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Abstract

In [1] Adams constructed a non-nilpotent map v41 : Σ8S/2 −→ S/2. Using iterates of this
map one constructs infinite families of elements in the stable homotopy groups of spheres, the
v1-periodic elements of order 2. In this paper we work motivically over C and construct a non-
nilpotent self map w4

1 : Σ20,12S/η −→ S/η. We then construct some infinite families of elements
in the homotopy of the motivic sphere spectrum, w1-periodic elements killed by η.

1 Introduction

The chromatic approach to computing the homotopy of a finite 2-local complex X is recursive.

1. Find a non-nilpotent self map f : X −→ Σ−dX and compute f−1π∗(X).

2. Attack the problem of computing the f -torsion elements in π∗(X) by replacing X with X/f
and going back to step 1.

Before the work of DHS in [4] and [6] it was not known that one could always construct the requisite
self maps. However, in [1] Adams constructed a non-nilpotent map v4

1 : S/2 → Σ−8S/2 and this
gave the first hint that the above procedure is, in fact, implementable. One might say that Adams’
work gave birth to chromatic homotopy theory.

The power of Adams’ self map is that it gives rise to infinite families in the stable homotopy
groups of spheres. Let’s recall how one obtains such families. We have elements of order 2

η ∈ π1(S0), η2 ∈ π2(S0), η3 ∈ π3(S0), ε ∈ π8(S0) and εη ∈ π9(S0),

which lift to elements of π∗(S/2). We also have an element i ∈ π0(S/2), the inclusion of the bottom
cell of S/2. By composing with the maps

S/2
(v41)n

// Σ−8nS/2
pinch // S1−8n

we obtain families of elements in the homotopy groups of spheres. These are the v1-periodic elements
of π∗(S

0) of order 2.
A corollary of the nilpotence theorem [6] is that the only non-nilpotent self maps that a type

n complex admits are vn-self maps. If we state the nilpotence theorem with motivic BP it is false
for there is an element η ∈ π1,1(S0,0), which is non-nilpotent, and has BP∗,∗(η) = 0. One would
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expect that S0,0 should be “type 0” but it admits more than v0-self maps. However, we can still
follow the algorithm with f taken to be η, and it suggests that we try and compute η−1π∗,∗(S

0,0).
This computation was carried out in [2] and the description is very simple:

η−1π∗,∗(S
0,0) = F2[η±1, σ, µ9]/(ησ2).

Here, η ∈ π1,1(S0,0) and σ ∈ π7,4(S0,0) are motivic Hopf invariant one elements, classes that exist
before η is inverted. µ9 also exists before η is inverted and it can be described by the Toda bracket
〈8σ, 2, η〉 ∈ π9,5(S0,0).

The algorithm then suggests that we try and find a non-nilpotent self map of S/η. The main
result of this paper is that such a self map exists (proposition 3.3 and theorem 3.4)

w4
1 : S/η −→ Σ−20,−12S/η

and we use this map to construct six infinite families in the homotopy groups of the motivic sphere
spectrum (theorem 3.12). The construction of the infinite families is parallel to the story we recalled
above. We have elements killed by η

ν ∈ π3,2(S0,0), ν2 ∈ π6,4(S0,0), ν3 ∈ π9,6(S0,0), σ ∈ π19,11(S0,0) and σν ∈ π22,13(S0,0),

which lift to elements of π∗,∗(S/η). We also have an element i ∈ π0,0(S/η), the inclusion of the
bottom cell of S/η. By composing with the maps

S/η
(w4

1)n
// Σ−20n,−12nS/η

pinch // S2−20n,1−12n

we obtain families of elements in the homotopy groups of the motivic sphere spectrum:

Pn(ν) ∈ π3+20n,2+12n(S0,0), Pn(ν2) ∈ π6+20n,4+12n(S0,0), Pn(ν3) ∈ π9+20n,6+12n(S0,0),

Pn(η2η4) ∈ π18+20n,11+12n(S0,0), Pn(σ) ∈ π19+20n,11+12n(S0,0), Pn(σν) ∈ π22+20n,13+12n(S0,0).

These are w1-periodic elements of π∗,∗(S
0,0) killed by η.

We emphasize here that it is not automatic that these composites are nontrivial and we have to
detect this somehow. This should not be unfamiliar. The driving force behind [13] was to detect the
nontriviality of the classical γ-family. Our tool for detection is the motivic Adams-Novikov spectral
sequence. The homotopy classes are detected by permanent cycles, which cannot be boundaries for
degree reasons. We are then left with showing that these elements are nonzero on the E2-page and
we do this by mapping to the classical Adams spectral seqeuence.

One can try to continue with the algorithm. We should compute w−1
1 π∗,∗(S/η). This is probably

of similar difficulty to Mahowald’s classical computation of v−1
1 π∗(S/2), [9, 10, 11]. We should also

try and find a self map of S/(η, w4
1). We conjecture that there is a non-nilpotent self map

w32
2 : S/(η, w4

1) −→ Σ−416,−224S/(η, w4
1).

At this point we should explain where our intuition about these self maps comes from. There is
a spectral sequence called the algebraic Novikov SS for computing the E2-page of the ANSS, which
is made use of in [2]. It takes the form

H(P ;Q) =⇒ H(BP∗BP ).
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Here P is the Hopf subalgebra of squares in the dual Steenrod algebra A, BP∗ is filtered using the
I-adic filtration, where I = ker (BP∗ −→ F2), and

Q = gr∗BP∗ = F2[q0, q1, . . .]

is the associated graded of BP∗. qn is the class of the Hazewinkel generator vn and so Q contains the
classical chromatic story, in some sense. In [2] we inverted the element h0 = {[ξ2

1 ]} (the index on h
is zero because P does not contain ξ1) to compute α−1

1 H(BP∗BP ). Using the close the relationship
between the ANSS and its motivic analog [7] this enabled our computation of η−1π∗,∗(S

0,0). So
ξ2

1 corresponds to η and Haynes Miller suggested that there may be other non-nilpotent self maps
corresponding to ξ2

2 , ξ
2
3 , . . . ∈ P . We call η, w0 since it corresponds to ξ2

0+1. A self map corresponding
to ξ2

1+1 would have motivic degree (5, 3), we would call it w1, and a self map corresponding to ξ2
2+1

would have motivic degree (13, 7), we would call it w2. It is not luck that Adams found v4
1 and we

find w4
1. Since BHHM constructed a self map v32

2 [3], one would guess that we have a self map w32
2 .

The results of this paper lead to interesting questions. Adams showed that his map v4
1 is non-

nilpotent by proving that it induces an isomorphism on K-theory. Perhaps there is an analogous
spectrum that can detect the self map w4

1. Motivically, there is not a nilpotence theorem with BP .
But perhaps there is a spectrum N , such that N∗,∗ is a Z2[v1, v2, v3, . . . , w0, w1, w2, . . .] module, with
each vn and wn acting non-nilpotently, for which a nilpotence theorem does hold. Since 2η = 0,
2w0 would have to act as zero on N∗,∗. Maybe, if N exists, then

N∗,∗ = Z2[v1, v2, v3, . . . , w0, w1, w2, . . .]/(2w0 and other relations).

The construction of the self map w4
1 is not difficult; it is similar to the construction of Adams’

self map. Adams’ map has the the property that the composite

S7 // Σ7S/2
v41 // Σ−1S/2

pinch // S0

is 8σ. We construct w4
1 so that η2η4 can be factored as

S18,11 // Σ18,11S/η
w4

1 // Σ−2,−1S/η
pinch // S0,0.

I would like to thank Haynes Miller for his bold suggestion that such self maps exist. I would
like to thank Zhouli Xu for conversations we had at the University of Chicago after the existence
of w4

1 was proved. Upon showing him my result he showed great enthusiasm, and within an hour
of talking we had the six infinite familes discussed in this paper. Thank you to Dan Isaksen for his
beautiful spectral sequence charts and for a Toda bracket argument he provided. More importantly,
we are grateful to him for spotting a flawed argument in what we thought was a simpler proof of
these results.

2 The motivic Adams-Novikov spectral sequence

Working motivically requires specifying a ground field; for us, this is always taken to be C. Through-
out the paper we work at the prime 2. Our main calculational tool is the motivic Adams-Novikov
spectral sequence (MANSS). We need it for the spectra S0,0, S/η and End(S/η), that is the motivic
sphere spectrum, the cofiber of η : S1,1 −→ S0,0, and the endomorphism spectrum of S/η.
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The motivic Adams-Novikov spectral sequence [7] is a convergent spectral sequence of the form

Hs,t,w(BP∗BP ;BP∗(X))
s

=⇒ πt−s,w(X∧2 ).

Here, BP is the motivic Brown-Peterson spectrum at 2, we write BP∗ for BP∗,∗ to save space, and
H(BP∗BP ;BP∗(X)) is the cohomology of the Hopf algebroid BP∗BP with coefficients in BP∗(X),
otherwise known as CotorBP∗BP (BP∗, BP∗(X)). We recall that differentials in the MANSS interact
with the s and t gradings as in the classical case, and they preserve the weight w.

The w = t/2 slice of the motivic Adams-Novikov E2-page for the sphere spectrum S0,0 is plotted
in the range 15 < t− s < 24 in figure 1. We can deduce the E2-pages for S/η and End(S/η), up to
extensions, in a smaller range, using the cofibration sequences of (2.1) below.

Figure 1 is due Ravenel [15]. Ignoring the naming of elements, his chart agrees with Isaksen’s
charts [8] in the plotted range. We have chosen only to label the two elements which we will need to
consider. We have labelled the first element β4/3 as Ravenel does; it is a short calculation (lemma
4.1) to verify that this is the correct name. We have labelled the second element z19 in accordance
with Isaksen, [8].

Notation 2.1. We use i for “include” and c for “collapse” throughout this paper.

S0,0 i // S/η
c // S2,1

Σ−2,−1S/η
i=c∗ // End(S/η)

c=i∗ // S/η.

We never have to worry about differentials in our computations. For the most part, this is due
to the existence of the following vanishing line and the corollary that follows.

Lemma 2.2. When X = S0,0, S/η or End(S/η) we have Hs,t,w(BP∗BP ;BP∗(X)) 6= 0 only when
t is even and w ≤ t/2.

Proof. The result is true for X = S0,0 by [7, (36)]. We have an element α1 ∈ H1,2,1(BP∗BP ) and
so multiplication by α1 gives a map H(BP∗BP ) −→ Σ−1,−2,−1H(BP∗BP ).

The first cofibration sequence of (2.1) gives a short exact sequence

0 // cokerα1
// H(BP∗BP ;BP∗(S/η)) // Σ0,2,1kerα1

// 0

Since (cokerα1)s,t,w 6= 0 only when t is even and w ≤ t/2, and the same is true for Σ0,2,1kerα1, the
result holds when X = S/η. Similarly, we use the second cofibration of (2.1) sequence to show the
result for End(S/η).

Corollary 2.3. Given an element of Hs,2w,w(BP∗BP ;BP∗(X)), where X = S0,0, S/η or End(S/η),
it cannot be the target of a differential in the MANSS.

Proof. The differentials with the given group as the target can be enumerated:

d2r+1 : E
s−2r−1,2(w−r),w
2r+1 −→ Es,2w,w2r+1 , r > 0.

But E
s−2r−1,2(w−r),w
2r+1 = 0 since w > w − r.

In this paper, we show that many elements of the motivic Adams-Novikov E2-page are nonzero
by mapping to the classical Adams E2-page. To define the so-called detection map we need to recall
the structure of the Hopf algebroid (BP∗BP,BP∗) and the dual Steenrod algebra (A,F2).
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Notation 2.4. Recall that BP∗ = Z2[τ, v1, v2, v3 . . .]. Here Z2 denotes the 2-adics, τ has bigrading
(0,−1) and vn has bigrading (2n+1 − 2, 2n − 1). BP∗BP = BP∗[t1, t2, t3, . . .] where |tn| = |vn| and
there are structure maps making the pair (BP∗BP,BP∗) into a Hopf algebroid.

The dual Steenrod algebra is given as an algebra by F2[ζ1, ζ2, ζ3, . . .] where |ζn| = 2n−1. Here ζn
is the Hopf conjugate of the Milnor generator ξn and the diagonal is given by the Milnor diagonal.
We write H(A;M) for CotorA(F2,M) when M is an A-comodule.

We can then define a map of Hopf algebroids.

Definition 2.5. Define (BP∗BP,BP∗) −→ (A,F2) by demanding that τ , vn, and tn are mapped to
0, 0, and ζn, respectively. If we choose only to remember the weight of elements in (BP∗BP,BP∗),
then this map preserves degree.

We also need maps between various homology groups, compatible with the map just defined.
We note that BP∗(S/η) = BP∗〈1, t1〉 and that BP∗(End(S/η)) = BP∗(Σ

−2,−1S/η)⊗∆
BP∗

BP∗(S/η).

Notation 2.6. Write S/2 for the classical mod 2 Moore spectrum and H∗(−) for mod 2 homology.

We note that H∗(S/2) = F2〈1, ζ1〉 and that H∗(End(S/2)) = H∗(Σ
−1S/2)⊗∆

F2
H∗(S/2).

Definition 2.7. Define BP∗(S/η) → H∗(S/2) and BP∗(End(S/η)) → H∗(End(S/η)) by demand-
ing that τ , vn, 1 and t1 are mapped to 0, 0, 1 and ζ1, respectively.

We are now ready to define our detection maps.

Definition 2.8 (The detection maps). The maps of definition 2.5 and definition 2.7 induce maps

d : H(BP∗BP ) −→ H(A), d : H(BP∗BP ;BP∗(S/η)) −→ H(A;H∗(S/2)),

d : H(BP∗BP ;BP∗(End(S/η))) −→ H(A;H∗(End(S/2)))

We label each map by d for “detection.”

3 The self map, the homotopy classes, and the main results

In this section we state our main results which are proposition 3.3, theorem 3.4 and theorem 3.12.
We define the homotopy classes which appear in theorem 3.12. Doing so requires defining a number
of auxilary homotopy classes. In section 4 we prove theorem 3.12 by working at the algebraic level
with the elements detecting these classes. For this reason we keep track of all the elements detecting
our homotopy classes.

The first elements that one encounters in homotopy theory are the Hopf invariant one elements.

Definition 3.1. We write η ∈ π1,1(S0,0), ν ∈ π3,2(S0,0) and σ ∈ π7,4(S0,0) for the motivic Hopf
invariant one elements, [5]. These elements are detected by α1, α2/2 and α4/4, respectively.

Mahowald discovered the ηj-family, [12]. These are classes which are detected by h1hj in the
Adams spectral sequence and, thus, they are defined up to higher Adams filtration. We need the
motivic analog of η4 but we are more precise, defining it without any indeterminancy.

Definition 3.2. In the motivic Adams-Novikov spectral sequence β4/3 ∈ H2,18,9(BP∗BP ) detects
a unique homotopy class. We call this homotopy class η4 ∈ π16,9(S0,0).
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Figure 1: Hs,t,t/2(BP∗BP ) in the range 15 < t − s < 24, minus the algebra generated by the α’s.
Round nodes indicate copies of Z/2. Square nodes labelled with an n indicate copies of Z/2n. Lines
indicate multiplication by α1 and α2/2. Dashed lines indicate hitting twice a generator. Dotted
lines indicate hitting four times a generator. Above the teal line, there are only α1-free elements.
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The main result of this paper is that we have a non-nilpotent self map w4
1 : Σ20,12S/η −→ S/η.

The next proposition gives a map; non-nilpotence is left for theorem 3.4. We will use this map to
construct the infinite familes of theorem 3.12.

Proposition 3.3. There’s an element x ∈ H4,24,12(BP∗BP ;BP∗(End(S/η))) which maps to α2
1β4/3

under the collapse maps of (2.1).

H4,24,12(BP∗BP ;BP∗(End(S/η))) // H4,24,12(BP∗BP ;BP∗(S/η)) // H4,22,11(BP∗BP ;BP∗(S
0,0))

x � // y � // α2
1β4/3

x is a permanent cycle in the motivic ANSS for End(S/η) detecting a map w4
1 : Σ20,12S/η −→ S/η.

Moreover, η2η4 is the composite

S18,11 i // Σ18,11S/η
w4

1 // Σ−2,−1S/η
c // S0,0.

Proof. We find that α3
1β4/3 = 0 and so there exists y mapping to α2

1β4/3. We also find that α1y = 0
and so there exists an x mapping to y.

All the targets groups of the differentials emanating from H4,24,12(BP∗BP ;BP∗(End(S/η))) in
the motivic Adams-Novikov spectral sequence are zero and so x is a permanent cycle. Because x
maps to α2

1β4/3 and there are no elements of higher Novikov filtration in that stem and weight, we
obtain the factorization of η2η4 in the proposition statement.

One of our main results is the following theorem. We will postpone the proof until section 4.

Theorem 3.4. w4
1 : Σ20,12S/η −→ S/η is non-nilpotent.

We will define one of the classes that we need by a Toda bracket. We must recall some relations
in homotopy.

Lemma 3.5 (Isaksen). We have the following relations: ην = 0, νσ = 0, and ησ2 = 0.

Proof. In [5] it is proved that that ην = 0 and νσ = 0. Moreover, ησ2 = 0 holds classically [16], and
this immediately implies the motivic version because there are no “exotic” classes in the 15-stem
with weight 9, [8].

Definition 3.6. We define σ ∈ π19,11(S0,0) by the Toda bracket 〈ν, σ, ησ〉. There is no indetermi-
nancy in this Toda bracket and the class is nonzero, [8].

To see the element which detects σ in the motivic Adams-Novikov spectral sequence we make
note of the following property.

Lemma 3.7 (Isaksen). We have the following relation: ησ = 0.

Proof. 〈η, ν, σ〉 is defined and seen to be 0. Thus ησ = η〈ν, σ, ησ〉 = 〈η, ν, σ〉ησ = 0.

Corollary 3.8. σ is the unique element detected by z19.

To define the infinite families of theorem 3.12 we need to lift some homotopy classes in π∗,∗(S
0,0)

to π∗,∗(S/η). We also need to keep track of the elements detecting these classes. That is the purpose
of the next two definitions.
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Definition 3.9. We write ν̃ ∈ π5,3(S/η) for a fixed choice of lift of ν ∈ π3,2(S0,0) under the map c :
S/η −→ S2,1. This element has Novikov filtration one; we write α̃2/2 ∈ H1,6,3(BP∗BP ;BP∗(S/η))
for the element which detects it. α̃2/2 lifts α2/2 ∈ H1,4,2(BP∗BP ).

Definition 3.10. We fix a lift z̃19 ∈ H3,24,12(BP∗BP ;BP∗(S/η)) of z19 ∈ H3,22,11(BP∗BP ) under
the map c : S/η −→ S2,1. This is a permanent cycle and detects a homotopy class which we call
σ̃ ∈ π21,12(S/η). σ̃ lifts σ ∈ π19,11(S0,0).

We are ready to construct the homotopy classes of interest. We let Φn be the following composite

S/η
(w4

1)n
// Σ−20n,−12nS/η

c // S2−20n,1−12n.

and recall that π∗,∗(S/η) is a π∗,∗(S
0,0)-module.

Definition 3.11. For n ≥ 0, we define

Pn(ν) ∈ π3+20n,2+12n(S0,0), Pn(ν2) ∈ π6+20n,4+12n(S0,0), Pn(ν3) ∈ π9+20n,6+12n(S0,0),

Pn(η2η4) ∈ π18+20n,11+12n(S0,0), Pn(σ) ∈ π19+20n,11+12n(S0,0), Pn(σν) ∈ π22+20n,13+12n(S0,0)

by
Pn(ν) = (Φn)∗(ν̃), Pn(ν2) = (Φn)∗(ν̃ν), Pn(ν3) = (Φn)∗(ν̃ν

2),

Pn(η2η4) = (Φn+1)∗(i), P
n(σ) = (Φn)∗(σ̃), Pn(σν) = (Φn)∗(σ̃ν).

One of our main results is the following theorem. We will postpone the proof until section 4.

Theorem 3.12. The homotopy classes Pn(ν), Pn(ν2), Pn(ν3), Pn(η2η4), Pn(σ), Pn(σν) are non
trivial. i.e. they are w1-periodic.

Proving the theorem comes down to algebra and we can make the analogous construction alge-
braically. We have a map End(S/η) ∧ S/η = Hom(S/η, S/η) ∧Hom(S0, S/η) −→ Hom(S0, S/η) =
S/η, given by composition. Let ϕ be the composite

H(BP∗BP ;BP∗(End(S/η)))⊗H(BP∗BP ;BP∗(S/η))
composition // H(BP∗BP ;BP∗(S/η))

c

��
H(BP∗BP ;BP∗(S

0,0))

and recall that H(BP∗BP ;BP∗(S/η)) is a H(BP∗BP )-module. Recall the element x of proposition
3.3, too.

Definition 3.13. For n ≥ 0, we define

Pn(α2/2) = ϕ(xn ⊗ α̃2/2), Pn(α2
2/2) = ϕ(xn ⊗ α̃2/2α2/2), Pn(α3

2/2) = ϕ(xn ⊗ α̃2/2α
2
2/2),

Pn(α2
1β4/3) = ϕ(xn+1 ⊗ 1), Pn(z19) = ϕ(xn ⊗ z̃19), Pn(z19α2/2) = ϕ(xn ⊗ z̃19α2/2).

The construction of these elements together with Moss’s convergence theorem [14], tells us that
we have the following result.

Lemma 3.14. The elements

Pn(α2/2), Pn(α2
2/2), Pn(α3

2/2), Pn(α2
1β4/3), Pn(z19), and Pn(z19α2/2)

detect Pn(ν), Pn(ν2), Pn(ν3), Pn(η2η4), Pn(σ), and Pn(σν), respectively.
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4 Proof of main results

In this section we prove theorem 3.4 and theorem 3.12. This comes down to analysing the effect
of the detection map (2.8) on the class x of proposition 3.3 and the effect of the detection map on
the classes of definition 3.13.

First, for completeness, we prove the following lemma, which was referred to in section 2.

Lemma 4.1. We have α3
1β4/3 = 0.

Proof. We have the following short exact sequences of BP∗BP -comodules.

0 // BP∗
2 // BP∗ // BP∗/2 // 0

0 // BP∗/2
v31 // BP∗/2 // BP∗/(2, v

3
1) // 0

By definition β4/3 is the image of v4
2 under the composite

H0,24,12(BP∗BP ;BP∗/(2, v
3
1))

δ1 // H1,18,9(BP∗BP ;BP∗/2)
δ0 // H2,18,9(BP∗BP ;BP∗).

From [2, 7.2.1] there exists an N > 0 with αN1 δ1(v4
2) = 0. Thus αN1 β4/3 = 0. Since α8/5 is α1-free,

this means we cannot have α3
1β4/3 = α4

1α8/5 and so we must have α3
1β4/3 = 0.

In order to prove theorem 3.4 we need the following two lemmas.

Lemma 4.2. We have d(α1) = h0, d(α2/2) = h1, and d(α4/4) = h2, where d is the detection map
of definition 2.8.

Proof. One can compute directly with cocyle representatives in Ω(BP∗BP ). For instance, α4/4 is
represented by 5[t41]− 2[t1t2] + 9v1[t31]− v1[t2] + 7v2

1[t21] + 2v3
1[t1]− v2[t1].

Lemma 4.3. Under the detection map we have d(β4/3) = h0h3.

Proof. One can compute directly with cocyle representatives in Ω(BP∗BP ;BP∗/2) and Ω(BP∗BP ).
The differential on v4

2 is v4
1[t81] + v8

1[t41] (mod 2) and so δ1(v4
2) is represented by v1[t81] + v5

1[t41]. If one
applies the differential to v1[t81] + v5

1[t41], divides by 2 and evaluates mod (2, v1), one obtains [t1|t81].
Thus d(β4/3) is represented by [ζ1|ζ8

1 ] and we are done.

Now we address theorem 3.4 even though it will follow, independently, as a corollary of theorem
3.12. The key is to recall how Adams’ self map v4

1 : Σ8S/2 −→ S/2 is detected in the classical ASS.
We have the following cofibration sequences.

S0 i // S/2
c // S1

Σ−1S/2
i=c∗ // End(S/2)

c=i∗ // S/2.

(4.4)

Proposition 4.5. There exists a unique nonzero element x ∈ H4,12(A;H∗(End(S/2))). It maps to
h3

0h3 under the collapse maps of (4.4) and is a permanent cycle in the ASS for End(S/2) detecting
v4

1 : Σ8S/2 −→ S/2.

H4,12(A;H∗(End(S/2)))
c=i∗ // H4,12(A;H∗(S/2))

c // H4,11(A;H∗(S
0))

x � // h3
0h3

Moreover, x is non-nilpotent.
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We now prove theorem 3.4 by proving the following corollary.

Corollary 4.6. The x ∈ H4,24,12(BP∗BP ;BP∗(End(S/η))) of lemma 3.3 is non-nilpotent and so
w4

1 is non-nilpotent.

Proof. We consider the following diagram in which the horizontal maps are obtained by applying
the appropriate two collapse maps ((2.1) and (4.4)) and the vertical maps are detection maps (2.8).
It is straightforward to see this diagram commutes.

H4,24,12(BP∗BP ;BP∗(End(S/η))) //

d
��

H4,22,11(BP∗BP )

d
��

H4,12(A;H∗(End(S/2))) // H4,11(A)

Start with x. We chose x so that it maps right to α2
1β4/3 and we know d(α2

1β4/3) = h3
0h3 by lemmas

4.2 and 4.3. So d(x) gives a lift of h3
0h3 but, by proposition 4.5, x is the unique such lift, so d(x) = x.

Since x is non-nilpotent, x is non-nilpotent. Moreover, corollary 2.3 tells us that no power of x can
ever be hit by a differential. We deduce that w4

1 is non-nilpotent.

In order to prove theorem 3.12 we need the following lemma.

Lemma 4.7. Under the detection map of definition 2.8 we have d(z19) = c0.

Proof. We note the Massey product 〈h1, h2, h0h2〉 has zero indeterminancy and defines c0, [8]. Since
νσ = 0 and ησ2 = 0, we have α2/2α4/4 = 0 and α1α

2
4/4 = 0. This means that 〈α2/2, α4/4, α1α4/4〉

is defined and its elements give a lift for c0. The only elements in the correct trigrading to lift c0

are linear combinations of α2
1α9 and z19. Since α9 maps to zero, z19 must map to c0.

We are now ready to prove theorem 3.12.

Proof of theorem 3.12. By lemma 3.14 and corollary 2.3 we see that it is enough to prove that each
of the following elements is nonzero in H(BP∗BP ):

Pn(α2/2), Pn(α2
2/2), Pn(α3

2/2), Pn(α2
1β4/3), Pn(z19), and Pn(z19α2/2). (4.8)

We do this by mapping to H(A), using the detection map d : H(BP∗BP ) −→ H(A) of definition
2.8. In the case n = 0, they map to

h1, h
2
1, h

3
1, h

3
0h3, c0, c0h1

by lemmas 4.2, 4.3, and 4.7, and so we’re done.
We prove that each Pn(α2/2) 6= 0 by induction on n. We take as the inductive hypothesis that

Pn−1(α2/2) maps to Pn−1(h1) 6= 0, where, by abuse of notation, we also use P to denote the Adams
periodicity operator P = 〈h3

0h3, h0,−〉. The definition of Pn(α2/2) (3.13) gives

Pn(α2/2) ∈ 〈α2
1β4/3, α1, P

n−1(α2/2)〉.

Using lemmas 4.2 and 4.3, we see that Pn(α2/2) maps to Pn(h1) 6= 0, which completes the induction.
Similarly, applying d to the other elements of (4.8) gives the elements

Pn(h2
1), Pn(h3

1), Pn(h3
0h3), Pn(c0), Pn(c0h1),

which are all nonzero. This completes the proof.
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5 Observations and conjectures

From definition 3.11 we immediately see that

Pn(ν2) = Pn(ν)ν, Pn(ν3) = Pn(ν)ν2, and Pn(σν) = Pn(σ)ν.

Moreover, Pn(ν), Pn(ν2), Pn(ν3), Pn(σ), and Pn(σν) are detected by

h2g
n, h2

2g
n, h3

2g
n, c1g

n, and c1h2g
n,

respectively, in the motivic Adams spectral sequence. The naming of elements in the motivic Adams
spectral sequence is fairly unsystematic, since the naming conventions follow those for the classical
Adams spectral sequence. We content ourselves with noting that P 2n−1(η2η4) is detected by

h2n+2−1
1 hn+4, n ≥ 0.

We know that σν2 6= 0.

Conjecture 5.1. We think that Pn(σ)ν2 6= 0 for all n ≥ 0.

We know the ν3 is divisible by η: ν3 = η(ησ + ε).

Conjecture 5.2. We think that Pn(ν3) is divisible by η for all n ≥ 0.

We do have the following proposition, which proves the conjecture up to higher Adams filtration,
since h2

1h3g
n = h3

2g
n.

Proposition 5.3. h1h3g
n is a permanent cycle in the motivic Adams spectral sequence detecting

a nonzero homotopy class, for all n ≥ 0.

Proof. In this proof we write P for 〈h2
1h4, h

2
1,−〉, an operator on the motivic Adams E2-page, and

P for 〈h2
0h3, h

2
0,−〉, an operator on the classical Adams E2-page.

From [8, theorem 2.1.12] and the classical result that P
n
(h0h2) is well-defined with no indeter-

minancy, we see that Pn(h1h3) is well-defined with no indeterminancy. Moreover, this is exactly
what h1h3g

n means. Since this element lies in a tridegree with t = 2w one can verify the hypothesis
of [8, theorem 3.1.1] to see that h1h3g

n is a permanent cycle for all n ≥ 0. It cannot be a boundary
because of the analog of lemma 2.2 and corollary 2.3 for the motivic Adams spectral sequence, [8,
remark 2.1.13].

When one looks at the motivic Adams spectral sequence [8], one sees other potential w1-periodic
elements. We suggest the following program to find them.

We have the algebraic Novikov spectral sequence

H(P ;Q⊗H∗(S/η))[τ ] =⇒ H(BP∗BP ;BP∗(S/η)).

We have a periodicity operator w4
1 lying in H(P ;H∗(End(S/η))), which detects the element x of

proposition 3.3. We rename x as w4
1. We should attempt to compute the localized algebraic Novikov

spectral sequence

w−1
1 H(P ;Q⊗H∗(S/η)) =⇒ w−1

1 H(BP∗BP ;BP∗(S/η)),

and then run the η-Bockstein spectral sequence to recover the w1-periodic elements of H(BP∗BP ).
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6 Nomenclature

This paper suggests that there should be many new periodicities arising in motivic homotopy theory
over C. In the motivic Adams spectral sequence charts the conjectured periodicity associated with
wn should occur according to a slope of 1/(2n+2 − 3). The classical periodicity associated with vn
occurs according to a slope of 1/(2n+1−2). Since the new conjectured periodicity slopes lie between
the classical chromatic ones and chromatic means “using notes not belonging to the diatonic scale
of the key” we suggest that these new periodicities are microtonal.
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