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Abstract

We define an ∞-category CycSyn of p-typical cyclotomic synthetic spectra and prove that the motivic
filtration on THH(R;Zp), defined by Bhatt, Morrow, and Scholze when R is quasisyntomic and by Hahn,
Raksit, and Wilson in the chromatically quasisyntomic case, naturally admits the structure of a p-typical
cyclotomic synthetic spectrum. As a consequence, we obtain new bounds on the syntomic cohomology
of connective chromatically quasisyntomic E∞-ring spectra.
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1. Introduction 2

1 Introduction

If R is a ring or a ring spectrum, then its topological Hochschild homology THH(R) naturally admits the
structure of a cyclotomic spectrum [32]. This structure allows one to define TC(R), the topological cyclic
homology of R, which is the target of the trace map K(R) → TC(R) forming the basis of many recent
computations in algebraic K-theory.

If R is commutative and p-quasisyntomic, then Bhatt, Morrow, and Scholze introduced a motivic filtration
F>⋆
motTHH(R;Zp) on the p-completed topological Hochschild homology of R as well as motivic filtrations on

TC−(R;Zp), TP(R;Zp), and TC(R;Zp). The associated graded pieces of these filtrations can be used to
define prismatic and syntomic cohomology theories. The existence of these filtrations and their connection
to K-theory provides additional techniques for computing TC(R;Zp) and K-groups. However, this motivic
filtration is not a filtration in cyclotomic spectra.

A related motivic filtration has been constructed in [18] by Hahn, Raksit, and Wilson on THH(R;Zp) for
certain E∞-ring spectra, which they call chromatically p-quasisyntomic. For the purpose of this introduction,
we will also write F>⋆

motTHH(R;Zp). Integral versions of these filtrations exist thanks to [6, 18, 29].
This paper gives an explanation of what is F>⋆

motTHH(R;Zp). To explain our answer, we recall that an
algebraic analogue of motivically-filtered THH is given by HHfil(R/Z), which is the Hochschild homology of
the commutative ring R together with its HKR-filtration. This is a filtered spectrum with S1-action, but in
fact admits more structure: it is a filtered spectrum with Tfil-action, where Tfil = τ>⋆Z[S

1]. The filtered
circle was introduced in this form in Raksit [35] and in a closely related form in work of Moulinos–Robalo–
Toën [31].

A minimum requirement for F>⋆
motTHH(R;Zp) is that it should be a filtered spectrum with filtered circle

action and where the cyclotomic Frobenius ϕp : THH(R;Zp) → THH(R;Zp)
tCp respects the filtrations and

filtered circle-actions. It is well-known that there cannot be a lift of Tfil to the sphere spectrum (see
Remark 2.30). However, F>⋆

motTHH(R;Zp) is naturally a synthetic spectrum and, following a suggestion of
Raksit, there is a lift of Tfil to a synthetic spectrum Tev. This lift is also studied by Hedenlund and Moulinos
in [19].

We introduce the stable ∞-category SynSpTev
of synthetic spectra with Tev-action and construct syn-

thetic analogues of homotopy orbits, fixed points, and Tate for Cn and S1. This allows us to introduce the
∞-category CycSyn of p-typical cyclotomic synthetic spectra as the ∞-category of pairs (M,ϕp) where M
is a synthetic spectrum with Tev-action and ϕp : M → M tCp,ev is a Tev-equivariant map, where M tCp,ev is
viewed as a synthetic spectrum with Tev-action via restriction of scalars along the multiplication-by-p map
Tev → Tev. We do not discuss the more general notion of cyclotomic synthetic spectrum with Frobenii for
all primes, so we will call p-typical cyclotomic synthetic spectra simply cyclotomic synthetic spectra.

With this definition of cyclotomic synthetic spectra, we establish the following result.

Theorem A. If R is a p-quasisyntomic commutative ring, then the motivic filtration F>⋆
motTHH(R;Zp)

naturally admits the structure of an E∞-algebra in CycSyn. If R is chromatically p-quasisyntomic, then
F>⋆
motTHH(R;Zp) naturally admits the structure of an E∞-algebra in CycSyn.

There is a synthetic analogue of TC, which is an exact functor CycSyn → SynSp and we find that
TC(F>⋆

motTHH(R;Zp)) ≃ F>⋆
motTC(R;Zp). Thus, having constructed the cyclotomic synthetic structure

on F>⋆
motTHH(R;Zp), we recover in addition the motivic filtration on TC(R;Zp). Similar results hold for

TC−(R;Zp) and TP(R;Zp) and there are non-p-completed results as well in the case that R is integrally
quasisyntomic. See Theorems 3.27 and 3.29 for details.

Synthetic spectra admit many natural t-structures C. To each one which satisfies a reasonable list of
conditions we associate a t-structure on CycSyn, generalizing the work of [3]. We will write πcyc,C

∗ for the
homotopy objects with respect to the t-structure induced by C. Perhaps the most interesting is the Postnikov
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t-structure CycSynP>0, in which case we will write πcyc,P
∗ . To analyze this t-structure, we give a theory of

Cartier modules in synthetic spectra.
In [3, Def. 3.34], a notion of Cartier complex was given, consisting of graded abelian group M∗ together

with operations d, η : M∗ →M∗+1 and F, V : M∗ →M∗ satisfying various relations which hold in de Rham–
Witt complexes. Below, we introduce the notion of an η-deformed (p-typical) Cartier complex, which agrees
with the notion of a Cartier complex except that we do not require that η4 = 0. (These have also been studied
by Krause and Nikolaus in unpublished work.) There is an abelian category DCartη of η-deformed Cartier
complexes as well as a full subcategory DCartη,∧ of derived V -complete η-deformed Cartier complexes.

Theorem B. There is an equivalence CycSynP♥ ≃ DCartη,∧.

Corollary C. Suppose that R is a smooth commutative Fp-algebra. Under the equivalence of Theorem B,
πcyc,P
0 (F>⋆

motTHH(R)) ∼= WΩ•
R, the de Rham–Witt complex of R.

The corollary itself has some interesting consequences, such as the fact that

WΩ•
R
“⊠ZpWΩ•

S
∼= WΩ•

R⊗FpS
,

where the tensor product is the V -completed tensor product on DCartη,∧ induced from the compatibility of
the Postnikov cyclotomic synthetic t-structure with the symmetric monoidal structure. This is a generaliza-
tion of the isomorphism W (R)“⊠W (S) ∼= W (R⊗ S) proved in [3].

Corollary D. If S is a smooth commutative Fp-algebra, then τ>⋆TR(S) admits the structure of an E∞-
algebra with Tfil-action.

It is natural to wonder if TR(S) in fact admits the structure of an filtered animated commutative Zp-
algebra with Tfil-action in the sense of [35]. It has been announced by Nikolaus that TR(S) is an animated
commutative ring, so we are left to wonder about the compatibility of this structure with the filtration and
the circle action. This will be clarified by forthcoming work of Bachmann–Burklund who will show that
F>⋆
motTHH(R;Zp) admits a universal property in the context of Gm-equivariant normed motivic algebras.

The connection here is that the ∞-category of (even) synthetic spectra is equivalent (after p-completion) to
the ∞-category of p-complete cellular motivic spectra over C. Under this equivalence, our synthetic circle
Tev is corresponds to Gm. There is a notion of normed motivic algebra due to Bachmann–Hoyois [4] which
deforms the notion of derived commutative ring and F>⋆

motTHH(R;Zp) is the universal p-complete normed
motivic algebra with a Gm-action attached to R.

Using the connection between crystals and de Rham–Witt connections established by Bloch [8], we use
Corollary C to prove the following result.

Theorem E. Let k be a perfect Fp-algebra and let A be a smooth k-algebra. There is a fully faithful
embedding

FBTop
A →֒ CycSyn

F>∗

ev THH(A;Zp)

from the opposite category of formal p-divisible groups over A to the ∞-category of F>∗
ev THH(A;Zp)-modules

in CycSyn.

We were motivated by the following question for which we have currently no more than ad hoc construc-
tions.

Question 1.1. Is there a deformation of the functor of Theorem E to flat F>⋆
motTHH(R;Zp)-modules in

CycSyn?
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There is also a functor defined on a certain subcategory of F>⋆
motTHH(R;Zp)-modules in cyclotomic

synthetic spectra to quasicoherent sheaves on (Spf R)syn, the syntomification of R in the sense of Bhatt,
Lurie, and Drinfeld [5, 14]. This source of prismatic F -gauges was one of the original motivations for this
work and was discussed at length with Jacob Lurie who has discovered a compatible t-structure on F -gauges.

We conclude the paper by giving a synthetic analogue of the Beilinson fiber square as established in [2] as
well as a synthetic analogue of a result connecting the image of j spectrum to THH(Zp) due to Devalapurkar
and Raksit [12]. The former allows for an extension of some of the main results of [2] to the case of
chromatically p-quasisyntomic ring spectra.

Theorem F. Let R be a connective chromatically p-quasisyntomic E∞-ring spectrum. Then, grimotTC(R;Zp) ∈
D(Zp)[i−1,2i] for all i > 0.

As a special case, when R is discrete, Theorem F recovers Theorem 5.1(1) of [2].
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2 The synthetic circle

In this section, we recall some facts about synthetic spectra [15, 34] and introduce the synthetic analogue of
the circle, Tev, which is constructed after a suggestion of Raksit using the even filtration [18, 33] and is a
deformation to synthetic spectra of the filtered circle of [31, 35]. See also the work of Hedenlund–Moulinos [19]
which has substantial overlap with the material in this section.

2.1 Synthetic spectra and t-structures

Synthetic spectra were introduced in the context of K(n)-local homotopy theory by Hopkins and Lurie in [21]
and generalized by Pstrągowski in [34]. We take an alternative approach via filtered spectra due to Gheorghe,
Isaksen, Krause, and Ricka [15]. We touch upon the equivalence of these approaches below in Remark 2.14.

Definition 2.1 (Filtered spectra). Let Zop be the poset of decreasing integers. We let Sp = D(S) denote
the ∞-category of spectra, and we let FSp = FD(S) = Fun(Zop,D(S)) be the ∞-category of (decreasing)
filtered spectra. Both ∞-categories are symmetric monoidal, D(S) with the usual tensor (or smash) product
(−)⊗S (−) of spectra and FD(S) with the Day convolution symmetric monoidal structure, induced from the
symmetric monoidal structure on D(S) and the symmetric monoidal structure on Zop arising from addition.

If F>⋆M and F>⋆N are two filtered spectra, then the tensor product F>⋆O = (F>⋆M) ⊗S (F>⋆N) is
given by F>nO ≃ colimi+j>n F>iM ⊗S F>jN . For more details, see [7, 17, 30, 35].
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Given i ∈ Z, we let insi : D(S) → FD(S) denote the left Kan extension along the inclusion {i} →֒ Zop.
As the Yoneda functor Zop → FD(S) is symmetric monoidal, ins0S is the unit for the symmetric monoidal
structure on FD(S). We will typically write S for ins0S.

There is also the constant filtration functor c : D(Z) → FD(S) obtained by pullback along Zop → ∗.
Finally, there is the colimit, or underlying spectrum functor,

F−∞ : FD(S)→ D(S)

given by F>−∞(F>⋆M) = colimi→−∞ F>iM . We will write this more succinctly as F>−∞M or |F>⋆M |.
Finally, say that F>⋆M is complete if limi F

>iM ≃ 0. The full subcategory of complete filtered spectra
is denoted by ”FD(S) ⊆ FD(S). It is a symmetric monoidal localization of the ∞-category of filtered spectra
and we denote the completed tensor product by (−)“⊗(−).

There are several t-structures on the ∞-category of filtered spectra of interest to us.

Construction 2.2 (The neutral t-structure). As FD(S) = Fun(Zop,D(S)) is a functor category, it inherits
a t-structure from the standard t-structure on D(S), called the neutral t-structure, in which a filtered
spectrum F>⋆M is connective (or coconnective) in the canonical t-structure if and only if F>iM ∈ D(S)>0

(or in D(S)60) for all i. This t-structure is accessible and compatible with filtered colimits and is moreover
compatible with the symmetric monoidal structure on FD(S) and the functor taking F>⋆M to the filtered
abelian group i 7→ π0F

>iM induces a symmetric monoidal equivalence

π0F
>⋆ : FD(S)N♥ ≃ FModD⊗

Z ,

where FModD⊗
Z is the abelian category of filtered abelian groups with the Day convolution symmetric

monoidal structure.1 We write (FD(S)N>0,FD(S)N60) for this t-structure.

Construction 2.3 (The Postnikov t-structure). Let FD(S)P>0 ⊆ FD(S) be the full subcategory consisting
of filtered spectra F⋆M such that FiM ∈ D(S)>i for all i ∈ Z. Similarly, let FD(S)P60 ⊆ FD(S) consist
of those F⋆M where FiM ∈ D(S)6i for all i ∈ Z. The pair (FD(S)P>0,FD(S)P60) defines a t-structure on
FD(S), the Postnikov t-structure. Again, this t-structure is accessible, compatible with filtered colimits,
and compatible with the symmetric monoidal structure on FD(S). The functor π∗F

∗, which takes a filtered
spectrum F⋆M to the graded abelian group i 7→ πiF

iM , induces a symmetric monoidal equivalence

π∗F
∗ : FD(S)P♥ ≃ GrModK⊗

Z , (1)

where GrModK♥
Z denotes the abelian category of graded abelian groups with the Koszul symmetric monoidal

structure.

In order to define synthetic spectra, we first define the synthetic sphere spectrum as a filtered E∞-ring.
To do, we give a way of building some non-trivial filtered E∞-rings.

Lemma 2.4. The functor τ>⋆ : D(S)→ FD(S) admits a natural lax symmetric monoidal structure such that
the induced symmetric monoidal structure on the composition idD(S) ≃ F−∞ ◦ τ>⋆ is the canonical one.

Proof. The functor τ>⋆ : D(S)→ FD(S) is obtained as a composition

D(S)
c
−→ FD(S)

τP
>0
−−→ FD(S)P>0 →֒ FD(S),

1We do not require the transition maps Fi+1M → FiM in a filtered abelian group to be injective.
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where c : D(S)→ FD(Z) is the constant filtration functor. The truncation τP>0 and the inclusion FD(S)P>0 →֒
FD(S) are lax symmetric monoidal and symmetric monoidal, respectively, as the Postnikov t-structure is
compatible with the symmetric monoidal structure. Finally, the constant filtration functor is lax symmetric
monoidal; in fact it is a fully faithful symmetric monoidal functor onto the category of c(S)-modules in
FD(S).

Corollary 2.5. The functor τ>2⋆ : D(S)→ FD(S) admits a lax symmetric monoidal structure such that the
induced symmetric monoidal structure on the composition idD(S) ≃ F−∞ ◦ τ>2⋆ is the canonical one.

Proof. This follows from Lemma 2.4 and the fact that the multiplication-by-2 functor Zop 2
−→ Zop is symmetric

monoidal, so restriction along it induces a symmetric monoidal functor FD(S) → FD(S) sending F⋆M to
F2⋆M .

Corollary 2.6. If A is an E∞-ring spectrum, then τ>2⋆A is naturally an E∞-algebra in filtered spectra.

Definition 2.7 (The synthetic sphere spectrum). Let MU• be the Čech complex associated to S → MU,
viewed as a cosimplicial E∞-ring, so that MU0 ≃ MU, MU1 ≃ MU ⊗S MU, and so on. We can apply
τ>2⋆ pointwise to obtain a cosimplicial E∞-algebra τ>2⋆MU• in filtered spectra using Corollary 2.6. We let
Sev denote the limit in CAlg(FD(S)), the ∞-category of E∞-algebras in filtered spectra. We call Sev the
synthetic sphere spectrum, or the even sphere spectrum. It is complete with underlying object given
by S.

Remark 2.8. The E1-page of the spectral sequence associated to Sev is the E2-page of the Adams–Novikov
spectral sequence.

To explain the terminology, recall that a spectrum X is even if π2i−1X = 0 for all i ∈ Z. An E∞-ring is
even if it is even as a spectrum.

Variant 2.9 (Alternative constructions). If A is any E∞-ring, Hahn–Raksit–Wilson [18] introduce the even
filtration

F>⋆
ev A = lim

A → B even
τ>2⋆B,

where the limit is over all maps of E∞-rings A→ B where B is even and is taken in E∞-algebras in filtered
spectra using Corollary 2.6. They prove in [18, Cor. 2.2.17] that F>⋆

ev A can be computed using Novikov
descent, which shows in particular that F>⋆

ev S ≃ Sev. In [33], Pstrągowski introduced another even filtration
construction and shows that it agrees with that of [18] in many cases, including for the sphere spectrum.

Notation 2.10. We will write F>⋆
ev A and Aev interchangeably for the even filtration on an E∞-ring spectrum

A.

Definition 2.11 (Synthetic spectra). We define SynSp to be the ∞-category ModSevFD(S) = FD(Sev) of
Sev-modules in filtered spectra. Objects of SynSp are called synthetic spectra in this paper.

Definition 2.12. The evaluation at zero functor FD(S) → Sp from synthetic spectra to spectra admits a
symmetric monoidal left adjoint ins0 : Sp→ FD(S). Concretely this functor is given by

Fnins0M ≃

®
0 if n > 0

M if n 6 0,

with all transition maps Fnins0M → Fn−1ins0M being equivalent to the identity on M for n 6 0. If M
is in D(Z), then ins0M naturally admits an ins0Z-module structure and hence a Sev-module structure via
restriction of scalars along Sev → ins0Z.
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Remark 2.13 (Bounds). If A is an E∞-ring, then grievA is in D(S)62i by construction. If A is connective,
then grievA is in fact i-connective so that it is in D(S)[i,2i]. This is a result of Burklund–Krause (private
communication). However, when the even filtration coincides with the filtration of [33], as is the case for the
sphere spectrum and the other connective E∞-ring spectra studied in [18], it also follows from [33, Thm. 1.7].

Remark 2.14 (History). The terminology of synthetic spectra originates in [21] where it is introduced
by Hopkins–Lurie in a special case. The idea and terminology is generalized by Pstrągowski in [34] who
introduces a stable∞-category SynE for any E∞-ring spectrum E and proves that a certain full subcategory
SynevMU ⊆ SynMU is equivalent to the stable∞-category of cellular motivic spectra over C after p-completion
at any prime p. The connection to filtered spectra is due to Gheorghe–Isaksen–Krause–Ricka [15] who
study Sev as defined above and show that FD(Sev) is equivalent to the stable∞-category of cellular motivic
spectra over C after 2-completion. They remark in [15, Rem. 6.13] that it is possible to directly compare
FD(Sev) and Pstrągowski’s SynE . Gregoric in [16] compares FD(Sev) to so-called ind-coherent sheaves on
the connective cover of the moduli stack of oriented formal groups.

In more detail, Pstrągowski’s ∞-category of even MU-based synthetic spectra is defined as follows. One
begins with the ∞-category SpfpeMU of finite spectra X such that MU∗X is even and projective as a graded
MU∗-module spectrum, which is given the topology where the coverings are maps X → Y such that MU∗X →
MU∗Y is surjective. Then, SynevMU is defined to be the full subcategory of sheaves of spectra (Spfpe

MU)
op → Sp

which preserve finite products. The symmetric monoidal structure on SynevMU is given by Day convolution
arising from the smash product of spectra, which restricts to a symmetric monoidal structure on SpfpeMU.
There is also a t-structure on SynevMU whose connective part consists of the full subcategory of sheaves of
anima which preserve finite products. Pstrągowski defines the synthetic analogue functor ν : Sp → SynevMU,
which is additive but not exact, as the composition of the (restricted) Yoneda functor h : Sp → (SynevMU)>0

with the fully faithful suspension spectrum functor Σ∞
+ : (SynevMU)>0 → SynevMU. Pstrągowski shows that

SynevMU is generated under colimits by the bigraded spheres St,2w = ν(S[2w])[t − 2w].
There is an equivalence SynevMU ≃ SynSp discovered in [15]. Under this equivalence St,2w corresponds to

Sev(w)[2w][t − 2w] ≃ Sev(w)[t].
Under the equivalence SynevMU ≃ SynSp, the canonical sheaf t-structure on SynevMU is given in terms of

filtered Sev-modules as follows. We say that F>⋆M ∈ SynSp is MU-connective if

F>i
(
F>⋆M ⊗Sev MUev

)

is (2i)-connective for all i ∈ Z. Write SynSpMU
>0 for the connective objects, which are the connective part of

a t-structure on SynSp, which we will call the synthetic t-structure. Pstrągowski proves that SynSpMU♥ is
equivalent to the symmetric monoidal abelian category of MU∗MU-comodules.

Construction 2.15 (The Postnikov t-structure on synthetic spectra). It follows from Remark 2.13 that Sev

is connective in the Postnikov t-structure on FD(S). Thus, SynSp = FD(Sev) inherits a Postnikov t-structure
as well, where a synthetic spectrum is connective or coconnective if its underlying filtered spectrum is. This
t-structure is accessible, compatible with filtered colimits, and compatible with the symmetric monoidal
structure in SynSp. It follows that SynSpP♥ ≃ ModπP

0 Sev
(FD(S)P♥). But, π∗F

∗(πP
0 Sev) ∼= π∗F

∗Sev
∼=

π∗gr
∗Sev

∼= Z[η]/2η, where η denotes the Hopf map, of weight 1, and the second isomorphism follows from
the connectivity bounds of Remark 2.13. Therefore, taking π∗F

∗ induces a symmetric monoidal equivalence

π∗F
∗ : SynSp♥ ≃ GrModZ[η]/2η

using (1), where GrModK⊗
Z[η]/2η is the abelian category of graded Z[η]/2η-modules with the Koszul symmetric

monoidal structure. The action of η induces the slope 1 lines visible in Adams–Novikov charts, such as can
be found in [23].



2.1 Synthetic spectra and t-structures 8

Remark 2.16. If we restrict our attention to synthetic spectra over S[1/2]ev, then the heart of the Postnikov
t-structure is equivalent to graded modules over Z[1/2], since πP

0 S[1/2]ev
∼= Z[1/2].

Lemma 2.17. Let R be an E∞-ring. Then the space of E∞-ring structures on τ>2⋆R compatible with the
one on R is contractible.

Proof. Consider the diagram of adjoints

CAlg(FD(S)2P>0) CAlg(FD(S))

CAlg(Sp)

i

F>−∞

τ2P
>0

F>−∞ const
τ>2⋆

and note that the counit of the diagonal adjunction is an equivalence. Thus, the functor τ>2⋆ : CAlg(Sp)→
CAlg(FD(S)2P>0) is fully faithful. The inclusion i is fully faithful as well, whence the result.

In the remainder of this section, we include some complements on the even filtration from [18].

Lemma 2.18 (The even filtration is lax symmetric monoidal). The functor F>⋆
ev : CAlg(D(S))→ CAlg(FD(S))

is lax symmetric monoidal.

Proof. This follows from the construction of Variant 2.9, which shows that F>⋆
ev is indeed a functor from

CAlg(D(S)) to CAlg(FD(S)) together with the fact that the symmetric monoidal structure on each side
is cocartesian; any functor between ∞-categories with finite coproducts is lax symmetric mononidal with
respect to cocartesian symmetric monoidal structures (see [26, Prop. 2.4.3.8]).

Corollary 2.19. The functor F>⋆
ev takes values in CAlg(SynSp), the∞-category of E∞-algebras in synthetic

spectra, and the induced functor F>⋆
ev : CAlg(Sp)→ CAlg(SynSp) is lax symmetric monoidal.

Proof. By Lemma 2.18, each F>⋆
ev A is naturally an E∞-algebra over F>⋆

ev S ≃ Sev and hence naturally an
E∞-algebra object in SynSp. The proof of lax symmetric monoidality is the same as for Lemma 2.18.

Notation 2.20. If C is an E∞-ring, we will sometimes write Cev for F>⋆
ev C, the associated E∞-algebra in

synthetic spectra.

Remark 2.21 (Adams resolutions are synthetic). If E is an E∞-algebra over MU, then the Čech complex
E• of S → E admits a natural map MU• → E•. It follows that Tot(τ>2⋆E

•) is an E∞-algebra over
Tot(τ>2⋆MU•) ≃ Sev, i.e., an E∞-algebra in synthetic spectra.

To analyze the even circle, we will need the notion of even faithfully flat maps from [18].

Definition 2.22 (Even faithfully flat). A map A → B of E∞-rings is even faithfully flat or eff if, for
every map A → C of E∞-rings where C is even, the pushout C ⊗A B is even and ⊕∗∈Zπ∗(C ⊗A B) is a
faithfully flat module over the commutative ring ⊕∗∈Zπ∗C.

Notation 2.23. In the situation of Definition 2.22, we will say that π∗(C ⊗A B) is faithfully flat over π∗C
if ⊕∗∈Zπ∗(C ⊗A B) is faithfully flat over ⊕∗∈Zπ∗C, in conflict with the usual notion of flatness for graded
modules, which we will not use.

Remark 2.24 (Base change for eff maps). If A → B is eff and A → C is an arbitrary map of E∞-rings,
then the induced map C → C ⊗A B is eff.
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Example 2.25. The unit map S→ MU is eff.

Definition 2.26 (Locally even). An E∞-ring A is eff-locally even if it admits an eff map A→ B where B
is even.

The following lemma is [18, Cor. 2.2.14(1)].

Lemma 2.27. Suppose that A→ B is an eff map of E∞-rings with Čech complex B•.

(a) The natural map F>⋆
ev A→ Tot(F>⋆

ev B•) is an equivalence.
(b) If B is even, so that A is eff-locally even, then the natural map F>⋆

ev A→ Tot(τ>2⋆B
•) is an equivalence.

Variant 2.28 (Discretely p-completely eff). There are p-complete variants of the notions above. The one
studied in [18] is the following. Say that a map A → B of commutative rings is discretely p-completely
faithfully flat if for every commutative ring C the p-completed (derived) pushout (C ⊗A B)∧p is discrete and
p-completely faithfully flat over C, which means that C/p⊗AB is discrete and is a faithfully flat C/p-module.
Say that a map A→ B of E∞-rings is discretely p-completely eff if for every even E∞-ring C the p-completed
pushout (C ⊗A B)∧p is even and π∗(C ⊗A B)∧p is discretely p-completely faithfully flat over π∗C in the spirit
of Notation 2.23.

2.2 The synthetic circle

If B is an E∞-ring, we let B[S1] ≃ B⊗SS[S
1] ≃ B⊗SΣ

∞
+ S1 be the group ring of the anima S1 over B, which

is itself an E∞-ring and in fact is a bicommutative bialgebra, meaning an E∞-coalgebra in CAlg(D(C)).
Let B[S1]∨ be the B-linear dual of B[S1], which is equivalent to BS1

+ by Atiyah duality and is again a
bicommutative bialgebra. Raksit introduced a filtered version of the group ring of S1 circle in [35] when
C = Z; it appears in a related way in [31].

Definition 2.29 (The filtered circle). Let T = Z[S1] and define Tfil = τ>⋆T. By Lemma 2.4, the E∞-
algebra structure on T induces an E∞-algebra structure on Tfil. However, T admits the structure of a
bicommutative bialgebra, i.e., it admits an E∞-coalgebra structure in CAlg(D(Z)). This too is inherited
by Tfil as τ>⋆ is symmetric monoidal on the full subcategory of D(Z) consisting of T⊗n for n ∈ Z. The
bicommutative bialgebra Tfil is called the filtered circle. Its dual is T∨

fil, which is also a bicommutative
bialgebra.

Remark 2.30 (No Tfil over S). It is well-known that Tfil does not lift to the sphere spectrum. This means
that there is no way to put a filtration on S[S1] with the property that S has weight 0 and the fundamental
class d of S1 has weight 1. Indeed, d2 = ηd in π∗S[S

1], see [20, Section 1.1.3], which leads to a contradiction
by considering weights.

We will see below that Tfil can also be constructed as the even filtration on T. This motivates the
following definition, suggested to us by Raksit.

Definition 2.31 (Raksit). Let Tev ∈ CAlg(SynSp) denote the E∞-algebra F>⋆
ev S[S1] in synthetic spectra.

This is the synthetic circle, or the even circle. Let T∨
ev denote the internal dual MapSev

(Tev,Sev).

Warning 2.32. The dual T∨
ev is not (SS1

+)ev. In fact, this fails Z-linearly.

By lax symmetric monoidality, Tev is an E∞-algebra in SynSp. Our goal below is to construct a bicom-
mutative bialgebra structure on Tev extending the E∞-algebra structure which, together with dualizability
of Tev, will produce such a structure on T∨

ev as well. To do so, we need some preliminary results.

Lemma 2.33. If B is an even E∞-ring, then the augmentation map B[S1]→ B is eff.
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Proof. We follow the proof of [18, Lem. 4.2.5]. Suppose that R is an even E∞-ring under B[S1]. Let
T = R ⊗B[S1] B. The Tor spectral sequence computing π∗T has E1-page given by the graded homotopy
groups of

π∗R⊗
L
π∗B[S1] π∗B ∼= π∗R⊗π∗B π∗B ⊗

L
π∗B[S1] π∗B ∼= π∗R⊗π∗B Γπ∗B(σd),

since the generator d of π1B[S1] must map to zero in π∗R by evenness. As the divided power algebra
Γπ∗B(σd) is free as a π∗B-module on even classes, the spectral sequence degenerates and T is even with π∗T
faithfully flat over π∗R, as desired.

Corollary 2.34. If B is an eff-locally even E∞-ring, then B[S1] is eff-locally even.

Proof. For example, if B → C is eff where C is even, use the composition B[S1] → C[S1] → C to see that
B[S1] is locally eff.

Lemma 2.35. Let A→ B → C be maps of E∞-rings. Suppose that for every even E∞-ring R under A the
induced map R⊗A B → R⊗A C is eff. Then, B → C is eff.

Proof. Given B → R where R is even, we can consider R as an E∞-A-algebra and the use the induced map
R⊗A B → R to construct a commutative diagram

B //

��

C

��

R⊗A B //

��

R ⊗A C

��

R // R⊗B C.

All three squares are pushout squares. By hypothesis, the middle horizontal map is eff. Since R is even, so
is R ⊗B C.

Corollary 2.36. For any E∞-ring B, the natural map B[S1]→ B is eff.

Proof. By base change for eff maps, it is enough to prove the lemma when B = S. This case follows from
Lemma 2.35 applied to S→ S[S1]→ S using Lemma 2.33.

Now, we analyze the even filtration of Z[S1], showing that it agrees with Raksit’s Tfil = τ>⋆(Z[S
1]).

Lemma 2.37. There is a natural equivalence F>⋆
ev (Z[S1]) ≃ Tfil.

Proof. By the result of Burklund and Krause quoted above in Remark 2.13 or by [33, Thm. 1.7], F>⋆
ev (Z[S1])

is connective in the Postnikov t-structure, so there is a natural map

F>⋆
ev (Z[S1])→ Tfil = τ>⋆Z[S

1].

Consider the augmentation Tfil → Z in filtered E∞-rings. Let Z•
F be the Čech complex of the augmentation

and let Z• be the Čech complex of Z[S1] → Z. Note that these augmentations are descendable in the
sense of [27]; in particular, the natural map Tfil → Tot(Z•

F ) is an equivalence. On the other hand, by
Corollary 2.36, F>⋆

ev (Z[S1]) ≃ Tot(τ>2⋆Z
•
F ). Note now that τ>2⋆Z

• is naturally equivalent, as a cosimplicial
filtered E∞-algebra over Z, to Z•

F . This completes the proof.
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Remark 2.38. Consider the Čech complex of Z[S1] → Z denoted by Z• in the proof of Lemma 2.37. In
cosimplicial degree n, it is given by Z[(BS1)n]. Thus, the cosimplicial object Z• of D(Z) takes the form

Z Z[BS1] Z[BS1 ×BS1] . . . .

Applying π2i pointwise we obtain a cosimplicial abelian group which computes griTfil ≃ (πiZ[S
1])[i]. For

i > 2, this object is equivalent to zero, so it follows that the cochain complex associated to the cosimplicial
abelian group π2iZ

• is exact. When i = 0, π0Z
• is the constant cosimplicial diagram on Z and, when i = 1,

π2Z
• is equivalent to Z[1]. It follows that the (double-speed) Tot spectral sequence

Es,t
2 = Hs−t(π−2tZ

•)⇒ π−s−tZ[S
1]

collapses at the E2-page, where it is zero except for (s, t) = (0, 0) and (s, t) = (0, 1).

Lemma 2.39. If C is an even E∞-ring, then there is a canonical equivalence F>⋆
ev (C[S1]) ≃ τ>2⋆−1C[S1]

of filtered Cev-module spectra. In particular, F>⋆
ev (C[S1]) is an exhaustive filtration on C[S1].

Proof. Let G• be the Čech complex of S1 → ∗ in grouplike E∞-spaces, so that the Čech complex

C• : C C[BS1] · · ·

of C[S1] → C is equivalent to C[G•]. The filtration τ>2⊛C on C induces a filtration (τ>2⊛C)[G•], which
we will write as F>⊛C•. Taking double-speed Whitehead towers pointwise yields a bifiltered cosimplicial
spectrum F>⋆F>⊛C• with

F>iF>jC• : τ>2i(τ>2jC) τ>2i(τ>2j(C[BS1])) · · · .

By Lemma 2.33, the object Tot(F>⋆F>−∞C•) is equivalent to F>⋆
ev (C[S1]). We have

F>⋆grjC• ≃ τ>2⋆(Z
• ⊗Z π2jC[2j]),

where Z• is the Čech complex of Z[S1]→ Z analyzed in Lemma 2.37 and Remark 2.38. Thus,

Tot(F>⋆grjC•) ≃ (Tfil ⊗Z π2jC)(j)[2j].

Let F>⊛F>⋆
ev (C[S1]) be the filtration on F>⋆

ev (C[S1]) induced by F>⊛C•. On griev(C[S1]), the induced fil-
tration F>⊛griev(C[S1]) is complete and exhaustive, as follows by considering the filtration on the complex
associated to the cosimplicial abelian group

π2iC π2i(C[BS1]) · · ·

induced by τ>2⊛C. As

grj⊛gr
i
ev(C[S1]) ≃ gri (Tfil ⊗Z π2jC)(j)[2j]) ≃





π2jC[2j] if i = j,
π2jC[2j + 1] if i = j + 1,
0 otherwise,

it follows that griev(C[S1]) fits into a fiber sequence

π2i−2C[2i− 1]→ griev(C[S1])→ π2iC[2i].

It follows from an argument using the sparsity of the homotopy groups that F>⋆
ev (C[S1]) ≃ τ>2⋆−1F

>−∞
ev C[S1]

is an equivalence, from which we conclude that the natural map C[S1]→ F>−∞
ev C[S1] is an equivalence, which

completes the proof.



2.2 The synthetic circle 12

Lemma 2.40. If B is an eff-locally even E∞-ring, then there is a split fiber sequence

Bev(1)[1]→ F>⋆
ev (B[S1])→ Bev

of synthetic spectra where the second map is the augmentation map.

Proof. We have already shown that this is true for B replaced with an even eff cover C. Then, by Lemma 2.33
and descent, the result follows for B.

Remark 2.41. Lemma 2.40 makes no claim about the structure of the fiber Bev(1)[1] as a synthetic B[S1]ev-
module. In fact, if B is even, then the fiber is equivalent to Bev(1)[1] as a B[S1]ev-module; but, if B = S,
then it is not.

Corollary 2.42. The synthetic spectrum Tev is dualizable in SynSp.

Proof. Dualizablility follows immediately from Lemma 2.40 as Sev, Sev(1)[1], and Sev(−1)[−1] are dualizable.

Proposition 2.43. If B is an eff-locally even E∞-ring, then the natural map Tev⊗Sev F
>⋆
ev B → F>⋆

ev (B[S1])
is an equivalence.

Proof. Let B → C be an eff cover of B by an even ring C. Then B[S1] → C[S1] and BS1
+ → CS1

+ is an eff
cover. By definition of eff it follows that C⊗Bn is even for all n and so we have that

F>⋆
ev (C⊗Bn[S1]) ≃ τ>2⋆−1(C

⊗Bn[S1])

for all n naturally.
Applying eff descent we have that

F>⋆
ev (B[S1]) ≃ Tot(τ>2⋆−1(C

⊗Bn[S1]))

≃ Tot((τ>2⋆C
⊗Bn)⊕ τ>2⋆−2(C

⊗Bn)[1])

≃ Tot(τ>2⋆C
⊗Bn)⊕ Tot(τ>2⋆−2C

⊗Bn)[1]

≃ F>⋆
ev (B)⊕ F>⋆−1

ev (B)[1]

as desired.

Corollary 2.44. There is a natural bicommutative bialgebra structure on Tev in SynSp compatible with the
E∞-algebra structure on Tev and with the property that Z⊗Sev Tev ≃ Tfil as bicommutative bialgebras over
Z.

Proof. Let C ⊆ CAlg(Sp) be the full subcategory spanned by objects of the form S[S1]⊗m for m ∈ N. The∞-
category C admits a symmetric monoidal structure given by the restriction of the usual one on CAlg(Sp) and
for this symmetric monoidal structure S[S1] is a bicommutative bialgebra. It follows from Proposition 2.43
that F>⋆

ev (−) : C → CAlg(SynSp) is symmetric monoidal, whence the bicommutative bialgebra structure on
Tev.

Corollary 2.45. There is a natural bicommutative bialgebra structure on T∨
ev in SynSp with the property

that Z⊗Sev T
∨
ev ≃ T∨

fil as bicommutative bialgebras over Z.

Proof. This follows from Corollaries 2.44 and 2.42.
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Notation 2.46. Let ρ(n) : S[S1] → S[S1] denote the map of bicommutative bialgebras induced by the
multiplication-by-n map S1 → S1 of E∞-spaces. By functoriality, there is then an induced map ρ(n) : Tev →
Tev of bicommutative bialgebras in SynSp. There are similarly bicommutative bialgebra maps ρ(n) : T∨

ev →
T∨

ev.

Lemma 2.47. If n > 1, there is an equivalence

ρ(n)∗Tev ≃ (ρ(n)∗T
∨
ev)[1](1)

of Tev-modules.

Proof. It is enough to show this statement for n = 1, in other words that Tev ≃ T∨
ev(1)[1] as Tev-modules,

where the Tev-module structure on T∨
ev is induced via the symmetric monoidality of the forgetful functor

SynSpTev
→ SynSp. To construct a map Tev → T∨

ev(1)[1], we can evaluate

π0

(
F>0 (T∨

ev(1)[1])
)
≃ π0 (T

∨[1]) ≃ π0T.

We pick the element corresponding to 1 ∈ π0T. By adjunction, there is an induced map Tev → T∨
ev(1)[1] of

Tev-module spectra, which one sees is an equivalence by arguing even-locally.

Lemma 2.48. If B is an even E∞-ring spectrum with trivial T-action, then the natural map

Bev ⊗Sev ρ(n)∗Tev → B[S1/Cn]ev

is an equivalence of B[S1]ev-modules for each n > 1.

Proof. The forgetful functor SynSpTev
→ SynSp is conservative, so the claim follows from the symmetric

monidality of the even filtration in this situation, Proposition 2.43.

Lemma 2.49. If B is an even E∞-ring spectrum, then the fiber of the augmentation map B[S1]ev → Bev

is equivalent to Bev(1)[1] as a B[S1]ev-module with trivial action.

Proof. We prove that the fiber of B[S1]ev → Bev is equivalent to Bev(1)[1] as a synthetic B[S1]ev-module.
For this, note that because B[S1] → B is eff, we can compute Bev as the even filtration on the B[S1]-
module corresponding to B. That is, we have that Bev ≃ Bev/B[S1], where the latter is defined as the limit
limB[S1]→C even τ>2⋆B ⊗B[S1] C. By [18, Cor. 2.2.14(1)], this limit can be computed as Tot τ>2⋆B ⊗B[S1] B

•,
where B• is the Čech complex of B[S1] → B. But, this Čech complex is equivalent to the Čech complex
of the base changed morphism B → B ⊗B[S1] B; the latter is eff as eff maps are closed under base change.
Thus, the totalization computes Bev by eff-local descent for the even filtration (see [18, Prop. 2.2.12(1)]). It
follows that B[S1]ev → Bev is obtained as the functor F>⋆

ev/B[S1] applied to the augmentation map B[S1]→ B

of B-modules. By functoriality, there is thus a map F>⋆
ev/B[S1](fib(B[S1] → B)) → fib(B[S1]ev → Bev), and

it is straightforward to see that this map is an equivalence of synthetic spectra. As the forgetful functor
from B[S1]ev-modules to synthetic spectra is conservative, this map is an equivalence. Finally, we note that
fib(B[S1] → B) is equivalent to B[1] as a B[S1]-module. To see this, note that the space of B[S1]-module
structures on B (or equivalently B[1]) is equivalent to the space of B-algebra maps B[S1]→ B, or equivalent
the space of pointed maps BS1 → BΩ∞B.2 As the cells of BS1 are in even degrees and the homotopy groups
of the infinite loopspace BΩ∞B are in odd degrees, we see that this space is path connected. This completes
the proof as we have F>⋆

ev/B[S1](B[1]) ≃ B(1)[1].
2We apologize for the use of B as the classifying space and as the even E∞-ring.



2.2 The synthetic circle 14

Corollary 2.50. Let B be an even E∞-ring spectrum. For each n > 1, there is a pullback square

Bev(1)[1] //

��

Bev(1)[1]

��

B[S1]ev // ρ(n)∗B[S1]ev

in SynSpB[S1]ev .

Proof. We have a commutative square

B[S1]ev //

��

ρ(n)∗B[S1]ev

��

Bev Bev

in SynSpB[S1]ev . Taking vertical fibers yields the square claimed in the corollary in light of Lemma 2.49,
which guarantees that each fiber is equivalent to Bev(1)[1].

Remark 2.51. The horizontal map Bev(1)[1] → Bev(1)[1] is some deformation of the multiplication-by-n
map. We will see in Section 3.2 that

MapB[S1]ev(Bev(1)[1], Bev(1)[1]) ≃ MapB[S1]ev(Bev, Bev) ≃ F0((Bev)
Tev ) ≃ τ>0(B

hS1

).

If B is even periodic, then in terms of a formal group law G structure on BhS1

induced by the choice of a
complex orientation, this map is given by the n-series [n]G(t).

The following construction will be helpful in some arguments in the rest of the paper.

Construction 2.52 (The CW filtration). Let B be an even E∞-ring spectrum. The fiber sequence
Bev(1)[1] → B[S1]ev → Bev of Lemma 2.49 can be iterated to give a “periodic” resolution of Bev in
SynSpB[S1]ev . This gives an exhaustive decreasing filtration F>⊠

CWBev on Bev ∈ SynSpB[S1]ev with F>s
CWBev ≃

0 for s > 0 and grsCWBev ≃ B[S1]ev(s)[2s].

We come to our notion of filtered circle-equivariant synthetic spectra.

Definition 2.53 (Synthetic spectra with synthetic circle action). A Tev-module in SynSp is called a syn-
thetic spectrum with synthetic circle action. The stable ∞-category of such synthetic spectra is denoted by
SynSpTev

= ModTev(SynSp) ≃ FD(Tev). It is a presentably symmetric monoidal stable ∞-category where
the symmetric monoidal structure arises from the E∞-coalgebra structure on Tev.

We note the following comparison to [35].

Proposition 2.54. There is a natural equivalence Z⊗Sev Tev ≃ Tfil. In particular, base change to Z induces
a colimit-preserving symmetric monoidal functor SynSpTev

→ FD(Tfil).

Proof. It follows from Proposition 2.43 that Z⊗Sev Tev ≃ (Z ⊗S T)ev ≃ (Z[S1])ev. The latter is equivalent
to Tfil by Lemma 2.37.

It follows that SynSpTev
satisfies the requirement of being a lift to the synthetic sphere spectrum of the

notion of a filtered Z-module spectrum with Tfil-action.
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2.3 Synthetic orbits, fixed points, and Tate

Let C be an E∞-ring and let G be a grouplike E1-space, with group ring C[G]. Given a C-module spectrum
M with G-action, i.e., a module over C[G], one defines

MhG = C ⊗C[G] M and MhG = MapC[G](C,M).

These are the homotopy orbits and homotopy fixed points respectively, and each admits the structure of a C-
module spectrum. The homotopy orbits functor is the left adjoint to the “trivial action” functor D(C[G])←
D(C) induced by restriction of scalars along the counit map C[G] → C and the homotopy fixed points
functor is the right adjoint.

Definition 2.55 (Tev-orbits and fixed points). Given M ∈ SynSpTev
, we let

MTev = Sev ⊗Tev M and MTev = MapTev
(Sev,M),

where we view Sev as a synthetic spectrum with synthetic circle action via the “trivial” action, i.e., via the
augmentation map Tev → Sev. Again these are the the left and right adjoints of the trivial action functor
SynSpTev

← SynSp obtained by restriction of scalars along Tev → Sev.

Remark 2.56. More generally, if A is eff-locally even, then we define Tev-orbits and fixed points for objects
of SynSpA[S1]ev . The underlying synthetic spectra can be first computed by applying the forgetful functor
SynSpTev

← SynSpA[S1]ev .

Remark 2.57. If B is an even E∞-ring spectrum and F>⋆M ∈ SynSpB[S1]ev , then the CW filtration of
Construction 2.52 can be used to construct complete filtrations on (F>⋆M)Tev and (F>⋆M)Tev analogous to
those used to define the homotopy orbits and fixed points spectral sequences. See the proof of Lemma 2.75
for more details.

We follow [35, Sec. 2.4] to construct the norm for the synthetic circle and hence the synthetic analogue
of the S1-Tate construction. We repeat Raksit’s construction here to prepare for a parallel construction in
the case of the synthetic analogue of Cn.

Construction 2.58 (Synthetic S1-Tate). By Lemma 2.47, we can choose a specific equivalence α : T∨
ev →

Tev(−1)[−1] ≃ Tev⊗Sev Sev(−1)[−1] of Tev-modules. There is also a Tev-module map η : Sev → T∨
ev which

corresponds to the identity on Sev under the equivalence

MapSynSp(Sev,Sev) ≃ MapTev
(Tev,Sev) ≃ MapTev

(Sev,T
∨
ev).

Given M ∈ SynSpTev
, we then have a map

Sev(1)[1]⊗Sev MTev = Sev(1)[1]⊗Sev (M ⊗Tev Sev)
η
−→ Sev(1)[1]⊗Sev (M ⊗Tev T∨

ev)

≃α Sev(1)[1]⊗Sev (M ⊗Tev Tev ⊗Sev Sev(−1)[−1])

≃M

of synthetic spectra. The left-hand side, which we denote by MTev(1)[1], is a synthetic spectrum with trivial
synthetic circle action, so the map above factors canonically through a map MTev(1)[1] → MTev , called
the synthetic S1-norm and denoted by NmTev . We define M tTev to be the cofiber, in synthetic spectra, of
NmTev . This is the synthetic S1-Tate construction and is functorial in M .
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Example 2.59. We view Z = ins0Z with its trivial Tev-action. Then, the fiber sequence ZTev → ZtTev →
ZTev (1)[2] is equivalent to

τ>2⋆(Z
hS1

)→ τ>2⋆(Z
tS1

)→ τ>2⋆(ZhS1 [2]).

See [35, Sec. 6.3].

Taking Tev-fixed points defines a functor SynSpTev
→ SynSp which is naturally lax symmetric monoidal

as it is the right adjoint of the symmetric monoidal functor SynSp → SynSpTev
obtained by restriction of

scalars along Tev → Sev.

Lemma 2.60. The functor (−)tTev : SynSpTev
→ SynSp admits a natural lax symmetric monoidal structure

and there is a natural lax symmetric monoidal structure on the natural transformation (−)Tev → (−)tTev .

Proof. This is a special case of [35, Prop. 2.4.10].

Now, we turn our attention to the synthetic analogue of Cn-orbits and fixed points. Given a spectrum
M with S1-action, we can compute its homotopy Cn-orbits and fixed points as

MhCn ≃ (ρ(n)∗Z[S
1])⊗Z[S1] M and MhCn ≃ MapZ[Cn](ρ(n)∗Z[Cn],M).

These observations motivate the following approach to Cn-orbits, fixed points, and Tate in the synthetic
setting.

Definition 2.61 (Synthetic Cn-orbits and fixed points). Given M ∈ SynSpTev
we let

MCn,ev = ρ(n)∗Tev ⊗Tev M and MCn,ev = MapTev
(ρ(n)∗Tev,M),

where the latter is the internal mapping spectrum and where Cn,ev is our notation for the synthetic analogue
of Cn, manifest here only via its orbit and fixed point constructions on filtered Tev-modules. These functors
are the left and right adjoints, respectively, of SynSpTev

← SynSpTev
: ρ(n)∗. As MapTev

(ρ(n)∗Tev,−) is
the right adjoint to a symmetric monoidal functor, it acquires a lax symmetric monoidal structure.

Remark 2.62 (A p-complete synthetic group algebra for Cn). Without a filtration the group ring Z[Cn] is a
dualizable bicommutative bialgebra and Z[Cn]

∨ ≃ Z[Cn] as Z[Cn]-modules. Thus, the formalism developed
in [35, Sec. 2.4] applies to produce a Cn-Tate construction. In the filtered case, it is not immediately clear
which filtration to put on Z[Cn]. The Postnikov filtration would be trivial. One could use filtrations by
powers of the maximal ideal. But, what arises naturally is the following construction using Eilenberg–Moore
in the p-complete case. Of course, as a bicommutative bialgebra, Zp[Cp] is dual to Zp[Cp]

∨. But, as Cp fits
into a pullback square

Cp
//

��

S1

×p

��

∗ // S1,

we can also compute Zp[Cp]
∨ by Eilenberg–Moore as

ρ∗Zp[S
1]∨ ⊗Zp[S1]∨ Z,

where we write ρ∗Zp[S
1] for the restriction of scalars of Zp[S

1]∨ along the multiplication-by-p map Zp[S
1]∨ →

Zp[S
1]∨. We can similarly F>⋆S

Cp,+
p as the p-completion of ρ∗T∨

ev ⊗T∨
ev

Sev. However, this bicommutative
bialgebra is not dualizable. Indeed, this is visible already at the filtered level, where we invite the reader to
contemplate the p-completion of ρ∗Tfil⊗Tfil

Zp. In particular, while comodule spectra over this tensor product
correspond to some kind of synthetic spectra with Cp-action, the approach above to the Tate construction
does not apply.
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Construction 2.63 (Synthetic Cn-Tate). As discussed in Construction 2.58, we have an equivalence
α : T∨

ev → Tev ⊗ Sev(−1)[−1] of synthetic Tev-module spectra. As ρ(n)∗ is symmetric monoidal, we also
obtain an equivalence of Tev-modules ρ(n)∗(α) : ρ(n)∗(T

∨
ev) → ρ(n)∗(Tev ⊗ Sev(−1)[−1]) ≃ ρ(n)∗(Tev) ⊗

Sev(−1)[−1] and hence an equivalence of Tev-modules β = ρ(n)∗(α)
−1⊗Sev(1)[1] : ρ(n)∗(Tev)→ ρ(n)∗(T

∨
ev)⊗

Sev(1)[1]. Moreover, applying Sev-linear duals to the map Tev → ρ(n)∗Tev, we obtain a map η : ρ(n)∗T
∨
ev →

T∨
ev of synthetic Tev-module spectra. Now, consider the natural map

MCn,ev = M ⊗Tev ρ(n)∗Tev

≃β M ⊗Tev ρ(n)∗T
∨
ev ⊗ Sev(1)[1]

η
−→M ⊗Tev T∨

ev ⊗ Sev(1)[1]

≃α M ⊗Tev Tev ⊗ Sev(−1)[−1]⊗ Sev(1)[1]

≃M

of Tev-modules. As the left-hand side MCn,ev is naturally a ρ(n)∗Tev-module, this map canonically induces
a map

Nmp : MCn,ev →MCn,ev

of synthetic ρ(n)∗Tev-module spectra, which we will call the synthetic Cn,ev-norm. Its cofiber will be written
as

M tCn,ev ,

and referred to as the Cn,ev-Tate construction of M . It is naturally a synthetic ρ(n)∗Tev ≃ Tev-module
spectrum.

We will now show the lax symmetric monoidality of the synthetic Cn,ev-Tate construction following a
variant of the arguments in [32] and [35].

Definition 2.64. Let SynSpindTev
⊆ SynSpTev

be the thick subcategory generated by objects of the form
X ⊗Tev where X ∈ SynSp.

Remark 2.65. Following [35, Remark 2.4.7], SynSpindTev
is a tensor ideal.

Lemma 2.66. The functor (−)tCn,ev vanishes on SynSpindTev
.

Proof. By exactness of the Cn,ev-Tate construction, it is enough to show that XtCn,ev = 0 for X ≃ X0⊗Tev

for some X0 ∈ SynSp. To this end, note that the map in Construction 2.63 is given in this case by the map

X0 ⊗ ρ(n)∗Tev → X0 ⊗Tev

given by tensoring the canonical map ρ(n)∗Tev ≃
β−1

ρ(n)∗T
∨
ev[1](1) → T∨

ev[1](1) ≃
α−1

Tev with X0. The
norm map in this case is then given by

X0 ⊗ ρ(n)∗Tev ≃Mapρ(n)∗Tev
(ρ(n)∗Tev, X0 ⊗ ρ(n)∗Tev)

→MapTev
(ρ(n)∗Tev, X0 ⊗ ρ∗Tev)

→MapTev
(ρ(n)∗Tev, X0 ⊗Tev).

Note that the target of this map is ρ(n)∗Tev-equivariantly equivalent to X0 ⊗ ρ(n)∗Tev. In fact, the map is
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given by

MapTev
(ρ(n)∗Tev, X0 ⊗Tev) ≃

α MapTev
(ρ(n)∗Tev, X0 ⊗T∨

ev[1](1))

≃MapTev
(ρ(n)∗Tev ⊗Tev, X0)[1](1)

≃Map(ρ(n)∗Tev, X0)[1](1)

≃ X0 ⊗ ρ(n)∗T
∨
ev[1](1)

≃β X0 ⊗ ρ(n)∗Tev,

which gives an inverse of the norm map.

Proposition 2.67. There is a natural transformation

(−)Cn,ev → (−)tCn,ev : SynSpTev
→ SynSpTev

of functors which makes (−)tCn,ev the universal approximation to (−)Cn,ev which vanishes on SynSpindTev
.

Moreover, (−)tCn,ev admits a natural symmetric monoidal structure and the natural transformations (−)Cn,ev →
(−)tCn,ev and (−)tTev → (−)tCn,ev do as well.

Proof. Recall that by Remark 2.65 the thick subcategory SynSpindTev
⊆ SynSpTev

is a tensor ideal. Take
C := SynSpTev

, D := SynSpindTev
, and E := SynSpρ∗Tev

≃ C. Then, by [32, Thm. I.3.6(ii)], there is an
initial functor H : C/D → E such that the composition H ◦ p : C → E receives a natural transformation
from (−)Cn,ev , and both H and the natural transformation admit unique lax-monoidal enhancements. By
Lemma 2.66 there is then an induced natural transformation H → (−)tCn,ev . This natural transformation is
then an equivalence by [32, Lem. I.3.3(ii)] and the corresponding equivalences

colim
Y ∈D/X

cofib(Y → X)Cn,ev ≃ colim
Y ∈D/X

cofib(Y → X)tCn,ev ≃ XtCn,ev ,

which follows from the first part of [35, Lemma 2.4.8] and the same argument as the second part of ibid.
Symmetric monoidality of the induced functor (−)tTev → (−)tCn,ev follows from [32, Thm. I.3.6(i)].

2.4 The Postnikov t-structure

We show that Tev is connective in the Postnikov t-structure on SynSp and compute πP
0 Tev.

Lemma 2.68. The synthetic spectrum Tev is connective in the Postnikov t-structure on SynSp: F>i(Tev)
is i-connective for all i ∈ Z.

Proof. This is a feature the even filtration on any connective E∞-ring spectrum by the result of Burklund
and Krause of Remark 2.13 or by [33, Thm. 1.7]. Alternatively, in this case, it follows from the fiber sequence
Sev(1)[1]→ Tev → Sev of synthetic spectra established in Lemma 2.40.

Lemma 2.69. There is an isomorphism πP
0 Tev

∼= Z[η, d]/(2η, d2 − ηd) of graded-commutative Z[η]/(2η)-
algebras, where |η| = |d| = 1.

Proof. The unit map Sev → Tev makes πP
0 Tev naturally into a graded-commutative πP

0 Sev
∼= Z[η]/(2η)-

algebra. We also have that Tev fits into a split fiber sequence

Sev(1)[1]→ Tev → Sev

from which we obtain an exact sequence

0→ πP
0 (Sev(1)[1])→ πP

0 (Tev)→ πP
0 (Sev)→ 0
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in SynSpP♥. This is equivalently an exact sequence

0→ Z[η]/(2η)(1)→ πP
0 (Tev)→ Z[η]/(2η)→ 0

in graded Z[η]/(2η)-modules. Writing d for the image of 1(1) in πP
0 (Tev), we obtain a surjective map

Z[η, d]/(2η) → πP
0 (Tev). As d2 = ηd in S[S1] (see Remark 2.30), we see that in fact we must already have

d2 = ηd in πP
0 (Tev) as there is no room for a differential which could create this relation in the associated

spectral sequence. Now, the induced map Z[η, d]/(2η, d2 − ηd) → πP
0 (Tev) is surjective and must then be

injective by counting ranks.

Construction 2.70. The Postnikov t-structure on SynSpTev
is the one obtained from SynSp using that Tev

is connective. In other words, an object of SynSpTev
is (co)connective if and only if its underlying synthetic

spectrum is (co)connective. This t-structure is accessible, compatible with filtered colimits, and compatible
with the symmetric monoidal structure on SynSpTev

. By Lemma 2.69, there is an equivalence

πP
0 : SynSpP♥

Tev
≃ GrModZ[η,d]/(2η,d2−ηd) (2)

of abelian categories.
In general, if C is a symmetric monoidal stable∞-category whose tensor product is exact in each variable

and if C is equipped with a t-structure (C>0,C60) which is compatible with the symmetric monoidal structure,
then π0 : C>0 → C♥ is symmetric monoidal. In particular, πP

0 Tev is naturally a bicommutative bialgebra in
Z[η]/(2η)-modules. We view GrModZ[η,d]/(2η,d2−ηd) as being symmetric monoidal via the coalgebra structure
on πP

0 Tev. Then, the equivalence (2) is symmetric monoidal.

Lemma 2.71. (a) Restriction of scalars along Tev → Sev is t-exact with respect to the Postnikov t-
structures. As a consequence, (−)Tev : SynSpTev

→ SynSp is right t-exact and (−)Tev : SynSpTev
→

SynSp is left t-exact.
(b) Restriction of scalars along ρ(n) : Tev → Tev is t-exact with respect to the Postnikov t-structures.

Thus, (−)Cn,ev : SynSpTev
→ SynSpρ(n)∗Tev

≃ SynSpTev
is right t-exact and (−)Cn,ev : SynSpTev

→
SynSpρ(n)∗Tev

≃ SynSpTev
is left t-exact.

Proof. Both claims follow from the fact that left adjoints to t-exact functors are right t-exact and right
adjoints to t-exact functors are left t-exact.

Example 2.72. Suppose that M∗ ∈ GrModZ[η,d]/(2η,d2−ηd) and that, for simplicity, 2 acts invertibly on
M . In this case, M∗ is a cochain complex: d : Mi → Mi+1 and d2 = 0. Let F>⋆M denote the syn-
thetic spectrum associated to M∗ via the inclusion SynSpP♥

Tev
→֒ (SynSpTev

)P>0. Then, πP
0 ((F

>⋆M)Tev)
∼=

M∗ ⊗Z[1/2,d]/(d2) Z[1/2] is the quotient of M∗ by the boundaries. On the other hand, πP
0 ((F

>⋆M)Tev ) ∼=
MapZ[1/2,d]/(2d)(Z,M∗) is the sub-object of cycles. The norm map (F>⋆M)(1)[1]Tev → (F>⋆M)Tev induces

the differential on πP
0 , which in weight i takes the form d : Mi−1

d(Mi−2)
→ Zi(M∗), from which we find that

πP
0 ((F

>⋆M)tTev) is the graded abelian cohomology of M∗, while πP
1 ((F

>⋆M)tTev) is also the cohomology, up
to a shift.

Example 2.73. Let A∗ := Z[η]/2η be the graded ring with |η| = 1, and let M∗ be a graded A∗-module.
Suppose d : M∗ →M∗+1 is a graded A∗-module map with d2 = ηd. This data gives rise to a πP

0 Tev-module
structure, and therefore a Tev-module structure, on the filtered spectrum F>⋆M := M⋆[⋆] (with all the
maps F>i+1M → F>iM being zero). To describe what the filtered norm map is in this case, note that
F>⋆M is connective in the Postnikov t-structre and therefore (F>⋆M)Cp,ev is connective and (F>⋆M•)

Cp,ev

is coconnective. Thus the map (F>⋆M)Cp,ev → (F>⋆M)C
p,ev

is completely determined by what it does on
πP
0 (−).
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We have that

πP
0 ((F

>⋆M)Cp,ev) ≃M∗ ⊗Z[η,d]/(2η,d2−ηd) Z

ï
η,

d

p

ò
/(2η, (d/p)2 − η(d/p))

≃M∗[d/p]

as a graded abelian group. Similarly one finds that

πP
0

(
F>⋆MCp,ev

)
≃ F>⋆N = N⋆[⋆],

where N∗ is the graded object with Ni = {(x, y) ∈ Mi ×Mi+1 : d(x) = py}. The map πP
0 (F

>⋆M)Cp,ev →
πP
0 (F

>⋆M)Cp,ev is given by sending m ∈ Mi to (pm, d(m)) ∈ Ni ⊆ Mi ×Mi+1, which can be checked by
reducing to the case M∗ = πP

0 (Tev) and noting that the norm map is induced by the map ρ(n)∗Tev → Tev

which as Sev-modules is the map Sev ⊕ Sev[1](1)→ Sev ⊕ Sev[1](1) which is id⊕ p(1)[1].

Remark 2.74. Suppose that F>⋆M is a rational Tev-module (or equivalently Tfil-module). Then, the Cn,ev-
norm (F>⋆M)Cn,ev → (F>⋆M)Cn,ev is an equivalence, so (F>⋆M)tCn,ev is trivial as a synthetic spectrum.
Indeed, it is a synthetic QtCn,ev -module spectrum. But, QtCn,ev ≃ τ>2⋆(Q

tCn) ≃ 0 as in Example 2.59.

We conclude the section by analzying how our fixed points and Tate constructions behave with respect
to complete objects and underlying objects.

Lemma 2.75. Let F>⋆M be a Tev-module in SynSp with underlying object M . As the colimit functor is
symmetric monoidal, M is naturally equipped with a T-action in Sp. Fix an integer n > 1.

(i) The natural maps |(F>⋆M)Tev | →MhS1 and |(F>⋆M)Cn,ev | →MhCn are equivalences.
(ii) If F>⋆M is connective in the Postnikov t-structure, then so are (F>⋆M)Tev and (F>⋆M)Cn,ev . In

particular, they are complete.
(iii) If F>⋆M is complete, then so are (F>⋆M)Tev and (F>⋆M)Cn,ev .
(iv) If F>iM → M is i-truncated for all i ∈ Z, then the natural maps F>i((F>⋆M)Tev) → MhS1

and
F>i((F>⋆M)Cn,ev) → MhCn are i-truncated for all i ∈ Z. In particular, the underlying spectra of
(F>⋆M)Tev and (F>⋆M)Cn,ev are MhS1

and MhCn, respectively.
(v) Suppose now that F>⋆M is a B[S1]ev-module where B is an even E∞-ring spectrum. Suppose that

F>iM → M is 2i-truncated for all i ∈ Z. Then, the natural maps F>i((F>⋆M)Tev) → MhS1

are
2i-truncated for all i ∈ Z and the natural maps F>i((F>⋆M)Cn,ev)→MhCn are (2i+ 1)-truncated for
all i ∈ Z. In particular, the underlying spectra of (F>⋆M)Tev and (F>⋆M)Cn,ev are naturally equivalent
to MhS1

and MhCn, respectively.
(vi) In the situation of (v), if F>iM ≃ τ>2iM for all i ∈ Z, then (F>⋆M)Tev is the double-speed Whitehead

tower for MhS1

. If additionally M is even, then (F>⋆M)Cn,ev is the double-speed Whitehead tower of
MhCn.

Proof. Part (i) follows because the colimit functor F>−∞ : SynSp → Sp is symmetric monoidal. Part (ii)
follows because (relative) tensor products of Postnikov-connective objects are connective since the Postnikov
t-structure is compatible with the symmetric monoidal structure on SynSp; moreover, Tev and Sev are
connective. Part (iii) follows from the following general fact: that if F>⋆M and F>⋆N are filtered spectra
and if F>⋆N is complete, then the internal mapping object Map(F>⋆M,F>⋆N) is complete. This follows
because it corepresents

MapFD(S)(−⊗ F>⋆M,F>⋆N) ≃Map
F̂D(S)(−

“⊗F>⋆M,F>⋆N).

By adjunction, there is a canonical map F>⋆M → c(M) of Tev-modules, where c(M) denotes the constant
filtration on M . The condition that F>iM →M is i-truncated for i ∈ Z is equivalent to the condition that
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the fiber of F>iM → c(M) is coconnective in the Postnikov t-structure. As (−)Tev and (−)Cn,ev are left
t-exact in this t-structure by Lemma 2.71 and as these functors preserve constant objects, part (iv) holds.

For part (v), we first consider the Tev-fixed points. We will use the CW filtration of Construction 2.52.
Since taking F>i : SynSp→ Sp commutes with all limits and colimits, we can compute

F>i((F>⋆M)Tev) ≃ lim
s→−∞

F>i(MapB[S1]ev(F
>s
CWBev,F

>⋆M)).

As F>s
CWBev is made up of a cell B[S1]ev(t)[2t] for each 0 6 t 6 s, we see that for fixed s we have that

F>iMapB[S1]ev(F
>s
CWBev,F

>⋆M)

is made an iterated extension of F>i(F>⋆M(−t)[−2t]) ≃ F>i+tM [−2t] for 0 6 t 6 s. This maps to
the corresponding cellular filtration MapB[S1](F

>s
CWB,M) which has associated graded pieces M [−2t] for

0 6 t 6 s. As F>i+tM [−2t]→M [−2t] is 2i-truncated and as the 2i-equivalences are closed under limits and
filtered colimits, part (v) follows for Tev-fixed points. Now, we use the commutative square

Bev(1)[1] //

��

Bev(1)[1]

��

B[S1]ev // ρ(n)∗B[S1]ev

in SynSpB[S1]ev of Corollary 2.50. It follows by mapping to F>⋆M that there is a pullback square

(F>⋆M)Cn,ev //

��

F>⋆M

��

(F>⋆M)Tev (−1)[−1] // (F>⋆M)Tev(−1)[−1]

of synthetic spectra. As taking underlying objects preserves finite limits and as (2i+ 1)-truncated maps are
closed under limits, we see that part (v) for Tev-fixed points implies it for Cn,ev-fixed points.

Under the hypothesis of (vi), we have that F>iM → M is (2i − 2)-truncated for every i ∈ Z. Thus,
F>i((F>⋆M)Tev) → MhS1

is (2i − 2)-truncated for every i ∈ Z. However, the argument of the previous
paragraph also presents F>i((F>⋆M)Tev) → MhS1

as a filtered colimit of terms which are built out of
finitely many extensions of the form Fi+tM [−2t] for t > 0. But, these terms are 2i-connective, so the
filtered colimit is too. This proves part (vi) in the case of Tev-fixed points. For Cn,ev-fixed points, we use
the pullback square and the result for the Tev-fixed points to conclude that F>i((F>⋆M)Cn,ev) is again 2i-
connective, which is enough in light of the fact that the map from this spectrum to MhCn is (2i−2)-truncated
(since F>iM →M is now (2i− 3)-truncated for each i ∈ Z).

2.5 A synthetic Tate orbit lemma

One extremely helpful lemma in the theory of cyclotomic spectra is the Tate orbit lemma of [32]. We record
here a version of this lemma in our setting.

Definition 2.76. Fix a t-structure C = (SynSpC
>0, SynSp

C
60) on SynSp. Consider the following conditions:

(a) C is compatible with the symmetric monoidal structure;
(b) C is left complete
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(c) C is accessible;
(d) C is compatible with filtered colimits;
(e) C is compatible with countable products;
(f) Tev ∈ SynSpC>0.

If C satisfies conditions (a)-(f), we say that C satisfies condition (⋆).

Example 2.77. Both the Postnikov t-structure and the neutral t-structure satisfy condition (⋆).

Remark 2.78. If C is a t-structure on SynSp satisfying (⋆), then there is an induced t-structure on SynSpTev
,

which we will also call C.

Lemma 2.79. Let F>⋆X ∈ SynSpTev
be such that the underlying synthetic spectrum is bounded below with

respect to a t-structure C satisfiying (⋆). Then

(F>⋆XCp,ev)
tCp,ev ≃ 0.

As in the proof of the Tate orbit lemma for spectra in [32, Lemma I.2.1] we will need to commute the
Tate construction past certain limits. We record the necessary (co)continuity results below.

Lemma 2.80. Let 1 6 n 6∞ and let C be a t-structure on SynSp satisfying condition (⋆).

(1) Let {F>⋆Xk}k ∈ SynSpN
op

Tev
be a tower of synthetic spectra with Tev-action such that there is some

K ≫ 0 and some N ∈ Z such that fib(F>⋆Xi+1 → F>⋆Xi) ∈ SynSpC>N whenever i > K. The natural
maps

(a) (limk F
>⋆Xk)

Cn,ev
≃
−→ limk F

>⋆X
Cn,ev

k ,
(b) (limk F

>⋆Xk)Cn,ev

≃
−→ limk(F

>⋆Xk)Cn,ev , and
(c) (limk F

>⋆Xk)
tCn,ev

≃
−→ limk(F

>⋆Xk)
tCn,ev

are all equivalences.
(2) Dually, let {F>⋆Xk}k ∈ SynSpN

Tev
be a tower of synthetic spectra with Tev-action such that there is

some K ≫ 0 and some N ∈ Z such that fib(F>⋆Xi → F>⋆Xi+1) ∈ SynSpC
6N whenever i > K. The

natural maps

(a) colimk(F
>⋆Xk)

Cn,ev
≃
−→ (colimk F

>⋆Xk)
Cn,ev ,

(b) colimk(F
>⋆Xk)Cn,ev

≃
−→ (colimk F

>⋆Xk)Cn,ev , and
(c) colimk(F

>⋆Xk)
tCn,ev

≃
−→ (colimk F

>⋆Xk)
tCn,ev

are equivalences.

Proof. We will only prove part (1) since the proof for (2) is dual. For (1), note that it is enough to prove
that the map (b) is an equivalence since (a) follows from the fact that (−)Cn,ev is left t-exact with respect
to C since we assume that Tev is C-connective. By assumption, we may assume that the terms F>⋆Xk are
all (N + 1)-connective with respect to C, since we have a cofiber sequence

(lim
k

τC>N+1F
>⋆Xk)Cn,ev → (lim

k
F>⋆Xk)Cn,ev → (lim

k
τC6NF>⋆Xk)Cn,ev

and the limit on the right is eventually constant by assumption and so will commute with (−)Cn,ev .
By left-completness of C, it is now enough to show that the fiber of the map (limk F

>⋆Xk)Cn,ev →
limk(F

>⋆Xk)Cn,ev is i-connective for all i. This follows by using bar constructions to compute the tensor
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product:

(lim
k

F>⋆Xk)Cn,ev := (lim
k

F>⋆Xk)⊗Tev ρ∗Tev

≃ |(lim
k

F>⋆Xk)⊗T⊗•
ev ⊗ ρ∗Tev|

≃ | lim
k
(F>⋆Xk ⊗T⊗•

ev ⊗ ρ∗Tev)|,

where the second equivalence comes from the fact that Tev is a compact Sev-module. In particular each
term in the above geometric realization is (N + 1)-connective with respect to C by compatibility of C with
the monoidal structure, and so τC6i((limk F

>⋆Xk)Cn,ev) depends only on the (i−N −1)-skeleton of the above
geometric realization. More precisely, the maps |ski(• 7→ F>⋆Xk⊗T⊗•

ev ⊗ρ(n)∗Tev)| → |• 7→ F>⋆Xk⊗T⊗•
ev ⊗

ρ∗Tev| have cofibers, say Zk,i, which are at least (i+N)-connective, and |ski(• 7→ F>⋆Xk ⊗T⊗•
ev ⊗ ρ∗Tev)|

is a finite colimit in SynSp. By compatiblity of C with countable products we have that limk Zk,i is at least
(i +N − 1)-connective.

Now, limk F
>⋆Xk is at least (N − 1)-connective with respect to C, since by compatibility with countable

products we have that a countable inverse limit can decrease connectivity by at most 1. Consequently, by
the same argument as above, the cofiber Zi of the map |ski(• 7→ (limk F

>⋆Xk)⊗T⊗•
ev ⊗ ρ(n)∗Tev)| → |• 7→

(limk F
>⋆Xk) ⊗ T⊗•

ev ⊗ ρ(n)∗Tev| is at least (i + N − 1)-connective. For each i, there is a map of cofiber
sequences in synthetic spectra

| ski(• 7→ (limk F
>⋆Xk)⊗T⊗•

ev ⊗ ρ(n)∗Tev)| (limk F
>⋆Xk)Cn,ev Zi

limk |ski(• 7→ F>⋆Xk ⊗T⊗•
ev ⊗ ρ(n)∗Tev)| limk(F

>⋆Xk)Cn,ev limk Zk,i,

≃

and the left hand vertical map is an equivalence since the functors (−)⊗T⊗•
ev ⊗ρ∗Tev preserve limits as Tev is

a perfect Sev-module, and the geometric realization of a finite skeleton is a finite colimit which will commute
with limits of synthetic spectra. Thus, the right hand square above is a pullback square and we have a cofiber
sequence (limk F

>⋆Xk)Cn,ev → limk(F
>⋆Xk)Cn,ev → (limk Zk,i/Zi) for each i. The term (limk Zk,i/Zi) is at

least (i+N − 1)-connective as the cofiber of (i+N − 1)-connective synthetic spectra, and since there is such
a cofiber sequence for each i, result follows.

Notation 2.81. Given a graded spectrum M(∗), we let ζ∗(M(∗)) be the filtered spectrum · · · →M(i+1)→
M(i)→M(i− 1)→ · · · where the transition maps are all zero.

Lemma 2.82. Let C be a t-structure on SynSp satisfying condition (⋆). For a connected space X, the map
Sev{X} → Sev from the free Sev-E∞ ring on Sev ⊗X to Sev is 1-connective with respect to C.

Proof. We have that the free Sev-E∞ ring is given by the formula
⊕

n>0

Sev ⊗ (X∧n)hΣn

and so it is enough to show that for a connected space X the synthetic spectrum Sev ⊗X is 1-connective
with respect to C. Using compatibility with colimits we may assume that X is compact. Using closure under
extensions and induction we can then reduce to the case of X = Sn, where n > 1 by the assumption that X
is connected. Then Sev ⊗ Sn ≃ Sev[n] by definition which is n-connective with respect to C.

Corollary 2.83. Let F>⋆R be an E∞ ring in SynSp with F>0R connective. Let C be a t-structure on
SynSpF>⋆R satisfying condition (⋆). Then every element in SynSp♥C

F>⋆R
is an ins0π0(F

>0R)-module.
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Proof. It is enough to produce a map of E∞ rings F>⋆R → F>⋆S such that F>0S ≃ π0(F
>0R) and with

πC
0 (F

>⋆R)→ πC
0 (F

>⋆S) and equivalence. We will do this in stages. Define

F>⋆R1 := F>⋆R ⊗Sev{
⊕

α∈π1(F>0R)
S1} Sev

where the map Sev{
⊕

α∈π1(F>0R) S
1} → F>⋆R is induced by the maps

⊕
α∈π1(F>0R) S

1 → F>0R sending
the circle indexed by α to α, and the map Sev{

⊕
α∈π1(F>0R) S

1} → Sev is the map induced by the zero map
on each of the S1 summands. Then there is a natural map of E∞ rings F>⋆R→ F>⋆R1 with fiber

F>⋆R⊗Sev{
⊕

α∈π1(F>0R)
S1} fib(Sev{

⊕

α∈π1(F>0R)

S1} → Sev)

which is 1-connective in the C t-structure by compatibility with the monoidal structure, filtered colim-
its, and the previous lemma. Consequently the map F>⋆R → F>⋆R1 is an isomorphism after applying
πC
0 . Additionally by using the geometric realization formula for the relative tensor product we have that

π0(F
>0R1) ∼= π0(F

>0R) and π1(F
>0R1) ∼= 0.

Inductively, suppose that we have constructed a map F>⋆R→ F>⋆Rn of E∞ rings such that

(1) F>⋆Rn is connective with respect to C;
(2) the induced map πC

0 (F
>⋆R)→ πC

0 (F
>⋆Rn) is an isomorphism;

(3) we have that

πC
i (F

>0Rn) ∼=

®
πC
0 (F

>0R) if i = 0,

0 if 0 < i 6 n.

Then we can construct an E∞ ring map F>⋆Rn → F>⋆Rn+1 such that

(1) F>⋆Rn+1 is connective with respect to C;
(2) the induced map πC

0 (F
>⋆Rn)→ πC

0 (F
>⋆Rn+1) is an isomorphism;

(3) we have that

πC
i (F

>0Rn+1) ∼=

®
πC
0 (F

>0R) if i = 0,

0 if 0 < i 6 n+ 1

by repeating the argument from the first paragraph with F>⋆R replaced with F>⋆Rn, πC
1 replaced by πC

n+1,
and S1 replaced with Sn. Define F>⋆S := colimF>⋆Rn. Then, all the desired properties of F>⋆S follow
from those of F>⋆Rn together with the compatibility of C with filtered colimits.

We are now ready to prove the Tate orbit lemma.

Proof of Lemma 2.79. Applying Corollary 2.83, we see that πC
0 (Sev) is an ins0Z-modules in SynSp. Thus

(F>∗XCp,ev)
tCp,ev will be a module over (ins0ZCp,ev)tCp,ev . By Lemma 3.18 we then have that

(ins0ZCp,ev)tCp,ev ≃ (τ>2⋆Z
hCp)tCp,ev

≃ τ>2⋆

[
(ZhCp)tCp

]

and this vanishes by [32, Lemma I.2.7]. Since (F>⋆XCp,ev)
tCp,ev is a module over the zero ring it also

vanishes.

As an application of Lemma 2.80, we include the following lemma which gives some information about
compatibility between the double-speed Postnikov t-structure and constructions like Tev-fixed points, even
though Tev is not connective in the double-speed Postnikov t-structure.
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Lemma 2.84. Let F>⋆X ∈ SynSpTev
be n-connective in the double-speed Postnikov t-structure and suppose

that it is bounded below in the Postnikov t-structure. Then each of F>⋆XTev , F>⋆XCp,ev , F>⋆XtTev , and
F>⋆XtCp,ev are n-connective in the double-speed Postnikov t-structure.

Proof. Suspending or desuspending as needed, we may assume that n = 0. We will also assume that F>⋆X is
N -connective for the Postnikov t-structure. We will first show this result for (−)Tev by reducing to showing
that each πP

i (F
>⋆X)[i]Tev is connective in the double-speed Postnikov t-structure, where πP

i denotes the ith
homotopy object in the (single-speed) Postnikov t-structure. Since the Postnikov t-structure satisfies all the
conditions of Lemma 2.80, (F>⋆X)Tev ≃ limk(τ

P
6kF

>⋆X)Tev , so it is enough to show the result for τP6kF
>⋆X

for all k > 0 and that the limit of the sequence (τP6kF
>⋆X)Tev stays connective.

Assume for the moment that we have shown that each (πP
i F

>⋆X [i])Tev is connective in the double-speed
Postnikov t-structure. Then, from the fiber sequence

πP
k+1F

>⋆X [k + 1]→ τP6k+1F
>⋆X → τP6kF

>⋆X,

we get that (τP6k+1F
>⋆X)Tev is an extension of (πP

k+1F
>⋆X [k + 1])Tev and (τP6kF

>⋆X)Tev , so inductively,
since we assumed F>⋆X is bounded-below in the Postnikov t-structure, (τP6k+1F

>⋆X)Tev will be connective
in the double-speed Postnikov t-structure. Furthermore, we have an exact sequence

π2P
0

(
πP
k+1F

>⋆X [k + 1]Tev
)
→ π2P

0

(
(τP6k+1F

>⋆X)Tev
)
→ π2P

0

(
(τP6kF

>⋆X)Tev
)
→ 0

and so since the double-speed Postnikov t-structure is compatible with countable products it follows that
there is no lim1-term and the inverse limit limk(τ6kF

>⋆X)Tev will again be connective.3 Thus, we have
reduced to showing that each (πP

i F
>⋆X [i])Tev is connective in the double-speed Postnikov t-structure.

Note that if F>⋆X is connective in the double-speed Postnikov t-structure, then so is πP
i F

>⋆X [i] as each
F>j(πP

i F
>⋆X [i]) ≃ πi+jF

>jX [i+j] already satisfies the condition that, if it is nonzero, then i > j. Moreover,
F>j(πP

i F
>⋆X [i]) ≃ 0 for j > i. It follows that, under the equivalence between SynSpP♥

Tev
and graded modules

for Z[η, d]/(2η, d2 − ηd), we can view the object πP
i F

>⋆X as an η-complex

· · · →M i−2 →M i−1 →M i → 0→ · · · .

We can filter this η-complex in the naive way by letting G6nM
• be the subcomplex

0→M i−n → · · · →M i → 0.

This is an exhaustive N-indexed filtration on M•. We claim that colimn(G6nM
•)Tev ≃ (M•)Tev ; in-

deed, this is a special case of Lemma 2.80(2.a) for the neutral t-structure applied to the Whitehead tower
τN>⋆(π

P
i F

>⋆X [i]), which agrees with the filtration G6⋆M
• up to a shift. As connective objects are closed un-

der colimits and extensions, we are reduced to showing that the Tev-fixed points of the synthetic spectrum
with Tev action associated to the i-fold suspension of grGnM

• ≃ M i−n is connective in the double-speed
Postnikov t-structure for each n > 0. This object is precisely the filtered spectrum

· · · → 0→ π2i−nF
>i−nX [2i− n]→ 0→ · · · ,

which is a filtered spectrum with only one, possibly, nonzero term, in weight (i − n). Write F>⋆Y for this
spectrum. As it is naturally a Tfil-module spectrum, the increasing exhaustive CW filtration on the homotopy
fixed points shows that (F>⋆Y )Tev is a colimit of iterated extensions of terms of the form (F>⋆Y )(−k)[−2k]
for k > 0. Each of these is connective in the double-speed Postnikov t-structure, hence so is the colimit.

3The Mittag–Leffler condition is enough to imply that lim
1 vanishes in this case because the heart of the double-speed

Postnikov t-structure is equivalent to graded abelian groups.
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To prove that (F>⋆X)tTev is connective in the double-speed Postnikov t-structure, it is necessary and
sufficient to show that (F>⋆X)Tev , using the fiber sequence (F>⋆X)Tev → (F>⋆X)tTev → (F>⋆X)Tev(1)[2]
and the fact that the functor (−)(1)[2] is t-exact with respect to the double-speed Postnikov t-structure. We
have by Lemma 2.80(1.b) that the natural map (F>⋆X)Tev → limi(τ

P
6iF

>⋆X)Tev is an equivalence. Moreover,
by connectivity of Tev in the Postnikov t-structure, the fiber of (F>⋆X)Tev → (τP6iF

>⋆X)Tev is (i + 1)-
connective in the Postnikov t-structure for each i. Thus, the fiber of F>j(F>⋆X)Tev → F>j(τP62jF

>⋆X)Tev

is (2j + 1)-connective. It follows by induction that if each (πP
i F

>⋆X [i])Tev is shown to be connective in the
double-speed Postnikov t-structure, then so is (F>⋆X)Tev . Using the notation G6⋆M

• from the previous
paragraph, we have (colimn G6nM

•)Tev ≃ (M•)Tev . We are reduced to checking that the graded pieces
F>⋆Y of the i-fold suspension of the G-filtration have double-speed connective Tev-orbits. These are given
by an N-indexed limit of iterated extensions of (F>⋆Y )(k)[2k] for k > 0. These are again double-speed
connective and the limit stabilizes in each filtration weight at a finite stage, so the limit is double-speed
connective as well.

Similar arguments apply to the case of Cp,ev-fixed points and Tate by reducing as above to the case of
Z-modules and using the square of Corollary 2.50 to reduce to the Tev-case established above.

3 Synthetic cyclotomic spectra

In this section, we define the ∞-category of cyclotomic synthetic spectra and construct examples of such
objects using the BMS and even filtrations on THH. We work only with the synthetic analogue of p-typical
cyclotomic spectra as introduced in [32]. The interested reader can work out the relevant definition for
integral cyclotomic synthetic spectra.

3.1 Construction of CycSyn

Here is the main definition.

Definition 3.1 (Cyclotomic synthetic spectra). We define CycSyn as the ∞-category

CycSyn := LEq
(
id, (−)tCp,ev : SynSpTev

⇒ SynSpTev

)
.

Lemma 3.2. The∞-category CycSyn is a stable presentable∞-category and the forgetful functor CycSyn→
SynSpTev

is conservative and preserves colimits. Moreover, CycSyn admits a natural symmetric monoidal
structure compatible with the forgetful functor.

Proof. See [32, Const. IV.2.1(ii)] for the claim about symmetric monoidal structures and [32, Prop. II.1.5]
for the rest. We use that (−)tCp,ev is lax symmetric monoidal and κ-accessible for any uncountable cardinal
κ. The former is our Proposition 2.67; the latter follows from the fact that ρ∗Tev is κ-compact for any
uncountable κ.

Example 3.3 (The monoidal unit). There is a canonical Tev-equivariant map Sev → (Sev)
tCp,ev arising

from symmetric monoidality of the Cp,ev-Tate construction. This data is equivalent to the unit of CycSyn,
which we write as Striv

ev .

Example 3.4. For R an Eilenberg–Mac Lane spectrum we can lift ins0R further to a synthetic cyclotomic
spectrum in the following way. The Tev-module structure of ins0R is induced by the ring maps Tev → Sev →
ins0Z and the natural ins0Z-module structure on ins0R. Then the identity map ins0R → ins0R factors
functorially through a map ins0R → (ins0R)Cp,ev . Post-composing with the norm natural transformation
then gives a functorial synthetic cyclotomic structure on ins0R, which we will denote by ins0Rtriv. By the
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functoriality and the fact that τ60(ins
0R ⊗Sev ins0S) = ins0(R ⊗Z S), where τ60 denotes the level-wise

truncation functor, we see that the functor ins0(−)triv : Ab→ CycSyn is lax symmetric monoidal.

Definition 3.5 (Synthetic TC). We let TC: CycSyn → SynSp denote the functor corepresented by Striv
ev ,

so that on objects F>⋆X ∈ CycSyn it is given by

TC(F>⋆X) = MapCycSyn(S
triv
ev ,F>⋆X),

and similarly for complete cyclotomic spectra. Using the formula of [32, Prop. II.1.5(ii)], we see that

TC(F>⋆X) ≃ Eq
(
(F>⋆X)Tev ⇒ ((F>⋆X)tCp,ev)Tev

)
,

which is a version of the formula given in [32]. Here, the first map is given by sending f in MapTev
(Sev,F

>⋆X) ≃
(F>⋆X)Tev to the composition

Sev → (Sev)
tCp,ev

ftCp,ev

−−−−−→ (F>⋆X)tCp,ev .

The second map takes f to the composition

Sev
f
−→ F>⋆X

ϕX
−−→ (F>⋆X)tCp,ev ,

where ϕX denotes the synthetic cyclotomic structure map for F>⋆X .

Remark 3.6. We do not address here the question of whether the synthetic analogue of the Segal conjecture
holds, i.e., whether Sev → (Sev)

tCp,ev is a p-adic equivalence. However, this has been communicated to the
authors by Robert Burklund to be true.

It will also be helpful for us later to have a notion of cyclotomic synthetic spectra with Frobenius lifts.
In the non-synthetic case, these were introduced in [32, Sec. IV.3].

Definition 3.7. Let CycSynFr be the ∞-category defined by the lax equalizer

CycSynFr := LEq
(
id, (−)Cp,ev : SynSpTev

⇒ SynSpTev

)
.

Corollary 3.8. The ∞-category CycSynFr is a stable presentable ∞-category and the forgetful functor
CycSynFr → SynSpTev

is conservative and preserves all limits and colimits. Moreover, CycSynFr admits
a natural symmetric monoidal structure compatible with the forgetful functor.

Proof. The proof is the same as in Corollary 3.2, with the only difference being that (−)Cp,ev : SynSpTev
→

SynSpTev
also preserves all limits and so the forgetful functor CycSynFr → SynSpTev

does as well by [32,
Prop. II.1.5(v)].

3.2 Comparison to the equivariant even filtration

Recall that an E∞-ring with T-action, or an S1-equivariant E∞-ring, is a T∨-comodule in CAlg(Sp). The∞-
category coModT∨(CAlg(Sp)) is equivalent to the∞-category of E∞-algebras in SpBS1

; see [35, Prop. 2.2.10].
As Tev is a bicommutative bialgebra, we have observed that SynSpTev

admits a symmetric monoidal
structure such that the forgetful functor SynSpTev

→ SynSp is naturally symmetric monoidal. Before
bootstrapping into the category of synthetic cyclotomic spectra, we will first compare the filtrations and
objects appearing in Section 2 to those constructed by Hahn, Raksit, and Wilson in [18]. This will both
serve as a warm-up to the cyclotomic case as well as a technical resource.
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Definition 3.9. A synthetic E∞-ring with Tev-action is an object of

coModT∨
ev
(CAlg(SynSp)) ≃ CAlg(coModT∨

ev
(SynSp)).

We will call these synthetic E∞-rings with Tev-action or with T∨
ev-coaction.

Remark 3.10 (Trivial coactions). If F>⋆R ∈ CAlg(SynSp), then there is a canonical trivial T∨
ev-coaction

(F>⋆R)triv on F>⋆R. This is precisely the corestricted comodule structure on F>⋆R obtained from core-
striction along the coalgebra map Sev → T∨

ev. It follows that there is a functor (−)triv : CAlg(SynSp) →
coModT∨

ev
(CAlg(SynSp)).

Suppose that A is an E∞-ring with a circle action. In [18], the authors give an approach to constructing
filtrations on AhS1

and AtS1

, by using S1-equivariant even covers. For example, they define

F>⋆
ev,TA = lim

A→B even, S1-equivariant
τ>2⋆(B

hS1

),

where the limit is over S1-equivariant maps to even E∞-rings with S1-action, and similarly

F>⋆
ev,tTB = lim

A→B even, S1-equivariant
τ>2⋆(B

tS1

).

To justify these definitions, recall that if M is an even spectrum with S1-action, then MhS1

and M tS1

are
both even. While Cn analogues are not given in [18], we can take a similar approach and define

F>⋆
ev,Cn

A = lim
A→B even, S1-equivariant

τ>2⋆B
hCn and

F>⋆
ev,tCn

A = lim
A→B even, S1-equivariant

τ>2⋆B
tCn .

These constructions agree with those using Tev and Cn,ev in many cases of interest.
Let CAlg(SpBS1

)lev ⊆ CAlg(SpBS1

) be the full subcategory of E∞-rings A with S1-action admitting an
eff S1-equivariant map A → B to an even E∞-ring with S1-action. Let CAlg(SpBS1

)ev ⊆ CAlg(SpBS1

)lev

be the full subcategory of even E∞-rings with S1-action. Note that for A ∈ CAlg(SpBS1

)lev, the underlying
E∞-ring of the circle-equivariant even filtration

lim
A → B, S1-equivariant

τ>2⋆B

agrees with F>⋆
ev A.

The following unipotence lemma is inspired by the results of [28].

Lemma 3.11 (Synthetic unipotence). Let R ∈ CAlg(Sp) be an even E∞-ring and consider Rtriv
ev the asso-

ciated synthetic E∞-ring with trivial Tev-action. The functor

ModRtriv
ev

(SynSpTev
)

(−)Tev

−−−−→ SynSpRTev
ev

is fully faithful with essential image the objects complete with respect to RTev
ev → Rev.

Proof. The proof follows the argument of [28, Thm. 7.35]. To be more precise, note that Map(Tev, Rev)
is a compact, dualizable Rtriv

ev -algebra in ModRtriv
ev

(SynSpTev
), the dual is also compact and generates

SynSpTev,Rev
as a localizing SynSp-linear subcategory of SynSpTev

, and belongs to the thick subcategory gen-
erated by SynSpω ⊗ {Rtriv

ev } ⊆ ModRtriv
ev

(SynSpTev
). These are the conditions needed to make the synthetic

analogue of [28, Prop. 7.13] work.
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Construction 3.12. Let CAlg(SynSpTev
)ev ⊆ CAlg(SynSpTev

) denote the full subcategory spanned by ob-
jects of the form F>⋆E ≃ τ>2⋆E as underlying synthetic spectra, where E is some even E∞-ring. Note
that the functor F>−∞ : CAlg(SynSpTev

) → CAlg(SpBS1

) restricts to a functor CAlg(SynSpTev
)ev →

CAlg(SpBS1

)ev.

Notation 3.13. Let E be an even E∞-ring spectrum with S1-action. Then the homotopy fixed point
spectral sequence computing π∗(E

hS1

) will collapse, so π−2(E
hS1

) will surject onto H2(BS1, π0(E)). We will
denote by v a fixed choice of lift of the generator of H2(BS1, π0(E)) to π−2(E

hS1

). Similarly, we will denote by
v a choice of lift of this element to π−2(F

−1(τ>2⋆EhS1)), and later to the same element in π−2(F
>−1(ETev

ev )).

Lemma 3.14. The functor F>−∞ : CAlg(SynSpTev
)ev → CAlg(SpBS1

)ev is an equivalence of ∞-categories.

Proof. It is enough to show that F>−∞ is fully faithful and essentially surjective. We will begin by show-
ing essential surjectivity, so let E ∈ CAlg(SpBS1

)ev. Note first that for such an E there is a canonical
τ>2⋆((E

hS1

)hS
1

)-algebra structure on τ>2⋆(E
hS1

) coming from the lax-monoidality of the double-speed Post-
nikov filtration. Let R := EhS1

. It then follows from Lemma 2.75(vi) that ((Rev)
triv)Tev ≃ τ>2⋆(R

hS1

),
and this identification is of E∞-rings by Lemma 2.17. Therefore we have a natural lift τ>2⋆E

hS1

∈
CAlgRTev

ev
(SynSpTev

) This algebra is complete with respect to the map (Rtriv
ev )Tev → Rtriv

ev , and so Lemma 3.11
provides a natural object

Rtriv
ev ⊗(Rtriv)Tev (τ>2⋆E

hS1

) ∈ CAlg(SynSpTev
)

with underlying synthetic spectrum

τ>2⋆(E
hS1

)⊗τ>2⋆((EhS1)hS1) τ>2⋆E
hS1

≃ (τ>2⋆E
hS1

)/v ≃ τ>2⋆E,

so this produces a lift of τ>2⋆E, as desired.
It remains to show that F>−∞ is fully faithful. Let τ>2⋆E1 and τ>2⋆E2 be two objects of CAlg(SynSpTev

)ev.
Then any ring map τ>2⋆E1 → τ>2⋆E2 induces a ring map (τ>2⋆E1)

Tev → (τ>2⋆E2)
Tev which sends v ∈

π−2(F
>−1(τ>2⋆E1)

Tev ) to a choice of v for E2. Conversely, any such map of rings (τ>2⋆E1)
Tev → (τ>2⋆E2)

Tev

induces a ring map τ>2⋆E1 → τ>2⋆E2 by Lemma 3.11. For any fixed map f : τ>2⋆E1 → τ>2⋆E2, Lemma 3.11
also shows that the natural map

(−)Tev : MapCAlg(SynSp
Tev

)(τ>2⋆E1, τ>2⋆E2)f → MapCAlg(SynSp)(τ>2⋆E
Tev
1 , τ>2⋆E

Tev
2 )fTev

is an equivalence on the connected components of f onto fTev . The same argument applies after applying
F>−∞, so we are reduced to showing the lifts of ring maps on the double-speed Whitehead filtration on rings
is unique. This is Lemma 2.17.

Lemma 3.15. The even filtration naturally lifts to a functor (−)ev : CAlg(SpBS1

)lev → CAlg(SynSpTev
).

Proof. The even filtration on eff-locally even E∞-rings with S1-action is right Kan extended from even
E∞-rings with S1-action, and the functor CAlg(SynSpTev

)→ CAlg(SynSp) preserves limits. It is therefore

enough to produce, for each even E ∈ CAlg(SpBS1

), a functorial lift F>⋆A ∈ CAlg(SynSpTev
) of τ>2⋆E ∈

SynSpTev
. This functorial lift is given by the inverse of F>−∞, which exists in the even case by Lemma 3.14.

Corollary 3.16. Let E be an even E∞-ring with T-action. The space of Tev-actions on Eev compatible
with the T-action on E is contractible: the fiber of CAlg(SynSpTev

)→ CAlg(SpT) over E is contractible.

Proof. Apply Lemma 3.14.
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The previous corollary allows us to identify the homotopy types of (Eev)
Tev and (Eev)

tTev as synthetic
spectra with trivial Tev-action using the construction of Remark 3.10.

Corollary 3.17. If E is an even E∞-ring with T-action, then there are natural equivalences (Eev)
Tev ≃

(τ>2⋆(E
hS1

))triv and (Eev)
tTev ≃ (τ>2⋆(E

tS1

))triv.

Proof. Both (Eev)
Tev and (τ>2⋆(E

hS1

))triv are trivial Tev-actions on τ>2⋆(E
hS1

). Thus, they agree by
Corollary 3.16. As the space of such identifications is contractible, the equivalence is natural. The argument
for Tate is the same.

Lemma 3.18. Fix n > 1. There are natural equivalences

(F>⋆
ev E)Tev ≃ τ>2⋆(E

hS1

) ≃ F>⋆
ev,TE,

(F>⋆
ev E)tTev ≃ τ>2⋆(E

tS1

) ≃ F>⋆
ev,tTE.

(F>⋆
ev E)Cn,ev ≃ τ>2⋆(E

hCn) ≃ F>⋆
ev,Cn

E, and

(F>⋆
ev E)tCn,ev ≃ τ>2⋆(E

tCn) ≃ F>⋆
ev,tCn

E

of E∞-algebras in synthetic spectra for all even E∞-rings E with S1-action.

Proof. The right-hand equivalences follow from the definitions since E is even. The existence of natural equiv-
alences from the left-hand side to the right-hand side follows in the case of fixed points from Lemma 2.75(vi),
using the fact that E is a T-equivariant E∞-ring under EhS1

, which is even and has trivial S1-action.
To prove the result for the Tate constructions, one proves an analogous result for the homotopy orbits

(F>⋆
ev E)Tev and (F>⋆

ev E)Cn,ev using Lemma 2.75. The case of Tev-orbits follows using the CW filtration of
Construction 2.52, while for Cn,ev-orbits one uses the pullback square of Corollary 2.50. We leave the details
to the reader.

To prove the final claim, we assume for example that EtCn is even. Then, thanks to its residual T-action,
τ>2⋆(E

tCn) admits a natural Tev-action by Lemma 3.15. We are claiming that this action agrees with the
one arising on (τ>2⋆E)tCn,ev . In fact, the space of Tev-actions compatible with the double-speed Whitehead
filtration on an even E∞-ring with T-action is conctractible. This follows from Lemma 3.15.

Example 3.19. In the setting of Lemma 3.18, it follows that if EtCn is even, then the equivalence
(F>⋆

ev E)tCn,ev ≃ τ>2⋆(E
tCn) is naturally (uniquely) Tev-equivariant, where (F>⋆

ev E)tCn,ev is given the Tev-
action arising from taking tCn,ev) fixed points and τ>2⋆(E

tCn,ev) is given the Tev-action arising from
Lemma 3.15.

As another application of Lemma 3.18, we can give a more precise description of the ETev
ev -E∞-algebra

structure on E
Cn,ev
ev and E

tCn,ev
ev for arbitrary n.

Corollary 3.20. Let E be an S1-equivariant even E∞ algebra. Let Sev[−2](1)→ τ>2⋆(E
hS1

) ≃ ETev
ev be the

map [n](v) ∈ π−2(E
hS1

) given by the n-series associated to the formal group law of E. Then the composition
Sev[−2](1)→ ETev

ev → E
Cn,ev
ev is nullhomotopic and the induced map

ETev
ev /[n](v)→ ECn,ev

ev

is an equivalence of synthetic spectra.

Proof. By adjunction, the map of synthetic spectra is determined by the map ins0S[−2](1)→ E
Cn,ev
ev which

in turn by Lemma 3.18 is determined by the map S[−2] → EhCn given by the n-series on v. This element
is zero, and therefore the map on synthetic spectra Sev[−2](1)→ E

Cn,ev
ev is also nullhomotopic.
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We now have a cofiber sequence of ETev
ev -modules

ETev
ev [−2](1)→ ETev

ev → ETev
ev /[n](v)

which on F>i is then a fiber sequence

Σ−2τ>2i+2E
hS1

→ τ>2iE
hS1

→ F>i(ETev
ev )

and the map from this fiber sequence to the fiber sequence

Σ−2τ>2i+2E
hS1

→ τ>2iE
hS1

→ τ>2iE
hCn

shows that ETev
ev /[n](v)→ E

Cn,ev
ev is an equivalence, as desired.

Corollary 3.21. Let E be an S1-equivariant even E∞-algebra. Then the map

EtTev
ev ⊗ETev

ev
ECn,ev

ev → EtCn,ev
ev

is an equivalence of Tev equivariant E∞-algebras.

Proof. It is enough to show that the induced map on underlying synthetic spectra EtTev
ev /[n](v) → E

tCn,ev
ev

is an equivalence. Both are the double speed Postnikov filtration on EtCn by Lemma 3.18, so the result
follows.

By descent, we find that Lemma 3.18 extends to S1-equivariantly eff-locally even E∞-rings.

Lemma 3.22. Let R be a connective E∞-ring with S1-action which admits an S1-equivariant eff cover by
an even E∞-ring E with S1-action. Fix n > 1. There are natural equivalences

(F>⋆
ev R)Tev ≃ F>⋆

ev,TR,

(F>⋆
ev R)tTev ≃ F>⋆

ev,tTR,

(F>⋆
ev R)Cn,ev ≃ F>⋆

ev,Cn
R, and

(F>⋆
ev R)tCn,ev ≃ F>⋆

ev,tCn
R.

Proof. The equivalence on Tev and Cn,ev fixed points follows from the fact that these functors preserve limits
and by Lemma 3.18.

Let E• be the Čech complex of R → E. This is a cosimplicial even E∞-ring with S1-action. By
functoriality, there is a natural map

(F>⋆
ev R)tS

1

→ Tot((F>⋆
ev E•)tS

1

) ≃ Tot(τ>2⋆((E
•)tS

1

)),

where the equivalence is by Lemma 3.18. It suffices to argue that under the hypotheses of the lemma, taking
the Tev-Tate construction commutes with the limit. For this, it is equivalent to checking that the induced
map

(F>⋆
ev R)Tev → Tot((F>⋆E•)Tev )

is an equivalence.
To prove this, we may assume without loss of generality that E is connective since R is. We then have

that F>⋆
ev R is connective in the Postnikov t-structure by the results of Burkland and Krause, so the filtration

on (F>⋆
ev R)Tev is complete by Lemma 2.75(ii). Since grievR ≃ 0 for i < 0, we have that grN (F>⋆

ev R)Tev admits
a finite filtration with associated graded pieces the weight N piece of grievR ⊗Tgr Sgr, for 0 6 i 6 N . It is
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thus enough to check that grievR ⊗Tgr Sgr ≃ Tot((π2iE
•[2i]) ⊗Tgr Sgr) for all i > 0. Since both sides are

concentrated in a single weight, the Tgr-action is trivial, so we must check that

grievR⊗Sgr Sgr ⊗Tgr Sgr → Tot((π2iE
•(i)[2i])⊗Sgr Sgr ⊗Tgr Sgr)

is an equivalence of graded spectra. However, the calculation in a single weight j involves only Sgr and Tgr

in weights 0 6 k 6 j. In these weights, Sgr is a perfect graded Tgr-module, and hence tensoring (in graded
spectra with weights in [0, j] ∩ Z) commutes with totalizations. This completes the proof for the Tev-Tate
construction. The Cn,ev-Tate construction is similar, using that ρ(n)∗Sgr is perfect over Sgr in any bounded
range of non-negative weights.

We conclude with the example of rational synthetic spectra.

Example 3.23 (Rational Tate vanishing). Note that (Sev)Q ≃ ins0Q ≃ Qev. If F>⋆M is a synthetic
Q-module with Tev-action, then (F>⋆M)tCp,ev ≃ 0 for all primes p. Indeed, (F>⋆M)tCp,ev is a syn-
thetic (Qev)

tCp,ev -module by Proposition 2.67, but the latter vanishes as it is equivalent to τ>2⋆(Q
tCp)

by Lemma 3.18.

3.3 Topological Hochschild homology as a synthetic cyclotomic spectrum

In this section we achive the proof that CycSyn does indeed make a home for the BMS and even filtrations.

Definition 3.24 (Quasisyntomic rings). We recall some definitions from [7, 18].

(a) A commutative ring R is integrally quasisyntomic if it has bounded p-torsion for all primes p and if it
is quasi-lci over Z in the sense that LR/Z has Tor-amplitude in [0, 1]. Write QSyn for the category of
integrally quasisyntomic commutative rings.

(b) A commutative ring R is p-quasisyntomic if it has bounded p-torsion and is p-quasi-lci over Z in the
sense that LR/Z has p-complete Tor-amplitude in [0, 1]. If R is additionally p-complete, this definition
agrees with the one given in [7]. Let QSynp denote the category of p-quasisyntomic commutative rings.

(c) An E∞-ring spectrum R is chromatically quasisyntomic if R⊗S MU is even and ⊕∗(π∗(R⊗S MU)) is
quasi-lci over Z and has bounded p-power torsion for all primes p. Let CQSyn denote the ∞-category
of chromatically quasisyntomic E∞-ring spectra.

(d) An E∞-ring spectrum R is chromatically p-quasisyntomic if R ⊗S MU is even and ⊕∗(π∗(R ⊗S MU))
is p-quasisyntomic. Let CQSynp denote the ∞-category of chromatically p-quasisyntomic E∞-ring
spectra.

Motivic filtrations have been constructed on THH(R) or its p-completion as well as on TC−, TP, TC in
these cases in [6, 7, 18, 29]. We will show in this section that the motivic filtrations agree with those arising
from natural functors from the categories of quasisyntomic rings singled out above to commutative algebras
in cyclotomic synthetic spectra. The real point of our work is the construction with target CAlg(CycSyn).
Once this has been carried out, the main work of the comparison results has been carried out already in [18,
Sec. 5].

We will begin by considering the case of producing a cyclotomic synthetic spectrum from an even cy-
clotomic spectrum. Let CAlg(CycSp)ev denote the full subcategory of commutative algebras in (p-typical)
cyclotomic spectra whose underlying spectrum is even.

Proposition 3.25. The functor F>−∞ : CAlg(CycSyn)ev → CAlg(CycSp)ev is an equivalence of∞-categories.

Proof. Once again it is enough to show that this functor is essentially surjective and fully faithful. Both
follow from Lemma 3.11 via a very similar argument as in Lemma 3.14.
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Let (E,ϕE) ∈ CAlg(CycSp)ev. We have that Eev lifts to an element of CAlg(SynSpTev
), so it is enough

to produce a filtered lift of ϕE . The Frobenius ϕE induces a map τ>2⋆(E
hS1

)→ τ>2⋆((E
tCp)hS

1

) of synthetic
E∞-algebras. Under the equivalence of Lemma 3.11 this corresponds to a map Eev → (τ>2⋆E

tCp)hS
1

/ϕE(v)

of E∞-algebras in SynSpTev
for some such structure on (τ>2⋆E

tCp)hS
1

/ϕE(v). We claim that this agrees
with E

tCp,ev
ev .

Note that on underlying synthetic spectra we have that (τ>2⋆E
tCp)hS

1

/ϕE(v) ≃ τ>2⋆E
tCp . ThusÄ

(τ>2⋆E
tCp)hS

1

/ϕE(v)
äTev

≃ τ>2⋆((E
tCp)hS

1

) by Lemma 2.75(vi). This agrees with (E
tCp,ev
ev )Tev , so by

Lemma 3.11 we have that (τ>2⋆E
tCp)hS

1

/ϕE(v) ≃ E
tCp,ev
ev as objects of CAlg(SynSpTev

), as desired.
We will now show full faithfulness. To this end let (τ>2⋆E,ϕ1), (τ>2⋆E2, ϕ2) ∈ CAlg(CycSyn)ev. Note

first that the map

MapCAlg(CycSyn)((τ>2⋆E1, ϕ1), (τ>2⋆E2, ϕ2))→ MapCAlg(SynSp
Tev

)(τ>2⋆E1, τ>2⋆E2)

is injective on π0. This follows from the fact that for any ∞-category C, the functor C∆1 (ev0,ev1)
−−−−−−→ C × C

is a categorical fibration, see [25, Cor. 2.3.2.5, Cor. 2.4.6.5]. The faithfulness of the functor F>−∞ on π0 of
mapping spaces then follows from Lemma 3.14. Surjectivity on π0 follows from the same argument as in the
proof of essential surjectivity in the previous paragraphs.

Now fix a map f ∈ MapCAlg(CycSyn)((τ>2⋆E1, ϕ1), (τ>2⋆E2, ϕ2)). We now must show that the induced
map

MapCAlg(CycSyn)((τ>2⋆E1, ϕ1), (τ>2⋆E2, ϕ2))f → MapCAlg(CycSp)((E1, ϕ1), (E2, ϕ2))F>−∞f

on connected components is a weak equivalence. The fiber sequence of [32, Prop. II.5.1(ii)] then reduces this
to showing that

MapCAlg(SynSp
Tev

)(τ>2⋆E1, τ>2⋆E2)f → Map
CAlg(SpBS1

)
(E1, E2)F>−∞f

and
MapCAlg(SynSp

Tev
)(τ>2⋆E1, (τ>2⋆E2)

tCp,ev)ϕ2◦f → Map
CAlg(SpBS1

)
(E1, E

tCp

2 )ϕ2◦F>−∞f

are weak equivalences. The first is a direct consequence of Lemma 3.14, and the second is a slight variation
using Lemma 3.11.

Descending this result then gives us the following.

Corollary 3.26. Let R be a cyclotomic E∞-ring. If R is locally even in cyclotomic spectra, then F>⋆
ev R

naturally admits the structure of a commutative algebra object in CycSyn. In other words, there is a functor
CAlg(CycSp)lev → CAlg(CycSyn).

Proof. Let R → E be an eff cover of R by a cyclotomic spectrum (E,ϕE). Then the previous Lemma
produces a natural lift of E•

ev to a diagram in CAlg(CycSyn). Thus taking totalizations and noting the the
forgetful functors CAlg(CycSyn) → CycSyn → SynSpTev preserve limits we get a natural lift of Rev to an
element of CAlg(CycSyn).

Theorem 3.27 (Even filtration comparison). There are functors

F>⋆
ev THH(−) : CQSyn→ CAlg(CycSyn)

and
F>⋆
ev THH(−;Zp) : CQSynp → CAlg(CycSyn∧p )

with the following properties.
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(a) For R ∈ CQSyn, there are natural equivalences

F>⋆
ev THH(R) ≃ Fil⋆HRWTHH(R),

(F>⋆
ev THH(R))Tev ≃ Fil⋆HRWTC−(R), and

(F>⋆
ev THH(R))tTev ≃ Fil⋆HRWTP(R),

of filtered E∞-algebras (with circle action for the first equivalence).
(b) For R ∈ CQSynp, there are natural equivalences

F>⋆
ev THH(R;Zp) ≃ Fil⋆HRWTHH(R;Zp),

(F>⋆
ev THH(R;Zp))

Tev ≃ Fil⋆HRWTC−(R;Zp),

((F>⋆
ev THH(R;Zp))

tTev)∧p ≃ Fil⋆HRWTP(R;Zp), and

TC(F>⋆
ev THH(R;Zp)) ≃ Fil⋆HRWTC(R;Zp)

of filtered E∞-algebras (with circle action for the first equivalence).

Proof. Existence of the functors and all parts of (a) and (b) not pertaining to TC follow from Corollary 3.26,
Lemma 3.22, and the results of [18, Sec. 4.2].

For TC, we have by [32, Proposition II.1.5(ii)], an equalizer formula for TC(F>⋆
ev THH(−;Zp)) and the

result amounts to identifying MapSynSp
Tev

(Sev, (F
>⋆
ev THH(−;Zp))

tCp,ev) with (F>⋆
ev THH(−;Zp))

tTev . This
follows from Lemma 3.31 below.

Variant 3.28 (Relative theories). More generally, if k → R is a chromatically quasi-lci map of connective E∞-
rings, then there is a natural F>⋆

ev THH(R/k) ∈ CAlg(CycSyn) lifting the filtration fil⋆THH(R/k) constructed
in [18, Def. 2.4.1]. The analogue of property (b) from Theorem 3.27 holds in this relative case as well.

We can also compare to the filtration on p-adic THH for p-quasisyntomic rings constructed in [7] and
to the filtration on integral THH for quasisyntomic rings constructed by Morin in [29, Def. 1.1] and by
Bhatt–Lurie in [6, Sec. 6.2].

Theorem 3.29 (BMS comparison). There are functors

F>⋆
ev THH(−) : QSyn→ CAlg(CycSyn)

and
F>⋆
ev THH(−;Zp) : QSynp → CAlg(CycSyn∧p )

with the following properties.

(a) For R ∈ QSyn, there are natural equivalences

F>⋆
ev THH(R) ≃ Fil⋆BLMTHH(R),

(F>⋆
ev THH(R))Tev ≃ Fil⋆BLMTC−(R), and

(F>⋆
ev THH(R))tTev ≃ Fil⋆BLMTP(R),

of filtered E∞-algebras (with circle action for the first equivalence).
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(b) For R ∈ QSynp, there are natural equivalences

F>⋆
ev THH(R;Zp) ≃ Fil⋆BMSTHH(R;Zp),

(F>⋆
ev THH(R;Zp))

Tev ≃ Fil⋆BMSTC
−(R;Zp),

((F>⋆
ev THH(R;Zp))

tTev )∧p ≃ Fil⋆BMSTP(R;Zp), and

TC(F>⋆
ev THH(R;Zp)) ≃ Fil⋆BMSTC(R;Zp)

of filtered E∞-algebras (with circle action for the first equivalence).

Proof. For part (b), the functors are constructed as in [7] by unfolding from the quasiregular semiperfectoid
case. If R is a quasiregular semiperfectoid, then THH(R;Zp) is p-completely Tate-even. This is proved in [36,
Sec. 3], together with statements for Cpn -fixed points and Tate for all n > 1. In the n = 1 case, it also follows
via a comparison to Nygaard-complete Hodge–Tate cohomology. Thus, THH(R;Zp) canonically admits the
structure of a p-complete synthetic cyclotomic E∞-algebra by Corollary 3.26. Using that the forgetful functor
CAlg(CycSyn∧p )→ SynSp∧

p is conservative, the general case follows by quasisyntomic descent.
For part (a), we use the pullback square

THH(R) //

��

∏
p THH(R;Zp)

��

HH(R)Q // (
∏

p THH(R;Zp))Q

of spectra with T-action. Taking even filtrations, we obtain a Tev-action on THH(R) by pullback. We make
this into a cyclotomic synthetic spectrum by equipping the rational synthetic spectra with Tev-action with
the zero Frobenii (the only possible choice thanks to Example 3.23). We let F>⋆

ev THH(R) be the pullback in
cyclotomic synthetic spectra. The comparison results now follow by construction of the Bhatt–Lurie–Morin
filtrations in [6, Sec. 6.4] and [29, Def. 1.1].

There is a natural map of fiber sequences

F>⋆XCpn+1,ev
F>⋆XCpn+1,ev F>⋆XtCpn+1,ev

(F>⋆XCp,ev)
Cpn,ev F>⋆XCpn+1,ev (F>⋆XtCp,ev)Cpn,ev

where the left vertical map is the norm. We used the following lemmas above.

Lemma 3.30. Let F>⋆X ∈ SynSpTev
be bounded below in the Postnikov t-structure. Then the natural map

(F>⋆X)tCpn+1,ev → (F>⋆XtCp,ev)Cpn,ev is an equivalence for all n > 0.

Proof. The proof that the maps (F>⋆X)tCpn+1,ev → (F>⋆XtCp,ev)Cpn,ev are equivalences follows from Lemma 2.79
in the same way as in [32, Lemma II.4.1].

Lemma 3.31. Let R be a connective E∞-ring with S1-action which admits an S1-equivariant eff cover by
and even E∞-ring E with S1-action. Then the maps in the commutative diagram

F>⋆
ev RtTev (F>⋆

ev RtCp,ev)Tev

limF>⋆
ev RtCpn+1,ev lim(F>⋆

ev RtCp,ev)Cpn,ev
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are p-adic equivalences.

Proof. We have already seen in Lemma 3.30 that the bottom map is an equivalence even before p-completion
(or before taking the limit). The right hand vertical map is an equivalence p-adically since this reduces to the
statement that the map colim ρ(pn)∗Tev → Sev is a p-adic equivalence which follows from the fiber sequence
of Lemma 2.40 and the identification of the map ρ(nm)∗Tev → ρ(n)∗Tev as multiplication by m on the fiber.
Finally, the left vertical map is a p-adic equivalence by Lemma 3.22 and the proof of [32, Lem. II.4.2].

4 The synthetic cyclotomic t-structure

Following [3], we will now construct a t-structure on CycSyn starting with a t-structure C on SynSp satisfying
(⋆) in the sense of Definition 2.76.

4.1 Synthetic t-structures

Theorem 4.1. If C is a t-structure on SynSp which satisfies (⋆), then there exists an accessible t-structure
on CycSyn which is

(1) compatible with the symmetric monoidal structure on CycSyn;
(2) left separated;
(3) left complete and compatible with countable products.

Moreover, the forgetful functor CycSyn→ SynSp is right t-exact.

We will write C = (CycSynC>0,CycSyn
C
60) for this t-structure as well.

Proof of Theorem 4.1. Let CycSynC>0 ⊆ CycSyn be the full subcategory of objects (F⋆X,ϕ) such that the
underlying synthetic spectrum F⋆X is in SynSpC>0. Note that we can describe CycSynC>0 instead as

CycSynC>0 ≃ Eq(id, τC>0(−)
tCp,ev : SynSpC

Tev,>0 ⇒ SynSpCTev,>0)

since any map F>⋆X → (F>⋆X)tCp,ev factors functorially and uniquely through a map F>⋆X → τC>0F
>⋆XtCp,ev

for F>⋆X connective with respect to C. Thus CycSyn>0 is presentable by [32, Proposition II.1.5] and closed
under extensions in SynSp. By [26, 1.4.4.11], there is a unique t-structure C = (CycSynC>0,CycSyn

C
60) on

CycSyn.
The forgetful functor CycSyn→ SynSpTev

is right t-exact by definition. We also have that C is compatible
with the symmetric monoidal structure on CycSyn since the unit Striv

ev is connective and since the tensor
product of connectives is connective. This proves (1).

Left separatedness follows from the fact that the functor CycSyn→ SynSpTev
is conservative; this shows

(2). To show part (3), it is enough to show that CycSynC>0 is closed under countable products in CycSyn
by [26, 1.2.1.19]. This follows assuming that the forgetful functor CycSyn → SynSpTev

commutes with
countable products of C-connective objects, which in turn follows from [32, Prop. II.1.5(v)] and the fact that
for {F>⋆Yk}k a family of C-connective objects,

(∏

k

F>⋆Yk

)tCp,ev

→
∏

k

F>⋆Y
tCp,ev

k

is an equivalence by Lemma 2.80 (taking F>⋆Xk :=
∏k

i=1 F
>⋆Yi.).
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4.2 Synthetic topological Cartier Modules

In order to analyze the heart of the cyclotomic synthetic t-structures, we introduce synthetic Cartier modules
and their associated t-structures.

Definition 4.2. Define the∞-categoryCartSyn to be the∞-category of objects F>⋆X ∈ SynSpTev
equipped

with an equivariant factorization

(F>⋆X)Cp,ev

V
−→ F>⋆X

F
−→ (F>⋆X)Cp,ev

of the norm map Nmp : F
>⋆XCp,ev → F>⋆XCp,ev of Construction 2.63. More precisely, CartSyn is the

pullback of the diagram
SynSpTev

SynSp∆
2

Tev
SynSpTev

× SynSp∆1

Tev

(id,Nmp)

(ev1,∂
1)

in Cat∞. We call the objects of CartSyn synthetic Cartier modules.

There are two key examples to keep in mind, which we outline now.

Example 4.3. Let (F>⋆X,ϕ) ∈ CycSynp. Define the filtered topological restriction homology of F>⋆X to
be the synthetic spectrum

TR(F>⋆X) := Eq

Ñ
∏

n>0

F>⋆XCpn,ev

∏
can

C
pn−1,ev

−−−−−−−−−→
−−−−−−−−−→

∏
ϕ
Cpn,ev
p

∏

n>0

(F>⋆XtCp,ev)Cpn,ev

é

where the top map is given on the nth factor as the composition

F>⋆XCpn,ev ≃ (F>⋆XCp,ev)Cpn−1,ev
can

C
pn−1,ev

−−−−−−−−→ (F>⋆XtCp,ev)Cpn−1,ev

and the bottom map is given by ϕCpn,ev : F>⋆XCpn,ev → (F>⋆XtCp,ev)Cpn,ev .
The filtered topological restriction homology naturally carries a synthetic Cartier module structure. To

see this, note that TR(F>⋆X) is the equalizer of two objects in SynSpTev
, and so naturally has a Tev action.

We may then define V : TR(F>⋆X)Cp,ev → TR(F>⋆X) to be the map induced by

Ñ
∏

n>0

F>⋆XCpn,ev

é

Cp,ev

→
∏

n>0

(F>⋆XCpn,ev)Cp,ev

∏
n>0 Nmp

−−−−−−−→
∏

n>0

F>⋆XCpn+1,ev

and the same map with F>⋆X replaced with F>⋆XtCp,ev . The Frobenius map F : TR(F>⋆X)→ TR(F>⋆X)Cp,ev

is the map induced by the maps

∏

n>0

F>⋆XCpn,ev
proj
−−→

∏

n>1

F>⋆XCpn,ev =
∏

n>0

F>⋆XCpn+1,ev ≃

Ñ
∏

n>0

F>⋆XCpn,ev

éCp,ev

and the same map with F>⋆X replaced with F>⋆XtCp,ev .
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Remark 4.4. Classically topological cyclic homology was defined as a certain equalizer of topological
restriction homology. One might wonder if such a formula is still true in this synthetic language. Indeed,
there is a functorial fiber sequence

TC(F>⋆X)→ TR(F>⋆X)→ TR(F>⋆X)

for any p-complete and bounded below F>⋆X ∈ CycSyn. To see this, consider the map F : TR(F>⋆X) →
TR(F>⋆X) induced by the restriction maps (F>⋆X)Cpn+1,ev → (F>⋆X)Cpn,ev and (F>⋆XtCp,ev)Cpn+1,ev →
(F>⋆XtCp,ev)Cpn,ev . Then taking the equalizer of F = 1 on TR(F>⋆X) produces a fiber sequence

TR(F>⋆X)F=1 → lim(F>⋆X)Cpn,ev → lim(F>⋆XtCp,ev)Cpn,ev

which under our assumptions on F>⋆X is then the same fiber sequence giving TC(F>⋆X) by Lemma 3.31.

Example 4.5. Let (M∗, d, F, V ) ∈ DCartη, where DCartη is the abelian category of η-deformed Cartier
complexes of definition 4.17. Define F>⋆M ∈ SynSp♥

Tev
by F>iM : = Mi[i] with maps F>i+1M

0
−→ F>iM

and π0(Tev) = Z[η, d]/(2η, d2 = ηd)-module structure given by d. From example 2.73 we have that the maps
F, V : F>⋆M∗ → F>⋆M∗ do determine maps V : (F>⋆M∗)Cp,ev → F>⋆M∗ and F : F>⋆M∗ → F>⋆M

Cp,ev
∗ (by

the first two relations) and factor the norm map (by the third and fourth relation). Thus this determines a
Synthetic Cartier module.

In order to access the mapping spectra, it will be more convenient to work with a slightly different model
of synthetic Cartier modules.

Lemma 4.6. There is a pullback square of ∞-categories

CartSyn SynSpTev
× SynSpTev

CycSynFr SynSp∆
1

Tev
,

where

(i) CycSynFr is the ∞-category given in Definition 3.7;
(ii) the left vertical map is forgetting the V map;
(iii) the top horizontal map sends an object (F>⋆X,F, V, σ) to the pair (F>⋆XCp,ev ,F

>⋆XCp,ev/F );4

(iv) the bottom horizontal functor sends an object (M,F : M → MCp,ev) to the composition MCp,ev

Nmp
−−−→

MCp,ev →MCp,ev/F ;
(v) the right vertical map sends a pair (X,Y ) to the zero map X

0
−→ Y .

Proof. The proof of [3, Lem. 3.7] applies here.

As a consequence we get the following two corollaries. The proofs follow those of [3, Prop. 3.8] and [3,
Prop. 3.11].

Corollary 4.7. The category CartSyn is stable presentable∞-category, and for any two objects (F>⋆X,FX , VX , σX)
and (F>⋆Y, FY , VY , σY ) in CartSyn there is a fiber sequence of spectra

MapCartSyn(F
>⋆X,F>⋆Y )→ MapCycSynFr (F>⋆X,F>⋆Y )→ MapSynSp

Tev
(F>⋆XCp,ev , fib(FY )).

Moreover, MapSynSp
Tev

(F>⋆XCp,ev , fib(FY )) ≃ MapCycSynFr(F>⋆XCp,ev ,F
>⋆Y ), where F>⋆XCp,ev has the

zero map as its Frobenius lift.
4Here σ denotes the 2-cell witnessing that F ◦ V ≃ Nmp.
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Corollary 4.8. The category CartSyn is stable, presentable, and the forgetful functor CartSyn → SynSpTev

preserves limits and colimits.

We end this subsection with the construction of a functor (−)/V : CartSyn → CycSynp which we will
later show is an equivalence.

Construction 4.9. Consider the functor CartSyn → SynSp∆
1

Tev
given by the composition

CartSyn → SynSp∆2

Tev

p∗

−→ SynSp∆
1×∆1

Tev

cofib
−−−→ SynSp∆

1

Tev

where the first functor is from the definition of CartSyn, the second is the functor described diagrammatically
as

F>⋆X F>⋆X F>⋆X

7→

F>⋆Y F>⋆Z F>⋆Y F>⋆Z

f
h

f

id

h

g g

and the last map is taking vertical cofibers. Note that this composition sends a synthetic Cartier module
(X,F, V, σ) to the map F>⋆X/V → F>⋆XtCp,ev . Postcomposing with the natural tranformation F>⋆XtCp,ev →
(F>⋆X/V )tCp,ev then gives a functor CartSyn → CycSynp which sends (F>⋆X,F, V, σ) to (F>⋆X/V,F>⋆X/V →

F>⋆XtCp,ev → (F>⋆X/V )tCp,ev).

4.3 t-structures on synthetic Cartier modules

We will now construct t-structures on CartSyn. Each of these, in turn, will produce a t-structure on synthetic
cyclotomic spectra once we have proven the equivalence between these two categories.

Construction 4.10. Let C be a t-structure on SynSp which satisfies (⋆). Let CartSynC,>0 ⊆ CartSyn be the
full subcategory spanned by objects (X,F, V, σ) where the underlying synthetic spectrum X is in SynSpC>0.
Let CartSyn,60 be the full subcategory of CartSyn spanned by objects (X,F, V, σ) with Y n SynSpC60.

Lemma 4.11. Let C be a t-structure on SynSp which satisfies (⋆).

(a) The subcategories (CartSynC,>0,CartSyn
C
,60) define an accessible t-structure on CartSyn.

(b) The forgetful functors CartSyn → SynSpTev
→ SynSp are t-exact.

(c) The functor (−)/V : CartSyn → CycSynp of Construction 4.9 is right t-exact.
(d) The t-structure on CartSyn is left complete and compatible with filtered colimits.
(e) If SynSpC

>0 is right complete, then so is CartSynC,>0.

Proof. The proof follows that of [3, Prop. 3.15]. Following [3, Proposition 3.15], one shows that CartSyn,>0 is
presentable and closed under colimits and extensions since the same is true for SynSpTev,>0 and the forgetful
functor preserves all limits and colimits. Thus there is some C ⊆ CartSyn such that (CartSyn,>0,C) is a
t-structure. From Corollary 4.7 we also have that CartSyn,60 ⊆ C. To prove (a), it is then enough to show
that for (M,FM , VM , σM ) ∈ CartSyn there is a lift of the fiber sequence τ>0M →M → τ6−1M in SynSpTev

to CartSyn.
To this end first note that (τ>0M)Cp,ev is connective since it is the tensor product of connective objects

and τ is compatible with the monoidal structure. Thus the composition (τ>0M)Cp,ev → MCp,ev

V
−→ M
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factors through the connective cover τ>0M . Similarly we get a factorization of the Frobenius through a map
τ>0M → τ>0M

Cp,ev ≃ τ>0(τ>0M)Cp,ev . The second equivalence comes from the fiber sequence

(τ>0M)Cp,ev := MapSynSp
Tev

(ρ(p)∗Tev, τ>0M)→ MapSynSp
Tev

(ρ(p)∗Tev,M)→ MapSynSp
Tev

(ρ(p)∗Tev, τ6−1M)

and the last term in this fiber sequence vanishes on connective covers since it is a map from a connective
object to a (−1)-truncated object. As in [3, Proposition 3.15], the above maps, together with the map
τ>0M → M and the Cp,ev norm maps, gives a functor (∂∆2) × ∆1 → SynSpTev

, and it is enough for us
to show that this fills in to a functor ∆2 × ∆1 → SynSpTev

. This is done inductively, where the base
case ∂∆2 × [1] ∈ ∂∆2 × ∆1 is filled in by σM , and the other 2-simplicies are filled in via decomposing
∂∆2 ×∆1 ∪∆2 × [1] as three tetrahedra and using that fact that SynSpTev

is an ∞-category.
The functors CartSyn → SynSpTev

and CartSyn → SynSp are then t-exact by definition. We also have
that for (M,F, V, σ) ∈ CartSyn,>0 that MCp,ev ∈ SynSpTev,>0, and so taking the cofiber of two connective
objects gives that M/V ∈ SynSpTev,>0. Finally the fact that CartSynC,>0 is compatible with filtered colimits
and is left or right complete if τ is follows from the fact that CartSyn → SynSpTev

is conservative and
commutes with limits and colimits.

4.4 Synthetic lifts of the cyclotomic t-structure

Now that we have t-structures on CartSyn, to study the t-structures on CycSyn it is enough to identify
CycSyn as the full subcategory of V -complete objects in CartSyn. We begin by lifting a result of Krause
and Nikolaus from [24] to the synthetic setting. In fact, the proof they give in [24, Proposition 10.3] also
works in our setting.

Lemma 4.12. The functor TR: CycSyn→ CycSynFr is right adjoint to the forgetful functor.

Proof. For (F>⋆Y, FY ) ∈ CycSynFr by definition we have that maps from Y to TR(X) is given by

Eq

Ñ

MapSynSp
Tev

(F>⋆Y,TR(F>⋆X))

F
TR(F>⋆X),∗
−−−−−−−−→
−−−−−−−→
F∗

Y
(−)Cp,ev

MapSynSp
Tev

(F>⋆Y,TR(F>⋆X)Cp,ev)

é

and by definition TR(F>⋆X) is given by an equilizer itself. In particular we get equivalences

MapSynSp
Tev

(F>⋆Y,TR(F>⋆X)) ≃

Eq

Ñ
∏

n>0

MapSynSp
Tev

(F>⋆Y,F>⋆XCpn,ev)

∏
can∗−−−−−−−−→

−−−−−−−−→
∏

(ϕ
Cpn,ev

F>⋆X
)∗

∏

n>0

MapSynSp
Tev

(F>⋆Y, (F>⋆XtCp,ev)Cpn−1,ev)

é

and the same equivalence with maps to TR(F>⋆X)Cp,ev with an all the ns replaced with n+ 1.
Since we are taking the equilizer of equilizers and limits commute, we may first find the equilizer

Eq

Ñ
∏

n>0

MapSynSp
Tev

(F>⋆Y,F>⋆XCpn,ev) ⇒
∏

n>0

MapSynSp
Tev

(F>⋆Y,F>⋆XCpn+1,ev)

é

and

Eq

Ñ
∏

n>0

MapSynSp
Tev

(F>⋆Y, (F>⋆XtCp,ev)Cpn,ev) ⇒
∏

n>0

MapSynSp
Tev

(F>⋆Y, (F>⋆XtCp,ev)Cpn+1,ev)

é
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where the top map is given by forgetting the bottom factor and the bottom map is (FF>⋆Y (−)
Cp,ev)∗. These

are given by MapSynSp
Tev

(F>⋆Y,F>⋆X) and MapSynSp
Tev

(F>⋆Y,F>⋆XtCp,ev), respectively. Putting this
together then gives

MapCycSynFr
p
(F>⋆Y,TR(F>⋆X))

≃ Eq
Ä
MapSynSp

Tev
(F>⋆Y,F>⋆X) ⇒ MapSynSp

Tev
(F>⋆Y,F>⋆XtCp,ev)

ä

≃MapCycSyn(F
>⋆Y,F>⋆X)

as desired.

From the lemma, we deduce the following.

Corollary 4.13. The functor TR(−) : CycSyn→ CartSyn is right adjoint to (−)/V : CartSyn → CycSyn.
Furthermore, the counit of the adjunction

TR(F>⋆X)/V → F>⋆X

is an equivalence when the underlying synthetic spectrum F>⋆X is C-bounded below with respect to a t-
structure satisfying (⋆).

Proof. The fact that TR: CycSyn → CartSyn is right adjoint to (−)/V : CartSyn → CycSyn follows from
the fiber sequence of Corollary 4.7 and Lemma 4.12. Note that we can describe the counit of this adjunction
explicitly: We have a projection map

π : TR(F>⋆X)→
∏

n>0

F>⋆XCpn,ev → F>⋆X

and by definition the composition π ◦ V : TR(F>⋆X)Cp,ev → F>⋆X is nullhomotopic. The induced map
TR(F>⋆X)/V → F>⋆X is the counit and as in [3] extending this to the commutative diagram

TR(F>⋆X)Cp,ev TR(F>⋆X) F>⋆X

TR(F>⋆X)Cp,ev TR(F>⋆X)Cp,ev F>⋆XtCp,ev

V

F

π

ϕ
F>⋆X

Nmp

shows that the counit is an equivalence if and only if the map πtCp,ev : TR(F>⋆X)tCp,ev → F>⋆XtCp,ev is an
equivalence.

Now suppose that F>⋆X is an object of CycSyn such that the underlying synthetic spectrum is bounded
below with respect to C. Note that we can define TRn(F>⋆X) as the Tev-equivariant spectrum

TRn(F>⋆X) := Eq

Ñ
∏

06k6n

F>⋆XC
pk,ev ⇒

∏

06k6n

F>⋆(XtCp,ev)Cpk−1,ev

é

and doing so gives us maps R : TRn+1(F>⋆X) → TRn(F>⋆X) given by projection onto the first n-factors
in each of the products. It then follows that TR(F>⋆X) ≃ limTRn(F>⋆X), that the map π : TR(F>⋆X)→
F>⋆X agrees with the map TR(F>⋆X) → TR0(F>⋆X), and that the fiber of the map TRn+1(F>⋆X) →
TRn(F>⋆X) can be identified with F>⋆XCpn+1,ev

.
Suppose now that N is such that F>⋆X ≃ τ>NF>⋆X which must exist by assumption on F>⋆X be-

ing bounded below with respect to C. From compatibility with the monoidal structure it follows that
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F>⋆XCpn+1,ev
≃ τ>NF>⋆XCpn+1,ev

for all n, and so inductively TRn(F>⋆X) ≃ τ>NTRn(F>⋆X) for all n.
Applying (−)tCp,ev to the fiber sequence F>⋆XCpn+1,ev

→ TRn+1(F>⋆X) → TRn(F>⋆X) then inductively
shows that the map TRn(F>⋆X)tCp,ev → F>⋆XtCp,ev is an equivalence since (F>⋆XCpn+1,ev

)tCp,ev ≃ 0 by
Lemma 2.79. The result then follows from the fact that (−)tCp,ev commutes with limits of uniformly C-
bounded below objects by Lemma 2.80.

Since the counit of the adjunction only induces an equivalence for C-bounded below objects we will need
to restrict our attention to these objects.

Definition 4.14. Let C be a t-structure on SynSp which satisfies (⋆) and let CycSyn− denote the full
subcategory of CycSyn spanned by bounded below objects in the associated t-structure on CycSyn. Similarly
denote CartSyn− the full subcategory of CartSyn spanned by bounded below objects.

On these subcategories we have a nice identification of TR(F>⋆X)/V n.

Lemma 4.15. Let F>⋆X ∈ CycSyn−. Then the natural map TR(F>⋆X)/V n → TRn(F>⋆X) is an equiva-
lence.

Proof. The case n = 0 was handled in the proof of Corollary 4.13, so suppose that this map is an equivalence
for n. Then we have a cofiber sequence

(F>⋆X)Cpn,ev
→ TR(F>⋆X)/V n+1 → TRn(F>⋆X)

coming from the factorization V n+1 = V n ◦ VCpn,ev
and using the base case and the inductive hypothesis to

identify the first and last terms. This fiber sequence maps to the cofiber sequence

(F>⋆X)Cpn,ev
→ TRn+1(F>⋆X)→ TRn(F>⋆X)

and so the result follows.

Lemma 4.16. The functor TR : CycSyn− → CartSyn is fully faithful and t-exact. The essential image is
the full subcategory of bounded below V -complete objects.

Proof. The fact that TR : CycSyn− → CartSyn is fully faithful follows from Corollary 4.13. Similarly TR is
left t-exact since (−)/V is right t-exact.

To see that TR is right t-exact, note first that for a connective F>⋆X , each TRn(F>⋆X) will induc-
tively be connective. Since C is compatible with countable products we then have that the limit of con-
nective objects will be (−1)-connective. Furthermore since all terms in the fiber sequences F>⋆XC

pn+1,ev
→

TRn+1(F>⋆X)→ TRn(F>⋆X) are connective we have that pn+1 : πC
0 (TR

n+1(F>⋆X))→ πC
0 (TR

n(F>⋆X)) is

an epimorphism for all n. Thus
∏

n π
C
0 (TR

n(F>⋆X))
id−pn
−−−−→

∏
n π

C
0 (TR

n(F>⋆X)) is an epimorphism. From
this and the fiber sequence TR(F>⋆X) →

∏
n TR

n(F>⋆X) →
∏

n TR
n(F>⋆X) we have that TR(F>⋆X) is

connective as desired.
It remains to identify the essential image. By t-exactness we get that TR lands in the full subcategory

CartSyn−. It is now enough to show that for F>⋆M ∈ CartSyn− the unit map F>⋆M → TR(F>⋆M/V )
identifies the target as the V -completion of the source. We have from Lemma 4.15 that the target is V -
adically complete, and so it is enough to show that M/V n → TRn(F>⋆M/V ) is an equivalence for all n.
This follows inductively by looking at the fiber sequences

(F>⋆M/V )Cpn,ev
→ TRn+1(F>⋆M/V )→ TRn(F>⋆M/V )

and
(F>⋆M/V )Cpn,ev

→ F>⋆M/V n+1 → F>⋆M/V n

where the second fiber sequence comes from writing V n+1 = V n ◦ VCpn,ev
.
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4.5 Identification of the heart

We will now restrict our attention to the Postnikov t-structure of Construction 2.15. The first part of this
section will be devoted to identifying the heart of this t-structure in terms of η-deformed Cartier complexes.

Definition 4.17. Let DCartη denote the abelian category of tuples (M∗, d, F, V ) where M∗ is a graded
Z[η]/2η-module with |η| = 1, d : M∗ →M∗+1 a map of Z[η]/2η-modules such that d2 = ηd, and F, V : M∗ →
M∗ maps such that

V d = pdV, dF = pFd, FdV = d+ η FV = p

and F and V commute with η.

Lemma 4.18. Let CartSynP,>0 be the t-structure on CartSyn associated to the Postnikov t-structure on
SynSp. The heart of this t-structure is equivalent to DCartη.

Proof. Since the functor CartSyn → SynSpTev
is t-exact we have that the heart consists of (M∗, d) with extra

structure maps F, V : M∗ → M∗. The maps F and V satisfy the indicated relations by the same argument
as in [3, Lemma 3.33]. Thus there is a fully faithful functor CartSyn♥ →֒ DCartη and all that remains is
to show essential surjectivity. From example 4.5 for any element in (M∗, d, F, V ) ∈ DCartη,∧V we can build a
synthetic Cartier module (F>⋆M∗, F, V ). Essential surjectivity then follows from the fact that the forgetful
functor CartSyn → SynSpTev

is conservative and t-exact so we have that (F>⋆M∗, F, V ) is in the heart as
desired.

Combining this result with the identification of bounded below synthetic cyclotomic spectra with bounded
below V -complete synthetic Cartier modules, we get that the heart of the cyclotomic t-structure is given
by DCartη,∧V of V -complete η-deformed Cartier complexes. This V -completion is in terms of the ambient
category a priori, not in terms of the V -completion of objects in DCartη. Nevertheless it turns out that
these two notions agree.

Lemma 4.19. Let (F>⋆M,F, V ) ∈ CartSyn♥. Then F>⋆M is V -complete if and only if it is derived
V -complete as an element of DCartη.

Proof. First suppose that (F>⋆M,F, V ) is V -complete as a synthetic Cartier module. Similar to example 2.73
we find that πp

0(F
>⋆MCpn,ev

) ≃ F>⋆M [d/pn]. By assumption

lim(. . .
VC

p2,ev
−−−−−→ F>⋆MCp2,ev

VCp,ev
−−−−→ F>⋆MCp,ev

V
−→ F>⋆M) ≃ 0

and so the map
∏

n>0 F
>⋆MCpn,ev

→
∏

n>0 F
>⋆MCpn,ev

is an equivalence. Applying πp
0 then again induces

an equivalence and so the system

lim(. . .→ F>⋆M [d/p3]→ F>⋆M [d/p2]→ F>⋆M [d/p]→ F>⋆M) ≃ 0

as well. The result follows from the fact that the map V : F>⋆M → F>⋆M factors through the map
F>⋆M [d/p] by definition.

Conversely suppose that (F>⋆M,F, V ) is V complete as an η-deformed Cartier complex. As in the proof
of [3, Lemma 3.25], the inverse limit

lim(. . .F>⋆MCp2,ev
→ F>⋆MCp,ev → F>⋆M)
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is given by the diagonal of the diagram

...
...

...

· · · F>⋆M ⊗Tev ρ(p
2)∗Tev F>⋆M ⊗Tev ρ(p)∗Tev F>⋆M

· · · F>⋆M⊗Tevρ(p
2)∗Tev F>⋆M ⊗Tev ρ(p)∗Tev F>⋆M

· · · F>⋆M ⊗Tev ρ(p
2)∗Tev F>⋆M ⊗Tev ρ(p)∗Tev F>⋆M

VC
p2

VCp,ev V

VC
p2,ev

VCp,ev V

where the maps ρ(pn)∗Tev → ρ(pn−1)∗Tev are the even filtration applied to the canonical projection
S1/Cpn → S1/Cpn−1 . The vertical inverse limits vanish, the rightmost one by assumption and all the
others by Lemma 2.80(1b).

Putting this all together proves the claimed identification of the heart.

Theorem 4.20. Let CycSynP>0 be the t-structure on CycSyn induced by the Postnikov t-structure via The-
orem 4.1. The heart of this t-structure is equivalent to the abelian category CycSyn♥ ≃ DCartη,∧V of derived
V -complete η-deformed Cartier complexes.

4.6 Bounded objects and the Segal conjecture

We conclude this section with an analogue of [3, Lemma 2.25]. Unlike the previous subsection we will return
to working with C a t-structure on SynSp satisfying condition (⋆) from definition 2.76. The result [3, Lemma
2.25] states that, in the unfiltered case, an object M ∈ CycSp6d has cyclotomic Frobenius ϕp : M → M tCp

which is d-truncated.

Theorem 4.21. Let F>⋆M ∈ CycSynC6d for some d ∈ Z. Then the fiber of the map F>⋆M → F>⋆M tCp,ev

is in SynSpC6d.

Proof. Let F>⋆X ∈ SynSpC
>d+1. Consider the object F>⋆X ⊗Sev Tev as an object of CycSynC>d+1 by taking

the induced Tev-module structure and filtered cyclotomic Frobenius given by the zero map F>⋆X⊗SevTev
0
−→

(F>⋆X ⊗Sev Tev)
tCp,ev . From [32, Proposition II.1.5(ii)] we then have a fiber sequence

MapCycSynp
(F>⋆X ⊗Sev Tev,F

>⋆M)

MapSynSp
Tev

(F>⋆X ⊗SMU Tev,F
>⋆M) MapSynSp

Tev
(F>⋆X ⊗SMU Tev,F

>⋆M tCp,ev)
(ϕ

F>⋆M
)∗

which identifies MapCycSynp
(F>⋆X ⊗Sev Tev,F

>⋆M) ≃ MapSynSp(F
>⋆X, fib(F>⋆M

ϕ
F>⋆M−−−−−→ F>⋆M tCp,ev)).

The (underlying space of the) left hand term is contractible by assumption, so therefore the right hand term

is as well. Since this is true for all F>⋆X ∈ SynSpC>d+1, it follows that fib(F>⋆M
ϕ

F>⋆M−−−−−→ F>∗M tCp,ev) ∈

SynSpC6d as desired.
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Example 4.22. Consider A a smooth Fp-algebra of dimension d. By [10, Cor 1.2], we have that

TR(F>⋆
ev THH(A;Zp)) ≃ τ>⋆TR(A),

so F>⋆THH(A) ∈ CycSynN6d in the neutral t-structure. On the other hand it will not be truncated in the
Postnikov t-structure, since any truncated object in the Postnikov t-structure is the filtration on the zero
object.

4.7 Lifts of Dieudonné modules over smooth Fp-algebras

Recall the following standard lemma.

Lemma 4.23. Let C be a symmetric monoidal ∞-category, τ = (C>0,C60) a t-structure compatible with
the monoidal structure, R a connective E∞ ring, and M and N πτ

0 (R)-modules in C♥. Then, the natural
map MapR(M,N)← Homπτ

0 (R)(M,N) is an equivalence.

Now, let A be a smooth k-algebra, k a perfect Fp-algebra. Note that by Remark 2.13 F>⋆
ev THH(A;Zp),

and in fact F>⋆
ev THH(R) for any R ∈ CQSyn, will be connective in the Postnikov cyclotomic t-structure. In

particular by Lemma 4.23 the functor

Mod
πcyc,P
0 (F>⋆

ev THH(A:Zp))
(CycSyn♥) →֒ CycSyn

F>⋆
ev THH(A;Zp)

induced by the ring map F>⋆
ev THH(A;Zp) → πcyc,P

0 (F>⋆
ev THH(A;Zp)) is fully faithful. Thus, in order to

prove Theorem E, it is enough to show that formal p-divisible groups over A embed fully faithfully into the
left-hand category.

In order to do this we will need to identify the left hand category. Before stating the identification we
will first recall some notation.

Notation 4.24. For A an Fp-algebra, denote by WΩA the de Rham–Witt cochain complex of Illusie [22].
Denote by WΩ>i

A the ith stage of the Hodge filtration.

Lemma 4.25. Let A be a smooth algebra over a perfect Fp-algebra k. Then there is a natural identification

πcyc,P
i (F>⋆

ev THH(A;Zp)) ∼= WΩ∗
A(−i)

for all i > 0 in DCartη,∧V , where the F , V , and d maps are the usual ones, and η = 0.

Proof. The identification of CycSyn♥ ∼= DCartη,∧V goes through the t-exact functor TR: CycSyn→ CartSyn,
and so πcyc,P

i (F>⋆
ev THH(A;Zp)) ∼= πP

i (TR(F
>⋆
ev THH(A;Zp))). The result then follows from [10, Corollary

1.2].

Proof of Theorem E. First recall that by [11, Theorem 3.1] the Deiudonné functor D : FBTop
A → CA is fully

faithful, where CA is the category of Deiudonné crystals of finite presentation over A together with an F
and V operators, and lands in those crystals which are V -adically complete. Then [8, Theorem 1.1] produces
an embedding from CA →֒ ModWΩ•

A
(DCartη) which sends V -complete objects to V -complete objects. The

result follows.

Conjecture 4.26. Let k be a perfect Fp-algebra and let A be a smooth k-algebra. Let

DCycSyn : FBTop
A →֒ CycSyn

F>⋆
ev THH(A;Zp)
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be the fully faithful embedding of Theorem E. Note that by taking gr0(−)Tev of a F>⋆
ev THH(A;Zp)-module in

CycSyn we get a N>⋆
∆A-module with a filtration given by the v-adic filtration. Additionally the cyclotomic

synthetic Frobenius induces a Frobenius map on this module. Then, considered with this extra structure, there
is an equivalence

gr0(DCycSyn)
Tev ≃ RΓ(A;D∆)

where D∆ is the prismatic Dieudonné functor of [1].

5 A filtered Beilinson fiber square

This section is devoted to proving a filtered version of the Beilinson fiber square of [2] and a filtered version
of a forthcoming result of Devalapurkar and Raksit, which gives a height 1 analogue. The utility of our
approach is that, after the work we have put in in the previous sections, we can mimic the proofs of these
results given in cyclotomic spectra almost verbatim to get the filtered result.

5.1 Filtered TC/p and colimits

We begin by proving a filtered version of [9, Thm. G]. The proof goes through mostly the same as in [9],
we include a sketch for convenience. Before proving this result we will establish some preliminary technical
results.

Lemma 5.1. If F>⋆X is a cyclotomic synthetic spectrum which is n-connective in the neutral t-structure,
then TC(F>⋆X) is (n− 1)-connective in the neutral t-structure.

Proof. By Remark 4.4, there is a functorial fiber sequence

TC(F>⋆X)→ TR(F>⋆X)→ TR(F>⋆X)

and by Lemma 4.16 we have that TR(F>⋆X) is n-connective.

We now highlight another interesting consequence of the same proof as the previous lemma. Compare
to [2, Thm. 5.1(1)] in the discrete p-quasisyntomic case.

Proposition 5.2. Let R be a chromatically quasisyntomic ring. Then TCev(R) is (−1)-connective in the
Postnikov t-structure. In particular, Zp(i)

syn(R) is concentrated in cohomological degrees 6 i+ 1.

Proof. By Remark 2.13, F>⋆THH(R) is connective in the Postnikov t-structure. Then since the Postnikov
t-structure satisfies condition (⋆) of definition 2.76, we have that TR(F>⋆

ev THH(R)) is also connective in the
Postnikov t-structure by Lemma 4.16. The result follows from the fiber sequence of Remark 4.4.

The synthetic spectrum ins0Fp, constructed via Example 3.4, will play a particularly large role in the
arguments to follow.

Construction 5.3. Let F>⋆X be a complete synthetic spectrum such that
⊕

n∈Z

πi(gr
nX)

is finitely generated for all i ∈ Z. Further assume that F>⋆X is connective in the neutral t-structure and
that F>⋆X is constant for ∗ 6 0. Then choosing a fixed finite set of these generators, F>⋆X can be realized
as a geometric realization in the following way: take

F>⋆X0 :=
⊕

i>0

⊕

x a generator of π0(griX)

Sev(i)
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as the base case of an inductive construction. There exists lifts of all the elements of π0(gr
iX) to elements

π0(F
>iX) by level-wise connectivity, so these elements taken together produce a map F>0X0 → F>⋆X . Since

F>⋆X is complete we have that this map induces a surjection π0(F
>⋆X0)→ π0(F

>iX) for all i.
By the finite generation assumption we have that F>⋆X0 is a finite sum, and so it also is level-wise

connective and has finitely generated associated graded homotopy terms. Therefore we also have that
ker(

⊕
i>0 π0(F

>iX0)→
⊕

i>0 π0(F
>iX)) is also finitely generated. We may then inductively define F>⋆X1

to be the sum of twisted copies of Sev, one for each chosen generator of
⊕

n∈Z π1(gr
nX) together with one

for each generator of the kernel of the previous step, which taken all together is still finite. This inductively
builds a system F>⋆Xn, n > 0, such that each F>⋆Xn is a finite sum of spectra of the form Sev(i), i > 0,
and such that |F>⋆Xn| ≃ F>⋆X .

With this we are now able to prove the first step of lifting [9, Theorem G] to the synthetic setting.

Lemma 5.4. If F>⋆X ∈ CycSyn is connective in the neutral t-structure, complete, and satisfies the finite
generation hypothesis of Construction 5.3, then the natural assembly map

TC(−)⊗ F>⋆X → TC(−⊗ F>⋆Xtriv)

is an equivalence.

Proof. Note that the map in question is an equivalence for F>⋆X ≃ Sev(i) for some i > 0 since the same is
true for (−)Tev and (−)tTev . Thus by exactness the comparison map is an equivalence for F>⋆X a finite sum
of synthetic spectra which are twists of Sev. Finally from the connectivy bounds on TC(−) we have that
TC(−) commutes with geometric realizations of uniformly (level-wise) bounded below synthetic cyclotomic
spectra, which together with the previous construction then shows that TC(−)⊗F>⋆X → TC(−⊗F>⋆Xtriv)
is an equivalence for F>⋆X as in the Lemma statement.

Theorem 5.5. The functor TC(−)/p : CycSyn→ FD(S) commutes with all colimits of synthetic cyclotomic
spectra which are connective in the neutral t-structure.

Proof. Note that in order to show that TC(−)/p commutes with all colimits it is enough to show this on
each F>iTC(−)/p since evaluation at i is cocontinuous and conservative. Then these are all connective
spectra by assumption and the connectivity estimates on TC(−), so instead of checking mod p we can check
this equivalence after tensoring with Fp. Lifting this back to the level of synthetic spectra, this amounts to
showing that TC(−)⊗Sev Sev ⊗ins0S ins0Fp ≃ TC(−⊗ (Sev ⊗ins0S ins0Fp)

triv) commutes with all colimits of
level-wise connective synthetic cyclotomic spectra.

We will in fact show something stronger, that TC(−) commutes with all colimits as a functor from
Modins0Ftriv

p
(CycSyn). We have that

π∗,∗(ins
0Ftriv

p )Tev ≃ π∗,∗(τ>2∗TC
−(Ftriv

p )) = Fp[x]

and
π∗,∗(ins

0Ftriv
p )tTev ≃ π∗,∗(τ>2∗TP(F

triv
p )) = Fp[x

±1]

where |x| = (−2,−1). The Frobenius is given by the double speed Postnikov filtration on the usual Frobenius,
and so by [9, Lemma 2.10] it will also annihilate x. There is then, for any F>⋆X ∈ Modins0Ftriv

p
(CycSyn), a

functorial nullhomotopy of the composit

(F>⋆X)Tev [−2](−1)
x
−→ (F>⋆X)Tev

ϕ
F>⋆X−−−−→ (F>⋆X)tTev

and therefore a functorial fiber sequence

TC(F>⋆X)→ F>⋆X → (F>⋆X)Tev



5.2 The filtered cyclotomic spectra ZCp,ev and jCp,ev 48

As the fiber of functors commuting with all colimits, it follows that TC(−) commutes with all colimits as
well.

During the proof of Theorem 5.5 we produced a formula for TC of ins0Ftriv
p -modules. This formula is

also of interest separately and so we record it here.

Proposition 5.6. Let F>⋆X ∈Modins0Ftriv
p

(CycSyn). Then there is a natural fiber sequence

TC(F>⋆X)→ F>⋆X → (F>⋆X)Tev .

5.2 The filtered cyclotomic spectra ZCp,ev
and jCp,ev

We will now repeat the arguments of [2, Section 2] in our setting, which will establish a filtered version of
their result. The first step in this analysis is to study the analogues of the cyclotomic spectra ZhCp and jhCp

in our setting, where j is the connective cover of the K(1)-local sphere.

Lemma 5.7. If j denotes the connective cover of LK(1)S with respect to an odd prime p, then F>⋆
ev,tCp

j =

τ>2⋆−1j
tCp .

Proof. By Lemma 3.22 there is an equivalence F>⋆
ev,tCp

j ≃ j
tCp,ev
ev , so we will prove the result for this later

term instead. From [13], we have that grijev is concentrated in degrees [2i, 2i − 1], so by completeness we
must have that jev ≃ τ>2⋆−1j which is (−1)-connective in the double speed Postnikov t-structure. Thus by
Lemma 2.84 we get that j

tCp,ev
ev is also (−1)-connective in the double speed Postnikov t-structure and there

is therefore a map j
tCp,ev
ev → τ>2⋆−1j

tCp . We also have by the definition of the even filtration that grij
tCp,ev
ev

is (2i)-coconnective and these filtrations are exhaustive, so inductively the map j
tCp,ev
ev → τ2⋆−1j

tCp must be
an equivalence.

As a consequence we get the following:

Lemma 5.8. Let p be an odd prime. The natural maps

τcyc,N>0 ZtCp,ev
p,ev → F>⋆

ev THH(Fp)

and
τcyc,N>0 jtCp,ev

ev → F>⋆
ev THH(Zp)

are equivalences of synthetic cyclotomic spectra where τcyc,N>0 denotes the 0-connective cover with respect to
the neutral t-structure on cyclotomic synthetic spectra.

Proof. We have equivalences τ>0Z
tCp
p → THH(Fp) and τ>0j

tCp ≃ THH(Zp) of cyclotomic spectra, the first
by [32] and the second by work of Sanath Devalapurkar and Arpon Raksit (private communications). Since
in all cases the filtrations in question are variants of the Postnikov filtrations the result follows.

We then have fiber sequences

(Zp,ev)Cp,ev → Zp,ev → F>⋆
ev THH(Fp)

and
(jev)Cp,ev → τcyc,N>0 jCp,ev

ev → F>⋆
ev THH(Zp)

of Tev-modules. From Lemma 2.79 we then have that the natural maps

(Zp,ev)
tTev ≃ (F>⋆

ev THH(Fp))
tTev
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and
(τcyc,N>0 jCp,ev

ev )tTev ≃ (F>⋆
ev THH(Zp))

tTev

are equivalences, where τcyc,N is the neutral t-structure.

Corollary 5.9. Let F>⋆X ∈ CycSyn. Then TC(F>⋆X ⊗ (Zp,ev)Cp,ev) ≃ (F>⋆X ⊗ (Zp,ev)Cp,ev)Tev [1](1) ≃
(F>⋆X ⊗ (Zp,ev)Cp,ev)

Tev .

Proof. This amounts to showing that (F>⋆X⊗(Zp,ev)Cp,ev)
tTev vanishes, but this is a module over (ZCp,ev

p,ev )Tev ≃
0 and so must vanish as a module over the zero ring.

We conclude this subsection with the analogous result for (τ>0jev)Cp,ev .

Construction 5.10. Let Lfil
K(1) : SynSp→ SynSp denote the functor Lfil

K(1)F
>⋆X := (F>⋆X⊗SevJev)

∧
p . Note

that this is a filtration on the usual K(1) localization of F>−∞X , hence the name. This same definition also
extends to any category which is tensored over SynSp.

Now let p be an odd prime. We may alternatively describe the filtered K(1)-localization, at least mod
p, as follows: let v1 ∈ π2p−2(F

>p−1Sev/p) be a lift of the usual element v1 ∈ π2p−2(S/p). Such an element
exists in the indicated degree either by directly studying the Adams-Novikov charts or by noting that the
map Sev → Jev is a filtration on the usual map S→ J , that the element v1 ∈ π2p−2(J/p) lifts to an element
v1 ∈ π2p−2(F

>p−1Jev/p) since the even filtration on J is τ>2∗−1J , and so there must exist an element
of π2p−2(F

>p−1Sev/p) mapping to this element up to higher order filtration degree which we may assume
without loss of generality vanishes. We then have that Jev/p ≃ Sev/p[v

−1
1 ], and so for a general F>⋆X we

have that
Lfil
K(1)F

>⋆X/p ≃ F>⋆X/p[v−1
1 ]

as in the non-synthetic case.

Proposition 5.11 (Filtered ambidexterity). Let F>⋆X ∈Modjev (SynSpTev
). Then Lfil

K(1)F
>⋆XtCp,fil ≃ 0.

Proof. We have that Lfil
K(1)X

tCp,ev is a module over Lfil
K(1)j

tCp,ev
ev , so it is enough to show that this term

vanishes. This is a p-complete filtered spectrum and so it is enough to show that this vanishes mod p. Thus
we reduce to showing that (jev)

tCp,ev/p[v−1
1 ] ≃ 0 and so we need only show that v1 acts nilpotently on all

the filtered homotopy groups of jtCp,ev
ev /p. By Lemma 5.7 the filtration on j

tCp,ev
ev will be τ>2∗−1j

tCp , so the
v1 action on the filtered homotopy groups jtCp,ev

ev is exactly the usual action on the homotopy groups of jtCp

which is nilpotent by classical ambidexterity.

Corollary 5.12. Let F>⋆X ∈ CycSyn. Then Lfil
K(1)(F

>⋆X ⊗ (jev)Cp,ev)
tCp,ev ≃ 0.

Lemma 5.13. Let F>⋆X ∈ SynSpTev
. Then (F>⋆X ⊗ (jev)Cp,ev)

tCp,ev ≃ 0.

Proof. It is enough to show that (F>⋆X ⊗ jCp,ev)
tCp,ev/(p, v1) ≃ 0 since we already have that this vanishes

K(1)-locally. We then have that this is equivalent to (F>⋆X⊗(jev/(p, v1))Cp,ev)
tCp,ev . The result then follows

from the fact that jev/(p, v1) is in the thick subcategory generated by ins0Fp.

Corollary 5.14. Let F>⋆X ∈ SynSpTev
. Then

(
(F>⋆X ⊗ jCp,ev)

tTev
)∧
p
≃ 0

Proof. It is enough to show that (F>⋆X ⊗ jCp,ev)
tTev/p ≃ 0. This is then equivalent to

(
(F>⋆X ⊗ jCp,ev)

tCp,ev/p
)Tev

which vanishes by Lemma 5.13.
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We also have a map jev → τcyc,N>0 j
Cp,ev
ev of synthetic cyclotomic spectra. Let F>⋆C denote the cofiber. We

will also need the following Lemma.

Lemma 5.15. Let F>⋆X ∈ SynSpTev
. Then Lfil

K(1)(F
>⋆X ⊗ F>⋆C)tCp,ev ≃ 0.

Proof. F>⋆C is a jev-module so we may apply filtered ambidexterity to get the result.

Corollary 5.16. Let F>⋆X ∈ SynSpTev
. Then (F>⋆X ⊗ F>⋆C/p)tCp,ev ≃ 0.

Proof. Since we already have that this holds after applying Lfil
K(1) it is then enough to show this mod v1. We

have that F>⋆C/(p, v1) is in the thick subcategory generated by ins0Fp, hence the result.

5.3 Pullback squares when topological periodic homology vanishes

In this subsection we will use the results from the previous subsection to produce pullback squares relating
topological cyclic homology and topological negative cyclic homology in the filtered setting, following the
proofs in [2, Section 2.2].

Lemma 5.17. Let F>⋆X ∈ CycSyn. Then is a pullback square

TC(F>⋆X)⊗ Zp,ev TC(F>⋆X ⊗ F>∗
ev THH(Fp))

(F>⋆X ⊗ Zp,ev)
Tev (F>⋆X ⊗ F>⋆

ev THH(Fp))
Tev

where all the maps are the natural ones.

Proof. We have that TC(F>⋆X) ⊗ ins0Zp,ev ≃ TC(F>⋆X ⊗ Ztriv
p,ev) by Lemma 5.4. The top horizontal

fiber is then identified with TC(F>⋆X ⊗ (Zp,ev)Cp,ev). This agrees with the bottom cofibers since the Tate
construction on F>⋆X ⊗ (Zp,ev)Cp,ev vanishes.

Corollary 5.18. Let R be a chromatically quasisyntomic ring. Then there is a commutative square

F>∗
HRWTC(R;Zp) F>⋆

HRWTC(R⊗ Fp;Zp)

F>⋆
ev HC−(R⊗ Zp/Zp) F>⋆

HRWTP(R⊗ Fp;Zp)

refining the commutative square of [2, Theorem 1.2]. This square is also pullback upon rationalization.

Proof. We will proceed in three steps starting from Lemma 5.17. Let F>⋆X be connective in the Postnikov
t-structure, we will reduce later to the case of F>⋆X = F>⋆

ev THH(R;Zp). We may extend the pullback square
of Lemma 5.17 along the norm maps to get a commutative square

TC(F>⋆X)⊗ Zp,ev TC(F>⋆X ⊗ F>⋆
ev THH(Fp))

(F>⋆X ⊗ Ztriv
p,ev)

Tev (F>⋆X ⊗ F>⋆
ev THH(Fp))

tTev
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and we have that (F>⋆X ⊗ F>⋆
ev THH(Fp))Tev rationally vanishes since inductively

πP
i (F

>⋆X ⊗ F>⋆
ev THH(Fp))Tev

is pi-torsion. We then have that (F>⋆X ⊗ Zp,ev)
tTev → (F>⋆X ⊗ F>⋆

ev THH(Fp))
tTev is an equivalence and

therefore we get a commutative square

TC(F>⋆X)⊗ Zp,ev TC(F>⋆X ⊗ F>⋆
ev THH(Fp))

(F>⋆X ⊗ Zp,ev)
Tev (F>⋆

ev X ⊗ Zp,ev)
tTev

which when F>⋆X is connective in the Postnikov t-structure is also a rational pullback.
The third and final step is that for F>⋆X = F>⋆

ev THH(R;Zp), we have rational equivalences

TC(F>⋆
ev THH(R;Zp))→ TC(F>⋆

ev THH(R;Zp))⊗ Zp,ev

(which follows from the fact that Sev → Zp is a Qp-equivalence), the F>⋆
ev THH(−;Zp) is symmetric monoidal

(which follows from the same statement on THH(−) and on prismatic cohomology), and that F>⋆
ev THH(−)⊗

Zev ≃ F>⋆HH(−) (which follows from the same statement on THH(−)).

Example 5.19. Consider now the case of R = S in Corollary 5.18. This produces a pullback square

F>⋆
HRWTC(S;Qp) ins0(Qp ⊕Qp[−1])

τ>2⋆Qp[v] Q[v±1]

where |v| = (−2,−1). Consequently we find that F>⋆TC(S;Qp) ≃ Qp(0)⊕
⊕∞

i=0 Qp[2i− 1](i).

We now turn our attention to the case of F>⋆
ev THH(Zp).

Lemma 5.20. Let F>⋆X ∈ CycSyn and let p be an odd prime. Then there is a pullback square

TC(F>⋆X ;Zp)⊗ jev TC(F>⋆X ⊗ F>⋆
ev THH(Zp);Zp)

(F>⋆X ⊗ jev)
Tev (F>⋆X ⊗ F>⋆

ev THH(Zp))
Tev

where all the maps are the usual ones.

Proof. The proof of this result follows in the exact same way as Lemma 5.17, using Corollary 5.14 and
Corollary 5.16 to identify the horizontal fibers.

In [12], Devalapurkar and Raksit prove that τ>0j
tCp ≃ THH(Zp;Zp) as cyclotomic spectra. We obtain a

synthetic version of their result.

Corollary 5.21. Let F>⋆X ∈ CycSynp where p is an odd prime. Then there is a fiber sequence

Lfil
K(1)F

>⋆XTev(1)[1]→ Lfil
K(1)TC(F

>⋆X)→ Lfil
K(1)TC(F

>⋆X ⊗ F>⋆
ev THH(Zp))

of synthetic spectra.
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Proof. The pullback square of Lemma 5.20 induces a fiber sequence of the form (F>⋆X ⊗ F>⋆Y )Tev →
TC(F>⋆X) ⊗ jev → TC(F>⋆X ⊗ THHev(Zp);Zp) where F>⋆Y := fib(jev → THHev(Zp;Zp)). The result
then follows if we can show that Lfil

K(1)(F
>⋆X ⊗ F>⋆Y )Tev ≃ F>⋆XTev [1](1).

We will prove this in two steps. The first is that Lfil
K(1)(F

>⋆X ⊗ F>⋆Y )tTev ≃ 0. This follows from
Corollary 5.14 and Corollary 5.16. Thus the norm map

Lfil
K(1)(F

>⋆X ⊗ F>⋆Y )Tev [1](1)→ Lfil
K(1)(F

>⋆X ⊗ F>⋆Y )Tev

is an equivalence.
Note that since Lfil

K(1) is given by a p-complete base-change, it will commute with (−)Tev . Thus the result
will follow if we can show that the maps

F>⋆X ⊗ Sev

F>⋆X ⊗ F>⋆Y F>⋆X ⊗ jev

are equivalences after applying Lfil
K(1)(−). The bottom map is an equivalence since the cofiber is F>⋆X ⊗

THHev(Zp;Zp) which after applying Lfil
K(1)(−) will be a Lfil

K(1)THHev(Zp;Zp) ≃ 0-module. The vertical map
is an equivalence since we may check this modulo p where this becomes the statement that Sev/p[v

−1
1 ] ≃

(τcyc,N>0 Sev/p[v
−1
1 ])[v−1

1 ] which follows from the fact that inverting an element in positive homotopical degree
and weight only depends on the connective cover in the neutral t-structure.

Example 5.22. Consider the case of F>⋆X = F>⋆
ev THH(S) ≃ Sev. Then Corollary 5.21 gives a fiber

sequence
Lfil
K(1)Sev[BTev][1](1)→ Lfil

K(1)TC(Sev)→ Lfil
K(1)TC(THHev(Zp))

where BTev := Sev ⊗Tev Sev.
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