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IN this paper we will discuss some quite simple H spaces with a number of remarkable 
properties. These properties make the spaces useful in the factorization of loop spaces on 
the one hand [23] and pivotal in understanding the unstable development of o2 periodic 

homotopy on the other [12]. 

1. NOTATION AND SUMMARY OF RESULTS 

Throughout this paper, all spaces will be localized at a prime p 2 5. Let us write 

E2:S2n-1 +R2S2”+l for the double suspension map between spheres and 
pJ2n-1 ~ s2n-1 for a map of degree p’. Let us write P2”+‘(p’) = S2” ~~~e’“+~ for the 

Z, Moore space.? In c4-63, the authors study the homotopy of P”‘+ ‘(p’) when p > 2 by 
decomposing the loop space QP2”+ ’ ( p’) as a weak infinite product. As a remarkable 
corollary, they construct a map Z, : fi2S2”+ ’ + S2”- ’ so that the diagram: 

fi2sZn+l (-JZs2n+l nzq 

lEZ\ lEZ W) 

s2n-1 
p’ 

s2a-1 

commutes up to homotopy. From this they quite easily settled the exponent question for the 
odd torsion in the homotopy groups of spheres. 

In this paper we will construct decompositions of certain loop spaces, from which we 
will obtain H spaces with certain universal properties. Our main result is: 

THEOREM A. $ There is an H Jibration sequence: 

. . ._~zsz”+l n.3 2n+l 
-S2”_l- P-‘(p’)-ns , 

where 71, fits into diagram (1A). In particular, 71, is an H map and thejiber of 7c, is a loop 
space. Furthermore, H.,, ( T2”- ‘( p’); Z,) is a free commutative associative algebra on gener- 
ators u and v of dimensions 2n - 1 and 2n, respectively, with /3(‘)v = u, where /.?(‘) is the rth 

Bockstein. 

t Throughout this paper we will write Z,,r and, when I = 1, Z, to denote cyclic groups of orders p’ and p, 
respectively. 
ITheorem 5.2 in the sequel. 
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The possibility of the existence of a fibering such as the one in Theorem A was first 
considered in [6]. The spaces T’“-l (p’) and the fibering were first constructed in [3]. Thus 
the thrust of Theorem A is the H space structure. 

The second feature of these spaces is the following universal pr0perty.t 

THEOREM B.1 Suppose X is an H space ofJinite type and P’+~- ’ ~2~g-- 1 (X; Z,+i) = ofor 
all i 2 1. Then any map cp : P “‘( p’) -+ X has an extension over T2”- ’ (p’) 

PZ”(p’) Lx 

I 

7 
/ 

/4 / 

T2”- l(p’; 

7’he spaces T2’-‘(pr) are constructed as the direct limit of spaces T:“-t(p’). Each of 

these enjoys a universal property similar to the above. Furthermore, we construct a sequence of 
co-H spaces Gt”(p’) which interact in the following way:9 

(A) Both Gk and T, are atomic (except TO when n = r = l), 
(B) Gk is a retract of CT,, 

(C) T, is a retract of RGk. 

The existence of the spaces T’“-t (p’) was predicted in [lo]; we shall see that they fit 

into an EHP spectral sequence for the Moore space spectrum. The thrust of [lo] is that 
although the James-Hopf invariant and the suspension do not fit into long exact sequences 
for Moore spaces (or any spaces other than spheres), except in a limited range of dimen- 
sions, there does exist a sequence of spaces T”{p’} together with “suspensions” 
E:T”{p’}+RT”+‘(p’} so that 

(a) the resulting spectrum is equivalent to the Z, Moore space spectrum, 
(b) there is a long exact “EHP sequence” in which the third term is the homotopy of 

a space T’ for some i. 

The spaces T’ are constructed from the Moore space Pi+ ’ (p’) by killing off irrelevant 

homotopy.1 In particular, T’“(p’) = S2“+’ {p’} and the spaces T2”-t(pr) are from The- 
orem A. 

For technical reasons (see Conjecture 5.3), we will replace the spaces T”(p’) by ?“(p’), 

defined as 

?( p’) = 
i 

Bw, if n = 2kp - 1 and r = I 

OT”( p’) otherwise 

where SW, is the classifying space for the double suspension (see [S]). 

THEOREM C. There are H Jibrations: 

t We expect that this result can be improved. 

$ This is the case k = co of Theorem 4.7 in the sequel. 

§See 3.7, 3.8, and 3.10. 
TFor example, at odd primes, it is convenient to build the sphere spectrum with the spaces S*“+’ and 

L?” = S2” v ... v e2n(p-1) c J(S2”kthe subspace of the James construction of words of length less than p. 
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and the resulting spectrum { ?} satisfies 

E-‘(F) E {T”} Z So up, el. 

These fibrations yield EHP sequences similar in form to the EHP sequences for spheres, 
and they work in a similar way. In case r = 1, one can endeavor for a self-referential 
inductive calculation, and this data can be used for calculation in the cases where r > 1. 
These EHP sequences have been used in the unstable calculation of u2 periodicity [12]. 

The spaces T2”- ’ (p’) are actually the limit of a sequence of spaces T,fn-‘(p’) construc- 

ted in C33.t Along the way we show that each of these is an atomic H space, and construct 
corresponding co-H spaces G,, which we think of as generalizations of the Moore space 
P’“+r(p’) = Go. 

We will fix the positive integers r and n throughout our inductive construction (Sections 
2 and 3) and often supress them from the notation. The integer k will occur as an index of 
induction and occur as a subscript (Dk, Tk, Gk, etc.). Throughout this paper we will be 
constructing various maps and taking the homotopy fiber or homotopy cofiber of such 
maps. In a surprising number of cases, these spaces turn out to be wedges of Moore spaces. 
We will write +V:+k for the collection of all spaces which have the homotopy type of simply 

connected finite type wedges of modp” Moore spaces for r I s I r + k. 
Most of our spaces will have a fixed connectivity and infinite dimension. With the 

exception of the Moore space (as above) we will use a superscript to indicate the dimension 
of the bottom cell (e.g., D,f” = Gi” = P2”+l (p’)). For most purposes, n is fixed, and if it will 
not lead to confusion, we will leave it out of the notation. 

The organization of the paper is as follows. In Section 2 we will summarize most of what 
we need from [2]. Section 3 will be devoted to the inductive argument and its many 
consequences. Section 4 is devoted to universal properties, and Section 5 to applications to 
the Moore space spectrum. Finally, we have relegated a number of results of a general 
nature to an Appendix. These results require diverse and independent lines of reasoning, 

and we did not want them to interrupt the flow of our main lines of argument. 

2. REVIEW OF Tk AND RELATED SPACES 

In this section we will summarize the results in [3]. These results generalize those of 
[4-61 and we begin by recalling the latter results using the notation of [3]. Let us fix 
a prime p 2 5 and integers n, r 2 1. 

Cohen, Moore and Neisendorfer produce a decomposition 

CID0 2: To x fiWo 

in their seminal work [4] where Do = P2”+ ’ ( p’) and W. E %‘-F. The interesting part for our 
purpose is thus the space To. It comes with a fibration 

. . .-S2”-l x vo---+ To-RS2”+’ 

where I’, = 17 j,. S2”pj-‘{ p’+‘}. 
One of the goals of [3] is to eliminate the factor V. and produce a fibration 

. . .- S2n-1-T-QS2”+1. 

f The space we are denoting Tin- ‘(p’) was denoted T[ { p'} or merely TX in [3]; the notation T’“(p’) was not used 

there. 
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The homology classes in To that come from V0 can be removed by forming mapping cones. 
Consider the composition 

P2”p-‘(p) o . pznp-l(pr+l)_~2np-l 
{p’“}-+ V~--+T~---+RD~ (24 

where o corresponds to the coefficient homomorphism Z, c Z,+I. Let D1 be the mapping 
cone of the adjoint to this composition: 

The first element of order p’+i in n,(Do) is consequently reduced to have order p’ in 
n,(D1). The pinch map D,, + S’“+’ clearly extends over D 1. The first author then analyzes 

the fibering 
. . .-&--PD~-S~“+~ 

as in [S]. The process is iterated and the author obtains, for each k 2 0, a commutative 
diagram of fibrations: 

s2”-l x V,- Tk BUS’“-’ 

*I I I 
w, -=-+Wk---+ * 693) 

I I I 
& - Dk- sZn+l 

where I$ = n,,k S2nd-1(p’+k+1} and wk Ew;+k. The connectivity of vk increases with 

k and Dk is obtained from Dk_ 1 by “coning off a Z, Moore space in such a way to truncate 
the first element in n*(Dk_ 1) of order pr+k so that its order is ~‘+~-r as in (2A). Thus 

Dk = (S2” up,e2”+‘) ” . . . ” (e2”P’ “pe2”Pk+1). 

The analysis leading to (2B) is lengthy and complex. Various facts are developed along 

the way. Two important facts are summarized in the following lemma. 

LEMMA 2.1. [3] Thf? spaces Dk Satisfy: 

(a)C2mkEw;+k, 
r+k (b) C(fiDk A a&) E-w; . 

The proof of (a) is found in the section on the construction of $,“+k in Section 10. Part (b) 

is Theorem 12.4(xvi). 
We will now recall some algebraic constructions from [3]. These will be used at one 

point in the main inductive argument (Theorem 3.1). A free associative differential graded 
algebra (dga) A(X) is called an Adams-Hilton model for a space X if there is a quasi- 
isomorphismt A(X) + C*(m). Such a model is not unique, but any two such are quasi- 
isomorphic. Iff: X + Y is a map of spaces, a dga homomorphism qr: A(X) + A( I’) is called 
an Adams-Hilton model for f if the obvious diagram commutes up to dga homotopy. See 
[l; Section 81 for details. 

7 That is, a dga homomorphism which induces a homology isomorphism. 
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Frequently Adams-Hilton models are chosen so as to satisfy one or both of two useful 
properties. First, the generators may be chosen in l-l correspondence with the cells in some 
known CW structure for X. Second, .4(X) can be the universal enveloping algebra (denoted 
U) of some free differential graded Lie algebra (dgL). 

In [3, Chap. 33 free differential graded Lie algebras *‘” and Nk are introduced so that 
U(ak) is an Adams-Hilton model for Dk. U(Nk) will be seen to be an Adams-Hilton 
model for a space Gk constructed in the next section. Furthermore, a dgL monomorphism 
hk: Nk + A?” is constructed in [3]. U(hk) will be seen to be an Adams-Hilton model for 
a map ek: Gk + Dk constructed in the next section. 

A non-free dgL, Mk, is introduced in [3] such that U(Mk) is quasi-isomorphic to 
LJ(fi’). Furthermore, we have the following. 

LEMMA 2.2. Let k 2 0. The dga U(Mk) has the following properties: 

(a) UMk = Z,,,(b, ao, . . ..ak>/J. where Z,,,(b, ao, . . ..a& is the tensor algebra with 
dim b = 2n, dim ai = 2np’ - 1, and J is a certain ideal. 

(b) There are cycles Ci E UMk with Ci = aimed decomposables for 0 5 i 5 k. 

(4 B (‘+@b = - c where b, = bps and B(i) denotes the ith Bockstein homomorphism. 

(d) There is a hot&morphism 4 : UM: Q Z p + Z,{ bi, ci} (the vector space spanned by bi 

and Ci for 0 I i I k) such that 4(ai) = ci, 4(bi) = bi and I#J is zero on odd dimensional 

decomposable elements. 

3. CONSTRUCTION OF Gk AND e, 

This section contains our central argument, which is a construction by induction on k of 
co-H spaces Gk = G;“. These spaces are improvements on the spaces Dk (in that they are 
co-H spaces) and have the simultaneous properties: 

Tk is a retract of QG,; 

Gk is a retract of CT,. 

We Will COnStrUCt Gk so that Gk 3 Gk_ 1 together with compatible maps ek: Gt + Dk, 
where Dk is the space described in Section 2. The cellular structure of Gk is 

Gk = (S2” up, e2”+l) u . . . u (e2np’ up,+, e2npk+1) (34 

and ek will induce an epimorphism in integral homology. 

THEOREM 3.1. For each k 2 0 there are co-H spaces Gk and maps ek:Gk + Dk such that: 

(a) The composite Gk ’ + ERG,- xfiDk has a left homotopy inverse. 

(b) RDk 1: Tk x flwk, where wk is the space appearing in (2B). In particular, & is an 
H space. 

(c) UNk is an Adams-Hilton model for Gk and U(hk) is an Adams-Hilton model for et. 
(d) ek induces a splitting: 

with Jk E ‘%+‘-Ffk. 
(e) xfiGk/Gk E%‘-,‘+k. 
(f) fi&./RGk E’%-;+k. 
(g) x(RGI, A RGk) E’%?!+k 
(h) RGk N a& X a&, where Y, iS theJiber of ek. 
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Proof: As mentioned, the proof will be by induction on k. When k = 0, let 
G,, = De = P2”+l (p’), and take e. = 1. Properties (a)-(h) are either straightforward or 
proved in [4]. Now assume k 2 1 and (a)-(h) are true for k - 1. To construct Gk for k 2 1, 
recall that Dk was constructed as the cofiber of a composition: 

p2Vk(P) w hp2VJk(pr+k) I,” ,Ek_lak-19r-;Dk_l 

where o is the coefficient map corresponding to the inclusion Z, c Zpr+k ([3,9.1]). We now 

construct a commutative diagram: 

G-1 

I ek-1 

Dk-1 

(3B) 

where y is a lifting of &_ I tfk_ 1 ypk which exists by property (h) of the induction. We obtain 
Gk and el, by taking mapping cones of the horizontal composites: 

pznp’ P r+k-‘Y 
- &.-I- Gk 

pj %,I %j 
p2npX - Dkel - Dk 

(3C) 

Thus Gt is the mapping cone of p’+k-’ y. Clearly Gk is a CW complex of the type described 

in (3A). To show that Gk is a co-H space we apply Lemma Al of the Appendix. We show 
that c(p’+k-‘y) = ~‘+~-l c(y) = 0. In fact, we assert that 

P r+k- ’ [P2np’(pr+k), CRGk- 1 A nGk_ 1] = 0. 

By part (g) of the inductive hypothesis IERG,_ r A RGk_ r is a wedge of mod p” Moore spaces 
for various s with r I s I r + k - 1. The lowest dimensional homotopy class in this wedge 
of order >~‘+~-r occurs in the homotopy of a mod pr+k- ’ Moore space. The first class in 
the homology of RGk_ 1 of order pr+k-l occurs in dimension 2npk-’ - 1. Consequently the 
first such homology class in CRGR- 1 A QGk_ r occurs in dimension 4np’-’ - 1. Thus an 
element in the homotopy of zfiGk_ 1 A fiGk_ 1 of order >p’+ll- ’ must lie in dimension 

2 4np k-1. By [S], the first element of order p’+’ in n*(P2m+1(pr+k-1)) is in dimension 
2mp - 1 and the first such element in TC,(P’“(~““-‘)) is in dimension 4mp - 2p - 1. 
These dimensions are large enough that we may conclude that there are no elements of 
order p’+’ in n,(E~Gk-l AfiGk_r) for s I 2npk. Thus pr+k-1[P2np’(pr+k), XIGk_, A 
RGk_ l] = 0 as asserted. 

We now prove parts (a) and (b) for k. These will follow from Theorem 14.9 of [Al] once 
we establish the existence of a map Z - %2Dk with certain homological properties. 

Consider the diagram: 
Gk-‘C, CQ(ZGk 3 XfiDk 

in which ev denotes the evaluation map. Let Z = Gk and f: Z- EnDk be the upper 

composite. Choose generators ui EH~~~‘(G~; Z,) and ui E Hznpi+ r(Gk; Z,) with j?(‘+i)~i = Ui. 
Since (ek).,, (ui) # 0, f*( Ui) # 0. Since (ev) * is zero on decomposables, f.(ui) is indecompos- 
able. By Lemma 2.2(a), f,(ui) E lai modulo decomposables for some unit I which we can 
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absorb in the choice of ui+ By Lemma 2.2(b) and (d), 4(f,(Ui)) = ci. By 2.2(b), 4&(ui) = bi. 

We have thus satisfied the hypothesis of 14.9 of [3]. Parts (a) and (b) follow immediately. 
We now prove part (c). At this point we refer the reader to the discussion in Section 

1 and to Chapter 3 of [3]. Our inductive hypothesis tells us that U(IVk-‘) and U(h’-‘) are 
Adams-Hilton models for Gk_ 1 and ek _ 1. Since Gk iS obtained from Gk_ 1 by attaching two 
cells, the Adams-Hilton model for Gk, A(G,) can be assumed to be A(Gk_ r) with two more 
generators freely adjoined. That is, A(G,) = U(N’-‘)LI Z@,(&,t$) with InkI = 2npk - 1 
and 1 ukl = 2npk. U(iVk) has this form as an algebra, so it suffices to show that the differential 
in A(G,) can be chosen to satisfy 

d&k) = p_‘d(w;t) and d(Uk) = - pr+kUk + pr+k-‘d(w;r) (3D) 

with the notation w> as in [3, Proof of 3.81. To prove this, it suffices to show that an 
Adams-Hilton model for the attaching map ~‘+~-‘y of (3B) and (3C) can be given by 

A(P ““-‘y)(u) = p-‘d(w;t), A(P ‘+k-‘y)(v) = pr+k-lW;k 
(3E) 

where we are writing A(PZnpk (P”~)) as Z,,,(u, u) with du = prfku. The formula (3E) in 
connection with (3C) also shows that A(ek) can be chosen to be an extension of A(ek_l) 
satisfying A(ek)(uk) = iik and A(ek)(Uk) = pr+k- 1 i&, where i& and fik denote generators of 
A@,) corresponding to the two top cells of & attached by the bottom row of (3C). This 
extension is precisely U(h’). We thus focus our attention entirely on proving (3E). 

To compute A(P’+~-’ y) we first determine as much as possible about A(y). We exploit 
the homotopy in the upper right triangle of (3B), which tells us that the dga homomor- 
phisms A(ek-I)A(y) = U(h’-‘)A(y) and A(&-rqk_r$#) are homotopic. Applying [3, 
6.21 we conclude that there exist elements ri’, 0’ E Uak-’ satisfying: 

u(hk-‘)A(y)( u) = ~-‘-~d(@>) + d(2) 

u(hk-‘)A(y)(u) = 6~~” + P’+~U”’ + d(T). 

Now set u’ = A(y)(a) - p-‘-kd(~>)~ U(N’-‘), and observe that U(hk-‘)(u’) = d(u”‘); it 
follows that U(hk-‘)d(u’) = 0. Since U(hk-‘) is a monomorphism, u’is a cycle in U(Nk-‘). 
Similarly, put u’ = A(y)(u) - w&so that U(hk-‘)(u’) = P’+~z?’ + d(T) and d(u’) = P’+~u’. 
Thus our model A(y) is given by 

A(y)(u) = p-‘-kd(w>) + u’ 

A(y)(u) = wlpk + u’. 

Clearly, then, one model for the map ~~+~--ly is given by 

A(P ‘+k-‘y)(~) = p-‘d(w>) + ~l+~-lu’, A(p’+k-‘y)(u) = pr+k-lwb + pr+lr-lu’. 

Nowsinceu’isacycleofU(Nk-‘),andp’+k-’I?,(U(Nk-’)) =Obyinduction,p’+k-lu’is 
a boundary. Let us write pr+k- 1 u ’ = d( u”). Using [3,6.2] again, we may replace our model 

A(P r+k-ly) by a homotopic dga homomorphism so that it satisfies 

A(P ““-‘y)(u) = p-‘d(w’&, A(prfk-‘y)(u) = ~~+~-lw;t + ~‘+~-lu’ - P~+~u”. 

Since d(u’ - pu”) = PI+~U’ - p.~~+~-lu’ = 0, 0 - pu” is a cycle in U(Nk-‘) and we may 
write prfk-’ (u’ - pu”) = d(u”) for some u” E U(iVk-‘). Again applying [3,6.2], we see that 

A(P r+k-ly) is homotopic to the dga homomorphism given by (3E). This completes the 
proof of part (c). 



866 David Anick and Brayton Gray 

Now consider the diagram of cofibrations: 

(3F) 

By (a),f* is a split monomorphism in integral homology. Thusfi is a split epimorphism. By 

(c), (&?k)* coincides with U(gkhk),, which is a split epimorphism by [3, 4.10b]. Thus 
(C&k)* is a split epimorphism in integral homology. It follows that (f”)* is a Split 
epimorphism and we deduce the following. 

LEMMA 3.2. (f “‘)* is a split monomorphism in integral homology. 

We now begin a subsidiary induction which uses Lemma 3.2. We will construct, by 
induction on m, a 2-connected space X, E VV”C+k and a map (P,,,: CRGk + X,,, such that the 

sum 

ZQGkZSle*+(P_ll, xRDk v x,,, 

is an isomorphism in integral homology in dimensions sm. This is clearly possible when 
m I 2n + 1 with X, = *. Suppose we have such a map for a given value of m. Since X,,, is 

-2-connected, X, = x,X; with Xh E w;+k. Consider the composite 

x(fiGI, A fiGk)- (x,R& V x,) A fiGk 

A (fiDk V XL) A En& 

-(nDk V XL) A (CR& V x,). 

Let w’ = (fiDk v XL) A (ERDk v X,). By the Kiinneth theorem, both maps in this com- 
posite are homology isomorphisms in dimensions Irn + 2n - 1. By Lemma 2.1, 
W’E w;+k and is 2-connected. Now by Lemma A2 of the Appendix, the composition 

xQGk/Gk 2 C(fiGk A !i%&)- w 

induces a split monomorphism in homology in dimensions I m + 2n - 1 where y is a right 
inverse to ~6. (See Lemma A2 for notation.) By Lemma A3 of the Appendix, there is 
a retract W” of w’ such that the composite 

.R’ : xfiGk/Gk -w’-w” 

induces an isomorphism in integral homology in dimensions urn + 2n - 1. By Theorem 
3.1 and Lemma A3 again, we obtain a retract IV”’ of w” and a commutative diagram 
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in which the vertical maps induce isomorphisms in dimensions I m + 2n - 1. Since f”’ 

factors as 
SWk/RGt- CRG+--+ zQGk/Gk 

we have a commutative diagram of cofibration sequences: 

77”’ I I e I = (3G) 

where c = C&k + 7cnn’i. Since a”’ induces an isomorphism in integral homology in 
dimensions <rn + 2n - 1, the same holds for c. Since m + 2n - 1 2 m + 1, we may take 
X m+l to be IV”’ and (p,,,+ 1 to be d’di. This completes the induction. Putting & = lim X, 

we obtain (d). To prove (e), take a limit of the maps CSZGk/GkAW” as m increases. The;l (f) 
follows from Lemma 3.2 and (e). Use Lemma 2.1(b) and (d) to prove (g). 

Finally we use (d) to conclude that ECRGk - zmk has a right homotopy inverse. We 
then apply Lemma A4 of the Appendix to the fibering fKk-+ mk- Yk to obtain 
a splitting RG k N RDk x QY,. This completes the proof of Theorem 3.1. 0 

Having constructed the spaces Gk, we now proceed to derive many of the consequent 
relationships and conclusions. Numerous spaces will be seen to be the wedges of Moore 
spaces. In particular, it is easy to see that the map 

cnY,-xnG, --‘--+~:aG&~1, = Jk 

is a split monomorphism in integral homology, and hence CR Yk E w,‘+k by Lemma A3 of 
the Appendix. In fact, a much stronger result holds. 

PROPOSITION 3.3. Y, EW:+~. 

The proof is based on the following result which is of interest in its own right. 

LEMMA 3.4. There is a cojibration sequence: Ck+ Gk- Dk with 

Ck = vFzl p2np’+l(pl+i-1)E~~+k-l. 

Proof: When k = 0, Co w * and the lemma is obviously true; suppose k 2 1, and that the 
lemma holds at k - 1. Consider the diagram 

p2np’(pr+k-1) ’ * Gk-l - ck 

I I I 
0 I 

I 

p2d(pr+k) G Gk_l 

* 

) Gk (3H) 

Pznp*( p) - Dk-1 - Dk 

The lower two rows of (3H) are the cofibrations that define Gk, Dk, and K?k (See (3C)). The 
top row of (3H) is a cofibration which defines Ct. By our induction hypothesis, the upper 
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middle vertical arrow of (3H) exists, and the upper left square of (3H) commutes because 

P r+k-l timesanymapoutofP2”p~(p’+k-1 ) is null. Because the first two columns of (3H) are 
cofibrations, we deduce that the dotted arrow of (3H) exists and that the right-hand column 
of (3H) is also a cofibration. 0 

Proof of Proposition 3.3. Apply Corollary A7 of the Appendix with X = GkandA = CI, 

USiIlg 3.1(h). It fOllOWS that Yk N Ck A (fl&)+Ew;+k-l by 2.1(a). cl 

We wish to establish a diagram analogous to (2B) for the spaces Gk. We will first define 
spaces Rk by the pull-back diagram: 

Rk - wk (31) 

Since Tk is a retract of ifGk, the inclusion Tk- Rk is null homotopic. By 3.4 we may apply 
Lemma A6 of the Appendix and conclude that wk N RI, v C(CI, A Tk+ ). Since &k has 
a right homotopy inverse and wk is a suspension, the projection wk- Dk lifts to Gk and 
hence wk is a retract of R,. Thus the cofibration sequence 

Ck A T,,? -Rk- w, 

splits and we have the following. 

PROPOSITION 3.5. & N wk V (ck A Tk+) ~?dlr;+~. 

Now define Fk to be the fiber of the projection Gk- ek D t-SZn+ ‘. Then from (31) 
and (2B) we obtain a commutative diagram of fibrations: 

S2n-1 x vk- Tk - $-2s2.+1 

RI, ARk-----+ * 

I I I - 
Fk - Gk- 

s2n+ 1 

(35) 

and hence the following corollary. 

COROLLARY 3.6. we have nGk N RRk x Tk and QFk N QRk x S”‘-’ x vk. Furthermore, 

p max(r+k+lsn-l)~t(Fk) = 0 when t > 2n - 1 and p2’+‘+‘x,(Gk) = 0. 

ProoJ: The splittings follow directly from (35). Clearly p’+‘+‘n,(Rk) = 0, 

P n-l~r(SZ”-‘) = 0, if t > 2n - 1, p’+k+lz*(vk) = 0 and by [3, 14.101, P~‘+~+~~c*(T~) 
= 0. 0 
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We now describe some important structure maps involving the spaces Tk and Gt. Let 
hk : RGk-+ Tk be the connecting map from the fibering (35) and choose gk to be an 

arbitruryt right homotopy inverse. 

PROPOSITION 3.7. There are maps &: Gk - x:rj SUCh thfft the COt?ZpOSiteS 

Gk/‘-ZTkAGk 

TkAfiGk- k hk T 

are homotopic to the identity, where gz denotes the adjoint of gk. 

To prove Proposition 3.7 we will first establish the following lemma. 

LEMMA 3.8. Gk is atomic for 0 I k I 00. 

Proof We wish to apply Lemma A5 of the appendix, so we need to show that 

P r+k-ly # 0 (see (3B)). Choose a map jj: P2npk(pr+k) - Fk _ 1 so that the diagram 

(3K) 

commutes up to homotopy. This is possible since the right-hand square is a pullback 
diagram. Let y’ : P 2np’- 1 (p”“) + fiF,_, be the adjoint of qk_lgpL. By the definition of 
bd_i(see [3, 13CD]), y’ is homotopic to the composite 

p2np’-i(pr+k) ,= S2npt-1(rr+k} t vk_l ‘I-l ,a,~~_~ %fiFk-l. 

Now consider the homotopy commutative diagram: 

p2np’-l(pr+k) y’ 
QFk-1 s no,_, 

1 
J&k-1 

1 (3L) 
sZ.p’-l{ pr+k} at-1 

- Szn-l X vk-1 - Tk-l 
- - 

Let u, u generate fi*(p%~‘(p’+‘); Z,) with /Fk’(fi) = U. Let ii and E be the images of U and 
V in H*(Tk-l; Z,). Clearly ii and ii are nonzero since H,(T,_,; Z,) 2: im(8k_l)* @ 

H,(RS2”+1; Z,), and /I(n+k) (a) = ii(mod lower Bocksteins). However, it is easy to see that 
no element of H,(T,_ l; Z,) other than b can have a Bockstein on it equal to ii. It follows by 
comparing the homotopy and homology Bockstein spectral sequences that the composite 
from (3L), Pznp*- ’ (p”“) + G_ 1, has order P’+~ (see [4, 7.33). Thus (a&_ i)y’ and hence 
ek _ 1 y and finally y all have order p’+ ‘. cl 

As we shall see later, the spaces Tk are also atomic, except when k = 0, r = 1, and n = 1. 

t There is certainly some choice for gt which consequently effects the choice off,. Thus the triple ( j& gk , h,) is not 
determined by the structure of Gt or 4. 

TOP 34/4-H 
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Proof of Proposition 3.7. We need to establish the existence of the mapf,: Gk- CT, 

such that g:fk - 1. Choose an arbitrary co-H structure s: Gk-CRGk and consider the 
composition 

GkAZfiGk- =hk ZG. 

This may not serve as fk in general. Consider the composition 

GkAZQGk- % CT+-+ Gk. 

We can easily see that each map in this composition induces an isomorphism in Hz.. Since 
Gk is atomic, the composition is a homotopy equivalence. Choose a homotopy inverse 
e: Gt - Gk to this composition and define fk as the composition 

GkLG 
s 

k----+C~Gk----+ Zhk CT,. 

This completes the proof. 0 

At this point we have used an arbitrary co-H structure. We know that such a structure 
exists by Theorem 3.1. The construction in Theorem 3.1 is so encumbered by choice that it is 
not useful in specifying a co-H structure. It would be desirable, for example, to know 
whether there is a co-associative co-H structure on Gk. The existence of fk allows us to 
partially specify a co-H structure. It is not hard to show that any co-associative co-H 
structure is of this form. We have the following. 

PROPOSITION 3.9. There iS a co-H StruCtUre vk: Gk- CnGk and an H structuret 

jL,:RCTk --+Tk so that the diagrams 

commute, and the composites 

are the identity. 

We conjecture that gm may be chosen so that pm is an H map and fk can be chosen so 
that vk is a co-H map (i.e. vk is co-associative). 

Proof of Proposition 3.9. Define vk and pk by the lower triangles; @J: 0 1 = gk and 
ev “Zgk = gt so the upper triangles commute. The composites are clearly the identity by 
Proposition 3.7. 0 

PROPOSITION 3.10. Either Tk is atomic or k = 0 and n = r = 1. 

Proof We will follow the method of [4,4.1] where it is proved that To is atomic except 
when n = r = 1. Since the Serre spectral sequence for the Z, homology of the fibering 

t We may define a multiplication pk: Tk x T,- Tk by the composition Tk x Tk Ct 
---+ CC2 Tk - Tk, but the corres- 

pondence pt + bt is not one to one. If pk is an H map, & is homotopy associative and pk is determined by Pt. 
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S2n-1 x V,--!+ T,“,RS 2n+ ’ collapses, we may apply Lemma A8 of the Appendix to 

conclude that each primitive element x EH*(T~; Z,) satisfies either x = r*(x’) or n*(x) # 0. 

Now let g: Tk-Tk be a map such that g~:H2,_1(Tk:Zp)-H2n_1(Tk;Zp) is an 
isomorphism. Let T be the telescope of g and h : Tk ---+ T the natural map. Then h, is onto. 
Let K be the kernel of h * and I be the least dimension in which K, # 0. K 1 is contained in the 
primitives. Since Tk is a retract of RGI, by Theorem 3.1(b) and CZQGk E %‘-;+k by Lemma 
2.1(a) and Theorem 3.1(d), the term Er+k+l of the Bockstein spectral sequence for 

fi,(T,;Z,) is zero. Choose xZOEK~. Suppose “*(x)=0 so xeimi,. Since flu)=0 in 
H*(S2”_ 1 x vk; Z,) for i I r i- k, /?(‘)x = 0 for i I r + k and hence x = /?“)y for some i, 
r<i<r+k. 

Since /Iti’y # 0 with i I r + k,y$imr,. We claim that y can be chosen to be primitive 

(and hence rc* y # 0). This is clear if n > 1 since K I+ 1 is contained in the primitives. If n = 1, 

r&+1) = KlOu + u@Kl, where u EH~(T~; Z,). If y is not primitive, e(y) = 

y@ 1 + (-1)%0x’ + x’@u + l@y for some x’EK,. Now let y’ = y - x’u. Then y’ is 
primitive and fi” 'y' = x since /?“‘u = 0 for all i and /?“‘x’ E K1_ 1 = 0. We conclude that 
either n*(x) # 0 or there exists y with n.+(y) # 0 (where x E KI and y E KL+l). Since the 
homotopy fiber of h is 1- 1 connected, x or y is represented by a map 4 : P’(p’)- LJi 

(where t = 1 or I + l), r I i I r + k, and ~4 is nonzero in homology. 
Thus we have amap ~v#J:P’(#)+RS~“+~ which is nonzero in homology. As in [4,4.3] 

we conclude that n = r = i = 1 and t = 2p. Finally we wish to conclude that k = 0. In 
dimensions less than 2pk+’ - 2, H*(Tk; Z,) 2: a:=, Zp[Ui,2p’]/(ar)@A(U, 1) and 
pci, p-1 p-1 

UVO “‘Vi-1 = Ui by an integral cohomology calculation. Since g*(u) = Au for some 
unit i E Z,, we easily see that g* is an isomorphism in dimensions <2p’+ ’ - 2. Thus, g* is 
an isomorphism in dimensions <2pk+’ - 3 and K, = 0 for 1 < 2p’+’ - 3. Since KZp # 0, 

k = 0. 

4. UNIVERSAL PROPERTIES 

In this section we examine the universal properties that the space Gk and Tk enjoy. These 
properties could be considerably strengthened if we knew that Gk is co-associative or T is 
associative; we will make note of the potential alterations in the sequel. We reintroduce the 
superscript (Gz”, T,fnW1 ) to indicate the dimension of the bottom cell. 

PROPOSITION 4.1. Suppose X is an H space, (Pk- 1 : Gz!! 1 --+ CX is a map and K c G,f!! 1 

is a skeleton of G,f1 1 such that (Pk- 1 1 K is a co-H map. Suppose pr+k- ’ TC~,,~~_ 1(X; Zpv+*) = 0. 
Then there is a map (Pk: G,f” +xX with (PklK - (Pk_lIK. 

Note. We shall see in the proof that if the co-H structure maps sk : Gk - xflGk can be 
chosen to be co-H maps (i.e. Gk is co-associative) then (Pk can be chosen to extend (Pi_ 1. 

Proof of Proposition 4.1. We begin by replacing (Pk- 1 with the composite 

G,‘: 1 SI-l ZfiG,“rt 1 % XQZX LXX 

which we label (Pk- 1. Since the inclusion K c G?!I is a co-H map 

(Pk-llK-(~CC1)(Ci)(Pk-lIKN(Pk-lIK)wheTei:X 4 REX is the standard inclusion. We will 
extend (P&l t0 a map qk. Consider the diagram: 
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ThecompositeZR(cp,_10a)oCz:P2”pk(p’+k) - ZQZZX is the suspension of the adjoint of 
(Pi_ 1 D a. Hence the entire lower composite is the suspension of p o Qqr_ r 0 a* which is 

divisible by ~‘+~-l. It follows that the lower composite is inessential and &_ 1 extends over 
the mapping cone of a which is Gin. cl 

COROLLARY 4.2. Let 0 I s < m I co. Suppose that X is an H space ofjinite type and that 

P 
r+k-1 x2np~_1(X;Zp,+t) = 0, when s c k I m. Let q:P2”p’(pr+S)+X. Then there is 

a map q,,,:Gz +xX such that the diagram 

G2” s 

i 

, G,‘“/Gs”r 1 1: pZ”P’+ 1 (,r+s) 

i 

3 

commutes up to homotopy. 

Proof. Since Gf!!, is a sub co-H space of G:“, the composite Gz”- GF/G$!, is 
a co-H map with the induced co-H structure on G,Z”/Gf! r N P2np’+ ‘(p’+‘). This space, 
however, has a unique co-H structure. Thus the composite 

G2” s -G,Z”/G;!!r N P2np’+1(Pr+s) x’ bx:x 

is a co-H map. Apply Proposition 4.1 successively to construct maps (Pk : Gp - XX for 
each k, m 2 k > s extending cp. We now consider the case m = co. Since X has finite type, the 
set of homotopy classes of extensions (Pk of rp is finite for each k. Call & infinitely extendible 
if there is an extension cpr of (Pk for each I 2 k. 

By induction on k each infinitely extendible map pk has an infinitely extendible 
extension (pk+r; for if not, since there are only finitely many extensions of pk to (Pk+ 1, 
(Pk would not be infinitely extendible. Thus we may choose a compatible sequence @‘ of 
infinitely extendible maps and hence their limit rp,. 

Our first application of these results is to the uniqueness of the spaces Gk and G. In [3] 
the spaces Dk and T, are defined and depend on choices exercised in the discussion. For 
example, the map pk:Dk-S2n+1(pr} is a completely arbitrary extension of 
p0 : D,, + S2”+ l{ p’}. Suppose some other choices are made leading to the construction of 
spaces 6, and Tk and finally Gk satisfying all the properties of Dk, Tk, and Gk. 

PROPOSITION 4.3. Gzn N Gin and T,j?“-l N F,f’- ‘. 

For the proof of this we need the following lemma. 

LEMMA 4.4. p’+‘x*(T,$‘-‘) = 0 and p’n2np_1(T$:-‘) = 0. 

Proof. The first part follows from [3, Lemma 15.21 which is obtained from the fibration 
sequence 

W, - T$‘-‘-RS2”+‘{p’}, 

where W, is the fiber of the double suspension 

W” -s Zn-1 _g-J2s2n+1 

However, 7r2np_ 1 ( W,) = 0 so the second part follows as well. 0 
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Proof of Proposition 4.3. For i I k, zznpd_ l(Tk) E nZnpi_ ,(T,) so, by the lemma, 

P 
r+i- 1 

nZn,+ l(G) = 0 for 1 I i I k. Consequently we may apply Corollary 4.2 to obtain 

a map CJ+:@“-XT~Z”-~ which induces an isomorphism in Hz,. Consequently the 
composite - - - 

Tk~RG@%2E7++Tk 

induces an isomorphism in zzn_ 1. Reversing the roles of the two constructions, we obtain 
a similar map Tk- T’. Since both spaces are atomic, both composites are homotopy 
equivalences and hence each map is a homotopy equivalence as well. Thus Tk N Tk. 

Similarly we construct a homotopy equivalence 

using Lemma 3.8. 

The next result gives an affirmative answer tu question 15.7 of [3]. 

PROPOSITION 4.5. There is a map 

Tz-‘(p’) H _, T$P-‘(p’+l) 

which induces a monomorphism in cohomology with Z, coefJicients. 

Proof: In fact we will construct a map 

H,: T;“-l(p’)- T;!pl-l(pr+l) 

which induces an isomorphism in HZnp_ 1 when 1 I k I co. In the case k = 00 this implies 
that H = H, induces a monomorphism in cohomology with Z, coefficients because of the 
Bockstein and cup product structures of these spaces. 

We begin by constructing a map Cpk : Gi”( p’) - G~lpl (p’+ ’ ) inducing an isomorphism 

in HZnp. This is accomplished by applying Corollary 4.2 with X = Tzp- ‘(p’+ ’ ) and s = 1. 

Using Lemma 4.4 we extend the composite 

G:“(p’)--+P 2nP+1(pl+1)_~T~P-1(pl+1) 

to G$“(p’). Now define @ to be the composite 

G%P’) _,CT$P-l(pr+l) ‘* ,G2(p’+l). 

By cellular approximation and restriction we obtain 

G;“(p’)~G;!pl(p’+l). 

Let 8 be the composite 

J?Tz”-‘(p’) gf ,@I(~‘) @’ ,G;rPl(p’+l) x-l ,xTk2_1p1-1(pr+l). 

Then 8 induces an isomorphism in Hznp. Now any map 8: ISA -CB can be factored as 

CA=XCEB~EB. 

Thus if 0 induces a monomorphism in Hi, 8* induces a monomorphism in Hj- 1. In our case 
we conclude that 

e*: Tp-‘(p’) ----~ClX:;!p-~(p~+~) 
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induces a monomorphism in H2,,p_ 1. Since both groups are isomorphic to Z,+ I, 8 * and 
hence the composite 

Tz”-l(pr) ‘0’ -QcT,21q-‘(p*+‘)--5 T;!T-l(pr+l) 

both induce an isomorphism in HZap- 1. Let Hk be this composite. 0 

COROLLARY 4.6. There is a map 

c~:Gk2”(p’)-GkZI1~~(p’+~) 

which induces a monomorphism in cohomology for 1 I k I 00, and a cojibration sequence 

G&(p’)-G;;S(pr)-G:np’L(pr+k). (4A) 

Proof: Define cp as the composite 

Gin( p’)x CT, zn-l(,r) =Jk , zT~~p,-‘(p’“)9:1,GP1Pl(pl+l). 

The cofibration sequence follows immediately if k = 1. The general case is obtained by 

iterating cp. cl 

Our last result in this section gives a universal property for the spaces Tk. 

PROPOSITION 4.7. Let X be an H space ofjnite type, cp : P’“(p’)--+ X and suppose that 

P ~+i-17c2”~_1(X;Zp’+l ) = 0 for 1 < i I k. Then there is an extension: 

P2”(P’) 

I 

* 
/ 

/ / 

T,“fl-‘(p’) /’ 

Proof: Apply Corollary 4.2 to obtain (Pk : Gt” -CX extending Zrp. Then define 4 as 
the composite 

Tin-l(pr) 9t QG,Z” 3 RCX L X. 

In general we cannot expect 4 to be an H map or to be unique. (The hypotheses are 
satisfied, for example, by X = QGZ. Clearly there is more than one section Tt”- ’ + fiGP.) 

We conjecture that if X is homotopy associative and homotopy commutative, there will be 
a unique H map @-at least in case k = co. 0 

5. APPLICATION TO SPECTRA 

In this section we discuss some applications of the spaces Tz- ‘(p’). In [lo], the 
existence of these spaces was predicted. Various considerations of the way stable homotopy 
is built out of unstable homotopy suggested that there should be atomic (n - 1) connected 
H spaces T”(p’) which fit together in a spectrum equivalent to the Moore space spectrum 

So u,, e’. That this is true will now be seen to be the consequence of the results in the 
previous sections. 

In this section we will write T2”- ‘(p’) for T$- ’ (p’) and ignore the case k < co. We will 
write T’“(p’) for S’“+’ {p’}. This defines T”(p’) for n 2 0. The order p’ will be fixed 
throughout this section and suppressed from the notation. 
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PROPOSITION 5.1. There are “suspension maps” E: TN- QT”+ ’ which are H maps. 

Furthermore, there are commutative diagrams of H fibration sequences: 

ns”n-1 = QS2”_ 1 

I 

b , 

n- 
T2n-2 

i I 

E 
QT2”- 1 

wn - 
&F2”- 1 

E RT2” 

= 

I I I 
K 

_ ~32~1-1 EZ ~ fi2s2n+ 1 ~2SZn+l = , fiZSZn+l 

where E 2 is the usual double suspension for spheres. 

Proof: Since T2”-l is an H space, f2T2”-’ is a homotopy commutative homotopy 
associative H space. Thus by [9, 3.43 each map $J : P2”- ’ (p’) -f,2T2”-’ has a unique 
extension to an H map E = 6: T2n-2 -RT2”- ‘. Since R’S”‘+’ is also homotopy 
commutative and homotopy associative, the uniqueness assertion in [4,3.4] implies that the 
square’ 

T2P2 E , fiT2”- 1 

I I 
s2n-1 E2 , QZS2n+l 

homotopy commutes. The induced self-map on QS2”-’ is homotopic to the identity since 
there is a unique H map OS’“-’ - f2T2”-’ extending a given map S2n-2 + RT2”- ‘. It 
follows that the horizontal fibers are homotopy equivalent. 

The case of the right-hand diagram is slightly more complicated. We define E as the 
composite 

T2”-1 g ) 
RG&QD&.nT2”. 

The diagram clearly commutes up to homotopy. It remains to show that E is an H map. By 
Corollary 3.6, RG N S2R x T. According to [3, HO], the composite 

W-D 2 T2” 

is null homotopic. From diagram (3F) it follows that 

RAG--% T2” 

is null homotopic where d = pe. Now consider the homotopy commutative diagram: 

RG 
fki 

L RG - flT2” + 

I I 
c 

I 
Ir 

hT 
2n-1 xQR gXnC,RGxRG”“R4 QT2”xRT2” 

f 

I 

+ T2”-1 B 
* RG 2 S.2T2” 

= 
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Now insert this into the following diagram: 

r Tz,#-1 X7+-1 gxg * h QGxRG Ir b QG- T2”-l 1 = ! I 9 
= 

P +i2G RG 

od 
f&i 

c1 \I 
RT2” 

and we conclude that E is an H map. 

As an immediate consequence we have proved the following. 

THEOREM 5.2. There is an H fibration sequence: 

...--,fi2S2”+‘L!!+S zn-1 - T2”-‘-0s 
2n+1 

where the H map n, jts into a commutative diagram: 

QzSzn+l WP’) , 522lJzn+1 

(54 

szn-1 P’ L , szn- 1 

In particular, n, is an H map and thejber of rt” is a loop space. Furthermore, H,(T’“-‘; Z,) is 

afiee commutative associative algebra on generators u and v of dimensions 2n - 1 and 2n, 
respectively, and /I(% = u, where /?“’ is the rth Bockstein. 0 

The fibrations in Proposition 5.1 are best understood in terms of the following. 

REFLEXITIVITY CONJECTURE 5.3. B W, N flTznp- t(p). 

There is, however, a somewhat artificial way of circumventing our lack of knowledge on 
this point. Define spaces ?“(p’) as follows: 

RT”(p’) 
P(p)= BW 

i 

if n#2kp-1 or r#l 

k if n=2kp-1 and r= 1. 

Then we have the following theorem. 

THEOREM 5.4. There are H fibrations 

. ..-!.-. fyp’) E ---4-@+‘(p++ &2nP+4+yp) 

P 
...-~~~~-l(p$_,.f~“(p~) If -.-nf2~P-‘(p) 

and the resulting spectrum { p} satisfies 

E-l{ T”} N {T”} N So up, el. 

Corresponding to this @ration there is an EHP spectral sequence as usual. 
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One should notice the formal analogy between the EHP fibrations above and the 
classical EHP fibrations 

S2”-‘Ef2S -2n H 1 ,QSZnP- 

S^2”EcLs 2n+1 H ,QsZnP+l 

The general theory suggests that for a spectrum of type V(m), when it exists and is an 
associative ring spectrum, there will be a similar unstable development with 4 replaced by 

qm+1 = 2(Pm+l - 1). Thus the sphere spectrum corresponds to V( - 1). 

Finally, we wish to state the following. 

UNIVERSALITY CONJECTURE 5.5. (a) T” is a homotopy commutative and homotopy asso- 

ciative H space. 
(b) Suppose X is a homotopy commutat_ive, homotopy associative H space and 4 : P”+l(p’) 

--+ X. Then there is a unique H map 4 : T”( p’)+ X extending 4. 

In the case that n is even, the universality conjecture is true. See [ll, 3.43 and [13,0.2]. 
One consequence of the universality conjecture is that the p’th power map on T” is null 
homotopic-a strengthening of [3, Conjecture 15.31 in the odd case and [13, 0.21 in the 
even case. This follows immediately since the p’th power map and the constant map are 
H maps: T”- T” extending a null homotopic map : P”+ ‘(p’)----+ T”. 

APPENDIX 

In this section we will state and prove some results of a general nature which have been 
used throughout. Many of these results have independent interest. 

Our first result is due to Genea [7]. 

LEMMA Al. (a) A space G is a co-H space if the evaluation map ev:ZMG-+ G has 

a right homotopy inverse s : G - ZRG. 

(b) Zf G is a co-H space and f: I2 W - G, there is a well-dejned obstruction c(f) E [If W, 
ZZ(RG A RG)] such that f is a co-H map iff c(f) = 0. Furthermore, if c(: V-+ W, 
c(f0 22) = c(f) 0 CCL In particular, c(mf) = mc(f)f or any integer m if W is a co-H space. 

(c) In case f: C W- G is a co-H map, there is a co-H space structure on G uf CE W 
compatible with the structure on G. 

Proof: Part (a) follows from the pull back diagram of fibrations: 

CRGARG - ERG A QG 

6 

e1 +e2 
CRG - GvG (1) 

G --JL GxG 

where A is the diagonal and ei is the composition of ev with the injection in the ith factor. 
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Iff: X W---t G, the difference between the two composites in the diagram 

CW fk G 

I I 
CWvCW= GvG 

factors through the fiber of the inclusion G v G c G x G. This factorization is unique since 
RX(QG A QG) + a( G v G) has a left homotopy inverse. This defines c(f) and proves part 
(b). For part (c), we define the co-H structure by the cofibration sequence 

CWvXW- GvG- Cs v Cf 

xw - G- Cf 

where C, = G u&Z Wis the mapping cone. Here care is taken to use a primitive homotopy 
for the left-hand square. See [7] for details. 0 

LEMMA A2. Suppose G is a simply connected co-H space. Then the composition 

has a right homotopy inverse where 6 is the map in diagram (1). 

Proof. Suppose we are given a fibration 

FAEXB 

with E a simply connected co-H space. Suppose, in addition, we are given a section 
s: B- E. Then we obtain an equivalence E N B v C, from the diagram of cofibration 
sequences: 

B -----+BvC, - C, 

where p’ is the projection onto the mapping cone C, of s, and rr + $ is defined via the co-H 
structure on E. A homotopy inverse for A + p’ gives a map cp : C,- E with ncp - * and 

PLIP - 1. This defines a right inverse y to $6’ as follows: 

F 

Y /I , 6’ 

C,---1p, E -Jf+C, 

I 

II 

B 

Apply this to the fibration X(RG A RG)A EQG% G. 
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LEMMA A3. Suppose X is simply connected, YE %“;+k, and f: X- Y induces a split 

monomorphism in integral homology in dimensions in. Then there is a retract Y’ of Y such 

that the composition X- Y- Y’ induces isomorphisms in integral homology in dimen- 

sions In. 

Proof Choose a minimal set of generators for im&, in dimensions in. Since YE %‘-C+k, 
h : n * ( Y) - If, ( Y) is a split epimorphism. Choose corresponding generators, of the same 
order, for rc,( Y). Let I” be the wedge of the corresponding Moore spaces, and i: Y’- Y 

be the natural map. Then im i, = imf*. By making a corresponding construction for the 
complementary summand in dimensions <n and all of H,(Y) in dimensions >n, we 
obtai? an equivalence *Y N Y’ v Y”; thus Y’ is a retract of Y and the composite 
X ------+ Y- Y’ is an isomorphism in dimensions in. 0 

LEMMA A4. Suppose F 1 E & B is ajibration with E and B simply connected and 
F of finite type. Suppose that there is a right inverse cp : ZE - ZF for xi. Then 
F=ExRB. 

Proof: We begin by considering the diagram of fibration sequences: 

RB = *QB 

I I 
F i +E 

where a is the action map from the original fibration. Let k be a field and I, c H,(F: k) be 

the desuspended image of cp*. Then i,(l,) = H,(E; k) so the submodule I, @ZZ,(RB, k) of 
the E 2 term of the Serre spectral sequence for the left-hand fibration maps onto the 
corresponding E 2 term for the right-hand fibration. Since the left-hand spectral sequence 
collapses, the right-hand one does as well, and a,(Z, @I H,(QB; k)) = H,(F; k). 

Now construct a map 8 : C(E x RB) + CF by 

Clearly 8, (< 03 q) = a *( cp *( 5) @I n). It follows that 19 * is onto. However, since the right-hand 
spectral sequence collapses, H * (F; k) E H * (E; k) @ H, (!2B; k). Since both groups involved 
are finite-dimensional vector spaces of the same dimension, O* is an isomorphism. Since this 
is true for each field k, 8 is a homotopy equivalence; i.e. C(E x SZB) N ZF. From this we see 
that COB --+ CF has a left homotopy inverse y : ZF - Z:RB, as in [S, Lemma 1.63, we 
construct a left inverse for RB - F as the adjoint of EFL ZCRBZ B, and hence an 
equivalence F 1: E x RB. 0 

LEMMA A5 Let X0 c X1 E . . . be a nested sequence of spaces where Xi = Xi- 1 Ua,CPi 
where Pi = Pni(pki) is a Moore space, ni > ni_1 + 1, and X0 = ZPO. Suppose ai is essential 
for each i > 0. Then X = U Xi is atomic. 
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Proof: Suppose f: X - X is cellular and fi =fl x, : Xi - Xi is an equivalence for 
i < M. Consider the diagram 

(2) 

The rnapFm_ 1 exists since for X simply connected, the rows of (2) are fibration sequences in 
dimensions <n,. Now f _ 1 induces multiplication by 1, in n,, _ 1 for some II,,, E Z. Since 
fm _ 1 is an equivalence, &CL,,, has the same order as a,,,. Since a, is essential, 1, is prime to p; 

thus Tm_ 1 is an equivalence. It follows that fm is an equivalence. q 

LEMMA A6. Suppose that we have a pull back diagram ofjbrations: 

F AF 

i i’ I I 
E -E 

I I 
x- XUCA 

and i is null homotopic. Let 6: A x F + E be a trivialization of the pull back to A. Choose 

0’ N 0 with W( * x F) = *. Then E’ r E ue,C(A A F ‘). 

Proof: By [8, lb] we know that E’ has the same homotopy type as E we( CA) x F, where 
CA is the unreduced cone on A. Clearly E u0 (CA) x F N E ue( C* A) x F where C* is the 
reduced cone. However, there is a homeomorphism 

E+(C*A)xF-Eq,C*(A/\ F+) 

so we are done. 

We also have the following corollary. 

0 

COROLLARY A7. Let A c X be simply connected and suppose SZX - Q(X u CA) has 
a right homotopy inverse. Let F be the homotopy jber of the inclusion X-X u A. Then 
F N A A (Q(X u CA))+. 

Proof Apply A6 to the diagram: 

C2(X u CA)k Q(X u CA) 

1 

I I 

X - XuCA 
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to conclude that the cofiber of A A (n(X u CA))+ - F is contractable. This map conse- 
quently induces an isomorphism on homology. Since A is simply connected n1 (X) = 

7rI(X u CA) so 7r,(F) = 0. Since 

A A (Q(X u CA))+ 2: [A x Q(X u CA)] u C(Q(X u CA)) 

this space is also simply connected and consequently the above map is a homotopy 

equivalence. 0 

LEMMA Ag. Suppose F- E - B is ajbering such that the Serre spectral sequence for 

the Z, homology collapses; i.e., Ez, 2: E,“Y,. Then there is an exact sequence: 

0-PH,(F; Z,)--+ PH*(E;Z,)- PH*(B; Z,) 

where PH, is the submodule of primitive elements in H,. 

Proof: The Serre spectral sequence is a spectra sequence of coalgebras and 

PH,(B; Z,) 

1 

if t = 0 

PE:, = PH,(F; Z,) if s = 0 

0 otherwise. 

Now write Hk(E; Z,) = Fk 1 Fk-1 13 * * * 2 Fo with Fi/Fi_1 = ETk-i = Etk-i. Suppose 
x E Fi is primitive. Then SO is X E Fi/Fi- 1. Thus 2 = 0 or i = 0 or i = k. NOW suppose 
x E PH,(E; Z,) and K*(X) = 0. Then x E Fkel and hence x E F,,; i.e., x = i*(y). Since i, is 
a monomorphism, y is primitive which proves exactness in the middle. Clearly 
i,(PH,(F; Z,)) c PH,(E; Z,) so we are done. 0 
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