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ENRICHED REEDY CATEGORIES

VIGLEIK ANGELTVEIT

(Communicated by Paul Goerss)

Abstract. We define the notion of an enriched Reedy category and show
that if A is a C-Reedy category for some symmetric monoidal model category
C and M is a C-model category, the category of C-functors and C-natural
transformations from A to M is again a model category.

1. Introduction

A Reedy category is a category with a notion of an injective and a surjective
morphism such that any morphism can be factored uniquely as a surjection followed
by an injection. The simplicial indexing category is the prototypical example of a
Reedy category, and if A is a Reedy category, then so is the opposite category Aop.
A theorem of Dan Kan says that given a Reedy category A and a model category
M, the category MA of functors from A to M and natural transformations of such
functors is again a model category, with the model structure described in Definition
2.4 below.

This should be compared to weak equivalences and fibrations in a diagram cat-
egory as being defined levelwise, an approach that only works if M is cofibrantly
generated, and weak equivalences and cofibrations being defined levelwise, which
only works if M is combinatorial, a very strong condition to put on M.

We are interested in an enriched version of this theory. Fix a symmetric monoidal
model category C. We will define a C-Reedy category as a category that is en-
riched over C and satisfies a suitable analog of the unique factorization axiom, plus
a cofibrancy condition. We prove that the category of C-functors and C-natural
transformations from a C-Reedy category A to a C-model category M is a model
category, and that something stronger is true: the functor category from A to M,
which is another category enriched over C, is a C-model category.

The results in this paper will be used to retain homotopical control in [1] and
[2], where we define the cyclic bar construction on an A∞ H-space and use this to
give a direct definition of topological Hochschild homology and cohomology of A∞
ring spectra in a way that is amenable to calculations.

This paper draws heavily on Hirschhorn’s book [4], particularly Chapter 15, and
the author would like to thank Philip Hirschhorn for his help. The author would
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also like to thank Michael Shulman for reading an earlier version of the paper and
finding several mistakes, and the referee for finding some more.

2. Reedy categories

We start by recalling a number of things from [4].

Definition 2.1. A Reedy category is a small category A together with two subcat-
egories

−→A (the direct subcategory) and
←−A (the inverse subcategory), both of which

contain all the objects of A, together with a degree function assigning a nonnegative
integer to each object in A, such that:

(1) Every nonidentity morphism of
−→A raises the degree.

(2) Every nonidentity morphism of
←−A lowers the degree.

(3) Every morphism g : α → β in A has a unique factorization

(2.1) α
←−g−→ γ

−→g−→ β

with ←−g a morphism in
←−A and −→g a morphism in

−→A .

The canonical example of a Reedy category is the cosimplicial indexing category
∆ with ordered sets n = {0, 1, . . . , n} and order-preserving maps. In this case

−→
∆

is the subcategory of injective maps and
←−
∆ is the subcategory of surjective maps.

Now let M be a model category, and suppose X is a functor A → M. By
a model category we mean a closed model category, and we take as part of the
definition that M is complete and cocomplete and that the factorizations into a
cofibration followed by a trivial fibration, or a trivial cofibration followed by a
fibration, are functorial. This is the version of Quillen’s axioms found for example
in [4, Definition 7.1.3].

Definition 2.2. Let α be an object in A. The latching object LαX is the colimit

(2.2) LαX = lim−→
∂(

−→A/α)

X,

where
−→A/α is the category of objects over α and ∂(

−→A/α) is the full subcategory
containing all the objects except the identity on α.

The matching object MαX is the limit

(2.3) MαX = lim←−
∂(α/

←−A)

X,

where α/
←−A is the category of objects under α and ∂(α/

←−A) is the full subcategory
containing all the objects except the identity on α.

Remark 2.3. An element in the direct limit system defining LαX is a pair (Xβ, β →
α) and an element in the inverse limit system defining MαX is a pair (Xγ , α → γ).
Let f be the composite β → α → γ. Then we have a map f∗ : Xβ → Xγ . It is
not hard to check that this induces a map LαX → MαX, and that Xα provides a
factorization of this map as LαX → Xα → MαX.

Definition 2.4. Let X and Y be functors A → M, and let f : X → Y be a natural
transformation.
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(1) The map f is a Reedy weak equivalence if each

(2.4) fα : Xα −→ Yα

is a weak equivalence.
(2) The map f is a Reedy cofibration if each

(2.5) Xα ∪LαX LαY −→ Yα

is a cofibration.
(3) The map f is a Reedy fibration if each

(2.6) Xα −→ Yα ×MαY MαX

is a fibration.

We recall the following theorem, which is due to Dan Kan, from [4, Theorem
15.3.4]:

Theorem 2.5. Let A be a Reedy category and let M be a model category. Then
the category MA of functors from A to M with the Reedy weak equivalences, Reedy
cofibrations and Reedy fibrations is a model category.

If M is a simplicial model category, then MA is again a simplicial model cate-
gory.

3. Enriched categories

The purpose of this section is to introduce some notation and to recall some of
the basic facts we will need about enriched categories. The canonical reference for
enriched category theory is [6].

Let (C,⊗, I) be a closed symmetric monoidal category and let D be a category
that is enriched over C. Given objects α and β in D, we will write HomD(α, β) for
the Hom object in C while using homD(α, β) for the underlying Hom set, defined
by homD(α, β) = homC(I, HomD(α, β)). We let D0 denote the underlying category
of D, so HomD0(α, β) = homD(α, β).

If D and E are enriched over C, we write hom(D, E) for the category of C-
functors and C-natural transformations from D to E . An object X in hom(D, E)
consists of an object X(α) in E for each object α in D, and a map HomD(α, β) →
HomE (X(α), X(β)) in C0 for each pair (α, β) of objects in D. Here C0 is the
underlying category of C, viewed as a category enriched over itself. A morphism
F in hom(D, E) from X to Y is a collection of maps Fα : I → HomE (X(α), Y (α))
in C, or equivalently a collection of maps X(α) → Y (α) in E0 satisfying certain
compatibility conditions. This compatibility says that [6, Diagram 1.7] is required
to commute.

Sometimes it is also possible to define a category Hom(D, E) that is enriched
over C by imitating the description of hom(D, E)(X, Y ) for unenriched categories
as an equalizer. The objects in Hom(D, E) are the same as in hom(D, E) but
Hom(D, E)(X, Y ) is defined as the equalizer

(3.1) Hom(D, E)(X, Y ) →
∏

α∈D
HomE(X(α), Y (α))

⇒
∏

α,β∈D
HomC(HomD(α, β), HomE(X(α), Y (β)))
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if it exists. If Hom(D, E)(X, Y ) exists for all C-functors X and Y from D to E , then
this defines a C-category Hom(D, E). This category is usually called the functor
category from D to E .

Now suppose that C is a monoidal model category, i.e., C is both a closed symmet-
ric monoidal category and a model category, and these structures are compatible
in the following sense: If i : A → B and j : K → L are cofibrations in C, then the
induced map

(3.2) L ⊗ A ∪K⊗A K ⊗ B −→ L ⊗ B

is a cofibration that is trivial if either i or j is. This condition is called the pushout-
product axiom.

We say that M is a C-model category if M is a model category that is enriched,
tensored and cotensored over C and satisfies the analog of the pushout-product
condition; i.e., if i : A → B is a cofibration in M and j : K → L is a cofibration in
C, then the induced map (3.2) is a cofibration in M that is trivial if i or j is.

Remark 3.1. In [5], Hovey has another axiom which says that the canonical map
Q(I)⊗X → I ⊗X ∼= X is a weak equivalence for a cofibrant X. This is important
when passing to the homotopy category, but will not play a role here because we
always work on the level of the model category.

A monoidal model category C is sometimes called a Quillen ring, and a C-model
category is sometimes called a Quillen module.

If C is the category of simplicial sets, then the pushout-product axiom is the extra
condition that makes a model category that is enriched, tensored, and cotensored
over C into a simplicial model category. If C consists of the topological spaces, by
which we mean compactly generated weak Hausdorff spaces, then a C-category is a
topological model category.

The pushout-product axiom has some immediate consequences. For example, it
follows that if A → B is a (trivial) cofibration in M, then so is K ⊗ A → K ⊗ B
for any cofibrant K in C. Similarly, if X → Y is a (trivial) fibration, then so is
XK → Y K for any cofibrant K in C.

We will sometimes write F (K, X) instead of XK for the cotensor.

4. Enriched Reedy categories

Next we define the notion of a C-Reedy category. Here C is still a monoidal
model category and M is a C-model category. We bootstrap ourselves from the
definition of a regular Reedy category.

Definition 4.1. A C-Reedy category is a small category A enriched over C together
with an unenriched Reedy category B and a decomposition

(4.1) HomA(α, β) =
∐

g∈homB(α,β)

HomA(α, β)g

for each Hom object such that the natural map

(4.2) HomA(γ, β)−→g ⊗ HomA(α, γ)←−g −→ HomA(α, β)g

is an isomorphism for each g ∈ homB(α, β), where g = −→g ◦ ←−g is the factorization
of g in B as in Definition 2.1, together with the following cofibrancy condition. We

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ENRICHED REEDY CATEGORIES 2327

set

(4.3) Hom−→A (α, β) =
∐

g∈Hom−→B (α,β)

HomA(α, β)g

and

(4.4) Hom←−A (α, β) =
∐

g∈Hom←−B (α,β)

HomA(α, β)g,

and we require that each Hom−→A (α, β) and Hom←−A (α, β) is cofibrant in C.

Even though A has a discrete set of objects, the same is not true for ∂(
−→A/α)

and ∂(α/
←−A). Thus when defining the latching and matching objects, we use the

following enriched Kan extensions:

Definition 4.2. Let X : A → M be a C-functor. The latching object LαX is the
coequalizer

(4.5)
∐

β<γ<α

Hom−→A (γ, α)⊗Hom−→A (β, γ)⊗Xβ ⇒
∐

β<α

Hom−→A (β, α)⊗Xβ → LαX,

where one of the maps is given by the composition Hom−→A (γ, α)⊗Hom−→A (β, γ) →
Hom−→A (β, α) and the other is given by Hom−→A (β, γ) ⊗ Xβ → Xγ .

The matching object MαX is the equalizer

(4.6) MαX →
∏

β<α

F (Hom←−A (α, β), Xβ)

⇒
∏

β<γ<α

F (Hom←−A (γ, β) ⊗ Hom←−A (α, γ), Xβ).

The category A has an obvious filtration, where FnA is the full subcategory of
A whose objects have degree less than or equal to n.

Lemma 4.3 (See Remark 2.3). Suppose X is a functor Fn−1A → M. Extending
X to a functor FnA → M is equivalent to choosing, for each object α of degree
n, an object Xα and a factorization LαX → Xα → MαX of the natural map
LαX → MαX.

Proof. This uses the unique factorization in the definition of a Reedy category, in
the same way as in the proof of [4, Theorem 15.2.1]. �

Lemma 4.4. Suppose that for every object β of A of degree less than α, the map
Xβ ∪LβX LβY → Yβ is a (trivial) cofibration. Then LαX → LαY is a (trivial)
cofibration.

Similarly, suppose that for every object β of A of degree less than α, the map
Xβ → Yβ ×MβY MβX is a (trivial) fibration. Then MαX → MαY is a (trivial)
fibration.

Proof. This is where we need the pushout-product axiom and the fact that each
Hom−→A (α, β) and Hom←−A (α, β) is cofibrant. We will do the case where each Xβ∪LβX

LβY → Yβ is a trivial cofibration, the other cases being similar. Let E → B be a
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fibration. We have to show that any diagram

(4.7) LαX ��

��

E

��
LαY

��

�� B

has a lift. Classically we had to construct a map Yβ → E for each object β → α in
∂(
−→A/α) by induction on the degree of β. We need to make sure that these maps

are compatible, so in our case we need to construct a map Hom−→A (β, α)⊗ Yβ → E
for each β of degree less than α.

We proceed by induction. Suppose we have maps Hom−→A (γ, α)⊗Yγ → E for all
γ of degree less than β. We then have maps

(4.8) Hom−→A (β, α) ⊗ Hom−→A (γ, β) ⊗ Yγ −→ Hom−→A (γ, α) ⊗ Yγ → E

for each γ of degree less than β. These maps assemble to a map Hom−→A (β, α) ⊗
LβY → E. We also have maps Hom−→A (β, α) ⊗ Xβ → E, so we get a diagram

(4.9) Hom−→A (β, α) ⊗ (Xβ ∪LβX LβY ) ��

��

E

��
Hom−→A (β, α) ⊗ Yβ ��

��

B.

By assumption, each map Xβ ∪LβX LβY → Yβ is a trivial cofibration, and by the
pushout-product axiom this remains true after tensoring with Hom−→A (β, α), so we
have a lift. These lifts are clearly compatible and induce a lift LαY → E. �

Lemma 4.5. A map X → Y is a trivial Reedy cofibration if and only if each
Xα ∪LαX LαY → Yα is a trivial cofibration.

Similarly, X → Y is a trivial Reedy fibration if and only if each Xα → Yα ×MαY

MαX is a trivial fibration.

Proof. We will only do the first part, the second part being dual. Recall that the
pushout of a trivial cofibration is a trivial cofibration. Suppose that f : X → Y
is a trivial Reedy cofibration. We need to prove that each Xα ∪LαX LαY → Yα

is a weak equivalence. By induction we can assume that Xβ ∪LβX LβY → Yβ is
a weak equivalence for β < α. By the previous lemma, LαX → LαY is a trivial
cofibration, so when we take the pushout over the map LαX → Xα we find that
the map Xα → Xα∪LαX LαY is a trivial cofibration. By assumption the composite
Xα → Xα∪LαX LαY → Yα is a weak equivalence, so by the two out of three axiom,
so is Xα ∪LαX LαY → Yα.

The converse is similar. �

Theorem 4.6. Let A be a C-Reedy category and let M be a C-model category.
Then the category hom(A,M) of C-functors and C-natural transformations from A
to M with the Reedy weak equivalences, Reedy cofibrations and Reedy fibrations is
a model category.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



ENRICHED REEDY CATEGORIES 2329

Proof. If we have a diagram

(4.10) A ��

��

X

��
B ��

��

Y

where i : A → B is a Reedy cofibration and p : X → Y is a Reedy fibration, with
either i or p a weak equivalence, we need to construct a lift. We can do this by
induction on the degree, using the diagrams

(4.11) Aα ∪LαA LαB ��

��

Xα

��
Bα

��

��

Yα ×MαY MαX

and the previous lemma. �

Theorem 4.7. Let A be a C-Reedy category and let M be a C-model category.
Then the functor category Hom(A,M) is a C-model category.

Proof. First of all, the category Hom(A,M) exists because A is small and one of
the axioms for a model category is that it has all small limits. In particular, the
equalizer defining Hom(A,M)(X, Y ) for each X and Y exists.

We define K ⊗ X and XK for a C-functor X : A −→ M and an object K ∈ C
objectwise, and it is clear that

(4.12) Hom(K ⊗ X, Y ) ∼= Hom(K, Hom(X, Y )) ∼= Hom(X, Y K)

because this holds objectwise.
It remains to show that the pushout-product axiom holds. If i : A → B is a

Reedy cofibration in hom(A,M) and j : K → L is a cofibration in C, we need to
show that

(4.13) L ⊗ A
∐

K⊗A

K ⊗ B −→ L ⊗ B

is a Reedy cofibration in hom(A,M). But this is equivalent to each

(4.14) (L ⊗ A
∐

K⊗A

K ⊗ B)α

∐

Lα(L⊗A
∐

K⊗A K⊗B)

Lα(L ⊗ B) −→ (L ⊗ B)α

being a cofibration. By using that colimits commute with tensors, this is equivalent
to each

(4.15) (K ⊗ Aα)
∐

K⊗(LαB
∐

LαA Aα)

L ⊗ (LαB
∐

LαA

Aα) −→ L ⊗ Bα

being a cofibration, and this follows from the pushout-product axiom for M. The
case where i or j is also a weak equivalence is similar. �
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5. Homotopy limits and colimits

Given C-functors A : A → M and K : Aop → C we define K ⊗A A as the
coequalizer

(5.1)
∐

α,β∈A
Kβ ⊗ HomA(α, β) ⊗ Aα ⇒

∐

α∈A
Kα ⊗ Aα → K ⊗A A.

Similarly, if K : A → C we define homA(K, A) as the equalizer

(5.2) homA(K, A) →
∏

α∈A
F (Kα, Aα) ⇒

∏

α,β∈A
F (Kα ⊗ HomA(α, β), Aβ).

If K is Reedy cofibrant, we think of K⊗AA as a model for the homotopy colimit
of A and homA(K, A) as a model for the homotopy limit. In particular, if A is an
enriched version of the simplicial indexing category, then this gives a good notion
of geometric realization (for suitable K).

Theorem 5.1 (Compare [4, Theorem 18.4.11]). Let A be a C-Reedy category and
let M be a C-model category. If j : A → B is a Reedy cofibration in hom(A,M)
and i : K → L is a Reedy cofibration in hom(Aop, C), then

(5.3) L ⊗A A
∐

K⊗AA

K ⊗A B −→ L ⊗A B

is a cofibration in M that is a weak equivalence if either i or j is.
Dually, if p : X → Y is a Reedy fibration in hom(A,M) and i : K → L is a

Reedy cofibration in hom(A, C), then

(5.4) homA(L, X) −→ homA(K, X) ×homA(K,Y ) homA(L, Y )

is a fibration in M that is a weak equivalence if either i or p is.

Corollary 5.2. If K is a Reedy cofibrant object in hom(Aop, C) and f : X → Y is
a weak equivalence of Reedy cofibrant objects in hom(A,M), then the induced map
f∗ : K ⊗A X → K ⊗A Y is a weak equivalence of cofibrant objects in M.

Dually, if K is a Reedy cofibrant object in hom(A, C) and f : X → Y is a
weak equivalence of Reedy fibrant objects in hom(A,M), then the induced map
f∗ : homA(K, X) → homA(K, Y ) is a weak equivalence of fibrant objects in M.

6. The Reedy category AP

Let ∆Σ be the category of noncommutative sets, as in [7]. The objects in ∆Σ
are finite sets n = {0, 1, . . . , n} and the morphisms are maps of finite sets together
with a linear ordering of each inverse image of an element. Now let A be a Reedy
category over ∆Σ, i.e., A comes with a functor U : A → ∆Σ. Also let P be an
operad, by which we mean non-Σ operad, in C with P (0) = P (1) = I and each
P (n) cofibrant.

As in [1, Definition 3.1], we define a new category AP enriched over C as follows.
The objects are the same as in A, but the Hom objects are given by

(6.1) HomAP
(α, β) =

∐

f∈HomA(α,β)

P [f ],

where P [f ] =
⊗

i∈Uβ P (Uf−1(i)). Composition in AP is defined using the structure
maps for P .

Proposition 6.1. The category AP is a C-Reedy category.
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Proof. The decomposition of HomAP
(α, β) as a coproduct over HomA(α, β) is the

one in the above definition. The condition P (0) = P (1) = I ensures that the direct
subcategory

−→AP is in fact equal to
−→A , and it is easy to see that AP satisfies the

unique factorization condition. The condition that each P (n) is cofibrant ensures
that the cofibrancy hypothesis in the definition is satisfied. �

Corollary 6.2. Let M be a C-model category. Then the category hom(AP ,M) of
C-functors and C-natural transformations from AP to M is a model category, and
the functor category Hom(AP ,M) is a C-model category.

Similarly, hom(Aop
P ,M) is a model category and Hom(Aop

P ,M) is a C-model
category.

From the proof of Proposition 6.1 we observe the following:

Observation 6.3. Because the direct subcategory does not change when we pass
from A to AP , if A is isomorphic to ∆op and X : AP → M, then the usual
description of latching objects as the coequalizer

(6.2)
∐

0≤i<j≤n−1

Xn−2 ⇒
∐

0≤i≤n−1

Xn−1 −→ LnX

as in [4, Proposition 15.2.6] is still valid.
Dually, the usual description of matching objects for Y : Aop

P → M does not
change when we pass from A to AP .

We have two examples of Reedy categories over ∆Σ that are isomorphic to ∆op.
Let 01∆ be (a skeleton of) the category of doubly based totally ordered sets. The
objects are totally ordered sets of cardinality at least 2, and the morphisms are
order-preserving maps that preserve the minimal and maximal element. For the
second example, let 0∆C be the category whose objects are cyclically ordered sets
with a given basepoint, and whose morphisms are maps of cyclically ordered sets
that preserve the basepoint.

Lemma 6.4 ([1, Lemma 3.3]). The categories 01∆ and 0∆C are isomorphic to
∆op.

7. The associahedra operad

Now let C be either simplicial sets or topological spaces, and let P = K be the
associahedra operad in C; see [8] and [1]. Also let A be either 01∆ or 0∆C, so
A ∼= ∆op. Then AK is a C-Reedy category. Also recall from [1] the definition of
geometric realization |X| for a C-functor AK → M as K⊗AK X if A = 01∆ and as
W ⊗AK X if A = 0∆C, where W is the cyclohedra.

Proposition 7.1. The C-functor K : 01∆op
K → C is Reedy cofibrant. Similarly,

W : 0∆CK → C is Reedy cofibrant.

Proof. Let the degree function for the Reedy category 01∆K be the one sending a
set with n + 2 elements to n, so it corresponds to the standard degree function on
∆op under the isomorphism 01∆ ∼= ∆op.

Then we need to check that each LnK → Kn+2 is a cofibration. But LnK ∼=
∂Kn+2, the union of the faces of K, so LnK → Kn+2 is homeomorphic to Sn−1 →
Dn, which is certainly a cofibration.

The other case is similar. �
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Corollary 7.2. If f : X → Y is a Reedy weak equivalence between Reedy cofibrant
C-functors AK → M with A = 01∆ or 0∆C, then f induces a weak equivalence
f∗ : |X| → |Y |.
Proof. This follows from Theorem 5.1 and Proposition 7.1. �

We also get the expected spectral sequences in this setup.

Theorem 7.3. Let M be a pointed C-model category, let X : 01∆K → M or
0∆CK → M be Reedy cofibrant and let E be a homology theory. Then the skeletal
filtration gives a spectral sequence

(7.1) E2
p,q = Hp(Eq(X)) =⇒ Ep+q|X|.

Proof. The proof is similar to the classical case. By Proposition 7.1 and our defini-
tion of geometric realization it follows that each skn−1X → sknX is a cofibration in
M. To build the spectral sequence we only have to identify the filtration quotients
and the d1-differential.

Each filtration quotient looks like Kn+2/∂Kn+2 ⊗Xn/LnX in the first case and
Wn+1/∂Wn+1 ⊗ Xn/LnX in the second case, and this identifies the E1-term as
the normalized chain complex associated with the graded simplicial abelian group
E∗X. The identification of the E2-term is standard. �

There is also a dual setup for Reedy fibrant right modules.

Theorem 7.4. Let Y be a Reedy fibrant functor 01∆K → M or 0∆CK → M, and
let E be a homology theory. Then the total space filtration gives a spectral sequence

(7.2) Ep,q
2 = Hp(Eq(Y )) =⇒ Eq−pTot(Y ).

While the spectral sequence coming from the skeletal filtration usually has good
convergence properties, we need additional conditions to guarantee convergence of
the spectral sequence coming from the total object filtration. See for example [3]
for details.
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