{

2, 0, 3, 4
}

(3, 1, 4)
{

3, 1, 4, 0
}

(4, 2, 0)
{

4, 2, 0, 1
}

Figure 4. Facets of Sim(A)

0

1

2

3

4

0

1

2

3

4

Figure 5. The 1-skeleton of Sim(A)
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((u1, v1), (u2, v2), (u3, v3)) ∈ NCT(A) σ ∈ SimFace(A)

((0, 0), (1, 0), (2, 0))
{

00, 10, 20, 00
}

((0, 0), (1, 0), (2, 1))
{

00, 10, 21, 01
}

((0, 0), (1, 1), (2, 0))
{

00, 11, 20, 01
}

((0, 0), (1, 1), (2, 1))
{

00, 11, 21, 00
}

((0, 1), (1, 0), (2, 0))
{

01, 10, 20, 01
}

((0, 1), (1, 0), (2, 1))
{

01, 10, 21, 00
}

((0, 1), (1, 1), (2, 0))
{

01, 11, 20, 00
}

((0, 1), (1, 1), (2, 1))
{

01, 11, 21, 01
}

((0, 0), (2, 0), (1, 0))
{

00, 20, 10, 01
}

((0, 0), (2, 0), (1, 1))
{

00, 20, 11, 00
}

((0, 0), (2, 1), (1, 0))
{

00, 21, 10, 00
}

((0, 0), (2, 1), (1, 1))
{

00, 21, 11, 01
}

((0, 1), (2, 0), (1, 0))
{

01, 20, 10, 00
}

((0, 1), (2, 0), (1, 1))
{

01, 20, 11, 01
}

((0, 1), (2, 1), (1, 0))
{

01, 21, 10, 01
}

((0, 1), (2, 1), (1, 1))
{

01, 21, 11, 00
}

Figure 6. Facets of Sim(A)

Example 6. Let A be the ternary alternating quasigroup U ⊠α V introduced in
example 3. We have that

NCT(A) =
{

((u1, v1), (u2, v2), (u3, v3)) ∈ (U × V )3
∣

∣ {u1, u2, u3} = {0, 1, 2}
}

.

so

In(A) = A

and

Out(A) = {(0, 0), (0, 1)} .
We see that

Sim(A) = {uv | u ∈ Z/3Z and v ∈ Z/2Z } ∪
{

00, 01
}

.

The table in figure 6 gives the facet of Sim(A) associated with each

((u1, v1), (u2, v2), (u3, v3)) ∈ NCT(A),

up to the action of the alternating group.
The induced subcomplex on {uv | u ∈ Z/3Z and v ∈ Z/2Z } is an octohedron,

as one may see by taking as the equator the vertices 00, 20, 01, and 21, in that
order, and taking the poles to be 10 and 11. It follows that Geo(Sim(A)) is a 3-
sphere whose hemispheres are the two cones over this octohedron with cone points
00 and 01. Thus, OSer(A) is homeomorphic to the 3-sphere minus the 1-skeleton
of Sim(A). That 1-skeleton is the graph pictured in figure 7, which is homotopy
equivalent to the join of 17 circles.

Our last example is the most degenerate, but it’s worth noting that this corner
case is still defined.

Example 7. Suppose that A is a commutative n-quasigroup. We have that
OSer(A) is the empty manifold. To see this, note that NCT(A) = ∅, which
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0020

01 21

10

11

0001

Figure 7. The 1-skeleton of Sim(A)

implies that In(A) = ∅ and Out(A) = ∅. It follows that Sim(A) = (∅,∅) and
hence

(OGeo ◦Sim)(A)

is the empty topological space with no points.

5.4. The graph retract. The manifolds OSer(A) are relatively unstructured up
to homotopy.

Definition 48 (NC graph). Given an alternating n-quasigroup A the NC graph
of A is the simple graph

NCGrph(A) := (NCVert(A),NCEdge(A))

where

NCVert(A) := OrbAltn(NCT(A))

and we define NCEdge(A) to consist of all pairs

{a/Altn, b/Altn} ∈
(

NCVert(A)

2

)

such that either

(1) we have {a1, . . . , an} = {b1, . . . , bn} or
(2) f(a) = f(b) and

|{a1, . . . , an} ∩ {b1, . . . , bn}| = n− 1.

Proposition 7. For any alternating n-quasigroup A we have an embedding

ι : Geo(NCGrph(A)) →֒ OSer(A)

such that Im(ι) is a strong deformation retract of OSer(A).

Proof. Given

{a/Altn, b/Altn} ∈ NCEdge(A)
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and γ ∈
[

1
2 , 1
]

we define

ι(γa/Altn +(1− γ)b/Altn) :=
γ

n+ 1

(

n
∑

i=1

ai + f(a)

)

+
1− γ

n

n
∑

i=1

ci

where

{c1, . . . , cn} :=
{

a1, . . . , an, f(a)
}

∩
{

b1, . . . , bn, f(b)
}

.

Edges from NCEdge(A) are mapped by ι to piecewise linear curves between the
midpoints of the geometric realization of facets in Sim(A) which intersect at an
(n− 1)-face.

Define a homotopy

h : OSer(A)× [0, 1] → OSer(A)

as follows. Let {b1, . . . , bn+1} be the vertices of a facet of Sim(A) and consider the
maximal flag

{b1} ⊂ {b1, b2} ⊂ · · · ⊂ {b1, . . . , bn+1}
associated with the given labeling on the bi. Define

ck :=
1

k

k
∑

i=1

bk

and note that the ck are the vertices of the facet of the barycentric subdivision
of the simplex with vertices {b1, . . . , bn+1} corresponding to the flag in question.
When

x ∈ Cvx({c1, . . . , cn+1})
let P be the affine span of

{c1, . . . , cn−1, x}
and let y be the unique point of intersection between P and Cvx({cn, cn+1}). We
set

h(x, t) := (1− t)x+ ty.

Note that if x ∈ Im(ι) then y = x and h(x, t) = x for all time t. �

5.5. Examples of the graph retract. We give several examples of NCGrph(A)
for various choices of A. We can be a bit more expansive than in the analogous
subsection 5.3 as there are fewer topological considerations here.

Our first example is that of the quaternion group of example 4.

Example 8. Let G be the quaternion group of order 8. Note that we have one
vertex of NCGrph(G) for each facet of Sim(G) so we have that

NCVert(G) =

{

(±u,±v)/Alt2

∣

∣

∣

∣

{u, v} ∈
({i, j, k}

2

)}

.

Choosing orbit representatives and suppressing the obvious isomorphism we take

NCVert(G) =

{

(±u,±v)
∣

∣

∣

∣

{u, v} ∈
({i, j, k}

2

)}

.

We see that NCGrph(G) is 3-regular with the neighbors of (x, y) being

(y, x), (xyx−1, x), and (y, y−1xy).

The resulting graph is pictured in figure 8. We see that

NCGrph(G) ∼= Q3 ⊔Q3 ⊔Q3
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(i, j)

(i,−j)

(−i, j)

(−i,−j)

(j, i)

(j,−i)

(−j, i)

(−j,−i)

(i, k)

(i,−k)

(−i, k)

(−i,−k)

(k, i)

(k,−i)

(−k, i)

(−k,−i)

(j, k)

(j,−k)

(−j, k)

(−j,−k)

(k, j)

(k,−j)

(−k, j)

(−k,−j)

Figure 8. The graph NCGrph(G)

where Q3 is the 3-cube graph.

Our next example concerns the order 5 quasigroup from example 1 and example 5.

Example 9. Let A be the alternating 3-quasigroup of order 5 from the examples
indicated above. As in our previous example of and NC graph we choose orbit
representatives under the action of Alt3 and suppress the obvious isomorphism to
say that

NCVert(A) = {012, 123, 234, 340, 401, 021, 132, 243, 304, 410,
013, 124, 230, 341, 402, 031, 142, 203, 314, 420}.

Since A is ternary we have that NCGrph(A) is 4-regular. We could give a sort of
conjugacy formula for the neighbors of a vertex analogous to that from example 8
but in this case it’s easier to just directly examine figure 4 in order to see that
NCGrph(A) is the graph pictured in figure 9.
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012 410

402142

021

013203

123 401 304

341031

124132

314 234

420 340

230243

Figure 9. The graph NCGrph(A)

The case of the order 6 quasigroup from example 3 and example 6 is similar.

Example 10. Let A be the alternating 3-quasigroup of order 6 from the examples
indicated above. Again we choose orbit representatives and declare that

NCVert(A) = {(00, 10, 20), (00, 10, 21), (00, 11, 20), (00, 11, 21),
(01, 10, 20), (01, 10, 21), (01, 11, 20), (01, 11, 21),

(00, 20, 10), (00, 20, 11), (00, 21, 10), (00, 21, 11),

(01, 20, 10), (01, 20, 11), (01, 21, 10), (01, 21, 11)}.
In this case we see that NCGrph(A), which is pictured in figure 10, is isomor-

phic to C4�C4 where C4 is the 4-cycle graph and � is the Cartesian product of
graphs. Note also that C4�C4

∼= Q4, where Q4 is the 4-cube graph.

Our last example concerns the quasigroups F(n) of example 2.

Example 11. Fix an odd prime power q and observe that

((u1, v1), . . . , (un, vn)) ∈ NCT(F(n)
q )
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(01, 11, 20)(01, 20, 10)

(01, 10, 20) (01, 20, 11)

(00, 20, 11)(00, 10, 20)

(00, 20, 10) (00, 11, 20)

(00, 11, 21)(00, 21, 10)

(00, 10, 21) (00, 21, 11)

(01, 21, 11)(01, 10, 21)

(01, 21, 10) (01, 11, 21)

Figure 10. The graph NCGrph(A)

if and only if

det(u1, . . . , un) 6= 0.

It follows that

NCT(F(n)
q ) ∼= GLn(Fq)× F

n
q

where GLn(Fq) is the set of invertible n × n matrices with entries in Fq. We find

that NCGrph(F
(n)
q ) is an (n+ 1)-regular graph with
∣

∣

∣OrbAltn(NCT(F
(n)
q ))

∣

∣

∣ =
2

n!

∣

∣

∣NCT(F(n)
q )
∣

∣

∣

=
2

n!
|GLn(Fq)|

∣

∣F
n
q

∣

∣

=
2qn

n!

n−1
∏

k=1

(qn − qk)

vertices.
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5.6. NC graphs and Johnson graphs. Finite NC graphs are quite structured, as
they are regular and are induced subgraphs of Johnson graphs. For an introduction
to Johnson graphs, see [7]. Similar comments hold in the infinite case.

Proposition 8. Let A be a finite alternating n-quasigroup and let

s := |Sim(A)| = |In(A)|+ |Out(A)| .
We have that NCGrph(A) is an induced subgraph of the Johnson graph J(s, n +
1, n).

Proof. Let ψ : Sim(A) → [s] be a bijection and define a graph homomorphism

h : NCGrph(A) → J(s, n+ 1, n)

by

h(a/Altn) :=
{

ψ(a1), . . . , ψ(an), ψ(f(a))
}

.

Observe that h is an embedding and that {a/Altn, b/Altn} ∈ NCEdge(A) if and
only if h(a/Altn) and h(b/Altn) have exactly n elements in common. �

Since NCGrph(A) is an induced subgraph of J(s, n + 1, n) when A is a finite
alternating n-quasigroup we can use interlacing[7, Theorem 9.1.1] to understand
the spectrum of NCGrph(A) given the spectrum of J(s, n + 1, n). The graph
NCGrph(A) has |SimFace(A)| vertices, so interlacing will give stronger results
the larger the ratio

|SimFace(A)|
∣

∣

∣

(

Sim(A)
n+1

)

∣

∣

∣

is.

5.7. The Riemannian metric. For any alternating n-quasigroup A we have that
OSer(A) carries a canonical metric. Let δ denote the Kronecker delta function.

Definition 49 (Standard metric). Let A be an alternating n-quasigroup. The
standard metric g on OSer(A) is given by bilinear extension of the following rules:

(1) When x ∈ OCvx
({

a1, . . . , an, f(a)
})

we set

gx(ai − f(a), aj − f(a)) := 1 + δij .

(2) When x ∈ OCvx
({

a1, . . . , an−1, f(a)
})

we set

gx(ai, aj) := 1 + δij ,

gx(ai, f(a)) := 1,

and
gx(f(a), f(a)) = 2.

(3) When x ∈ OCvx ({a1, . . . , an}) we set

gx(ai, aj) := 1 + δij .

This metric isn’t too exciting in the sense that it always makesOSer(A) flat. In-
tuitively, the Riemannian manifold (OSer(A), g) consists of glued copies of regular

simplices whose edges all have length
√
2.

Proposition 9. The Riemannian manifold (OSer(A), g) is flat for any alternating
n-quasigroup A when g is the standard metric.
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(vk)x k < n k = n
∑n

i=1 ui < 1 (ak − f(a))− (an − f(a)) −(an − f(a))

∑n
i=1 ui = 1 ak f(a)

∑n
i=1 ui > 1

(ai − f(a))− − 2
n

∑n−1
ℓ=1 (aℓ − f(a))+

2
n

∑n−1
ℓ=1 (aℓ − f(a))+ (an+1 − f(a))

(an+1 − f(a))

Figure 11. Output chart tangent vector fields

Proof. We show that g is constant on any given coordinate chart, which makes the
metric tensor 0.

Given a = (a1, . . . , an) ∈ NCT(A) consider the serene chart of input type φ
a
.

Given k ∈ [n] define a tangent vector field vk : Im(φ
a
) → T OSer(A) to OSer(A)

on Im(φ
a
) by setting

(vk)x := ak − f(a)

when x = φ
a
(u) where

∑n
i=1 ui < 1,

(vk)x := ak

when x = φ
a
(u) where

∑n
i=1 ui = 1, and

(vk)x := (ak − f(a′))− 2

n

n
∑

ℓ=1

(aℓ − f(a′))

when x = φ
a
(u) where

∑n
i=1 ui > 1.

Note that at each point x ∈ Im(φ
a
) we have that {(v1)x, . . . , (vn)x} is a basis

for Tx and that the vector fields vk pull back to the standard basis constant vector
fields on Bipyrn.

The matrix of g with respect to this coordinate chart φ
a
and basis is

[gx((vi)x, (vj)x)] = [1 + δij ] = Jn + In

where Jn is the n × n matrix whose entries are all 1 and In is the n × n identity
matrix. Since the matrix of g is constant as a function of x we find that OSer(A)
is flat when endowed with g in Im(φ

a
).

Now consider the serene chart of output type φa. Given k ∈ [n] define a tangent
vector field vk : Im(φa) → T OSer(A) to OSer(A) on Im(φa) as in figure 11 where
x = φa(u). By a slightly more involved calculation we again see that the matrix of

g with respect to this coordinate chart φa and basis is

[gx((vi)x, (vj)x)] = [1 + δij ] = Jn + In,

so g is indeed constant on any coordinate chart. �

Recall that one can define the distance between two points in OSer(A) with
respect to such a metric by defining the length L(γ) of a piecewise continuously
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differentiable curve γ : [0, 1] → OSer(A) to be

L(γ) :=

∫ 1

0

√

gγ(t)(γ′(t), γ′(t)) dt

and then defining the distance d(x, y) from x ∈ OSer(A) to y ∈ OSer(A) to be

d(x, y) := inf({L(γ) | γ(0) = x and γ(1) = y } .

6. Serenation

Now we have almost all the tools we require to complete the process analogous to
desingularization of Sim(A). Since OSer(A) only includes the necessarily nonsin-
gular points of Sim(A) (that is, those which do not belong to the (n−2)-skeleton),
we have already removed all singularities which may have been present. It remains
to “fill in holes” in the appropriate fashion so that we obtain something which is
topologically more interesting than a combinatorial graph.

The last ingredient is a slight modification of the usual notion of the completion
of a metric space. Given a metric space (S, d) let Cmplt(S, d) denote the set of
all points in the metric completion of (S, d). That is, Cmplt(S, d) is the set of
all equivalences classes of Cauchy sequences of points in S under the equivalence
relation induced by the metric d. Similarly, let Cmplt(S, d) denote the space
obtained by equipping Cmplt(S, d) with the metric topology induced by d.

We say that a point x in a topological space T is n-Euclidean (in T) when there
exists a neighborhood U of x which is homeomorphic to an open set in R

n.

Definition 50 (Euclidean metric completion functor). We define a Euclidean met-
ric completion functor

EuCmplt : Riemn → Mfldn

as follows. Given a Riemannian n-manifold (M, g) consisting of a smooth n-
manifold M and a Riemannian metric g whose corresponding metric on M is d,
define EuCmplt(M, g) to be the set of points

EuCmplt(M, g) := {x ∈ Cmplt(M,d) | x is n-Euclidean in Cmplt(M,d) }
equipped with the subspace topology inherited fromCmplt(M,d). Given a smooth
map h : M1 → M2 between Riemannian manifolds (M1, g1) and (M2, g2) which is
a local isometry everywhere define

EuCmplt(h) : EuCmplt(M1, g1) → EuCmplt(M2, g2)

by

(EuCmplt(h))({x1, x2, x3, . . . }/ ∼1) := {h(x1), h(x2), h(x3), . . . }/ ∼2

where {xi}i∈N is a Cauchy sequence representing a member of EuCmplt(M1, g) and
∼1 and ∼2 are the equivalence relations identifying Cauchy sequences with distance
0 from each other in (M1, g1) and (M2, g2), respectively.

We give some motivating examples.

Example 12. Let Sn denote the n-sphere and let g be the usual metric on Sn

inherited from R
n+1. Take M to be Sn minus a finite set of points. We have that

EuCmplt(M, g) ∼= Sn.
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The following example illustrates that in general

EuCmplt(M, g) 6= Cmplt(M, d).

Example 13. Let T denote the 2-dimensional torus and let

C(T) := ([0, 1]×T)/ ∼
be cone over T. View C(T) as embedded in R

5 with

T = { (cos(θ1), sin(θ1), cos(θ2), sin(θ2), 0) | θ1, θ2 ∈ R }
and cone point (0, 0, 0, 0, 1). Take M to be C(T) minus the cone point (0, 0, 0, 0, 1)
and the points T of the original torus. We have that M is a smooth 3-manifold
which may be endowed with the usual metric inherited from R

5. We have that
EuCmplt(M, g) = M while Cmplt(M, d) = C(T). The cone point (0, 0, 0, 0, 1) is
not included in EuCmplt(M, g) because this point of the cone over the torus is not
3-Euclidean. To see this, note that if (0, 0, 0, 0, 1) was 3-Euclidean in C(T) then
removing it would not change the fundamental group. Since the space obtained by
removing the cone point from C(T) deformation retracts to T we would have that
π1(C(T)) ∼= Z

2. However, the cone over T is contractible so π1(C(T)) is trivial,
a contradiction. The points of T are not included in EuCmplt(M, g) because they
are also not Euclidean in the sense of having a neighborhood homeomorphic to an
open set in R

3. We emphasize here that the points of T would be Euclidean in the
sense of a manifold with boundary, as they do have neighborhoods homeomorphic
to a half-space in R

3, but we do not allow that for our Euclidean metric completion.

Definition 51 (Serenation functor). We define a serenation functor

Sern : NCAQn → Mfldn

as follows. Given an alternating n-quasigroup A we define

Ser(A) := EuCmplt(OSer(A), g)

where g is the standard metric on OSer(A). Given an NC homomorphism h : A →
B where A,B ∈ AQn we define

Ser(h) := EuCmplt(h, gA, gB)

where gA and gB are the standard metrics on OSer(A) and OSer(B), respectively.

Since every topological n-manifold for n = 2 or n = 3 carries a unique smooth
structure we actually have functors which we might, by a slight abuse of notation,
refer to as

Sern : NCAQn → SMfldn

when n = 2 or n = 3.
It is perhaps too much to ask that any manifold M is of the form Ser(A) for

some quasigroup A, especially in light of the fact that any such manifold would
have to be orientable and there exist nonorientable manifolds, but we would like to
examine the slightly weaker condition that a connected orientable manifold M is a
component of Ser(A) for some quasigroup A.

Definition 52 (Serene manifold). We say that a connected orientable n-manifold
M is serene when there exists some alternating n-quasigroup A such that M is a
component of Ser(A).
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This turns out to always be the case when M is triangulable. Our proof is
constructive, provided a triangulation and orientation on the manifold in question.

Theorem 1. Every connected orientable triangulable n-manifold is serene.

Proof. Let M be a connected orientable triangulable n-manifold and let S = (S,Γ)
be a simplicial complex with Geo(S) = M. We effectively subdivide S and use the
orientation on M in order to define the requisite quasigroup A.

Take

Fr(S) = (Fr(S), f : (Fr(S))n → Fr(S))

to be the free alternating n-quasigroup generated by the set S, as discussed briefly
in section 4. For each facet γ = {s1, . . . , sn+1} of S fix an orientation [s1, . . . , sn+1]
so that the complex S is oriented. Let

γi := (s1, . . . , si−1, ŝi, si+1, . . . , sn+1)

denote the n-tuple of vertices of S obtained by deleting the ith entry from the tuple
(s1, . . . , sn+1). Define µS ⊂ (Fr(S))2 by

µS := { (f(γn+1), f(γi)) | γ ∈ Γ, |γ| = n+ 1, and i ∈ [n] } .

We set θS := CgFr(S)(µS) and define

A := Fr(S)/θS.

We claim that M is a component of Ser(A).
To see this, first consider the simplicial complex

S′ := (S′,Γ′)

where

S′ := { s | s ∈ S } ∪ { γ | γ ∈ Fct(S) }
and

Γ′ :=
⋃

γ∈Fct(S)
s∈γ

Sb({ s′ | s′ ∈ γ \ {s} } ∪ {γ}).

Note that Geo(S′) ∼= Geo(S). The new vertices γ correspond to the equivalence
classes of the elements f(γi) of Fr(S) under θS. Since M is connected so is Geo(S′),
which means that there is a component of OSer(A) which is homeomorphic to

U := Geo(S′) \ (Geo(S′))(n−2),

which is the geometric realization of S′ with its (n − 2)-skeleton excised. Since U

is still connected we have that EuCmplt(U, g) (where g is the restriction of the
standard metric on OSer(A) to U) is a component of Ser(A). Since U is all but
the (n − 2)-skeleton of the manifold M we have that EuCmplt(U, g) ∼= M and
hence M is homeomorphic to a component of Ser(A). �

In the case of second countable smooth manifolds triangulation is always possible
so we have the following corollary.

Corollary 1. Every connected orientable smooth manifold is serene.

Proof. Every second countable smooth manifold can be triangulated[15]. �
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6.1. Examples of serenation. Our earlier work leaves little more to do in describ-
ing Ser(A) for those quasigroups which we have already visited in previous exam-
ples. We begin with the quaternion group considered in example 4 and example 8.

Example 14. Let G denote the quaternion group of order 8. By our analysis in
example 4 we have that OSer(G) consists of three 2-spheres, each of which has had
6 points removed. It follows that Ser(G) is homeomorphic to the disjoint union
of three 2-spheres. This is the same space as the desingularized complex Y (Q8) of
Herman and Pakianathan[8, p.18].

The order 5 and 6 ternary quasigroups we’ve examined yield spheres as well.

Example 15. Let A be the order 5 alternating 3-quasigroup from example 1,
example 5, and example 9. Since OSer(A) consists of a 3-sphere minus a 1-
dimensional subcomplex we find that Ser(A) is homeomorphic to the 3-sphere.

Example 16. Let A be the order 6 alternating 3-quasigroup from example 3,
example 6, and example 10. Since OSer(A) consists of a 3-sphere minus a 1-
dimensional subcomplex we find that Ser(A) is homeomorphic to the 3-sphere.

7. Compact manifolds and Latin cubes

In general the construction in the proof of theorem 1 may be expected to yield
an infinite alternating quasigroup A such that M is a component of Ser(A). Nec-
essarily this is the case when M is given with a triangulation S = (S,Γ) where S is
infinite, for each member s ∈ S becomes a distinct generator of A. In the case that
S is a finite set (or, topologically speaking, in the case that M is compact) can we
always take A to be finite?

Definition 53 (Quasifinite manifold). We say that a connected compact ori-
entable smooth n-manifold M is quasifinite when there exists a finite alternating
n-quasigroup A such that M is homeomorphic to a component of Ser(A).

Problem 1. Is every connected compact orientable smooth manifold quasifinite?

This problem’s solution would be implied by a positive solution of another, more
combinatorial, problem which has the flavor of a standard question in the theory
of (binary) quasigroups at large. The prototype for that standard question is the
Evans Conjecture, which states that every partial Latin square of order n with at
most n − 1 entries may have its other entries filled in so as to obtain a complete
Latin square. The Evans Conjecture was proven by Smetaniuk in 1981[13], and
many similar results followed, including those on 3-dimensional Latin cubes in [9].

Definition 54 (Partial Latin cube). Given a set A and some n ∈ N we say that
θ ⊂ An+1 is a partial Latin n-cube when for each i ∈ [n] and each

a1, . . . , ai−1, ai+1, . . . , an+1 ∈ An

there exists at most one ai ∈ A so that

(a1, . . . , an+1) ∈ θ.

This is to say that a partial Latin cube is the graph of a partial function from
An to A which satisfies the identities of an n-quasigroup wherever all the relevant
operations are defined.
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Definition 55 (Partial alternating Latin cube). Given a set A and some n ∈ N we
say that θ ⊂ An+1 is a partial alternating Latin n-cube when θ is a partial Latin
cube and for each α ∈ Altn we have that if

(a1, . . . , an, b1) ∈ θ

and
(aα(1), . . . , aα(n), b2) ∈ θ

then b1 = b2.

Definition 56 (Complete Latin cube). We say that a partial Latin n-cube θ ⊂
An+1 is a complete Latin n-cube when for each i ∈ [n] and each

a1, . . . , ai−1, ai+1, . . . , an+1 ∈ An

there exists at least one ai ∈ A so that

(a1, . . . , an) ∈ θ.

That is, a complete Latin n-cube is the graph of an n-quasigroup operation.
We also refer to complete Latin n-cubes simply as Latin n-cubes, the “complete”
emphasizing the distinction from partial Latin cubes. Note that we may have
defined a Latin cube without reference to the notion of a partial Latin cube as a
relation θ ⊂ An+1 such that for each

a1, . . . , ai−1, ai+1, . . . , an+1 ∈ An

there exists a unique ai ∈ A so that

(a1, . . . , an) ∈ θ.

Definition 57 (Finite partial Latin cube). We say that a partial Latin cube θ ⊂
An+1 is finite when A is a finite set.

Using this language, our Evans-like problem for alternating quasigroups may be
stated as follows.

Problem 2. Given a finite partial alternating Latin cube θ ⊂ An+1 does there
always exist a finite complete alternating Latin cube ψ ⊂ Bn+1 such that θ ⊂ ψ?

This problem is a bit weaker than the Evans conjecture for the case n = 2, as we
don’t posit a relationship between |θ| and |B|. In the n = 2 situation the veracity
of the Evans conjecture implies that the answer to problem 2 is “yes” for n = 2.
This in turn implies that the answer to problem 1 is “yes” for n = 2. Thus, we
have a corollary to the Evans conjecture.

Corollary 2. Every connected compact orientable surface is a component of the
serenation of some finite binary quasigroup.

This result appears to be significantly easier to establish than if we required
the binary quasigroup in question be a group, as Herman and Pakianathan did.
They were only able to show that an infinite family of such surfaces occurred as
components of the serenation of some finite group[8, Corollary 3.5]. One may have
asked the following question having only seen the construction of Herman and
Pakianathan, but the preceding corollary adds weight to it.

Problem 3. Is every connected compact orientable surface a component of the
serenation of some finite group?
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8. Future directions

We conclude by discussing a number of possible directions for future research,
beyond those questions already raised in the previous section.

8.1. Classification of subdirect irreducibles. As addressed in the introduction,
we have by Birkhoff’s Subdirect Representation Theorem[2, Theorem 3.24] that
every (nontrivial) alternating n-quasigroup is isomorphic to a subdirect product of
subdirectly irreducible alternating n-quasigroups. Moreover, in the case that the
original quasigroup A in question is finite all of the subdirect factors will be finite
as well since they are always quotients of A.

This implies that, given an orientable smooth manifold M which appears as a
component of Ser(A), we have that there exists a subdirect representation

h : A →֒
∏

i∈I

Bi

for some index set I and some subdirectly irreducible alternating quasigroups Bi.
Embeddings are always NC homomorphisms and it is fairly immediate that if h is
injective then so is Ser(h). It follows that we have

M →֒ Ser(A) →֒ Ser

(

∏

i∈I

Bi

)

so the topology of M is determined by the algebraic structure of the Bi.
We again lament that classifying even the infinite simple groups may be unrea-

sonably difficult, which means that a full description of all subdirectly irreducible
alternating n-quasigroups is likely unreachable. The finite simple groups were clas-
sified during the course of the twentieth century, however, so we may aspire to do
the same for finite subdirectly irreducible alternating n-quasigroups. If the answer
to problem 1 is “yes”, then such a classification would be enough to gain some
control over all compact orientable smooth manifolds via serenation.

Until now we have omitted an important aspect of understanding a manifold
M by decomposing some A with M →֒ Ser(A) into subdirect irreducibles. It is
certainly not the case that Ser preserves even finite products, so a natural question
is the following.

Problem 4. What can be said about the relationship between Ser
(
∏

i∈I Bi

)

and
the individual Ser(Bi)?

One special case has a reasonable answer. In general we can’t expect that the
coordinate projection maps

pk :
∏

i∈I

Bi ։ Bk

are NC homomorphisms, but we can when all factors other than the one under
consideration are commutative.

Proposition 10. Let B :=
∏

i∈I Bi be a product of alternating n-quasigroups Bi

and let k ∈ I. If Bi is commutative for all i 6= k then we have that the projection
homomorphism pk : B ։ Bk is an NC homomorphism.

Proof. Suppose that b := (b1, . . . , bn) ∈ NCT(B). Since all the Bi are commutative
it must be that

((b1)k, . . . , (bn)k) = (pk(b1), . . . , pk(bn)) = pk(b)
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is not a commuting tuple in Bk. �

We then have that Ser(pk) : Ser(B) → Ser(Bk) is a continuous map for such
alternating quasigroups B and Bk. By the surjectivity of pk we find that Ser(pk)
is also surjective.

8.2. NC congruences. We would be remiss if we did not mention that an anal-
ysis of the kernels of NC homomorphisms should take place, for these correspond
to quotients of alternating quasigroups which actually pass through to surjective
continuous maps between manifolds via serenation.

Definition 58 (NC congruence). Given an alternating n-quasigroupA we say that
θ ⊂ A2 is an NC congruence of A when θ = ker(h) for some NC homomorphism h
with domain A.

NC congruences have the following property.

Proposition 11. Given an NC congruence θ ∈ Con(A) for an alternating n-
quasigroup A we have for all (a1, a2) ∈ θ and all b1, . . . , bn−2 ∈ A that the tuple

(a1, a2, b1, . . . , bn−2)

is commuting in A.

Proof. Suppose that θ is an NC congruence. This means that there exists an NC
homomorphism

h : A → B

for some alternating n-quasigroup B such that ker(h) = θ. Let (a1, a2) ∈ θ. It
follows that for any b1, . . . , bn−2 ∈ A we have that

h(a1, a2, b1, . . . , bn−2) = (h(a1), h(a1), h(b1), . . . , h(bn−2)),

which is a commuting tuple in B. Thus, (a1, a2, b1, . . . , bn−2) is a commuting tuple
in A. �

This property is also possessed by the center of any alternating quasigroup A,
which is the centralizer 1∗A of the congruence 1A identifying all members of A[2,
p.197].

Proposition 12. The center of an alternating n-quasigroup A has the property
that if (a1, a2) ∈ 1∗A then for all b1, . . . , bn−2 ∈ A we have that the tuple

(a1, a2, b1, . . . , bn−2)

is commuting in A.

Proof. Suppose that (a1, a2) ∈ 1∗A. This means that for any n-ary term t and any
c, d ∈ An−1 we have that t(a1, c) = t(a1, d) if and only if t(a2, c) = t(a2, d). Let
t := f ,

c := (a2, b1, b2, . . . , bn−2)

and
d := (b1, a2, b2, . . . , bn−2).

We have that

f(a1, a2, b1, b2, . . . , bn−2) = f(a1, b1, a2, b2, . . . , bn−2)

if and only if

f(a2, a2, b1, b2, . . . , bn−2) = f(a2, b1, a2, b2, . . . , bn−2).
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By alternativity this last equation always holds, so it is the case for all b1, . . . , bn−2

that
(a1, a2, b1, . . . , bn−2)

commutes in A. �

One would hope that there is a strong relationship between the collection of all
NC congruences of A and those congruences subordinate to the center of A, as is
the situation for groups, but this remains to be seen.

8.3. Field extensions. The category NCAQn admits an interesting functor from
the category Field whose objects are fields and whose morphisms are field homo-
morphisms. Recall that in example 2 we saw that given any field F (even those of
even characteristic, which we now explicitly include) we may construct an alternat-
ing n-quasigroup F

(n).
Let

D : Field → NCAQn

be the functor given by
D(F) := F

(n)

when F is a field and

(D(h))(u, v) := ((h(u1), . . . , h(un)), h(v))

when h is a field homomorphism. Observe that if K/F is a Galois extension then
Gal(K/F) acts on K through field automorphisms which fix F pointwise. It follows
that for each n we have an action

α : Gal(K/F) → Homeo(Sern(K
(n)))

ofGal(K/F) on Sern(K
(n)) which fixes the components of Sern(K

(n)) which belong
to Sern(F

(n)) pointwise. Thus, a particular group G may only be the Galois group
of an extension of F if there exists some extension field K of F for which G appears
as a group of homeomorphisms of the manifold Sern(K

(n)) which fix Sern(F
(n))

pointwise.
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