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Abstract. We investigate Goodwillie's ``Taylor tower'' of the identity
functor from spaces to spaces. More speci®cally, we reformulate
Johnson's description of the Goodwillie derivatives of the identity,
and prove that in the case of an odd-dimensional sphere the only
layers in the tower that are not contractible are those indexed by
powers of a prime. Moreover, in the case of a sphere the tower is
®nite in vk-periodic homotopy.
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0. Introduction

In this paper we analyze the Goodwillie tower of the identity functor
evaluated at spheres. We ®nd that in the case of spheres the tower
exhibits a pleasant and surprising behavior. Broadly speaking, we
®nd two new facts that are not consequences of the general theory of
calculus. First, in the case of an odd-dimensional sphere localized at a
prime p, the only ``layers'' (homotopy ®bers) in the Goodwillie tower
of the identity that are not contractible are the ones that are indexed
by powers of p. Thus the tower ``converges exponentially faster'' in
this case than it does in general. Second, the stable cohomology of the
pk-th layer is free over A�k ÿ 1�, where A�k ÿ 1� is a certain ®nite sub-
Hopf algebra of the Steenrod algebra (to be de®ned in section 3.2).
This implies, in particular, that in our case all the layers beyond the
pk-th one are trivial in vk-periodic homotopy (for any reasonable
de®nition of the latter). Thus, in vk-periodic homotopy the tower has
only k � 1 non-trivial layers, namely p0; p1; . . . ; pk.

The two facts imply that the unstable vk-periodic homotopy of an
odd dimensional sphere can be resolved into a tower of ®brations
with k � 1 stages, with in®nite loop spaces as ®bers. As indicated
above, the ®bers are analyzed here to a considerable extent. For
instance, their stable cohomology is completely calculated.

In the body of the paper we will assume basic familiarity with the
notion of ``vk-periodic'' homotopy of spaces and spectra. For an in-
formal discussion of the concept, together with references to a more
complete discussion, see appendix A. We will also assume familiarity
with the basic ideas of Goodwillie's ``Calculus of Functors''. The
basic references for this material are [G90, G92, G3].

We now proceed with a more detailed overview of the paper, its
genesis and its goals. The simplest example of periodic homotopy is
v0-periodic homotopy, which is essentially the same as rational ho-
motopy. There is an old theorem of Serre on rational homotopy of
spheres, which implies that if X is an odd-dimensional sphere, then
the map X ! X1R1X induces an equivalence in v0-periodic homo-
topy. Thus in the v0-periodic world the unstable homotopy of an odd
sphere is the same as its stable homotopy.

In [MT92] Mahowald and Thompson found an analogue of
Serre's theorem for v1-periodic homotopy. Roughly speaking, v1-
periodic homotopy is the homotopy theory one obtains by inverting
the maps that induce an isomorphism in K-theory. For a based to-
pological space X , let P2�X � be the homotopy ®ber of the well-known
natural map X1R1�X � ! X1R1�X ^ X ^R2

ER2�� which may
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be de®ned, at least up to homotopy, as the adjoint of the composed
map

R1X1R1�X �!'
_1
i�1

R1�X^i ^Ri ERi�� ! R1�X ^ X ^R2
ER2��

where the ®rst map is given by the Snaith splitting and the second
map is collapsing on the factor corresponding to i � 2. Mahowald ±
Thompson's work implies that if X is an odd sphere (localized at 2)
then the natural map X ! P2�X � induces an equivalence in v1-peri-
odic homotopy. Using this result, the v1-periodic homotopy of
spheres has actually been computed in [M82] at the prime 2 and in
[T90] at odd primes. From this information, it is also possible to
recover the ``integral'' v1-periodic homotopy. This is done in several
places [MT92, T90].

From one point of view, our goal here is to extend the work of
Mahowald and Thompson cited above to higher order periodicity.
The ®rst technical di�culty with it seemed to be that this work used
the existence of maps connected with the Snaith splitting. Such maps
are constructed by means of con®guration space methods. The ho-
motopy ®bers of these maps do not have nice con®guration space
models and thus do not allow new maps to be constructed in the same
way. Instead, we use the Goodwillie tower of the identity functor,
which turned out to be the perfect tool for attacking this problem. We
will analyze this tower of ®brations in the general case to some extent
and apply this understanding to spheres.

The Goodwillie tower of the identity (``the Taylor tower of the
identity'' in Goodwillie's terminology) is a sequence of functors (from
pointed spaces to pointed spaces) Pn�X � and a tower of natural
transformations

..

.

#
X ÿ! Pn�X � ÿDn�X �
& fn #

Pnÿ1�X � ÿDnÿ1�X �
fnÿ1 #

..

.

#
P1�X � ' Q�X � :� X1R1�X �

The functor Dn is the homotopy ®ber of the natural transformation
Pn ! Pnÿ1 and should be thought of as the n-th homogeneous layer,
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or the n-th di�erential of the identity. It follows from the general
theory of calculus [G3] that for every n there exists a spectrum Cn,
endowed with an action of the symmetric group Rn, such that

Dn�X � ' X1��Cn ^ X^n�hRn
� :� X1��Cn ^ X^n ^ ERn��Rn

� :

Here, as well as everywhere else in the paper, ' stands for ``weakly
homotopy equivalent''. The spectrum Cn, considered as a spectrum
with an action of Rn, is the n-th derivative of the identity.

We need to investigate this tower, whose existence derives from
the general theory. Some information about it had been available
before. As indicated in the diagram above, it is immediate from the
de®nitions that P1�X � ' Q�X �, i.e., the linear part of homotopy the-
ory is stable homotopy theory. The description of the second stage is
still rather classical: as was indicated above, the second quadratic
approximation, P2�X �, is the homotopy ®ber of the ``stable James-
Hopf''map Q�X � ! Q�X^2hR2

�. The second layer of the tower is
D2�X � ' XQ�X^2hR2

�.
For a general n, B. Johnson was the ®rst one to provide an explicit

closed description of Dn�X � in terms of standard constructions of
homotopy theory. In [Jo95] certain spaces Dn are constructed, which
have the following properties:

(i) the group Rn acts on Dn;
(ii) non-equivariantly, Dn '

W�nÿ1�!
i�1 Snÿ1;

(iii) the n-th derivative of the identity is Map��Dn;R
1S0�, the

Spanier-Whitehead dual of Dn, considered as a spectrum with an
action of Rn. Equivalently,

Dn�X � ' X1�Map��Dn; R1X^n�hRn
� :

The description of the space Dn is a geometric one, it is de®ned as a
quotient of the n�nÿ 1�-dimensional unit cube by a certain sub-
complex. In section 1 we reformulate the description of Dn. Thus we
construct a certain combinatorially de®ned complex Kn. Kn has
a natural action of Rn, and we show that for our purposes the
suspension of Kn is equivalent to Dn. Thus we may write

Dn�X � ' X1�Map��SKn; R1X^n�hRn
� :

By the spectral sequence for the homology of Borel construction,
the stable homology of Dn�X �, i.e. the homology of the spectrum
Map��SKn; R1X^n�hRn

is essentially given by the homology of the
symmetric group with coe�cients in the homology module of
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the (dual of) Kn tensored with the homology of X^n. Thus, the
simpler the homology of X^n is, the simpler one may expect the
layers to be. This, of course, suggests the spheres as candidates for
investigation. In the case of an even-dimensional sphere, one is led
to investigating H��Rn; H�� ~Kn��, where ~Kn is the dual of Kn. In the
case of an odd-dimensional sphere, one is led to study
H��Rn; H�� ~Kn� 
 Z�ÿ1��, where Z�ÿ1� is the sign representation. Not
surprisingly, odd-dimensional spheres turn out to be the more basic
case. In section 3, we carry out the homology calculations for the
odd sphere case. The following theorem summarizes some of the
results in section 3.

Theorem 0.1. Let X be an odd-dimensional sphere. If n is not a power of
a prime, then

Dn�X � ' � :

If n � pk, then Dn�X � has only p-primary torsion.

For a spectrum E, let Hs
��X1E� � H��E� be the stable homology

of E. In section 3 we write an explicit basis for Hs
� Dpk S2s�1ÿ �

; Z=pZ
ÿ �

and investigate the action of the Steenrod algebra on the stable

cohomology H�s Dpk S2s�1ÿ �
; Z=pZ

ÿ �
. We prove that the stable coho-

mology of Dpk�S2s�1� is A�k ÿ 1� free, where A�k ÿ 1� is a certain ®nite
subalgebra of the Steenrod algebra. In section 4 we feed this result
into the vanishing line theorems of Anderson-Davis [AD73] and
Miller-Wilkerson [MW81] to conclude that the vkÿ1 periodic homo-
topy of Dpj�S2s�1� is zero for j � k and moreover that the Goodwillie
tower converges in vk periodic homotopy. This implies the main
theorem of the paper which is the following:

Theorem 4.1. Let X be an odd-dimensional sphere localized at a prime
p. The map

X ! Ppk�X �

is a vj-periodic equivalence for all k � 0 and for all 0 � j � k:

In the last subsection we formulate and prove the analogue of
theorem 4.1 for even dimensional spheres. Basically, the tower is still
®nite, but it is ``twice as long''.
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1. The poset of partitions of a ®nite set

Let n be an integer, n > 1. Let n � f1; . . . ; ng. A partition k of n is an
equivalence relation on n (similarly, one de®nes partitions of an ar-
bitrary ®nite set). Partitions are ordered by re®nements, and may be
considered as a category. Let kn be the category of partitions of n.
Thus, for two partitions k1, k2, there is a morphism k1 ! k2 i� k1 is a
re®nement of k2. It is clear that kn has an initial and a ®nal object.
Denote these 0̂ and 1̂ respectively. Let N�kn be the simplicial nerve of
kn. Since kn has an initial and a ®nal object, the geometric realization
of N�kn is contractible. Let Kn denote the subcomplex of the real-
ization of N�kn, whose simplices are those which do not contain the
morphism 0̂! 1̂ as a face. Thus the zero-simplices of Kn are parti-
tions of n and i-simplices are increasing chains of partitions

�0̂ � kÿ1 � k0 < k1 < � � � < ki � ki�1 � 1̂�
such that not both inequalities 0̂ � k0 and ki � 1̂ are equalities. Let ~kn

be the full subcategory obtained from kn by deleting 0̂ and 1̂. Let N� ~kn

be the simplicial nerve of ~kn and let ~Kn be its realization. It is easy to
see that Kn is homeomorphic to the unreduced suspension of eKn.
Equivalently, there is a co®bration sequence

~Kn� ! S0 ! Kn :

Here by co®bration sequence we mean that Kn is homeomorphic to
the homotopy co®ber of the map ~Kn� ! S0. The � subscript stands
for an added disjoint basepoint.

For a partition k let r�k� be the number of its components. Let
S � �S0; S1; . . . ; Si� be a sequence of integers such that
n � S0 � S1 � � � � � Si � 1, let KS

n � Nikn be de®ned as follows

KS
n � f�0̂ � k0 � � � � � ki � 1̂� 2 Nikn j r�kj� � Sj for j � 0; . . . ; ig

Let Ki
n be the set of non-degenerate i-simplices of ekn. Thus

Nikn �
G

n�S0�S1�����Si�1
KS

n :

Ni
ekn �

G
n>S0�S1�����Si>1

KS
n :

Ki
n �

G
n>S0>S1>���>Si>1

KS
n :
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Notice that if i > nÿ 3 then Ki
n � ;. Therefore, ~Kn is nÿ 3-dimen-

sional. Notice also that KS
n is de®ned even if S is empty, and therefore

the sets Nÿ1kn and Kÿ1n are de®ned and have one element each. By our
convention, Nÿ2kn � Kÿ2n � ;.

De®nition 1.1. Tn is the following based simplicial set: The set of i-
simplices, T i

n, is

T i
n � Niÿ2kn� 8i � 0 :

In particular, T 0
n � ;� � � and T 1

n � S0. The face maps are de®ned as
follows: If 0 < j < i then dj : T i

n ! Tn
iÿ1 is given by:

dj�k0; . . . ; kiÿ2� � �k0; . . . ; k̂jÿ1; . . . ; kiÿ2� :

For j � 0; i the formulas are

d0�k0; . . . ; kiÿ2� � �k1; . . . ; kiÿ2� if k0 � 0̂
� otherwise

�
di�k0; . . . ; kiÿ2� � �k0; . . . ; kiÿ3� if kiÿ2 � 1̂

� otherwise

n
The degeneracy maps are de®ned similarly. If 0 � j � i then
sj : Tn

i ! Tn
i�1 is determined by

sj�0̂ � kÿ1; k0; . . . ; kiÿ2; kiÿ1 � 1̂�
� �0̂ � kÿ1; k0; . . . ; kjÿ1; kjÿ1; . . . ; kiÿ2; kiÿ1 � 1̂� :

It is easy to check that Tn is indeed a simplicial set and that its
realization is SKn � SReKn, where S and R denote reduced and unre-
duced suspension respectively. (This is, essentially, Milnor's suspen-
sion construction [Mi72, page 120], applied to ~Kn twice).

The symmetric group Rn acts on kn, and therefore on KS
n , Ki

n, Kn

etc. The action of Rn on KS
n is not, in general, transitive. We need to

write KS
n as a union of Rn-orbits. The orbits of zero-simplices (par-

titions of n) are, simply, partitions of positive integers. A partition P
of a positive integer n is a collection n1; . . . ; nk of positive integers
such that n1 � � � � � nk and

P
ni � n. We call fnig the components of

P . Such a partition of n is not trivial if 1 < k < n. We denote the set of
partitions of n by Q�n�.

Proposition 1.2. The quotient set K0
n=Rn is naturally isomorphic to the

set of non-trivial partitions of n.
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Proof. Every partition k of n induces a partition P of the integer n:
the components of P are cardinalities of the components of k. It is
elementary to show that this assignment is surjective and that k1 and
k2 induce the same partition of n if and only if they are in the same
orbit of Rn. (

If P is as above, we will call P the type of k. We will sometimes use
formal sums

P
l nil � il to describe partitions of integers. A formal sum

as above stands for a partition of n �Pl nil il with nil components of
cardinality il.

Proposition 1.3. Let k be a partition of type P �Pl nil � il. The set of
partitions of type P is Rn-equivariantly isomorphic to the set of cosets
Rn=Rk, where Rk is the stabilizer group of k. There is an isomorphism

Rk �
Y

l

Rnil
o Ril :

Proof. Easy. (

We need to classify orbits of Ki
n, i > 0, in a manner similar to the

one we have for the orbits of K0
n . It is sometimes convenient to rep-

resent orbits with certain labeled trees. A tree will always have a root
r. Distance will mean the number of edges in the unique path between
two nodes. Let v be a node.

De®nition 1.4. A tree is balanced if all its leaves have the same distance
from the root.

Given a tree, we de®ne a height function on its nodes, which we
denote h�v�, by letting h�v� be the minimal distance from v to a leaf.
De®ne the height of a tree to be h�r� ÿ 1.

De®nition 1.5. A tree is labeled if to every node v there is assigned a
positive integer l�v�.

We will make free use of such expressions as sibling nodes, a single
child, the subtree spanned by a node, etc. We say that a balanced tree
has no forking on level j if all the nodes of height j have only one child.
We say that two labeled trees T and T 0 are isomorphic as labeled trees
(or just isomorphic) if there is an isomorphism of unlabeled trees
w : T ! T 0 such that for any node v of T except possibly the root,
l�v� � l�w�v��.
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De®nition 1.6. A labeled tree is standard if
1) it is balanced,
2) l�r� � 1,
3) no two sibling nodes span isomorphic labeled subtrees.

Condition (3) implies that every node of height 1 has exactly one
child. In other words, in a standard tree there is no forking on level 1.

Given a standard tree, we de®ne the degree function of its nodes as
follows: If h�v� � 0 then deg�v� � l�v�. If h�v� > 0, let u1; . . . ; uk be
the children of v, then deg�v� � l�v��deg�u1� � � � � � deg�uk��. The
degree of a tree is the degree of its root.

Proposition 1.7. There is a bijective correspondence between orbits of
Ki

n and standard labeled trees of height i� 1 and degree n.

Proof. For i � 0, let P �PL
l�1njl � jl be an orbit. Then P is repre-

sented by the following tree:

1
. &

nj1 . . . njL

# #
j1 jL

For i > 0, the assignment of trees to orbits is constructed inductively.
But before we describe it, we need some more de®nitions. For a ®nite
set S, let kS be the category of partitions of S. Let S1 and S2 be two
®nite sets. Let K1 � �k10 � � � � � k1i � and K2 � �k20 � � � � � k2i � be i-
simplices of N�kS1

and N�kS2
respectively. A morphism q : K1 ! K2 is

a map of sets S1 ! S2 which for every 0 � j � i maps every com-
ponent of k1j into a component of k2j . q is an isomorphism if it has
a two-sided inverse. K1 and K2 are isomorphic if there exists an
isomorphism K1 ! K2.

De®nition 1.8. Let K � �k0 � � � � � kj� be a chain of partitions. Let S
be a component of kj. Then k0; . . . ; kjÿ1 determine a �jÿ 1�-simplex of
N�kS. We call it the restriction of K to S and denote it KjS.

Let K � �k0 � � � � � ki� be an i-simplex of N�kn. Thus ki is the
coarsest partition in the chain. Let S1, S2 be two components of ki.
We say that S1 and S2 induce isomorphic blocks if KjS1 and KjS2 are
isomorphic. Of course, a necessary condition for S1 and S2 to induce
isomorphic blocks is that S1 and S2 are isomorphic sets. The property
of inducing isomorphic blocks de®nes an equivalence relation on the
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components of ki. We consider KjS1 as an element of Niÿ1KS1 and the

orbit of KjS1 under the action of RS1 as an element of Niÿ1KS1� �RS1
.

Two i-simplices K1 and K2 are in the same orbit of Rn if and only if
they have the same isomorphism classes of blocks, counting with
multiplicities. Thus, every orbit B of Ki

n can be written uniquely as a
formal sum

B �
X

l

nl � Bl

where Bl are elements of �Kiÿ1
kl
�Rkl

for some k1; . . . ; km such thatX
l

nlkl � n

and B1;B2; . . . ;Bm are pairwise distinct. Assume by induction that we
have assigned to Bl pairwise non-isomorphic standard labeled trees Tl

of height i. Now for every Tl replace the label 1 at the root with nl and
join all roots to a common new root. Thus we have constructed a
standard tree of height i� 1, which is the tree assigned to B. It's easy
to check that the construction is well-de®ned, i.e., that two i-simplices
are in the same orbit if and only if the above procedure associates to
them isomorphic trees. (

To describe the orbit of a given i-simplex K of type B as above, we
notice, as we did in the case of 0-simplices, that the stabilizer group
RK of K has, up to an isomorphism, the following form:

RK � Rn1 o RB1
� � � Rn2 o RB2

� � � � � � � Rnm o RBm� �
where RBl are stabilizers of representatives of Bl. Notice that all
groups in sight are naturally subgroups of Rn, and the set of parti-
tions of type B can be identi®ed equivariantly with the cosets Rn=RK.
The stabilizer groups of two representatives of a given orbit are
conjugate. In the course of the paper we will sometimes confuse be-
tween the set of orbits and a set of arbitrarily chosen representatives
of orbits.

The group RK is isomorphic to a semi-direct product

RK � Rn1 � Rn2 � � � � � Rnm� � � �R�n1
B1
� R�n2

B2
� � � � � R�nm

Bm
�

where there is an obvious action of Rn1 � � � � � Rnm on R�n1
B1
� � � ��

R�nm
Bm

. Inductively, one may write RK in the form

Gi�1 � �Gi � �� � � � G0��
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where each Gl is a product of symmetric groups and there is a
``wreath product type'' action of Gl on Glÿ1 � �Glÿ2 � � � �� G0�. As a
matter of fact, Gl is isomorphic to the product of powers of sym-
metric groups indexed by nodes on level l in the tree corresponding to
the type B of K. The size of each symmetric group is given by the
corresponding label and the power to which it is raised is given by the
label of the father node.

From here until the end of the section, let p be a ®xed prime
number.

De®nition 1.9. Let K � �0̂ � kÿ1 � k0 � � � � � kj� be a chain of par-
titions. We say that kj is a p-coarsening of 0̂ � kÿ1 � k0 � � � � � kjÿ1 if
for every component S of kj the following holds:

1) The number of components of kjÿ1 contained in S is a power of p.
2) Any two components of kjÿ1 contained is S induce isomorphic

blocks.

We will say that k is a p-partition if it is a p-coarsening of 0̂.
Obviously, the property of being a p-partition is invariant under the
action of Rn and therefore we may speak about p-partitions of
numbers. A p-partition is simply a partition whose components all
have cardinality which is a power of p. We let eP�n� denote the set of
ordered p-partitions of n and P �n� denote the set of unordered
p-partitions of n, which is the same as the set of p-partitions of n.
We use the following ``logarithmic'' notation for elements of P�n�: a
sequence �n0; n1; . . .� denotes the partition with nj components of
cardinality pj for all j � 0. Thus n �Pj njpj.

De®nition 1.10. Let K � �k0 � � � � � ki� be an i-simplex of N�kn. An
ordered p-rami®cation of K is a chain of partitions

�0̂ � kÿ1 � d0 � k0 � d1 � k1 � � � � � ki � di�1 � ki�1 � 1̂�
such that for all j � 0; 1; . . . ; i� 1, dj is a p-coarsening of �0̂ � kÿ1 �
d0 � k0 � d1 � k1 � � � � � kjÿ1�.

Recall that we denote by RK the subgroup of Rn which stabilizes K.
RK acts on the set of ordered p-rami®cations of K. We de®ne an
unordered p-rami®cation of K to be an orbit of an ordered p-rami®-
cation under the action of RK. It is clear that if K1 and K2 are two
i-simplices in the same orbit of Rn then the set of unordered p-ram-
i®cations of K1 is isomorphic to the set of unordered p-rami®cations
of K2.
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Let W be an unordered p-rami®cation of K. Consider W as a
2i� 2-simplex of N�kn and consider the orbit of W under the action of
Rn. This orbit is represented by a standard tree of height 2i� 3. It
follows easily from the de®nitions that all the nodes of even height in
this tree are labeled by powers of p and that there is no forking on
odd levels. It is also easy to see that the set of orbits of ordered p-
rami®cations of K under the action of Rn is isomorphic to the set of
orbits under the action of RK, which is the set of unordered p-rami-
®cations of K. We denote the set of ordered p-rami®cations of K byeP �K� and the set of unordered p-rami®cations of K by P�K�. Thus
P �K� � eP�K�RK

. We denote by eP �Bl�kP�Bl� the ®bered product of k
copies of eP�Bl� over P�Bl�. Thus a point in eP �Bl�kP�Bl� is a k-tuple of
elements of eP�Bl� which are all in the same orbit of RK. We will need
inductive formulae for eP �K� and P �K�. Suppose that ki, the coarsest
partition in K, has nl blocks of type Bl for l � 1; . . . ; L where Bl are
pairwise non-isomorphic. We denote a generic element of

QL
l�1 P �nl�

by �n0
1; . . . ; nj1

1 �; �n02; . . . ; nj2
2 �; . . . ; �n0L; . . . ; njL

L �

Proposition 1.11. There is an isomorphism of RK-equivariant sets

eP �K� � aQ
l
P�nl�

Y
l

Rnl

Y
l

Y
j�1...jl

Rnj
l
o Rpj

 !�Y
l

Y
j

eP�Bl�p
j

P �Bl�
� �nj

l

0BBBBB@

1CCCCCA
Proof. Fix a p-coarsening di�1 of K. By de®nition, every component
of di�1 contains a power of p of components of ki�1 of type Bl for
some l. Let us say that di�1 has nj

l components containing pj com-
ponents of type Bl. A p-rami®cation of K whose coarsest partition is
di�1 is determined by a collection of p-rami®cations of the blocks Bl

such that any two blocks which are in the same component of di�1
have isomorphic p-rami®cations. This set is isomorphic to

Y
l

Y
j

eP�Bl�p
j

P �Bl�
� �nj

l
:

On the other hand, the set of p-coarsenings of K which have nj
l

components containing pj components of type Bl is clearly isomor-
phic to
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Y
l

Rnl

Y
l

Y
j�1...jl

Rnj
l
o Rpj

 !

The proposition follows by taking union over the set of types of
p-coarsenings which is isomorphic to the set

Q
l P�nl�. (

Corollary 1.12. There is an isomorphism of sets

P �K� �
aQ
l
P�nl�

Y
l

Y
j

P�Bl�� �n
j
l

R
nj
l

 !

Proof. Recall that

P�K� � eP �K�RK
� eP �K��Rn1 oRB1�����RnL oRBl � :

Applying proposition 1.11 one readily sees that

P �K� �
aY

l

P�nl�

Y
l

Y
j

P �Bl�p
j

P�Bl�
� �

Rpj

� �nj
l

R
nj

l

0B@
1CA :

But P�Bl�p
j

P�Bl�
� �

� P �Bl� where the right hand side can be considered
as a set with a trivial action of Rpj . The corollary follows. (

2. The layers of the Goodwillie tower of the identity

In this section we will describe Dn�X �, the n-th layer of the Goodwillie
tower of the identity in terms of the complexes Kn of the previous
section. This amounts, basically, to a reformulation of the main result
of Johnson in [Jo95]. In [AK97] a di�erent way to derive our
description of Dn�X � is presented.

Theorem 2.1.

Dn�X � ' X1Map��SKn;R
1X^n�hRn

:

Proof. By [Jo95, corollary 2.3]

Dn�X � ' X1Map��Dn;R
1X^n�hRn
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where Dn is de®ned in [Jo95, de®nition 4.7]. We recall the de®nition.
Let

In2 � ft � �t11; t12; . . . ; t1n; t21; . . . ; tnn� 2 Rn2 j0 � tij � 1g
be an n2-dimensional cube. Let In�nÿ1� be the subspace of In2 de®ned
by tii � 0 for i � 1; . . . ; n. Thus In�nÿ1� is an n�nÿ 1�-dimensional
cube. For 1 � i < j � n de®ne

Wij � ft 2 In�nÿ1�jtik � tjk for 1 � k � ng :
De®ne also

Z � ft 2 In�nÿ1�jtij � 1 for some 1 � i; j � ng :

Then

Dn � In�nÿ1�
,(

Z [
[
i<j

Wij

)
:

Thus to prove the theorem it is enough to prove that there is
a Rn-equivariant map

Dn ' SKn

which is a non-equivariant homotopy equivalence. Since In�nÿ1� is a
Rn-equivariantly contractible space, it follows that Dn is equivariantly
equivalent to the suspension of Z [Si<j Wij. Therefore, it is enough to
show that there is an equivariant equivalence

Kn ' Z [
[
i<j

Wij :

Recall that Kn is itself an unreduced suspension of ~Kn, the geometric
realization of the category of non-trivial partitions of n. On the other
hand, we claim that

S
i<j Wij and Z are both equivariantly contract-

ible. Indeed,
S

i<j Wij is contractible by radial projection on �0; . . . ; 0�
and Z is contractible by radial projection on the point t de®ned by
tii � 0 for i � 1; . . . ; n and tij � 1 for i 6� j. It follows that Z [Si<j Wij

is equivariantly equivalent to the unreduced suspension of
Z \Si<j Wij. Thus it is enough to prove that there is an equivariant
map

~Kn ! Z \
[
i<j

Wij

756 G. Arone, M. Mahowald



which is a non-equivariant equivalence. For 1 � i < j � n, let
Uij � Z \ Wij. The assertion follows from the fact that the spaces Uij

cover Z \Si<j Wij, all possible intersections of Uij are contractible,
and the poset associated with this covering is isomorphic to ~kopn . We
state it in two propositions.

Proposition 2.2.

Z \
[
i<j

Wij �
[

Uij :

Proof. Obvious. (

Let A � f�i1; j1�; �i2; j2�; . . . ; �iL; jL�g be a collection of pairs
1 � il < jl � n. Let UA �

T
�il;jl�2A Uil;jl . We associate with A a graph

on n vertices, labeled 1; . . . ; n, as follows: There is an edge �i; j� i�
�i; j� 2 A. The connected components of this graph determine a
partition of n.

Proposition 2.3. UA depends only on the partition associated with A.
Moreover, UA is empty if the partition associated with A is 1̂ and is
contractible otherwise.

Proof. In fact, it is easy to see that

UA � ft ��t11; t12; . . . ; t1n; t21; . . . ; tnn� 2 Rn2 j0 � tij � 1

tij � 0 if i and j are in the same component of the

partition associated with A; and

tij � 1 for some �i; j�g

If the partition associated with A is 1̂ then tij � 0 for all �i; j�, con-
tradicting the requirement that tij � 1 for some �i; j�, so UA � ;. If the
partition is not 1̂ then UA is contractible by radial projection on the
point given by tij � 0 if i and j are in the same component and tij � 1
otherwise. (

This completes the proof of the theorem. (

Dn�X � is the in®nite loop space associated with the spectrum

Dn�X � 'Map��SKn;R
1X^n�hRn

:
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Since SKn is the geometric realization of the simplicial set Tn, it fol-
lows that Dn�X � is the total spectrum of a cosimplicial spectrum,
which we denote D�n�X �. The spectrum of i cosimplices of D�n�X � is
Map��T i

n;R
1X^n�hRn

. Moreover, recall that SKn has no non-degen-
erate simplices in dimensions higher than nÿ 1. It follows that the
tower of ®brations associated with D�n�X � has n stages, which we
denote Totin D�n�X �

ÿ �
. In fact,

Totin D�n�X �
ÿ � �Map��skiSKn;R

1X^n�hRn

where ski stands for the i-th skeleton. The homotopy ®ber of the map

Totin D�n�X �
ÿ �! Totiÿ1n D�n�X �

ÿ �
is homotopy equivalent to

Map���SiKiÿ2
n ��;R1X^n�hRn

Since this is a tower of ®brations of spectra, it yields a spectral
sequence calculating the homology of Dn�X �, which is the stable
homology of Dn�X �. In the next section we will use this spectral
sequence to calculate the stable homology of Dn�X � in some inter-
esting special cases.

3. Odd sphere case ± the cohomology of the layers

3.1. The homology groups

We now focus our attention on the odd sphere case. Our goal in this
section is to study the stable homology of Dn�X �, the layers of the
Goodwillie tower, in this case. Thus, we want to study the homology
of the spectra

Dn�X � ' Map� SKn;R
1X^n� �hRn

where X is an odd-dimensional sphere.
We begin with a proposition which enables us to focus on the

torsion part of homology.

Proposition 3.1. Let X be an odd-dimensional sphere. Let n > 1.
Rationally

Dn�X � � Map� SKn;R
1X^n� �hRn

' �
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Proof. We saw in the previous section that there exists a tower of
®brations with n stages converging to Dn�X �, in which the ®bers are
of the form

Map���SiKiÿ2
n ��;R1X^n�hRn

where Kiÿ2
n is the set of non-degenerate iÿ 2-chains of partitions.

Thus

Map���Kiÿ2
n ��;R1X^n�hRn

'
_
K

R1X^n
hRK

where the wedge sum on the right hand side is indexed by represen-
tatives of orbits of �Kiÿ2

n ��. Thus each stabilizer group RK can be
written as a semi-direct product

Giÿ1 � �Giÿ2 � �� � � � G0��

where each Gl is a product of symmetric groups. Since we consider
only non-degenerate orbits, none of the Gls is trivial. In particular,
G0 is not trivial. The proposition follows since for k > 1 and X an
odd-dimensional sphere, X^k

hRk
is rationally trivial. (

Notice that proposition 3.1 implies the theorem of Serre that the
map X ! Q�X � is a rational equivalence for an odd sphere X .

From now on all spaces considered will be localized at a ®xed
prime p. All homology groups are taken with Z=pZ coe�cients. We
will calculate H��Dn�X �� explicitly. The case n � 1 is trivial. Assume,
till the end of the section, that n > 1.

The plan is to use the homology spectral sequence associated with
the tower of ®brations Totin D�n�X �

ÿ �
(as de®ned on page 14). To see

that such a spectral sequence exists, note that since we are dealing
with spectra, smashing with a ®xed spectrum preserves ®bration se-
quences and ®nite towers of ®brations. The homology spectral se-
quence is obtained by smashing our tower of ®brations with the
Eilenberg-MacLane spectrum HZ=pZ and considering the homotopy
spectral sequence of the resulting (®nite) tower (see [BK72, page 259]
for a reference on the spectral sequence of a tower of ®brations). The
®rst term of the spectral sequence has the following form:

Ei;t
1 � Htÿi�Map���SiKiÿ2

n ��;R1X^n�hRn
�

� Ht�Map���Kiÿ2
n ��;R1X^n�hRn

�

with a di�erential
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d1 : Ei;t
1 ! Ei�1;t

1 :

We may view this E1 term as a cochain complex C� of graded Z=pZ-
modules. The module of i-cochains is

Ci � H��Map���Kiÿ2
n ��;R1X^n�hRn

� :

The di�erential @i : Ci ! Ci�1 is given by the alternating sumP
j�ÿ1�jd�j , where d�j is induced by the face map dj in N�kn. If we

write, as we did in the proof of proposition 3.1,

Map���Kiÿ2
n ��;R1X^n�hRn

'
_
K

R1X^n
hRK

;

then for j � 0 and j � i, di
j is the zero homomorphism, and for

1 � j � iÿ 1, di
j is a direct sum of the transfer maps associated with

the inclusion of stabilizers of representatives of orbits of chains of
the form �k0; . . . ; kiÿ2� into stabilizers of representatives of orbits
of chains of the form �k0; . . . ; k̂jÿ1; . . . ; kiÿ2�. The inclusions are
well-de®ned up to conjugation, and therefore the transfer maps are
well-de®ned.

To study this spectral sequence we will need to study the homol-
ogy of (reduced) Borel constructions on X with respect to certain
subgroups of Rn. We recall a few standard facts about the homology
of X^n

hRn
� X^n ^Rn ERn� as described in terms of Dyer-Lashof oper-

ations. Let H� be a graded Z=pZ module. Let Dl�H�� be the free
graded Z=pZ module generated by allowable Dyer-Lashof words of
length l over H� (see [CLM76, I.2] and [BMMS86, page 298] for
details). Thus, if l > 0, then Dl�H�� is generated by the following set(

b�1Qs1 . . . b�lQsluj
u 2 H�; �i 2 f0; 1g; si > 0; psi ÿ �i � siÿ1 if p > 2

2s1 ÿ
Xl

i�2
�2si�p ÿ 1� ÿ �i� � juj

)
(

Qs1 . . . Qsluj
u 2 H�; si > 0; 2si � siÿ1 if p � 2

s1 ÿ
Xl

i�2
si � juj

)
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where u 2 H�. By convention, D0�H�� � H�. The operations Qs come
from elements in the mod p homology of symmetric groups. Qs raises
degree by 2�p ÿ 1�s if p > 2 and by s if p � 2 (the bs in the odd-
primary case are homology BoÈ cksteins, and thus lower the degree by
1). Qsu � 0 if s < juj

2 for p > 2 and juj even (if s < juj for p � 2) and
Q
juj
2 u � u
p for p > 2 (Qjuju � u
 u for p � 2). Thus we include

powers of elements of H� in Dl. The convenience of this will become
clear later ± its purpose is to make the ``negligible'' summands in the
proof of lemma 3.11 negligible.

We will sometimes abbreviate Dl�H�� as Dl when H� is clear from
the context.

Given a graded vector space D, let V �D� be the augmentation ideal
of the free symmetric algebra generated by D. Thus V �D� is the
quotient of �1k�1D
k by the ideal generated by the relations

a
 bÿ �ÿ1�jajjbjb
 a where a; b are homogeneous elements. Let
E�D� be the quotient of V �D� by the ideal generated by a
p. Since the
relations are homogeneous, we may write E�D� � �Ek�D�. By abuse
of notation, we will write Ek�D� as D
k

Rk
. From now on, whenever we

write D
k
Rk
, where D is a graded Z=pZ module, we mean Ek�D�.

The mod p homology of X^n
hRn

is described in terms of the Dyer-
Lashof operations. For any based space X , the following is true (the
homology is taken with Z=pZ coe�cients)

H��X^n
hRn
� � a

�n0......�2P�n�
b
l�0
�Dl�H��X ��
nl�Rnl

 !
�1�

Because of our choice to suppress the p-th powers of elements of
H��X �, the splitting in (1) is not natural, but depends on a choice of
basis of H��X �. The point is that the projection map V �D� ! E�D�
splits, but not naturally. However, it is easy to see that if we ®lter P�n�
by the number of components, then the splitting is natural up to
elements of lower ®ltration. Thus we get a (more or less natural)
expansion of H��X^n

hRn
� into a direct sum indexed by p-partitions of n.

We will call the terms in the expansion the standard summands (or just
summands) of H��X^n

hRn
�.

It is well known that the standard summands are detected by
certain elementary abelian subgroups of Rn. We proceed to recall the
basic facts about this. Let us begin with Dk as a summand of H��Rpk�,
or more generally of H��X^pk

Rpk
�. For k � 0; 1; . . . let Ak � �Z=p�k.

jAkj � pk, therefore the action of Ak on itself de®nes an inclusion (up
to conjugation) of Ak ,!Rpk . We will consider Ak as a subgroup of Rk

via this inclusion (this is the subgroup that is de®ned as Dk in [KaP78,
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page 95]). Thus Ak acts transitively on pk. Ak is very useful for
detecting elements in the homology of Rpk : the pure part of H��Rpk�
is detected on Ak. This was probably ®rst proved by Kahn and Priddy
in [KaP78]. For a more detailed account we recommend [AdMi95].
We need a slightly more general version of this:

Proposition 3.2. Let X be a based space. Let H� � H��X �. Recall that
Dk is a summand of H��X^pk

hRpk
�. Write H��X^pk

hRpk
� � Dk � A. Consider the

homomorphism

H��X ^ BAk�� ! H�
�

X^pk

hRpk

�
induced by inclusion of subgroups and the diagonal map X ! X^n. This
map is onto the summand Dk and zero on the summand A.

Proof. For X � S0 (a zero-dimensional sphere) this is precisely
[KaP78, proposition 3.4]. The proof generalizes straightforwardly.
The idea is to reduce the question from Rpk to its p-Sylow subgroup
and then proceed by direct calculation. (

Now consider a summand on the right hand side of (1) corre-
sponding to a p-partition �n0 . . . ; nl; . . .� 2 P �n�. This summand is
detected, in a suitable sense, by the elementary abelian group
A �Ql A�nl

l . Consider the space X^Rlnl as a space with a trivial action
of A. It is easy to see that there is a diagonal map X^Rlnl ! X^n that is
equivariant with respect to the subgroup inclusion A! Rn. We have
the following proposition

Proposition 3.3. With notation as above, consider the homomorphism

H��X^Rlnl ^ BA�� ! H��X^n
hRn
�

induced by group inclusion A! Rn and the diagonal map
X^Rlnl ! X^n. This homomorphism is onto the summand corresponding
to the p-partition �n0 . . . ; nl; . . .� and zero on the other summands of the
same ®ltration and the summands of higher ®ltration.

Proof. The case X � S0 is well-known. It is largely proved in [KaP78]
and in more detail in [AdMi95]. It is a longish, but straightforward,
exercise to extend the result to a general X : (

The reason that we need proposition 3.3 is that we have to
study the transfer map in the homology of Borel construction.
Let n0p0 � n1p1 � � � � nkpk be a p-partition of n. Let RP �
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Rn0 o Rp0 � � � � � Rnk o Rpk and R0P � Rn0p0 � � � � � Rnkpk . Let X be any

based space. The homology groups H��X^n
hRn
�, H��X^n

hRP
� and H��X^n

hR0P
�

each have a summand isomorphic to �D
n0
0 �Rn0


 � � � 
 �D
nk
0 �Rnk

which we denote simply D. Write H��X^n
hRn
� � D� A, H��X^n

hRP
� �

D� B and H��X^n
hR0P
� � D� B0. Consider the homomorphisms D� A

! D� B and D� A! D� B0 induced by the appropriate transfers.
These homomorphisms can be represented as two by two matrices of
maps

D! D D! B
A! D A! B

� �
and

D! D D! B0

A! D A! B0

� �
Proposition 3.4. The map D! D in both matrices is an isomorphism.

Proof. The proof is similar to the proof of the main theorem of
[KaP78]. To prove that the homomorphism D! D is an isomorp-
hism it is enough to prove that it is surjective. To do this for the case
of the ®rst matrix, it is enough to show that the composite homo-
morphism

H��X^Rlnl ^ �BAn0
0 � � � � � Ank

k ��� !
i�

H��X^n
hRn
� !tr H��X^n

hRP
�

is surjective onto D. This composed homomorphism can be analyzed
by means of a suitable version of the double coset formula. It is not
hard to show that the composed map above is the same as the ho-
momorphism induced by the group inclusion An0

0 � � � � � Ank
k ! RP ,

essentially because of two reasons: the normalizer of An0
0 � � � � � Ank

k
in Rn is the same as in RP and the transfer from an elementary
Abelian group to a proper subgroup is zero (see [KaP78]). The
argument for the second matrix is similar. (

We will need to consider a slightly more general situation. Let
n � i0p0 � i1p1 � � � � ikpk as before. Let K1;K2; . . . ;Kj be disjoint
subsets of f0; 1; . . . ; kg whose union is f0; 1; . . . ; kg. For 1 � l � j, let
ml �

P
t2Kl

itpt. Consider the group Rm1
� � � �Rmj as a subgroup of

Rn. It is easy to see that D is a summand of H��X^n
hRm1

����Rmj
�. Write

H��X^n
hRm1

����Rmj
� � D� C and consider the matrix

D! D D! C
A! D A! C

� �
describing the transfer map. We have the following proposition
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Proposition 3.5. In the matrix above the map D! D is an isomorphism.

Proof. Similar to the proof of the previous proposition. (

Next we need to generalize the formula (1) and proposition 3.3 to
H��X^n

hRK
�, where RK is the stabilizer of a chain of partitions of n. More

precisely, we will show that H��X^n
hRK
� splits as a certain direct sum

indexed by unordered p-rami®cations of K. We ®rst show how to
associate a gradedZ=pZ-vector space to a p-rami®cation ofK. Indeed,
let K � �0̂ � kÿ1 � k0 � � � � � ki � ki�1 � 1̂� be an i-chain of parti-
tions of n and let � be an unordered p-rami®cation of K. Recall that we
associate with � a standard tree of height 2i� 3 in which all the nodes
of even height are labeled by powers of p and there is no forking on
odd levels. Given such a tree, a node v in the tree and a graded Z=pZ-
vector space H� � H��X �, we construct a graded Z=pZ-vector space
Hv
� and, for future use, a detecting elementary abelian group Av as

follows: if the height of v is zero then it is labeled by pk for some k
(since 0 is even) and we de®ne Hv

� � Dk�H�� and Av � Ak. Assume now
that we de®ned Hv

� and Av for all v of height jÿ 1 or less. Let v be a
node of height j. Let l be the label of v. Assume, ®rst, that j is even.
Then l � pk for some k. Let u1; . . . ; um be the children of v. We de®ne

Hv
� � Dk�Hu1� 
 � � � 
 Hum� �

and

Av � Ak � �Au1 � � � � � Auk�

(Av should be thought of as the diagonal subgroup of
Rpk o �Au1 � � � � � Auk�). Now assume j is odd. Then v has only one
child u and we de®ne

Hv
� � �Hu

� �
l
Rl

and

Av � �Au��l :

Let H �
� be the module associated with the root of the tree and simi-

larly let A� be the elementary abelian group associated with the root
of the tree. A� is in fact a subgroup of Rn (determined up to conju-
gation).

Lemma 3.6. Let K � �0̂ � kÿ1 � k0 � � � � � ki � ki�1 � 1̂� be an
i-chain of partitions of n. Recall that P�K� is the set of unordered
p-rami®cations of K. There is an isomorphism
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H��X^n
hRK
� � a

�2P�K�
H �
� :

Proof. We will prove it by induction on i. The induction starts with
i � ÿ1. In this case K � �0̂; 1̂� and the lemma is given precisely by (1)
and proposition 3.3. Assume the lemma holds for iÿ 1. Let
K � �0̂ � kÿ1 � k0 � � � � � ki � ki�1 � 1̂� be an i-chain of partitions.
Consider ki, the coarsest partition in the chain. The relation of in-
ducing isomorphic blocks is an equivalence relation on the compo-
nents of ki. Let ki have nl components of type Bl, where the Bls are
pairwise distinct orbits of iÿ 1 chains of partitions of a set with kl

elements and l � 1; . . . ; L. Thus, in the tree corresponding to the orbit
of K, the root has L children labeled n1; . . . ; nL. The stabilizer group
of K has the following form

RK � Rn1 o RB1
� � � � � RnL o RBL :

Thus

H��X^n
hRK
� �b

L

l�1
a

�nl
0
;nl

1
;...;nl

Jl
�2P �nl�

b
Jl

j�0
Dj H��X^kl

hRBl
�

� �� �
nl
j

Rnl
j

 !0@ 1A
which implies

H��X^n
hRK
� � aYL

l�1
P �nl�

b
L

l�1
b
Jl

j�0
Dj H��X^kl

hRBl
�

� �� �
nl
j

Rnl
j

 ! !
:

We see that H��X^n
hRK
� splits as a direct sum indexed by

QL
l�1 P �nl�. By

the induction assumption,

H�
�

X^kl
hRBl

�
� a

�2P�Bl�
H �
�

Obviously, if H1
� and H2

� are two graded modules then
Dl�H1

� � H2
� � � Dl�H1

� � � Dl�H2
� �, therefore

DjH�
�

X^kl
hRBl

�
� a

�2P�Bl�
DjH �

�

Thus
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H��X^n
hRK
� � aYL

l�1
P�nl�

b
L

l�1
b
Jl

j�0
a

�2P �Bl�
DjH �

�

 !
nl
j

Rnl
j

0B@
1CA

0B@
1CA :

By multiplying out, we see that H��X^n
hRK
� splits as a direct sum in-

dexed by the set

aY
l

P �nl�

Y
l

Y
j

P �Bl�� �n
j
l

R
nj

l

 !

which, by corollary 1.12 is isomorphic to P �K�. It is tedious, but
entirely straightforward to verify that the summand corresponding to
� 2 P�K� is indeed H �

�. (

Remark 3.7. Recall that given an unordered p-rami®cation � of K we
constructed an elementary abelian group A� (just before lemma 3.6).
It is not hard to show that A� detects the summand H �

� of the
homology of X^n

hRK
in the sense of proposition 3.3. If �1 and �2 are

di�erent p-rami®cations of K then A�1 and A�2 are non-conjugate in
RK. The map on the homology of Borel constructions induced by the
inclusion (de®ned up to conjugation) A� ,!Rn is non-zero only on the
summand H �

� and summands corresponding to elementary abelian
groups with strictly fewer components (the number of components of
a subgroup G of Rn is the number of components of the induced
partition of n).

De®nition 3.8. An integer n is pure if n � pk for some integer k. If n
is pure, an i-chain of partitions of n, K � �0̂ � kÿ1 � k0 � � � � �
ki � ki�1 � 1̂�, is pure if kj is a p-coarsening of kÿ1 � k0 � � � � � kjÿ1
for all j � 0; . . . ; i� 1.

Clearly, purity is preserved by the action of Rn, hence we may
speak about pure orbits of chains of partitions. It is easy to see that
an orbit is pure i� the corresponding tree has one branch and has all
labels powers of p. Given a pure K, the corresponding stabilizer
group has the form RK � Rpk0 o Rpk1 o � � � o Rpki for some �k0; . . . ; ki�
such that

P
kj � k. Also, consider the chain of partitions

�0̂ � kÿ1 � d0 � k0 � � � � � di � ki � di�1 � ki�1 � 1̂� in which
dj � kj for all j � 0; . . . ; i� 1. Since K is pure, it is easy to see from
de®nition that it is a p-rami®cation of K. The corresponding summ-
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and of H��X^n
hRK
� is of the form Dk0 Dk1 . . . Dki� �� �. We call it the pure

summand associated with K. All other summands are impure.
Let Ci be the graded Z=pZ-module of i-cochains in the complex C�

de®ned above. Ci can be written as a direct sum Ci � P i � I i where P i

and I i are the pure and impure summands of Ci (P i is often trivial).
The coboundary map @i : P i � I i ! P i�1 � I i�1 can be represented by
a matrix of matrices as follows

P i ! P i�1 P i ! I i�1

I i ! P i�1 I i ! I i�1

� �
:

Proposition 3.9. P i ! I i�1 are zero matrices for all i.

Proof. It is not hard to show (similar to proposition 3.2) that the pure
summands are detected by the elementary abelian group Ak (the
transitive elementary abelian subgroup of Rpk ). More precisely, the
homomorphism

H��X ^ BAk�� ! H�
�

X^pk

hR
pk0 oRpk1 o���oRpki

�
is onto the pure summand and zero on the impure summands. The
proposition follows, using the double coset formula. (

Corollary 3.10. The pure summands span a subcomplex of C�, which we
denote P �. P � is non-trivial only if n is a power of p. There is a short
exact sequence of cochain complexes

0! P � ! C� ! I� ! 0

where I� is the complex of impure summands.

The following lemma is important:

Lemma 3.11. I� is acyclic.

Proof. We will use the following evident proposition

Proposition 3.12. Let

C1
0 � C2

0 ! C1
1 � C2

1 ! C1
2 � C2

2 ! � � � ! C1
j � C2

j ! � � �
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be a cochain complex of graded Z=pZ-vector spaces, where C1
0 is the

trivial module. Suppose that for all j � 0 the di�erential
C1

j � C2
j ! C1

j�1 � C2
j�1 is given by a matrix

C1
j ! C1

j�1 C1
j ! C2

j�1
C2

j ! C1
j�1 C2

j ! C2
j�1

 !

where C2
j ! C1

j�1 is an isomorphism. Then the complex is acyclic.

Consider now the cochain complex I�. Obviously, I0 is the trivial
module (since n > 1). For j � 1 we will write Ij as a direct sum of two
modules Ij

1 � Ij
2, which we now proceed to de®ne. Recall that Ij

is the direct sum of the impure summands of �KH��X^n
hRK
� where K

ranges through a set of representatives of orbits of non-degenerate
�jÿ 2�-chains of partitions �0̂ � kÿ1 < k0 < � � � < kjÿ2 < kjÿ1 � 1̂�.
Moreover by lemma 3.6 we know that given K � �0̂ � kÿ1 <
k0 < � � � < kjÿ2 < kjÿ1 � 1̂�, the impure summands of H��X^n

hRK
� are

indexed by unordered p-rami®cations

� � �0̂ � kÿ1 � d0 � k0 < � � � � djÿ2 � kjÿ2 � djÿ1 � kjÿ1 � 1̂�

such that not for all i di � ki. We say that an unordered p-rami®ca-
tion � of K is admissible if there exists 0 � l � jÿ 2 such that dm � km

for all 0 � m � l and km � dm�1. If � is not admissible then we say it is
unadmissible. Let Pa�K� and Pu�K� be the set of admissible, impure
and unadmissible, impure p-rami®cations of K. We de®ne

Ij
1 � a

K2�Kjÿ2
n �Rn

a
�2Pa�K�

H �
�

 !

and

Ij
2 � a

K2�Kjÿ2
n �Rn

a
�2Pu�K�

H �
�

 !
:

By lemma 3.6, Ij � Ij
1 � Ij

2 for all j. Clearly, I11 is the trivial module. It
remains to prove that the map Ij

2 ! Ij�1
1 induced by the coboundary

map in I� is an isomorphism for all j. Then the lemma will follow
from proposition 3.12.

First we establish that Ij
2 and Ij�1

1 are abstractly isomorphic. Let

K � �0̂ � kÿ1 < k0 < � � � < kjÿ2 < kjÿ1 � 1̂�
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be a �jÿ 2�-chain and let

� � �0̂ � kÿ1 � d0 � k0 < � � � � djÿ2 � kjÿ2 � djÿ1 � kjÿ1 � 1̂�

be an unadmissible p-rami®cation of K. Let l be the smallest index
such that dl�1 6� kl�1. Such an l exists because otherwise � would be
pure. Call l the level of �. Suppose ®rst that l � ÿ1. We claim that if
kÿ1 � d0 then H �

� is the trivial module. Indeed, in this case it is easy to
see that the tree corresponding to � has all the nodes on level 0 labeled
by 1, but not all the nodes on level 1 labeled by 1, since kÿ1 6� k0. It
follows that H �

� has a tensor factor of the form �D0�H���
k
Rk
, where

k > 1. But it is easy to see that �D0�H���
k
Rk

is the trivial module if H�
has exactly one generator of odd degree, which it does if X is an odd-
dimensional sphere. Thus if l � ÿ1 and kÿ1 � �0 we say that � is a
negligible p-rami®cation and H �

� is a negligible summand of I2j . We
denote the set of non-negligible unadmissible impure p-rami®cations
of K by P n

u �K�. We proceed to establish an isomorphism between the
sum of non-negligible summands of I2j and I1j�1. We may assume now
that kl 6� dl�1 because otherwise � is either negligible (if l � ÿ1) or
admissible (if l > ÿ1). It follows that the sequence

K0 � �0̂ � kÿ1 < k0 < � � � < kl < dl�1 < kl�1 < � � � < kjÿ2 < kjÿ1 � 1̂�

is a non-degenerate �jÿ 1�-chain of partitions. It is obvious by in-
spection that

�0 � �0̂ � kÿ1; d0;k0; d1; . . . ; dl; kl; dl�1; dl�1; dl�1;

kl�1; . . . ; kjÿ2; djÿ1; kjÿ1 � 1̂�

is an admissible, impure p-rami®cation of K0 and thus H �0
� is a

summand of I1j�1. It is also obvious by inspection that H �
� is isom-

orphic to H �0
� and that the above procedure establishes an abstract

isomorphism between the sum of non-negligible summands of Ij
2 and

Ij�1
1 . It remains to prove that the coboundary homomorphism of I�

induces an isomorphism between the two. We now may write this
map as follows:

a
K2�Kjÿ2

n �Rn

a
�2P n

u �K�
H �
�

 !
! a

K2�Kjÿ2
n �Rn

a
�2P n

u �K�
H �0
�

 !

where �0 is obtained from � by the procedure described above. This
map can be described as a matrix M of maps H �1� ! H

�0
2� . To show
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that this map is an isomorphism it is enough to show that the matrix
is block upper triangular with respect to a certain ordering of the
indexing set and that all the diagonal blocks are isomorphisms. To
show that all the diagonal blocks are isomorphisms we need to show
that for any �jÿ 2�-chain K as above and for any � 2 P n

u �K� the map
H �
� ! H �0

� , induced by the transfer map from RK to RK0 , is an
isomorphism. We may write

RK � Gjÿ1 � �� � �Gl�1 � �Gl � �� � �G0���

where all Gi are products of symmetric groups. Now consider RK0 . It
is not di�cult to see that for i � l� 1; . . . ; jÿ 1

RK0 � G0jÿ1 � �� � �G00l�1 � G0l�1 � �Gl � �� � �G0���

where G00l�1 � G0l�1 is a subgroup of Gl�1 of the form
Q

i Rmi o Rpi and
G0i is a subgroup of Gi of the form required for corollary 3.5. The fact
that the map H �

� ! H �0
� is an isomorphism follows from propositions

3.4 and 3.5.
It remains to show that the matrix M is equivalent to a block

upper triangular one with respect to some ordering of the indexing
set. It is easy to see, using remark 3.7 and the double coset formula,
that if K is a �jÿ 2�-chain of partitions, and � is an unadmissible
p-rami®cation of K (so H �

� 2 Ij
2), then the only summands of Ij�1

1

that H �
� maps non-trivially on are H �0

� and summands whose detecting
elementary abelian group has strictly fewer components than the el-
ementary abelian group detecting H �

�. This completes the proof
of lemma 3.11. (

An immediate consequence of lemma 3.11 is the following theo-
rem:

Theorem 3.13. Let X be an odd-dimensional sphere localized at a prime
p. Assume n is not a power of p. Then

Dn�X � ' X1Map��SKn;R
1X^n�hRn

' � :

Proof. Let E1 be the ®rst term of the spectral sequence associated with
the skeletal ®ltration of Kn abutting to

H�
�
Map��SKn;R

1X^n�hRn

�
:
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We saw that E1 can be identi®ed with the cochain complex C� of
graded Z=pZ-vector spaces. Moreover, there is a short exact sequence
P � ! C� ! I�. It is obvious that since n is not a power of a prime, P �

is trivial. By lemma 3.11, I� is acyclic. It follows that E2 is zero.
Therefore, H�

�
Map��SKn;R1X^n�hRn

�
is zero and the proposition

follows. (

Thus if X is an odd-dimensional sphere localized at a prime p then
the only interesting values of n are powers of p. If n � pk then the E2

term of the spectral sequence computing

H�
�
Map��SKn;R

1X^n�hRn

�
may be identi®ed with the cohomology of the cochain complex P �. So
we proceed to analyze the complex P �.

De®nition 3.14. An ordered partition of a positive integer k is an or-
dered sequence K � �k1; . . . ; kj� of positive integers with
k1 � � � � � kj � k.

For future use, we denote by 2l the ordered partition

�1; . . . ; 1; 2; 1; . . . ; 1�|�����������������{z�����������������}
2 at place l

:

Ordered partitions of k are partially ordered by re®nement, we write
K � J if K is a re®nement of J . Moreover, ordered partitions form a
lattice: any collection of partitions fKmgm has well behaved greatest
common re®nement and least common coarsening (denoted by
\m�Km� and [m�Km� respectively). In fact, the lattice of ordered
partitions of k is isomorphic to the Boolean lattice of subsets of k ÿ 1
ordered by inclusion. Given K � �k1; . . . ; kj�, let RK be the group
Rpk1 o � � � o Rpkj and let DK be the summand Dk1Dk2 � � �Dkj of H��RK�
or more generally of H��X^pk

hRK
� depending on the context. We denote

by Nj�k� the set of ordered partitions of k with j components. The
following is obvious by inspection:

P 0 � 0

For j > 0

P j � a
K2N j�k�

DK :

In particular, if j > k then P j � 0.
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In the following de®nition, the underlying assumption is that X is
a 2s� 1-dimensional sphere and u is a generator of H2s�1�X �.

De®nition 3.15. For a ®xed k, let CU� be the free graded Z=pZ module
on the following generators:
if p > 2

b�1Qs1 . . . b�k Qsk ujsk � s; si > psi�1 ÿ �i�18if g ;
if p � 2

Qs1 . . . Qsk ujsk � 2s� 1; si > 2si�1� 	
:

Thus CU� is generated by the ``completely unadmissible'' words of
length k (hence the notation).

Theorem 3.16. Let n � pk. The cohomology of P � is concentrated in
degree k. Moreover there are isomorphisms of modules over the
Steenrod algebra

Hk�P �� � CU� � RkH�
�
Map��SKn;R

1X^n�hRn

�
where the action of the Steenrod algebra on CU� is given by the Nishida
relations ([CLM76]).

Proof. The results about the cohomology of P � are known, and are
more or less implicit in [Ku85] (see also [Ku82] and [KuP85]),
although the language there is somewhat di�erent from ours. First
of all, let us see that the claim is plausible by counting dimensions.
Consider a pure summand of a form Dk1Dk2 . The module Dk1�k2 is a
submodule of Dk1Dk2 (however, this obvious inclusion is not the same
as the transfer map in homology ± if it was, the theorem would be
easier to prove). When we consider Dk1�k2 as a subobject of Dk1Dk2 we
will denote it Da

k1Dk2± the module generated by words which are ad-
missible at place k1 (from the left). Let Du

k1Dk2 be the quotient of
Dk1Dk2 by Da

k1Dk2 . Thus Du
k1Dk2 is generated by words which are un-

admissible at place k1. By a slight abuse of notation, we will write

Dk1Dk2 � Da
k1Dk2 � Du

k1Dk2 :

The splitting is valid on the level of vector spaces, and is valid up to
®ltration on the level of A-modules. More generally, given an ordered
partition K � �k1; . . . ; kj� of k, we may write DK as a direct sum of
2jÿ1 modules. These 2jÿ1 ``subsummands'' are indexed by sequences
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�s1; . . . ; sjÿ1� where each si stands for either the letter a or the letter u.
The subsummand corresponding to a sequence S � �s1; . . . ; sjÿ1� is
generated by the words which are admissible (resp. unadmissible) at
the place k1 � � � � � ki if si is a (resp. si is u). We denote this sub-
summand by DS

K . Let u stand for the sequence �u; u; . . . ; u�. Clearly, if
si is a for some i, then

DS
K � D�s1;...;ŝi;...;sjÿ1�

�k1;...;ki�ki�1;...kj� :

Thus every ``subsummand'' is canonically isomorphic to Du
K for some

K. It is easy to see that for any K 2 Nj�k�, the summand Du
K occurs in

Pj�i (i � 0) with multiplicity

X
�i1;...;ij�

k1 ÿ 1

i1

� �
� � � kj ÿ 1

ij

� �

where the summation is over j-tuples �i1; . . . ; ij� of non-negative
integers whose sum is i. It is also easy to see that

X
i

�ÿ1�i
X
�i1;...;ij�

k1 ÿ 1

i1

� �
� � � kj ÿ 1

ij

� �
� �1ÿ 1�k1ÿ1 . . . �1ÿ 1�kjÿ1

where 00 � 1. Thus the alternating sum of multiplicities of all sub-
summands is 0 except for the subsummand Du

�1;1;...;1�, for which the

``total multiplicity'' is 1. Also, it is obvious that Du
�1;1;...;1� � CU�. Thus

CU� concentrated in dimension k is a ``lower bound'' for H��P ��.
Thus we have to show that the rank of the coboundary map in P � is
as large as possible. This boils down to analyzing the e�ect of the
transfer map on the pure part of the homology of spaces of the form
X^pk1�����kj

hRk1 o���oRkj
and showing that the intersection of the images of such

various transfer maps is as small as possible (this, and much more,
was done in [Ku85]). It is helpful to consider the chain complex P�
which is the ``reverse'' of P �. Pk � P k for all k and the boundary maps
in P� are induced by inclusion of groups where the coboundary maps
in P � are induced by transfer maps. Indeed, given two ordered par-
titions K � K 0 of k, the map DK 0 ! DK induced by the transfer has a
retraction induced by inclusion of subgroups. It is a retraction (up to
multiplication by a unit in Z=pZ� because all the groups in sight
contain a common p-Sylow subgroup. We let eK;K 0 denote the idem-
potent (up to a unit in Z=pZ) homomorphism given by the compo-
sition DK !i� DK 0 !tr� DK : In the special case K � �1; . . . ; 1�, K 0 � 2l,
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we denote eK;K 0 simply el. The following crucial properties of these
idempotents are proved in [Ku85]:

1) el1el2 � el2el1 if jl1 ÿ l2j � 2
2) elel�1el � el�1elel�1

Moreover, for any ordered partition K of k and a collection fK 0igi2I of
ordered partitions such that K � K 0i for all i 2 I the following holds:

3) Im�eK;[i2I K 0i � � \i2IIm�eK;K 0i �
4) ker�eK;[i2I K 0i � �

P
i2I ker�eK;K 0i �.

The basic reason that properties (1)±(4) hold is that the (dual of the)
summand DK of the cohomology of RK is detected by the ring of
invariants H��Ak�PK , where PK is the parabolic subgroup of GLk�Fp�
associated with the partition K, and thus propreties (1)±(4) can be
read o� the structure of the Hecke algebra of endomorphisms of
Z=pZ�GLk�Fp�=B� where B is the Borel subgroup of GLk�Fp�. As
a matter of fact, (3) and (4) are only proved in [Ku85, theorem 4.11
(2) and (3)] for the special case K 0i � 2i, I � f1; . . . ; k ÿ 1g, but the
general case can be deduced from it quite easily.

Property (3) implies, by the inclusion-exclusion principle, that the
rank of the coboundary maps in P � is as large as it can be. Therefore
Hi�P �� � 0 for i < k and H��P �� is concentrated in degree � � k,
moreover, Hk�P �� is abstractly isomorphic to CU�, at least as a
graded vector space. Property (4) implies the same for H��P��. It
remains to show that the isomorphisms are isomorphisms of Steenrod
algeba modules, and not only of graded vector spaces.

The graded vector space Hk�P �� can be identi®ed with the cokernel
of the coboundary homomorphism Pkÿ1 ! Pk. The maps
i� : D�1;...;1� ! D2l l � 1; . . . ; k ÿ 1 assemble to the boundary homo-
morphism Pk ! Pkÿ1 in P�. Hk�P�� is the kernel of this map

Hk�P�� �
\kÿ1
l�1

kerfD�1;1;...;1� ! D2lg :

Obviously, Hk�P�� �
Tkÿ1

l�1 ker�el� and Hk�P �� � cokerf�kÿ1
l�1 Im �el�

! D�1;...;1�g. There is a homomorphism of Steenrod algebra modules
CU� ! Hk�P��, given by the Adem relations, which is clearly injective
and thus is an isomorphism. On the other hand, there is a homo-
morphism of Steenrod algebra modules Hk�P�� ! Hk�P �� given by
the composition Hk�P�� ! D�1;...;1� ! Hk�P ��. We claim that this
homomorphism is surjective, and therefore is an isomorphism. To
prove that the map is surjective, we need to show that for any element
of u 2 D�1;...;1� there exists an element v 2 Rkÿ1

l�1 Im�el� such that
u� v 2 Hk�P�� (we consider Hk�P�� as a subspace of D�1;...1�). To see
this, let
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w � �1ÿ e1��1ÿ e2� . . . �1ÿ ekÿ1��1ÿ e1��1ÿ e2� . . . �1ÿ ekÿ2�
� �1ÿ e1� . . . �1ÿ ekÿ3��1ÿ e1� . . . �1ÿ e1��1ÿ e2��1ÿ e1�u :

Let v � wÿ u. It is easy to see that v 2Pkÿ1
l�1 Im�el�. It is also easy to

see that since the idempotents ei satisfy the braid relations, so do the
idempotents 1ÿ ei and that as a consequence �1ÿ el�w � w for all
l � 1; . . . ; k ÿ 1, and thus w � u� v 2 Hk�P��. It follows that Hk�P ��
is isomorphic to CU� as a module of the Steenrod algebra.

Once we know that the cohomology of P � is concentrated in
degree k, it follows that the spectral sequence collapses at E2 for
dimensional reasons. Thus E2 � E1. Since E1 has only one column,
there is an isomorphism

E�;k1 � H�ÿk Map��SKpk ;R1X^pk�hRpk

� �
: (

3.2. Action of the Steenrod algebra.

Let n � pk. Our goal in this subsection is to study the action of the
Steenrod algebra on

H�
�
Map��Kn;R

1X^n�hRn

�
where X is an odd-dimensional sphere localized at a prime p.

Let A be the mod-p Steenrod algebra. Let A�k� be the subalgebra of
A, generated by the Milnor basis (see [Mar, ch. 15] for notation and
basic de®nitions) elements P 0

1 ; P
1
1 ; . . . ; P k

1 and (if p > 2) by Q0; . . . ;Qk.

Theorem 3.17. Let X be a 2s� 1-dimensional sphere localized at a
prime p. Let n � pk. The module

H�
�
Map��SKn;R

1X^n�hRn

�
is free over A�k ÿ 1�.
Proof. Our situation is very similar to that of [W81, theorem 2.1]. The
idea of the proof is taken from there entirely.

Theorem 3.16 gives us a basis for

H�
�
Map��SKn;R

1X^n�hRn

�
:
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We dualize this basis to get a basis for the cohomology groups

H�
�
Map��SKn;R

1X^n�hRn

�
:

The action of A is given by dualizing the homology Nishida relations
as described in [CLM76, page 6]. To make the connection with [W81]
explicit, we will rewrite the basis in terms of Steenrod operations
rather then the Dyer-Lashof operations. We de®ne a correspondence
between the two kind of operations as follows: If p � 2 then
�Qi
�� $ P i�1 :� Sqi�1, and if p > 2 then �Qi�� $ bP i and

�bQi�� $ P i (we remind the reader that on the left hand side b stands
for the homology BoÈ ckstein and thus lowers degree by 1 while on the
right hand side it stands for the cohomology BoÈ ckstein and hence
raises degree by 1.) By comparing the dualized Nishida relations with
the Adem relations in the Steenrod algebra, it is not hard to see that
this correspondence establishes an isomorphism (up to a dimension
shift) of A-modules between H�

�
Map��SKn;R

1X^n�hRn

�
and the

module generated by admissible (in the sense of the Steenrod algebra)
words P s1 . . . P sk such that if p � 2 then sk � 2s� 2 and if p > 2 then
sk � s� 1 (in the case p > 2 there are also BoÈ cksteins which we
omitted). It is interesting to notice that in case X � S1, the coho-
mology that we get is isomorphic, as a module over the Steenrod
algebra, to the cohomology of certain subquotients of symmetric
product of the sphere spectrum which was ®rst computed in [N58]
and further studied in [W81]. These subquotients of the symmetric
product spectra play a key role in [Ku82, KuP85]. We conjecture that
the spectrum

Map��SKpk ;R1S^pk�hRpk

i.e. the pk-th layer of the Goodwillie tower of the identity evaluated at
S1 is homotopy equivalent (up to a suitable suspension) to the
spectrum denoted L�k� in [Ku82, KuP85]1. In any case, when X � S1,
our statement is equivalent on the level of cohomology to [W81,
theorem 2.1]. We sketch Welcher's proof, and indicate the required
very minor generalization. Given a sequence I � �s1; . . . ; sk� we de-
note by P I u the element P s1 . . . P sk u, where P i � Sqi if p � 2. Suppose

1Added in revision: since this paper was written, W. Dwyer, jointly with the ®rst-
named author, proved this conjecture. Details will appear in [AD97]. The overall
connection of the material in this paper with the work of Kuhn, Mitchell and Priddy
is made clear and explicit in [AD97]. As a byproduct, this leads to a substantial
simpli®cation of some of the proofs in this paper (especially those in section 3).

776 G. Arone, M. Mahowald



®rst that p � 2. Following [W81] we de®ne Bs
k to be the vector space

generated by the set fP I jI � �2kj1; . . . ; 4jk; 2jk�;where
j1 � � � � � jk � s� 1g: By computing the Poincare series, one can
easily show that Bs

k 
 A�k ÿ 1� � H��Map� �SKn;R
1X^n�hRn

� as
graded Z=pZ vector spaces. The calculation is exactly as in [W81] and
we omit it. It follows that if the A�k ÿ 1� module generated by Bn is
free, then it must be H��Map��SKn;R1X^n�hRn

�. This part of the
proof again carries over from [W81]. If p > 2, the same strategy ap-
plies with

Bs
k � fP I jI � �pkÿ1j1; . . . ; pjkÿ1; jk�; where j1 � � � � � jk � s� 1g :

(

4. The vk-periodic homotopy of the tower

4.1. The case of an odd-dimensional sphere.

Let p be a ®xed prime. All spaces in this section are automatically
localized at p. In the previous section we saw that in the Goodwillie
tower of the identity evaluated at an odd dimensional sphere, the only
layers that are non-trivial are those indexed by powers of p. So, there
exists a tower of ®brations converging to the homotopy type of S2s�1

..

.

#
S2s�1 ÿ! Rk ÿDpk�S2s�1�

& fk #
Rkÿ1 ÿDpkÿ1�S2s�1�

fkÿ1 #
..
.

#
R0 � Q�S2s�1�

where Rk � Ppk�S2s�1�.
Moreover, Dpk�S2s�1� is an in®nite loop space, and we saw in

theorem 3.17 that the cohomology of the associated spectrum is free
over Akÿ1. This implies that the Dpk�S2s�1� is trivial in vkÿ1-periodic
homotopy and so are all the higher layers. In other words, in vk-
periodic homotopy, the tower has only k � 1 non-trivial layers
(Dp0 ; . . . ;Dpk ). We would like to conclude that the map S2s�1 ! Rk is
an equivalence in vk-periodic homotopy. Apriori, it is not clear that
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the tower converges in vk-periodic homotopy. Consider, for instance,
the Postnikov resolution of a space X . The layers in this resolution
are trivial in vk-periodic homotopy, but X need not be, because the
tower does not converge after inverting vk. Thus our goal in this
section is to study the convergence of this tower in vk-periodic ho-
motopy. It turns out that since the connectivity of the layers grows so
fast, the tower converges in the sense that we need. The main theorem
of this paper is the following

Theorem 4.1. The map

S2s�1 ! Rk

is a vi-periodic equivalence for all k � 0 and all i � k.

Proof. Let k be ®xed all along. We are going to use theorem 3.17 in
conjunction with the ``vanishing line'' theorems in [AD73, MW81].
For the rest of the proof we assume, for simplicity, that p � 2, the
odd primary case is only marginally more complicated. Recall the
following theorem:

Theorem 4.2. [AD73, theorem 1.1] If M is an A-module and P s0
t0 is the

lowest degree ps
t with s < t such that H�M ; P s

t � 6� 0, then
Exts;t�M ;Z=2Z� � 0 for ds > t � c, where d � deg�P s0

t0 � and c
dÿ1 is

approximately t0 ÿ 2.
Let

M � H� Map� SK2k ;R1�S2s�1�^2k
� �

hR2k

� �
By theorem 3.17, M is free over A�k ÿ 1�, and since P s

t 2 A�k ÿ 1�
if s� t � k it follows that the lowest degree P s

t with s < t s.t.
H�M ; P s

t � 6� 0 is at least P s0
t0 , where

s0 �
kÿ1
2 if k ÿ 1 is even

k
2 if k ÿ 1 is odd

�

t0 �
kÿ1
2 � 2 if k ÿ 1 is even

k
2� 1 if k ÿ 1 is odd.

�
Thus P s0

t0

�� �� � 2s0�2t0 ÿ 1� � 2k�1 ÿ 2s0 > 2k ÿ 1.

Corollary 4.3. The Adams Spectral Sequence converging to the ho-
motopy of D2k�i has an �s; t ÿ s� vanishing line of slope which is smaller
than 1

2k�iÿ2 � 1
vk�iÿ1j j. It also has a vertical intercept smaller than k � i.
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Since vi acts on the level of the Adams spectral sequence as mul-
tiplication by an element on a line of slope 1

jvij, it follows that D2k is
vkÿ1-trivial and more generally, if i > 0 then D2k�i is vk-trivial.

We need to prove that the Goodwillie tower converges to S2s�1 in
vk-periodic homotopy. Till the end of this section, let p��ÿ� denote
p��ÿ; Vkÿ1�, where Vkÿ1 is a ®nite space (not a spectrum) of type k
with a vk self map (see appendix). Since S2s�1 � holimRj we have to
show that

vÿ1k p��holimRj� � lim vÿ1k p��Rj� :

Let Qj � fiber�Rk�j ! Rk�. There is a tower of ®brations

..

.

#
Qj ÿDpk�j

gj #
Qjÿ1 ÿDpk�jÿ1

gjÿ1 #
..
.

#
Q1 � Dpk�1

Our statement is equivalent to showing that the vk-periodic homo-
topy of the inverse limit of this tower is trivial. In other words, we
want to show that

vÿ1k p��holimQj� � 0

or equivalently

vÿ1k �lim p��Qj�� � 0 :

Let a � �. . . ; a2; a1� 2 lim p��Qj�. Then aj 2 pd�Qj�, gj�aj� � ajÿ1,
d � deg�a�. We identify an element of pdDpk�j with its pullback at the
E1 term of the corresponding ASS. (We will also assume that such an
element has �s; t ÿ s� bidegree �0; d�. It will be clear that from our
point of view it is a harmless assumption, it amounts to taking the
worst possible case.)

Suppose that a � �. . . ; aj�1; aj; 0; . . .�, where j > 1 and aj 6� 0.
Since ajÿ1 � 0, aj can be thought of as an element of pdj�D2k�j�. Let kj

be the maximal integer such that vkj

k �aj� 6� 0. Let dj�1 � jvkj

k �aj�j �
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dj � kj�2k�1 ÿ 1�. It follows from corollary 4.3 that dj�1 is bounded
by gdj�1, which is determined by the following equations

yÿ�k�j�fdj�1
� 1

2k�jÿ2
yfdj�1ÿdj

� 1
2k�1ÿ2

8<:
Here �gdj�1; y� are the coordinates of the intersection of the line
passing through �0; k � j� and having slope 1

2k�jÿ2 (the ``vanishing
line'') and the line passing through �dj; 0� and having slope 1

2k�1ÿ2 (the
line along which vk moves aj). Solving for gdj�1 we obtain the fol-
lowing bound

gdj�1 � k � j
1

2k�1ÿ2ÿ 1
2k�jÿ2

� dj

1ÿ 2k�1ÿ2
2k�jÿ2

< 2k�1�k � j� � 3

2
dj :�2�

Now let a � �. . . ; a2; a1� be any element of lim p��Qj�. We may as-
sume a1 � 0 (by applying vk enough to annihilate a1). Let dj be the

maximal d such that d �
���vkj

k �aj�
��� and vkj

k �aj� 6� 0. It follows from (2)
that the sequence dj has the rate of growth of at most 3

2

ÿ �j
and thus it

grows slower than the connectivity of D2k�j (the connectivity of D2k�j

has the rate of growth 2j), which proves the theorem. (

4.2. The case of an even-dimensional sphere.

Throughout this subsection, let X denote an even-dimensional sphere
(possibly localized at a prime p). In this case the tower is still ®nite in
vk-periodic homotopy, but it is ``twice as long'' as in the odd sphere
case. More precisely, there is the following version of our main the-
orems.

Theorem 4.4. If n does not equal pk or 2pk for some prime p, then

Dn�X � ' X1Map� SKn;R
1X^n� �hRn

' � :

If n � pk or n � 2pk then Dn�X � has only p-primary torsion.

Thus, if X is an even sphere localized at p, there is a regraded
Goodwillie tower, which, in the case p > 2, looks as follows
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..

.

#
X ÿ! R2

k ÿD2pk

& #
R1

k ÿDpk

#
..
.

#
R2
0 ÿD2p0

#
R1
0 � Q�S2s�1�

where R1
k � Ppk and R2

k � P2pk . If p � 2 then the tower looks just as in
the odd-sphere case.

Theorem 4.5. If p > 2 then the map

X ! R2
k

is a vk-periodic equivalence for all k � 0. If p � 2 then the map

X ! Rk�1

is a vk-periodic equivalence for all k � 0.

Proof of theorems 4.4 and 4.5. Rather than adapting the calculations
of section 3 to this case, we make use of the Goodwillie calculus and
the James ®bration. Consider the sequence of natural maps

X !s XRX !j XRX^2

where s and j are the suspension map and the James map respectively.
If X is an odd-dimensional sphere localized at a prime then this is a
®bration sequence. For a general X , this is a ®bration sequence in the
meta-stable range [Ja53]. Let F �X � be the homotopy ®ber of j. Since
the composition j � s is trivial, there is a natural map

f : X ! F �X �

which is a homotopy equivalence for odd spheres localized at a prime.
We want to conclude that the Taylor polynomials of F �X � are the
same as of the identity when evaluated at odd spheres.
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Proposition 4.6. Let

f : G�X � ! F �X �

be a natural transformation of reduced analytic functors. Suppose there
exists a space K such that f induces an equivalence

G�S2iK� ! F �S2iK�

for all i � 0. Then the map

Pnf : PnG�S2iK� ! PnF �S2iK�

is an equivalence for all i and n.

Proof. By induction on n. The case n � 0 is trivial. Indeed, since we
assume G and F are reduced

P0G�K� ' P0F �K� ' � :

Assume that the proposition is true for nÿ 1. It is clear that it is
enough to show that

Dnf : DnG�K� ! DnF �K�
is an equivalence. Recall that the maps G�S2iK� ! PnG�S2iK� and
F �S2iK� ! PnF �S2iK� are �n� 1��k � 2i� � c connected, where k
is the connectivity of K. It follows that the map Pnf �S2iK� is
�n� 1��k � 2i� � c connected. Using our induction assumption, it
follows that the map Dnf �S2iK� is �n� 1��k � 2i� � c connected. By
Goodwillie's classi®cation of homogeneous functors, there exist
spectra Gn and Fn with an action of Rn which represent DnG and DnF .
Thus, the map

Dnf : �Gn ^ �S2iK�^n�hRn
! �Fn ^ �S2iK�^n�hRn

is �n� 1��k � 2i� � c connected. By the Thom isomorphism, this
implies that the map

Dnf : �Gn ^ K^n�hRn
! �Fn ^ K^n�hRn

is �n� 1�k � 2i� c connected for all i. The proposition follows. (

The following proposition is an easy consequence of the general
theory of calculus
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Proposition 4.7. (1) The operator Pn commutes up to natural equiva-
lence with ®nite homotopy inverse limits of functors. In particular

Pn�XF � ' XPnF :

(2) Let Sq�X � � X ^ X . Then

PnF �RX ^ X � ' Pn�F � R � Sq��X � :

Returning to the notation of our main text, it follows from the two
propositions that if X is an odd sphere localized at p, then there is a
®bration sequence

Pn�X � ! XPn�RX � ! XPn�RX ^ X �

where Pn�X � is really Pn�Id��X �. Taking X � S2kÿ1
�p� , the ®bration

sequence becomes

Pn

�
S2kÿ1
�p�

�
! XPn

�
S2k
�p�
�
! XPn

�
S4kÿ1
�p�

�
:

Thus, we have a resolution of the Goodwillie tower for an even
sphere by towers for odd spheres and theorems 4.4 and 4.5 readily
follow. (

Appendix A. Background on vk-periodic homotopy

In this appendix we collect some material from [MS95] concerning
the de®nition of vÿ1k homotopy and Lf

k localization.
Let M be a ®nite complex, endowed with a map v : RdM ! M such

that MU��v� is not zero. This implies, in particular, that all iterates of
v are essential. We can consider the homotopy theory which results
from looking at the homotopy classes of maps from M to a space X .
We will write pi�X ; M� � �RiM ;X �. We can consider this as a
Z�v� module. The periodic homotopy of X de®ned by v is
p��X ; M� 
Z�v� Z�v; vÿ1�. The simplest case is obtained by letting
M � S1, k � 0 and v be a map of degree two. Then the periodic theory
is obtained by tensoring the homotopy with Z�1=2�. This is an
example of a v0-periodic homotopy.

Higher order periodicity is de®ned in terms of a family of ®nite
complexes which are detected in BP� by some power of vn (the idea of
v1-periodic homotopy goes back to Adams ± it can be de®ned using
the Adams map R13RP 2 ! R5RP 2). These complexes are not unique
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and there does not seem to be a canonical choice, but such complexes
do exist and the choices do not matter much. That's the point of the
forthcoming discussion.

De®nition A.1. We take M�pi0 ; vi1
1 ; . . . ; vik

k � to be any choice of a ®nite
spectrum such that

BP��M�pi0 ; vi1
1 ; . . . ; vik

k �� � BP �=�pi0 ; vi1
1 ; . . . ; vik

k � :
As shorthand, we write I for �i0; . . . ; ik�, and M�I� for

M�pi0 ; . . . ; vik
k �. We also write I � J if il � jl for 0 � l � k, and I � J

if il < jl for 0 � l � k. Below we collect some facts about the spectra
M�I�.
Proposition A.2. (1) Given a multi-index I, M�I� need not exist, but
M�J� exists for some J � I.

(2) There may be more than one possible choice of homotopy type
for M�I�, but there are at most ®nitely many choices.

(3) Given M�I�, there is a J � I and a map

f I
J : M�I� ! R�i1ÿj1��2pÿ2���i2ÿj2��2p2ÿ2�������ikÿjk��2pkÿ2�M�J�

commuting with projection to the top cell. (Note that the top cell of
M�I� is in dimension k � 1� i1�2p ÿ 2� � � � � � ik�2pk ÿ 2�, so the
suspension is just the di�erence in dimension between the top cells of
M�I� and M�J�. To spare notation, we will frequently omit the sus-
pension.) The map f I

J induces the obvious map on BP� ± multiplication
by pj0ÿi0vj1ÿi1

1 � � � vjkÿik
k .

(4) For each I; J there are at most ®nitely many choices of homotopy
classes for f I

J .
(5) Given M�I�;M�J�;M�K� with J � I and K � I , and maps f I

J ; f
I
K

as above, there exists L � J ;K, M�L� and f J
L ; f

K
L so that

M�I� !f
I
J M�J�

# f I
K # f J

L V

M�K� !f
K
L M�K�

commutes.
(6) One can choose a sequence of spectra M�Il� and maps f Il

Il�1 so that
given any M�I� there is an f I

Il
for l su�ciently large. If F is a speci®c

®nite type k complex, then one can choose the M�Il� so that M�Il� ^ F is
a wedge of 2k�1 copies of F (one for each cell in M�Il�), and so that f Il

Il�1
factors
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M�Il� ^ F !g F !h M�Il�1� ^ F

where g is projection to the top cell of M�Il� smashed with F and h is
inclusion of the wedge factor of F associated to the top cell of M�Il�1�
(once again we've neglected suspensions here).

(7) The Spanier-Whitehead dual of an M�I� is also an M�I�. The
Spanier-Whitehead dual of f I

J gives the obvious projection

BP�
�

pj0 ; . . . ; vjk
k

�
! BP�

�
pi0 ; . . . ; vik

k

�
:

..
The ®niteness results are consequences of the fact that a ®nite

torsion spectrum has ®nite homotopy groups in every dimension. The
existence results are all applications of the Nilpotence and Periodicity
theorems.

We will make use of the direct system one can form by using the
spectra M�I� and the maps f I

J . Let
�M�I� be the ®ber of the projection

to the top cell

M�I� !p Sk�1�i12�pÿ1��i22�p2ÿ1�� ��� �ik2�pkÿ1� :

Then there is a co®ber sequence

Sk�i12�pÿ1��i22�p2ÿ1�� ��� �ik2�pkÿ1� !gI �M�I� ! M�I� :�3�

Since the f I
J have been chosen to commute with the projections to

the top cell, we get induced maps (of positive degree which we omit
from our notation)

�M�I� ÿ!
�f I
J �M�J�

such that �f I
J gI � gJ .

Corresponding to the direct system of M�I�'s and f I
J 's, we get a

direct system of �M�I�'s and �f I
J .

Proposition A.3. The map

S0 ! hocolim
I
�Rÿkÿi12�pÿ1�ÿ���ÿik2�pkÿ1� �M�I���4�

induced by the fgIg is Lk localization.

The next proposition gives a functorial description of vk-torsion
generalizing the usual de®nition when X has a vk-map.
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Proposition A.4. Let X be a spectrum and f 2 p��X �. The following are
equivalent:

i) f factors as

S0 !~f
M !g X

where M is a complex with a vk-map v such that vj ~f ' � for some j.
ii) f factors through a ®nite complex in Ck�1.
iii) f is in the kernel of

p�X ! p��Lf
k X � :

If X is a ®nite complex of type k, the above conditions are equivalent to
iv) If v is any vk-map of X , then vjf ' � for j su�ciently large.

Here is the de®nition of vk-periodic homotopy with integral
coe�cients.

De®nition A.5.

vÿ1k pk�X � � dirlim�i0; . . . ; ikÿ1�vÿ1k �Ml�pi0 ; . . . ; vikÿ1
kÿ1�;X � :

Here the subscript l indicates the dimension of the bottom cell of the
coe�cient spectrum.

Note that this de®nition also makes sense unstably for l su�-
ciently large: suppose for some �i0; . . . ; ikÿ1�, Mk�pi0 ; . . . ; vikÿ1

kÿ1� exists
unstably, and supports a vik

k self map. Then after inverting vik
k we can

still form the direct limit over �j0; . . . ; jkÿ1� by noting that the stable
map

Ml

�
pi0

0 ; . . . ; v
i0kÿ1
kÿ1
�
! Ml�pi0 ; . . . ; vikÿ1

kÿ1�

is the stabilization of some unstable map

Ml�rjvik
k j
�

pi0
0 ; . . . ; v

i0kÿ1
kÿ1
�
! Srjvik

k jMl�pi0 ; . . . ; vikÿ1
kÿ1� :

We also need to know that a vk-map of a spectrum can be represented
on the level of a (perhaps suitably modi®ed) Adams spectral sequence
by multiplication by an element on the line of slope 1

jvk j passing
through the origin.
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