
356 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAThus, when it holds, the localization theorem for A implies a calculation ofboth M�(EG+ ^GX) and M�(EG+ ^GX) for all split A-modulesM and all basedG-spaces X.We must still de�ne the algebraic construction whose brave new counterpart isgiven by our completion functors. Returning to the algebraic context of Section1, we want to de�ne a suitable dual to local cohomology. Since local cohomologyis obtained as H�(K 
M) for a suitable complex K, we expect to have to takeH�(Hom(K;M)). However this will be badly behaved unless we �rst replace K bya complex of projective R-modules. Thus we choose an R-free complex PK�(I)and a homology isomorphism PK�(I) �! K�(I). Since both complexes consistof 
at modules we could equally well have used PK�(I) in the de�nition of localcohomology. For �nitely generated ideals I = (�1; � � � ; �n), we take tensor prod-ucts and de�ne PK�(I) = PK�(�1)
 : : :
PK�(�n); independence of generatorsfollows from that of K�(I).We may then de�ne local homology byHI� (R;M) = H�(Hom(PK�(I);M)):(5.6)We often omit R from the notation. Because we chose a projective complex weobtain a third quadrant univeral coe�cient spectral sequenceEs;t2 = Exts(H�tI (R);M)) HI�t�s(R;M)with di�erentials dr : Es;tr ! Es+t;t�r+1r that relates local cohomology to localhomology.It is not hard to check from the de�nition that if R is Noetherian and M iseither free or �nitely generated, then HI0 (R;M) �= MÎ , and one may also provethat in these cases the higher local homology groups are zero. It follows thatHI� (R;M) calculates the left derived functors of the (not necessarily right exact)I-adic completion functor. In fact, this holds under weaker hypotheses on R thanthat it be Noetherian.Returning to our topological context, it is now clear that if R is a commutativeSG-algebra and I is a �nitely generated ideal in RG� , then the completion functorMÎ on R-modules is the brave new analogue of local homology: we have thespectral sequence (5.2).J.P.C. Greenlees and J.P. May. Derived functors of I-adic completion and local homology. J.Algebra 149 (1992), 438-453.



6. A PROOF AND GENERALIZATION OF THE LOCALIZATION THEOREM 3576. A proof and generalization of the localization theoremTo prove systematically that the map �A of (4.7) is a weak equivalence weneed to know that when we restrict the map � of (4.4) to a subgroup H, weobtain an analogous map of H-spectra. Write IH for the augmentation idealKer(resH1 � RH� ). Even for cohomotopy it is not true that res(IG) = IH, but inthat case they do have the same radical. To give a general result, we must assumethat this holds.Assumption 6.1. For all subgroups H � Gqres(IG) = qIH :For theories such as cohomotopy and K-theory, where we understand all of theprimes of RG� , this is easy to verify. Note that both (4.2) and (6.1) are assumptionson R that have nothing to do with A. We need an assumption that relates RG�to AG� . Let J = JG be the augmentation ideal in AG� . The unit R �! A inducesa homomorphism of rings RG� �! AG� that is compatible with restrictions tosubgroups, hence we have an inclusion of ideals I �AG� � J .Assumption 6.2. The augmentation ideals of R�G and A�G are related byqI �AG� = pJ:Recall from (4.8) that AG;R� (M) = �G� (M ^R A). The �nal ingredient of ourproof will be the existence of Thom isomorphismsAG;R� (SV ^M) �= AG;R� (S jV j ^M)(6.3)of AG;R� -modules for all complex representations V and R-modules M . For exam-ple, with A = R, homotopical bordism and K-theory have such Thom isomor-phisms. Cohomotopy does not, and that is why our proof (and the theorem) failin that case.Theorem 6.4 (Localization). If A is an R-ring spectrum such that, for allsubgroups H of G, the theories AH;R� (�) admit Thom isomorphisms and if as-sumptions (4.2), (6.1), and (6.2) hold for G and for all of its subgroups, then thelocalization theorem holds for A.Proof. We have observed that the co�ber of � is equivalent to ~EG^K(I). Wemust prove that ~EG^K(I)^RA ' �. We proceed by induction on the size of the



358 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAgroup. By Assumption (6.1) and Lemma 4.3, we see that( ~EG ^K(IG))jH ' ~EH ^K(IH):Thus our inductive assumption implies thatG=H+ ^ ~EG ^K(I) ^R A ' �for all proper subgroups H � G. Arguing exactly as in Carlsson's �rst reduction,XX.4.1, of the Segal conjecture for �nite p-groups, we �nd that it su�ces to provethat ~EP ^K(I)^RA ' �. Indeed, ( ~EP)G = S0 and ~EP=S0 can be constructedfrom cells G=H+ ^ Sn with H proper. Therefore( ~EP=S0) ^ ~EG ^K(I) ^R A ' �and thus ~EG ^K(I) ^R A ' ~EP ^ ~EG ^K(I) ^R A:However, the map ~EP �! ~EP ^ ~EG induced by the map S0 �! ~EG is aG-equivalence by a check of �xed point spaces.Now, if G is �nite, consider the reduced regular representation V . As we ob-served in the proof of the Segal conjecture, S1V = colim SkV is a model for ~EPsince V H 6= 0 if H is proper and V G = 0. For a general compact Lie group G, wewrite S1V for the colimit of the spheres SV , where V runs over a suitably largeset of representations V such that V G = f0g, for example all such V that arecontained in a complete G-universe U . Again, S1V is a model for ~EP.At this point we must recall how Thom isomorphisms give rise to Euler classes�(V ) 2 AG;R�jV j. Indeed the inclusion e : S0 �! SV and the Thom isomorphismgive a natural map of AG;R� -modulesAG;R� (X) e��!AG;R� (SV ^X) �= AG;R� (S jV j ^X) �= AG;R��jV j(X);and this map is given by multiplication by �(V ). Thus, for �nite G,AG;R� (S1V ^K(I)) = colimk AG;R� (SkV ^K(I))= colimk(AG;R� (K(I)); �(V ))= AG;R� (K(I))[�(V )�1]:Here �(V ) is in J since e is nonequivariantly null homotopic. Therefore, usingAssumption 6.2 and Remark 3.3, we see thatH�I (RG� ;N)[�(V )�1] �= H�J (AG� ;N) h�(V )�1i = 0



6. A PROOF AND GENERALIZATION OF THE LOCALIZATION THEOREM 359for any AG� -module N . From the spectral sequence (3.2), we deduce thatAG;R� (S1V ^K(I)) = 0:A little elaboration of the argument gives the same conclusion when G is a gen-eral compact Lie group. Since S1V is H-equivariantly contractible for all propersubgroups H, this shows that S1V ^K(I) ^R A ' �, as required.There is a substantial generalization of the theorem that admits virtually thesame proof. Recall from V.4.6 that, for a family F , we have the co�ber sequenceEF+ �! S0 �! ~EF :We discussed family versions of the Atiyah-Segal completion theorem in XIVx6and of the Segal conjecture in XXxx1-3. As in those cases, we de�neIF = \H2F Ker(resGH : RG� �! RH� ):Arguing exactly as above, we obtain a map� : EF+ ^R �! K(IF ):(6.5)Definition 6.6. The `F -localization theorem' holds for an R-ring spectrum Aif �A = � ^ id : EF+ ^A = EF+ ^R ^R A �! K(IF ) ^R Ais a weak equivalence of R-modules, that is, if it is an isomorphism in GDR.We combine and record the evident analogs of Lemmas 4.10 and 5.4.Lemma 6.7. If the F -localization theorem holds for the R-ring spectrum A,then the mapsEF+ ^M �! �IF (M); ~EF ^M �!M [IF�1];and MÎF = FR(K(IF );M) �! FR(EF+ ^R;M) �= F (EF+;M)are isomorphisms in GDR for all A-modules M .A family F in G restricts to a family F jH = fKjK 2 F and K � Hg, andAssumptions 4.2, 6.1, and 6.2 admit evident analogs for IF .Theorem 6.8 (F-Localization). If A is an R-ring spectrum such that, forall subgroups H of G, the theories ARjH� (�) admit Thom isomorphisms and if, fora given family F , the F versions of assumptions (4.2), (6.1), and (6.2) hold forG and for all of its subgroups, then the F -localization theorem holds for A.



360 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAProof. Here we must prove that ~EF ^ K(IF ) ^R A ' �, and we assumethat G 62 F since otherwise ~EF ' �. As in the proof of the localization theorem,since the evident map ~EP �! ~EP^ ~EF is a G-equivalence, the problem reducesinductively to showing that ~EP ^K(IF )^R A ' �. We take S1V as our modelfor ~EP and see that, since V H = fOg for all H 6= G, �(V ) 2 JF . The rest isthe same as in the proof of the localization theorem.Remark 6.9. It is perhaps of philosophical interest to note that the localizationtheorem is true for all R that satisfy (4.2) and (6.1) provided that we work withRO(G)-graded rings. Indeed the proof is the same except that instead of usingthe integer graded element �(V ) 2 RG�jV j we must use e(V ) = e�(1) 2 RG�V . Theconclusion is only that there are spectral sequencesH�I (RG� )) RG� (EG+)and so forth, where RO(G)-grading of RG� is understood. In practice this theoremis not useful because the RO(G)-graded coe�cient ring is hard to compute and isusually of even greater Krull dimension than the integer graded coe�cent ring RG� .The Thom isomorphisms allow us to translate the RO(G)-graded augmentationideal into its integer graded counterpart.7. The application to K-theoryWe can apply the F -localization theorem to complex and real periodic equiv-ariant K-theory in two quite di�erent ways. The essential point is that Bottperiodicity clearly gives the Thom isomorphisms necessary for both applications(see XIVx3). Unfortunately, for entirely di�erent reasons, both applications are atpresent limited to �nite groups.First, we recall from XXII.6.13 that, for �nite groups G, complex and realequivariant K-theory are known to be represented by commutative SG-algebras.In view of Bott periodicity, we may restrict attention to the (complex or real)representation ring of G regarded as the subring of degree zero elements of KG� orKOG� (compare Remark 3.3), and our complete understanding of these rings makesveri�cation of the F versions of (4.2) and (6.1) straightforward. In fact, these ver-i�cations work for arbitrary compact Lie groups G. The following theorem wouldhold in that generality if only we knew that KG and KOG were represented bycommutativeSG-algebras in general. For this reason, although the completion the-orem is known for all compact Lie groups, the localization theorem is only known



8. LOCAL TATE COHOMOLOGY 361for �nite groups. The problem is that, at this writing, equivariant in�nite loopspace theory has not yet been developed for compact Lie groups of equivariance.Theorem 7.1. Let G be �nite. Then, for every family F , the F -localizationtheorem holds for KG regarded as a KG-algebra, and similarly for KOG.Second, we have the �rst author's original version of theF -localization theoremfor K-theory. For that version, we regard KG and KOG as SG-ring spectra. Herewe may restrict attention to the Burnside ring of G regarded as the subring of de-gree zero elements of �G� (SG). Again, when G is �nite, our complete understandingof A(G) makes veri�cation of the F versions of (4.2) and (6.1) straightforward,and we observed in and after XXI.5.3 that the F version of (6.2) holds. Note,however, that A(G) is not Noetherian for general compact Lie groups, so that (4.2)and (6.1) are not available to us in that generality. Moreover, A(G) and R(G) arenot closely enough related for (6.2) to hold. For example, the augmentation idealof A(G) is zero when G is a torus.Theorem 7.2. Let G be �nite. Then, for every family F , the F -localizationtheorem holds for KG regarded as an SG-ring spectrum, and similarly for KOG.In the standard case F = feg, we explained in XXIx5 how Tate theory allowsus to process the conclusions of the theorems to give an explicit computationof K�(BG); see XXI.5.4. The following references give further computationalinformation. A comment on the relative generality of the two theorems is inorder. The �rst only gives information about KG-modules of the brave new sort,whereas the second gives information about KG-module spectra of the classicalsort. However, a remarkable result of Wolbert shows that the nonequivariantimplications are the same: every classicalK-module spectrum is weakly equivalentto the underlying spectrum of a brave new K-module.J. P. C. Greenlees. K homology of universal spaces and local cohomology of the representationring. Topology 32(1993), 295-308.J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Memoir American Math. Soc.No. 543. 1995.J. Wolbert. Toward an algebraic classi�cation of module spectra. Preprint, 1995. University ofChicago. (Part of 1996 PhD thesis in preparation.)8. Local Tate cohomologyWhen the F -localization theorem holds, it implies good algebraic behaviour ofthe F -Tate spectrum. We here explain what such good behaviour is by de�ning



362 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAthe algebraic ideal to which the Tate spectrum aspires: the local Tate cohomologygroups of a module. We proceed by strict analogy with the construction of thetopological F -Tate spectrum,tF (k) = F (EF+; k) ^ ~EF :Thus, again working in the algebraic context of Section 1, we de�ne the localTate cohomology groups to beĤ�I (R;M) = H�(Hom(PK�(I);M)
 P �C�(I)):(8.1)Here P �C�(I) is the projective �Cech complex, which is de�ned by the algebraic�ber sequence PK�(I) �! R �! P �C�(I)(8.2)of chain complexes. There results a local Tate spectral sequence of the formE�;�2 = �H�I (HI� (R;M))) Ĥ�I (R;M):In favorable cases this starts with the �Cech cohomology of the derived functors ofI-adic completion.The usefulness of the de�nition becomes apparent from the form that periodicitytakes in this manifestation of Tate theory. It turns out that unexpectedly manyelements of R induce isomorphisms of the R-module Ĥ�I (R;M). It is simplest tostate this formally when R has Krull dimension 1.Theorem 8.3 (Rationality). If R is Noetherian and of Krull dimension 1,then multiplication by any non-zero divisor of R is an isomorphism on Ĥ�I (R;M).The Burnside ring A(G) and the representation ring R(G) of a �nite group Gare one dimensional Noetherian rings of particular topological interest.Corollary 8.4. Let G be �nite. For any ideal I of A(G) and any A(G)-moduleM , Ĥ�I (A(G);M) is a rational vector space.Corollary 8.5. Let G be �nite. For any ideal I of R(G) and any R(G)-moduleM , Ĥ�I (R(G);M) is a rational vector space.Returning to our SG-algebra R and its modules M , we de�ne the `I-local Tatespectrum' of M for a �nitely generated ideal I � RG� bytI(M) = FR(K(I);M) ^R �C(I):(8.6)



8. LOCAL TATE COHOMOLOGY 363It is then immediate that there is a spectral sequenceEs;t2 = ĤsI (R�G;M�G)t ) �G�s�t(tI(M)):(8.7)In particular, we may draw topological corollaries from Corollaries 8.4 and 8.5.Corollary 8.8. Let G be �nite. For any ideal I in A(G) = �G0 (SG) and anyG-spectrum E, tI(E) is a rational G-spectrum.Corollary 8.9. Let G be �nite. For any ideal I in R(G) = �G0 (KG) and anyKG-module M , tI(M) is a rational G-spectrum.Now assume the F version of (4.2). Let A be an R-ring spectrum and considerthe diagram EF+ ^A //���A S0 ^A // ~EF ^ A�� ~�AK(IF ) ^R A // A // �C(IF ) ^R A:If the F -localization theorem holds for A, then �A and ~�A are weak equivalencesof R-modules. We may read o� remarkable implications for the Tate spectrumtF (M) of any A-module spectrum M . If �A is a weak equivalence, this F -Tatespectrum is equivalent to the IF -local Tate spectrum: a manipulation of isotropygroups is equivalent to a manipulation of ideals in brave new commutative algebra.Theorem 8.10. If the F -localization theorem holds for the R-ring spectrumA, then the F -Tate and IF -local Tate spectra of any A-module spectrumM areequivalent: tF (M) ' tIF (M):Proof. Since FR(X;M) is an A-module for any R-module X, Lemma 6.7 im-plies that all maps in the following diagram are weak equivalences of R-modules:



364 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAtF (M)FR(K(IF );M) ^R R ^ ~EF //�� FR(EF+ ^ R;M) ^R R ^ ~EF��FR(K(IF );M) ^R �C(IF ) // FR(EF+ ^R;M) ^R �C(IF ):tIF (M)Theorem 8.3 gives a striking consequence.Corollary 8.11. Assume that RG� is Noetherian of dimension 1 and Z-torsionfree. If the F -localization theorem holds for an R-ring spectrum A, then theF -Tate spectrum tF (M) is rational for any A-module M .Remark 8.12. Upon restriction to the Burnside ring A(G) = �G0 (SG), the corol-lary applies to R = SG. In this case it has a converse: if the completion theoremholds for A and tF (A) is rational, then the localization theorem holds for A. Theproof (which is in our memoir on Tate cohomology) uses easy formal argumentsand the fact that � : EF+ ^ SG �! K(IF ) is a rational equivalence.We should comment on analogues of Corollary 8.11 in the higher dimensionalcase. The essence of Theorem 8.10 is that if the localization theorem holds forA, then the Tate spectrum of an A-module M is algebraic and is therefore domi-nated by the behaviour of the local Tate cohomology groups Ĥ�I (R�G;M�G) via thespectral sequence (8.7). Now these groups are modules over the ring Ĥ�I (R�G), soan understanding of the prime ideal spectrum of this ring is fundamental. Forexample, the �rst author's proof of the Rationality Theorem shows that analoguesof it hold under appropriate hypotheses on spec(R�G).These comments are relevant to the discussion of XXIx6. As noted there, weknow that applying the Tate construction to spectra of type E(n), on which vnis invertible, forces vn�1 to be invertible (in a suitable completion). One guessesthat this can be explained in terms of the subvariety of Spec(E(n)�G) de�ned byvn�1 and its intersection with that of I. Unfortunately our ignorance of E(n)�Gprevents us from justifying this intuition.J. P. C. Greenlees. Tate cohomology in commutative algebra. J. Pure and Applied Algebra94(1994), 59-83.



8. LOCAL TATE COHOMOLOGY 365J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Memoir American Math. Soc.No. 543. 1995.
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CHAPTER XXVLocalization and completion in complex bordismby J. P. C. Greenlees and J. P. May1. The localization theorem for stable complex bordismThere is a large literature that is concerned with the calculation of homologyand cohomology groups M�(BG) and M�(BG) for MU -module spectra M , suchas MU itself, K, BP , K(n), E(n), and so forth. Here G is a compact Lie group,in practice a �nite group or a �nite extension of a torus. The results do not appearto fall into a common pattern.Nevertheless, there is a localization and completion theorem for stable complexbordism, and this shows that all such calculations must �t into a single generalpattern dominated by the structure of the equivariant bordism ringMUG� . Indeed,as we showed in XXIIIx5, there is a general procedure for constructing an equiv-ariant version MG of any nonequivariant MU -module M . Since MG is split withunderlying nonequivariant MU -moduleM , the theorem applies to the calculationof M�(BG+) and M�(BG+) for all such M . This is not, at present, calculation-ally useful since rather little is known about MUG� . Nevertheless, the theoremgives an intriguing new relation between equivariant and nonequivariant algebraictopology.While the basic philosophy behind the theorem is the same as for the local-ization theorem XXIV.6.4, that result does not apply because its basic algebraicassumptions, XXIV.4.2 and 6.1, do not hold. In particular, since the augmenta-tion ideal ofMUG� is certainly not �nitely generated and presumably not radically�nitely generated, it is not even clear what we mean by the localization theorem,367



368 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMand di�erent techniques are needed for its proof. Let J = JG denote the aug-mentation ideal ofMUG� (with integer grading understood). For �nitely generatedsubideals I of J , we can perform all of the topological constructions discussed inthe previous chapter.Theorem 1.1. Let G be �nite or a �nite extension of a torus. Then, for anysu�ciently large �nitely generated ideal I � J , � : EG+ ^MUG ! K(I) is anequivalence.It is reasonable to de�ne K(J) to be K(I) for any su�ciently large I andto de�ne �J (MG) and (MG)Ĵ similarly. The theorem implies that these MUG-modules are independent of the choice of I.Consequences are drawn exactly as they were for the localization theorem inSections 4 and 5 of the previous chapter. In particular,EG+ ^MG ! �J (MG) and (MG)Ĵ ! F (EG+;MG)are equivalences for any MUG-module MG.The fact that the theorem holds for a �nite extension of a torus and thus for thenormalizer of a maximal torus in an arbitrary compact Lie group strongly suggeststhat the following generalization should be true, but we have not succeeded in�nding a proof.Conjecture 1.2. The theorem remains true for any compact Lie group G.Most of this chapter is taken from the following paper, which gives full details.The last section discusses an earlier completion \theorem" for MUG� when G isa compact Abelian Lie group. While it may be true, we have only been able toobtain a complete proof in special cases.J. P. C. Greenlees and J. P. May. Localization and completion theorems forMU -module spectra.Preprint, 1995. 2. An outline of the proofWe shall emphasize the general strategy. Let G be a compact Lie group and letSG be the sphere G-spectrum. We assume given a commutative SG-algebra RGwith underlying nonequivariant commutative S-algebra R. As in the localizationtheorem, we shall assume that the theory RG� has Thom isomorphismsRG� (SV ^X) �= RG� (S jV j ^X)(2.1)



2. AN OUTLINE OF THE PROOF 369for complex representations V and G-spectra X. More precisely, we shall assumethis for all subgroups H � G, and we shall later impose a certain naturalitycondition on these Thom isomorphisms. We have already seen in XVx2 that MUGhas such Thom isomorphisms. As in the proof of XXIV.6.4, the Thom isomorphismgives rise to an Euler class �(V ) 2 RGj�V j. Let JH be the augmentation idealKer(resH1 : RH� �! R�); remember that J = JG.Definition 2.2. Assume that RH� has Thom isomorphisms for all H � G. LetI be a �nitely generated subideal of J and, for H � G, let rGH(I) denote theresulting subideal resGH(I) � RH� of JH . We say that I is su�ciently large at H ifthere is a non-zero complex representation V of H such that V H = 0 and the Eulerclass �(V ) 2 RH� is in the radical qrGH(I). We say that the ideal I is su�cientlylarge if it is su�ciently large at all H � G.We have the canonical map of RG-modules� : EG+ ^ RG �! K(I);and our goal is to prove that it is an equivalence. The essential point of ourstrategy is the following result, which reduces the problem to the construction ofa su�ciently large �nitely generated subideal I of J .Theorem 2.3. Assume that RH� has Thom isomorphisms for all H � G. If Iis a su�ciently large �nitely generated subideal of J , then� : EG+ ^RG �! K(I)is an equivalence.Proof. The co�ber of � is equivalent to ~EG ^K(I), and we must prove thatthis is contractible. Using the transitivity of restriction maps to see that rGH(I)is a large enough subideal of RH� , we see that the hypotheses of the theorem areinherited by any subgroup. Therefore we may assume inductively that the theoremholds for H 2P. Observing that( ~EG ^K(I))jH = ~EH ^K(rGH(I))for H � G, we see that our de�nition of a su�ciently large ideal provides exactlywhat is needed to allow us to obtain the conclusion by parroting the proof thelocalization theorem XXIV.6.4.



370 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMThus our problem is to prove that there is a large enough �nitely generatedideal I. One's �rst instinct is to take I to be generated by �nitely many wellchosen Euler classes. While that does work in some cases, we usually need toadd in other elements, and we shall do so by exploiting norm, or \multiplicativetransfer", maps. We explain the strategy before stating what it means for a theoryto have such norm maps.We assume from now on that G is a toral group, namely an extension1 �! T �! G �! F �! 1;where T is a torus and F is a �nite group.Theorem 2.4. If G is toral and the RH� forH � G admit norm maps and Thomisomorphisms, then J contains a su�ciently large �nitely generated subideal.The proof of the theorem depends on two lemmas. As usual, we writeresGH : R(G) �! R(H)for the restriction homomorphism. When H has �nite index in G, we writeindGH : R(H) �! R(G)for the induction homomorphism. Recall that indGH V = C [G]
C [H] V .Lemma 2.5. There are �nitely many non-zero complex representations V1; � � � ; Vsof T such that T acts freely on the product of the unit spheres of the representa-tions resGT indGT Vi:While this is not obvious, its proof requires only elementary Lie theory and doesnot depend on the use of norm maps. We shall say no more about it since it isirrelevant when G is �nite.Lemma 2.6. Let F 0 be a subgroup of F with inverse image G0 in G. There isan element �(F 0) of J such thatresGG0(�(F 0)) = �(V 0)w0 ;where V 0 is the reduced regular complex representation of F 0 regarded by pullbackas a representation of G0 and w0 is the order of WG0 = NG0=G0.We shall turn to the proof of this in the next section, but we �rst show howthese lemmas imply Theorem 2.4.



3. THE NORM MAP AND ITS PROPERTIES 371Proof of Theorem 2.4. We claim that the idealI = (�(indGT V1); � � � ; �(indGT Vs)) + (�(F 0)jF 0 � F )is su�ciently large.If H is a subgroup of G that intersects T non-trivially, then, by Lemma 2.5,(resGT indGT Vi)H\T = f0g for some i and therefore (indGT Vi)H = f0g. Since�(resGH indGT Vi) = resGH(�(indGT Vi)) 2 rGH(I);this shows that I is su�ciently large at H in this case.IfH is a subgroup of G that intersects T trivially, as is always the case when G is�nite, then H maps isomorphically to its image F 0 in F . If G0 is the inverse imageof F 0 in G and V 0 is the reduced regular complex representation of F 0 regarded as arepresentation of G0, then resG0H (V 0) is the reduced regular complex representationof H and (resG0H (V 0))H = 0. By Lemma 2.6, we have resGG0(�(F 0)) = �(V 0)w0 andtherefore�(resG0H (V 0))w0 = resG0H (�(V 0)w0) = resG0H resGG0(�(F 0)) = resGH(�(F 0)) 2 rGH(I):This shows that I is su�ciently large at H in this case.3. The norm map and its propertiesWe must still explain the proof of Lemma 2.6, and to do so we must explainour hypothesis that RG� has norm maps. We shall give a rather crude de�nitionthat prescribes exactly what we shall use in the proof. The crux of the matteris a double coset formula, and we need some notations in order to state it. Forg 2 G and H � G, let gH = gHg�1 and let cg : gH �! H be the conjugationisomorphism. For a based H-space X, we have a natural isomorphismcg : RH� (X) �! RgH� (gX);where gX denotes X regarded as a gH -space by pullback along cg. We also have anatural restriction homomorphismresGH : RG� (X) �! RH� (X):Definition 3.1. We say that RG� has norm maps if, for a subgroup H of �niteindex n in G and an element y 2 RH�r, where r � 0 is even, there is an elementnormGH(1 + y) 2 nXi=0RG�ri



372 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMthat satis�es the following properties; here 1 = 1H 2 RH0 denotes the identityelement.(i) normGG(1 + y) = 1 + y.(ii) normGH(1) = 1.(iii) [The double coset formula]resGK normGH (1 + y) =Yg normKgH\K resgHgH\K cg(1 + y);where K is any subgroup of G and fgg runs through a set of double cosetrepresentatives for KnG=H.Proof of Lemma 2.6. Since the restriction of the reduced regular representa-tion of F 0 to any proper subgroup contains a trivial representation, the restrictionof �(V 0) 2 RG0� to a subgroup that maps to a proper subgroup of F 0 is zero. InRG0� , the double coset formula givesresGG0 normGG0 (1 + �(V 0)) =Yg normG0gG0\G0 resgG0gG0\G0 cg(1 + �(V 0));(3.2)where g runs through a set of double coset representatives for G0nG=G0. We requirethat our Thom isomorphisms be natural with respect to conjugation in the sensethat their Euler classes satisfy cg(�(V )) = �(gV ), where gV is the pullback of Valong cg. In particular, this gives thatcg(1 + �(V 0)) = 1 + �(gV 0):Here gV 0 is the reduced regular representation of gG0. Clearly gG0\G0 is the inverseimage in G of gF 0 \ F 0. If gF 0 \ F 0 is a proper subgroup of F 0, then the restrictionof �(V 0) to gG0 \G0 is zero. Therefore all terms in the product on the right side of(3.2) are 1 except for those that are indexed on elements g 2 NG0. There is onesuch g for each element of WG0 = NG0=G0, and the term in the product that isindexed by each such g is just 1 + �(V 0). Therefore (3.2) reduces toresGG0 normGG0(1 + �(V 0)) = (1 + �(V 0))w0:(3.3)If V 0 has real dimension r, then the summand of (1 + �(V 0))w0 in degree rw0 is�(V 0)w0. Since resGG0 preserves the grading, we may take �(F 0) to be the summandof degree rw0 in normGG0(1 + �(V 0)).



4. THE IDEA BEHIND THE CONSTRUCTION OF NORM MAPS 3734. The idea behind the construction of norm mapsWe give an intuitive idea of the construction here, but we need some preliminar-ies to establish the context. Let H be a subgroup of �nite index n in a compactLie group G. The norm map is intimately related to indGH : RO(H) �! RO(G),and we begin with a description of induction that suggests an action of G on thenth smash power Xn of any based H-space X. Recall that the wreath product�n R H is the set �n �Hn with the product(�; h1; : : : ; hn)(�; h01; : : : ; h0n) = (��; h�1h01; � � � ; h�nh0n):Choose coset representatives t1; : : : ; tn for H in G and de�ne the \monomial rep-resentation" � : G �! �nRHby the formula �(
) = (�(
); h1(
); : : : ; hn(
));where �(
) and hi(
) are de�ned implicitly by the formula
ti = t�(
)(i)hi(
):Lemma 4.1. The map � is a homomorphism of groups. If �0 is de�ned withrespect to a second choice of coset representatives ft0ig, then � and �0 di�er by aconjugation in �n R H.The homomorphism � is implicitly central to induction as the following lemmaexplains. Write ��W for a representationW of �n R H regarded as a representationof G by pullback along �.Lemma 4.2. Let V be a representation of H. Then the sum nV of n copies ofV is a representation of �n R H with action given by(�; h1; : : : ; hn)(v1; : : : ; vn) = (h��1(1)v��1(1); : : : ; h��1(n)v��1(n));and ��(nV ) is isomorphic to the induced representation indGH V = R[G]
R[H] V .Lemma 4.3. If X is a based H-space, then the smash power Xn is a (�n R H)-space with action given by(�; h1; : : : ; hn)(x1 ^ : : : ^ xn) = h��1(1)x��1(1) ^ : : : ^ h��1(n)x��1(n):



374 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMFor a based �n R H-space Y , such as Y = Xn for a based H-space X, write��Y for Y regarded as a G-space by pullback along �. Note in particular that��((SV )n) �= SindGH V for an H-representation V .To begin the construction of normGH, one constructs a natural functionnormGH : RH0 (X) �! RG0 (��Xn):(4.4)The norm map normGH of De�nition 3.1 is then obtained by taking X to be thewedge S0 _ Sr, studying the decomposition of Xn into wedge summands of G-spaces described in terms of smash powers of spheres and thus of representations,and using Thom isomorphisms to translate the result to integer gradings. We shallsay no more about this step here. The properties of normGH are deduced from thefollowing properties of normGH .normGG is the identity function.(4.5) normGH(1H) = 1G; where 1H 2 RH0 (S0) is the identity element.(4.6) normGH(xy) = normGH(x) normGH(y) if x 2 RH0 (X) and y 2 RH0 (Y ).(4.7)Here the product xy on the left is de�ned by use of the evident mapRH0 (X)
RH0 (Y ) �! RH0 (X ^ Y )(4.8)and similarly on the right, where we must also use the isomorphismRG0 (Xn ^ Y n) �= RG0 ((X ^ Y )n):The most important property is the double coset formularesGK normGH(x) =Yg normKgH\K resgHgH\K cg(x);(4.9)where K is any subgroup of G and fgg runs through a set of double coset repre-sentatives for KnG=H. Here, if gH \ K has index n(g) in gH, then n = P n(g)and the product on the right is de�ned by use of the evident mapOg RK0 (Xn(g)) �! RK0 (Xn):(4.10)An element of RH0 (X) is represented by an H-map x : SG �! RG ^X. Thereis no di�culty in using the product on RG to produce an H-mapSG �= (SG)n xn�!(RG ^X)n �= (RG)n ^Xn �! RG ^Xn:(4.11)



5. GLOBAL I�-FUNCTORS WITH SMASH PRODUCT 375The essential point of the construction is to do this in such a way as to producea G-map: this will be normGH(x). This is the basic idea, but carrying it outentails several di�culties. Of course, since our group actions involve permutationsof smash powers, we must be working in the brave new world of associative andcommutative smash products, with an associative and commutative multiplicationon RG. Our �rst instinct is to interpret the smash powers in (4.11) in terms of ^S.Certainly the maps in (4.11) are then both H-maps and �n-maps. However, theH-action on (RG)n does not come by pullback along the diagonal of an Hn-action,so that �n R H need not act on (RG)n. This is only to be expected since (RG)n isindexed on the original complete G-universe U on which RG is indexed, not on acomplete �n R H-universe. Since our G-actions come by restriction of actions ofwreath products �n R H, it is essential to bring (�n R H)-spectra into the picture.External smash products seem more reasonable than ^S for this purpose since theexternal smash power (RG)n is indexed on the complete �n R H-universe Un.5. Global I�-functors with smash productThe solution to the di�culties that we have indicated is to work with a re-stricted kind of commutative SG-algebra, namely one that arises from a globalI�-functor with smash product, abbreviated GI�-FSP. Unlike general commuta-tive SG-algebras, these have structure given directly in terms of external smashproducts, as is needed to make sense of (4.11).The notion of an I�-FSP was introduced by May, Quinn, and Ray around1973, under the ugly name of an I�-prefunctor. (The name \functor with smashproduct" was introduced much later by B�okstedt, who rediscovered essentiallythe same concept.) While I�-FSP's were originally de�ned nonequivariantly, thede�nition transcribes directly to one in which a given compact Lie group G actson everything in sight. The adjective \global" means that we allow G to rangethrough all compact Lie groups G, functorially with respect to homomorphismsof compact Lie groups. We let G denote the category of compact Lie groups andtheir homomorphisms.Definition 5.1. De�ne the global category GT of equivariant based spaces tohave objects (G;X), where G is a compact Lie group and X is a based G-space.The morphisms are the pairs(�; f) : (G;X) �! (G0;X 0)



376 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMwhere � : G �! G0 is a homomorphism of Lie groups and f : X �! X 0 isan �-equivariant map, in the sense that f(gx) = �(g)f(x) for all x 2 X andg 2 G. Topologize the set of maps (G;X) �! (G0;X 0) as a subspace of theevident product of mapping spaces and observe that composition is continuous.Definition 5.2. De�ne the global category GI� of �nite dimensional equivari-ant complex inner product spaces to have objects (G;V ), where G is a compactLie group and V is a �nite dimensional inner product space with an action of Gthrough linear isometries. The morphisms are the pairs(�; f) : (G;V ) �! (G0; V 0)where � : G �! G0 is a homomorphism and f : V �! V 0 is an �-equivariantlinear isomorphism.The de�nitions work equally well with real inner product spaces; we restrict at-tention to complex inner product spaces for convenience in our present application.Each morphism (�; f) in GI� factors as a composite(G;V )(id;f)�!(G;W )(�;id)�!(H;W );where G acts through � on W . We have a similar factorization of morphismsin GT . We also have forgetful functors GI� �! G and GT �! G . We shallbe interested in functors GI� �! GT over G , that is, functors that preserve thegroup coordinate. For example, one-point compacti�cation of inner product spacesgives such a functor, which we shall denote by S�. As in this example, the spacecoordinate of our functors will be the identity on morphisms of the form (�; id).Definition 5.3. A GI�-functor is a continuous functor T : GI� �! GT overG , written (G;TV ) on objects (G;V ), such thatT (�; id) = (�; id) : (G;TW ) �! (H;TW )for a representation W of H and a homomorphism � : G �! H.The following observation is the germ of the de�nition of the norm map.Lemma 5.4. Let A = Aut(G;V ) be the group of automorphisms of (G;V ) inthe category GI�. For any GI�-functor T , the group AnG acts on the space TV .



5. GLOBAL I�-FUNCTORS WITH SMASH PRODUCT 377De�ne the direct sum functor � : GI� � GI� �! GI� by(G;V )� (H;W ) = (G �H;V �W ):De�ne the smash product functor ^ : GT � GT �! GT by(G;X) ^ (H;Y ) = (G �H;X ^ Y ):These functors lie over the functor � : G � G �! G .Definition 5.5. A GI�-FSP is a GI�-functor together with a continuous nat-ural unit transformation � : S� �! T of functors GI� �! GT and a continuousnatural product transformation ! : T^T �! T �� of functors GI��GI� �! GTsuch that the compositeTV �= TV ^ S0id^��!TV ^ T (0) !�!T (V � 0) �= TVis the identity map and the following unity, associativity, and commutativity dia-grams commute: SV ^ SW���= //�^� TV ^ TW�� !SV�W //� T (V �W );TV ^ TW ^ TZ��id^! //!^id T (V �W ) ^ TZ�� !TV ^ T (W � Z) //! T (V �W � Z);and TV ^ TW //!��� T (V �W )�� T (�)TW ^ TV //! T (W � V ):Actually, this is the notion of a commutative GI�-FSP; for the more generalnon-commutative notion, the commutativitydiagrammust be replaced by a weakercentrality of unit diagram. Observe that the space coordinate of each map T (�; f)is necessarily a homeomorphism since (�; f) = (�; id) � (id; f) and f is an isomor-phism. Spheres and Thom complexes give naturally occurring examples.



378 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMExample 5.6. The sphere functor S� is a GI�-FSP with unit given by theidentity maps of the SV and product given by the isomorphisms SV ^SW �= SV�W .For any GI�-FSP T , the unit � : S� �! T is a map of GI�-FSP's.Example 5.7. Let dimV = n and, as in XVx2, de�ne TV to be the one-pointcompacti�cation of the canonical n-plane bundle EV over the Grassmann manifoldGrn(V � V ). An action of G on V induces an action of G that makes EV a G-bundle and TV a based G-space. Take V = V � f0g as a canonical basepointin Grn(V � V ). The inclusion of the �ber over the basepoint induces a map� : SV �! TV . The canonical bundle map EV � EW �! E(V �W ) induces amap ! : TV ^TW �! T (V �W ). With the evident de�nition of T on morphisms,T is a GI�-functor.It is useful to regard a GI�-FSP as a GI�-prespectrumwith additional structure.Definition 5.8. A GI�-prespectrum is a GI�-functor T : GI� �! GT to-gether with a continuous natural transformation � : T ^ S� �! T � � of functorsGI� � GI� �! T such that the compositesTV �= TV ^ S0 ��!T (V � 0) �= TVare identity maps and each of the following diagrams commutes:TV ^ SW ^ SZ���= //�^id T (V �W ) ^ SZ�� �TV ^ SW�Z //� T (V �W � Z):Lemma 5.9. If T is a GI�-FSP, then T is a GI�-prespectrum with respect tothe composite maps� : TV ^ SW id^��!TV ^ TW !�!T (V �W ):It is evident that a GI�-prespectrum restricts to a G-prespectrum indexed onU for every G and U .Notations 5.10. Let TG;U denote the G-prespectrum indexed on U associatedto a GI�-FSP T . Write RG;U for the spectrum LTG;U associated to TG;U .



6. THE DEFINITION OF THE NORM MAP 379There is a notion of an L -prespectrum, due to May, Quinn, and Ray, and TG;Uis an example. The essential point is that if f : U j �! U is a linear isometry andVi are indexing spaces in U , then we have maps�j(f) : TV1 ^ � � �TVj !�!T (V1 � � � � � Vj) Tf�!Tf(V1 � � � � � Vj):(5.11)The notion of an L -prespectrum was �rst de�ned in terms of just such maps. Itwas later rede�ned more conceptually in [LMS] in terms of maps�j : L (j)n Ej �! E(5.12)induced by the �j(f). It was shown in the cited sources that the spectri�cationfunctor L converts L -prespectra to L -spectra. We conclude that, for every Gand every G-universe U , RG;U is an L -spectrum and thus an E1 ring G-spectrumwhen U is complete. Of course, the L -spectrum RG;U determines the weaklyequivalent commutative SG;U -algebra SG;U nL RG;U .M. B�okstedt. Topological Hochschild homology. Preprint, 1990.J. P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave). E1 ring spaces andE1 ring spectra. Springer Lecture Notes in Mathematics Volume 577. 1977.6. The de�nition of the norm mapWe have the following crucial observation about GI�-FSP's.Proposition 6.1. Let T be a GI�-FSP. For an H-representation V , (TV )nand T (V n) are �n R H-spaces and the map! : (TV )n �! T (V n)is (�n R H)-equivariant. If U is an H-universe, then Un is a (�n R H)-universe andthe maps ! de�ne a map of (�n R H)-prespectra indexed on Un! : (TH;U)n �! T�n R H;Un;where (TH;U)n is the nth external smash power of TH;U . If T = S�, then ! is anisomorphism of prespectra.This allows us to de�ne the norm maps we require. Recall Notations 5.10.Definition 6.2. Let T be a GI�-FSP, let X be a based H-space, and let U bea complete H-universe. An element x 2 RH0 (X) is given by a map of H-spectrax : SH;U �! RH;U ^X. Let G act on Un through � : G �! �n R H, observe thatthe G-universe Un is then complete, and de�ne the norm of x to be the element



380 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMof RG0 (��Xn) given by the composite map of G-spectra indexed on Un displayedin the commutative diagram:SG;Un //!�1��normGH(x) (SH;U)n //xn (RH;U ^X)n�� �=RG;Un ^Xn (RH;U)n ^Xn:oo !^id(6.3)Strictly speaking, if we start with H-spectra de�ned in �xed complete H-universes UH for all H, then we must choose an isomorphism UG �= UnH to transferthe norm to a map of spectra indexed on UG, but it is more convenient to de-rive formulas from the de�nition as given. From here, all of the properties of thenorm except the double coset formula are easy consequences of the de�nition. Theproof of the double coset formula is in principle straightforward diagram chasingfrom the de�nitions, but it requires precise combinatorial understanding of doublecosets and some fairly elaborate bookkeeping. It is noteworthy that the formula isactually derived from a precise equality of the point set level maps that representthe two sides of the formula.7. The splitting of MUG as an algebraIn the context of GI�-FSP's, we can complete an un�nished piece of business,namely an indication of the proof that MUG is split as an algebra in the sense ofXXIII.5.8. This was at the heart of our assertion that MU -modules M naturallygive rise to split MUG-modules MG. In fact, the result we need applies to theSG-algebra associated to any GI�-FSP T , and we adopt Notations 5.10.We need a preliminary observation. If f : U �! U 0 is a linear isometry, wehave maps Tf : TV �! T (fV ) for indexing spaces V � U . These specify amap of prespectra TG;U �! f�TG;U 0 indexed on U and thus, by adjunction, a mapf�TG;U �! TG;U 0 of prespectra indexed on U 0. On passage to spectra, these gluetogether to de�ne a map � : I (U;U 0)nRG;U �! RG;U 0:(7.1)Moreover, this map factors over coequalizers to give a map of L0-spectra� : IU 0U RG;U = I (U;U 0)nI (U;U)RG;U �! RG;U 0:(7.2)



8. L�OFFLER'S COMPLETION CONJECTURE 381Proposition 7.3. ConsiderR0 = Se;UG ^L Re;UG and RG = SG;U ^L RG;U(where the subscripts L refer respectively to UG and to U) and let 
 : R �!R0 be a q-co�brant approximation of the commutative S-algebra R0. Then thecommutative SG-algebra RG is split as an algebra with underlying nonequivariantS-algebra R.Proof. It su�ces to to construct a map �0 : IUUGR0 �! RG of SG-algebras thatis a nonequivariant equivalence of spectra, since we can then precompose it withIUUG
 to obtain a map � : IUUGR �! RG of SG-algebras that is a nonequivariantequivalence. In fact, we shall construct a map �0 that is actually an isomorphism.Replace U and U 0 by UG and U in (7.2). It is not hard to check from the de�nitionof a GI�-FSP that Re;UG = RG;UG and R#G;U = Re;U#;(7.4)where the superscript # denotes that we are forgetting actions by G. That is,RG;UG is Re;UG regarded as a G-trivial G-spectrum indexed on the G-trivial uni-verse UG, and RG;U regarded as a nonequivariant spectrum indexed on U# isRe;U#. The �rst equality in (7.4) allows us to specialize the map � to obtain amap of E1 ring spectra� : IUUGRe;UG = I (UG; U)nI(UG;UG) RG;UG �! RG;U :(7.5)The second equality allows us to identify the target of the underlying map �# ofnonequivariant spectra with Re;U#, and it is not hard to check that �# is actuallyan isomorphism of spectra. We obtain the required map �0 on passage to SG-algebras, using from XXIII.4.5 that we have an isomorphism of SG-algebrasIUUGR0 �= SG ^L IUUGRe;UG:J. P. May. Equivariant and nonequivariant module spectra. Preprint, 1995.8. L�o�er's completion conjectureWhile computations ofMUG� are in general out of reach, they are more manage-able for compact Abelian Lie groups. Moreover, in this case MU�(BG+) is wellunderstood due to work of Landweber and others. Early on in the study of stable



382 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMcomplex cobordism, L�o�er stated the following assertion as a theorem, althoughdetails of proof never appeared.Conjecture 8.1 (L�offler). If G is a compact Abelian Lie group, then(MU�G)Ĵ �=MU�(BG+):When this holds, it combines with our topological result to force the followingalgebraic conclusion. A direct proof would be out of reach.Corollary 8.2. If G is a compact Abelian Lie group such that the conjectureholds and I is a su�ciently large ideal in MUG� , thenHI0 (MU�G) �= ((MUG)Î)�G �= (MU�G)Îand HIp (MU�G) = 0 if p 6= 0:We do not know whether or not the conjecture holds in general, but it does holdin many cases, as we shall explain in the rest of this section. We also indicatethe 
aw in the argument sketched by L�o�er. We are indebted to Comeza~na fordetails, and our proofs rely on results that he will prove in the next chapter. Inparticular, the following result is XXVI.5.3; it is stated by L�o�er, but no proofappears in the literature.Theorem 8.3. For a compact Abelian Lie group G,MUG� is a freeMU�-moduleon even degree generators.Since MUG is a split G-spectrum, the projection EG �! � induces a naturalmap � :MU�G(X) �!MU�G(EG+ ^X) �=MU�(EG+ ^G X):We shall mainly concern ourselves with the case X = S0 relevant to Conjecture8.1. We may take EG to be a G-CW complex with �nite skeleta, and there resultsa model for BG as a CW complex with �nite skeleta BGn. We shall need thefollowing result of Landweber.Proposition 8.4 (Landweber). For a compact Lie group G and a �nite G-CW complex X, the natural map MU�(EG+ ^G X) �! limMU�(EGn+ ^G X) isan isomorphism.



8. L�OFFLER'S COMPLETION CONJECTURE 383The vanishing of lim1 terms here is analogous to part of the Atiyah-Segal com-pletion theorem. In fact, in view of the Conner-Floyd isomorphismK�(X) �=MU�(X)
MU� K�for �nite X, the result for MU can be deduced from its counterpart for K. Somepower J q of the augmentation ideal of MUG� annihilates MU�G(X) for any �nitefree G-CW complex X, by the usual induction on the number of cells, and weconclude that MU�G(EG+) �= MU�(BG+) is J -adically complete. Therefore �gives rise to a natural mapMU�G(X)Ĵ �!MU�(EG+ ^G X)on �nite G-CW complexes X.A basic tool in the study of this map is the Gysin sequence� � � �!MU q�2dG (X)�(V )�!MU qG(X) �!MU qG(X ^ SV+)!MU q�2d+1G (X) �! � � � ;(8.5)where V is a complex G-module of complex dimension d and we write SV andDV for the unit sphere and unit disc of V . Noting that DV is G-contractibleand DV=SV is equivalent to SV , we can obtain this directly from the long exactsequence of the pair (DV;SV ) by use of the Thom isomorphismMU q�2dG (X) �!MU q(X ^ SV ):Lemma 8.6. Conjecture 8.1 holds when G = S1.Proof. Let V = C with the standard action of S1. Since SV = S1, we haveMU�S1(SV+) �= MU�, which of course is concentrated in even degrees. Thereforethe Gysin sequence for V , with X = S0, breaks up into short exact sequences andmultiplication by �(V ) is a monomorphism on MU�S1 . By the multiplicativity ofEuler classes, �(nV ) = �(V )n. Thus multiplication by �(nV ) is also a monomor-phism and the Gysin sequence of nV breaks up into short exact sequences0 �!MU2q�2ndS1 �(V )n�!MU2qS1 �!MU2qS1 (S(nV )+) �! 0:Since S1 acts freely on SV , the union S(1V ) of the S(nV ) is a model for ES1.On passage to limits, there results an isomorphism(MU�S1)(̂�(V )) �=MU�S1 (S(1V )+) �=MU�(BS1+):



384 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMIt is immediate from the Gysin sequence that JS1 = (�(V )), and the result fol-lows.Clearly the proof implies the standard calculation MU�(BS1) �= MU�[[c]],where c 2MU2(BS1) is the image of the Euler class.The steps of the argument generalize to give the following two results.Lemma 8.7. For any compact Abelian Lie group G,(MU�G�S1 )(̂�(V )) �=MU�G(BS1+) �=MU�G[[c]]:Proof. Here we regard V = C as a representation of G � S1, with G actingtrivially, and we note that S(V ) �= (G�S1)=G, so that MU�G�S1 (S(V )+) �=MU�G.The rest of the proof is as in Lemma 8.6.Lemma 8.8. Let T = T r be a torus, let Vq = C with T acting through itsprojection to the qth factor, and let �q = �(Vq). Then JT = (�1; � � � ; �r).Proof. Clearly JT annihilates MU�T (S(V1)+ ^ � � � ^ S(Vr)+) �= MU�. By aneasy inductive use of Gysin sequences, we �nd that, for 1 � q � r,MU�T (S(V1)+ ^ � � � ^ S(Vq)+) �=MU�T=(�1; � � � ; �q)MU�T :The rest of the proof is as in Lemma 8.6.We put the previous two lemmas together to obtain Conjecture 8.1 for tori.Proposition 8.9. Conjecture 8.1 holds when G is a torus.Proof. Write G = T � S1 and assume inductively that the conclusion holdsfor T . Letting cq be the image of �q, we �nd that(MU�G)ĴG �= (MU�G)ĴT ĴS1 �= (MU�G)ĴS1 ĴT �= (MU�T [[cr]])ĴT�= (MU�T )ĴT [[cr]] �= MU�[[c1; � � � ; cr]] �=MU�(BG+);the �rst equality being an evident identi�cation of a double limit with a singleone.We would like to deduce the general case of Conjecture 8.1 from the case of atorus. Thus, for the rest of the section, we consider a group G = C1 � � � � � Cr,where each Cq is either S1 or a subgroup of S1. This �xes an embedding of G inthe torus T = T r, and of course every compact Abelian Lie group can be writtenin this form. We have the following pair of lemmas, the �rst of which follows



8. L�OFFLER'S COMPLETION CONJECTURE 385from the known calculation of MU�(BG+); see for example the second paper ofLandweber below.Lemma 8.10. The restriction map MU�(BT+) �! MU�(BG+) is an epimor-phism. In particular, MU�(BG+) is concentrated in even degrees.Lemma 8.11. The restriction map MU�T �!MU�G is an epimorphism. In par-ticular, JT maps epimorphically onto JG and the completion of an MUG� -moduleat JG is isomorphic to its completion at JT .Proof. It su�ces to prove that each restriction mapMU�T q�Cq+1�����Cr �!MU�T q�1�Cq�Cq+1�����Cris an epimorphism. Let Cq be cyclic of order k(q). Let Vq = C regarded as aT -module with all factors of S1 acting trivially except the qth, which acts via itsk(q)th power map. Restricting Vq to a representation of T q �Cq+1 � � � � �Cr, wesee that its unit sphere can be identi�ed with the quotient group(T q �Cq+1 � � � � � Cr)=(T q�1 � Cq � Cq+1 � � � � �Cr):With X = S0 and G = T q � Cq+1 � � � � � Cr, the Gysin sequence of �(Vq) breaksup into short exact sequences that give the conclusion.Now consider the following commutative diagram:(MU�T )ĴT�� // MU�(BT+)��(MU�G)ĴG // MU�(BG+):(8.12)The top horizontal arrow is an isomorphism and both vertical arrows are epimor-phisms. Thus Conjecture 8.1 will hold if the following conjecture holds.Conjecture 8.13. The map (MU�G)ĴG �!MU�(BG) is a monomorphism.Lemma 8.14. Conjecture 8.1 holds if G is a �nite cyclic group.Proof. We embed G in S1 and consider the standard representation V = C ofS1 as a representation of G. Again, S(1V ) is a model for EG. With X = S0, theGysin sequence (8.5) breaks up into four term exact sequences. Here we cannotconclude that multiplication by �(V ) is a monomorphism: its kernel is the image



386 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMin MU�G of the odd degree elements of MU�G(S(V )+). However, in even degrees,the Gysin sequences of the representations nV give isomorphismsMU�G=�(V )nMU�G �=MU2�G (S(nV )+):Therefore (MU�G)(̂�(V )) maps isomorphically onto MU2�(BG+). This proves Con-jecture 8.13; indeed, since MU�(BG+) is concentrated in even degrees, it provesConjecture 8.1 directly.L�o�er asserts without proof that the general case of Conjecture 8.13 followsby the methods above. However, although MU�(BG+) is concentrated in evendegrees, the intended inductive proof may founder over the presence of odd degreeelements in Gysin sequences, and we do not know whether or not the conjectureis true in general.P. E. Conner and E. E. Floyd. The relation of corbordism to K-theories. Springer Lecture Notesin Mathematics Vol. 28. 1966.P. S. Landweber. Elements of in�nite �ltration in complex cobordism. Math. Scand. 30(1972),223-226.P. S. Landweber. Cobordism and classifying spaces. Proc. Symp. Pure Math. Vol. 22., 1971,pp125-129.P. L�o�er. Equivariant unitary bordism and classifying spaces. Proceedings of the InternationalSymposium on Topology and its Applications, Budva, Yugoslavia 1973, pp. 158-160.



CHAPTER XXVISome calculations in complex equivariant bordismby G. Comeza~naIn this chapter we shall explain some basic results about the homology and co-homology theories represented by the spectrum MUG. These theories arise fromstabilized bordism groups of G-manifolds carrying a certain \complex structure";exactly what this means is something we feel is not adequately discussed in theliterature. Since the chapter includes a substantial amount of well-known infor-mation, as well as some new material and proofs of results claimed without proofelsewhere, we make no claims to originality except where noted. The author wouldlike to thank Steven Costenoble for discussions and insights that have thrown agreat deal of light on the subject matter.1. Notations and terminologyG will stand throughout for a compact (and, in most cases, Abelian) Lie group,and subgroups of a such a group will be assumed to be closed. All manifoldsconsidered will be compact and smooth, and all group actions smooth. If (X;A)and (Y;B) are pairs of G-spaces, we will use the notation (X;A) � (Y;B) for thepair (X �Y; (X�B)[ (Y �A)). Homology and cohomology theories on G-spaceswill be reduced.G-vector bundles over a G-space will be assumed to carry an inner product(which will be hermitian if the bundle is complex). Unless explicit mention to thecontrary is made, representations will be understood to be �nite-dimensional andR-linear. Depending on the context, we shall sometimes think of V as a G-vectorbundle over a point. If � is a G-bundle, j�j will stand for its real dimension, S(�)387



388 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMfor its unit sphere, D(�) for its unit disk, and T (�) for its Thom space. If V isa representation of G, SV will denote its one-point compacti�cation. The trivialG-vector bundle over a G-space X with �ber V will be denoted "V .We de�ne the V -suspension �VX of a based G-spaceX to beX^SV ; thus if "V isthe trivialG-vector bundle overX with �ber V , then T ("V ) = �VX. We de�ne theV -suspension �V (X;A) of a pair of spaces to be (X;A)�(DV;SV ). In both cases,�V is a functor; if V is a subrepresentation of W with orthogonal complementW � V , the inclusion induces a natural transformation �W�V : �V �! �W .2. Stably almost complex structures and bordismWhen G is the trivial group, a stably almost complex structure on a compactsmooth manifold M is an element [�] 2 ~K(M), which goes to the class [�M ] ofthe stable normal bundle under the map~K(M) �! gKO(M):It is, of course, essentially equivalent to de�ne this with [�M ] replacing [�M ], sincethese classes are additive inverses in gKO(M).The following de�nition gives the obvious equivariant generalization of this.Definition 2.1. If [�] 2 ~KG(M) is a lift of [�M ] 2 gKOG(M) under the naturalmap, we call the pair (M; [�]) a normally almost complex G-manifold.We will use the notation M[�] when necessary, but we will drop [�] wheneverthere is no risk of confusion.The bordism theory of these objects, denoted muG� , is the \complex analog"of the unoriented theory moG� discussed in Chapter XV. If V is a complex G-module and (M;@M)[�] is a G-manifold with a stably almost complex structure,then its V -suspension becomes a G-manifold after \straightening the angles", and[�] � ["V ] is a complex structure on �V (M;@M). This gives rise to a suspensionhomomorphism �V : muG� (X;A) �! muG�+jV j(�V (X;A));which sends the class of a map (M;@M) �! (X;A) to the class of its suspension.Due to the failure of G-transversality, both the suspension homomorphisms andthe Pontrjagin-Thom map are generally not bijective.We construct a stabilized version of this theory as follows. Let U be an in�nite-dimensional complex G-module equipped with a hermitian inner product whose



2. STABLY ALMOST COMPLEX STRUCTURES AND BORDISM 389underlying R-linear structure is that of a complete G-universe. De�neMUG� (X;A) = colimV muG� (�V (X;A));where V ranges over all �nite-dimensional complex G-subspaces of U and the col-imit is taken over all suspension maps induced by inclusions. We should perhapspoint out that MUG� is not a connective theory unless G is trivial. The advantageof this new theory over muG� is that the bad behavior of the Pontrjagin-Thommap is corrected, and the maps induced by suspension by complex G-modules areisomorphisms by construction. This should be interpreted as a form of periodic-ity. Homology or cohomology theories with this property are often referred to inthe literature as complex-stable. Other examples of such theories include equivari-ant complex K-theory, its associated Borel construction, etc. Complex-stabilityisomorphisms should not be confused with suspension isomorphisms of the form�V : hG� (X;A) �! hG�+[V ](�V (X;A));which are part of the structure of all RO(G)-graded homology theories.MUG� or, more precisely, its dual cohomology theory was �rst constructed bytom Dieck in terms of a G-prespectrum TUG, bearing the same relationship tocomplex Grassmanians as the G-prespectrum TOG discussed in XVx2, does toreal ones. An argument of Br�ocker and Hook for unoriented bordism readilyadapts to the complex case to show the equivalence of the two approaches. Inwhat follows, we shall focus on the spectri�cation MUG of TUG. As with anyrepresentable equivariant homology theory, MUG� can be extended to an RO(G)-graded homology theory, but we shall concern ourselves only with integer gradings.We point out, however, that complex-stable theories are always RO(G)-gradable.A key feature ofMUG, proven in XXVx7, is the fact that it is a splitG-spectrum;this may be seen geometrically as a consequence of the fact that the augmentationmapMUG� �!MU�, given on representatives by neglect of structure, can be splitby regarding non-equivariant stably almost complexmanifolds as G-manifolds withtrivial action. The splitting makesMUG� =MUG� (S0) a module over the ringMU�.The multiplicative structure of the ring G-spectrum MUG can be interpretedgeometrically as coming from the fact that the class of normally stably almost com-plex manifolds is closed under �nite products. The complex-stability isomorphismsare well-behaved with respect to the multiplicative structure: in cohomology, we



390 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMhave a commutative diagramMU�G(X) 
MU�G(Y ) //���V 
�W MU�G(X ^ Y )�� �V�WMU�+jV jG (�VX)
MU�+jW jG (�WY ) // MU�+jV j+jW jG (�V�WX ^ Y )for all based G-spaces X and Y and complex G-modules V and W . In general, fora multiplicative cohomology theory, commutativity of a diagram of the form aboveis assumed as part of the de�nition of complex-stability. K�G is another exampleof a multiplicative complex-stable cohomology theory, as is the Borel constructionon any such theory.The role ofMUG in the equivariant world is analogous to that ofMU in classicalhomotopy theory, for its associated cohomology theory has a privileged positionamong those which are multiplicative, complex-stable, and have natural Thomclasses (for complex G-vector bundles). We record the axiomatic de�nition ofsuch theories.Definition 2.2. A G-equivariant multiplicative cohomology theory h�G is saidto have natural Thom classes for complexG-vector bundles if for every such bundle� of complex dimension n over a pointed G-space X there exists a class �� 2h2nG (T (�)), with the following three properties:(1) Naturality: If f : Y �! X is a pointed G-map, then �f�� = f�(��).(2) Multiplicativity: If � and � are complex G-vector bundles over X, then���� = �� � �� 2 hj�j+j�jG (T (� � �)):(3) Normalization: If V is a complex G-module, then �V = �V (1).The following result, which admits a quite formal proof (given for example byOkonek) explains the universal role played by MUG.Proposition 2.3. If h�G is a multiplicative, complex-stable, cohomology theorywith natural Thom classes for complex G-bundles, then there is a unique natu-ral transformation MU�G(�) �! h�G(�) of multiplicative cohomology theories thattakes Thom classes to Thom classes.Returning to homology, for a complex G-bundle � of complex dimension k, theThom class of � gives rise to a Thom isomorphism� :MUG� (T (�)) �!MUG��2k(B(�)+);



3. TANGENTIAL STRUCTURES 391and similarly in cohomology. This isomorphism is constructed in the same way asin the nonequivariant case (see e.g. [LMS]), without using any feature of MUG�other than the existence and formal properties of Thom classes. However, inthis special case, its inverse has a rather pleasant geometric interpretation: iff :M �! B(�) represents an element in muGn (B(�)+), the map f in the pullbackdiagram E(f��) //f��f�� E(�)���M //f B(�)represents an element in muGn+2k(T (�)). This procedure allows the construction ofa homomorphism which stabilizes to the inverse of the Thom isomorphism. SeeBr�ocker and Hook for the details of a treatment of the Thom isomorphism (in theunoriented case) that uses this interpretation.T. Br�ocker and E.C. Hook. Stable equivariant bordism. Mathematische Zeitschrift 129(1972),pp. 269{277.T. tom Dieck. Bordism ofG-manifolds and integrality theorems. Topology 9(1970), pp. 345{358.C. Okonek. Der Conner-Floyd-Isomorphismus f�ur Abelsche Gruppen. Mathematische Zeitschrift179(1982), pp. 201{212. 3. Tangential structuresUnfortunately, both muG� and MUG� are rather intractable from the computa-tional point of view. In order to address this di�culty, we shall introduce a newbordism theory, much more amenable to calculation, whose stabilization is alsoMU�G.Consider the following variant of reduced K-theory: if X is a G-space, insteadof taking the quotient by the subgroup generated by all trivial complexG-bundles,take the quotient by the subgroup generated by those trivial bundles of the formC n �X, where G acts trivially on C n. We denote the group so obtained as �KG;there is an analogous construction in the real case, which we denote �KOG.Definition 3.1. A tangentially stably almost complex manifold is a smoothmanifold equipped with a lift of the class [�M ] 2 �KOG(M) to �KG(M).We shall refer to the bordism theory of these manifolds as tangential complexbordism, denoted 
U;G� .



392 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMWe warn the reader that nowhere in the literature is the distinction between thecomplex bordism theories 
U;G� and muG� made clear. This is not mere pedantryon our part, as our next result will show. It was pointed out to the author byCostenoble that this result does not hold for normally stably almost complex G-manifolds.Proposition 3.2. IfM is a tangentially stably almost complexG-manifold andH � G is a closed normal subgroup, then the G-tubular neighborhood aroundMHhas a complex structure.We stress the fact that no stabilization is necessary to get a complex structureon the tubular neighborhood; this lies at the heart of the calculations we shallcarry out later in the chapter.Proof. The �rst thing to observe is that � (MH) = (�M jMH )H as real vectorbundles. If � is the restriction to MH of a complex G-vector bundle over M thatrepresents its tangential stably almost complex structure, and the underlying realG-vector bundle of � is �M jMH � "Rn, then (�H )? is a complex G-vector bundle.We have � = �H � (�H)? = (�M jMH)H � "Rn � �(MH ;M):This gives the desired structure.We next explore the relation between muG� and 
U;G� . There is a commutativesquare �KG(X) //�� �KOG(X)��fKG(X) // gKOG(X)that yields a natural transformation of homology theories � : muG� �! 
U;G� . Justas we did with muG� , we may stabilize 
U;G� with respect to suspensions by �nite-dimensional complex subrepresentations of a completeG-universe, obtaining a newcomplex-stable homology theory which we shall provisionally denote �MUG� . Themap � stabilizes to a natural transformation � : �MUG� �! MUG� . The followingresult was �rst proved by the author and Costenoble by a di�erent argument andis central to the results of this chapter.Theorem 3.3. � is an isomorphism of homology theories.



3. TANGENTIAL STRUCTURES 393We shall need the following standard result.Lemma 3.4. (Change of groups isomorphism) If H � G is a closed subgroup ofcodimension j, then for all H-spaces X there is an isomorphismmuH� (X+) �=�! muG�+j((G �H X)+)induced by application of the functor G �H (�)) to representatives of bordismclasses of maps, and similarly for pairs. The analogous result holds for 
U;G� andMUG� .Sketch proof. If we apply the functor G�H (�) to a map f :M �! X thatrepresents an element of muHn (X+), we obtain an element of muGn+j((G�H X)+).Conversely, if g : N �! G �H X represents an element of muGn+j((G �H X)+)and if � : G �H X �! X is the evident H-map, we set M = (�g)�1(eH) and seethat M is an H-manifold such that N = G �H M and the restriction of g to Mrepresents an element of muHn (X+).Proof of Theorem 3.3. We show �rst that the theorem is true for G =SU(2k + 1) and then extend the result to the general case by a change of groupsargument.We recall a few standard facts about representations of special unitary groups(e.g., from Br�ocker and tom Dieck). Let M be the complex SU(2k + 1)-modulesuch thatM = C 2k+1 with the action of SU(2k+1) given by matrix multiplicationand let �i = �iM . Then R(SU(2k + 1)) is the polynomial algebra over Zon therepresentations �i, 1 � i � 2k, all of which are irreducible and of complex type.Furthermore, �2k�i+1 = �i. This implies that any irreducible real representationof SU(2k + 1) is either trivial or admits a complex structure. To see this, let Wbe a non-trivial irreducible real SU(2k + 1)-module. Suppose �rst that W 
RCis irreducible. Since the restriction to R of an irreducible complex representationof quaternionic type is irreducible, our assumptions imply that W 
RC is of realtype and of the form V 
C V , where V is a monomial in the �i, 1 � i � k. Wehave (V 
C V )
RC �= (2W )
RC �= 2(V 
C V )as complex representations. On the other hand, since 2W �= V 
C V , we haveisomorphisms of complex SU(2k + 1)-modules(2W )
RC �= (V 
C V )
RC �= V 
C (V 
RC )



394 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMand V 
C (V 
RC ) �= (V 
C V )� (V 
C V )(because V 
RC �= V � V ). So it follows that2(V 
C V ) �= (V 
C V )� (V 
C V );which is absurd in view of the structure of RSU(2k+1). ThusW must be reducibleand so it is either of the form V1�V1, for an irreducible complex V1 of quaternionictype, or V1�V1, for an irreducible complex V1 of complex type. The �rst possibilityis ruled out by the fact that all self-conjugate irreducible complex representationsof SU(2k + 1) are of real type. So we must have2W �= V1 � V 1 �= 2Vas real representations, and therefore, using the uniqueness of isotypical decompo-sitions, we may conclude that W �= V as real representations.Now letX be a SU(2k+1)-space and consider a map representing an element inMUG� (X). By complex-stability, there is no loss of generality in assuming that ourmap is of the form f :M �! X, where �M � �V �= �, V is a real representation,and � is a complex SU(2k+1)-vector bundle. By the remark above, V = W �Rkfor a complex representationW . Then �W (M;@M) is a tangentially stably almostcomplex manifold and the class of �W f is in the image of �. It follows that � issurjective. A similar argument applied to bordisms shows that � is injective.To obtain the general case, observe that any compact Lie group embeds inU(2k), and U(2k) embeds in SU(2k + 1) (via the map that sends A 2 U(2k) to(det A)�1 � 1R�A), and apply Lemma 3.4.T. Br�ocker and T. tom Dieck. representations of compact Lie groups. Springer. 1985.C. Okonek. Der Conner-Floyd-Isomorphismus f�ur Abelsche Gruppen. Mathematische Zeitschrift179(1982), pp. 201{212. 4. Calculational toolsFor the remainder of the chapter, all Lie groups we consider will be Abelian.There is a long list of names associated to the calculation of 
U;G� (S0) for dif-ferent classes of compact Lie groups: Landweber (cyclic groups), Stong (Abelianp-groups), Ossa (�nite Abelian groups), L�o�er (Abelian groups), Lazarov (groupsof order pq for distinct primes p and q), and Rowlett (extensions of a cyclic groupby a cyclic group of relatively prime order). All of these authors rely on the study of



4. CALCULATIONAL TOOLS 395�xed point sets by various subgroups, together with their normal bundles, throughthe use of bordism theories with suitable restrictions on isotropy subgroups.The main calculational tool is the use of families of subgroups, which worksin exactly the same fashion as was discussed in the real case in XVx3. Recallthat, for a family F , an F -space is a G-space all of whose isotropy subgroupsare in F and that we write EF for the universal F -space. Recall too that, fora G-homology theory hG� and a pair of families (F ;F 0), F 0 � F , there is anassociated homology theory hG� [F ;F 0], de�ned on pairs of G-spaces ashG� [F ;F 0](X;A) = hG� (X � EF ; (X �F 0) [ (A�EF )):When F 0 = ;, we use the notation hG� [F ]. The theories hG� [F ], hG� [F 0], andhG� [F ;F 0] �t into a long exact sequence. Of course, there is an analogous con-struction in cohomology.In the special case of 
U;G� (and similarly for other bordism theories), it is easyto see that 
U;G� [F ;F 0] has an alternative interpretation: it is the bordism theoryof (F ;F 0)- tangentially almost-complex manifolds, that is, compact, tangentiallyalmost complex F -manifolds with boundary, whose boundary is an F 0-manifold.Definition 4.1. A pair of families (F ;F 0) of subgroups of G is called a neigh-boring pair di�ering by H if there is a subgroup H such that if K 2 F �F 0, thenH is a subconjugate of K.This notion was �rst used by L�o�er, but the terminology is not standard. Aspecial case is the more usual notion of an adjacent pair of families pair di�eringby H, which is a neighboring pair (F ;F 0) such that F �F 0 consists of thosesubgroups conjugate to H.The next proposition explains the importance of neighboring families. We in-troduce some terminology and notation to facilitate its discussion.Given a subgroup H of an Abelian Lie group G, we choose a set CG;H of �nitedimensional complex G-modules whose restrictions to H form a non-redundant,complete set of irreducible, nontrivial complexH-modules. If C denotes the trivialirreducible representation, we let C+G;H = CG;H [ fC g. For a nonnegative eveninteger k, we shall call an array of nonnegative integers P = (pV )V2CG;H a (G;H)-partition of k if k = XV2CG;H 2pV :



396 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMFor such a partition P , we letBU(P;G) = YV2CG;H BU(pV ; G):We let P(k;G;H) denote the set of all (G;H)-partitions of k.Proposition 4.2. If (F ;F 0) is a neighboring pair of families of subgroups ofa compact Abelian Lie group G di�ering by a subgroup H, then
U;Gn [F ;F 0](X;A) �= M0�2k�nP2P(2k;G;H)
U;G=Hn�2k [F=H]((XH; AH)�BU(P;G=H));where F=H denotes the family of subgroups of G=H that is obtained by takingthe quotient of each element of F �F 0 by H.Sketch of proof. For simplicity, we concentrate on the absolute case. Letf : M �! X represent an element in 
U;Gn [F ;F 0](X+) and let T be a (closed)G-tubular neighborhood ofMH . We may view T as the total space of the unit discbundle of the normal bundle to MH . We may also view T as an n-dimensionalF -manifold whose boundary is an F 0-manifold. Thus T represents an element of
U;Gn [F ;F 0](S0), and we see that [f ] = [f jT ] in 
U;Gn [F ;F 0](X+). Furthermore,[f ] = 0 if and only if there is an H-trivial G-nullbordism of f jT , equipped with acomplex G-vector bundle whose unit disc bundle restricts to T on MH . Observethat MH breaks up into various components of constant even codimension. Inother words, 
U;Gn [F ;F 0](X+) can be identi�ed with the direct sum, with 2kranging between 0 and n, of bordism of H-trivialF -manifolds of dimension n�2kequipped with a complex G-vector bundle of dimension k, containing no H-trivialsummands. Note the twofold importance of Proposition 3.2: not only are we usingthat MH is tangentially almost complex, but also that its tubular neighborhoodcarries a complex structure.Consider the bundle-theoretic analog of the isotypical decomposition of a linearrepresentation. For complex G-vector bundles E and F over a space X we mayconstruct the vector bundle Hom C (E;F ) whose �ber over x 2 X is HomC (Ex; Fx);G acts on HomC (E;F ) by conjugation. If X is H-trivial, then HomH(E;F ) =(HomC (E;F ))H is an H-trivial G-subbundle; if one regards X as a (G=H)-space,then HomH(E;F ) becomes a (G=H)-vector bundle over X.We apply this to F = T and E = "V , where V is a complex G-module whoserestriction to H is irreducible, thus obtaining a (G=H)-vector bundle which we



4. CALCULATIONAL TOOLS 397call the V -multiplicity of E. The evaluation mapMV 2C+G;H HomH("V ; T )
C "V �! Tis a G-vector bundle isomorphism, and this decomposition into isotypical sum-mands is unique. Note that in the special case we are considering, the multiplicityassociated to the trivial representation is 0, so the sum really does run over CG;H .T can therefore be identi�ed with a direct sum of (G=H)-vector bundles overMH , each corresponding to an irreducible complex representation of H, and MHbreaks into a disjoint union of components on which the dimension of each mul-tiplicity remains constant; each of these components has therefore an associated(G;H)-partition, accounting for the summation overP(2k;G;H) in our formula.Clearly the bundle on the component associated to a (G;H)-partition P is classi-�ed by BU(P;G=H).Similar methods allow us to prove the following standard result.Proposition 4.3. With the notation above, if H is a subgroup of an AbelianLie group G, thenBU(n;G)H �= aP2P(n;G;H) YV2C+G;H BU(pV ; G=H)as H-trivial G-spaces.Proof. It su�ces to observe that the right hand side classi�es n-dimensionalcomplex G-vector bundles over H-trivial G-spaces.P. S. Landweber. Unitary bordism of cyclic group actions. Proceedings of the Amer. Math.Soc. 31(1972), pp. 564{570.C. Lazarov. Actions of groups of order pq. Transactions of the Amer. Math. Soc. 173(1972),pp. 215{230.P. L�o�er. Bordismengruppen unit�arer Torusmannigfaltigkeiten. Manuscripta Mathematica12(1974), 307{327.E. Ossa, Unitary bordism of Abelian groups. Proceedings of the American Mathematical Society33(1972), pp. 568{571.R.J. Rowlett. Bordism of metacyclic group actions. Michigan Mathematical Journal 27(1980),pp. 223{233.R. Stong. Complex and oriented equivariant bordism. in Topology of Manifolds (J.C. Cantrelland C.H. Edwards, editors). Markham, Chicago 1970.



398 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISM5. Statements of the main resultsWe come now to a series of theorems, some old, some new, that are consequencesof the previous results. In all of them, we consider a given compact Abelian Liegroup G.Theorem 5.1 (L�offler). If V is a complex G-module, and X is a disjointunion of pairs of G-spaces of the form(DV;SV )� kYi=1BU(ni; G);then 
U;G� (X) is a free MU�-module concentrated in even degrees.Theorem 5.2. With the same hypotheses on X, the map
U;G� (BU(n;G) �X) �! 
U;G� (BU(n+ 1; G) �X)induced by Whitney sum with the trivial bundle "C is a split monomorphism ofMU�-modules.Theorem 5.3. MUG� is a free MU�-module concentrated in even degrees.Theorem 5.4. The stabilization map 
U;G� �!MUG� is a split monomorphismof MU�-modules.Theorem 5.3 is stated in the second paper of L�o�er cited below, but there seemsto be no proof in the literature. Ours is a re�nement of the ideas in the proofof Theorem 5.1, which yields Theorem 5.4 as a by-product, and is entirely self-contained (that is, it does not depend on results on �nite Abelian groups). TomDieck has used a completely di�erent method to prove a weaker version of Theorem5.4, for G cyclic of prime order, but to the best of our knowledge nothing of thesort has previously been claimed or proved at our level of generality. Theorem 5.2,which also seems to be new, is required in the course of the proof of Theorem 5.3and is of independent interest.In the light of these results, it is natural to conjecture, probably overoptimisti-cally, thatMUG� is free overMU� and concentrated in even degrees for any compactLie group G. We have succeeded in verifying this for a class of non-Abelian groupsthat includes O(2) and the dihedral groups. The statement about the injectivityof the stabilization map also holds for these groups. We hope to extend theseresults to other classes of non-Abelian groups; details will appear elsewhere.



6. PRELIMINARY LEMMAS AND FAMILIES IN G� S1 399The results above should be proven in the given order, but, since the proofshave a large overlap, we shall deal with all of them simultaneously.We shall proceed by induction on the number of \cyclic factors" of the group,where, for the purposes of this discussion, S1 counts as a cyclic group. The argu-ment in each case is as follows: the result is either trivial or well-known for thetrivial group. Then, one shows that if the result is true for a compact Lie groupG, it also holds for G � S1, and this in turn implies the same for G�Zn.T. tom Dieck. Bordism ofG-manifolds and integrality theorems. Topology 9(1970), pp. 345{358.P. L�o�er. Bordismengruppen unit�arer Torusmannigfaltigkeiten. Manuscripta Mathematica12(1974), 307{327.P. L�o�er. Equivariant unitary bordism and classifying spaces. Proceedings of the InternationalSymposium on Topology and its Applications, Budva, Yugoslavia 1973, pp. 158{160.6. Preliminary lemmas and families in G� S1For brevity, the subgroups f1g � S1 � G � S1 and f1g �Zn � G �Zn will bedenoted S1 and Zn, respectively.We shall need to consider the following families of subgroups of G � S1:Fi = fH � G � S1 j jH \ S1j � igF1 = fH � G � S1 j H \ S1 6= S1gA = fall closed subgroups of G � S1gThese give rise to the neighboring pairs (Fi+1;Fi) (di�ering by Zi+1) and(A ;F1) (di�ering by S1). Observe that F1 is the union of its subfamilies Fi.Lemma 6.1. Let G be a compact Lie group and X be a pair of (G�S1)-spaces.Then 
U;G�S1� (X � S1) �= 
U;G��1(X)and 
U;G�S1� ((X � S1)=Zn) �= 
U;G�Zn��1 (X);where G � S1 acts on S1 and S1=Zn through the projection G � S1 �! S1; thesame statement holds for the theories muG�S1� and MUG�S1� .The proofs of these isomorphisms are easy veri�cations and will be omitted; seeL�o�er. We shall also need the following result of Conner and Smith.Lemma 6.2. A graded, projective, bounded below MU�-module is free.



400 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMLemma 6.3. Consider a diagram of projective modules with exact rows0 // A //��f1 B //��f2 C //��f3 00 // A0 // B0 // C 0 // 0:If f1 and f3 (resp. f2 and f3) are split monomorphisms, so is f2 (resp. f1).Proof. Add a third row consisting of the cokernels of the fi, which will beexact by the Snake Lemma. An easy diagram chase shows that the modules inthe new row are projective, and therefore the conclusion follows.Note that we make no assumptions about compatibility of the splittings.Remark 6.4. If X is a pair of G-spaces of the kind appearing in the statementof Theorem 5.1 and H is a subgroup of G, then restricting the action to H yieldsan H-pair of the same kind. Moreover, by Proposition 4.3, XH is a (G=H)-pair ofthe same type. This class of pairs of spaces is also closed under cartesian productwith BU(n;G) and with pairs of the form (DW;SW ) for a complex G-moduleW .P. E. Conner, L. Smith,On the complex bordism of �nite complexes, Publications Math�ematiquesde l'IHES, no. 37 (1969), pp. 417{521.P. L�o�er. Bordismengruppen unit�arer Torusmannigfaltigkeiten. Manuscripta Mathematica12(1974), 307{327. 7. On the families Fi in G� S1In what follows, for a G-pair X and a homology theory h�,  will designate amap of the form : h�(BU(n;G)�X) �! h�(BU(n+ 1; G) �X)that is induced by taking the Whitney sum of the universal complex G-bundleover BU(n;G) and the trivial G-bundle "C .Suppose that all four theorems stated above have been proved for G. We shalldeduce the following result in the case G� S1.Theorem 7.1. The following statements hold for each i � 1 and for i =1.(1) 
U;G�S1� [Fi](X) is a free MU�-module concentrated in odd degrees.(2) The map : 
U;G�S1� [Fi](BU(n;G�S1)�X) �! 
U;G�S1� [Fi](BU(n+1; G�S1)�X)is a split monomorphism of MU�-modules.



7. ON THE FAMILIES Fi IN G� S1 401(3) If W is an irreducible complex (G� S1)-module, then�W : 
U;G�S1� [Fi](X) �! 
U;G�S1�+2 [Fi]((DW;SW )�X)is a split monomorphism of MU�-modules.(4) The map 
U;G�S1� [Fi](X) �! 
U;G�S1� (X) is zero.Proof. We �rst prove this for i = 1, making use of a suitable model for thespace EF1. Let (Wi)i�1 be a sequence of irreducible complex (G � S1)-modulessuch that S1 acts freely on their unit circles, and every isomorphism class of such(G � S1)-modules appears in�nitely many times. Let Vk = Lki=1Wi andSV1 = colimkSVk;SV1 is the required space. Note also that this space embeds into the equivariantlycontractible space DV1 = colimkDVk:Using Lemma 6.1 and our assumptions about G, we see that 
U;G�S1� (SV1�X)is a free MU�-module concentrated in odd degrees, and that�W : 
U;G�S1� (SV1 �X) �! 
U;G�S1� ((DW;SW )� SV1 �X)and
U;G�S1� (SV1 �BU(n;G� S1)�X) �! 
U;G�S1� (SV1 �BU(n+ 1; G � S1)�X)are split monomorphisms of MU�-modules.We calculate 
U;G�S1� ((SVk+1; SVk)�X) using the homotopy equivalence(SVk+1; SVk) ' (SWk+1 � SVk;DWk+1 � SVk);and the excisive inclusionSWk+1 � (DVk ; SVk) �! (SWk+1 � SVk;DWk+1 � SVk):The action of G � S1 on SWk+1 determines and is determined by a split groupepimorphism G � S1 �! S1 with kernel H � G � S1, H �= G. This impliesthat SWk+1 is (G � S1)-homeomorphic to (G � S1)=H. By a change of groupsargument and the inductive hypothesis, we see that 
G;U� ((SVk+1; SVk) � X) isfree and concentrated in odd degrees and that the maps induced respectively bysuspension by an irreducible complex G-module and by addition of the bundle "Care split monomorphisms of MU�-modules.



402 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMThe diagram with exact columns (in which j is odd)0�� 0��
U;G�S1j (SVk �X)�� //�W 
U;G�S1j+2 ((DW;SW )� SVk �X)��
U;G�S1j (SVk+1 �X)�� //�W 
U;G�S1j+2 ((DW;SW )� SVk+1 �X)��
U;G�S1j ((SVk+1; SVk)�X)�� //�W 
U;G�S1j+2 ((DW;SW )� (SVk+1; SVk)�X)��0 0and the results above show by induction that, for all k � 1, 
U;G�S1� (SVk �X) isfree and concentrated in odd degrees and that �W is a split monomorphism. Ananalogous diagram shows the same is true for the map  induced by adding "C .To complete the proofs of (1) { (3) when i = 1, it su�ces to observe thateach step in the colimit contributes a direct summand to SV1. To prove (4), letf :M �! X � SV1 represent an element of 
U;G�S1� [F1](X). Since S1 acts freelyon M and all actions on a circle are linear, p : M �! M=S1 is the unit circlebundle of a 1-dimensional complex G-bundle E (the complex structure is givenby multiplication by i 2 S1). Obviously, the circle bundle bounds a disc bundle,whose total space is a complex (G � S1)-manifold W . Any point x 2 W can bewritten as ty, where t 2 [0; 1] and y 2 M , so f extends to an equivariant mapF : W �! X �DV1 de�ned as F (ty) = tf(y), where the multiplication on theright hand side is given by the linear structure of DV1.We prove the case i � 1 of Theorem 7.1 by induction on i. Observe �rst thatthe case i =1 will follow directly from the case of �nite i sinceEF1 = colimiEFi:Indeed, we shall see that each stage in the construction of EF1 as a colimitcontributes a free direct summand to 
U;G�S1� [F1](X) on which �W and  aresplit monomorphisms of MU�-modules and the map to 
U;G�S1� (X) is zero.



7. ON THE FAMILIES Fi IN G� S1 403Applying Proposition 4.2 with (G;H) replaced by (G�S1;Zi+1) and noting that(G� S1)=Zi+1 �= G� S1 and that, under this isomorphism, the familyFi+1=Zi+1corresponds to the family F1, we �nd that
U;G�S1n [Fi+1;Fi](X) �= M0�2k�nP2P(2k;G�S1;Zn+1)
U;G�S1n�2k [F1](XZn+1 �BU(P;G � S1)):Thus the case i = 1, combined with Remark 6.4, shows that the left-hand side isfree and concentrated in odd degrees.One then concludes, by using the long exact sequences of the pairs [Fi+1;Fi],that for all i, 
U;G�S1� [Fi](X) is concentrated in odd degrees.The diagrams with exact columns (in which j is odd)0�� 0��
U;Gj [Fi](BU(n;G� S1)�X) //�� 
U;Gj [Fi](BU(n+ 1; G � S1)�X)��
U;Gj [Fi+1](BU(n;G� S1)�X) //�� 
U;Gj [Fi+1](BU(n+ 1; G� S1)�X)��
U;Gj [Fi+1;Fi](BU(n;G� S1) �X) //�� 
U;Gj [Fi+1;Fi](BU(n+ 1; G � S1)�X)��0 0show that, for all i, 
U;G� [Fi](X) is a free MU�-module and the map induced byaddition of "C is a split monomorphism of MU�-modules.The study of the suspension map �W must be broken into two cases. Since Wis an irreducible representation of G � S1, its �xed point space W S1 is either Wor f0g and therefore either(1) WZi+1 = W or(2) WZi+1 = f0g.In the �rst case, the map�W : 
U;G�S12j+1 [Fi+1;Fi](X) �! 
U;G�S12j+3 [Fi+1;Fi]((DW;SW )�X);(7.2)



404 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMcan be regarded via Proposition 4.2 as a direct sum of suspension maps
U;G�S12l+1 [F1](Y ) �! 
U;G�S12l+3 [F1]((DW;SW )� Y );where Y = XZi+1 �BU(P;G � S1) for some partition P of 2(j � l) and we thinkof W as a representation of G � (S1=Zi+1) �= G � S1. Thus it follows from thecase i = 1 that (7.2) is a split monomorphism of MU�-modules in this case.For the second case consider a (G� S1;Zi+1)-partition P = (pV )V2CG�S1;Zi+1 ofan even integer k. Let P 0 = (p0V )V2CG�S1 denote the (G � S1;Zi+1)-partition ofk + 2 de�ned by p0V = ( pV + 1 if V = WpV otherwise.Since WZi+1 = f0g, Proposition 4.2 implies that the map (7.2) can be interpretedas a direct sum of maps of the form : 
U;G�S12l+1 [F1](XZi+1 �BU(P;G)) �! 
U;G�S12l+3 [F1](XZi+1 �BU(P 0; G))induced by addition of "C to the multiplicity bundle corresponding to the V in thedecomposition. We know already that maps of this kind are split monomorphismsof MU�-modules, and we conclude that (7.2) is always a split monomorphism ofMU�-modules.Now the following diagram with exact columns implies inductively that, for alli, �W is a split monomorphism of MU�-modules on 
U;G�S1� [Fi](X).0�� 0��
U;G�S12j+1 [Fi](X) //�W�� 
U;G�S12j+3 [Fi]((DW;SW )�X)��
U;G�S12j+1 [Fi+1](X) //�W�� 
U;G�S12j+3 [Fi+1]((DW;SW )�X)��
U;G�S12j+1 [Fi+1;Fi](X) //�W�� 
U;G�S12j+3 [Fi+1;Fi]((DW;SW )�X)��0 0



7. ON THE FAMILIES Fi IN G� S1 405Finally, to prove (4) of Theorem 7.1, let f : M �! X represent an element of
U;G�S1� [Fi](X), i > 1, and suppose that we have already proved that
U;G�S1� [Fj](X) �! 
U;G�S1� (X)is zero for all j < i. We shall construct a bordism with no isotropy restrictionsfrom f to a map f 0 :M 0 �! X where M 0 is an Fi�1-manifold. By the inductionhypothesis, this will complete the proof.Let us pause for a moment to explain informally how the bordism will be con-structed. The idea is based on a standard technique in geometric topology knownas \attaching handles". Any sphere Sk is the boundary of a disc Dk+1; if Sk � Nnis embedded with trivial normal bundle in a manifold N and has a tubular neigh-borhood T , we can obtain a bordism of N to a new manifold by crossing N withthe unit interval and pasting Dk+1 � Dn�k�1 (a handle with core Dk) to N � Iby identifying T � f1g with Sk �Dn�k�1. Our construction will be basically \at-taching a generalized handle" to our manifoldM . Instead of an embedded sphere,we shall use MZi, which bounds a manifold W ; this will be the \core" of our\handle". The \handle" itself will be the total space of a disc bundle over W .The total space of its restriction to MZi will be equivariantly di�eomorphic to atubular neighborhood of MZi in M , so we may take M � I and glue the \handle"in the obvious way, thus obtaining the desired bordism. Of course, all the requiredproperties of the bordism have to be checked, and an extension of f to the bordismhas to be constructed. We give the details next.Consider a tubular neighborhood T ofMZi, regarded as the total space of a discbundle over MZi. We shall use the notation ST for the corresponding unit circlebundle, and T � for T �ST . We remark that M � T � and ST are Fi�1-manifolds.When there is no danger of confusion, we shall make no notational distinctionbetween a bundle and its total space.Let � denote a generator of Zi � S1 � C , and let Vk, 0 < k < i, be 1-dimensional representations of Zi such that � acts by multiplication by �k. Theseform a complete, non-redundant set of nontrivial irreducible representations, andeach of the Vk's obviously extends to G� S1 (an element (g; s) 2 G � S1 acts bymultiplication by sk). We use these to obtain an isotypical decomposition of T .Let Tk denote the bundle HomZi("Vk; T ).Since MZi is (S1=Zi)-free, our proof in the case i = 1 shows that f jMZi boundsa map ~f : W �! X; where W is the total space of a Zi-trivial 1-dimensional



406 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISM(G � S1)-disc bundle over Z =MZi=(S1=Zi) whose unit circle bundle is MZi.Passage to orbits gives a pull-back diagramTk�� // Tk=(S1=Zi)��N // N=(S1=Zi);for each k, where the right vertical arrow is a G-disc bundle, which may also bethought of as a (G� (S1=Zi))-bundle with trivial (S1=Zi)-action. This makes thediagram above a pull-back of (G� (S1=Zi))-vector bundles. Since the zero-sectionof this bundle can be identi�ed with Z = SW=(S1=Zi), we have a diagram of(G � (S1=Zi))-bundlesTk�� &&MMMMMMMMMMMM // Tk=(S1=Zi)��p�(Tk=(S1=Zi)) 66mmmmmmmmmmmm��N &&i MMMMMMMMMMMMMM // N=(S1=Zi):W 66p mmmmmmmmmmmmmmmClearly the bundle T̂ = Lk p�(Tk=(S1=Zi)) 
 "Vk extends T to W ; we claim thatits unit sphere bundle is an Fi�1-manifold. To prove this, observe thatW � Z �=MZi � [0; 1);where [0; 1) has trivial action, and so ST̂ jW�Z is equivariantly homeomorphic toST̂ jW�Z�[0; 1). Therefore, S1-stabilizers of points in ST̂�ST not already presentin ST can only appear in ST̂ jZ, but since there is no component associated to thetrivial representation (recall our remark in the course of the proof of Proposition4.2) all these are proper subgroups of Zi, so the claim follows.Let M 0 �= (M � T �) [ST ST̂ ;by construction, this is an Fi�1-manifold. Since T [W is a (G�S1)-deformationretract of T̂ , there is a map f̂ : W �! X with f̂ jT = f jT and f̂ jW = ~f . We obtaina bordism by crossingM with the closed unit interval, pasting T̂ toM�f1g along



8. PASSING FROM G TO G� S1 AND G�Zk 407T � f1g, and extending f in the obvious way to a map F from the bordism intoX. The maps f 0 = F jM 0 and f represent the same element in the bordism of Xwith no isotropy restrictions, as required.8. Passing from G to G� S1 and G�ZkTo complete the proofs of our theorems, it su�ces to prove the following result,in which we again assume that we have proven all of our theorems for G.Theorem 8.1. Let C = S1 or C =Zk. The following statements hold.(1) 
U;G�C� (X) is a free MU�-module concentrated in even degrees.(2) The map : 
U;G�C� (BU(n;G � S1)�X) �! 
U;G�C� (BU(n+ 1; G � S1)�X)is a split monomorphism of MU�-modules.(3) If W is an irreducible complex (G� C)-module, then�W : 
U;G�C� (X) �! 
U;G�C�+2 ((DW;SW )�X)is a split monomorphism of MU�-modules.We �rst show that 
U;G�S1� [A ;F1](X) is a free MU�-module concentrated ineven degrees and that �W and  here are split monomorphisms of MU�-modules.By Proposition 4.2, we have
U;G�S1n [A ;F1](X) �= M0�2k�nP2P(2k;G�S1;S1)
U;Gn�2k(XS1 �BU(P;G)):Thus, by the induction hypothesis, 
U;G�S1n [A ;F1](X) is free over MU� andconcentrated in even degrees, and the maps  induced by addition of "C are splitmonomorphisms of MU�-modules.Theorem 7.1(4) implies that the long exact sequence of the pair (A ;F1) breaksinto short exact sequences. In particular, the map
U;G�S1� (X) �! 
U;G�S1� [A ;F1](X)is a monomorphism, hence 
U;G�S1� (X) is concentrated in even degrees.In order to study the e�ect of �W on 
U;G�S1n [A ;F1](X), it is necessary todistinguish two cases:(1) W S1 = W and(2) W S1 = f0g.



408 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMThe analysis is similar to the one carried out in the previous section and willbe omitted; it yields the expected conclusion: �W is a split monomorphism ofMU�-modules on 
U;G�S1n [A ;F1](X).The diagram with exact columns0�� 0��
U;G�S12j (X) //�W�� 
U;G�S12j+2 ((DW;SW )�X)��
U;G�S12j [A ;F1](X) //�W�� 
U;G�S12j+2 [A ;F1]((DW;SW )�X)��
U;G�S12j�1 [F1](X) //�W�� 
U;G�S12j+1 [F1]((DW;SW )�X)��0 0together with Lemmas 6.2 and 6.3 shows that 
U;G�S1� (X) is projective, and there-fore free, and that �W is a split monomorphism of MU�-modules on 
U;G�S1� (X).A similar diagram gives the corresponding conclusion for  .This completes the proof of Theorem 8.1 for C = S1, and it remains to deal withthe case C =Zk. Let V denote the 1-dimensional complex representation of G�S1on which G acts trivially and an element e2�it 2 S1 acts by multiplication by e2�itk.Since S1 acts without �xed points on SV � X, 
U;G�S1� [A ;F1](SV � X) = 0.Therefore, by the long exact sequence of the pair (DV;SV ),
U;G�S1� [A ;F1](X) �! 
U;G�S1� [A ;F1]((DV;SV )�X)is an isomorphism, and, by the long exact sequence of the pair (A ;F1),
U;G�S1� [F1](SV �X) �! 
U;G�S1� (SV �X)is an isomorphism.By Theorem 7.1, we conclude that 
U;G�S1� (SV � X) is a free MU�-moduleconcentrated in odd degrees. This being so, the long exact sequence of the pair(DV;SV ) breaks up into short exact sequences0 �! 
U;G�S12j (X) ��! 
U;G�S12j ((DV;SV )�X) �! 
U;G�S12j�1 (SV �X) �! 0:



8. PASSING FROM G TO G� S1 AND G�Zk 409Since SV can be identi�ed with S1=Zk, we conclude from Lemma 3.4 that
U;G�Zk� (X) �= coker �:Now apply the Snake Lemma to the diagram with exact columns0�� 0��
U;G�S12j (X)�� //� 
U;G�S12j ((DV;SV )�X)��
U;G�S12j [A ;F1](X)�� //�= 
U;G�S12j [A ;F1]((DV;SV )�X)��
U;G�S12j�1 [F1](X)�� //� // 
U;G�S12j�1 [F1]((DV;SV )�X)��0 0:Since � is a monomorphism and � is an epimorphism, we see that coker � �= ker �.Since ker � is a freeMU�-module concentrated in odd degrees, 
U;G�Zk� (X) is freeand concentrated in even degrees.To show that �W is a split monomorphism, let Y = (DW;SW )�X and considerthe maps �0 : 
U;G�S12j+2 (Y ) �! 
U;G�S12j+2 ((DV;SV )� Y )and �0 : 
U;G�S12j+1 [F1](Y ) �! 
U;G�S12j+1 [F1]((DV;SV )� Y )that �t into the diagram obtained from the previous one by raising all degrees bytwo and replacing X by Y . Then �W induces a map from the original diagram tothe new diagram, and there results a commutative squarecoker ����= //�W coker �0�� �=ker � //�W ker � 0:By Lemma 6.2, the bottom arrow is a split monomorphism ofMU�-modules, henceso is the top arrow. The proof that  is a split monomorphism is similar.
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