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ON PERIOD RELATIONS FOR ABELIAN INTEGRALS

ON ALGEBRAIC CURVES

by A. ANDREOTTI and A. L. MAYER (*)

In primo luogo non dovra il Poeta

moderno aver letti, n6 legger ll1ai gli Au-

tori antichi Latini o Greci. Imperocché
nemeno gli antichi Greci o Latini hanno

mai letti i 

B. MARCELLO, Il Teatro alla Moda

Let Hg be the Siegel upper half plane of rank g ) 1 and T be the
modular group [26]. The space V’9 = HGIF represents the space of moduli

for principally polarised abelian varieties. The set of Jacobians, i. e. the

moduli space of curves of genus g is open and dense in a 3g -- 3 dimen-
sional analytic subspace Mg of Vg.

Let J be the counter image of lVlg in Hg. Riemann raised the question
of writing a set of equations for J by analytic functions on This pro-
blem is meaningful for any g ~ 4 because then J is a proper analytic subset
of Hg .

For g = 4, J is of codimension one and Schottky [25] was able to write
a polynomial in the « theta-nulls &#x3E;&#x3E; non identically zero and vanishing on
J, so that J appears as an irreducible component of the set of zeros of

that polynomial.
In this paper we consider the following problem :
Let X be a minimal positive polar divisor of the principally polarised

abelian variety A, let S (X) be the singular set of X and introduce the

following invariant r (A) = codimension of S (X) in X

Pervenuto alla Redazione il 7 Febbraio 1966 e riveduto 1’8 Giugno 1966.
(~) Supported in part by Grants AF-EOAR 65-42 and NSF GP 5177.
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Let Fj be the subset of Vg where i- (A)  r. ~9 is an analytic subset
of Vg and V:-1 is of codimension one in Vg. We give here a proof of
the fact that l~~ is an irreducible component of V 9 3 (§ 1, 2 and 3).

By virtue of the geometric significance of the sets Vj we are able to
write the equations of those sets (on the set over which X is irreducible)
in terms of thetanulls and their derivatives. We thus obtain (when r = 3)
a generalisation of Schottky’s result for all values of g ~ 4 (§ 4).

At the end of the paper an outline of a procedure of Wirtinger is
given which eventually may give more explicit computations and does not
involve thetanalls’ derivatives.

All the sets Fj (on the open subset where X is irreducible) are shown
to be algebraic sets.

1. General remarks on algebraic curves.

1. The caito)tical a) Let 0 be a complete irreducible algebraic
curve of genus g defined over an algebraically closed field k. Let S2’ be

the sheaf of germs of holomorphic differentials on C and let co1, ", , ay be

a basis for the vector space .g° (C, S2’). The canonical map

is defined by

A change of basis in g° (C, changes the map by an homography
of (k) into itself. This map has the following properties (cf. [4]).

i) 4$ is a morphism of C onto an algebraic non singular curve r of
(lc) not contained in any proper subspace of (k).

ii) If C is not hyperelliptic ø is an isomorphism of C onto T. If C
is hyperelliptic ø is of degree 2 and r is a rational curve.

iii) If C is not hyperelliptic the hypersurfaces of order l &#x3E; 1 of

(k) cut out on 17 the complete linear series ~ I where K is the ca-
nonical divisor on ~’.

b) We assume in the sequel that C is not hyperelliptic. From iii) and
Riemann-Roch theorem one deduces that the linear system ~ of all quadrics
containing r has projective dimension
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Let us represent a in P~ _ 1 (lc) (the being homo-

geneous coordinates in that space) by the point of Pe (k) W - 1 g (g -- 1) - 1 ,2

with homogeneous coordinates 
The linear group GL (g, k) acts oii P, by

for any matrix 31 E C.L (g; k) where denotes the matrix of the numbers 

The space Pe (k) decomposes then into g orbits 1 C 1~  g, where

If is the stabiliser of a point in e. g.

for some

then and one easily computes then the dimension of W1.:

The Zariski-clousure of IITr is the algebraic variety Yr = U and

thus has the same dimension as 

LEMMA 1. In tlae there are no quadrics of 2.

the quadrics of I of rank C 4 are represented in P, (k) by an al-
gebraic variety of ;--::- g - 4 (non e1npty if g &#x3E; 4).

The quadrics of rank C 2 being reducible, the first assertion follows

from i). Since Z is of codimension 3g - 3 in P, (k) the variety is

of codimension  3g - 3.
c) Quadrics of ¿ of rank 4. Without loss of generality we may assume

that the quadric Q of rank 4 has the equation XtX2 - = 0. It is thus

the projection from a projective space (its singular set) of a non sin-
gular quadric of projective 3 space. This last is ruled by two distinct pencils
of lines so that Q is ruled by two pencils and of projective
spaces of dimension g - 3 (xi = ÀX3’ x2 = lX4’ y x3 = lX2 for

Let Q be the monoidal transform of Q with center and let

~: ~ 2013~ Q be the natural projection. The variety is non singular and

(P~_5) = S is a divisor on Q, The proper transforms of the two pencils

6. Annali della Scuola Norm. Sup.. Pisa.
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and I Pl’-31 give two linear pencils .D ~ I and I on ~. Let r be
the proper transform of I’; then n 1’ is an isomorphism of 17 onto I~. We

set, identifying 1~ with h ~

and remark that since

have

is a hyperplane section of Q we must

We have therefore the following

LEMlVIA 2. Let Q be a quadric of rank 4. Then Q 
i) tivo series gl P and g’ tvithout fixed points cut o2ct on F by tlce

two i-uliitg _pencils I and ]
ii) a divisor Go ~&#x3E; 0 whose is in the set 1vhe1’e the ve1.tex of’ Q

meet r

such that

d) Quad1’ics of ¿ of rank 3. We may assume Q = + x 2X3 = 01 so

that Q is the projection of an irreducible plane conic from a vertex Pg-4.
Thus Q is ruled by a single pencil of projective spaces of dimension
g - 3. One has the following

LEMMA 3. Let Q be a quadric of rank 3. 1’!ten Q determines

i) a linear series gl 1vithout fixed points czct out on r by the rulingp

pencil I Pg-3 I
ii) a divisor Go &#x3E; 0 1vhose support is in the set the vertex 

ineets r

suciz that

e) Conversely one has the following

LEMMA 4. Let Go be a positive divisor on I’ and gl, gq two linear seriesp q

fixed such that

Then there is a quadric Q in -Y of frank c 4 such that Go , 1 gq are d eter-

mined by Q as in lem1nas 2 ayrd 3.
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The rank of Q is 4 or 3 as g1 ~ gq or gp = gq . If one of
the series gi p or is c01nplete then the quad~ric Q is unique.

PROOF. Let G’ 0; (resp. G, , G~) be two distinct divisors of g~ (resp.

g’). Their supports are disjoint since g1 (resp. g1) has no fixed point. Letq g; q

lap (X) _-_ 0 be the unique hyperplane which cuts out the canonical divisor

Gp + Go + Gq for ex. =1, ~, ~ = 1, 2. The rational function on r

is not identically zero and well defined on F (lemma 1).
Moreover it has no zeros nor poles, thus it is a constant c # 0. The

quadric

satisfies the requirement of the lemma. It is the unique quadric of that

sort if say is complete because then for any Gq E gl the specialty index
i (Gq -~- GO) = 2 and thus Gq -~- Go determines uniquely the of the pencil

corresponding to that divisor. When Gq varies in g’, Pd-3 describes
and thus Q being the set theoretic union of those is uniquely

determined.

2. Special curves of genus g cr) We assume now that the curve C carries
a linear series uk of dimension 1 and degree h without fixed points. If

jz  g -1 this linear series is special. Let D, D’ be two distinct positive
divisors of Since g1 has no fixed points D and D’ have disjoint supports
and there exists a non-constant rational function f on C such that

Let .E = H° ~ C, S~1) and let

We define a linear map

by sending each element w E F into the element jm of E. This map has the
property that if ~I is any subspace of F such that I (H) c H then necessarily
.H = 0. In fact if m E ~ and a) =1= 0, one has

This for large enough h (e. &#x3E; 2g - 2) is absurd.
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b) We have to study the following situation. Let E be a finite dimen-

sional vector space over a field k, ~’ a subspace of .E and

a linear map of F into .E. We say that ~ is irreducible if for a linear subspace
.g c ~’ we have

An irreducible map is certainly injective since for .g = Ker (H) = 0 c H
and thus Ker 1 = 0. If a basis ei,..., e,. of ~’ is completed into a basis

... , er , ... , e$ of E the map I is fully described by the action on

the basis of F :

i. e. by the matrix g = (Gap).
Assume  irreducible and consider the sequence of spaces

One has  dim F otherwise A ~h’) _ ~ and F = 0, similarly dim F2 
and F~ = U~ ". , There exists therefore an

integer ,u such that

LEMMA 5. Under the specified assumptions one can + 1 subspaces
E1 , ... , in F such that

PROOF. If It = 0 we get
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By induction we may assume

where fl’ = ,u - e.
Since Fe = Fe-l n I both Fe (Fe) are contained in A (FO-1).

Let Bp-’+2 be a complement in A, (F,-,) of F, + A (Fe). We thus have

We set

so that

and we see that

COROLLA.RY 1. Choosing a proper basis in F and completing it to a

proper basis of .E the matrix a of the 1nap A can be given the form

ichei,e each Ua is a ra X sa rectangular 1natrix ivith sa &#x3E; ra of the (0, I).
Note that l « dim .E - dim F.

COROLLARY 2. respect to a choice of the basis as in the previous

corollary tjie 1 r (r + 1) elernents
2

of the tensor product of E with itself are linearly independent.
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In fact if ~ = 0, since e, occurs only in we must have

, (ep) = 0. Since A is injective C1p = 0 V B. Since e., occurs only in

Q2fl we must have f (ep) = 0 and thus C2fJ = 0 V 3. Continuing in this
~~2

way we get = 0 V a, ~.
c) Returning to the situation described at the beginning, by application

of the previous lemma and corollaries obtain the following

6 Let r be non hyperelliptic canonical curve of g &#x3E; 4. Let

D and D’ be two dzsjoint positive divisors on r, linearly equivalent of degree
h s g -1. Let f be a rational on r ( f) = D’ - D and let

be a basis of the .fOt"rJ1S oaz (lc) with &#x3E; D. I.f 
is a basis of linear forins on Pg-l (le) with &#x3E; D’ such that

then r lies in the algebraic variety 0 of Pg-l (Ic) defined by

and  r3) are linearly 2

= dimk (F ) = specialty index of D.

3. Ourves g36 c~) If a non hyperelliptic curve C carries a linear

series g13 this must be complete and without fixed points (otherwise C would
be hyperelliptic). If the characteristic of the gronndfield lc is # 3 one can
construct a curve of this type for any value of g ~ 3. For instance for

g = 31c - 1 we can take for C the normalisation of the plane curve

For the other values of 9 we can take the normalisation of the plane curve

whose genus is r - 1 or r - 2 according to whether r is prime or not to 3.

PROPOSITION 1. Let r be the canonical model of a non hyperelliptic
curve C of genus g --~&#x3E; 4 car/tying a gl,,
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Then each divisor of the g3 on F lies on a straight line and these lines

describe a, ruled of degree g - 2 ivhose. equations by a suitable
choice of coordinates can be put iaa the form

PROOF. Since the g13 is complete the index of specialty of each divisor
D E g3 is i (D) = g - 2. This means that D lies on a straight line.

In this case the space F decribed in the previous section is of codi-

mension 2 in .E = H ° (r, Except in the case g = 4 where r lies on a

cone, 1~ -]- since i (D + D’) ; ~ - 4 by Clifford’s theorem [4]. Thus
for the matrix a in the canonical form of Corollary 1, we must have 1 =1
or l=2.

With the notations of lemma G, 1 the divisor of g13 being given as

(,~’ = const.), we recognize that the locus of these lines is the variety 0.

By the choice of the basis we see that in each case 1~ can be written in

the given form.

REMARK 1. one has 1 c ~~z  g - 2 so that the surface

is non singular. For g = 4, 0 could very well be the cone xo x2 - xi = 0
but there exists always a curve of genus 4 for which 0 is non singular.

Indeed if 1n = g - 2, 4Y is the cone of the straight lines joining the

point (o, ... , 07 1) to the points of a rational normal curve in Xg-, = 0. The
order of the cone is g - 2. Since r lies on this cone and is of order 2g - 2

the order of the cone is c 2g 3 2 a hyperplane though the vertex cuts
3 B

the cone in at most . 3 generators . Hence g c 4.3 / 

For g = 4 any non singular curve which is the complete intersection
of a quadric and a cubic in P3 (lc) is the canonical image of a curve of

genus 4.

Except possibly for g = 4 we can assume 1 c 1 {g - 2). This
2

invariant was first discussed by Maroni [15].

REMARK 2. Each quadric through the curve r contains the surface 0.

The 2: (g - 2) (g -- 3) quadrics obtained from the second order minors of
2

the matrix defining 0 are linearly independent, and thus span the full

system I of all quadrics through 11
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PROPOSITION 2. Let 0 be a non hyperelliptic curve of genus g &#x3E; 4 carr-

rying a positive divisor D of degree 3 with dim I D I ---1. Let Eo be a divisor
of degree g - 1 with di1n I Eo =1. Then there exists a divisor E E Eo I or

a E’ ElK - Eo I such that either E or E’ is ~ D.

PROOF. Since C is not hyperelliptic we can identify C with its cano-
nical image r.

Let where is
the fixed part of I so that g~ has no fixed points. 

~ ’

Since dim I Eo =1 we have i = 2 so that dim IT =1.
Let analogously ) I K - I + ... + where ...

... + 9 -i- is the fixed part of I and g~ has no fixed points.
We construct the quadric Q E ~ corresponding to the data of the series

y gq and of the divisor Go = P~ + ... + y as in lemma 4. Let V

be the vertex of Q. This is a projective space of diniension g - 5 or 9 - 4
according as the rank of Q is 4 or 3. Let J E ~ I D I be a divisor consisting
of 3 distinct points and disjoint from the finite set V n [1. The 3 points
of J lie on a straight line l not contained in V. Consider the projection
with center V on a Ps (Ie) or P2 (k) (according to the dimension of V) not
meeting V. The projection of will be a line or a point in the image space.
Therefore in any case Z lies on a space of one of the rulings of Q.
This implies that either 4 E g1 or 4 E g1 and this proves our contention.

COROLLARY. If C is a non hyperelliptic curve of genus 9 ~&#x3E; 4 cart"ying

a g3, for every cornplete linear series of degree 9 2013 1 and dilnen-
sion 1 one has

either

or

where Pl + ... + is a fixed divisor of degree g - 4.

For any integer s &#x3E; 1 we denote by (0)(8) the s-fold synmetric product
of C. This is a non singnlar algebraic variety [4].

PROPOSITION 3. Unde1" the sa1ne assumptions for C, there exists a _proper
subvariety S c {C )tw4 s’ltch that f or

the linear series

is a coniplete linear series of degree g - 1 and dimension 1.
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PROOF. Let The above condition on P~ , I ... is equivalent
to i (D + Pl + --- + Pg-4) = 2, i.e. the exceptional set is the set where

i (D + P, + ... + Pg-4) &#x3E; 2.
First one can select P , ... , such that i ( D + P1-~- .,. -~- Pg_4) = 2.

In fact K - g3 ~ --. gz~ 3~ . We can select Pi outside the fixed divisor of

this series. Then P2 =F P1 outside the fixed divisor of 2g-5 = 
and so on. We end up by selecting .P2 , .,. , such that dim -

- Pi - ... - == 1. This is what we wanted to prove. Secondly we
remark that if a = (ai’ .,. , ag) and b = .,. , bg) are two distinct points on
the line containing D on the canonical curve r, the condition i (D + P, +
+ ... + Pg-4) &#x3E; 2 is equivalent to the condition

This condition on the cartesian product defines a proper analytic set S
invariant by the action of the symmetric group. Its image S in (C)-4 by
the natural map Cg-4 - is a proper analytic subset of the space (C)(g-4).

To a complete linear series gl g- 1 on the canonical curve h corresponds
a unique quadric Q of rank c 4 through the canonical curve. This quadric
is described by the spaces Pg-3 spanned by the divisors of I In parti-
cular in the case under consideration we can consider the quadrics of rank
c 4 corresponding to the complete linear series of the form

where the Pi’s are distinct generic points on I".

PROPOSITION 4. the same assumptions on 0 2ve carc choose

1 (g - 2) g - 3) complete linear series of degree --1 a7zd dimension 1 of
the form g3 -~- Pi + ... ~- Pg-4, 1vith distinct Pi’s, such that the 

ding quadrics of rank  4 are linearly independent and thus span the f1tll
system of qtiadrics through the canonical curve.

PROOF. Consider the projection map
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defined by Let

S be the counter image in Cfl-4 of the set S defined in proposition 3. The

set U (S) is a proper analytic subset of and thus we can select

... , Pg_2 On F such that
i) the points ~’1 ~ ... , are distinct

ii) for any choice of a C a, fl c g - 2, the linear series g’ +
is complete of dimension 1.

iii) no divisor of the series gg 9-3 = ~ K - g§ I is b Pi + ... + .Pg_2 .
For any a, 1 C a C g - 2 there is a unique divisor Ha E such that
2g-5

pl + ... + .P« + .. + Pg-2. The g - 2 divisors .g« are linearly inde-

pendent divisors of This can be seen as follows : we represent the

divisors of by the points of a projective space The sets Ba =

are represented by hyperplanes, and by iii) we have
g-2 

n = Q . Thus these hyperplanes are linearly independent and there-
0.=1

fore the points H« = n EB are also linearly independent. Let D, D’ be two

distinct divisors of on the canonical curve I: Then 1) + Ho. is the divisor
of a linear form 1. and D’+ H« is the divisor of another linear form 1’,,. The
linear forms 1,, are linearly independent because the divisors Ha are linearly
independent. The same is true for the forms l’ a . 

’

Consider the rational functions

for

These; having no zeros or poles on 1~ are constants ~ 0 on 7B Since

hap hpy hya = 1 and hap = 7lï3a1 we can find non zero constants C~ such that

hap 
Replacing la by Ca lo. we may thus assume hap =1 so that on 1-’

This is the equation of the ruled sarface 4$ (cf. lemma 6 and proposi-
tion 1). We know that the 11 (g - 2) (g - 3) quadrics Qap ---- h - 0
for lx 2013 2 are linearly independent. By construction the

quadric Qaf1 = 0 corresponds to the linear series
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4. We end this section with a proposition which shows that the com-

plete special series of dimension &#x3E; 1 are limiting cases of complete
linear series of dimension 1.

PROPOSITION 5. Let be a complete linear series of degree g - 1 and
dimension r &#x3E; 1 on the curve C. lVe can choose a divisor 1)0 E gr g-l such that

in any neighborhood of (Do) in (C)(9-1) there is a divisor D of y -1 distinct
points 1vith dim I D =1.

PROOF. Choose Pr-l on C distinct and such that 91-r p g-

- P1- ... I is of dimension 1. Let J 0 be the fixed divisor of 

so that 6fl g-r = 1 of Let Do E gi be a

divisor of l distinct points and consider the map

defined by The image
of A is an irreducible subvariety of (0)(-q-,) containing the divisor -1) = Do +

If (Q 1) -~- ... -E- is generic, (see proposition 3), we see that

Given any neighborhood of (D) in (C)(9-1), we can find such

that i) Do -~- ... -~- consists of distinct points, ii) the complete
series Do -~- ... + has dimension l, iii) ), ((Qi) + ... U.

5. Hyperelliptic In this case the canonical image r of C is a

rational twisted curve of P9-1 (k) of degree c~ -1. Every complete linear

series is of the form g’ + P1-- ... -- Pg-3, and conversely if P1 , ... , Pg-3g- 
, . 

2 
, 

.

are generic this series is complete. To each one of these series corresponds
a quadric of rank 3 through T which is the projection of h from the space
of dimension g - 4 spanned by the images of the points ... , I’_3 .

Choosing g - 1 linearly independent points Pi, ... on r the 1 (g-1 );g-2)1 ’ . 2
, 

- -

quadrics of rank 3 projecting F from the space spanned by P1, ... , Pa , 
... , for 1  g -1 a  fl, are linearly independent and span the
full system of quadrics through F.

2. Theta functions and theta divisors.

6. The theta function. a) By Hg we denote the Siegel space of rank g,
i. e. H~ = (z = g) 11 z = z, Im z ~ 01, denoting a g X g matrix with
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complex elements. Let u = t(u1 , .., , be coordinates in Cg. For every
z E Hg the theta function is the following Fourier series :

This series has the following properties (cf [6] [12] [13] [27] [29])
i) it is uniformly convergent on any compact subset of H g

ii) it has the following periodicity properties

for any n, E Zg.

iii) it satisfies the « heat equations »

where is the Kronecker 6, for 1 c a c g.

iv) for any zo E Hg, 0 (zc, zo) is not identically zero but vanishes some-
where in Cg.

We set Q (z) = {I, z) and we consider the following representation o of
Z29 as a group of automorphisms of associating to every vector

y E Z2g the map 
-

The quotient space q9 = (C~ X (Z2g) is a complex manifold and we

have a commutative diagram of holomorphic maps :

Since is topologically a cell, is the universal covering space of
For every z E gg let be the discrete subgroup (of maximal rank) of

Cg generated by the column vectors of 0 (z). Then Co is a proper map, and
for each z E Hg, (z) is the complex torus Cg/A z .
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b) We define

Let T = prg 
g 
I B (0), for any integer s with 0  g - 2 we define

so that Bo (0) = B (0).
The sets A (0) and B (0) are analytic subsets of Cg x Hg.

LEMMA 7. For any s, 0 - 2, sets Bs (0) are analytic subsets

This is almost an immediate consequence of a theorem of Remmert

([24] Satz 17). We remark that the sets A(0)and are invariant under

the action of e (Z29).

PROPOSITION 6. i) The set A (0) is of pure dimension

and prH(A (0)) = Hg.
ii) for any s, 0 « s --- 9 - 2, the sets are analytic and

pr H (Bo (0)) is a proper analytic subset of Hg.

PROOF. The first part of the proposition is a consequence of the pro-

perty iv) of the o-function. Moreover A(O) being non void and the set of zeros
of a holomorphic function in Cg x Hg is of codimension one in that space.

To prove the second part we first remark that a being a local isomor-
phism a (Bs (0)) is analytic. Since w is proper it follows that ill fl (Bs (0)) is

an analytic subset of Hg. It remains to prove that This

is a straightforward consequence of the following two lemmas :

LEMMA 8. Let flfl be a c01nplex space with countable topology and let c~ :

C)J -+ U be a proper holomorphic surjective of flfl onto an open subset

U c: en. Then there exists an open subset V c U and a holomorphic section

PROOF. We may assume U connected ; also since Co is proper we may
assume c)) irreducible. If S (~~) is the singular set of either (7) (S = U

or it is a proper analytic subset of U ; in this case we may replace U with
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and cV with C)J - wrl w (S By this procedure we see
that we can assume that U is connected and flfl is a connected manifold.

Also by analogous procedure we see that it is not restrictive to assume

that the rank of the map Co is constant in Thus we need only show
that under these conditions the rank of ÕJ equals in If the rank of

d) is strictly  n then each point x E ~ has a neighborhood N (x) such
jJ~)) is nowhere dense by virtue of a lemma of Remmert

([24], p. 348-350). Cover flfl with a countable union of such nei-

ghborhoods then This is absurd by a well known

theorem of Baire.

The second lemma is a unicity theorem for the Cauchy problem of
the heat equations.

Let U be open and connected in C ~ and V be open and connected in

C2 1 9 (0+1) ; let it II. be holomorphic coordinates in (Jg and let z =

= (Zap), 1  a  .-- z, be holomorphic coord in ates in .

The « heat equations &#x3E;&#x3E; in ~7 x V are a special case of a system of partial
differential equations in the unknown function v of the form

where the a’s, b’s, c’s are holomorphic functions in rr.

LEMMA 9..Let u = s (z) be a holomophic section of ?7&#x3E; V --&#x3E; V and let

v = v z) be a solution of’ (I) X IT. If

then v is identically zero. 
’

PROOF. In Cg x V we can perform the change of coordinates

Then the system (I) is changed into a system of the same type. In the
new system of coordinates the section s is reduced to u = p. Without loss
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of generality we may thus assume s (z) = 0. Let

be the Taylor expansion of v (it, ,z) near u = 0.
Substituting in (1) we get:

Let g be the ideal generated by ... , in the ring of formal power
series C (Ui , ..., By the assumption, for any zo E lT we have v (zo , it) E g2.
Equations (II) imply that if v (zo ~ u) E gk for k ~ 2, then v (z~, u) E gk+l. Hence
for any zo E V, v (z, u) E ngk = 0.k&#x3E;l

The sets (Bs (o)) will be called the ramification sets of 
s in Hg, 0  s  g - 2. There are the obvious inclusion

We note that this filtration of by analytic sets is invariant under the

action of the modular group. This follows from the theory of transformation
of theta functions (cf. n. 15) 

7. The theta divisor on a Jacobian vccriety. a) Let X be the Riemann

surface of the algebraic curve C and let r 1 ... , 1’2g be a basis of Hi C.¥, Z)
with the intersection matrix

Let ... , Wg be a basis of ~° (C, so normalised that the period matrix

has the form (I, z). As is well known z is a g x g matrix with com-

r.
plex element such that tz = z and Im (z) &#x3E; 0. The matrix z represents thus
a point of the Siegel space Hg , V’e denote by the complex torus

C91A,. If D is a divisor of degree 0 on C and a is a differentiable 1-chain

such that D = ôa then the point is well

determined by D modulo the elements of The map Â defines therefore
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a map (that we will still denote by A) of the group Go of all divisors on

X of degree 0 on theorem asserts that ~1 (D) = 0 if and only
if D is linearly equivalent to zero : D - 0. Moreover the image of A, A (Go)
is the whole torus J (C) so that J (C) is isomorphic to the group of classes
of divisors (by linear equivalence) of degree zero. The torus J (C) is thus

the « Jacobian variety &#x3E;&#x3E; of C.

b) Let Po be a fixed point on C. For every P E C we set

In this way we define a holomorphic map 1p: C - J (C). ’1’his map is one

to one (if g :~~ 1) and an isomorphism of C onto ~y (C). If Cg represents the
tangent space to ,-T (C) at the origin and (C) represents the set of lines
of Cg through the origin, by associating to every point p E V (C) the tangent
line to y ( C) at p translated to the origin of J ( C) we define a map

6 : y~ ( C) -~ Pg_1 (C) analogous to the « Gauss map &#x3E;&#x3E;. It is worth noticing
that the canonical map 4Y described in section 1 is nothing else than the

composition of the map y just defined and the map a ~ P = a o y.
By linearity we can extend the map y to the whole Go. In particular

for every h ~ 0 we obtain a holomorphic map

from the h-fold symmetric product of C into J ( C) given by

If K is the canonical divisor of C, n (.~) = x E J ( C ) is a well determined

point of J ( C) which depends only on the choice of Pa .
c) The function of 2c 0 (u, z) can be viewed as a holomorphic section

of a line bundle over J (C). Its divisor (0) is thus defined on J (C) ; it is

a non empty holomorphic divisor. We recall the following theorem due es-
sentially to Riemann.

THEOREM OF RIERIANN, i) Tlae niap n : I (C)(9) J (C) is surjective.
ii) The i1nage of the (C)~9-1~ - J (C) tip to a translation by

a point a E J (C ) 2a == x is tlze theta cli visor (0).
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iii) sections 0 (u, z) vanishes of order one on (0).
For the proof of this theorem one can see [13] [30].
Only the la,st condition iii) is not explicitly proved in the literature.

It can be seen as follows. The support of (0) is an irreducible variety be-
cause of ii). If 0 (it, z) vanishes on it of order a then for any c E J (C) the
induced section 0 (lp (x) - c) on C either is identically zero or vanishes on
each one of its zeros of order ~ It. But if ... , are distinct and

chosen in such a way that Po + ... -f - is non special then for c =

== ~ (Pl +... + the section 0 (y (x) - c) is not identically zero
and vanishes to the first order at the points Po,..., Pg_1 [13]. This implies
that a = 1. ivd can now translate by a the map so that ~c ((C)t9-1~) = (0).
Since 0 (2013 ~ z) = 8 (u, z) the involution x - - x on J (C) changes (0) into
itself. If .~ is a divisor on C of degree g - 1 then by this choice of the
map rc we obtain

i. e. the involution x - - x on (0) corresponds to the involution on the

set of complete linear series of degree 9 - 1 which associates to each such
series the residual series with respect to the canonical one.

Given a point Pi + ... + E we denote by i (PI + ... -~- 
the specialty index of the divisor PI + ... + 

PROPOSITION 7. (cf. [16]) The subset of (C)g-1&#x3E; :

is fhe subset of (O)(g-l) where the jacobian of the 1nap n has rank .::--- g - r.

PROOF. Let P, -h- ... -~- E (C)(9-1) and let V be an open set on C

such that -1 and on which there exists a holomorphic
function t with the following properties

i) at each point a E V, t - t (a) is a local parameter at a

ii) for a, bE 
The open set is a neighborhood of .Pl -~- .,. ~--1 g_1 in (C)~g-l~.

Let ti denote the lifting to the Cartesian product Ug-1 of the function t

on the (i)-th factor. The elementary symmetric functions of the 
... + ... ~ øg-1 = tl ... tg-i can be taken as local coordinates on

the set (U)(9-1). One has

7. Annali della Scuola Norm. Sup.. Pisa.



208

If U’a 1  a c g are coordinates on the universal covering Cg of J(C)
then the map n is given by

If on U, the jacobian matrix is easily com-

puted in terms of the functions ti and given by the matrix

at a point where ti =F tj V i, j i ~,j, At a particular point c~l + ... --~ a’g-l =
... + nrPr (~~ &#x3E; 1, ¿ ni = g -1 ) with Pi ~ P~ if i =i= j, if we set

’l’i = t (Pi), the rank of the Jacobian matrix 6 (rzc)j 8 (W) is the same as the

rank of the matrix

The rank of this matrix is thus equal to g - i (al -+- ... -~- 

In particular it follows from the above proposition that the sets St- are all

algebraic subsets of (C)(9-1). One has S1 = and S2 is a, proper al-

gebraic algebraic subset of (C)(9-1). From lemmas 1-4 and proposition 5 if

g &#x3E; 4 S2 is non empty and contains always a point D = P, + ... -~- Pg-l
with distinct Pi’s and with dim I D =1.

LEMMA 7. Let C be non hyperelliptic of genus 9 2 4. Let -1) P, -f- ...

... -~- Pg-l be a point of S2 1vith the properties
i) the points Pi are distinct
ii) 

In a neighborhood of 1), S2 is of pure g - 3.

PROOF. Let h : Cg-l --~ (C)(9-1) be the natural map from the cartesian
to the symmetric product of C. Since h has finite fibers it is enough to
prove the statement for the set 22 = h-1 (82).
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Let Vi be mutually disjoint neighborhoods of the points Pi and let
Let be local parameters in Vi and let = Aa (ti) dti on

Vi. We have

Since in the space of g X (g -1) matrices those of rank C g - 2 are a
subset of codimension 2, it follows that at each point of :22 n U the di-

mension of ¿z is ~ g - 3. Suppose, if possible, that one irreducible com-

ponent of -V2 n U has dimension g - 2. At a non singular point tl x ... X 
of it, by renumbering the coordinates, it will have an equation of the form

where g is holomorphic in a neighborhood of tf X ... X 
Now the rank of the matrix (Aa is g - 2 since g -- 2 generic

points on the canonical curve are linearly independent. Moreover since C
is not hyperelliptic (Aa ~ (A. (ti)) for 1 c z c g - 2. By the definition
of ¿2 there will exist g - 2 holomorphic functions k, (t1 , ... , t~_2), 1  ~ C

 g - 2, such

Two at least of these k, must be + 0 in a neighborhood of t’ 1 x ... X tZ-2’ I
for instance k1 and k2.

Taking derivatives of the above relation with respect to ti and t2 one

sees that the space spanned by the points

contains also the points and

" t.7 ,

It follows that for any

choice of ... , in small neighborhoods ... , respectively the

corresponding points Q2 , .., , 9p-2 on C have the property i (2Ql +
+ 2Q2 + Q3 + ... + Q-2) &#x3E;_ 1. This is impossible since Ql , ... , Qg-2 are
generic, as one sees, for example, by specializing the Qj to a common non-
Weierstrass point.

PROPOSITION 8. Let 0 be non hyperelliptic of 4. Then

a) the set pure g - 4,
b) the points n (D), D = Pi + ... + such 

ai-e dense i7z n (~‘2),



210

c) at each one of these points the multiplicity of (0) is 2 and the q2ca-
dratic equation 

is the equation in (C) of the quad’ric of rank --- 4 through the canonical
curve corresponding to the series -

PROOF. From proposition 5 follows that the points n (D) are dense in

n (S2). From the previous lemma it follows that at a point l~ the local rank
(in the sense of Remmert [24]) of the mapyr is g - 4. is of

pure dimension g - 4. From proposition 7 we deduce that the singular set
of (0) is contained in ’Jl (S2). It is also known (see [17]) that at each point
n (D) (0) has a singular point of multiplicity 2. This statement will be

reobtained in the course of the present proof. We lift the map n to the
cartesian product Cgw and use the same notations as in proposition 7 and
lemma 7.

In a neighborhood U = II Ui of D E the map n will have equations
of the form

Since = (0) we get the identity 0 ~2~ (t1 , ... , t~_1)) --- 0, and the-
refore at any point c E U we get the conditions

The first condition restates the fact :7i(C~)==(0). The second reads

explicitly as follows :

If we denote by (c) up to sign the minor determinants of order

g -1 extracted from the matrix (Aa by deleting the a-th co-

lumn, we get a set of holomorphic functions on U. Moreover (c) =

a8 (20 (c)) (c)-l is meromorphic and independent of a. From lemma 7
OUa 

) ()
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and proposition 7 we deduce that (~2 being of codimension 2) this function
is holomorphic and different from zero outside of a set of codimension 2.

It follows that e (c) is holomorphic and § 0 in the whole of U.
Xow if c = c° E E2 at the point D E (cl) = 0 and thus the point

ic (CO) == 7c (1)) is singular on (0).
If all second derivatives of 0 (it) vanish at u = 20 (c°) it would follow
n

from e 20 (c)) = e (c) (c) that at c°, (c))co = 0 for 1 « a « g.
0 ita { 

Let where g’ has no fixed points. Fromh 
-

this condition follows that for 1  ~ 1 h the points ... , Pi., on
the canonical curve span a space of dimension h - 2 which contains also

-

the point It follows that the points Pi, .. , Ph, ... , Pg-1 span a
space of dimension g - 3 containing Pi .

But from the conditions (dlJfa)co = 0 we see that in this space of di-

mension g - 3 is also contained the tangent line to the canonical curve

at Pi.
This argument could be repeated for any choice of ... + Ph E ~h

since the point w (c°) is not changed (Abel’s theorem). Now when P1-~- ... -~- P~
describe g1h the space spanned by Pi, .,. , is a space of dimension g - 3
describing one of the rulings of a quadric of rank C 4 through the canonical
curve. The pencil of these rulings would cut, outside of a fixed divisor, the
series of divisors 2(P~-j-...-~-P~). This is impossible by Bertini’s theorem.
Therefore it is a double point.

Now at ic (c°), since the first derivatives of 8 vanish, we deduce that

Note that the bilinear form is not iden-

tically zero (since 7,v (c°) is of multiplicity 2 on (0)) and that the previous
condition says

for any choice of the À Is. This means that the space of dimension g - 3
spanned by the points P1, .,. , on F is contained in the quadric
H (X, X) = 0. When the divisor P1-~- .., -~- P9_1 varies in I the point
2c (c°) does not change while the space spanned by P, , ... , describes
the rulings Pg-3 of the quadric corresponding to the complete linear series
~ D I. This achieves the proof.
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COROLLARY. Let 0 be a non hyperelliptic curve containing cc g3 , then
the singnlar set of (0) consists of two irreducible components

a) the set with generic point 11 (gl 3 -~- ... -~- Pg-4) where P~ , ... , 
are generic points on 0

b) tlae intage of the previous set by the involution x x on J (C)
whose generic point is n (I K - (gl + Pi + ... + Pg-4) 1). These two components
are distinct if g &#x3E; 4. For g = 4 every algebraic curve of’ genus 4 (non hype-
i-elliptic) contains a g’ 3 and the two ccbove components are reduced to two points
which _possibly may coincide.

Moreover the tangent cones to (9) at the singular points give a syste?n of
quadrics of rank c 4 through tlze canonical curve r which spans the f icLl
system of quad1"ics through r.

PROOF. This is a direct consequence of the previous proposition, of
propositions 3, 4, and 5 and the corollary of proposition 2. The only thing
that remains to be seen is the fact that, if g &#x3E; 4, the two components of
the singular set are distinct. Unless g = 4 and I 2g3 j I = K I, (which occurs
only in the special case when the quadric through 1~ is a cone), dim 12g~ c 2
by Clifford’s theorem. Then if D and D’ and two divisors in 93
l (D + D’ -1- ... -f - Pg-4) c ~ if the Pj are sufficiently generic (cf. Lemma
1 of [17]). So we cannot have

for any choice of

component a).
Thus lies only in

d) In the case C is hyperelliptic the set S2 is of pure dimension

g - 2 since every generic complete is of the form g; -~- Pi -~- ... + P9-3 .
Again n (S2) is the singular set of (0). This is irreducible and of dimension

g -- 3. As before one proves that the tangent cone at the point c (g12+-
+ P, + ... + Pg -3), for P1 ... , + Pg-3 generic on C, is the quadric of rank
3 that projects the canonical curve r from the points P~ ~ ... , P9-3. These
quadrics generate the full system of quadrics through the canonical curve 1:

3. The modular space of polarized Jacobians.

8. Teichiniiller space. Let Xo be a standard model o t’ a topological
oriented surface of genus g. A Teichmüller surface is the data of a Riemann

surface X and a homotopy class of orientation preserving homeomorphisms
f : ~o -~ X. The set of Teichmuller surfaces is the Teichmiiller space ~.
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We fix on X, a basis for the fundamental group of Xo made of 2g

closed paths 01 , ... , with intersection matrix ( r 0). Then for any Tei.
chmivller surface we can take the cycles = yi as a basis for the first

homology group as we did in n. 7. Choosing on X a normalised basis for

the space H° (X, we can compute the corresponding period’s matrix (I, z)
as explained in n. 7. We thus obtain a natural map

associating to the Teichmiiller surface (X ; [ f ~ f the point 
From the theory of Teichmuller spaces we borrow the following facts.

On the space 1: one can introduce a structure of a connected complex ma-
nifold of dimension 3g - 3 such that ). is a holomorphic map with discrete
fibers.

For the theory of Teichmiiller spaces the reader is referred to L. Ahl-

fors, L. Bers and H. Rauch (cf. the bibliography at the end of this paper).

9. The space of Let J = I (C). This is the subset of Hg re-
presenting Jacobians of algebraic curves of genus g. This space will be

called the Jacobi space. Let us consider on Hg the Zariski topology (the
closed sets are the analytic subsets of Hg) and let J be the closure of the
set J in the Zariski topology. Since is a Stein manifold the Zariski

closure J is the analytic set

= 0 Vf holomorphic on Hg with f (.7 ) = 0) .

Since J = Â (C) and Z is an irreducible manifold, it follows that J is an

irreducible analytic subset of In n. 6 we introduced the analytic sets

Bs(8) in and the analytic sets NS (Bs (8)) in Hg. From pro-
position 8 one deduces the inclusion 

We want to prove the following

THEOREM 1. The Zariski clOS1tre of the Jacobi space J is an irreducible

analytic set of di1nension 3g - 3. It coincides with the unique irreducible

c01nponent of’ the ramification set containing J (g &#x3E; 4).

PROOF. a) We first prove that dim J 3. This is a consequence
of the following form of the implicit function theorem (cf. [24]) :
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Let U be an open subset of containing the origin and f : 
a holomorphic map, f (0) = 0. Suppose that the jacobian of f; Df (x) has
constant rank k for all z E U. Then there are local biholomorphisms h and

g of Cn and CP respectively such that

Indeed since A has discrete fibers the rank of the jacobian of ), must

be 3g - 3 on an open (dense) subset of C. Therefore the image A (C) cannot
be contained in an analytic set of dimension  3g - 3.

fl) To complete the proof it is enough to show that at some point
zo E J the dimension of the ramification set Ng-4 is exactly 3g - 3.

By definition Ng-4 = (Bg-4 (0)). Let M be an irreducible component
of N~_4 . There exists an irreducible component A of B,-4 (0) such that

(d) In fact the counter image in (0) of 1J[ consists at

most of denumerably many irreducible components of Bg-4 (0). The projec-
tion map being the product of a local isomorphism with a proper map,
the projection of each one of these components is an analytic set. One

at least of these sets must be M since by the Baire theorem ill cannot

be a countable union of proper analytic subsets. We need :

LEMMA 8. At each siinple point zo E -Ill any tangent vector to l~l

satisfies the conditions

far any

PROOF OF THE LEMMA : Let be the singular set of 3f and S (zl)
the singular set of A. The set

is a connected manifold. The projection on the space Hg gives a holomor-
phic map of the connected manifold zf into the connected manifold 
It is of maximal constant rank on an open dense subset A" Moreover

the projection of A" is dense in JI. If we prove the statement for the points
(uo , by continuity we deduce the statement at any other point (uo, zo)
with zo E JYI - S (-Jl) and (ito E prgg (zo) n J.

Let zo) E 4". By the quoted implicit function theorem, we can

find parametric equations of 4" in a neighborhood of (1to, zo) of the form
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where t is in a neighborhood of the origin in = and y in

a neighborhood of the origin in C’’ (o = dim L1 - rank PfHg J"). Since

4 c Bg-4 (0) c Bo (0) we must have

for

Differentiating the first condition with respect to t and making use of the

second set of conditions we get:

For y = 0, t = 0 and we get the desired result

since when the ),i’s vary, describes the space of tangent vectors to

]1 at zo because z = z (t) are parametric equations of 3I in the neighborhood
of zo .

y) To complete the proof it is enough to show that if if is any one

of the irreducible components of containing J at some point zo , its

dimension is  3g - 3.
Let zo E J now be a point corresponding to a Jacobian variety of a

non hyperelliptic curve C carrying a g3 , We do not know a priori if zo is

simple.
Let A and - A (possibly A = - A, if g = 4) be the two irreducible

components of the singular set of ~8 (i~~, zo) = 0~ on J(C). Then A must

contain one of the irreducible components of the counter image of A or

- A in Cg, the universal covering J (C ). Call that one li.

By virtue of the corollary of proposition 8 we can choose 2 (g - 2) (g - 3)2

distinct points for  1/2 ( - 2) (g - 3) on A such that thep o - 29
corresponding quadrics of 4 through the canonical image r of C
are linearly independent. By proposition 8 these quadrics have the equations

or, equivalently by the « heat equations &#x3E;&#x3E;

3) Let be a sequence of non singular points on 1’~ such that
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We show now that the sequence can be so chosen that we can

lift it to sequences (2Lya , 1 - a---1 (g - 2) ( g - 3), such thatv - - 

2

Let fl = prHg d. At each point x E J one can consider the local rank

r, (x) of this map according to Remmert and Stein, that is the integer
r, (x) = dim L1 - dimx fl-1 a (x). This function of x is lower semicontinuous

on 4 (cf. [24] theorem 15). At xa = (u~a~, zo) we have r, (xa) = dim 4 - (g - 4).
By definition of B,-4 (0) at each point x E A, r~ (x)  dim d - (g - 4). On an
open neighborhood in A we must have rF~ (,z)=r~~ (xa) V x E IT (xa) V a.
Now dim M = sup r. (x) = r (xa) U(xa) -~ M is a holomorphic map

x "A

« without degeneracy &#x3E;&#x3E;, (i.e. of constant rank r’).
Let V be a neighborhood of zo in Hg such that V n Y, U ... U Yk

decomposes in k irreducible components Yi, 1 Ic, one for each irre-

ducible germ of 1Jf at zo. One of the irreducible components X of 4 n prg 9 ( V)
must contain the set Ã. The projection of X on Hg, since it is an irredu-

cible analytic set of dimension = dim must coincide with one of the

Y~’s. Call it Y.

Let U’ (xa) be the connected component containing Xo. X.

Then

is a holomorphic map without degeneracy of constant rank r into a con-
nected irreducible complex space Y of dimension r. By a theorem of Rem-
mert ([24] theorem 28) ft is an open map.

This is true for any a, 1  a c 1 (g-2)(g-3), thus the 2 a

is an open neighborhood of Zo in Y. Any non singular point of Y in that
neighborhood can be lifted to a point in each one of the sets U’ (xa).

Since the neighborhoods can be chosen arbitrarily small our
assertion follows.

(8) Let The matrix
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for v - oo tends to a matrix of rank ~o. For v large enough the rank of
this matrix will be e. But then, for those v’s the conditions of the previous

lemma define a space of tangent vectors of dimension c 1 g (g -+-1) -2

- 2.- (g - 2) (g - 3) = 3g - 3. This shows that at those points the dimen-
2

sion of JI is ~ 3g - 3 and this concludes the proof.

REMARK. Let E be the subset of J representing hyperelliptic curves.
One can easily show that the Zariski closure E of E is an irreducible

analytic set.

By a similar and simpler argument one can prove that JE7 is of dimen-

sion 2g - 1 and coincides with the unique irreducible component of the
ramification set containing E.

10. a) The group of automorphisms of Xo (cf. n. 8) acts on the Teich-
mVfller space 1: by

for a E Aut If a is homotopic to the identity the action of a on IC is
the identity. If 1’1T = {x E Aut (Xo) ( a homotopic to the identity) the action
of Aut on Z reduces to the action of the group d = Aut (note
that N is a normal subgroup of Aut (Xo)). Let H be the subgroup of Aut (Xo)
defined by

This is another normal subgroup of Setting One

, 
sees that 1’ acts freely on ’C (cf. Rauch [21], lemma 2) and the manifold

’ 
represents the classes of « Torelli surfaces ». The natural map

A: C - Hg can be factored through the natural T and a map
of degree 2 of T onto J. This last map (as it follows from Torelli’s theo-

rem) is obtained by dividing T by the action of the involutory automorphism
z of T corresponding to an orientation preserving diffeomorphisms of ~a
which changes the sign of the ag (as homology basis). The
fixed points of this automorphism of 11 are the points corresponding to
hyperelliptic curves. These are known facts in the theory of the Teichmuller
space. It follows that the Jacobi space J is in one to one correspondence
with the normal space In fact J is non singular at a point correspon-
ding to a non hyperelliptic curve. In particular J is locally irreducible.

From the theorem of Remmert ([24], theorem 28) it follows that if Y is
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the Za)-iski closure of J in Hq (i. e. the irreducible component of the rami-
fication set N9_4 containing J ) then the 1nap ~, ; Y is an open 1nap,
i. e. J is an open subset Y.

b) From the proof’ of’ Theorem I Nve also deduce the following re-
mark. At a point zo of a Zariski open (non e1npty) subset of J the tangent
space to Y at zo is a 3g - 3 di))tensional space 1vith the equations

aafJ X,, Xfl = 0 descrabe tlae full linear system of quad1’ics the

canonical curve corresponding to the point zo .

PROOF. Let S (Ng-4) be the singular set of the ramification set Ng-4.
The set A = J - J n S (Ng-4) - .E is Zariski open in J and non empty.

Let and let L1 A be the part of L1 over A (with

the notations of the proof of theorem 1 ), Let A§ be the ,u-th fibered product
of AA over A. For any point (tttl, ... , u&#x3E; ; zo) E dA we consider the It X

Let C be the analytic subset

of where the rank of that matrix is  p. Let 1: = Consider

the set D E A ~ (Zo) c (7); for Zo E A - D the desired requirements
are satisfied. One has thus to prove that D is analytic. This is actually
possible; however we can more simply remark that D is contained in the
subset I)’ = (zo E A ~ dim (zo) (y - 4)) and that (a) D’ is analytic
as is proved by the usual arguments using Remmert’s theory of holomorphic
maps ; (b) D’ c A as it follows from the proof of theorem 1.

0

REMAR,K. The above statement is to be considered as a weak form of

a known theorem of Rauch [20] which says that at any point zo E J not
representing a hyperelliptic curve, 3g - 3 of the local coordinates on

.Hg can be taken as local coordinates on J at zo provided the corresponding
quadratic differentials Wa wp are linearly independent.

4. The equations of the ramification sets.

11. The variety. a) We have remarked that the functional

equations
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for Tn, n E Zg where 0 is a holomorphic function on Cg X Hg has a one di-

mensional space of solutions M (u, z), lc E C, and that these solutions repre-

sent the holomorphic sections of the line bundle F on the torus cor.

sesponding to the factor of automorphy on Cg :

for y = (n, 1n) E Z2g. Replacing the line bundle F with Fl one is lead to con-
sider the functional equations

These admit a 19-dimensional space of solutions (the theta functions of order l).
A basis for that space os solutions is given by the functions

where ,u describes a system of representatives of Z9/1Z9.
In particular for 1 = 2 one has a 29 dimensioual space of theta functions

of second order.

For any choice of c E C9 the function

is a theta function of second order and therefore a linear combination of

the functions O2 M (U, z) of the basis considered above
An easy computation gives actually the useful identity

Let .L be the vector space of theta functions of the second order in which

we choose the basis given by the elements 0, [p] (u, z). The subset of L re-
presented by the functions We has thus the parametric equations

Let Pt (C), t = 2g - 1, be the « projectification &#x3E;&#x3E; of L in which the are

accordingly taken as homogeneous coordinates. Then the the equations (3)
for 0 and fixed z E H. represent the general point of an algebraic sub-

variety of Pt (C) which is called the Kummer (or Wirtinger) variety. This
can be seen as follows.
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First we remark that for fixed z and for any given a E Cg we can find
a point c E Cg such that 0 (a + c, z) 0 (a, - c, z) ~= 0. This is because 0 z)
is not identically zero as function of it. Thus there always exists a theta

function of second order which is different from 0 at a. This means that

the map

defined by formulae (3) is a holomorphic map. By the periodicity conditions
this map factors through a holomorphic map of C9/Az in Pt (C). It follows

that the image of X is an irreducible compact analytic subset of Pt (C), i.e.

an irreducible algebraic variety.
b) Our preliminary object is the study of the map X.

LEMMA 9. For any given z E Hg the set oj’ ito E Cg such that 0 (u, z)
aud 0 (u - 2uo , z) are at each point it E Cq is everywhere dense in Cg
At each one of these points X is of g.

PROOF. On the torus let A1 U ... U Ak be the decomposition into

irreducible components of the set 10 (u) = 0). Select pi E Ai. Let .E’ =

_ -~- c) = 0 ) U ... U f~ (Pk + c) = 0) and let .E be its counter image in Cl.
If -2uo E then the sets (0 (u) = 0) and {0 (u - 2uo) = 0) intersect in a set
of codimension ~ 2 and thus 0 (u) and 0 (u - 2uo) are coprime everywhere.
Moreover the set E - 2uo ~ E) is everywhere dense.

Let uo be chosen as indicated and let us denote by ..., + 1
theta functions of second order of a basis for L. The rank of the jacobian
of the map X at u~ equals g if and only if the matrix

is of rank g + 1 at 1to (cf. Conforto’s book, pg. 144).
Suppose, if possible, that the rank of J at uo is C g so that we have

a relation of the form

for all a, 0 C a  t, and with constants ai not all zero. From (2) for any
choice of c we get 

-
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From this relation, dividing both sides by the non identically zero function

in c, ø c (u’o)’ get, setting

Now + c), as a function of c, is holomorphic outside {0 + c) == 0)
while h (u° - c) is holomorphic outside (0 (1¿O - c) = 0) thus (UO + c) aud
h (UO - c), by the choice of u°, are both holomorphic outside of a set of co-
dimension 2 and thus holomorphic everywhere. Hence the function la (u) is

holomorphic. From the periodicity conditions for 0 we get

when eh = t(0 ... , ,1, ... 0). This implies that the first partial derivatives of
(h)

h (2c) are periodic and therefore constants so that h (1t) must be a linear

function of u :

From (a) we deduce then that 7~ ===... = hg = 0 and then by (fl), that
a’1 = ... = ag = 0. Hence h = 0 and therefore also ao = 0 (~).

LEMMA 10. If z E Hg is such that 0 (1£, z) is irreducible then for any

vo E Cg which is not a period (~o ~ 0 (it, z) an d 0 (1 - Vo z) are coprime.

PROOF. If not 0 (u)/0 (It - VO) must be a non vanishing holomorphic
function of the form exp Q (ac) where Q is a polynomial of first order in
the 1/;’8. The periodicity conditions then lead to the conclusion ro E ~z (cf.
for the detailed argument [12], pg. 196).

LEMMA 11. The set

(z E .Hg ~0 (u, z) is reducible)

is an analytic. set and is eontained in the ramification set N~_2

PROOF. Let D be a positive divisor on the torus and let us

1 -

denote by the unique (l,l) form with constant coeffi-
2ni

cients (i. e. harmonic) in the Chern class of the line bundle associated to D.

(1) This proof follows the argument of C.L. Siegel given in Conforto’s book [12],
pg. 160.
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From the theory of intermediary functions on the torus T = C9/Az we know
that (cf. [29], ch. VI.)

(i) C (D) has integral periods 
-

(ii) The associated hermitian form tu is non negative definite and
if 43 is an intermediary function with divisor I) there exists an entire

function G (it) and a constant C &#x3E; 0 such that

(iii) If D1, D2 are any two positive divisors then

where nh is an integer ¿ 0.
(iv) If D is the divisor of 0 (u, z) on T then one has

and H is positive definite.

Suppose now that the divisor D of (9) is reducible D = Z~ -)- D2 with D,
and D2 holomorphic and non empty. Let us choose coordinates u (by a
linear transformation in such that the hermitian forms .ff and of D

and D1 respectively are in diagonal form. Since H = Hi + H2, H2 being
the hermitian form associated to .D2 we see that H2 is also in diagonal
form. From iii) and iv) we so that for a certain 1, rtl = 1,
and nh = 0 for h # 1.

It follows then, by renumbering the coordinates, that one must have

diag (81... 8Z 0... 0), 0, and consequently H2 = diag (0,... 0, 8l+1, ..., 7 Eg)l
~3 ~ 0. From (ii) it then follows that Di is the divisor of an intermediary
function 1f1 = V’1 (it, , ... , independent of ... , ug , while D2 is the

divisor of an intermediary function 1fz (u) = "F2 ... , independent of

In particular supp Di n supp so that the divisor of 0 must

have a singular set of dimension ~ g - 2. Furthermore, in the spaces Cl
and given by the coordinates 1t1’ ... , and ... , ug the lattices

AznCl and A z fl Cg-i are of maximal rank, giving complex tori 2B == n Cl)
and 1’2 = Cg-’I(A, n Cg-l). The restrictions of the forms H1 and H2 to T1
and T2 are positive definite and thus give polarizations of T1 and 
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Now (llz n Cl) EB (Az n Cg-1) is of :finite index 1" in A

By Cor. 3 No. 5 VI of [29] we see that T1 n T2 contains only the
identity, since D = I), -~- D2 is left invariant by no translations other
than the trivial one. Thus the polarizations induced by the forms

Hi and g9 on the tori T1 and T2 are principal. So by choosing coor-

dinates properly, one sees that the matrix z is equivalent under the

modular group I g to a matrix ( Zi 0) with z E Ht and z E Now for9 0 0 z2 / 
1 2 g °

1  - 1 we have embeddings jl: H, X Hg-l --~ by letting ji (~~ ~ z2) =

(21 . It is clear that is the set of all z for which
z9 o z2 1 ( (,~ )

is reducible. Now given zElm(jl) there are only a finite

number of cosets IVlra x F.-i with ME rg, Mz E 1m (ji) where F, is the mo-

dular group of Hi. This follows from the finiteness of the isotropy subgroups
of the modular groups, together with the fact that the divisor D may be

uniquely decomposed into a finite number of irreducible components. Thus
S is locally finite, and so is an analytic set, invariant under the modular

group.

Let

ê = ~z E 0 z) is irreducible).

We have seen that d contains the Zariski open subset of g~ ~’_ .gg - N g-2 .
Note that the Jacobi space J is contained in ~’. From lemmas 9 and 10

we get in particular the following

COROLLARY. For E C the jacobian of the mav X is of maximal

i-aitk (= g) at any point uo E Cg which is not a half period

LEMMA 12. For any z E ê, if 1M, v E Cg haroe the same image under x then
either u -+- 2~ or 1t - v is a period.

PROOF. For some e E C* we must have O2 (u) = e02 (v) V- fl. Thus
Since

0 (it + c) is irreducible it must divide either 0 (v + c) or 0 (v - c). In the
first case by lemma 10 u - i, is a period, in the second it -~- 2~ is a period.
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Let us denote for any z E -Ug by Tg (z) the torus Cg/Az and by Kg(z)
the corresponding Kummer variety. From the previous lemmas one deduces
easily the following

PROPOSITION 9. For any z the vcrriety Kg (z) is a holo1nor-

phic image of the torus Tg (z) by a rnap of deg1’ee 2 which is of maximal
rank everYl0here except at the 22g points u,o E Tg (z) of order 2 (2uo = 0) ; Kg (z)
has only 22g isolated singular points its order (as a projective variety) is

~!.2~-~.
For the last statement see [28] § 1. It is worth noticing that the de-

gree of the map x : Tg (z) --~ ~~ (z) for z i c may be greater than 2, for in-

stance for g = 2 and z = Ti 0) that map is of degree 4.o z2
12. The equations of the variety. To get a set of equations for

the Kummer variety We give here a procedure which is inspired by a si-

milar one given by C. L. Siegel in [28]. We assume g &#x3E; 2.
Let us consider a generic projection of -Eg (z) onto a projective subspace
of Pt (C) of dimension g + 1. If A = I(Ao , - ..., and x = ... , 2 Xg+j)

are homogeneous coordinates in Pt (C) and Pq+l respectively, the projection
is given by equations of the form

where S is a (g + 2) x (t + 1) matrix with elements Sij that will be consi-
dered as indeterminates. The center of projection ---- 0) is a generic
projective subspace of Pt (C) of codimension 9 -~-1 and thus does not meet
~~ (z). The projection is therefore well defined on .~~ (z) and moreover it
will be generally one to one. The image of .K~ (z) under this projection is

therefore an irreducible hypersurface of of degree g ! 2g-1 provided
Over the field C (s) of rational functions in the Sij the equation

f (xo, ... , xg+1) = 0 of that hypersurface is given by equating to zero a ho-
mogeneous polynomial in the x’s of degree g !. 2y-1. This polynomial is uni-
quely determined up to a constant non zero factor by the condition

where A (u, z) is given by 2, = 92 z), i. e. the parametric equations of

.~~ (z).
The equation f (x) = 0 over any purely transcendental extension of

C (s) will be called a normal l equation of’ Kg (z).
Let ns denote by ao , ... , rxe the coefficients of the generic homogeneous

polynomial of degree ~!’2~~ in the variables x~ , ... , &#x3E;g+1 .
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Let

be the Taylor expansion of (u, z)) as a function of the u’s. The coef-

ficients f,, (a, s, z) are linear forms in the a’s whose coefficients are polyno-
mials with rational coefficients in the indeterminates sij and the « thetanulls »

for r E N g, and fl ranging over a set of representatives of Zg/2Zg. Condi-
tion (1) is therefore equivalent to the system of homogeneous linear equa-
tions in the unknowns ao , ... , a~

We now make use of the following

LEMMA 13. Let be a theta function of order 1. If
vanishes at with all its partial derivatives of order  lg! .3-9-1

(u, z.) is identically zero.

PROOF. With the theta functions of order 3 one obtains a biregular
projective imbedding of the torus Tg (zo) (cf. [12] pg. 159). The image ma-
nifold is an algebraic variety of order g ! . 3g .

Suppose 0 (iti zo) not identically zero. Then the positive divisor of

0 (u, zo~ is transformed by the projective imbedding into an algebraic po-
sitive cycle C of degree lg ! .39-1. Let p be the image of u = 0. By the
assumption p is a point of C of multiplicity &#x3E; L~ ! . 3~-1-~-1. This contradicts
the theorem of Bezout.

As a consequence of this lemma we deduce the fact that in the system
(2) one needs only to consider the system

where a (g) is a bound depending only on g.
Since the system (3) has a unique solution up to a multiplicative

factor =F 0 the rank of the matrix of the coefficients must be o. For any
choice of e rows, say for a ~ 01, ... , 7 (ye , we can consider the determinants
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of the minors of order Q, z), 0 A = (a1, ... , 9 cLo), extracted

from the matrix of those e rows. Choosing properly the sign for the deter-
minants we see that the coefficients ai of the normal equation of gg (z)
are proportional to these minors 31/. These minors are therefore either

all zero of they can be taken as coefficients for the normal equation. For
at least one system A of e rows the latter is the case.

Introducing a set of new indeterminates 
we can set

for the coefficients of the normal equation of Kg (z). tlaus get a normal

equation for (z), z E ê
.

in which the coefficients are polynornials over Q in q, s and the thetanulls

o (r, p, z).
From this fact one deduces the following

PROPOSITION 10. There exists Ct finite set of homogeneous polyn01nials in
the igh (x, ,)h E g whose coefficients are polynornials over Q in the thetanulls
C (~~, ,u, z), such that for any z E ê the set of equations

define in Pt (C) the variety Kg (z) as the set of their zeros.

PROOF, We set x = Sl in the normal equation (4) and rewrite the
left hand side as a polynomial in the sij and q:

where Wh (s, ~) are the different monomials in the Sij and the t]ls. The coef
ficients gh (z, A) of those monomials satisfy the requirements of this proposition.

13. The equations of the ramification sets. We have defined in section

6 a sequence of analytic subsets Ns of .Hg invariant under the action of

the modular group for 0 c s C g -- 2 giving a filtration of Hg :

PROPOSITION 11. For s zuitlz 0 C s --- g - 2 one can find a finite
set of homogeneous with coefficients in the thetanulls
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I p,, ( C (r, It, z))),,, E I such that

PROOF. We consider first the set of equations

of the Kummer variety given by proposition 10. We add to this the system
of equations

for

and the system

in which the coefficients w(i) are indeterminates.
jM

Let z be fixed in E and let 2* = (2:) be a non trivial solution of I£

and L. From the system I~ we deduce the existence of a point c* E Cg
such that

with some e + 0. We thus get

Since A* is a solution of L we then obtain 02 (c*, z) = 0 and
i. e.

This means that c* is a singular point of 0 (u, z) = 0 in Cg.

Eliminating A from JI by the Kronecker procedure we obtain a
finite system of polynomials homogeneous in the coefficients of the

given equations and defined over Q. These polynomials are thus rational
polynomials in the thetanulls and the indeterminates If z E Ns n C the

P.Is vanish for any choice of the w’s and conversely since the vanishing
of them implies that the singular set of 0 = 0 is of dimension &#x3E; s (the
map from T. (z) to -If, (z); being of degree 2 with finite fibers, does not affect
the dimensions).
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To obtain the desired equations we have only to expand each Pa as a

polynomial in the w’s and take for py the coefficients of these polynomials.

14. a) The equations K and E which by the elimination procedure
described before give the equations over f of the ramification set, have for
coefficients polynomials in the thetanulls C z). These as function of z

are not, if r I ~ 0, modular forms with respect to any subgroup G of finite
index in the modular group 1-’.

Our first goal is to show that the system .L can be replaced by an
equivalent one in which the coefficients are modular form with respect to
a group G of finite index in r. yVe first prove the following

LEMMA 14. For E of the system L

i,~ of 1naximal

PROOF. Suppose that at a point ZOEHg the rank of

We must have therefore a linear relation

valid for every p with ao and a&#x3E;ik constants not all zero.

Multiplying these relations by and summing over It we then get

Taking into account the fact that 0 (2~, z) = 0 (2013 ~ ~ we obtain

For the function there are the periodicity conditions :
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for any Therefore from the above linear relations we obtain

Take all m’s equal zero except mi = ?Ilk =: 1- Identifying the coefficients in

the Fourier expansion on both sides we get for any p E Z g

Therefore alik = 0. Since 0 (c, zo) is not identically zero we must also have

a,o = 0 and the lemma is proved.
b) From the theory of transformation of theta functions we borrow

the following fact:
There is a subgroup G of finite index in r such that for any y E G :

each one of the functions

tion :

satisfies the functional equa-

1
where det (Cz + D) 2 is a determined branch of this square root and where

e is an eighth root of unity.
This theorem can be found in C. L. Siegel [28], pg. 395 ; with the

notations of that paper if one takes T = 2I one 0, 2z, 2zc) ==

92 [x] (it, z) and the group G is the « Theta gruppe der Stufe 7’ ».
~ 

Going back to the system L by virtue of the lemma 14 and Cramer’s
rule on can replace the system L by a system having the same set of solu-
tions and of the form

where (z) are the determinants of the minors of maximal rank extracted
from the matrix ~3.

Now we remark that the functions 82 [p] (u, z) are even functions of u

so that their first derivatives vanish at u = 0. thus appear as Wrons-

kian determinants extracted from the Wronskian matrix for the functions

z). From the functional equation (1) and a known property of

Wronskians of automorphic forms we deduce that the functions ~Da,~ (z) sati-
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sfy a transformation formula of the form :

for any y E G, where e0 is an eighth root of unity depending on y and k

is an integer Both Oo and k are independent of p and a.

The system L has thus the same solutions as the system L’

In this the coefficients are now modular forms with respect to G.

c) For the system K representing the equations of the Kummer

variety a system of equations with G-modular forms as coefficients valid

on a certain Zariski open set U of was given by Wirtinger [31]. An
outline of his method will be given in the last section. From this we de-

duce that the ramification sets lt7s on U can be defined by a set of equa-
tions obtained by equating to zero a set of G-modular forms.

d ) The method of C. L. Siegel based on the normal equation of Kg (z)
has however the advantage of giving the equation on a very explicit set

C c Hg and not on an unspecified Zariski open set Moreover some

geometrical facts can be proved along this line. As an instance we derive

here from this method the following

PROPOSITION 12. For any s 0  ,~~ ~ y - 2 and for ayzy zo E ê ~oe

can find a Zariski neighborhood V (zo) of zo in ê arcd a finite set of meromorphic
arcd G-automorphic functions reg1llar on V (zo) such that

for

PROOF. Let f (q, s, z, x) = 0 be the normal equation of Tip (z), z E d. We
remark that all coefficients ai (17, s, z) (r¡ and s being considered as indeter-

minates) are non zero. Moreover the functions

for 1 o do not depend on the parameters 17 and are meromorphic
functions of s and z.

Because of the transformation formula (1) for y E G the Kummer varie-
ties .~~ (z) and Kg (yz) coincide. Therefore on has
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Let zo E C and select s = so integral such that a~ (171 so zo) =1= 0. On a
Zariski neighborhood U (zo) of zo in C we then have ao (771 801 z) ~ 0 . 1

e

where are the different monomials in the x’s of the
a

proper degree. Consider the substitution x = SA and set

where Wj (I) are the different monomials in the A’s of the proper degree.
We then have

Develop ao , and cz~ in power series in s - so :

so that one obtains

Since f is a polynomial in s - so’ we deduce that there is an integer
N independent of so and z such that the set of equations

has the same solutions as the set of equations ~’ for any z E U (zo).
Let g (z) be any G-modular form of weight 4kh such that g (zo) =1= 0.

This is certainly the case if h is large enough. Replace the system L’

with the system

In a Zariski neighborhood Y (zo) of then, the equations K’ and
L" have G-automorphic, meromorpbic coefficients, regular on V (zo). By the
elimination procedure described above we then get on 1’ (zo) the conclusion
we wanted.

It is known (and it can be derived from the pseacloconcavity of the

modular group cf. [5]) that any meromorphic and G-automorphic function

is the quotient of two G-modular forms. Moreover with a finite set of
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G-modular forms one can obtain a one to one holomorphic imbedding 1" of
into a projective space. By the use of compactification of the modular

space HIF this fact was first proved by W. Baily [7] and for more general
conditions by H. Cartan [11]. It can however be proved directly as is shown

in C. L. Siegel [28]. The image of z(Hg/G) is contained in an algebraic
variety of the same dimension. In particular it follows from the previous
proposition that

COROLLARY : For - 2 each irreducible comlJonent of
Ns fl (~ has an which is an algebraic set. In particula1’ the whole

Jacobi space in z (Bg/G) lies in an algebraic set of dimension 3g - 3.

15. The Wirtinger 1nethod. We give here an outline of Wirtinger’s
method of writing the equations of the Kummer variety.

a) First we introduce theta functions with characteristic. E Zg

we set

Since 0 (x + 2a, y + 2b ; u, z) = enitxb 0 (x, y ; u, z), np to constant factors # 0
one obtains all of these functions when x, y run over a set of representa-
tives of Z~/2Z~. One obtains thus 22g linearly independent functions over

C. Among them those for which txy is even are even functions of u. Their

number is 29-1 (29 + 1). Those for which is odd are odd functions of u

and their number is 2g-1 (2~ - 1). Their periodicity properties are as follows :

E Zq. With the notations of n. 11 one has

Let

be a transformation of the modular group.
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We let

where for a square matrix M, (M) denotes the vector whose components are
the diagonal elements of 

One has the following transformation formula (cf. C. L. Siegel [28],
theorem 8)

where

e is a constant of absolute value 1 depending only on y

We see that by this transformation even functions are changed into even

functions. Moreover, if (X2’ Y2) are two systems of characteristics

x2 == o (mod 2), Y1 + Y2 == 1: (mod 2) then Xi + x2 = o (mod 2)
N N

Y1 + Y2 == 1: (mod 2) with a and 1: depending only upon a, 1: and y.
We will need the addition theorem given by the formulae :

A special case of (1) is formula (1) of n. 14 and a special case of (2) is

formula (2) of n. 11.

b) We consider for given the of all homogeneous
polynomials in the ring C [... , ~,~ , ...~ vanishing on If. (z). It is defined by
the conditions
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We want to writhe a basis for polynomials of degree 4 in that ideal.

LEMMA 15. The 2g-1 (2g -~-1) products 92 ~a~ (u) 8z (u) are linearly in-

dependent at any point z E Hg such that

for all with

PROOF. Setting it = v in (2) we get the formula

Since 0 (x, y ; 0, z) = 0 if txy ~ 1 (mod 2) and by the assumption (a) on the
left hand side we get (29 + 1) linearly independent functions. These

being linear combinations of the prodnets 02 [0] (u) 02 (u), we get the con-
clusion.

Our problem, under assumption (a), is thus reduced to write a basis for
all quadratic relations among the products 82 [0] (u) 02 (u), From (3)
setting it = v we get

It follows that under assumption (a) any quadratic relation among the pro-
ducts 82 [o] (2c) 02 ly] (U) gives a quadratic relation for the even theta functions
9 (x, y, 22c, z) and conversely.

c) Let

be, for given z E Hg, a quadratic relation among the even thetafunctions
with characteristic. Making use of the periodicity conditions it follows that

any relation of that type is a linear combination of relations of the form

d) For a = z = 0 we are reduced to find all linear relations among
the functions y; u, Z)12 "There txy -~ 0 (mod 2). Setting v = 0 in (2) we get :

Let JL be the matrix indexed by (x, y) with txy == 0 (mod 2) and p, given by
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Then all linear relations among the functions (8 (x, y ; e, z))?, tx~y = 0 (mod 2),
are given by the conditions :

Note that setting v = 0 in (3) we get for x -- 0,

so that if

then among the functions 10 (x, y ; zc, z)]’ , 0 (mod 2), there are exactly
29 linearly independent. In this case rank A = 29.

e) For o = 0 7: ~ 0 we are reduced to find all linear relations among
the products 0 (x, y ; z!, z) 0 (x, y + z ; 1(, z) where txy, tx (y + z) and therefore

also are even.

Changing in (2) d and v and setting v = 0 we get4 4

Since 1: ~ 0 among the functions 8 (x + p, T, 22~, 2z) for + p) z is

even there are 2~-1 linearly independent ones.
Let B be matrix indexed by (x, y), 0 mod 2, and ft

Then all linear relations of the type under consideration are given by the
conditions

Note that from (3) changing u to

and x = 0 we get

and setting v = 0

so that if

(7) 0 (,u, T; 0, 2z) ~ 0 for every IA with = 0 (mod 2)

then the rank of B equals 
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f ) To get all other relations Wirtinger proceeds as follows. For every
modular transformation y one writes the relations given in e) in the varia-
- -

hIes u and z and notices that by (1) the rank of B is not affected.
Let

be one of these relations. From the transformation formula (1) we then

obtain a relation

where s denotes an eighth root of unity. Conversely from a relation of this
-

second type we derive one of the type given in e) at the point z.

Now the functions 0 (x, y+z ; u, z) and 0 (x, y ; u, z) are both even as are
their transforms. For any choice of (a, Q) ={= 0 there exists a trasformation y such

- - 

that the sum of the characteristics in the product 0 (x, y+t ; u, z) 0 (a, y ; u, z)
is congruent to (o, o) (mod 2). In this way one obtains all remaining relations.

g) These considerations can be summarized as follows :
Let

Let

There is a ,finite number of polynomials of degree 4 in C [... , ,...] wlaose

coefficients a1’e _polynomials over Q (e 7 in the thetanulls 0 (,u, z ; 0, 2z) for

- 0 (mod 2) such thcct for any point z E W they for1n a basis for the
homogeneous _polynomials of degree 4 in the ideal (z)) of the 

The closure of the set X29,29-1 is Hg. Now Wirtinger proves that

for a certain Zariski open set U of Hg containing the diagonal matrices these
equations of 4th order are defining equations for the Kummer variety on
U n IV. The Jacobi space J intersects U (cf. [18]) and moreover J n 0

by a theorem of Farkas [14]. Combining these results one can writhe by
equating to zero G-modular forms the equations of an analytic set having
J as an irreducible component.



237

BIBLIOGRAPHY

[1] L. AHLFORS, The Complex Analytic Structure of the Space of Closed Riemann Surfaces,
in « Analytic Functions » Princeton University Press (1960).

[2] L. AHLFORS, Some Remarks on Teichmüller’s Space of Riemann Surfaces, Annals of

Math., vol. 74 (1961), p. 171-191.

[3] L. AHLFORS and L. BERS, Riemann’s Mapping Theorem for Variable Metrics, Annals

of Math., vol. 72 (1960) p. 385-404.

[4] A. ANDREOTTI, On a Theorem) of Torelli, Am. J. of Math. vol. 80 (1958), p. 801-828.

[5] A. ANDREOTTI and H. GRAUERT, Algebraische Körper von Automorphen Funktionen,
Gött. Nachrichten (1961), p. 39-48.

[6] A. ANDREOTTI and P. SALMON, Anelli con unica decomponibilità in fattori primi ed un
problema di intersezioni complete, Monatshefte für Math. vol. 61 (1957) p. 97-142.

[7] W. BAILY, Satake’s Compactification of V*n , Am. J. of Math. vol. 80 (1958), p. 348-
364.

[8] L. BERS, Quasiconformal Mappings and Theichmüller’s Theorem, N. Y. U. mimeographed
notes (1958).

[9] L. BERS, Spaces of Riemann Surfaces, Proc. Int. Congress Math. Edinburg (1958) p.
349-361.

[10] L. BERS, Automorphic Forms and General Teichmüller Space, Proc. Conf. Complex Ana-
lysis, Minneapolis (1964) p. 109-113.

[11] H. CARTAN, Prolongement des éspaces analytiques normaux, Math. Ann. vol. 136 (1958),
p. 97-110.

[12] F. CONFORTO, Abelsche Funktionen und algebraische Geometrie, Springer (1956).
[13] F. ENRIQUES and O. CHISINI, Teoria geometrica delle equazioni e delle fuitzioni algebri-

che, vol. 4, Zanichelli (1934).
[14] H. M. FARKAS, Special Divisors, Theta Nulls and Analytic Subloci of Teichmüller Space,

to appear.

[15] A. MARONI, Le serie lineari speciali sulle curve trigonali, Ann. di Mat. s. IV vol. 25

(1946), p. 341-354.

[16] A. MATTUCK and A. MAYER, The Riemann-Roch Theorem for Algebraic Curves, Annali
Sc. Normale, Pisa s. III vol. 17 (1963), p. 223-237.

[17] A. MAYER, Special Divisors and the Jacobian Variety, Math. Ann. Vol. 153 (1964), p.

163-167.

[18] D. MUMFORD, Further comments on Boundary Points, Summer Institute in Algebraic
Geometry, Woods Hole (1964).

[19] H. E. RAUCH, On the Transcendental Moduli of Algebraic Riemann Surfaces, Proc. Nat.
Ac. Sci. U. S. A, vol. 41 (1952), p. 42-49.

[20] H. E. RAUCH, Weierstrass Points, Branch Points and Moduli of Riemann Surfaces,
Comm. Pure and Applied Math. vol. 17 (1959), p. 543-560.

[21] H. E. RAUCH, Variational Methods in the Problem of the Moduli of Riemann Surfaces,
in Contribution to Function Theory, Tata Institute of Fundamental Research,
Bombay (1960) p. 17-40.



238

[22] H. E. RAUCH, A Transcendental View of the Space of Algebraic, Riemann Surfaces, Sum-
mer Institute in Algebraic Geometry, Woods Hole (1964).

[23] R. REMMERT, Projektionen analytischer’ Mengen, Math. Ann. vol. 130 (1956), p. 410-441.

[24] R. REMMERT, Holomorphe und Meromorphe Abbildungen komplexer Raume, Math. Ann.
vol. 133 (1957), p. 328-370.

[25] F. SCHOTTKY, Zur Theorie der Abelschen Functionen von vier Variablen, J. für Math.

vol. 102 (1888), p. 304-352.

[26] C. L. SIEGEL, Einführung in die Theorie der Modulfunktionen n-ten Grades, Math. Ann.
vol. 116 (1939), p. 617-657.

[27] C. L. SIEGEL, Analytic Functions of Several Complex Variables, Institute for Advanced

Study, (1949).
[28] C. L. SIEGEL, Moduln Abelsche Funktionen, Göttingen Nachrichten (1963), p. 365-427

[29] A. WEIL, Variétés Kählériennes, Hermann (1958).
[30] A. WEIL, Zum Beweis des Torellischen Satzes, Göttingen Nachrichten (1957), p. 33-53

[31] W. WIRTINGER, Untersuchungen über Thetafunktionen, Teubner (1895).


