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SINGLE LOOP SPACE DECOMPOSITIONS

DAVID J. ANICK

Abstract. The method of single loop space decompositions, in which ÇIX

is factored into minimal factors, is an important one for understanding the

unstable homotopy of many simply-connected spaces X . This paper begins

with a survey of the major known theorems along these lines. We then give a

necessary and sufficient condition for QX to be decomposable as a product of

spaces belonging to a certain list. We conclude with a nontrivial instance of an

application of this condition.

1. Background and summary

of the major known decomposition theorems

In this introduction we provide a summary of the major known theorems of

a general nature regarding single loop space decompositions.

The original loop space decomposition was discovered by Hilton [H] in 1955

by building upon work of George Whitehead; it was later generalized by Milnor.

Theorem 1 (Hilton). Let W be a simply-connected finite type wedge of spheres,

i.e., W = V/S1"'. n¡>2, and «, —> oo if the index set is infinite. Then

QW&l[QSm>,
j

where m¡ = mj(nx, ni, ... ) -» oo.

Here, and throughout this article, « denotes a weak homotopy equivalence

for spaces, and an infinite product of pointed spaces is always assumed to denote

the weak infinite product (i.e., the direct limit of all products over finite subsets

of the index set).
Hilton utilized combinatorics and an explicit determination of the "basic

products" in a free Lie algebra in order to prove Theorem 1. The principal

interest of the theorem lies in its enabling us to reduce the problem of the ho-

motopy groups of a bouquet of spheres to the problem of the unstable homotopy

groups of spheres, along with a readily solvable combinatorial problem.

Another fact regarding loop spaces on spheres was recognized by Serre as

early as 1951. In modern language, this fact is
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Theorem 2 (Serre). Localized away from the prime 2,

(1) QS2m * S2m~x x QS4m-x,        m>\.

Notation/Definition. Let S? denote the collection of pointed spaces, S? =

{S2m~x, QS2m+x\m > 1}. For any collection W of pointed spaces, let Y[0W

denote the collection of finite type products all of whose factors belong to W

(recall that any infinite product is automatically the weak infinite product), and

let Y[W denote the collection of spaces having the weak homotopy type of

some member of Y[0 W . It is obvious that Yl(Y\ %) = H % •

Combining Theorems 1 and 2, we find

Theorem 3 (Hilton-Serre). Localized away from 2,

aiysAeH^

for any simply-connected finite type wedge of spheres V, $"' ■

There is a rather strong generalization of Theorem 3. Although it was proba-

bly known and used before 1981, its first appearance in the published literature

was in Baues' book [B] of that year, and I will refer to it as the Hilton-Serre-

Baues (H-S-B) theorem.

Notation. Henceforth, p denotes an odd prime, and X always denotes a simply-

connected CW complex of finite type. Also, let

/: nm( ) ® Z(p) -» 77m( ; Z{p))

denote the p-local Hurewicz homomorphism. Later we shall also encounter the
Hurewicz homomorphism for mod p homotopy,

h:nm( ;Zp)-> Hm( ;ZP).

Theorem 4 (H-S-B). Suppose the following conditions are satisfied:

(i) H+(QX; Zip)) is free as a Z^-module, i.e., torsion-free; and

(ii) 77»(QX ; ZtpA is generated as a Z^-algebra (via Pontrjagin multiplica-

tion) by im(/).

Then, localized at p , we have QX e[]^.

Baues' proof utilized the Poincaré-Birkhoff-Witt theorem to split the Pontr-

jagin ring algebraically, and then he realized the homotopy equivalence geomet-

rically by multiplying together a corresponding list of maps into QX. Because

he was in the context of working with Lie algebras, Baues required p > 5 ; the

author gave a similar proof, valid for any odd p , in [A2].

The H-S-B theorem does apply to a great many spaces, such as arbitrary

subcomplexes of a product of spheres (provided this product has the standard

CW structure), and to some examples having higher Massey products like (S3 V

Unfortunately, condition (i) fails for many spaces; there are even finite spaces

X for which (i) fails to hold at any p [Al]. Furthermore, there is no obvious

way to check condition (ii) in general, especially since the Pontrjagin ring will

typically not be finitely generated. One case that has been settled is



SINGLE LOOP SPACE DECOMPOSITIONS 931

Theorem 5 [A2], Let X be a two-cone, i.e., the cofiber in

\J Sn- ->\/Sm> -* X.
i J

Suppose p lies outside a certain set of primes that depends upon X (this set

will be finite if X is finite). If condition (i) of Theorem 4 holds for X, then
condition (ii) holds also.

McGibbon and Wilkerson [MW] first introduced the approach, illustrated in

Theorem 5 above, of disregarding behavior at a finite set of exceptional primes,

concentrating instead on results that might hold for the "generic" prime. They

proved

Theorem 6 (Wilkerson-McGibbon). Suppose X is finite and rationally elliptic,

i.e., dirx\Q(n*(X) ® Q) < oo. Then, at almost all primes p, QX eY[<9*.

There is only so far one can go with the torsion-free spaces in Y[ 5?, however.

Most loop spaces do have torsion in their homology at various primes, and often

we are most interested in the homotopy at a prime where interesting torsion

occurs. The theory of loop space decompositions for torsion spaces seems at

first to be quite different from the H-S-B theorem and its extensions.

The remainder of this section will be concerned with torsion. The principal

result in this area is the work of Cohen-Moore-Neisendorfer (C-M-N) on the

loops on the Moore space.

Notation. If [k] denotes the self-map on Sm of Brouwer degree k, then

Pm+X(k) is the homotopy-theoretic cofiber of [/<:], and Sm{k} is the homotopy-

theoretic fiber of [k].
Cohen, Moore, and Neisendorfer constructed a family of /?-torsion spaces,

denoted T2m+X{pr} , m > 1, r > 1, having the following properties:

(2) QP2m+2(pr) « S2m+X{pr) x QW2m+2,

(3) QP2m+x(pr)&T2m+x{pr}xQW2m+x,

where each W> is a certain (2j-4)-connected wedge of mod pr Moore spaces;

H*(S2m+x{pr}) and H*(T2m+x{pr}) are all Zpr-torsion; there is a fibration

sequence
oo

(4) S2m~x x ]JS2mpl-x{pr+x} -> T2m+X{pr} -> QS2m+x,

whose cohomology Serre spectral sequence over Zp degenerates; and pr+x is a

homotopy exponent, i.e., pr+x • n*(T2m+x{pr}) = 0 [N2].

By applying (2) and (3) and the Hilton-Milnor theorem iteratively, one ob-

tains

Theorem 7 (C-M-N). Let ¡T' denote the collection of spaces T2m+X{pr} and

S2m+l{pr} for r > 1 and m > 1. Let {z",},6/ and {m,},€/ be countably

indexed sets such that /*, > 1 and m,> 3, and either I is finite or m,-too.

Then

(5) Q(\JPm'(pr'))e'[l^'.
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The spaces S2m+X{pr} are atomic. In [CMN2] Cohen, Moore, and Neisendor-

fer demonstrate that the spaces T2m+X{pr} are atomic with the single remark-

able exception that T3{p} « T2p+X{p} x Ux for a certain atomic space Ux .

Recall [CMN2] that a space X is called atomic if (for some d) it is (d - 1 )-

connected, n¿(X) is a cyclic abelian group, and every self-map f:X -> X

inducing an isomorphism on n¿() is a homotopy equivalence. Let ¿7" consist

of those spaces in ,7"' which are atomic (i.e., all of ¿7"' except for T3{p})

together with the singleton Ux . Then it is clear that (5) can be replaced by

(6) a(\/pm-(p'i)\ e\\¿r.

In view of Theorems 3 and 7, the smallest collection of atomic spaces into

which a general p-local loop space might conceivably be decomposable is the

union S? U ET. This decomposition does hold for any space X which is a

wedge of spheres and mod pn Moore spaces. Experiment reveals that a typical

finite complex has a few small primes at which such a decomposition fails (i.e.,

more types of factors are needed), but the set ¿T'UcT' suffices at all large enough

primes. Thus the following conjecture is ambitious but not impossible.

Conjecture. Let X be finite. Then, at almost all primes p,

QX e JJ(^u^).

This conjecture may be viewed as the motivation behind the results of §2.

It has many immediate consequences, including Moore's conjecture [NS] at

large primes and a revised version of Wilkerson's conjecture [MW] asserting

the triviality of the Steenrod operations J3' on H*(QX;ZP) for large p.

2. A NECESSARY AND SUFFICIENT CONDITION FOR  QX € \\(^ U <7~)

In this section we provide an alternate, more elegant proof for the Hilton-

Serre-Baues theorem. This new proof can be generalized to permit p-torsion,

and we obtain a necessary and sufficient condition for QX to belong to ri(^u

¿7). The condition is expressed in terms of multiplicative generators for the

successive algebras in the homology Bockstein spectral sequence for QX.

We begin by observing that each space belonging to S? U ¿7 is an 77-space,

since each is a factor of a loop space. The following theorem, a slight general-

ization of one proved in [W], is clearly relevant.

Theorem 8 (Wilkerson). Let fê denote any collection of atomic H-spaces. If

X e Y[& and Y is a retract of X, then Y e Y[& ■

We also note the following lemma, whose proof we deem obvious.

Lemma A. If W is l-connected finite type wedge of spheres, Z isa l-connected,

and f:W^>Z induces a split surjection on 77, ( ; Z(p) ), then Z is p-locally a

wedge of spheres.

New proof of the H-S-B theorem (Theorem 4). Let \J Sm- = W -^ QW surject

to QH*(QX ; Z(p)), where Q denotes the module of indécomposables. Such a

map g exists because of condition (ii). There is a unique extension of g to an

77-map from the James construction on  W to QX, call it g:QLW -> QX.
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Then 77»(g; Z(p)) is a surjection, and it is a split surjection by condition (i).

Apply Lemma A to 'Lg.'LQI.W -* 1.QX to deduce that ZQX is p-locally a
wedge of spheres. Finally, QEQX e W^ by Theorem 3, and QX is a retract

of QXÍ2X, so Theorem 8 yields QX e \\^.

To generalize this proof to allow for p-torsion, we recall the properties of

the Bockstein spectral sequence (henceforth "BSS") for a connected space T

of finite type [Nl]. It is a homology spectral sequence {Er = Er(Y), ßr} with

Ex = 77,(T; Zp) and E°° « (free abelian component of 77»(T)) <g> Zp . Each
differential ßr has degree -1. If ßr(y) = x then y and x represent Zpr-

torsion in 77^(T). There is a Hurewicz homomorphism

hr- Fr   —> Fr

where EL, denotes the rth term in an analogous homotopy Bockstein spectral

sequence (zrBSS), for the mod p homotopy groups of T. Lastly, when T =

QX, each (Er, ßr) is a differential graded cocommutative Hopf algebra over

Zp.

Notation. Write X e W if X has the weak p-local homotopy type of a 1-

connected finite type wedge of spheres and various mod pn Moore spaces.

The lemma generalizing Lemma A is

Lemma B. If W e W, Z is l-connected, and f:W^>Z induces a surjection

of BSS terms Er( ) for all r (including r = oo), then Z eW.

Theorem 9. The following are equivalent.

(a) QXeXK&uJ').
(b) ZQX e W.
(c) For each r > 1 and for r = oo, the BSS term Er(QX) is generated as a

Zp-algebra by im(hr:Er{n)(QX) -+ Er(QX)).

Proof. That (a) implies (b) is easy. Each space belonging to 5f\j£T is a retract

of a space whose suspension lies in ^", so I.Y eW if T e5^\}¡T. Next, the
collection W is closed under wedges and smash products. Hence the collection
of spaces T for which XT e W is closed under products. In particular, this

collection contains rio^ u ^~) •
To prove (b) implies (a), first note by Theorems 3 and 7 and the Hilton-

Milnor theorem that Y eW implies QY e X^S" U F). Thus ÎÎXQX e
Y[(5^ U y ). Now QX is a retract of QI.QX ; apply Theorem 8.

To prove (b) implies (c), recall that the retraction from QLQX to QX

is actually the map Qe, where e: 1.QX —* X is the evaluation of a loop at

a suspension coordinate. Since Qe is an 77-map, the homomorphism that

it induces on the Er term of the BSS is a homomorphism of Zp-algebras.

Moreover, coming from a retraction, this homomorphism is a surjection, and

induces a surjection of indecomposable modules. Thus it suffices to check (using

the naturality of hr) that each of the terms Er(QLQX) is generated as an

algebra by Hurewicz images. This holds because whenever T is a suspension,

then Er(QY) is the free Zp-algebra on the reduced desuspension of Er(Y). If

T = 1QX e W and we write T « 1W with W e W, then the adjoint map
W —> QY carries Er(W), which consists entirely of Hurewicz images, to the

algebra generators of Er(QY).
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Finally, let us show that (c) implies (b). Assuming (c), we may construct maps

f: Wr -* QX for which W e W and Er(f) surjects onto Q(Er(QX)). The
connectivity of W goes to infinity as r —» oo (although W°° corresponding

to r = oo will not fit this pattern), so put W = (V~. Wr) V W°° e W.

Observe that / = (V^ f) V f°°:W - QX surjects on QEr( ) for all r
simultaneously. The James construction on W permits the construction of the

77-map f:QLW —► QX, which surjects on Er( ) for all r. By Lemma B,
ZQX e W , since ZQLW e W . This completes the proof.

Remark. Theorem 9 provides a plausible approach to proving the Conjecture.

If at large enough primes each term of the BSS for QX can be shown to be

generated by Hurewicz images, then the Conjecture will be proved. Conversely,

if for some specific finite X there are (at infinitely many primes) BSS terms

requiring non-Hurewicz generators, then the Conjecture is false.

3. Computation for a specific space

In this section we examine in detail the BSS for a specific three-cell space K .

We show that QK does satisfy condition (c) of Theorem 9, and consequently

that QK belongs to \WSP\j3~) . In the course of the computation, we illustrate

some techniques that may be useful for verifying condition (c) in general. We
summarize our conclusions, and we discuss the importance of K.

We assume henceforth that p > 5. The space we shall consider is K =

P2n+X(pr) U[,,,] eAn , where the attaching map is the Whitehead square of the

identity on the (2zz)-cell. Alternatively, K may be viewed as the push-out over

S2" of P2n+X(pr) and the second stage J2(S2n) of the James construction on
S2n :

S2n  -y   S2n ^ e2n+l = p2n+l far)

(7) I1 i

S2nUe*n = J2(S2n)_>a:

We will verify condition (c) of Theorem 9. It will turn out that there are just

two nonzero differentials in the BSS for QK , namely ßr and ß2r. We will first

determine the entire BSS, and then explain why each algebra in the sequence is

generated by Hurewicz images.

Our principal tool will be the Adams-Hilton model [AH, A3] for K. The
view (7) of AT as a push-out tells us immediately that a model is the associative

differential graded algebra (henceforth "dga")

(A,d) = (Z(a,b,c),d),        \a\ = 2n-\,  \b\ = 2n,  |c| = 4»-l,

d(a) = 0,    d(b)=pra,    d(c) = 2a2.

Our first task is to compute the mod p BSS for (A, d), which will coincide

with the BSS for QK.
The Ex term is H„(A®ZP , d®Zp). Keeping the same notation a, b, c for

these elements' mod p reductions, we find that the dga is now

Zp(a,b,c),    d(a) = 0 = d(b),    d(c) = 2a2,

isomorphic with (Zp(a, c), d) \\(Zp[b], 0). The dga (Zp(a, c), d(c) = 2a2) is
well known, e.g., it is the Zp-Adams-Hilton model for J2(S2n). Its homology
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is the commutative ring B = Zp[a, e]/(a2), where a is the homology class of

the cycle a and e is the class of e, where e equals the (graded) commutator

of a and c, e — [a, c] = ac + ca. We will henceforth write a and e for a

and e.
The fact that a and e are cycles in the Z-dga (A, d) means that no Bockstein

differentials can originate on them, nor on elements of the subalgebra they

generate. Since Ex = B II Zp[b] is generated by the set {a, e, b} , and ß'

vanishes on each of these for i < r, we have Er = Ex. However, ßr(a) =

ßr(e) = 0 with ßr(b) = a, so to obtain the Er+X term we must compute the

homology of (B II Zp[b], ßr).

The computation of this homology algebra is not a trivial task. We must

rely upon various techniques for working with dga's. We first replace B by a

model, i.e., a free dga (C, y) together with a quism from (C, y) to (B, 0).

In this case, we have the good fortune that B equals the Ext algebra of a

commutative ring, specifically, of S = Zp[a, e]/(e2), so the cobar construction

on S is a good candidate for (C, y). Put

C = Zp(ax,a2, ... ,e0,ex, ...),        \aj\ = 2nj - 1,  \ej\ = 6n-2 + 2nj,

j-\ j-\

y(aj) = -¿2 Uiaj-i '     ?to)= z2ie> ' aJ-A-
i=l i=0

The quism X: (C, y) -» (77, 0) is simply the quotient homomorphism that di-

vides out by the ideal generated by {a2, a2, «3,..., [ax, e0], ex, e2,...} .

It does not follow automatically that

(9) AUl:(CUZp[b],S)^(BUZp[b],ßr)

is a quism, where ô\c = y and ô(b) = ax . To prove that it is a quism, we

employ a spectral sequence argument. Let D = CII Zp[b], and bigrade D by

letting b, a¡■, and e¡ have bigrades ( 1, 0), (0, i - 1 ), and (0, i), respectively.

(Dt*, S) becomes a double complex when we write a = So + ôx, ¿ole = 7 >

ôp(b) = 0, óx(C) = 0, ôx(b) = ax ; notice that ôp(Bsl) QBStt_x and ôx(Bst) ç
77.s_i;,. Associated to this double complex is a spectral sequence {E9(D), ôq)

converging to 77,(7), ô). Computing, we find that

El(D) = H.(D,S0) = H*(C,y)UZp[b] = BliZp[b],

and that the differential Sx on EX(D) may be identified with ßr. Thus

Er+X(A) = 77» (77 II Zp[b], ßr) = 77»(£'(D), öx) = E2(D),

while E°°(D) = H»(D,ô). But Ex (D) is generated by the elements {a,b,e},

which come from {ax, b, en}, which all lie on the 0th row of the spectral

sequence. Since ôq has bidegree (-q, q - 1), it must vanish for q > 2,

whence E°°(D) = E2(D), and (9) is indeed a quism.
The fact that (9) is a quism is useful because we can now compute 77*(D, S)

in an entirely different way. The generators b and ax of D clearly "cancel,"

e.g., the quotient homomorphism

(D,Ô)^(G,9),
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where G is the quotient of D by the ideal generated by ax and b, is another
quism. Clearly,

G = Zp(ü2 ,a3, ... ,e0,ex, ...),        \aj\ = 2nj - 1,  \e¡\ = 6n-2 + 2nj,

j-2 j-2

d(aj) = -¿Z a¡aJ-i ' d(ejï = ¿Z^! ' aJ-d-
1=2 i=0

We may recognize G as the cobar construction on the subring

R = Zp(\, a2, a3, ... , e, ae, a2e, ... )

(where e2 = 0) of S, so 77« (G, 9) coincides (after a dimension shift) with

Ext«(Zp, Zp) as a Zp-algebra. In order to compute Er+X(A) we have been led

to study the Ext algebra of R. Notice that 7? is isomorphic as a ring with the
quotient of a polynomial ring,

(10) R = Zp^a2' ai'e°' £ll/(a2 ~a\> e0«3 -S\a2, £o"2 -£1Q3, «0 > £0«1 » «?)

= ((Zp["2 . £*3]/("2 - Q3)) ® Zp[«0 . «l]/(«0 . £0«I . 6?))/(80i»3 - S\<*2. «0»2 ~ elQ3)-

We want the Ext algebra for the commutative Noetherian ring R, and such

Ext algebras are notoriously difficult to compute. However, a presentation for

the subalgebra of Ext«(Zp , Zp) generated by Ext^Zp , Zp), call it (Extjj), may
be written down immediately, since its presentation is obtained by "dualizing"

the quadratic terms of the relators in the presentation (10) for R. Specifically,

(11) (Ext«) =Zp(«2, M3, Vo, VX)/(U\, [U2, W3], [U2, V0], [U2, VX] + [U}, Vo\)

(12) =Zp(u3,Vo,vx)Q(Zp[u2]/(u22)).

Here © denotes the semitensor product [Sm] of the Hopf algebra Zp[u2]/(u2)

acting on the left on the free algebra Zp(u->,, vq, vx) . The action is determined

by the information that u2 acts trivially on uy and on vp, while it takes vx

to  -[«3 , Vp] .

Having computed (Ext«), we now make the assertion that the subalgebra

(Extjj) actually equals the whole algebra ExtÄ(Zp , Zp). By [BF] this assertion

is equivalent to the relationship between their Hubert series,

(13) 77«(i)-1=77(Ext,>(-l,Z),

whenever R has an internal grading that renders it dimension-wise finite. Ac-

tually, our ring R has two independent gradings: let the generators a2, a3, e0 ,

and ex have the bidegrees (2, 0), (3, 0), (1, 0), and (1, 1), respectively.

Then, in addition to its homological grading, (Ext-) inherits the bigrading

given by: u2 -(2,0); z<3 - (3, 0) ; v0 - (1, 0); and vx - (1,1). In the
presence of a bigrading, the criterion (13) becomes

(14) HR(s,t)-x=H{Ext¡R)(-l,s,t).

Let us check (14). The Hubert series of R is easily seen to be

„., „ ,     ,     ,       i2 t        1 -s + s2 + t
(15) HR(s,t)=l + T-s + — =        ls       ,



SINGLE LOOP SPACE DECOMPOSITIONS 937

while for (ExtÄ) it is (k keeps track of the homological grading, and s and t

the internal grading; use (12) to compute):

(16) ^(Ext.>(^^0=1_J_+^_As3-

Sure enough, setting k = -1 in (16) gives an expression whose reciprocal sim-

plifies to (15). Deduce that Er+X(A) equals 77»(T),<5) equals 77»(C7, 9) equals

Ext«(Zp, Zp) equals (Extjj) equals the algebra given in (11).

Let us attempt to understand this algebra better. Tracing the relationships

through, we find that the isomorphism between (11) and Er+X carries the gen-

erators u2, «3, vo, and vx to the BSS elements that survive from prc - [b, a],

2[b, [b, a]] + 3pr[c, b], e = [c, a], and prc2 + 2[[c, a], b], respectively, in A .

We will adopt the notations u2, u¡, vp , and vx for these four elements of A
or of Er+X(A).

We easily compute that u2, vp, and vx are cycles in A, while d(u{) =

-!>p2rVo. Since all four of these generators of Er+X have vanishing ßs for

r + 1 < s < 2r, we know that E2r = Er+X . Then /?2r(u3) = -3t,0, with

ß2'(u2) = ß2r(v0) = ß2r(vx) = 0.

Our next step is to determine E2r+X - Ht(E2r, ß2r). To do this, note that the

semitensor product representation (12) for E2r is compatible with the differen-

tial, since the differential commutes with the action and vanishes on the acting

Hopf algebra Zp[u2]/(u\). It follows that H„(E2r, ß2r) equals the semitensor

product of Zp[u2]/(u\) with 77»(Z/,(«3, vp, vx), ß2r) = Zp[vx]. Thus,

(17) L2'+1 « Zp[vx] © (Zp[u2]/(u\)) = Zp[u2 , vx]/(u\).

As we have noted, the u2 and vx in (17) originate on the integral cycles z<2 =

prc - [b, a] and vx = prc2 + 2[[c, a], b] in A . Therefore ßs vanishes for

5 > 2r + 1, i.e., E°° = E2r+X . We have computed the entire BSS for the dga

(A, d) which is also the BSS for QK.
It remains only to check condition (c) of Theorem 9, i.e., that each of the

generators we have found, for each term of the BSS, is indeed a Hurewicz image.
We must cover all of these cases: a (s < r), b (s < r), e (s <2r), u2 (s > r),

Ui (r < s < 2r), and ^i (s > r).

The terms Es for 1 < s < r are generated by the set {a, b, e}. Referring

to (7), note that a and b lie in the ES(Q( )) image from P2n+X(pr), where

they are clearly Hurewicz images. Let us denote by ä and b the elements of

n*(QK ; Zpr) for which hs(ä) = a and hs(b) - b. The element e lies in the

ES(Q( )) image from J2(S2n), where it is (except for a factor of 3) the Hurewicz

image of the adjoint of the attaching map for the 6«-cell of J^(S2n). Actually,

the latter argument is valid for all 5, even for s > r ; it shows that (the class of)

e in ES(QK) is an /V-image, say of ë , and because è comes from an integral

homotopy class, ß[n)(e) = 0 for all s .

Consider next u2 = [b, a], which is a generator of Es for s > r + 1. Put

u2 = [b, a] e %4n-X(QK; Zpr). The composite

S4"-2^ P*"-x(pr)^QK

vanishes (cf. (7)), so u2 extends (via the pinch map) over S"4"-1 . It follows that

«2 reduces to an infinite cycle, call it ü, in ELAQK). The fact that hr(u) = u2
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survives to E°°(QK) means that ü survives to E^. Let u* e 7i4„-X(QK)

denote the integral class whose mod p reduction is ü. Thus u2 is the hs-

image of ü ; this holds for all s, including 5 = 00.
For r + 1 < s < 2r we also have u-¡ = [b ,[b, a]] as a generator of ES(QK).

Put M3 = [b, [b, à]] e n6n-X(QK; Zpr). The fact that its "//-Bockstein," i.e.,

3[â, [b, ä]] e 7i(,n-2(QK; Zp,), is zero (because [à, à] — 0) means that «3

extends over P6n~x(p2r), whence Ö3 reduces mod p to an element ù that

survives to E2L . Since hr(û) = «3 in Er, we see that «3 e im(hs) for r+ 1 <

s < 2r.
The remaining generator, which occurs in Es for r+l<5<oo,isvi.To

see that vx belongs to im(hs), first note that n%n-2(QK) is a rank one abelian

group; denote an infinite cyclic generator by v*. In rational homotopy K is

merely S4n , which has a nontrivial Whitehead square, so we know that

(18) [u*, u*] = kv* + w*   in nSn-2(QK),

where k ^ 0 and to* is a torsion element. Applying the Hurewicz homomor-

phism / to (18) gives

2u\ = /([u*, «']) = k/f(v*)+/(w*)

in H*(QK) = H*(A,d). Since vx generates an infinite cyclic summand of

Hs„-2(A, d) = H%„-2(QK), we may write

(19) ¿(v*) = k'vi+v2,

where v2 is a torsion element of H%n_2(A, d). A direct calculation in A reveals

that

(20) 2p'(u\) = 2p2rvx + d([[[a,b],b],b] + 2pr[[c, b], b]),

whence kk' = 2pr. (In (20), vx refers to the integral cycle prc2 + 2[[c, a], b],

whereas in (19) vx refers to the corresponding homology class.)
We will be done when we show that k' is a unit in Z^ . This will follow,

using kk' = 2pr, from showing k to be divisible by pr. To get there, we

argue by contradiction. If k were indivisible by pr, then by (18) the mod pr

reduction of [u*, u*], which is the class [u2, u2] e 7t$„-2(QK ; Zpr), would be

nonzero. Furthermore, because kv* is not a torsion element, [¿¿2, "2] would

be nonzero in the quotient group 7i$n_2(QK ; Zp,)/'m\(ßr), where

ßr:n%n-x( ; Z„0 - 7r8„_2( ; Zp,)

denotes the "/?r-Bockstein," i.e., composition on the right with

Pu~2(pr) -> Su~2 -^ P*n~x(pr).

However, we may compute directly that

ßr([[[ä ,b],b], b]) = [[b ,â],[b, â]] = [ü2 , zi2]

for n&n-2(QK ; Zpr) by using the relation [ä, a] = 0.

This argument shows vx in Es to belong to im(hs) for all j (vx coincides

with 2[e, b] when s < r), and completes the proof.

From the above computation, the following information may readily be de-

duced.
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Conclusions. Let K be as in (7), with n > 1 and r > 1 arbitrary but with

p > 5 . Localize away from the primes 2 and 3. Then QK e Yl(S" \j3r). In

particular,

QK « T2n+X{pr} x S4n~x x S6"-X{p2r} x QSS"-X x S*n~l{pr} x Y,

where Y is (10« - 4)-connected and T e \\ET(r, 2r). Here ¿T(r, 2r) is the
union of the four families of spaces: S2m+X {pr), T2m+X{pr} , S2m+X{p2r} , and

T2m+X{p2r} for m > 1. Furthermore, at the prime p the homotopy exponent

of K is max(2r + 1, 4« - 1 ). Moore's conjecture holds for K .

Remark. The computation of the p-component of the homotopy groups of K

has now been reduced to three simpler problems: a combinatorial problem, an

extension problem, and the homotopy groups of spheres. The combinatorial

problem is to determine the number of factors of each type comprising the

product Y. This can be done by a process similar to that done for QPm(pr)

in [CMN1]; but if one actually wanted a numerical answer then a recursive

algorithm would be used, peeling the factors one at a time off the Hubert series
for Er and for 7s2r. The relationship between nt(S2m+x{pr or p2r}) and

nt(S2m+x) is well known, but the relationship between n*(T2m+x{pr or p2r})

and n,(S') could require solving the extension problem posed by (4).

Discussion. Besides its value as an example illustrating the connection with Ext

algebra and dga technology, two good reasons may be offered for studying QK.

First, in [NS] Neisendorfer and Selick approach Moore's conjecture from the

perspective of working up to larger spaces from smaller ones. They examine, and

verify Moore's conjecture for, a variety of two- and three-cell complexes. The

complex K provides a natural next step in their program. Moore's conjecture

does hold for K, but the fact that several pages of calculation were needed

in order to establish this suggests that K may already be near the borderline

of complexity beyond which a direct individualized computation will become

impractical.
As a second reason, the complex K can act as a universal example. For an

even-dimensional homotopy class a to have order pr and simultaneously to

have its Whitehead square vanish does not seem unusual or far-fetched. If we

are studying a space X and we find an a e n2n(X) with this property, then

the map a: S2n —> X extends to à: K —» X , and our understanding of K may

be useful for deducing information about X. The author originally undertook

to analyze QK for precisely this reason, since it implied that K would be an

excellent "test case" for the Conjecture.
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