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Abstract Fix a prime number p and an integer n ≥ 0. We prove that if a p-complete
spectrum X satisfying a mild finiteness condition has the same mod p cohomology as
BP〈n〉 as a module over the Steenrod algebra, then X is weak homotopy equivalent to
the p-completion of BP〈n〉.

Keywords Complex cobordism · Brown–Peterson spectrum · Adams spectral
sequence

1 Introduction

Let MU be the spectrum representing complex cobordism, and recall that when local-
ized at a prime p there is an idempotent map ε : MU(p) → MU(p) with image the
Brown–Peterson spectrum BP [10]. The coefficient ring of BP is

π∗BP = Z(p)[v1, v2, . . .]

with |vk | = 2pk − 2. For each n ≥ 0 we can quotient out by the generators vk for
k > n and construct a spectrum BP〈n〉 with

π∗BP〈n〉 = Z(p)[v1, . . . , vn].
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18 V. Angeltveit, J. A. Lind

The construction of BP〈n〉 can be carried out using the Baas–Sullivan bordism theory
of manifolds with singularity or by taking the cofiber of the multiplication by vk
map. It is customary to let v0 = p and to let BP〈−1〉 = HFp. Special cases include
BP〈0〉 = HZ(p) and BP〈1〉 = �, the Adams summand of connective complex K -
theory localized at p. We think of BP〈n〉 for varying n as interpolating between mod
p cohomology and the Brown–Peterson summand of p-local complex cobordism.

Complex cobordism has played a central role in algebraic topology because of
its connection to formal groups. The ring MU∗(CP∞) carries a formal group and
Quillen [10] showed that it is the universal formal group. Similarly, BP determines
the universal p-typical formal group and BP〈n〉 is closely related to height n formal
groups. By further quotienting BP〈n〉 out by vk for k < n and inverting vn we get the
n-th Morava K -theory spectrum K (n), which represents the universal height n formal
group.

While the homotopy type of BP is well defined because it comes from the Quillen
idempotent on MU(p), the classes vk are not canonical. Indeed, there are two popular
choices of vk given by Araki [2] and Hazewinkel [6], and these are not the only ones.
Hence it is not at all obvious that the homotopy type of BP〈n〉 is well defined; the
definition of BP〈n〉 appears to depend on the choice of vk for k > n.

In this paper we show that the p-adic homotopy type of BP〈n〉 is well defined
by showing that it is determined by its mod p cohomology. To be more precise, fix a
model of the spectrumBP〈n〉 constructed using any choice for the generators vk , and let
BP〈n〉∧p denote its p-completion. Recall that p-completion leaves mod p cohomology
unchanged and that for spectra of finite type, such as BP〈n〉, p-completion has the
effect of p-adically completing all homotopy groups [5]. Our main result states that
any p-complete spectrum satisfying standard finiteness conditions which has the same
mod p cohomology as BP〈n〉 as a module over the Steenrod algebra is equivalent to
BP〈n〉∧p .
Theorem A Fix a prime number p and an integer n ≥ 0. Suppose that X is a spectrum
which is bounded below, and whose homotopy groups are finitely generated over Zp.
Suppose also that there is an isomorphism

θ : H∗(BP〈n〉;Fp) → H∗(X;Fp)

of modules over the Steenrod algebra. Then there exists a weak homotopy equivalence
f : X → BP〈n〉∧p of spectra which induces the isomorphism θ in mod p cohomology.

The mod p cohomology of BP〈n〉 does not depend on the choices made in the
construction of BP〈n〉 [13, Prop. 1.7], so we deduce that the p-adic homotopy type of
BP〈n〉 does not either.

We believe that a stronger form of this theorem is true, where Zp is replaced by
the p-local integers and the conclusion is that X is equivalent to BP〈n〉. The only
obstacle is the fact that the Adams spectral sequence does not distinguish between the
p-completion and the p-localization of the target; see Remark 4.1.

When p = 2 and n = 2, Lawson–Naumann [7] prove that BP〈2〉 admits the
structure of an E∞ ring spectrum, and prove a uniqueness theorem for such E∞
structures (see also the further discussions of uniqueness in [8, §4]). Our result is of a
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Uniqueness of BP〈n〉 19

different nature in that we do not assume the presence of a complex orientation, nor
do we make any conclusions about multiplicative structure.

Onemotivation for proving this result is our interest in twisted cohomology theories,
and in particular twistedBP〈n〉-cohomology. The case p = 2 and n = 2 is of particular
interest because of the E∞ ring structure on BP〈2〉 constructed by Lawson–Naumann.
We then know that GL1(BP〈2〉) is an infinite loop space, and its classifying space
BGL1(BP〈2〉) and the associated spectrum bgl1(BP〈2〉) of units are both defined. In
[12,13] Wilson showed that up to localization at 2 we have

�∞BP〈2〉 	 Z × K (Z, 2) × BSU × B3SU × BP〈2〉12,

where BP〈2〉12 is the twelfth space in the �-spectrum for BP〈2〉. Hence there is a
splitting of spaces

GL1(BP〈2〉) 	 Z/2 × K (Z, 2) × BSU × B3SU × BP〈2〉12.

We conjecture that the above splitting deloops, so that

BGL1BP〈2〉 	 K (Z/2, 1) × K (Z, 3) × B2SU × B4SU × BP〈2〉13. (1.1)

Note that the meaning of the term on the left is contingent on the hypotheses made
by Lawson–Naumann in producing the multiplicative structure on BP〈2〉. Our result
does not guarantee a unique A∞-space structure on GL1BP〈2〉∧2 in general. If the
splitting (1.1) exists, then, just as integral cohomology of X can be twisted by a class
in H1(X,Z/2) and complex K -theory can be twisted by a class in H3(X;Z), the
BP〈2〉-cohomology of X can be twisted by a class in

ku7(X) = [X, B4SU ].

This has a nice interpretation in terms of the “Bockstein” spectral sequence

E∗,∗
2 = ku∗(X)[v2] ⇒ BP〈2〉∗(X),

with the first nontrivial differential being modified by the twisting. We hope to return
to this elsewhere.

1.1 Main proof idea

The case n = 1 of Theorem A is a result of Adams and Priddy [1], and our proof is
modeled on their proof, with a few enhancements. Let H∗(−) denote mod p coho-
mology, always considered as a module over the Steenrod algebra A. The proof uses
the Adams spectral sequence

Es,t
2 = Exts,tA (H∗(Y ), H∗(X)) �⇒ πt−s Hom(X,Y∧

p ).
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20 V. Angeltveit, J. A. Lind

The isomorphism θ : H∗(Y ) → H∗(X) represents an element [θ ] ∈ E0,0
2 . If [θ ] is

a permanent cycle then it represents a map f ∧
p : X → Y∧

p whose induced map on
cohomology is θ . We will implement this plan for Y = BP〈n〉.

The mod p cohomology of BP〈n〉, first computed by Baas–Madsen [3], is given
by

H∗(BP〈n〉) = A//En,

where A is the mod p Steenrod algebra and En = E(Q0, . . . , Qn) is the exterior
algebra on the first n + 1 Milnor primitives. We use a change-of-rings theorem to
compute the E2-term of the Adams spectral sequence:

Es,t
2 = Exts,tA (H∗(BP〈n〉), H∗(X)) ∼= Exts,tEn

(Fp, H
∗(X)).

We are left with Ext over an exterior algebra on n+1 generators, which is much more
computable than Ext over the full Steenrod algebra.

We will prove Theorem A by showing that all the possible differentials on [θ ] land
in trivial groups. In other words, we prove that Es,t

2 = 0 for all (s, t) with s ≥ 2
and t − s = −1. [In fact Es,t

2 = 0 also for (s, t) = (0,−1) and (s, t) = (1, 0).]
This was also the strategy in Adams and Priddy’s paper [1]. In our case the required
Ext calculation is more difficult; in essence we have to understand an (n + 1)-cube
of “commuting” spectral sequences. In Sect. 2, we make some general observations
about the kind of spectral sequences we need to analyze.

2 A cube of spectral sequences

Suppose that we are given an (n + 1)-dimensional chain complex M = M∗,...,∗, and
that we are interested in the homology of the total complex. In other words, M is an
abelian group with n + 1 different gradings and we have differentials d0, . . . , dn on
M , where di increases the i-th grading of M by 1. The differentials are required to
commute in the graded sense, meaning that did j = −d jdi , and we wish to compute
the homology of M with respect to the differential d = d0 + · · · + dn .

Given a 2-dimensional chain complex, i.e., a double complex, there are standard
spectral sequences

Es,t
2 = Hs(Ht (M, d0), d1) ⇒ Hs+t (M, d)

and

Es,t
2 = Hs(Ht (M, d1), d0) ⇒ Hs+t (M, d).

In the situation where we have n+1 directions, we get more spectral sequences.We
can first take the homology in the dn-direction, then run the dn−1-spectral sequence
to compute H∗(M, dn−1 + dn). Next we have a dn−2-spectral sequence, which takes
the form
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Uniqueness of BP〈n〉 21

Hs(Ht (M, dn−1 + dn), dn−2) ⇒ Hs+t (M, dn−2 + dn−1 + dn),

and so on until the final d0-spectral sequence. If we can compute all the differentials
and solve all the extension problems this tells us H∗(M, d). Or we can choose to take
homology with respect to the di ’s in a different order.

We can organize all of this in an (n + 1)-cube with M at the initial vertex and
H∗(M, d) at the terminal vertex. At the vertex corresponding to I ⊂ {0, 1, . . . , n} we
have H∗(M, d I ), where d I = ∑

i∈I di . The i-th edge originating at the initial vertex
corresponds to taking homology with respect to di , all the other edges correspond to
spectral sequences. For each j /∈ I we have a spectral sequence

Hs(Ht (M, d I ), d j ) ⇒ Hs+t (M, d I∪ j ).

For n = 2 the cube of spectral sequences looks as follows.

M
H∗(−,d2)

H∗(−,d1)

H∗(−d0)

H∗(M, d2)

d0−SS

d1−SS

H∗(M, d1)
d2−SS

d0−SS

H∗(M, d1,2)

d0−SSH∗(M, d0)
d2−SS

d1−SS

H∗(M, d0,2)
d1−SS

H∗(M, d0,1)
d2−SS

H∗(M, d)

We can interpret taking the homology ofM with respect to di as a degenerate sort of
spectral sequence, so that all the edges in the above diagramare spectral sequences. The
resulting “commutative diagram of spectral sequences” gives different ways of com-
puting an associated graded of the total cohomology H∗(M, d). Depending on which
path we take we are going to get different representatives for classes in H∗(M, d), and
different extensions are going to be visible. In fact the cube gives (n + 1)! different
ways of computing H∗(M, d) up to extensions, and one could hope that in a given
situation this is enough to understand H∗(M, d) completely.

This is a rather complicated situation in general. Rather than aiming for a com-
plete understanding of H∗(M, d), we will construct an algorithm that takes as input
some x ∈ M that is a permanent cycle in the sequence of spectral sequences
dn−SS, . . . , d0−SS, and produces as output a representative for [x] ∈ H∗(M, d)

which is in some sense optimal.
To give the basic idea of our algorithm, consider the double complex M defined by

the following figure:

x y z

a

d1 d2

b

d1
d2
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22 V. Angeltveit, J. A. Lind

If we first compute H∗(M, d2) we are left with x , and it is clear that x also survives
the d1-spectral sequence and represents a nonzero class [x] ∈ H∗(M, d). But [x] is
also represented by −y or by z. Our algorithm will give z as a representative for [x].

Here is the algorithm. It goes through n + 1 steps, starting with step n and ending
with step 0. We write [x]dk,...,n for the class in H∗(M; dk,...,n) determined by x .

Definition 2.1 Start with an element x = xn+1 in M that is a permanent cycle in
the sequence of spectral sequences dn−SS, . . . , d0−SS. We will recursively define
elements xk ∈ M for 0 ≤ k ≤ n so that in step k, we take as input a representative
xk+1 for the class [x]dk+1,...,n and produce as output a representative xk for the class
[x]dk,...,n .

For each homogeneous component x ′ of xk+1, check if x ′ is a dk boundary. If
x ′ is not a dk-boundary, let x ′′ = x ′. If x ′ is a dk-boundary, say, dk(a) = x ′, let
x ′′ = −dk+1,...,n(a). Replace xk+1 by

∑
x ′′. Iterate this procedure until none of the

homogeneous components are dk -boundaries. The resulting element ofM is the output
xk of the k-th step of the algorithm.

There are two issues with this algorithm. First, there is a choice of the element
a satisfying dk(a) = x ′ and different choices might give different outputs. Second,
without additional assumptions there is no guarantee that this process will terminate
in finitely many steps.

In the proof of Theorem A we deal with the first issue by choosing a particular
a (see the proof of Lemma 3.2). The second issue is taken care of by the following
result.

Lemma 2.2 Suppose M∗,...,∗ is bounded below in each grading. Then the above
process terminates after finitely many steps.

Proof This follows because each time we replace x ′ by x ′′ = −dk+1,...,n(a) we
decrease the k’th grading by 1. ��

Now let us do an example from “nature”.

ξ181 τ3 ξ91 ξ32 τ3 ξ91 ξ3τ3 ξ62 τ3 ξ32 ξ3τ3 ξ23 τ3 τ4

ξ271 ξ181 ξ32 ξ181 ξ3 ξ91 ξ62 ξ91 ξ32 ξ3 ξ91 ξ23 ξ92 ξ62 ξ3 ξ32 ξ23 ξ33 ξ4

Let M be as above, where each node indicates a free F3[v0, v1, v2]-module on that
element. Each arrow of slope 1/4 represents the d2-differential which is multiplication
by v2, each arrow of slope 1 represents d1 which is multiplication by v1, and each
vertical arrow represents d0 which is multiplication by v0. Consider the class

x = v20v1ξ
18
1 τ3.

Notice that x is a permanent cycle after running the d2-spectral sequence, the d1-
spectral sequence, then the d0-spectral sequence. To set up the algorithm, set x3 = x .
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Uniqueness of BP〈n〉 23

We see that x is not a boundary in the d2-spectral sequence, so step 2 amounts to
setting x2 = x3. In step 1, we get the representative

x1 = −v20v2ξ
9
1 ξ32 τ3

for [x]d1,2 by considering a = v20ξ
18
1 ξ32 .

In step 0, we first replace x1 by

v0v1v2ξ
9
1 ξ3τ3 + v0v

2
2ξ

3
2 ξ3τ3,

then we replace each of the two homogeneous summands by −v1v
2
2ξ

2
3 τ3 to obtain

x0 = −2v1v
2
2ξ

2
3 τ3 = v1v

2
2ξ

2
3 τ3.

(The last equality follows because we are in characteristic 3.) This is not sufficient
to conclude that x is a boundary. The class [x] ∈ H∗(M, d) is probably nonzero
but we prefer not to say anything about it. The point is that while we started with a
representative on the “left hand side” of M , at each step the algorithm gave us a new
representative “further to the right”.

If instead we start with

y = v20v1x = v40v
2
1ξ

18
1 τ3,

the algorithm does the following. Step 2 does nothing because y is not a d2 boundary.
In step 1 we replace y first by −v40v1v2ξ

9
1 ξ32 τ3 and then by

y1 = v40v
2
2ξ

6
2 τ3.

Then in step 0 we replace y1 first by −v30v1v
2
2ξ

3
2 ξ3τ3, then by v20v

2
1v

2
2ξ

2
3 τ3, then by

−v0v
3
1v

2
2τ4, and finally by 0. This reflects the fact that there is a differential d

0
4 (ξ4) =

[y]d1,2 in the d0-spectral sequence.

2.1 How this fits with the main theorem

In the proof of Theorem Awe will be interested in similar examples. We wish to show
that there is no homology in total (homological) degree −1, where the ξi ’s and τ j ’s
are in negative degrees and the vk’s are in positive degrees. We will do this by showing
that in fact there is nothing in odd total degree ≥ −1 by bounding the total degree of
elements v

r0
0 . . . v

rn−1
n−1 x that can survive the sequence of spectral sequences.

3 The homology and cohomology of BP〈n〉
In this section we collect a few facts about the homology and cohomology of BP〈n〉.
In particular, we will determine the action of the Milnor primitives Qi on H∗(BP〈n〉)
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24 V. Angeltveit, J. A. Lind

for 0 ≤ i ≤ n. Our method is to first determine the coaction of the dual of Qi on
homology, then dualize.

Milnor showed [9] that the dual A∗ of the mod p Steenrod algebra is the Hopf
algebra

A∗ = P(ξ1, ξ2, . . .) ⊗ E(τ0, τ1, . . .) |ξi | = 2(pi − 1), |τi | = 2pi − 1

with coproduct

ψ(ξk) =
k∑

i=0

ξ
pi

k−i ⊗ ξi and ψ(τk) = τk ⊗ 1 +
k∑

i=0

ξ
pi

k−i ⊗ τi .

Wewill use this notation for all primes, with the understanding that if p = 2 the multi-
plicative structure is different, with the element τi denoting the element usually called
ξi+1 and ξi denoting the element usually called ξ2i . The difference in multiplicative
structure at p = 2 will play no role in our arguments.

It will be useful to use the images ξ̄i , τ̄i ofMilnor’s generators under the conjugation
map of the Hopf algebra A∗. The coproduct is then given by:

ψ(ξ̄k) =
k∑

i=0

ξ̄i ⊗ ξ̄
pi

k−i and ψ(τ̄k) = 1 ⊗ τ̄k +
k∑

i=0

τ̄i ⊗ ξ̄
pi

k−i . (3.1)

The Milnor primitives Qi ∈ A are inductively defined by Q0 = β (the mod p
Bockstein) and

Qi = P pi Qi−1 − Qi−1P
pi .

Using the Milnor basis, the element Qi ∈ A is dual to τi ∈ A∗ and has homological
degree −(2pi − 1).

The mod p cohomology of BP〈n〉 as a left module over the Steenrod algebra is

H∗(BP〈n〉) = A//En,

where En = E(Q0, . . . , Qn) is the exterior algebra on the first n+1Milnor primitives
[13, Prop. 1.7]. Here we quotient out the exterior algebra on the right, while we are
interested in the left action of En on the result. Because the Steenrod algebra is non-
commutative the left action is still highly nontrivial.

Dually, the mod p homology of BP〈n〉 is the algebra

H∗(BP〈n〉) = P(ξ̄1, ξ̄2, . . .) ⊗ E(τ̄n+1, τ̄n+2, . . .).

The left A∗ comodule structure map ψL : H∗(BP〈n〉) → A∗ ⊗ H∗(BP〈n〉) is given
on the conjugate generators by formula (3.1) and is then extended multiplicatively to
all of H∗(BP〈n〉).
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Uniqueness of BP〈n〉 25

Dualizing, we derive the left action of α ∈ A on f ∈ H∗(BP〈n〉) by the formula

(α · f )(x) = 〈α ⊗ f, ψL(x)〉 =
∑

i

(−1)| f ||ai |〈α, ai 〉〈 f, xi 〉

where 〈−,−〉 denotes the pairing of a module and its dual and ψL(x) = ∑
i ai ⊗ xi

is the left coaction ofA∗ on x ∈ H∗(BP〈n〉). For x ∈ A∗, let x∗ ∈ A denote the dual.

Using this description, it is straightforward to calculate that Qi · (ξ̄ pi

j )∗ = (τ̄ j+i )
∗ and

that Qi acts as zero on smaller powers of ξ j , as well as τ j . From here we can extend
multiplicatively to deduce the following lemma.

Lemma 3.1 Let x∗ = (ξ̄
e1
j1

. . . ξ̄
em
jm

· τ̄J )∗ ∈ A be the dual of a monomial in the ξ̄ j and
the τ̄ j . Then Qi acts on x∗ in the following manner. For each k such that x contains a

factor of ξ̄ pi

jk
, replace that factor by τ̄ jk+i and dualize, then take the sum over all such

expressions. In other words we have:

Qi · x∗ =
∑

k such that
pi≤ek

⎛

⎝ξ̄
ek−pi

jk
τ̄ jk+i ·

∏

� �=k

ξ̄
e�
j�

· τ̄J

⎞

⎠

∗
.

For example, at p = 3 we have

Q1 · (ξ̄62 ξ̄33 )∗ = (ξ̄32 ξ̄33 τ̄3)
∗ + (ξ̄62 τ̄4)

∗.

Our convention is to use homological grading, so H∗(BP〈n〉) is concentrated in non-
positive degrees. Hence ξ̄∗

j is in degree −(2p j − 2) and τ̄ ∗
j is in degree −(2p j − 1).

Lemma 3.2 Fix 0 ≤ i ≤ n and suppose x∗ ∈ H∗(BP〈n〉) is in odd degree with
Qi ·x∗ = 0. Then there is a not necessarily unique y∗ ∈ H∗(BP〈n〉)with Qi · y∗ = x∗.

Proof Order the monomials in x ∈ H∗(BP〈n〉) colexicographically by comparing the
τ̄ j , starting with the largest j , then comparing the ξ̄i , starting with the largest i . Under
this ordering a monomial m is large if τ̄ j divides m for j large.

Using this ordering, let x1 be the largest monomial in x and suppose τ̄a is the largest
τ̄ j that divides x1. (Because x is in odd degree some such τ̄a must exist.) Note that the

summand x1 cannot contain any ξ̄
pi

b for b+ i > a because then Qi · x∗
1 would contain

a (x1/ξ̄
pi

b · τ̄b+i )
∗ and this cannot cancel with Qi · (x∗ − x∗

1 ) because every term of
Qi · (x∗ − x∗

1 ) is smaller.

Now let y1 = x1/τ̄a · ξ̄ pi

a−i . Then Qi · y∗
1 = x∗

1 + (x ′
1)

∗ where x ′
1 is smaller. Replace

x∗ by x∗ − Qi · y∗
1 and proceed by induction. ��
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26 V. Angeltveit, J. A. Lind

4 The Adams spectral sequence

Under the hypotheses of TheoremA there is a conditionally convergentAdams spectral
sequence

Es,t
2 = Exts,tA (H∗(BP〈n〉), H∗(X)) �⇒ πt−s Hom(X,BP〈n〉∧p ).

Bya change-of-rings isomorphism [11,A1.3.12], the E2-termof theAdams spectral
sequence is given by

Es,t
2 = Exts,tA (A//En, H

∗(X)) ∼= Exts,tEn
(Fp, H

∗(X)).

Using the given isomorphism θ , wemake the identification H∗(X) ∼= A//En , with En

acting on the left. The Fp-dual of the Koszul resolution of Fp as an En-module is the
chain complex P(v0, . . . , vn)⊗ En graded by the degree of homogeneous polynomial
generators and with differential

d(p ⊗ ω) =
∑

i

vi p ⊗ (Qiω).

Thus the E2-term of the Adams spectral sequence is isomorphic to the homology of
the chain complex

M = H∗(BP〈n〉)[v0, . . . , vn],

where the differential is given by

d(x∗) =
n∑

i=0

Qi (x
∗)vi .

Notice that the element vi is in bidegree (1, 2pi − 1). We are now in the situation
discussed in Sect. 2.

Since H∗(BP〈n〉) is finite in each degree, this description of the E2-page shows us
that the group Es,t

2 is finite in each bidegree. This implies that Boardman’s derived
E∞-term RE∞ = 0 and so the spectral sequence converges strongly [4, Theorem7.1].
In particular, if the given map θ : H∗(BP〈n〉) → H∗(X), considered as a class
[θ ] ∈ E0,0

2 , survives to E0,0∞ , then [θ ] represents a map f : X → BP〈n〉∧p satisfying
H∗( f ) = θ ◦ H∗(i), where i : BP〈n〉 → BP〈n〉∧p is the p-completion map. In order
to prove that the given isomorphism of cohomology θ survives the spectral sequence,
it suffices to show that there is nothing in total degree −1 in E∗,∗

2 and thus no room
for nontrivial differentials on θ . We will prove this in the next section, completing the
proof of Theorem A.
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Uniqueness of BP〈n〉 27

Remark 4.1 We believe that a p-local version of the main theorem is true. The only
obstruction is the lack of convergence of the Adams spectral sequence

Exts,tA (H∗(BP〈n〉), H∗(X)) �⇒ πt−s Hom(X,BP〈n〉)

before passage to the p-completion of BP〈n〉 in the abutment. Adams and Priddy get
around this using a clever argument involvingAdams operations which is not currently
available in the general case of BP〈n〉.

5 Proof of the main theorem

We need one more ingredient. As an A-module H∗(BP〈n〉) is irreducible, but when
considering H∗(BP〈n〉) as an En-module it splits as a direct sum of submodules, each
one finite-dimensional over Fp. We make the following definition.

Definition 5.1 Wedefine anewmultiplicative gradingon H∗(BP〈n〉) called theweight
by declaring that ξ̄ j and τ̄ j have weight 2p j .

The degree δ of an element is slightly less than the weight w, and satisfies the
inequality

p − 1

p
w ≤ δ ≤ w − 1.

We remind the reader that we are assuming that n ≥ 0, so that the case where
τ̄0 ∈ H∗(BP〈n〉) is excluded. We use δ for the degree rather than d, as d is already
overloaded. Let H∗(BP〈n〉)[w] denote the dual of the weight w part of H∗(BP〈n〉).
By Lemma 3.1, the action of Qi preserves the subspace H∗(BP〈n〉)[w]. Hence

Exts,tEn
(Fp, H

∗(BP〈n〉))

splits as a direct sum

⊕

w

Exts,tEn
(Fp, H

∗(BP〈n〉)[w]).

Proof of Theorem A It suffices to prove that there is nothing in total degree −1 one
weight at a time. Fix a weight w, necessarily divisible by 2p. The lowest degree
element of weight w in H∗(BP〈n〉) is

ξ̄
w/2p
1 in degree

p − 1

p
w

and the lowest odd degree element of weight w is, assuming w is large enough for
such an element to exist,

ξ̄
w/2p−pn

1 τ̄n+1 in degree
p − 1

p
w + 2pn − 1.
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Now consider some nonzero class α ∈ E∗,∗
2 [w] ⊂ H∗(H∗(BP〈n〉)[v0, . . . , vn], d),

and assume without loss of generality that α is a homogeneous element. By Lemma
3.2, we can represent α by an element of the form

αn = v
r0
0 . . . v

rn−1
n−1 x

∗
n

with xn ∈ H∗(BP〈n〉) in weight w and degree δn (if αn contained a positive vn-power
then αn would be a dn-boundary). In other words, αn is a dn-cycle but not a dn-
boundary, and its class in dn-homology survives the sequence of spectral sequences
starting with the dn−1-spectral sequence and ending with the d0-spectral sequence
to represent α in the associated graded. Notice that x∗

n is in degree −δn , so the class
α = [αn] is in total degree

deg(α) = r1(2p − 2) + r2(2p
2 − 2) + · · · + rn−1(2p

n−1 − 2) − δn . (5.1)

Now we use the algorithm from Definition 2.1. Since αn is not a dn-boundary,
step n returns αn as a representative for the class [α] in the dn-homology of
H∗(BP〈n〉)[v0, . . . , vn].

Let’s examine step n − 1 for the example αn = v2n−1x
∗. We replace αn by the

element αn−1 = v2nz
∗ defined by the following picture.

αn = v2n−1x
∗ vn−1vn y∗ αn−1 = v2nz

∗

vn−1a∗
dn−1 dn

vnb∗
dn−1

dn

Returning to the general sitution, Lemma 3.2 ensures that there is always such a
zig-zag, trading the factor of v

rn−1
n−1 in αn for a v

rn−1
n in αn−1. Hence

αn−1 = v
r0
0 . . . v

rn−2
n−2 v

rn−1
n x∗

n−1,

for some class xn−1 in degree

δn−1 = δn + rn−1(2p
n − 2pn−1).

Similarly, in step n − 2 we get a new representative αn−2 by iteratively replacing
vn−2x∗ with −vn−1y∗ − vnz∗ as in the picture

αn−1 = vn−2x∗ vn−1y∗ vnz∗

a∗
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Thus αn−2 is a sum of terms of the form

v
r0
0 . . . v

rn−3
n−3

rn−2∑

j=0

v
rn−2− j
n−1 v

j+rn−1
n x∗

n−2, j .

For each j in the sum, deg(xn−2, j ) ≥ δn−2 where

δn−2 = δn−1 + rn−2(2p
n−1 − 2pn−2).

Continuing in this way, we end up with a representative

α0 =
∑

j

vI j x
∗
0, j

for α, where vI j is a monomial in the vi with i ≥ 1. Also each deg(x0, j ) ≥ δ0, where
δ0 is given by

δ0 = δn + r0(2p − 2) + r1(2p
2 − 2p) + · · · + rn−1(2p

n − 2pn−1). (5.2)

The bound on the degree of x0, j is a consequence of the fact that each time we trade
in a vi we increase the degree of the elements in H∗(BP〈n〉) by at least 2pi+1 − 2pi .

Because xn is in odd degree δn with weight w, we have:

δn ≥ p − 1

p
w + 2pn − 1.

Therefore, Eq. (5.1) implies that:

r1(2p − 2) + · · · + rn−1(2p
n−1 − 2) ≥ p − 1

p
w + 2pn − 1 + deg(α).

Since 2pi+1 − 2pi > 2pi − 2, Eq. (5.2) gives:

δ0 ≥ δn + r0(2p − 2) + p − 1

p
w + 2pn − 1 + deg(α)

≥ p − 1

p
w + 2pn − 1 + p − 1

p
w + 2pn − 1 + deg(α)

≥ w + 4pn − 2 + deg(α)

The weight and degree of an element of H∗(BP〈n〉) must satisfy w ≥ δ + 1, so we
deduce that

deg(α) ≤ 1 − 4pn .

In particular, α cannot lie in total degree −1. This finishes the proof of the main
theorem. ��
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Remark 5.2 It is a consequence of our proof that there are no infinite vi -towers in odd
total degree in Ext∗,∗

En
(Fp, H∗(BP〈n〉) for 0 ≤ i ≤ n.
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