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THE MOD 2 HOMOLOGY OF FREE SPECTRAL LIE

ALGEBRAS

OMAR ANTOLÍN CAMARENA

Abstract. The Goodwillie derivatives of the identity functor on
pointed spaces form an operad ∂∗(Id) in spectra. Adapting a def-
inition of Behrens, we introduce mod 2 homology operations for
algebras over this operad and prove these operations account for
all the mod 2 homology of free algebras on suspension spectra of
simply-connected spaces.
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1. Introduction

Goodwillie calculus [10] associates to appropriate functors F : Top∗ →
Top∗ a tower of approximations

· · · → PnF → Pn−1F → · · · → P1F → P0F

that is analogous to the sequence of Taylor polynomials for functions
of a real variable. The homotopy fibers DnF = hofib(PnF → Pn−1F )
are called the layers of the Goodwillie tower and are analogous to in-
dividual monomials f (n)(0)xn/n! in the Taylor expansion of a func-
tion. Goodwillie proved that these layers are of the form DnF (X) =
Ω∞(∂nF ∧ Σ∞X∧n)hΣn

for some sequence of spectra ∂nF where the
n-th spectrum is equipped with an action of Σn.
These derivatives ∂nF are very interesting even for F = Id and

have been much studied in that case; they can be described as the
Spanier–Whitehead duals of certain finite complexes. The first such
description was obtained by Johnson [13]; a second description is in
terms of partitions and appears in [3]. The partition complex Pn is the
pointed simplicial set

NΠn

/

(

N(Πn \ {0̂}) ∪N(Πn \ {1̂})
)

,

where Πn is the poset of partitions of a set with n elements, ordered by
refinement; 0̂ and 1̂ denote its least and greatest element, respectively;
and N denotes, as usual, the nerve functor. We shall regard Pn as
having the action of Σn induced by permutations of the n-element set.
The layers of the Goodwillie tower of the identity are given by

Dn(Id)(X) = Ω∞ (Map∗(Pn,Σ
∞X∧n)hΣn

) ,

where Map∗ denotes the spectrum of maps from a pointed space to
a spectrum. This implies that ∂n(Id) is Map∗(Pn, S), the Spanier–
Whitehead dual of Pn.
In [6], Ching constructs an operad structure on ∂∗(Id) that is easiest

to describe in dual form: as a cooperad structure on P∗. That cooperad
is the bar construction on the nonunital commutative operad in spectra
(given by Commn = S for all n ≥ 1), so that the operadic suspension
of ∂∗(Id) is Koszul dual to the commutative operad and we can think
of ∂∗(Id) as a shifted version of the Lie operad. Alternatively, one
can also see a relation between ∂∗(Id) and the Lie operad using what
is known about the homology of the partition complex, namely that
the space of n-ary operations of the Lie operad in Abelian groups is
isomorphic as a Z[Σn]-module to Hom(Hn−2(Pn), sgn) —where sgn is
the sign representation of Σn.
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The mod p homology of the layers,

Dn(X) := Dn(Id)(X) = (∂n(Id) ∧ Σ∞X∧n)hΣn
,

was studied in [3] in the case that X is a sphere. (Since the free ∂∗(Id)-
algebra on a space X is given by

⊕

n≥0Dn(X), the results in that
paper can be interpreted as being about the mod p homology of the
free ∂∗(Id)-algebra on Sn.) In the case p = 2, for example, what Arone
and Mahowald showed is that H∗(Dn(S

m);Fp) is only non-zero when
n = 2k is a power of 2 and in that case it is Σ−kCU∗ as a module over
the Steenrod algebra, where CU∗ is the free graded Fp-vector space
with basis given by the “completely unadmissible” words of length k:

{Qs1 · · ·Qsku : sk ≥ m, si > 2si+1}

where u is a generator of Hm(S
m;Fp) and the action of the Steenrod

algebra on CU∗ is given by the Nishida relations.
Behrens [4] uses this computation to introduce mod 2 homology op-

erations Q̄j : Hd(DiF (X)) → Hd+j−1(D2iF (X)) for j ≥ d on the layers
of the Goodwillie tower of a functor F . We adapt his definition to
produce homology operations on ∂∗(Id)-algebras (see definition 5.4).
Behrens shows the Arone–Mahowald computation can be interpreted
as saying that the homology of

⊕

n≥0Dn(X) has an F2-basis consist-

ing of completely unadmissible sequences of Q̄j’s with excess at least k
applied to the fundamental class of Sk; furthermore, he computes the
relations satisfied by the Q̄j ’s.
In the present work we compute the mod 2 homology of the free

∂∗(Id)-algebra on a spectrum, showing that it is roughly speaking the
free module over the algebra of operations Q̄j ’s on the free Lie algebra
on H∗(X) (see theorem 7.1).

1.1. Some related work. Since the first appearance of this work as
the author’s PhD thesis, an analogous computation of the mod p ho-
mology for odd primes p has been carried out by Kjaer [14]. In that
setting the story is less complete: due to a lack of an analogue of
Priddy’s trace formula [4, Lemma 1.4.3], the relations between the ho-
mology operations have yet to be fully determined.
In the upcoming paper [5], Brantner computes the E(n)-homology of

certain free ∂∗(Id)-algebras in the category of K(n)-local spectra and
thus computes the E(n)-homology operations on K(n)-local ∂∗(Id)-
algebras. Here E(n) and K(n) denote Morava E-theory and Morava
K-theory respectively.
Also, in the final section of the paper we will explain the relation be-

tween our computation and the E1-page of Kuhn’s spectral sequence for
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Topological André–Quillen homology of an augmented E∞-ring spec-
trum [15, Theorem 8.1].
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2. Homology operations on algebras for operads

We will work in a symmetric monoidal category of spectra, such
as EKMM S-modules [8], taking “spectrum” to mean S-module and
“E∞-ring spectrum” to mean commutative S-algebra. This is the same
framework used in [6] to put an operad structure on the derivatives of
the identity.
Given an operadO in spectra we will denote by FO the freeO-algebra

functor. This functor is a monad, and O-algebras are equivalently
algebras for it. If E is an E∞-ring spectrum, then there is an operad
in E-module spectra we will denote by E ∧ O, and a free (E ∧ O)-
algebra functor FE∧O defined on E-module spectra. The E-module of
n-ary operations in E ∧ O is the free E-module on the spectrum On:
(E ∧ O)n = E ∧ On; we get an operad structure on E ∧ O induced
from the operad structure on O because the free E-module functor
is symmetric monoidal. The free algebra functors are related in the
expected way: E ∧ FO(X) ≃ FE∧O(E ∧X). We will also make use of
the functor between O-algebras and (E ∧ O)-algebras induced by the
free E-module functor, E ∧ −.
We will only consider cofibrant operads for which the notion of alge-

bra is homotopy invariant, meaning that we can think of the homotopy
type of the free O-algebra as being given by

FO(X) =
∨

n≥0

(On ∧X
n)hΣn

,

and that we will think of an O-algebra structure on A as providing
maps (On ∧ A

∧n)hΣn
→ A.

Every class α ∈ Em

(

FO

(

∨k
i=1 S

di

))

in the E-homology of the free

O-algebra on a wedge of k spheres gives a k-ary homology operation
on the E-homology of any O-algebra A, defined as follows.



THE MOD 2 HOMOLOGY OF FREE SPECTRAL LIE ALGEBRAS 5

Given xi ∈ Edi(A) (i = 1, . . . , k), we can represent each xi by a map
of spectra Sdi → E ∧ A, and thus the whole collection of them can
be described by a single map of spectra x̄ :

∨k

i=1 S
di → E ∧ A. Since

E ∧ A is an (E ∧ O)-algebra, x̄ has an adjoint x̃ which is a map of

(E ∧ O)-algebras to E ∧A from the free (E ∧ O)-algebra on
∨k

i=1 S
di,

namely FE∧O(
∨k

i=1Σ
diE) = E ∧ FO(

∨k

i=1 S
di).

The homology operation corresponding to α, is α∗ :
⊗k

i=1Edi(A) →
Em(A) defined by setting α∗(x1 ⊗ · · · ⊗ xk) to be represented by the
map

Sm
α
−→ E ∧ FO(

k
∨

i=1

Sdi)
x̃
−→ E ∧A.

An analogous construction gives operations on the stable homotopy
of (E ∧ O)-algebras. Given an O-algebra A, the operations on the E-
homology of A coincide with those produced on the homotopy of the
(E ∧O)-algebra E ∧ A.
To get a useful theory of homology operations for O-algebras, besides

computing those homology groups, the various Em(FO(
∨k

i=1 S
di)), one

must organize the operations: find a relatively small collection of op-
erations that generate all others and find a generating set of relations
for the operations. This has been carried out for HFp-homology of al-
gebras for the En-operads, due to May in the case n = ∞, and due to
F. Cohen in the case 1 ≤ n <∞; see [7].
Homology operations with field coefficients are simpler to study, be-

cause of the following result:

Proposition 2.1. Let O be an operad in spectra. The homology with

coefficients in a field k of the free O-algebra on a spectrum X is a

functor of the homology of X.

Proof. Consider the following commutative diagram:

Sp

FO

��

Hk∧−
// Hk−Mod

FHk∧O

��

π
// D(k)

∼=
//

F̂
��

GrVectk

F̃
��

Sp
Hk∧−

// Hk−Mod
π

// D(k) ∼=
// GrVectk

Here Sp denotes the category of spectra, Hk−Mod denotes the
category of Hk-module spectra, D(k) is the homotopy category of
Hk−Mod or, equivalently, the unbounded derived category of vector
spaces over k and GrVectk is the category of graded vector spaces over
k.
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The functor π is the projection from Hk−Mod to its homotopy cat-
egory; this functor preserves coproducts but when the characteristic of
k is not 0, it does not send homotopy quotients by the action of Σn to
quotients by the action of Σn, so the induced monad F̂ is no longer the
free algebra functor for an operad. Finally, when k is a field there is
an equivalence D(k) ∼= GrVectk, allowing us to define the monad F̃ so
that the last square commutes. �

3. The spectral Lie operad and its desuspension

Recall that the suspension of an operad O in spectra is an operad
sO defined so that:

• sO-algebra structures on ΣA correspond to O-algebra struc-
tures on A,

• the free algebra functors satisfy FsO(ΣX) = ΣFO(X), and
• as a symmetric sequence, (sO)n is given by (S−1)∧n∧ΣOn with
Σn acting diagonally, permuting the smash factors on the left
and acting on ΣOn via the suspension of the action on On (that
is, it acts trivially on the suspension coordinate of ΣOn).

Following existing nomenclature, we will call the operad ∂∗(Id) formed
by the Goodwillie derivatives of the identity, the spectral Lie operad.
Even though it is actually the desuspension s−1∂∗(Id) that is most
closely analogous to the classical Lie operad and some of our formulas
would be simpler for it, we will stick to the language of the ∂∗(Id)-
operad and ∂∗(Id)-algebras to make using the available literature eas-
ier. As a symmetric sequence, s−1∂∗(Id) is given by the derivatives of
the functor ΩΣ : Top∗ → Top∗ (see [10, Section 8]).
As we said before, the easiest way to describe the operad structure

of ∂∗(Id) is to describe a cooperad structure on the bar construction of
the nonunital commutative operad, and obtain the operad structure of
∂∗(Id) by taking Spanier–Whitehead duals. For a description of Ching’s
cooperad structure, we refer the reader to [6, Section 4].

4. Two kinds of Lie algebras in characteristic 2

In this section we collect a few definitions about (graded) Lie algebras
we will need later. We will actually need to use two different notions
of Lie algebras. The usual definition of Lie algebra over a field of
characteristic 0 is equivalent to being an algebra for an operad Lie in
Abelian groups. One can take algebras for that operad in any category
that is tensored over Abelian groups, such as the category of R-modules
or of graded R-modules for a commutative ring R, and this gives one
possible definition of graded Lie algebra. Since ∂∗(Id) is the suspension
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of the spectral version of the Lie operad, we are also interested in
algebras for the suspension sLie.
Spelling out the structure we see that a graded Lie-algebra L over

a commutative ring R is a graded module equipped with a binary
operation [−,−] : Li⊗Lj → Li+j satisfying, for homogeneous elements
x, y and z of degrees |x|, |y| and |z|:

• anti-symmetry, [x, y] = −(−1)|x||y|[y, x], and
• the Jacobi identity,

(−1)|z||x|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0.

For sLie-algebras things are only slightly different:

• The bracket has degree −1: [−,−] : Li ⊗ Lj → Li+j−1.
• Anti-symmetry becomes graded commutativity:

[x, y] = (−1)|x||y|[y, x].

• The Jacobi identity stays the same!

All the signs in the above formulas come from the Koszul sign rule,
that is, from the signs in the symmetry isomorphism of the category of
graded R-modules. Since we will work over R = F2 we need not worry
about signs, but we mention them to point out that for an element
x of even degree in a Lie-algebra (or of odd degree in a sLie-algebra),
the definitions imply that 2[x, x] = 0, but they do not actually imply
[x, x] = 0 if 2 is not invertible in R.
If R has characteristic 2, while [x, x] may not be 0, we do have that

any brackets involving it are 0: by the Jacobi identity,

[[x, x], y] = [[x, y], x] + [[y, x], x] = 2[[x, y], x] = 0.

As an example showing [x, x] can be nonzero, the free Lie-algebra
over F2 on one generator x in an even degree is easily seen to have
basis {x, [x, x]}.
Given a graded associative R-algebra A, the graded commutator

[x, y] = xy − (−1)|x||y|yx gives A the structure of a Lie-algebra, but
all the algebras produced this way necessarily have [x, x] = 0 for |x|
even. This means that if a Lie-algebra over an R of characteristic 2 has
some nonzero [x, x] with |x| even, it cannot be faithfully represented
by commutators, and thus does not inject into its universal enveloping
algebra. This substantially changes portions of the theory of Lie alge-
bras that require an embedding into the universal enveloping algebra
and so at least one other definition of Lie algebra in characteristic 2
is sometimes used, one that forces an injection into a Lie algebra of
commutators.



8 OMAR ANTOLÍN CAMARENA

In the case of R = F2 this other kind of Lie algebra simply adds the
requirement that [x, x] = 0 for all homogeneous x. We will call this
kind of Lie algebra a Lie

ti-algebra —the ti stands for totally isotropic.
A definition for all rings R, due to Moore, just forces the representation
as a commutator Lie algebra to exist:

Definition 4.1. A graded Lie
ti-algebra (resp. sLieti-algebra) over R is

graded R-module L with a bracket Li ⊗ Lj → Li+j (resp. Li+j−1) and
a monomorphism L → A to some graded associative algebra so that
the bracket goes to the graded commutator xy − (−1)|x||y|yx (resp.
xy + (−1)|x||y|yx).

Our main interest in these algebras is that the basic products ap-
pearing in Hilton’s theorem about the loop space of a wedge of spheres
[12] form a basis (called a Hall basis) for a totally isotropic Lie algebra,
see the discussion in section 7.

5. Homology operations for spectral Lie algebras

Throughout this section L will denote an algebra for the operad
∂∗(Id). So in particular, L is a spectrum equipped with structure maps
ξn : Dn(L) → L where Dn(L) = (∂n(Id) ∧ L

∧n)hΣn
. There is a more

traditional way to describe the structure of an algebra for an operad:
by giving maps αn : ∂n(Id) ∧ L

∧n → L that are Σn-equivariant for the
trivial action on the codomain and the diagonal action on the domain.
The relation between these two styles of definition is captured in the
following commutative diagram:

∂n(Id) ∧ L
∧n αn

//

��

L

��

=

%%
❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

(∂n(Id) ∧ L
∧n)hΣn

ξn

66

(αn)hΣn
// L ∧ Σ∞

+BΣn // L,

where the vertical maps are the canonical maps Y ∧n → Y ∧n
hΣn

and the
unlabeled horizontal map is L ∧ Σ∞

+ (−) applied to BΣn → ∗.

In this section we will describe some operations onH∗(L;F2) that will
turn out to generate all others, and whose definition will only require
the map

ξ = ξ2 :
(

∂2(Id) ∧ L
∧2
)

hΣ2
→ L.

Recall that ∂2(Id) is the Spanier–Whitehead dual of the partition com-
plex P2. A set with two elements has only two partitions, both fixed
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by Σ2, so that P2 ≃ S1 and ∂2(Id) ≃ S−1, both with trivial Σ2-action.
This implies that (∂2(Id) ∧ L

∧2)hΣ2
≃ Σ−1L∧2

hΣ2
.

5.1. The shifted Lie bracket. We will start by describing the Lie
bracket. Here we remind the reader that ∂∗(Id) is not really analogous
to the Lie operad, but rather is analogous to its operadic suspension.

Definition 5.1. The shifted Lie bracket on the homology of an ∂∗(Id)-
algebra L is the map [·, ·] : Hi(L) ⊗ Hj(L) → Hi+j−1(L) given by the
identification S−1 → ∂2(Id), that is, it is the map induced on homology
by the suspension of the structure map α2 : Σ

−1L∧2 → L.

This operation really gives a sLie-algebra:

Proposition 5.2. Given any ∂∗(Id)-algebra L, the shifted Lie bracket

on H∗(L) gives H∗(L) the structure of a sLie-algebra.

Remark 5.3. The proof of this proposition presented below is joint work
with Lukas Brantner.

Proof. This is not really a result about F2-homology: we will show that
the Lie algebra structure is present already at the level of spectra. We
have already proved symmetry, when we computed ∂2(Id) and saw it
had the trivial Σ2-action.
Now we must prove the Jacobi identity. Consider three elements of

the homology of L, say x ∈ HiL, y ∈ HjL and z ∈ HkL. Just as we de-
fined the bracket [x, y] as coming from a particular map S−1 → ∂2(Id),
the bracket [x, [y, z]] ∈ Hi+j+k−2L can be obtained from a particular
map ν : S−2 → ∂3(Id) as the effect on homology of the double suspen-
sion of the composite

S−2 ∧ L∧3 ν∧id
−−→ ∂3(Id) ∧ L

∧3 α3−→ L.

The map ν simply corresponds to one of the structure maps of the
∂∗(Id)-operad under the identifications S ≃ ∂1(Id), S

−1 ≃ ∂2(Id),
namely, it is

S−1 ∧ (S ∧ S−1) ≃ ∂2(Id) ∧ (∂1(Id) ∧ ∂2(Id)) → ∂1+2(Id).

The other terms in the Jacobi identity are obtained from [x, [y, z]]
by cyclically permuting the variables, so, letting σ = (123) ∈ Σ3 and
using σ∗ to denote the induced action of σ on ∂3(Id), to prove the
Jacobi identity we must show ν + σ∗ ◦ ν + σ2

∗ ◦ ν : S−2 → ∂3(Id) is
null-homotopic.
We might as well work with Σ∞P3, before taking Spanier–Whitehead

duals, and show that 1 + σ̄ + σ̄2 : Σ∞P3 → Σ∞P3 is null-homotopic,
where σ̄ denotes the action of the 3-cycle σ on Σ∞P3.
Now, P3 consists of:
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• a 1-simplex, corresponding to the chain 0̂ < 1̂, connecting the
basepoint 0̂ = 1̂ with itself, and

• three 2-simplices, say τ1, τ2, τ3, each filling in the above circle,
corresponding to the three chains 0̂ < (23|1) < 1̂, 0̂ < (13|2) <
1̂, and 0̂ < (12|3) < 1̂, respectively.

The 3-cycle σ permutes those three 2-simplices cyclically. We can
compute 1 + σ̄ + σ̄2 : Σ∞P3 → Σ∞P3 as the composite:

Σ∞P3
∆
−→

3
∨

Σ∞P3
1∨σ̄∨σ̄2
−−−−→

3
∨

Σ∞P3
∇
−→ Σ∞P3.

Non-equivariantly we have an equivalence S2 ∨ S2 ≃
−→ P3, where we

will think of the first S2 as mapping to P3 by sending the northern
hemisphere to τ1, and the southern hemisphere to τ2; we will abbreviate
this map S2 → P3 as τ12 and use similar notation for other maps. We
will think of the second wedge summand S2 as corresponding to the
map τ23.
We can think of a map

∨nΣ∞P3 →
∨mΣ∞P3 as given by an m× n

matrix of maps Σ∞P3 → Σ∞P3, and each such map as given by a 2×2
matrix of maps Σ∞S2 → Σ∞S2.
The matrices of ∆ and ∇ are just the 3× 1 and 1× 3 matrices each

of whose entries is I, the 2×2 identity matrix. Once we have the 2×2
matrix A representing σ : Σ∞P3 → Σ∞P3, the matrix of 1 ∨ σ̄ ∨ σ̄2 is
given by the 3× 3 diagonal matrix with I, A,A2 along the diagonal.
To compute the matrix A, notice that σ̃ ◦ τ12 = τ23 and σ̃ ◦ τ23 = τ31

(where σ̃ denotes the action of σ on P3, so that Σ∞σ̃ = σ̄). The
map Σ∞τ13 is given by Σ∞τ12 + Σ∞τ23, and τ31 differs from τ13 by the
reflection swapping the hemispheres of S2, which has degree −1. So,

A =

(

0 −1
1 −1

)

.

This means the composite map 1 + σ̄ + σ̄2 has matrix:

(

I I I
)





I 0 0
0 A 0
0 0 A2









I
I
I



 = I + A + A2,

which is readily computed to be 0. �

5.2. Behrens’s unary Dyer-Lashof-like operations. In [4, Chap-
ter 1], Behrens interprets Arone and Mahowald’s calculation [3] of
H∗(Dn(X)) for a sphere X in the case p = 2 in terms of unary ho-
mology operations for the layer of the Goodwillie tower of a reduced
finitary homotopy functor F : Top∗ → Top∗. The Arone-Ching chain
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rule [1] gives the symmetric sequence of derivatives of F , ∂∗(F ), the
structure of a bimodule for ∂∗(Id). Behrens’s operations only use the
left module structure and could be defined on the mod 2 homology of
any symmetric sequence which is a left module over ∂∗(Id). In particu-
lar, regarding an ∂∗(Id)-algebra as a symmetric sequence concentrated
in degree 0, we get unary operations on the mod 2 homology of an
∂∗(Id)-algebra:

Definition 5.4 (adapted from [4, Section 1.5]). Let L be a spectrum
equipped with the structure of an ∂∗(Id)-algebra. We define homology
operations

Q̄j : Hd(L) → Hd+j−1(L),

as follows: for x ∈ Hd(L), we set Q̄jx := ξ∗σ
−1Qjx where

• ξ : Σ−1L∧2
hΣ2

≃
−→ D2(L) → L is part of the ∂∗(Id)-algebra struc-

ture of L,
• σ−1 : Hd+j(L

∧2
hΣ2

) → Hd+j−1(D2(L)) is the (de)suspension iso-
morphism, and

• Qj : Hd(L) → Hd+j(L
∧2
hΣ2

) is a Dyer-Lashof operation.

Note that Q̄j has degree j−1 but the notation for it uses “j” because
it is named after Qj . Also notice that if j < d and x ∈ Hd(L), we have
Q̄jx = 0 simply because Qjx = 0.

Remark 5.5. By modifying the setting of the definition of the Q̄j,
we have introduced a potential ambiguity! For a free ∂∗(Id)-algebra
L = F∂∗(Id)(X) on some spectrum X , there are two different ways in
which we could mean Q̄jx for x ∈ H∗(L): using definition 5.4, or using
Behrens’ original definition for the functor Id. Let us explain what that
definition is and show it agrees with our definition in this case.
Given a functor F : Top∗ → Top∗, part of the left ∂∗(Id)-module

structure on ∂∗(F ) is a Σ2 ≀ Σi-equivariant map ∂2(Id) ∧ ∂i(F )
∧2 →

∂2i(F ). This induces a map

ψi : Σ
−1(Di(F )(X))∧2hΣ2

≃
(

∂2(Id) ∧ ∂i(F )
∧2 ∧X∧2i

)

hΣ2≀Σi

→
(

∂2i(F ) ∧X
∧2i
)

hΣ2i

≃ D2i(F )(X),

and for x ∈ Hd(Di(F )(X)), Behrens defines Q̄jx = (ψi)∗σ
−1Qjx.

Given x ∈ Hd(Di(Id)(X)) ⊂ H∗(F∂∗(Id)(X)) and a j ≥ d, to show
that the Q̄jx from Definition 5.4 agrees with this original version of
Q̄jx ∈ Hd+j(D2i(Id)(X)) ⊂ H∗(F∂∗(Id)(X)) we just need to unwind the
definitions, the point being that both the left ∂∗(Id)-module structure
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of ∂∗(Id) and the ∂∗(Id)-algebra structure of F∂∗(Id)(X) come directly
from the operad structure maps of ∂∗(Id).

Definition 5.6. Let R̄ be the F2-algebra freely generated by symbols
{Q̄j : j ≥ 0} subject to the following relations:

Q̄rQ̄s =
r−s−1
∑

k=0

(

2s− r + 1 + 2k

k

)

Q̄2s+1+kQ̄r−s−1−k, if s < r ≤ 2s.

Also let R̄n be the quotient of R̄ obtained by imposing the additional
relations Q̄j1Q̄j2 · · · Q̄jk = 0 whenever j1 < j2 + · · ·+ jk + n.

The relations in R̄n allow one to rewrite any monomial in the Q̄j into
a linear combination of completely unadmissible or CU monomials, that
is, monomials Q̄J = Q̄j1Q̄j2 · · · Q̄jk where J = (j1, . . . , jk) is a (possibly
empty, corresponding to 1 ∈ R̄) sequence of integers satisfying ji >
2ji+1 for i = 1, . . . , k − 1.

Definition 5.7. A positively graded module M over R̄ is called al-

lowable if whenever x ∈ M is homogeneous of degree n and j1 <
j2 + · · ·+ jk + n, we have Q̄j1Q̄j2 · · · Q̄jkx = 0.

Remark 5.8. This notion of allowable requires more operations to van-
ish than required by degree considerations, that is, more than required
by the condition Q̄jx = 0 when x ∈Mn, j < n. Indeed, that last condi-
tion only implies Q̄j1Q̄j2 · · · Q̄jkx = 0 when ji < ji+1+· · · jk+n−(k−i)
for some i; note the extra negative term−(k−i). The reason for this ex-
tra vanishing required is the isomorphism in [4, Theorem 1.5.1], that in
the notation used there, sends σkQ̄j1Q̄j2 · · · Q̄jkιn 7→ Qj1Qj2 · · ·Qjkιn.
The Qj do have that vanishing property just for degree reasons.

Proposition 5.9. Given an ∂∗(Id)-algebra L, the action of the opera-

tions Q̄j makes H>0(L) into an allowable R̄-module.

Proof. We will deduce that the operations act allowably and satisfy
the relations in the algebra R̄ from [4, Theorem 1.5.1]. That theorem
states that

⊕

k≥0

H∗(D2k(S
n)) = R̄n{ιn},

where ιn is the fundamental class of H̃n(S
n) (thought of as living in

Hn(D1(S
n)) ∼= H̃n(S

n)), and the operations Q̄j obey all the relations
in the algebra R̄n.
Given any class x ∈ Hn(L), we can represent it by map x : ΣnHF2 →

HF2∧L of HF2-module spectra. This corresponds to a map x† : HF2 ∧
F∂∗(Id)(S

n) → HF2∧L of (HF2∧∂∗(Id))-algebras. The naturality of the
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Q̄j operations shows that given any R ∈ R̄ we haveH∗(x
†)Rιn = Rx, so

that if the relation Rιn = 0 is satisfied in H∗(F∂∗(Id)(S
n)), the relation

Rx = 0 holds in H∗(L). �

Notice that it also follows from theorem [4, Theorem 1.5.1], that the
CU -monomials Q̄J are linearly independent.

6. Algebraic structure of homology of spectral Lie

algebras

We can now state the algebraic structure of the homology of an
∂∗(Id)-algebra:

Definition 6.1. An allowable R̄-sLie-algebra is a graded F2-vector
space M , equipped with

• a shifted Lie bracket [−,−] :Mi ⊗Mj → Mi+j−1, and
• the structure of an allowable R̄-module on M>0,

such that

(1) Q̄kx = [x, x] if x ∈Mk, and
(2) [x, Q̄ky] = 0 for any x ∈ Mi, y ∈Mj .

Remark 6.2. Notice that condition 2 only has content when k ≥ j,
since otherwise Q̄ky = 0.

Theorem 6.3. Given any ∂∗(Id)-algebra L, the operations described

above give its mod 2 homology H∗(L) the structure of an allowable R̄-

sLie-algebra.

Proof. We have already shown that the bracket gives H∗(L) the struc-
ture of a sLie-algebra and of an allowable R̄-module in Propositions
5.2 and 5.9. We will prove properties 1 and 2 from Definition 6.1 in
Lemmas 6.4 and 6.5 below. �

It will be convenient to recall a construction of the Dyer-Lashof op-
eration Qk : Hj(L) → Hj+k(L

∧2
hΣ2

) for k ≥ j. A class x ∈ Hj(L) can
be represented by a map x : ΣjHF2 → HF2 ∧ L of HF2-module spec-
tra. Applying the second extended power functor we get a map x⊗ 2

hΣ2
:

(ΣjHF2)
⊗ 2
hΣ2

→ (HF2 ∧ L)
⊗ 2
hΣ2

, where we have used ⊗ for the smash
product of HF2-module spectra. Since the free HF2-module functor is
symmetric monoidal and preserves homotopy colimits, (HF2 ∧ Y )

⊗ 2
hΣ2

≃

HF2 ∧ Y
∧2
hΣ2

; so that we can regard x⊗ 2
hΣ2

as being a map (ΣjHF2)
⊗ 2
hΣ2

→
HF2 ∧ L

∧2
hΣ2

.

Now, (ΣjHF2)
⊗ 2 has trivial Σ2-action, so (ΣjHF2)

⊗ 2
hΣ2

≃ Σ2jHF2 ∧
Σ∞

+BΣ2. One way to see this is to recall that the homotopy category of
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HF2-module spectra is equivalent to the derived category of complexes
of F2-vector spaces, and the definition of the symmetry of the tensor
product has no signs in that case. Alternatively, one can think of
spaces, before smashing with HF2: the fibration (Sj)∧2 → Sj

∧2
hΣ2

→
BΣ2 is F2-orientable, and the above equivalence is an instance of the
Thom isomorphism.
Let qk−j : Σ

k−jHF2 → HF2 ∧ Σ∞
+BΣ2 pick out the unique non-zero

class of degree k − j in H∗(BΣ2); then Q
kx is represented by

Σj+kHF2

qk−j⊗id
Σ2jHF2−−−−−−−−→(HF2 ∧ Σ∞

+BΣ2)⊗ Σ2jHF2

≃ (ΣjHF2)
⊗ 2

hΣ2

x⊗ 2
hΣ2−−−→ HF2 ∧ L

∧2
hΣ2

.

Lemma 6.4. For any ∂∗(Id)-algebra L and x ∈ Hk(L), we have Q̄
kx =

[x, x].

Proof. This follows easily by unwinding the definitions: if x is repre-
sented by a map x : ΣkHF2 → HF2 ∧ L, both sides are represented by
the desuspension of some composite

ΣkHF2 ⊗ ΣkHF2 →
(

ΣkHF2

)⊗ 2

hΣ2

x⊗ 2
hΣ2−−−→ HF2 ∧ L

∧2
hΣ2

HF2∧Σξ
−−−−→ HF2 ∧ L,

where ξ : Σ−1L∧2
hΣ2

→ L is the structure map. For [x, x] the first map is

taken to be the quotient map, while for Q̄kx it is q0 ⊗ idΣ2kHF2
, which

agrees with the quotient map. �

Lemma 6.5. For an ∂∗(Id)-algebra L and x ∈ Hi(L), y ∈ Hj(L) we

have [x, Q̄ky] = 0.

Proof. For k < j, Q̄ky = 0. For k = j, by Lemma 6.4, [x, Q̄ky] =
[x, [y, y]] and this is 0 as explained in section 4.
To analyze the case k > j, we begin by unwinding the definitions in

terms of representing maps x : ΣiHF2 → HF2 ∧ L and y : ΣjHF2 →
HF2∧L. To make the next diagram fit on the page, we introduce some
temporary notation: [i] := ΣiHF2, L̄ := HF2∧L, BΣ2 := HF2∧Σ

∞
+BΣ2

and ∂n := ∂n(Id). Then [x, Q̄ky] ∈ Hi+j+k−2(L) is represented by the
the composite from the top left corner to the bottom right corner in
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the following commutative diagram:

[i+ j + k − 2]

id[i−1]⊗Σ−1qk−j⊗id[2j]
��

Σ−1[i]⊗ Σ−1(BΣ2 ⊗ [2j])

≃
��

∂2 ∧ (∂1 ∧ [i])⊗ (∂2 ∧ [j])⊗ 2
hΣ2

(∂1∧x)⊗(∂2∧y)
⊗ 2
hΣ2

��

θ[i],[j]
// (∂3 ∧ [i+ 2j])h(Σ1×Σ2)

(∂3∧x⊗y⊗2)h(Σ1×Σ2)

��

∂2 ∧ (∂1 ∧ L̄)⊗ (∂2 ∧ L̄)
⊗ 2

hΣ2

id⊗(HF2∧ξ)

��

θL̄,L̄
// (∂3 ∧ L̄

∧3)h(Σ1×Σ2)

ξ′3
��

∂2 ∧ L̄⊗ L̄
HF2∧α2

// L̄.

The horizontal arrows whose labels involve θ are defined using the
structure map θ : ∂2 ∧ ∂1 ∧ ∂2 → ∂3, namely,

θX,Y : ∂2 ∧ (∂1 ∧X)⊗ (∂2 ∧ Y )⊗ 2
hΣ2

→ (∂3 ∧X ⊗ Y ⊗2)h(Σ1×Σ2)

is given by (θ ∧ idX⊗Y ⊗2)h(Σ1×Σ2).
The arrow labeled ξ′3 is HF2 smashed with the composite

(

∂3 ∧ L
∧3
)

h(Σ1×Σ2)

(α3)h(Σ1×Σ2)−−−−−−−→ L ∧ Σ∞
+BΣ2 → L,

and that the bottom square commutes follows from the definition of
algebra for an operad.
To conclude the proof, we will show that (∂3∧ [i+2j])h(Σ1×Σ2) is con-

centrated in degree i+2j−2, which means the composite from the top
of the diagram to that point must be null if k 6= j. Now, that spectrum
is equivalent to HF2∧Σi+2j(∂3)h(Σ1×Σ2) because the (Σ1×Σ2)-action on
[i+2j] is trivial. So we need to describe ∂3 as a (Σ1×Σ2)-spectrum. Re-
call the description of P3 from the proof of Proposition 5.2: it consists
of three 2-dimensional disks with their boundaries identified, one for
each of the three partitions (12|3), (13|2), (23|1). The (Σ1×Σ2)-action
fixes one of the disks and swaps the other two, so that P3 is equiv-
ariantly equivalent to Σ2Σ∞

+Σ2, the double suspension of the regular
representation of Σ2. Then ∂3 is Σ−2Σ∞

+Σ2 and (∂3)h(Σ1×Σ2) ≃ S−2, as
required. �

Remark 6.6. Lukas Brantner has written an alternative proof of this
lemma that will appear in [5]. His argument analyzes the structure map
θ showing it is the double desuspension of the transfer map Σ∞

+BΣ2 →
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S and thus vanishes on mod 2 homology. I am grateful to him for
sharing his proof with me at a time when I was still confused about
the “bottom operation” and thought this result only held for k > j.

7. Homology of free spectral Lie algebras on

simply-connected spaces

Now we can state our main result:

Theorem 7.1. Given a simply-connected space X, the mod 2 homology

of the free ∂∗(Id)-algebra on Σ∞X is the free allowable R̄-sLie-algebra

sLR̄(H̃∗(X)) on the reduced homology H̃∗(X).
More precisely, the canonical map sLR̄(H̃∗(X)) → H∗(F∂∗(Id)(Σ

∞X))
is an isomorphism.

Remark 7.2. The restriction to suspension spectra of simply-connected
spaces is a consequence of the use of the Hilton–Milnor theorem in
section 7.2; it would be interesting to work out more general cases, and
that seems to be the main obstacle. The restrictions to positive degrees
in Definition 5.7 and Proposition 5.9 are not essential, as the homology
of
⊕

k≥0H∗(D2k(S
n)) can also be calculated for negative n. Indeed,

since HF2 ∧ ΣjSn
∧m
hΣm

≃ Σjm(HF2 ∧ Sn∧mhΣm
) (by the same arguments

used near the end of the proof of Theorem 6.3: the symmetry of the
tensor product of HF2-spectra has no signs, or a Thom isomorphism),
one can easily show deduce the homology for negative spheres from the
Arone–Mahowald calculation. We have left the restrictions to positive
degrees there for simplicity, since we do not know how to avoid them
in the main result anyway.

We will prove Theorem 7.1 in special cases of increasing generality in
the next few sections, but first we will give a convenient construction of
the free allowable R̄-sLie-algebra. This will involve the notion of basic
products, that we now recall:

Definition 7.3. The basic products on a set of letters x1, . . . , xn are
defined and ordered recursively as follows:
The basic products of weight 1 are x1, x2, . . . , xn, ordered arbitrarily.
Suppose the basic products of weight less than k have been defined

and ordered. A basic product of weight k is a formal bracket Jw1, w2K
where

• w1 and w2 are basic products whose weights add up to k,
• w1 < w2 in the order defined so far,
• if w2 = Jw3, w4K for some basic products w3 and w4, then we
require that w3 ≤ w1.
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Once all the products of weight k are defined, they are ordered ar-
bitrarily among themselves and declared to be greater that all basic
products of lower weight. We will assume these choices of order are
fixed once and for all.

Marshall Hall proved in [11] that the basic products form a basis
for the free Lie algebra on x1, x2, . . . , xn. That result is for the totally
isotropic, ungraded version of Lie algebra, but it clearly extends, at
least for R = F2 where the grading does not introduce signs, to both
Lie

ti-algebras and sLieti-algebras: if the letters have assigned degrees
|xi|, we assign to each basic product w with ℓ letters of total degree d,
the degree |w| = d in the Lie

ti case and |w| = d− ℓ in the sLieti case.

Proposition 7.4. The free allowable R̄-sLie-algebra sLR̄(V ) on a graded

F2-vector space V is the free allowable R̄-module on the free sLieti al-

gebra on V , denoted by AR̄(FsLie
ti(V )), equipped with a bracket defined

as follows:

First, fix a basis β of V and consider the basis of AR̄(FsLie
ti(V ))

consisting of all Q̄Jw where:

• J = (j1, . . . , jk) is a CU-sequence of integers, and

• w is a basic product of degree at most jk in letters from β.

Now define the bracket on AR̄(FsLie
ti(V )) on that basis as indicated

below and extended bilinearly:

• [Q̄J1w1, Q̄
J2w2] = 0 if J1 6= ∅ or J2 6= ∅.

• The bracket [w1, w2] of basic products is defined recursively as

follows:

(1) If Jw1, w2K is a basic product, we let [w1, w2] = Jw1, w2K.
(2) [w1, w2] = Q̄|w1|w1 if w1 = w2.

(3) [w1, w2] = [w2, w1] if w1 > w2.

(4) [w1, w2] = [w3, [w1, w4]]+[w4, [w1, w3]] if w1 < w2 and w2 =
[w3, w4] with w1 < w3.

Proof. In [11], Hall defines the Lieti bracket on the linear span of the ba-
sic products as above, except that (2) is replaced with [w1, w1] = 0. He
then proves that the recursion in the definition does terminate and that
it produces a Lie

ti-algebra, that is, that the bracket is anti-symmetric,
satisfies the Jacobi identity and [x, x] = 0 for all x. A straightforward
adaptation of his proof will show that the above definition also termi-
nates and produces an allowable R̄-sLie-algebra. But before we explain
that, let us assume the bracket does define a R̄-sLie-algebra and check
that it is free. Let f : V → E be a morphism of graded vector spaces
where E is an allowable R̄-sLie-algebra. There is a unique bracket-
preserving extension of f to the linear span of the basic products, and
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therefore a unique extension of f to a morphism of allowable R̄-modules
AR̄(FsLie

ti(V )) → E. That this unique extension is also a morphism
of allowable R̄-sLie-algebras is clear from the above definition of the
bracket.

And now we check the bracket correctly produces an allowable R̄-
sLie-algebra. First of all, notice that the degrees of the various parts
of the definition are correct for a shifted bracket.
Secondly, having [w1, w1] = Q̄|w1|w1 instead of 0 does not affect ter-

mination of the recursion at all. Both 0 and Q̄|w1|w1 have the following
properties: (1) they are expressions containing no further brackets, so
if a term reduces to one of them that term requires no further reduc-
tion, and (2) if they appear inside a bracket, the term containing that
bracket is 0. This means that the process of reducing a bracket [x, y]
to a linear combination of basic products by repeatedly applying the
recursive definition uses exactly the same steps in both Hall’s Lieti case
and in our R̄-sLie case, the only difference being that any [w,w] that
appear on their own (that is, not inside a bracket) will reduce to Q̄|w|w
instead of 0.
Next we must check that this bracket satisfies [x, Q̄ky] = 0, [x, x] =

Q̄|x|x, symmetry and the Jacobi identity. All of these need only be
checked on the given basis. Symmetry and that [x, Q̄ky] = 0 are directly
built in to the definition, as is the fact that [x, x] = Q̄|x|x when x is a
basic product. When x = Q̄Jw for J = (j1, . . . , jk) with k ≥ 1, we have
[x, x] = 0 (since J 6= ∅), but we also have |x| = j1+ · · ·+ jk+ |w|−k <
j1+· · ·+jk+|w| so that Q̄|x|x = Q̄|x|Q̄Jw = 0 is required by allowability.
Now only the Jacobi identity remains to be checked:

∑

cyclic

[

Q̄J1w1, [Q̄
J2w2, Q̄

J3w3]
]

= 0.

If any Ji 6= ∅, all three terms are 0, so assume all Ji = ∅. This
remaining case can be proved exactly as in [11, Section 3, p. 579],
with one tiny change. There is only one place in that proof where the
condition [w,w] = 0 is used: it is at the very beginning of the argument
for the Jacobi identity. The proof starts by considering the case when
two of the wi are equal, say w1 = w2. Then the terms [w1, [w1, w3]]
and [w1, [w3, w1]] cancel by anti-symmetry and the remaining term is 0
since [w3, [w1, w1]] = [w3, 0]. In our case, that last term still vanishes:
[w3, [w1, w1]] = [w3, Q̄

|w1|w1] = 0. The rest of Hall’s argument goes
through verbatim. �

7.1. The free spectral Lie algebra on a sphere. For X = Sn,
Theorem 7.1 is essentially a restatement of [4, Theorem 1.5.1] using
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Proposition 7.4. Indeed, the free sLieti-algebra on H̃∗(S
n) = F2{ιn} is

just F2{ιn} again, so that sLR̄(H̃∗(S
n)) = AR̄(F2{ιn}), which is what

Behrens shows H∗(F∂∗(Id)(S
n)) to be.

7.2. The free spectral Lie algebra on a finite wedge of spheres.

Now we consider the case of X = Sd1 ∨Sd2 ∨· · ·∨Sdk for some integers
di ≥ 2; in this case F∂∗(Id)(X) can be computed from the results of [2],
which we now summarize.

Consider a bit more generally the case X = Σ(X1 ∨ · · · ∨Xk), where
the Xi are some connected spaces. In [2] there is a computation of
Dn(Id)(X) = ΣDn(ΩΣ)(X1∨· · ·∨Xk) that “takes multi-variable Good-
willie derivatives on both sides of the Hilton–Milnor theorem”.
The Hilton–Milnor theorem (see [16, Section XI.6]) gives a homotopy

equivalence between ΩΣX = ΩΣ(X1 ∨ · · · ∨Xk) and the weak1 infinite
product

∏

w ΩΣYw(X1, . . . , Xk), where w runs over the basic products
on k letters, and each Yw is the functor obtained from the word w by
interpreting the i-th letter asXi, and the bracket as the smash product;

so that Yw(X1, . . . , Xk) = X
∧m1(w)
1 ∧· · ·∧X∧mk(w)

k with mi(w) counting
the number of occurrences of the i-th letter in w.
Given a basic product w there is a map hw : Yw(X1, . . . , Xn) →

ΩΣX obtained from w by interpreting the i-th letter as the canonical
map Xi →֒ X → ΩΣX and interpreting the bracket as the Samelson
product. Let h̄w : ΩΣYw(X1, . . . , Xn) → ΩΣX be the extension of hw
to a map of A∞-spaces and for any set B of basic words let h̄B be the

composite
∏

w∈B ΩΣYw(X1, . . . , Xn)
∏
h̄w

−−−→ (ΩΣX)B
µ
−→ ΩΣX . Then

the Hilton–Milnor theorem can be stated as saying that the colimit of
h̄B over all finite sets of basic products is an equivalence.

The result Arone and Kankaanrinta obtain from the Hilton–Milnor
equivalence [2, Theorem 0.1] is the following equivalence of spectra:

(

∂n(ΩΣ) ∧ Σ∞
(

X∧n1
1 ∧ · · · ∧X∧nk

k

))

h(Σn1×···×Σnk
)
≃

∨

d|gcd(n1,...,nk)





∨

w∈W (
n1
d
,...,

nk
d
)

Dd(ΩΣ) (Yw(X1, . . .Xk))



 ,

whereW (n1

d
, . . . , nk

d
) is the set of basic products on k-letters involving

the i-th letter exactly ni

d
times.

1This means the homotopy colimit of the finite products, where the maps in the
colimit include a product into a larger product using the basepoint on the extra
factors.
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We can use this to get a nice formula for Σ−1F∂∗(Id)(X):

F∂∗(ΩΣ)(X1 ∨ · · · ∨Xk) =
∨

n

Dn(ΩΣ)(X1 ∨ · · · ∨Xk)

=
∨

n

(

∂n(ΩΣ) ∧ Σ∞(X1 ∨ · · · ∨Xk)
∧n
)

hΣn

=
∨

n

(

∂n(ΩΣ) ∧
∨

n1+···+nk=n

IndΣn

Σn1×···×Σnk
(X∧n1

1 ∧ · · · ∧X∧nk

k )

)

hΣn

=
∨

n1,...,nk

(

∂n1+···+nk
(ΩΣ) ∧ (X∧n1

1 ∧ · · · ∧X∧nk

k )
)

h(Σn1×···×Σnk
)

=
∨

n1,...,nk





∨

d|gcd(n1,...,nk)





∨

w∈W (
n1
d
,...,

nk
d
)

Dd(ΩΣ) (Yw(X1, . . . , Xk))









=
∨

m1,...,mk,d





∨

w∈W (m1,...,mk)

Dd(ΩΣ) (Yw(X1, . . . , Xk))





=
∨

w∈W

F∂∗(ΩΣ) (Yw(X1, . . . , Xk)) ,

where the last wedge runs over all basic products in k letters, and the
next to last step uses the change of variablesmi =

ni

d
: this gives a bijec-

tion between all (k + 1)-tuples (n1, . . . , nk, d) of positive integers with
d | gcd(n1, . . . , nk), and all (k + 1)-tuples (m1, . . . , mk, d) of positive
integers.
This in turn tells us, for F∂∗(Id), that:

F∂∗(Id) (Σ(X1 ∨ · · · ∨Xk)) =
∨

w∈W

F∂∗(Id) (ΣYw(X1, . . . , Xk)) .

Plugging in Xi = Sdi−1, for some di ≥ 2, we get that

F∂∗(Id)
(

Sd1 ∨ · · · ∨ Sdk
)

=
∨

w∈W

F∂∗(Id)
(

S1+
∑

imi(w)(di−1)
)

,

so that Proposition 7.4 allows us to conclude Theorem 7.1 for the wedge
Sd1 ∨ · · · ∨ Sdk from the case of single spheres.

7.3. The free spectral Lie algebra on a simply-connected space.

Bootstrapping from the previous cases to F∂∗(Id)(X) for general simply-
connected X is purely formal using the fact that H∗(F∂∗(Id)(X)) only
depends on the homology of X , as shown in Proposition 2.1.
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Let φX : sLR̄(H̃(X)) → H∗(F∂∗(Id)(Σ
∞X)) be the canonical map

coming from the universal property of the the free allowable R̄-sLie-
algebra.
If X is an arbitrary wedge of spheres, each of dimension at least 2,

then we can write X as a filtered colimit of finite wedges of spheres
and these fall under the previous case. Since homology and the free
functors we are using all commute with filtered colimits, the result also
holds for such an X .
Now, for a general simply-connected X , pick an F2-basis {xj} of

H̃∗(X) and use it to construct an equivalence of HF2-module spectra f :
∨

j Σ
|xj |HF2 → HF2 ∧Σ∞X . The natural transformation φ is a special

case of a natural transformation ψV : sLR̄(π∗(V )) → π∗(FHF2∧∂∗(Id)(V ))
for HF2-module spectra V , in the sense that φX = ψHF2∧Σ∞X . In the
naturality square

sLR̄(π∗(
∨

j Σ
|xj |HF2))

ψ
(
∨
j Σ

|xj |HF2)
//

sLR̄(π∗(f))

��

π∗(FHF2∧∂∗(Id)(
∨

j Σ
|xj |HF2))

π∗(FHF2∧∂∗(Id)(f))

��

sLR̄(π∗(HF2 ∧ Σ∞X))
ψ(HF2∧Σ∞X)

// π∗(FHF2∧∂∗(Id)(HF2 ∧ Σ∞X)),

all maps are known to be isomorphisms (the vertical ones because f is
an equivalence, the top one because it is φ

(
∨

j S
|xj |)

) except the bottom

one, which therefore also is an isomorphism.

8. Divided power algebras and Koszul duality

In this section we review some results from [15] and explain heuris-
tically their relation to our computation.
Let R be an augmented E∞-ring spectrum, or more precisely, an

augmented commutative S-algebra. In [15], Kuhn discusses a model
for the Topological André–Quillen homology spectrum TAQ(R) of R
given by

TAQ(R) = hocolim
n→∞

ΩnSn ⊗ R

where ⊗ denotes the tensoring of augmented commutative S-algebras
over pointed spaces ([15, Definition 7.2]). As mentioned in that pa-
per, this model was shown by Mandell to be equivalent to standard
definitions of TAQ(R).
Kuhn defines a filtration on TAQ(R) (coming from a filtration on

these tensor products) and identifies [15, Corollary 7.5] the associated
graded pieces as

FdTAQ(R)/Fd+1TAQ(R) ≃
(

Pd ∧ (R/S)∧d
)

hΣd
,
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where Pd is the partition complex and R/S denotes the cofiber of the
unit η : S → R of the ring spectrum R.
One can use the spectral sequence associated to this filtration to

compute the cohomology H∗(TAQ(R);F) and Kuhn identifies the E1-
page [15, Theorem 8.1] for F of characteristic p as

E∗,∗
1 (TAQ(R);F) = R(ΣLr(Σ

−1H̃∗(R;F))),

where Lr is the free restricted Lie algebra functor and R is, roughly
speaking, the free algebra-over-the-Dyer-Lashof-algebra functor.

Before explaining how this result is related to this paper, a quick
reminder of divided power algebras is in order. Associated to an operad
O one has the free algebra monad whose functor part is

X 7→
∨

n≥0

(O(n) ∧X∧n)hΣn
,

but also, under certain relatively mild conditions, another monad de-
fined using homotopy fixed points instead:

X 7→
∨

n≥0

(O(n) ∧X∧n)
hΣn .

The algebras for this second monad are called divided power O-algebras

because of the special case of the commutative operad in vector spaces
over a field, where they are the traditional divided power algebras. In
the case of the classical Lie operad over Fp, the divided power algebras
turn out to be restricted Lie algebras ([9, Theorem 0.1]).

Kuhn’s result is related to the results in this paper through Koszul
duality: the spectral Lie operad should be thought of as Koszul dual
to the commutative operad in spectra, whose algebras are, of course,
E∞-ring spectra. Koszul duality of operads, roughly speaking, should
result in an equivalence between the category of algebras for one operad
and the category of divided power algebras for the other. In this case
D◦TAQ should implement the equivalence (where D denotes Spanier–
Whitehead duality), taking E∞-ring spectra to divided power spectral
Lie algebras —which might be called spectral restricted Lie algebras, at
least when working with the version for HFp-module spectra.
The associated graded of Kuhn’s filtration of TAQ(R), namely,

∨

d≥0

(

Pd ∧ (R/S)∧d
)

hΣd

looks a lot like the free ∂∗(Id)-algebra on R/S, except that it has the
partition complex Pd instead of its Spanier–Whitehead dual ∂n(Id).
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The cohomology of the associated graded is given by the homotopy
groups of the mapping spectrum

Map(
∨

d≥0

(

Pd ∧ (R/S)∧d
)

hΣd
, HF) ≃

∨

d≥0

(∂d(Id) ∧Map(R/S,HF))hΣd

so one can think of Kuhn’s formula for the E1-page as giving the homol-
ogy of the free divided power ∂∗(Id)-algebra on R/S. From this point
of view it is no surprise that Kuhn’s formula involves free restricted Lie
algebras, while our formulas involve free Lie algebras.
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