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Thus, when it holds, the localization theorem for A implies a calculation of
both M.(EG Ag X) and M*(EG 4 N X) for all split A-modules M and all based
G-spaces X.

We must still define the algebraic construction whose brave new counterpart is
given by our completion functors. Returning to the algebraic context of Section
1, we want to define a suitable dual to local cohomology. Since local cohomology
is obtained as H*(K @ M) for a suitable complex K, we expect to have to take
H.(Hom(K, M)). However this will be badly behaved unless we first replace K by
a complex of projective R-modules. Thus we choose an R-free complex PK*([)
and a homology isomorphism PK*(/) — K*([). Since both complexes consist
of flat modules we could equally well have used PK*(]) in the definition of local
cohomology. For finitely generated ideals [ = (aq,- -+ , ), we take tensor prod-
ucts and define PK*(I) = PK*(a1) @ ...® PK*(a,); independence of generators
follows from that of K*(7).

We may then define local homology by
(5.6) HI(R; M) = H.(Hom(PK*(I), M)).

We often omit R from the notation. Because we chose a projective complex we
obtain a third quadrant univeral coefficient spectral sequence

By = Bxt®(H7'(R), M) = H!,_ (R M)

with differentials d, : E®' — EsT5="t1 that relates local cohomology to local
homology.

It is not hard to check from the definition that if R is Noetherian and M is
either free or finitely generated, then HI(R; M) = M7}, and one may also prove
that in these cases the higher local homology groups are zero. It follows that
HI(R; M) calculates the left derived functors of the (not necessarily right exact)
I-adic completion functor. In fact, this holds under weaker hypotheses on R than
that it be Noetherian.

Returning to our topological context, it is now clear that if R is a commutative
Sg-algebra and I is a finitely generated ideal in RS, then the completion functor
M7 on R-modules is the brave new analogue of local homology: we have the
spectral sequence (5.2).

J.P.C. Greenlees and J.P. May. Derived functors of I-adic completion and local homology. J.
Algebra 149 (1992), 438-453.
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6. A proof and generalization of the localization theorem

To prove systematically that the map x4 of (4.7) is a weak equivalence we
need to know that when we restrict the map x of (4.4) to a subgroup H, we
obtain an analogous map of H-spectra. Write [y for the augmentation ideal
Ker(resi’ C RI). Even for cohomotopy it is not true that res(lz) = Iy, but in
that case they do have the same radical. To give a general result, we must assume

that this holds.

ASSUMPTION 6.1. For all subgroups H C &

vres(lg) = \/E

For theories such as cohomotopy and K-theory, where we understand all of the
primes of R, this is easy to verify. Note that both (4.2) and (6.1) are assumptions
on R that have nothing to do with A. We need an assumption that relates R
to A, Let J = Jg be the augmentation ideal in AY. The unit B — A induces
a homomorphism of rings R — A% that is compatible with restrictions to
subgroups, hence we have an inclusion of ideals I - A C J.

ASSUMPTION 6.2. The augmentation ideals of Rf, and A7, are related by

VI AG =V

Recall from (4.8) that AST(M) = 7%(M Ar A). The final ingredient of our

proof will be the existence of Thom isomorphisms
(6.3) AGRSY A M) = AGE(SIVIA M)

of A%F-modules for all complex representations V and R-modules M. For exam-
ple, with A = R, homotopical bordism and K-theory have such Thom isomor-
phisms. Cohomotopy does not, and that is why our proof (and the theorem) fail
in that case.

THEOREM 6.4 (LOCALIZATION). If A is an R-ring spectrum such that, for all

subgroups H of (i, the theories A'f(.) admit Thom isomorphisms and if as-
sumptions (4.2), (6.1), and (6.2) hold for G and for all of its subgroups, then the
localization theorem holds for A.

PROOF. We have observed that the cofiber of x is equivalent to £G A K(I). We
must prove that EG A K(I)Ar A ~ %. We proceed by induction on the size of the
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group. By Assumption (6.1) and Lemma 4.3, we see that
(EGANK(Ig)|g ~ EH A K(Iy).
Thus our inductive assumption implies that
G/Hy NEGANK(I)Ag A~ x

for all proper subgroups H C (. Arguing exactly as in Carlsson’s first reduction,
XX.4.1, of the Segal conjecture for finite p-groups, we find that it suffices to prove

that £EZAK(I)Ag A ~ . Indeed, (E2)% = S° and E.22/5° can be constructed
from cells G/H, A S™ with H proper. Therefore

(BEZ2/S°YNEGANK(I)Ag A~ *

and thus

EGNK(I)Ap A~ EZ NEGAK(I)Ag A.
However, the map £2 — EZ A EG induced by the map S° — EG is a
Gi-equivalence by a check of fixed point spaces.

Now, if G is finite, consider the reduced regular representation V. As we ob-
served in the proof of the Segal conjecture, S™V = colim S*V is a model for E
since VH £ 0 if H is proper and V< = 0. For a general compact Lie group G, we
write SV for the colimit of the spheres SV, where V runs over a suitably large
set of representations V such that V¢ = {0}, for example all such V that are
contained in a complete G-universe U/. Again, SV is a model for EP.

At this point we must recall how Thom isomorphisms give rise to Euler classes
x(V) € Ac_;i%. Indeed the inclusion e : S — SV and the Thom isomorphism
give a natural map of AS"®-modules

AGT0)SSACR(SY 0 X) 2 ASR(S A X) = AT (X))
and this map is given by multiplication by x (V). Thus, for finite G,
AGR(S<V NK(T)) = colimy ASH(SH A K(1))
= colimy(ASH(K (1)), x(V))
= AZHED) V)T

Here x(V) is in J since e is nonequivariantly null homotopic. Therefore, using
Assumption 6.2 and Remark 3.3, we see that

Hi (RS N)X(V)™1] = HH(AZ N) [ (V)] =0
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for any AY-module N. From the spectral sequence (3.2), we deduce that
ASR(S=V A K(1)) = 0.

A little elaboration of the argument gives the same conclusion when G is a gen-
eral compact Lie group. Since SV is H-equivariantly contractible for all proper
subgroups H, this shows that S=V A K(I) Agp A ~ *, as required. [

There is a substantial generalization of the theorem that admits virtually the
same proof. Recall from V.4.6 that, for a family .%, we have the cofiber sequence

EZ, — S" — EF.
We discussed family versions of the Atiyah-Segal completion theorem in XIV§6
and of the Segal conjecture in XX§§1-3. As in those cases, we define
1.7 = Npez Ker(res$ : RS — R,

Arguing exactly as above, we obtain a map
(6.5) k:EFZ.NR— K(I7).

DEFINITION 6.6. The ‘% -localization theorem’ holds for an R-ring spectrum A
if

ka=kANid: EFZ, NA=EFZ . NRApA— K(IIF)ANr A

is a weak equivalence of R-modules, that is, if it is an isomorphism in GZp.

We combine and record the evident analogs of Lemmas 4.10 and 5.4.

LEMMA 6.7. If the .#-localization theorem holds for the R-ring spectrum A,
then the maps

EF, ANM —T12(M), EFANM — M[[.F™]

Y

and
M}, = Fp(K(I1.Z),M) — Fr(EZ. NR,M) = F(EZ,, M)

are isomorphisms in GGZp for all A-modules M.

A family . in G restricts to a family F|y = {K|K € # and K C H}, and
Assumptions 4.2, 6.1, and 6.2 admit evident analogs for [.%.

THEOREM 6.8 (F-LOCALIZATION). If A is an R-ring spectrum such that, for
all subgroups H of (&, the theories Af'H(-) admit Thom isomorphisms and if, for
a given family .#, the .# versions of assumptions (4.2), (6.1), and (6.2) hold for
G and for all of its subgroups, then the .%-localization theorem holds for A.



360 XXIV. BRAVE NEW EQUIVARIANT ALGEBRA

PROOF. Here we must prove that E.Z A K(I.F)Ap A ~ %, and we assume
that G ¢ .# since otherwise E.Z ~ . As in the proof of the localization theorem,
since the evident map 1.7 — EZNE.Z is a G-equivalence, the problem reduces
inductively to showing that .2 A K(I.F) Ag A ~ *. We take SV as our model
for .2 and see that, since V¥ = {0} for all H # G, x(V) € J.Z. The rest is

the same as in the proof of the localization theorem. [

REMARK 6.9. It is perhaps of philosophical interest to note that the localization
theorem is true for all R that satisfy (4.2) and (6.1) provided that we work with
RO(G)-graded rings. Indeed the proof is the same except that instead of using
the integer graded element y (V) € RC_;|V| we must use e(V) = e.(1) € R%,. The
conclusion is only that there are spectral sequences

H;(R) = RE(BG.)

and so forth, where RO(G)-grading of R is understood. In practice this theorem
is not useful because the RO((G)-graded coefficient ring is hard to compute and is
usually of even greater Krull dimension than the integer graded coefficent ring RS,
The Thom isomorphisms allow us to translate the RO(G)-graded augmentation

ideal into its integer graded counterpart.

7. The application to K-theory

We can apply the .Z-localization theorem to complex and real periodic equiv-
ariant K -theory in two quite different ways. The essential point is that Bott
periodicity clearly gives the Thom isomorphisms necessary for both applications
(see XIV§3). Unfortunately, for entirely different reasons, both applications are at
present limited to finite groups.

First, we recall from XXII.6.13 that, for finite groups G, complex and real
equivariant K-theory are known to be represented by commutative Sg-algebras.
In view of Bott periodicity, we may restrict attention to the (complex or real)
representation ring of (& regarded as the subring of degree zero elements of K& or
KOS (compare Remark 3.3), and our complete understanding of these rings makes
verification of the .# versions of (4.2) and (6.1) straightforward. In fact, these ver-
ifications work for arbitrary compact Lie groups G. The following theorem would
hold in that generality if only we knew that Kg and KOg were represented by
commutative Sg-algebras in general. For this reason, although the completion the-
orem is known for all compact Lie groups, the localization theorem is only known
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for finite groups. The problem is that, at this writing, equivariant infinite loop

space theory has not yet been developed for compact Lie groups of equivariance.

THEOREM 7.1. Let G be finite. Then, for every family .%, the .#-localization
theorem holds for K¢ regarded as a Kg-algebra, and similarly for KOg.

Second, we have the first author’s original version of the .#-localization theorem
for K-theory. For that version, we regard K¢ and KOg as Sg-ring spectra. Here
we may restrict attention to the Burnside ring of G regarded as the subring of de-
gree zero elements of 7%(S¢). Again, when G is finite, our complete understanding
of A(G) makes verification of the . versions of (4.2) and (6.1) straightforward,
and we observed in and after XXI.5.3 that the .# version of (6.2) holds. Note,
however, that A(G') is not Noetherian for general compact Lie groups, so that (4.2)
and (6.1) are not available to us in that generality. Moreover, A(G) and R(() are
not closely enough related for (6.2) to hold. For example, the augmentation ideal
of A(G) is zero when G is a torus.

THEOREM 7.2. Let G be finite. Then, for every family .%, the .#-localization
theorem holds for K¢ regarded as an Sg-ring spectrum, and similarly for KOg.

In the standard case .% = {¢}, we explained in XXI§5 how Tate theory allows
us to process the conclusions of the theorems to give an explicit computation
of K.(BG); see XXI.5.4. The following references give further computational
information. A comment on the relative generality of the two theorems is in
order. The first only gives information about Kg-modules of the brave new sort,
whereas the second gives information about Kg-module spectra of the classical
sort. However, a remarkable result of Wolbert shows that the nonequivariant
implications are the same: every classical K-module spectrum is weakly equivalent

to the underlying spectrum of a brave new K-module.

J. P. C. Greenlees. K homology of universal spaces and local cohomology of the representation
ring. Topology 32(1993), 295-308.

J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Memoir American Math. Soc.
No. 543. 1995.

J. Wolbert. Toward an algebraic classification of module spectra. Preprint, 1995. University of
Chicago. (Part of 1996 PhD thesis in preparation.)

8. Local Tate cohomology

When the .#-localization theorem holds, it implies good algebraic behaviour of
the .7 -Tate spectrum. We here explain what such good behaviour is by defining
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the algebraic ideal to which the Tate spectrum aspires: the local Tate cohomology
groups of a module. We proceed by strict analogy with the construction of the
topological .#-Tate spectrum,

tez(k)=F(BEZ, k)N EZ.

Thus, again working in the algebraic context of Section 1, we define the local
Tate cohomology groups to be

(8.1) H;(R; M) = H*(Hom(PK*(I), M) @ PC*(I)).

Here PC"(]) is the projective Cech complex, which is defined by the algebraic
fiber sequence

(8.2) PK*(I) — R — PC*(I)
of chain complexes. There results a local Tate spectral sequence of the form
Ey" = Hi(HI(R: M)) = Hi(R: M),

In favorable cases this starts with the Cech cohomology of the derived functors of
I-adic completion.

The usefulness of the definition becomes apparent from the form that periodicity
takes in this manifestation of Tate theory. It turns out that unexpectedly many
elements of R induce isomorphisms of the R-module [:]I*(R; M). Tt is simplest to
state this formally when R has Krull dimension 1.

THEOREM 8.3 (RATIONALITY). If R is Noetherian and of Krull dimension 1,
then multiplication by any non-zero divisor of R is an isomorphism on Hj(R; M).

The Burnside ring A(G) and the representation ring R(G') of a finite group G
are one dimensional Noetherian rings of particular topological interest.

COROLLARY 8.4. Let (& be finite. For any ideal I of A(G') and any A(G)-module
M, H;(A(G); M) is a rational vector space.

COROLLARY 8.5. Let (& be finite. For any ideal I of R(() and any R((G)-module
M, HF(R(G); M) is a rational vector space.

Returning to our Sg-algebra R and its modules M, we define the ‘/-local Tate
spectrum’ of M for a finitely generated ideal I C RY by

(3.6) t1(M) = Fr(K(I), M) Ag C(I).
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It is then immediate that there is a spectral sequence
(87) By = Hi(Rg Mg)' = 78 (1(M)).

In particular, we may draw topological corollaries from Corollaries 8.4 and 8.5.

COROLLARY 8.8. Let (¢ be finite. For any ideal I in A(G) = 7§ (Sg) and any
G-spectrum F, t;(F) is a rational G-spectrum.

COROLLARY 8.9. Let G be finite. For any ideal I in R(G) = 7§ (K¢) and any
Kg-module M, t;(M) is a rational G-spectrum.

Now assume the .# version of (4.2). Let A be an R-ring spectrum and consider

the diagram

EFLNA——SONA EZNA

K(LF) Ag A A C(1.F) Ag A

If the .#-localization theorem holds for A, then k4 and £, are weak equivalences
of R-modules. We may read off remarkable implications for the Tate spectrum
t#(M) of any A-module spectrum M. If x4 is a weak equivalence, this .7 -Tate
spectrum is equivalent to the I.%-local Tate spectrum: a manipulation of isotropy
groups is equivalent to a manipulation of ideals in brave new commutative algebra.

THEOREM 8.10. If the .#-localization theorem holds for the R-ring spectrum
A, then the #-Tate and [.%-local Tate spectra of any A-module spectrum M are
equivalent:

tg(M) ~ t[g(M).

PROOF. Since Fr(X, M) is an A-module for any R-module X, Lemma 6.7 im-
plies that all maps in the following diagram are weak equivalences of R-modules:
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tz(M)
|

Fr(K(IZ),M)Ar RA E.F — Fp(EZ, N R,M) g RA B

| |

Fr(K(1.7), M) A C(1.F7) — Fr(EZ, A R, M) Ag C(I.F).

trz(M) O
Theorem 8.3 gives a striking consequence.

COROLLARY 8.11. Assume that RS is Noetherian of dimension 1 and Z-torsion
free. If the .#-localization theorem holds for an R-ring spectrum A, then the
F-Tate spectrum t (M) is rational for any A-module M.

REMARK 8.12. Upon restriction to the Burnside ring A(G) = 7§(Sg), the corol-
lary applies to R = Sg. In this case it has a converse: if the completion theorem
holds for A and f4(A) is rational, then the localization theorem holds for A. The
proof (which is in our memoir on Tate cohomology) uses easy formal arguments
and the fact that x : £.#, A Sq¢ — K(I.%) is a rational equivalence.

We should comment on analogues of Corollary 8.11 in the higher dimensional
case. The essence of Theorem 8.10 is that if the localization theorem holds for
A, then the Tate spectrum of an A-module M is algebraic and is therefore domi-
nated by the behaviour of the local Tate cohomology groups [:]I*( & Mg via the
spectral sequence (8.7). Now these groups are modules over the ring [:]I*(Rg), so
an understanding of the prime ideal spectrum of this ring is fundamental. For
example, the first author’s proof of the Rationality Theorem shows that analogues
of it hold under appropriate hypotheses on spec( Rg,).

These comments are relevant to the discussion of XXI§6. As noted there, we
know that applying the Tate construction to spectra of type E(n), on which v,
is invertible, forces v,_1 to be invertible (in a suitable completion). One guesses
that this can be explained in terms of the subvariety of Spec(E(n)g) defined by
v,—1 and its intersection with that of /. Unfortunately our ignorance of F(n)f
prevents us from justifying this intuition.

J. P. C. Greenlees. Tate cohomology in commutative algebra. J. Pure and Applied Algebra
94(1994), 59-83.
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J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Memoir American Math. Soc.
No. 543. 1995.
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CHAPTER XXV

Localization and completion in complex bordism

by J. P. C. Greenlees and J. P. May

1. The localization theorem for stable complex bordism

There is a large literature that is concerned with the calculation of homology
and cohomology groups M.(BG) and M*(BG) for MU-module spectra M, such
as MU itself, K, BP, K(n), E(n), and so forth. Here (& is a compact Lie group,
in practice a finite group or a finite extension of a torus. The results do not appear
to fall into a common pattern.

Nevertheless, there is a localization and completion theorem for stable complex
bordism, and this shows that all such calculations must fit into a single general
pattern dominated by the structure of the equivariant bordism ring MU . Indeed,
as we showed in XXIII§5, there is a general procedure for constructing an equiv-
ariant version Mg of any nonequivariant MU-module M. Since Mg is split with
underlying nonequivariant M U-module M, the theorem applies to the calculation
of M.(BG4) and M*(BG,) for all such M. This is not, at present, calculation-
ally useful since rather little is known about MUS. Nevertheless, the theorem
gives an intriguing new relation between equivariant and nonequivariant algebraic
topology.

While the basic philosophy behind the theorem is the same as for the local-
ization theorem XXIV.6.4, that result does not apply because its basic algebraic
assumptions, XXIV.4.2 and 6.1, do not hold. In particular, since the augmenta-
tion ideal of MU is certainly not finitely generated and presumably not radically

finitely generated, it is not even clear what we mean by the localization theorem,

367
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and different techniques are needed for its proof. Let J = Jg denote the aug-
mentation ideal of MUZ (with integer grading understood). For finitely generated
subideals [ of J, we can perform all of the topological constructions discussed in

the previous chapter.

THEOREM 1.1. Let G be finite or a finite extension of a torus. Then, for any
sufficiently large finitely generated ideal I C J, k : EG4 AN MUg — K(I) is an

equivalence.

It is reasonable to define K(.J) to be K([I) for any sufficiently large I and
to define I'y(Mg) and (Mg)} similarly. The theorem implies that these MUg-
modules are independent of the choice of I.

Consequences are drawn exactly as they were for the localization theorem in

Sections 4 and 5 of the previous chapter. In particular,
EG_|_ A MG — FJ(MG) and (Mg)9 — F(EG+,Mg)

are equivalences for any MUg-module M.

The fact that the theorem holds for a finite extension of a torus and thus for the
normalizer of a maximal torus in an arbitrary compact Lie group strongly suggests
that the following generalization should be true, but we have not succeeded in

finding a proof.
CONJECTURE 1.2. The theorem remains true for any compact Lie group G.

Most of this chapter is taken from the following paper, which gives full details.
The last section discusses an earlier completion “theorem” for MUS when G is
a compact Abelian Lie group. While it may be true, we have only been able to

obtain a complete proof in special cases.
J. P. C. Greenlees and J. P. May. Localization and completion theorems for M U/-module spectra.
Preprint, 1995.
2. An outline of the proof
We shall emphasize the general strategy. Let G be a compact Lie group and let

S¢ be the sphere G-spectrum. We assume given a commutative Sg-algebra Rg
with underlying nonequivariant commutative S-algebra K. As in the localization

theorem, we shall assume that the theory R has Thom isomorphisms

(2.1) RE(SY A X) = RE(SMIA X)
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for complex representations V' and G-spectra X. More precisely, we shall assume
this for all subgroups H C G, and we shall later impose a certain naturality
condition on these Thom isomorphisms. We have already seen in XV§2 that MUg
has such Thom isomorphisms. As in the proof of XXIV.6.4, the Thom isomorphism
gives rise to an Euler class y(V) € R|G_V|. Let Jg be the augmentation ideal
Ker(res! : RE — R.); remember that J = Jg.

DEFINITION 2.2. Assume that RY has Thom isomorphisms for all H C (. Let
I be a finitely generated subideal of J and, for H C G, let r&(I) denote the
resulting subideal res%(I) - R of Jy. We say that [ is sufficiently large at H if
there is a non-zero complex representation V of H such that V¥ = 0 and the Euler
class x(V) € R is in the radical 1/r%(I). We say that the ideal [ is sufficiently
large if it is sufficiently large at all H C G.

We have the canonical map of Rg-modules
k: FEGy N Rg — K(I),

and our goal is to prove that it is an equivalence. The essential point of our
strategy is the following result, which reduces the problem to the construction of

a sufficiently large finitely generated subideal I of J.

THEOREM 2.3. Assume that R has Thom isomorphisms for all H C G. If I
is a sufficiently large finitely generated subideal of J, then

k:EGy NRg — K(I)
is an equivalence.

PrOOF. The cofiber of & is equivalent to EG A K(I), and we must prove that

this is contractible. Using the transitivity of restriction maps to see that r%(I)
H

* 9

is a large enough subideal of R.', we see that the hypotheses of the theorem are

inherited by any subgroup. Therefore we may assume inductively that the theorem

holds for H € &7. Observing that
(EGANK(I)|g=EHNK(S(I))

for H C (&, we see that our definition of a sufficiently large ideal provides exactly
what is needed to allow us to obtain the conclusion by parroting the proof the

localization theorem XXIV.6.4. [
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Thus our problem is to prove that there is a large enough finitely generated
ideal 1. One’s first instinct is to take I to be generated by finitely many well
chosen Euler classes. While that does work in some cases, we usually need to
add in other elements, and we shall do so by exploiting norm, or “multiplicative
transfer”, maps. We explain the strategy before stating what it means for a theory
to have such norm maps.

We assume from now on that & is a toral group, namely an extension
l—T—G— F—1,
where T is a torus and F' is a finite group.

THEOREM 2.4. If G is toral and the R for H C G admit norm maps and Thom

isomorphisms, then J contains a sufficiently large finitely generated subideal.
The proof of the theorem depends on two lemmas. As usual, we write
resy : R(G) — R(H)
for the restriction homomorphism. When H has finite index in G, we write
ind% : R(H) — R(G)
for the induction homomorphism. Recall that indf; V = C[G] @cpn V.

LEMMA 2.5. There are finitely many non-zero complex representations V;,--- . Vj
of T" such that T' acts freely on the product of the unit spheres of the representa-
tions

res% indg Vi

While this is not obvious, its proof requires only elementary Lie theory and does
not depend on the use of norm maps. We shall say no more about it since it is

irrelevant when ' is finite.

LEMMA 2.6. Let F’ be a subgroup of F' with inverse image GG’ in (. There is
an element £(F”) of J such that

resgh (E(F)) = (V')
where V' is the reduced regular complex representation of F’ regarded by pullback
as a representation of GG' and w’ is the order of WG' = NG' /(.

We shall turn to the proof of this in the next section, but we first show how

these lemmas imply Theorem 2.4.
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PrOOF OF THEOREM 2.4. We claim that the ideal
I'= (x(indF W), , x(indZ V;)) + (E(F")|F' C F)

is sufficiently large.
It H is a subgroup of G that intersects T non-trivially, then, by Lemma 2.5,
(resG indf V;)#T = {0} for some i and therefore (ind% Vi) = {0}. Since

X(vesi indg Vi) = ves (x(indg V7)) € ri (1),

this shows that [ is sufficiently large at H in this case.

It H is a subgroup of (¢ that intersects T' trivially, as is always the case when G is
finite, then H maps isomorphically to its image F” in F. If G’ is the inverse image
of F"in (G and V' is the reduced regular complex representation of I’ regarded as a
representation of G’, then resG/(V’) is the reduced regular complex representation
of H and (res$ (V') = 0. By Lemma 2.6, we have res& (£(F')) = x(V)*" and

therefore
Y(resS (V)Y = resS (x(V)Y') = res resl, (E(F')) = resS(E(F")) € r&(1).
This shows that [ is sufficiently large at H in this case. [

3. The norm map and its properties

We must still explain the proof of Lemma 2.6, and to do so we must explain
our hypothesis that B¢ has norm maps. We shall give a rather crude definition
that prescribes exactly what we shall use in the proof. The crux of the matter
is a double coset formula, and we need some notations in order to state it. For
g € Gand HC G, let YH = gHg™" and let ¢, : “H — H be the conjugation

isomorphism. For a based H-space X, we have a natural isomorphism
¢y : RI(X) — BRI (X)),

where X denotes X regarded as a 9H-space by pullback along ¢,. We also have a

natural restriction homomorphism
rest 1 RY(X) — RI(X).

DEFINITION 3.1. We say that RS has norm maps if, for a subgroup H of finite
H

2, where r > 0 is even, there is an element

index n in (G and an element y € R

n

normy (1 +y) € Y. RY,

=0
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that satisfies the following properties; here 1 = 1y € RI denotes the identity
element.
(i) normg(l +y)=1+y.
(i) mormy (1) = 1.
(iii) [The double coset formula]

res% normfl (1+y)= Hnormg;m]( reszng cy(1+y),
g

where K is any subgroup of G and {¢} runs through a set of double coset
representatives for K\G//H.

PrOOF OF LEMMA 2.6. Since the restriction of the reduced regular representa-
tion of F' to any proper subgroup contains a trivial representation, the restriction
of x(V') € RY" to a subgroup that maps to a proper subgroup of F' is zero. In

RY ., the double coset formula gives

(3.2)  ress, mormg, (14 y(V')) = Hnorm%/ﬁgl resnar Co(1 4 x(V'),

g
where ¢ runs through a set of double coset representatives for G'\G/G’'. We require
that our Thom isomorphisms be natural with respect to conjugation in the sense
that their Euler classes satisfy ¢,(x(V)) = x(?V), where ¢V is the pullback of V

along ¢,. In particular, this gives that
co(L+x(V) =1+ x(*V).

Here 9V is the reduced regular representation of 9G”. Clearly %G’ NG’ is the inverse
image in G of 9F' N F'. If 9F' N F" is a proper subgroup of F', then the restriction
of x(V') to %G" N G is zero. Therefore all terms in the product on the right side of
(3.2) are 1 except for those that are indexed on elements ¢ € NG’. There is one
such ¢ for each element of WG' = NG'/G', and the term in the product that is
indexed by each such g is just 1 + x(V’). Therefore (3.2) reduces to

(3.3) vesth, mormG (1 + (V) = (1 4+ (V)"

If V' has real dimension r, then the summand of (1 + y(V'))*" in degree rw’ is
(V). Since resl, preserves the grading, we may take £(I7) to be the summand
of degree rw’ in mg,(l +x(V")). O
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4. The idea behind the construction of norm maps

We give an intuitive idea of the construction here, but we need some preliminar-
ies to establish the context. Let H be a subgroup of finite index n in a compact
Lie group G. The norm map is intimately related to ind% : RO(H) — RO(G),
and we begin with a description of induction that suggests an action of G on the
nth smash power X" of any based H-space X. Recall that the wreath product
Y, [ H is the set ¥, x H" with the product

(o, haye oo s h) (TR o R = (o7, hothy, e S henhl).

Choose coset representatives ty,... ,t, for H in (G and define the “monomial rep-

resentation”

a:G— X, [H
by the formula

05(7) = (0-(7)7 h1(7)7 tee 7hn(7))7
where o(7) and h;(v) are defined implicitly by the formula
v = oo hi(7).

LEMMA 4.1. The map « is a homomorphism of groups. If ' is defined with
respect to a second choice of coset representatives {#.}, then «a and o' differ by a

conjugation in %, [ H.

The homomorphism « is implicitly central to induction as the following lemma
explains. Write o*W for a representation W of ., [ H regarded as a representation

of GG by pullback along a.

LEMMA 4.2. Let V be a representation of H. Then the sum nV of n copies of
V' is a representation of 3, [ H with action given by

(0‘, hl, ce ,hn)(vl, Ce ,vn) = (hg—l(l)vg—l(l), Ce ,hg—l(n)vg—l(n)),
and o*(nV) is isomorphic to the induced representation ind% V = R[] Qria V-

LEMMA 4.3. If X is a based H-space, then the smash power X" is a (X, [ H)-
space with action given by

(U, hi,y... ,hn)(l'l A A xn) = hg—1(1)$g—1(1) A A hg—1(n)xg—1(n).
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For a based Y, [ H-space Y, such as Y = X" for a based H-space X, write
a*Y for Y regarded as a G-space by pullback along a. Note in particular that

a*((SV)") = SdZV for an H-representation V.

To begin the construction of morm%, one constructs a natural function

(4.4) normfl : RgI(X) — Rg(a*X”).

The norm map formy, of Definition 3.1 is then obtained by taking X to be the
wedge S° Vv S7. studying the decomposition of X" into wedge summands of G-
spaces described in terms of smash powers of spheres and thus of representations,
and using Thom isomorphisms to translate the result to integer gradings. We shall

say no more about this step here. The properties of norm$; are deduced from the

following properties of norm%.

(4.5) norm¢ is the identity function.
(4.6) norm%(1y) = lg, where 1y € RY(S%) is the identity element.

(4.7)  norm%(zy) = norm%(z)norm%(y) if x € RY(X) and y € RY(Y).
Here the product xy on the left is defined by use of the evident map
(4.8) RI(X)@ RY(Y) — RI(X AY)
and similarly on the right, where we must also use the isomorphism
RE(X"AY™) 2 RS((X AY)).
The most important property is the double coset formula
G

(4.9) rest: norm% (z) = Hnormé%m( resor e Cq(2),
g

where K is any subgroup of G and {g} runs through a set of double coset repre-
sentatives for K\G/H. Here, if H N K has index n(g) in H, then n = > n(g)
and the product on the right is defined by use of the evident map

(4.10) Q) RE (X)) — RE(X™).

g

An element of RY(X) is represented by an H-map x : S¢ — Rs A X. There
is no difficulty in using the product on R to produce an H-map

(4.11) Se = (Sa)" 25 (Ra A X)" = (Rg)" A X" — Rg A X"
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The essential point of the construction is to do this in such a way as to produce
a G-map: this will be norm%(x). This is the basic idea, but carrying it out
entails several difficulties. Of course, since our group actions involve permutations
of smash powers, we must be working in the brave new world of associative and
commutative smash products, with an associative and commutative multiplication
on Rg. Our first instinct is to interpret the smash powers in (4.11) in terms of Ag.
Certainly the maps in (4.11) are then both H-maps and ¥,-maps. However, the
H-action on (R¢)" does not come by pullback along the diagonal of an H"-action,
so that X, [ H need not act on (R¢)". This is only to be expected since (Rg)" is
indexed on the original complete G-universe U on which Rg is indexed, not on a
complete ¥, [ H-universe. Since our (G-actions come by restriction of actions of
wreath products ¥, [ H, it is essential to bring (X, [ H)-spectra into the picture.
External smash products seem more reasonable than Ag for this purpose since the

external smash power (R¢g)" is indexed on the complete X, [ H-universe U".

5. Global Z,-functors with smash product

The solution to the difficulties that we have indicated is to work with a re-
stricted kind of commutative Sg-algebra, namely one that arises from a global
S -functor with smash product, abbreviated 4.7,-FSP. Unlike general commuta-
tive Sg-algebras, these have structure given directly in terms of external smash
products, as is needed to make sense of (4.11).

The notion of an .Z,-FSP was introduced by May, Quinn, and Ray around
1973, under the ugly name of an Z.-prefunctor. (The name “functor with smash
product” was introduced much later by Bokstedt, who rediscovered essentially
the same concept.) While .Z.-FSP’s were originally defined nonequivariantly, the
definition transcribes directly to one in which a given compact Lie group G acts
on everything in sight. The adjective “global” means that we allow G to range
through all compact Lie groups G, functorially with respect to homomorphisms
of compact Lie groups. We let ¢ denote the category of compact Lie groups and

their homomorphisms.

DEFINITION 5.1. Define the global category 4.7 of equivariant based spaces to
have objects (G, X), where (¢ is a compact Lie group and X is a based G-space.

The morphisms are the pairs

(@, f) - (G, X) — (G, X7)
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where a : G — G’ is a homomorphism of Lie groups and f : X — X' is
an a-equivariant map, in the sense that f(gx) = a(g)f(x) for all # € X and
g € G. Topologize the set of maps (G, X) — (G', X’) as a subspace of the

evident product of mapping spaces and observe that composition is continuous.

DEFINITION 5.2. Define the global category ¥4.7. of finite dimensional equivari-
ant complex inner product spaces to have objects (G, V), where (G is a compact
Lie group and V is a finite dimensional inner product space with an action of GG

through linear isometries. The morphisms are the pairs
(o, f) : (G, V) — (G, V)

where a : G — G’ is a homomorphism and f : V — V' is an a-equivariant

linear isomorphism.

The definitions work equally well with real inner product spaces; we restrict at-
tention to complex inner product spaces for convenience in our present application.

Each morphism (a, f) in 4.7, factors as a composite

()G ) D w,

where GG acts through o on W. We have a similar factorization of morphisms
in 9. We also have forgetful functors 4.9, — ¢ and 4.7 — ¢. We shall
be interested in functors 4.7, — 4.7 over ¥, that is, functors that preserve the
group coordinate. For example, one-point compactification of inner product spaces
gives such a functor, which we shall denote by S°. As in this example, the space

coordinate of our functors will be the identity on morphisms of the form (a,¢d).

DEFINITION 5.3. A ¥4.7 -functor is a continuous functor 7' : 4.4, — 4.7 over
¢, written (G, TV) on objects (G, V), such that

T(a,id) = (ayid) : (G, TW) — (H,TW)
for a representation W of H and a homomorphism o : G — H.

The following observation is the germ of the definition of the norm map.

LEMMA 5.4. Let A = Aut(G,V) be the group of automorphisms of (G, V) in
the category ¥4.7,. For any ¥4.7,-tunctor T', the group A x (G acts on the space T'V.
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Define the direct sum functor @ : 4.7, x 4.9, — 4.7, by
(G, V)® (HW)=(Gx HVaW).
Define the smash product functor A : b7 x 47 — 4T by
(G,X)ONH)Y)=(Gx H XAY).
These functors lie over the functor x : ¢ x ¥ — ¥.

DEFINITION 5.5. A 4.7,-FSP is a 9.7, -functor together with a continuous nat-
ural unit transformation 5 : S* — T of functors 4.7, — 9.7 and a continuous
natural product transformation w : TAT — To® of functors 4.7, x 4.7, — 4.7
such that the composite

TV 2TV A STV AT0)-5T(V & 0) 2TV

is the identity map and the following unity, associativity, and commutativity dia-

grams commute:

nAn
SYASYW —=TVANTW

gl l

SVEW ——T(V & W),

wAid

TVATWANTZ —————=T(VaeW)A\TZ

ar] -

TV AT(W & Z) TV & Wd Z),

and

TVANTW —=T(Va& W)

l |70

TW ATV —=T(W & V).

Actually, this is the notion of a commutative 4.7,-FSP; for the more general
non-commutative notion, the commutativity diagram must be replaced by a weaker
centrality of unit diagram. Observe that the space coordinate of each map T'(«, f)
is necessarily a homeomorphism since («, f) = (a,id) o (id, f) and f is an isomor-

phism. Spheres and Thom complexes give naturally occurring examples.
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EXAMPLE 5.6. The sphere functor S* is a 4.7,-FSP with unit given by the
identity maps of the SV and product given by the isomorphisms SV ASW == SVEW,
For any 4.7.-FSP T, the unit  : S* — T is a map of 4.7.-FSP’s.

EXAMPLE 5.7. Let dimV = n and, as in XV§2, define T'V to be the one-point
compactification of the canonical n-plane bundle £V over the Grassmann manifold
Gr,(V & V). An action of G on V induces an action of (G that makes EV a G-
bundle and TV a based G-space. Take V =V & {0} as a canonical basepoint
in Gr,(V @& V). The inclusion of the fiber over the basepoint induces a map
n:SY — TV. The canonical bundle map EV & EW — E(V & W) induces a
map w : TVATW — T(Va&W). With the evident definition of 7" on morphisms,
T is a 9.2 -functor.

It is useful to regard a 4.7,-FSP as a 4.7, -prespectrum with additional structure.

DEFINITION 5.8. A 4.7,-prespectrum is a 4.7, -functor T : 4.9, — 47 to-
gether with a continuous natural transformation o : T'A S* — T o & of functors
947, x 49, — 7 such that the composites

TV =TV AS-LT(V & 0) 2TV

are identity maps and each of the following diagrams commutes:

TV ASY A7 —T s T(V @ W) A S7
TV A SWe7 T(VaWwa ).

LEMMA 5.9. If T is a 4.7,-FSP, then T is a 4.7, -prespectrum with respect to

the composite maps

id An

o TV ASYVETY A TWLT(V & W).

It is evident that a ¥.7,-prespectrum restricts to a G-prespectrum indexed on

U for every (G and U.

NOTATIONS 5.10. Let Tz 7 denote the G-prespectrum indexed on U associated
to a 4.7,-FSP T. Write Rgp for the spectrum LT i associated to Te .
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There is a notion of an Z-prespectrum, due to May, Quinn, and Ray, and T ¢y
is an example. The essential point is that if f: U/ — U is a linear isometry and

V; are indexing spaces in U, then we have maps
(5.11) &) TN TV (R G- & V)BT (Vi@ @ V).

The notion of an .Z-prespectrum was first defined in terms of just such maps. It

was later redefined more conceptually in [LMS] in terms of maps
(5.12) L) x B — E

induced by the &;(f). It was shown in the cited sources that the spectrification
functor L converts Z-prespectra to .£-spectra. We conclude that, for every ¢
and every G-universe U, Rg 7 1s an Z-spectrum and thus an F, ring G-spectrum
when U is complete. Of course, the Z-spectrum Ry determines the weakly
equivalent commutative Sg r-algebra Squ X » Rau.

M. Bokstedt. Topological Hochschild homology. Preprint, 1990.
J. P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave). FE ring spaces and
FEo ring spectra. Springer Lecture Notes in Mathematics Volume 577. 1977.

6. The definition of the norm map
We have the following crucial observation about ¥4.7.-FSP’s.

PROPOSITION 6.1. Let T' be a 4.7.-FSP. For an H-representation V, (TV)"
and T'(V™) are ¥, [ H-spaces and the map

w: (TV)" — T(V")

is (¥, [ H)-equivariant. If U is an H-universe, then U" is a (X, [ H)-universe and
the maps w define a map of (X, [ H)-prespectra indexed on U"

w: (Typ)" — S [HU

n

where (T )" is the nth external smash power of Ty . If T = S°, then w is an

isomorphism of prespectra.

This allows us to define the norm maps we require. Recall Notations 5.10.

DEFINITION 6.2. Let T be a 4.7,.-FSP, let X be a based H-space, and let U be
a complete H-universe. An element x € RI(X) is given by a map of H-spectra
x: Sy — Rpu AN X. Let G act on U” through a : G — X, [ H, observe that

the G-universe U" is then complete, and define the norm of x to be the element
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of RS (a*X™) given by the composite map of G-spectra indexed on U" displayed
in the commutative diagram:

Sepm ——» (Suu)” A (Rgu A X)"

(63) normg(x)l l%
RQUn ANX" (RHU)n ANX"

wAid

Strictly speaking, if we start with H-spectra defined in fixed complete H-
universes Uy for all H, then we must choose an isomorphism Ug = Uj; to transfer
the norm to a map of spectra indexed on Ug, but it is more convenient to de-
rive formulas from the definition as given. From here, all of the properties of the
norm except the double coset formula are easy consequences of the definition. The
proof of the double coset formula is in principle straightforward diagram chasing
from the definitions, but it requires precise combinatorial understanding of double
cosets and some fairly elaborate bookkeeping. It is noteworthy that the formula is
actually derived from a precise equality of the point set level maps that represent

the two sides of the formula.

7. The splitting of MU, as an algebra

In the context of ¥4.7,-FSP’s, we can complete an unfinished piece of business,
namely an indication of the proof that MU is split as an algebra in the sense of
XXIIL5.8. This was at the heart of our assertion that MU-modules M naturally
give rise to split MUg-modules My. In fact, the result we need applies to the
Sg-algebra associated to any 4.7.-FSP T, and we adopt Notations 5.10.

We need a preliminary observation. If f : U — U’ is a linear isometry, we
have maps T'f : TV — T(fV) for indexing spaces V' C U. These specify a
map of prespectra Ty — [*Tz v indexed on U and thus, by adjunction, a map
flau — Tg o of prespectra indexed on U’'. On passage to spectra, these glue
together to define a map

(71) f : f(U, U’) X RQU — RQU/.
Moreover, this map factors over coequalizers to give a map of L/-spectra

(7.2) f : ]U/RG,U = f(U, U/) [><ﬂ(U,U) RQU — RQU/.
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ProrosiTioN 7.3. Consider
R/ = SB7UG /\g R&UG and RG = SQU /\g RQU

(where the subscripts & refer respectively to U% and to U) and let v : B —
R’ be a g-cofibrant approximation of the commutative S-algebra R’. Then the
commutative Sg-algebra R is split as an algebra with underlying nonequivariant

S-algebra R.

ProOF. It suffices to to construct a map 5’ : Ijo R — Rg of Sg-algebras that
is a nonequivariant equivalence of spectra, since we can then precompose it with
I to obtain a map n : IJsR — Rg of Sg-algebras that is a nonequivariant

equivalence. In fact, we shall construct a map 5’ that is actually an isomorphism.
Replace U and U’ by U% and U in (7.2). It is not hard to check from the definition
of a ¥.7.-FSP that

(74) Re,UG = RG,UG and Rﬁ,U == Re,U#v

where the superscript # denotes that we are forgetting actions by . That is,
Rg e is R, pye regarded as a G-trivial G-spectrum indexed on the G-trivial uni-
verse U%, and Rgp regarded as a nonequivariant spectrum indexed on U# is
R.p#. The first equality in (7.4) allows us to specialize the map ¢ to obtain a

map of F, ring spectra
(7.5) £ IfaR pe = I (UYU) e pe) Repe — Rau.

The second equality allows us to identify the target of the underlying map &# of
nonequivariant spectra with B, 4, and it is not hard to check that £# is actually
an isomorphism of spectra. We obtain the required map 7’ on passage to Sg-

algebras, using from XXIII.4.5 that we have an isomorphism of Sg-algebras
IJeR = Sg Ay [HeRops. O

J. P. May. Equivariant and nonequivariant module spectra. Preprint, 1995.

8. LofHler’s completion conjecture

While computations of MUS are in general out of reach, they are more manage-
able for compact Abelian Lie groups. Moreover, in this case MU*(BG) is well
understood due to work of Landweber and others. Early on in the study of stable
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complex cobordism, Loffler stated the following assertion as a theorem, although

details of proof never appeared.
CONJECTURE 8.1 (LOFFLER). If GG is a compact Abelian Lie group, then
(MUE); = MU*(BGy.).

When this holds, it combines with our topological result to force the following

algebraic conclusion. A direct proof would be out of reach.

COROLLARY 8.2. If (G is a compact Abelian Lie group such that the conjecture
holds and I is a sufficiently large ideal in MUS, then

Hy(MUg) = (MUc)i)g = (MUZ)1

and

HI(MUZ)=0 if p#0.

We do not know whether or not the conjecture holds in general, but it does hold
in many cases, as we shall explain in the rest of this section. We also indicate
the flaw in the argument sketched by Loffler. We are indebted to Comezana for
details, and our proofs rely on results that he will prove in the next chapter. In
particular, the following result is XXVI.5.3; it is stated by Loffler, but no proof

appears in the literature.

THEOREM 8.3. For a compact Abelian Lie group G, MU%s a free M U*-module

on even degree generators.

Since MUg is a split G-spectrum, the projection F(G — * induces a natural
map
a: MUL(X) — MUL(EGE N X)Z MU (EGy A X).
We shall mainly concern ourselves with the case X = S° relevant to Conjecture
8.1. We may take F G to be a G-CW complex with finite skeleta, and there results
a model for BG as a CW complex with finite skeleta BG™. We shall need the

following result of Landweber.

PROPOSITION 8.4 (LANDWEBER). For a compact Lie group G and a finite G-
CW complex X, the natural map MU*(EGy Ag X) — im MU*(EGY Ag X) is

an isomorphism.
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The vanishing of lim' terms here is analogous to part of the Atiyah-Segal com-

pletion theorem. In fact, in view of the Conner-Floyd isomorphism
K*(X) 2 MU (X) @pu+ K*

for finite X, the result for MU can be deduced from its counterpart for K. Some
power J? of the augmentation ideal of MU annihilates MU (X) for any finite
free G-CW complex X, by the usual induction on the number of cells, and we

conclude that MUL(EGL) = MU*(BGL) is J-adically complete. Therefore «

gives rise to a natural map
MUL(X)) — MU*(EGy Ag X)

on finite G-CW complexes X.
A basic tool in the study of this map is the Gysin sequence

(8.5)

s MUS(XO) YN UL(X) — MUL(X A SVL) — MUS (X)) — -
where V' is a complex GG-module of complex dimension d and we write SV and
DV for the unit sphere and unit disc of V. Noting that DV is G-contractible

and DV/SV is equivalent to SV, we can obtain this directly from the long exact
sequence of the pair (DV, SV) by use of the Thom isomorphism

MUE(X) — MUY(X A SY).

LEMMA 8.6. Conjecture 8.1 holds when G = S*.

PROOF. Let V = C with the standard action of S. Since SV = S, we have
MU% (SVy) 2 MU, which of course is concentrated in even degrees. Therefore
the Gysin sequence for V, with X = S breaks up into short exact sequences and
multiplication by x(V') is a monomorphism on MUY, . By the multiplicativity of
Euler classes, x(nV) = x(V)". Thus multiplication by x(nV) is also a monomor-

phism and the Gysin sequence of nV breaks up into short exact sequences
0 — MUZ P 2 MUH(S(nV)4) — 0.
Since S' acts freely on SV, the union S(ooV) of the S(nV) is a model for ES*.

On passage to limits, there results an isomorphism
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It is immediate from the Gysin sequence that Js1 = (x(V)), and the result fol-
lows. [

Clearly the proof implies the standard calculation MU*(BS') = MU*[[]],
where ¢ € MU?(BS") is the image of the Euler class.

The steps of the argument generalize to give the following two results.
LEMMA 8.7. For any compact Abelian Lie group G,
(MUZys1 ) vy 2 MUG(BS,) = MUg([e]].

PROOF. Here we regard V = C as a representation of G x S', with (¢ acting
trivially, and we note that S(V) = (G x S*)/G, so that MU, 4 (S(V)1) = MU,
The rest of the proof is as in Lemma 8.6. [

LEMMA 8.8. Let T" = T" be a torus, let V;, = C with 7" acting through its
projection to the gth factor, and let v, = (V). Then Jr = (x1,- -+, Xr)-

PRrROOF. Clearly Jy annihilates MUF(S(Vi)4 A--- A S(V.)y) = MU*. By an

easy inductive use of Gysin sequences, we find that, for 1 < ¢ <r,
MUF(S(Vi)g A= AS(V)y) = MU/ (X1, - s X ) MU
The rest of the proof is as in Lemma 8.6. [
We put the previous two lemmas together to obtain Conjecture 8.1 for tori.
PrOPOSITION 8.9. Conjecture 8.1 holds when G is a torus.

PROOF. Write G = T' x S! and assume inductively that the conclusion holds
for T'. Letting ¢, be the image of y,, we find that

= (MU7)], [[e)] = MU [[er, -+, e]] = MU™(BGL),

the first equality being an evident identification of a double limit with a single

one. []

We would like to deduce the general case of Conjecture 8.1 from the case of a
torus. Thus, for the rest of the section, we consider a group G = Cy x -+ x C,,
where each C, is either S' or a subgroup of S'. This fixes an embedding of ¢ in
the torus T'=T", and of course every compact Abelian Lie group can be written

in this form. We have the following pair of lemmas, the first of which follows
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from the known calculation of MU*(BG); see for example the second paper of
Landweber below.

LEMMA 8.10. The restriction map MU*(BT}) — MU*(BG,) is an epimor-
phism. In particular, MU*(BG) is concentrated in even degrees.

LEMMA 8.11. The restriction map MU; — MU is an epimorphism. In par-
ticular, J7 maps epimorphically onto Jo and the completion of an MUS-module

at Jg is isomorphic to its completion at Jr.
PRrROOF. It suffices to prove that each restriction map

% %
MUquOq+1 XX O 5 MUT‘I—GCquq+1 XX O

is an epimorphism. Let C, be cyclic of order k(¢). Let V, = C regarded as a
T-module with all factors of St acting trivially except the gth, which acts via its
k(q)th power map. Restricting V, to a representation of T? x Cy1q X -+ x O, we
see that its unit sphere can be identified with the quotient group

(T9 X Cyyq X - x CHJ(TT x Oy < Cyyy X -+ x C).
With X = S5% and G =T x Cyqq x -+ x C,, the Gysin sequence of y(V}) breaks

up into short exact sequences that give the conclusion. O

Now consider the following commutative diagram:
(MUY, — MU*(BT})
(8.12) l l
(MULY), — MU(BG,).

The top horizontal arrow is an isomorphism and both vertical arrows are epimor-

phisms. Thus Conjecture 8.1 will hold if the following conjecture holds.
CONJECTURE 8.13. The map (MU);, — MU*(BG) is a monomorphism.,
LEMMA 8.14. Conjecture 8.1 holds if (¢ is a finite cyclic group.

PROOF. We embed (7 in S' and consider the standard representation V = C of
St as a representation of . Again, S(ocoV) is a model for EG. With X = S°, the
Gysin sequence (8.5) breaks up into four term exact sequences. Here we cannot

conclude that multiplication by x(V') is a monomorphism: its kernel is the image
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in MU¢, of the odd degree elements of MUZ(S(V)4). However, in even degrees,

the Gysin sequences of the representations nV’ give isomorphisms
MUL/X(V)"MUE =2 MUZ(S(nV)y).
Therefore (MUC*;)&(V)) maps isomorphically onto MU**( BG.). This proves Con-

jecture 8.13; indeed, since MU*(B(.) is concentrated in even degrees, it proves
Conjecture 8.1 directly. [

Loffler asserts without proof that the general case of Conjecture 8.13 follows
by the methods above. However, although MU*(BG,.) is concentrated in even
degrees, the intended inductive proof may founder over the presence of odd degree
elements in Gysin sequences, and we do not know whether or not the conjecture
is true in general.

P. E. Conner and E. E. Floyd. The relation of corbordism to K-theories. Springer Lecture Notes
in Mathematics Vol. 28. 1966.

P. S. Landweber. Elements of infinite filtration in complex cobordism. Math. Scand. 30(1972),
223-226.

P. S. Landweber. Cobordism and classifying spaces. Proc. Symp. Pure Math. Vol. 22., 1971,
ppl125-129.

P. Loffler. Equivariant unitary bordism and classifying spaces. Proceedings of the International
Symposium on Topology and its Applications, Budva, Yugoslavia 1973, pp. 158-160.



CHAPTER XXVI

Some calculations in complex equivariant bordism

by G. Comezana

In this chapter we shall explain some basic results about the homology and co-
homology theories represented by the spectrum MUg. These theories arise from
stabilized bordism groups of G-manifolds carrying a certain “complex structure”;
exactly what this means is something we feel is not adequately discussed in the
literature. Since the chapter includes a substantial amount of well-known infor-
mation, as well as some new material and proofs of results claimed without proof
elsewhere, we make no claims to originality except where noted. The author would
like to thank Steven Costenoble for discussions and insights that have thrown a

great deal of light on the subject matter.

1. Notations and terminology

G will stand throughout for a compact (and, in most cases, Abelian) Lie group,
and subgroups of a such a group will be assumed to be closed. All manifolds
considered will be compact and smooth, and all group actions smooth. If (X, A)
and (Y, B) are pairs of G-spaces, we will use the notation (X, A) x (Y, B) for the
pair (X x Y, (X x B)U(Y x A)). Homology and cohomology theories on G-spaces
will be reduced.

Gi-vector bundles over a (G-space will be assumed to carry an inner product
(which will be hermitian if the bundle is complex). Unless explicit mention to the
contrary is made, representations will be understood to be finite-dimensional and
R-linear. Depending on the context, we shall sometimes think of V' as a G-vector

bundle over a point. If £ is a G-bundle, |£| will stand for its real dimension, S()

387
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for its unit sphere, D(¢) for its unit disk, and T'({) for its Thom space. If V is
a representation of (7, SV will denote its one-point compactification. The trivial
Gi-vector bundle over a G-space X with fiber V will be denoted ey .

We define the V-suspension ¥V X of a based G-space X to be XASY; thusif ey is
the trivial G-vector bundle over X with fiber V, then T'(sy/) = ¥ X. We define the
V-suspension ©¥ (X, A) of a pair of spaces to be (X, A) x (DV, SV). In both cases,
¥V is a functor; if V is a subrepresentation of W with orthogonal complement

W — V, the inclusion induces a natural transformation W=V : ¥V — ¥W,

2. Stably almost complex structures and bordism

When G is the trivial group, a stably almost complex structure on a compact
smooth manifold M is an element [£] € K (M), which goes to the class [vM] of

the stable normal bundle under the map
K(M) — KO(M).

[t is, of course, essentially equivalent to define this with [T M| replacing [v M], since
these classes are additive inverses in KO(M).

The following definition gives the obvious equivariant generalization of this.

DEFINITION 2.1. If [£] € Kg(M) is a lift of [vM] € KOg(M) under the natural
)

map, we call the pair (M, [£]) a normally almost complex GG-manifold.

We will use the notation M when necessary, but we will drop [{] whenever

there is no risk of confusion.
e

-, 1s the “complex analog”

The bordism theory of these objects, denoted mu
of the unoriented theory mo% discussed in Chapter XV. If V is a complex G-
module and (M,0M)[ is a G-manifold with a stably almost complex structure,
then its V-suspension becomes a G-manifold after “straightening the angles”, and
[€] — [ev] is a complex structure on XV (M, 9M). This gives rise to a suspension
homomorphism

UV : mu*G(Xv A) - mu*G+|V|(ZV(X7 A))v
which sends the class of a map (M,9M) — (X, A) to the class of its suspension.

Due to the failure of G-transversality, both the suspension homomorphisms and
the Pontrjagin-Thom map are generally not bijective.
We construct a stabilized version of this theory as follows. Let % be an infinite-

dimensional complex GG-module equipped with a hermitian inner product whose
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underlying R-linear structure is that of a complete G-universe. Define
MUSZ (X, A) = colimy muS (8Y (X, A)),

where V ranges over all finite-dimensional complex (G-subspaces of %7 and the col-
imit is taken over all suspension maps induced by inclusions. We should perhaps
point out that MUS is not a connective theory unless G is trivial. The advantage
of this new theory over mu® is that the bad behavior of the Pontrjagin-Thom
map is corrected, and the maps induced by suspension by complex GG-modules are
isomorphisms by construction. This should be interpreted as a form of periodic-
ity. Homology or cohomology theories with this property are often referred to in
the literature as complex-stable. Other examples of such theories include equivari-
ant complex K-theory, its associated Borel construction, etc. Complex-stability

isomorphisms should not be confused with suspension isomorphisms of the form
ZV : h*G(Xv A) - h*G-l—[V](ZV(Xv A))v

which are part of the structure of all RO(G)-graded homology theories.

MUE or, more precisely, its dual cohomology theory was first constructed by
tom Dieck in terms of a G-prespectrum T'Ug, bearing the same relationship to
complex Grassmanians as the G-prespectrum T'Og discussed in XV§2, does to
real ones. An argument of Brocker and Hook for unoriented bordism readily
adapts to the complex case to show the equivalence of the two approaches. In
what follows, we shall focus on the spectrification MUg of TUg. As with any
representable equivariant homology theory, MUS can be extended to an RO(G)-
graded homology theory, but we shall concern ourselves only with integer gradings.
We point out, however, that complex-stable theories are always RO(G')-gradable.

A key feature of MUyg, proven in XXV§7, is the fact that it is a split G-spectrum;
this may be seen geometrically as a consequence of the fact that the augmentation
map MUS — MU.,, given on representatives by neglect of structure, can be split
by regarding non-equivariant stably almost complex manifolds as G-manifolds with
trivial action. The splitting makes MUS = MUS (S°) a module over the ring MU.,.

The multiplicative structure of the ring G-spectrum MUg can be interpreted
geometrically as coming from the fact that the class of normally stably almost com-
plex manifolds is closed under finite products. The complex-stability isomorphisms

are well-behaved with respect to the multiplicative structure: in cohomology, we
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have a commutative diagram

MUZ(X) @ MUL(Y) MUZL(X AY)

UV@UWl lUV@W
MUV Xy @ MUZT" Vs Y) — MUV svew x Ay

for all based G-spaces X and Y and complex G-modules V' and W. In general, for
a multiplicative cohomology theory, commutativity of a diagram of the form above
is assumed as part of the definition of complex-stability. K is another example
of a multiplicative complex-stable cohomology theory, as is the Borel construction
on any such theory.

The role of MUg in the equivariant world is analogous to that of MU in classical
homotopy theory, for its associated cohomology theory has a privileged position
among those which are multiplicative, complex-stable, and have natural Thom
classes (for complex G-vector bundles). We record the axiomatic definition of

such theories.

DEFINITION 2.2. A G-equivariant multiplicative cohomology theory Ay, is said
to have natural Thom classes for complex GG-vector bundles if for every such bundle
¢ of complex dimension n over a pointed G-space X there exists a class 7z €
RZEH(T(€)), with the following three properties:

(1) Naturality: If f:Y — X is a pointed G-map, then 7p¢ = f*(7¢).

(2) Multiplicativity: If £ and n are complex G-vector bundles over X, then

Tean = Te X Ty € RETNT(E @ n)).
(3) Normalization: If V is a complex G-module, then 7 = oV (1).

The following result, which admits a quite formal proof (given for example by

Okonek) explains the universal role played by MUs;.

ProPosITION 2.3. If A} is a multiplicative, complex-stable, cohomology theory
with natural Thom classes for complex GG-bundles, then there is a unique natu-
ral transformation MU (e) — h},(e) of multiplicative cohomology theories that

takes Thom classes to Thom classes.

Returning to homology, for a complex G-bundle ¢ of complex dimension &, the

Thom class of ¢ gives rise to a Thom isomorphism

7 MUS(T(€)) — MU, (B(€)y),
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and similarly in cohomology. This isomorphism is constructed in the same way as
in the nonequivariant case (see e.g. [LMS]), without using any feature of MUY
other than the existence and formal properties of Thom classes. However, in
this special case, its inverse has a rather pleasant geometric interpretation: if
f: M — B(£) represents an element in mu&(B(€£)), the map f in the pullback

diagram
B(f¢) = B(¢)

|

M B(¢)

!

represents an element in muf, ,, (T(€)). This procedure allows the construction of
a homomorphism which stabilizes to the inverse of the Thom isomorphism. See
Brocker and Hook for the details of a treatment of the Thom isomorphism (in the

unoriented case) that uses this interpretation.

T. Brocker and E.C. Hook. Stable equivariant bordism. Mathematische Zeitschrift 129(1972),
pp- 269-277.

T. tom Dieck. Bordism of G-manifolds and integrality theorems. Topology 9(1970), pp. 345-358.
C. Okonek. Der Conner-Floyd-Isomorphismus fiir Abelsche Gruppen. Mathematische Zeitschrift
179(1982), pp. 201-212.

3. Tangential structures

Unfortunately, both mu® and MUS are rather intractable from the computa-
tional point of view. In order to address this difficulty, we shall introduce a new
bordism theory, much more amenable to calculation, whose stabilization is also
MUE.

Consider the following variant of reduced K-theory: if X is a GG-space, instead
of taking the quotient by the subgroup generated by all trivial complex GG-bundles,
take the quotient by the subgroup generated by those trivial bundles of the form
C" x X, where (G acts trivially on C*. We denote the group so obtained as Kg;

there is an analogous construction in the real case, which we denote KOq¢.

DEFINITION 3.1. A tangentially stably almost complex manifold is a smooth
manifold equipped with a lift of the class [rM] € KOa(M) to Kq(M).

We shall refer to the bordism theory of these manifolds as tangential complex
bordism, denoted QY:<,
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We warn the reader that nowhere in the literature is the distinction between the
e

. made clear. This is not mere pedantry

complex bordism theories QY% and mu
on our part, as our next result will show. It was pointed out to the author by
Costenoble that this result does not hold for normally stably almost complex G-

manifolds.

PrOPOSITION 3.2. If M is a tangentially stably almost complex G-manifold and
H C (@ is a closed normal subgroup, then the G-tubular neighborhood around M*

has a complex structure.

We stress the fact that no stabilization is necessary to get a complex structure
on the tubular neighborhood; this lies at the heart of the calculations we shall

carry out later in the chapter.

PROOF. The first thing to observe is that 7(MHY) = (7 M|y#)" as real vector
bundles. If ¢ is the restriction to M of a complex G-vector bundle over M that
represents its tangential stably almost complex structure, and the underlying real
G-vector bundle of ¢ is 7 M|y u @ epn, then (€7)7 is a complex G-vector bundle.
We have

= a () = (T M|yn)" & epn @ v(MT M),
This gives the desired structure. [

We next explore the relation between mu& and QY. There is a commutative

square

Ka(X) —= KOg(X)

l l

Keo(X)— KOg(X)
that yields a natural transformation of homology theories ¢ : mu& — QU“. Just
G

& we may stabilize QU with respect to suspensions by finite-

as we did with mu
dimensional complex subrepresentations of a complete G-universe, obtaining a new
complex-stable homology theory which we shall provisionally denote MU f The
map ¢ stabilizes to a natural transformation @ : MUS — MUE. The following
result was first proved by the author and Costenoble by a different argument and

is central to the results of this chapter.

THEOREM 3.3. ® is an isomorphism of homology theories.
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We shall need the following standard result.

LEMMA 3.4. (Change of groups isomorphism)If H C (i is a closed subgroup of

codimension j, then for all H-spaces X there is an isomorphism

mull (Xy) — muly; (G < X))

induced by application of the functor G xp (e)) to representatives of bordism

classes of maps, and similarly for pairs. The analogous result holds for QY% and

MUS.

SKETCH PROOF. If we apply the functor G xp (e) to a map f: M — X that
represents an element of muf/ (X, ), we obtain an element of muS,_.((G' xy X)4).
Conversely, if ¢ : N — (G xg X represents an element of mug_l_j((G xg X)4)
and if 7: G xg X — X is the evident H-map, we set M = (rg)~'(eH) and see
that M is an H-manifold such that N = G xy M and the restriction of g to M

represents an element of mull (X,). O

ProOF oF THEOREM 3.3. We show first that the theorem is true for G =
SU(2k 4 1) and then extend the result to the general case by a change of groups
argument.

We recall a few standard facts about representations of special unitary groups
(e.g., from Brocker and tom Dieck). Let M be the complex SU(2k 4 1)-module
such that M = C**! with the action of SU(2k+1) given by matrix multiplication
and let A* = A"M. Then R(SU(2k + 1)) is the polynomial algebra over Z on the
representations A%, 1 < ¢ < 2k, all of which are irreducible and of complex type.
Furthermore, A?*~t' = Ai. This implies that any irreducible real representation
of SU(2k + 1) is either trivial or admits a complex structure. To see this, let W
be a non-trivial irreducible real SU(2k + 1)-module. Suppose first that W @ C
is irreducible. Since the restriction to R of an irreducible complex representation
of quaternionic type is irreducible, our assumptions imply that W @g C is of real
type and of the form V @c V, where V is a monomial in the A*, 1 <7 < k. We

have
(VacV)orC=(2W)or C22(VacV)

as complex representations. On the other hand, since 2W = V @¢ V, we have

isomorphisms of complex SU(2k + 1)-modules
CW)@r C=2(VacV)@r C2V @c (V orC)
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and
VacVorC) = (VacV)s (VaeV)
(because VaoprC2V d V) So it follows that

2Vac V)2 (VeacV)a (VacV),
which is absurd in view of the structure of RSU(2k+1). Thus W must be reducible

and so it is either of the form V; @ V1, for an irreducible complex V| of quaternionic
type, or Vi@ V4, for an irreducible complex V; of complex type. The first possibility
is ruled out by the fact that all self-conjugate irreducible complex representations
of SU(2k + 1) are of real type. So we must have

W=V, V, 22V

as real representations, and therefore, using the uniqueness of isotypical decompo-
sitions, we may conclude that W = V' as real representations.

Now let X be a SU(2k+1)-space and consider a map representing an element in
MUE(X). By complex-stability, there is no loss of generality in assuming that our
map is of the form f: M — X, where 7TM & ey = £, V is a real representation,
and £ is a complex SU(2k + 1)-vector bundle. By the remark above, V = W & R”
for a complex representation W. Then X% (M, dM) is a tangentially stably almost
complex manifold and the class of X" f is in the image of ¢. It follows that ® is
surjective. A similar argument applied to bordisms shows that ® is injective.

To obtain the general case, observe that any compact Lie group embeds in
U(2k), and U(2k) embeds in SU(2k 4+ 1) (via the map that sends A € U(2k) to
(det A)™' -1z @ A), and apply Lemma 3.4. O

T. Brocker and T. tom Dieck. representations of compact Lie groups. Springer. 1985.
C. Okonek. Der Conner-Floyd-Isomorphismus fiir Abelsche Gruppen. Mathematische Zeitschrift
179(1982), pp. 201-212.

4. Calculational tools

For the remainder of the chapter, all Lie groups we consider will be Abelian.

There is a long list of names associated to the calculation of QV:%(5°) for dif-
ferent classes of compact Lie groups: Landweber (cyclic groups), Stong (Abelian
p-groups), Ossa (finite Abelian groups), Loffler (Abelian groups), Lazarov (groups
of order pq for distinct primes p and ¢), and Rowlett (extensions of a cyclic group

by a cyclic group of relatively prime order). All of these authors rely on the study of
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fixed point sets by various subgroups, together with their normal bundles, through
the use of bordism theories with suitable restrictions on isotropy subgroups.

The main calculational tool is the use of families of subgroups, which works
in exactly the same fashion as was discussed in the real case in XV§3. Recall

that, for a family .%, an % -space is a G-space all of whose isotropy subgroups

are in .% and that we write F.% for the universal .#-space. Recall too that, for
a G-homology theory AY and a pair of families (%, %'), #' C Z, there is an
associated homology theory h¥[.#, . Z'], defined on pairs of (i-spaces as

WO[F, FNX,A) = hS(X x EZ, (X x F')U (A x EF)).

When .#' = (), we use the notation hS[.#]. The theories hS[.F], hS[.F'], and
hE[.F, F'] fit into a long exact sequence. Of course, there is an analogous con-
struction in cohomology.

In the special case of QU'% (and similarly for other bordism theories), it is easy
to see that QU'9[.Z,.%"] has an alternative interpretation: it is the bordism theory
of (F, F')- tangentially almost-complex manifolds, that is, compact, tangentially

almost complex .#-manifolds with boundary, whose boundary is an .%#’-manifold.

DEFINITION 4.1. A pair of families (.%, #') of subgroups of (¢ is called a neigh-
boring pair differing by H if there is a subgroup H such that if K € .% —.%’ then
H is a subconjugate of K.

This notion was first used by Loffler, but the terminology is not standard. A
special case is the more usual notion of an adjacent pair of families pair differing

by H, which is a neighboring pair (.#,.%") such that .#% — #' consists of those

:
subgroups conjugate to H.

The next proposition explains the importance of neighboring families. We in-
troduce some terminology and notation to facilitate its discussion.

Given a subgroup H of an Abelian Lie group &, we choose a set 6 p of finite
dimensional complex GG-modules whose restrictions to H form a non-redundant,
complete set of irreducible, nontrivial complex H-modules. If C denotes the trivial
irreducible representation, we let %”C';H = %a.n U {C}. For a nonnegative even
integer k, we shall call an array of nonnegative integers P = (pv)vee, 5 a (G, H)-
partition of k if

k= Z 2pv.

VG(KG,H
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For such a partition P, we let

BU(P,G)= [ BU(pv.G).

Vets,n

We let Z(k,G, H) denote the set of all (G, H)-partitions of k.

ProOPOSITION 4.2. If (#,.F') is a neighboring pair of families of subgroups of
a compact Abelian Lie group G differing by a subgroup H, then
WOE X N D QN FHI(XT,AT) < BUP,G/1)),

0<2k<n
PeZ(2k,G,H)

where % /H denotes the family of subgroups of G/H that is obtained by taking
the quotient of each element of .% — %' by H.

SKETCH OF PROOF. For simplicity, we concentrate on the absolute case. Let
f: M — X represent an element in QU“[.%, Z|(X,) and let T be a (closed)
G-tubular neighborhood of M. We may view T as the total space of the unit disc
bundle of the normal bundle to M*”. We may also view 1" as an n-dimensional
Z-manifold whose boundary is an .%’-manifold. Thus 7T represents an element of
OUC7, Z'(S°), and we see that [f] = [f|r] in QUC[.F, #')(X,). Furthermore,
[f] = 0 if and only if there is an H-trivial G-nullbordism of f|r, equipped with a
complex G-vector bundle whose unit disc bundle restricts to 7' on MH. Observe
that M breaks up into various components of constant even codimension. In
other words, QUY[.Z, Z'|(X,) can be identified with the direct sum, with 2k
ranging between 0 and n, of bordism of H-trivial .#-manifolds of dimension n— 2k
equipped with a complex GG-vector bundle of dimension k, containing no H-trivial
summands. Note the twofold importance of Proposition 3.2: not only are we using
that M¥ is tangentially almost complex, but also that its tubular neighborhood
carries a complex structure.

Consider the bundle-theoretic analog of the isotypical decomposition of a linear
representation. For complex G-vector bundles F and F' over a space X we may
construct the vector bundle Hom ¢(E, F') whose fiber over « € X is Home(E,, Fy);
G acts on Home(F, F') by conjugation. If X is H-trivial, then Homg(FE, F) =
(Homg(E, F))H is an H-trivial G-subbundle; if one regards X as a (G/H)-space,
then Homy (FE, F') becomes a (G/ H)-vector bundle over X.

We apply this to F' =T and K = ey, where V is a complex G-module whose
restriction to H is irreducible, thus obtaining a (G//H)-vector bundle which we
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call the V-multiplicity of . The evaluation map

@ HOIHH(€V, T) ®(C gy — T
VE%E;H

is a G-vector bundle isomorphism, and this decomposition into isotypical sum-
mands is unique. Note that in the special case we are considering, the multiplicity
associated to the trivial representation is 0, so the sum really does run over € p.

T can therefore be identified with a direct sum of (G'/H)-vector bundles over
M*" | each corresponding to an irreducible complex representation of H, and M
breaks into a disjoint union of components on which the dimension of each mul-
tiplicity remains constant; each of these components has therefore an associated
(G, H)-partition, accounting for the summation over Z(2k, G, H) in our formula.

Clearly the bundle on the component associated to a (G, H)-partition P is classi-
fied by BU(P,G//H). O

Similar methods allow us to prove the following standard result.

ProprosITION 4.3. With the notation above, if H is a subgroup of an Abelian
Lie group G, then

BU(n,G) = I[I BU(pv.G/H)

Pe2(n,G,H) Ve%g -

as H-trivial G-spaces.

PrOOF. It suffices to observe that the right hand side classifies n-dimensional

complex G-vector bundles over H-trivial G-spaces. [

P. S. Landweber. Unitary bordism of cyclic group actions. Proceedings of the Amer. Math.
Soc. 31(1972), pp. 564-570.

C. Lazarov. Actions of groups of order pq. Transactions of the Amer. Math. Soc. 173(1972),
pp- 215-230.

P. Loffler. Bordismengruppen unitarer Torusmannigfaltigkeiten. Manuscripta Mathematica
12(1974), 307-327.

E. Ossa, Unitary bordism of Abelian groups. Proceedings of the American Mathematical Society
33(1972), pp. 568-571.

R.J. Rowlett. Bordism of metacyclic group actions. Michigan Mathematical Journal 27(1980),
pp- 223-233.

R. Stong. Complex and oriented equivariant bordism. in Topology of Manifolds (J.C. Cantrell
and C.H. Edwards, editors). Markham, Chicago 1970.



398 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISM

5. Statements of the main results

We come now to a series of theorems, some old, some new, that are consequences
of the previous results. In all of them, we consider a given compact Abelian Lie

group G.

THEOREM 5.1 (LOFFLER). If V' is a complex G-module, and X is a disjoint

union of pairs of G-spaces of the form

(DV, SV) x ﬁ BU(n;, G),

=1

then QV9(X) is a free MU,-module concentrated in even degrees.
THEOREM 5.2. With the same hypotheses on X, the map
QY BUM,G) x X) — QUV9BUMm +1,G) x X)

induced by Whitney sum with the trivial bundle ¢ is a split monomorphism of
MU, .-modules.

THEOREM 5.3. MUE is a free MU,-module concentrated in even degrees.

THEOREM 5.4. The stabilization map QU — MU is a split monomorphism
of MU,-modules.

Theorem 5.3 is stated in the second paper of LofHler cited below, but there seems
to be no proof in the literature. Ours is a refinement of the ideas in the proof
of Theorem 5.1, which yields Theorem 5.4 as a by-product, and is entirely self-
contained (that is, it does not depend on results on finite Abelian groups). Tom
Dieck has used a completely different method to prove a weaker version of Theorem
5.4, for G cyclic of prime order, but to the best of our knowledge nothing of the
sort has previously been claimed or proved at our level of generality. Theorem 5.2,
which also seems to be new, is required in the course of the proof of Theorem 5.3
and is of independent interest.

In the light of these results, it is natural to conjecture, probably overoptimisti-
cally, that MUY is free over MU, and concentrated in even degrees for any compact
Lie group G. We have succeeded in verifying this for a class of non-Abelian groups
that includes O(2) and the dihedral groups. The statement about the injectivity
of the stabilization map also holds for these groups. We hope to extend these

results to other classes of non-Abelian groups; details will appear elsewhere.
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The results above should be proven in the given order, but, since the proofs
have a large overlap, we shall deal with all of them simultaneously.

We shall proceed by induction on the number of “cyclic factors” of the group,
where, for the purposes of this discussion, S! counts as a cyclic group. The argu-
ment in each case is as follows: the result is either trivial or well-known for the
trivial group. Then, one shows that if the result is true for a compact Lie group
(, it also holds for G x S', and this in turn implies the same for G' x Z,.

T. tom Dieck. Bordism of G-manifolds and integrality theorems. Topology 9(1970), pp. 345-358.
P. Loffler. Bordismengruppen unitarer Torusmannigfaltigkeiten. Manuscripta Mathematica
12(1974), 307-327.

P. Loffler. Equivariant unitary bordism and classifying spaces. Proceedings of the International
Symposium on Topology and its Applications, Budva, Yugoslavia 1973, pp. 158-160.

6. Preliminary lemmas and families in G x S!

For brevity, the subgroups {1} x ' C G x S* and {1} x Z, C G x Z, will be
denoted S! and Z,, respectively.
We shall need to consider the following families of subgroups of G x S*:
= {HCGxS'|HNSY <4}
= {HCGxS'|HNS#£ 5
o/ = {all closed subgroups of G' x S'}

T,
F

These give rise to the neighboring pairs (.%;41,.%;) (differing by Z;41) and
(o7 ,.Z.) (differing by S'). Observe that .., is the union of its subfamilies .%;.

LEMMA 6.1. Let GG be a compact Lie group and X be a pair of (G x S*')-spaces.
Then
QU (X x 51 = ol5(X)
and
QUGS (X x §1)/2,) = 0V E(X),
where (i x S acts on S' and S'/Z, through the projection GG x S — S; the

same statement holds for the theories mu&*5" and MUS*S"

The proofs of these isomorphisms are easy verifications and will be omitted; see
Loffler. We shall also need the following result of Conner and Smith.

LEMMA 6.2. A graded, projective, bounded below MU.-module is free.
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LEMMA 6.3. Consider a diagram of projective modules with exact rows

0 A B C 0

e

0 A’ B C’ 0.

If fi and f5 (resp. fy and f3) are split monomorphisms, so is fy (resp. fi).
PrOOF. Add a third row consisting of the cokernels of the f;, which will be

exact by the Snake Lemma. An easy diagram chase shows that the modules in

the new row are projective, and therefore the conclusion follows. []
Note that we make no assumptions about compatibility of the splittings.

REMARK 6.4. If X is a pair of G-spaces of the kind appearing in the statement
of Theorem 5.1 and H is a subgroup of (¢, then restricting the action to H yields
an H-pair of the same kind. Moreover, by Proposition 4.3, X is a (G/H)-pair of
the same type. This class of pairs of spaces is also closed under cartesian product

with BU(n, ) and with pairs of the form (DW, SW) for a complex G-module W.

P. E. Conner, L. Smith, On the complez bordism of finite complezes, Publications Mathématiques
de 'THES, no. 37 (1969), pp. 417-521.
P. Loffler. Bordismengruppen unitarer Torusmannigfaltigkeiten. Manuscripta Mathematica

12(1974), 307-327.

7. On the families .%; in G x S!

In what follows, for a G-pair X and a homology theory h., ©» will designate a
map of the form

Y h(BU(n,G) x X) — h(BU(n+1,G) x X)

that is induced by taking the Whitney sum of the universal complex G-bundle
over BU(n, ) and the trivial G-bundle ec.

Suppose that all four theorems stated above have been proved for G. We shall
deduce the following result in the case GG x S*.

THEOREM 7.1. The following statements hold for each z > 1 and for : = oc.

(1) QUEXS [ Z](X) is a free MU,-module concentrated in odd degrees.

(2) The map

W QUES [ Z)(BU(n, Gx S ) x X) — QU [ Z)(BU (n+1, Gx S')x X)

is a split monomorphism of MU,-modules.
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(3) If W is an irreducible complex (G x S')-module, then
o QU [ Z)(X) — QLT [F)(DW, SW) x X)
is a split monomorphism of MU,-modules.
(4) The map QUGS [ F)(X) — QUGS (X)) is zero.

PrOOF. We first prove this for : = 1, making use of a suitable model for the
space E.7. Let (W;);>1 be a sequence of irreducible complex (G' x S')-modules
such that ST acts freely on their unit circles, and every isomorphism class of such

(G x SY)-modules appears infinitely many times. Let Vi, = @, W; and
SV = colimy SVy;

SV, 1s the required space. Note also that this space embeds into the equivariantly
contractible space

DV, = colim, DV},.

Using Lemma 6.1 and our assumptions about (i, we see that QU:6%5" (SV1 x X)

is a free MU,-module concentrated in odd degrees, and that
o QUGS SV x X) — QU (DWW, SW) x SV; x X)

and

QUGS SV x BU(n, G x §') x X) — QU5 (5V) x BU(n+1,G x §') x X)

are split monomorphisms of MU.-modules.
We calculate QU-GxS' ((SViy1, SVi) x X) using the homotopy equivalence

(S‘/]H_l,s‘/k) ~ (SWk+1 * S‘/k7DWk—|—1 X S‘/k),
and the excisive inclusion
SWk+1 X (D‘/k,s‘/k) — (SWk+1 * S‘/kaDWk—I—l X S‘/k)

The action of G x S on SWyy, determines and is determined by a split group
epimorphism G x S — St with kernel H C G x S, H = (. This implies
that SWyyy is (G x S')-homeomorphic to (G x S')/H. By a change of groups
argument and the inductive hypothesis, we see that Q&Y ((SViyq, SVi) x X) is
free and concentrated in odd degrees and that the maps induced respectively by
suspension by an irreducible complex (G-module and by addition of the bundle e¢

are split monomorphisms of MU.-modules.
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The diagram with exact columns (in which j is odd)

0 0
QU SV, % X) i QUGS ((DW, SW) x SV x X)
QU (§Vin ¢ X) i QUGS (DW, SW) % SVisr x X)
AV (Vi SVi) % X) ———= QUG (DW, SW) x (SVia, SV) x X)

0 0

and the results above show by induction that, for all £ > 1, Qf’GXSl(SVk x X) is
free and concentrated in odd degrees and that ¢" is a split monomorphism. An
analogous diagram shows the same is true for the map  induced by adding ec.

To complete the proofs of (1) — (3) when ¢ = 1, it suffices to observe that
each step in the colimit contributes a direct summand to SV,,. To prove (4), let
f: M — X x SV, represent an element of QU%*5"[.%#,](X). Since S acts freely
on M and all actions on a circle are linear, p : M — M/S" is the unit circle
bundle of a 1-dimensional complex G-bundle F (the complex structure is given
by multiplication by 7 € S'). Obviously, the circle bundle bounds a disc bundle,
whose total space is a complex (G x S')-manifold W. Any point @ € W can be
written as ty, where ¢t € [0,1] and y € M, so [ extends to an equivariant map
F:W — X x DV, defined as F(ty) = tf(y), where the multiplication on the
right hand side is given by the linear structure of DV,.

We prove the case ¢ > 1 of Theorem 7.1 by induction on 2. Observe first that

the case 1 = oo will follow directly from the case of finite ¢ since
FE%, = colim; F.%,.

Indeed, we shall see that each stage in the construction of E.Z. as a colimit
contributes a free direct summand to QU6*5' [ Z_](X) on which ¢" and ¢ are

split monomorphisms of MU,-modules and the map to Qf’GXSl (X) is zero.
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Applying Proposition 4.2 with (G, H) replaced by (G x S',Z;11) and noting that
(G x SY)/Ziy1 = G x S' and that, under this isomorphism, the family .%;11/Z;4
corresponds to the family .%;, we find that
QS [ Fig, F(X) = D QGG AN X < BUP,G x 5Y)).

0<2k<n
Pe P(2k,GX St Tipy1)
Thus the case ¢ = 1, combined with Remark 6.4, shows that the left-hand side is
free and concentrated in odd degrees.

One then concludes, by using the long exact sequences of the pairs [.%;41, %],
that for all i, QU:G*S"[#](X) is concentrated in odd degrees.

The diagrams with exact columns (in which j is odd)

0 0

QV9LE](BU(n, G x SY) x X) QPF)(BU(n +1,G % §1) x X)

J

O (BU(n, G x SY) x X) ——= QP9 Z0](BU(n 4+ 1,G x SY) x X)

J

O T, F)(BU(n, G x SY) x X) = Q9 Fipy, F(BU(n +1,G x 8Y) x X)

J

0 0

show that, for all 7, QV“[.Z](X) is a free MU,-module and the map induced by
addition of ¢ is a split monomorphism of MU,-modules.

The study of the suspension map ¢" must be broken into two cases. Since W
is an irreducible representation of GG x S, its fixed point space W5 is either W
or {0} and therefore either

(1) W%+ = W or

(2) W2+ = {0}.

In the first case, the map

(7.2) o™ QT [, FUX) — QLT [Fo, (DWW, SW) x X)),
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can be regarded via Proposition 4.2 as a direct sum of suspension maps
U,Gix 51 U,Gix 51
Qi 7 [ANY) — Qs [AI(DW,SW) < Y),

where Y = XZi+1 x BU(P,G x S') for some partition P of 2(j — ) and we think
of W as a representation of G' x (S'/Z;41) = G x S*. Thus it follows from the
case ¢ = | that (7.2) is a split monomorphism of MU,-modules in this case.

For the second case consider a (G x S, Z;y1)-partition P = (pv)Ve<,gGX5172i+1 of
an even integer k. Let P’ = (py)vew, ., denote the (G x St Ziy1)-partition of
k + 2 defined by

Py otherwise.

) {pv—l—l vV =w
Pv =

Since WZi+1 = {0}, Proposition 4.2 implies that the map (7.2) can be interpreted
as a direct sum of maps of the form

b ORI LR(XT x BU(P,G)) — QG [R)(XP x BU(P',G))

induced by addition of e¢ to the multiplicity bundle corresponding to the V in the
decomposition. We know already that maps of this kind are split monomorphisms
of MU.-modules, and we conclude that (7.2) is always a split monomorphism of
MU, .-modules.

Now the following diagram with exact columns implies inductively that, for all
i, " is a split monomorphism of MU,-modules on QUS> [.Z](X).

0 0
L [F)(X) T QUGS [F(DW, SW) x X)
O [ Fia)(X) T QUG [F ) ((DW, SW) x X)
LG [Fir, FUX) ——— 5 [Fo, FU(DW, SW) x X)
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Finally, to prove (4) of Theorem 7.1, let f : M — X represent an element of
QUGS Z,)(X), i > 1, and suppose that we have already proved that

QU [F)(X) — QU (X)

is zero for all j < ¢. We shall construct a bordism with no isotropy restrictions
from f to amap f': M' — X where M’ is an .%#;_;-manifold. By the induction
hypothesis, this will complete the proof.

Let us pause for a moment to explain informally how the bordism will be con-
structed. The idea is based on a standard technique in geometric topology known
as “attaching handles”. Any sphere S* is the boundary of a disc D! if §%¥ ¢ N
is embedded with trivial normal bundle in a manifold N and has a tubular neigh-
borhood T', we can obtain a bordism of N to a new manifold by crossing N with
the unit interval and pasting D¥+! x D"=*=! (a handle with core D*) to N x [
by identifying 7' x {1} with S* x D"=*=1. Our construction will be basically “at-
taching a generalized handle” to our manifold M. Instead of an embedded sphere,
we shall use M%:, which bounds a manifold W; this will be the “core” of our
“handle”. The “handle” itself will be the total space of a disc bundle over W.
The total space of its restriction to M% will be equivariantly diffeomorphic to a
tubular neighborhood of M% in M, so we may take M x I and glue the “handle”
in the obvious way, thus obtaining the desired bordism. Of course, all the required
properties of the bordism have to be checked, and an extension of f to the bordism
has to be constructed. We give the details next.

Consider a tubular neighborhood T' of M%:, regarded as the total space of a disc
bundle over M%:, We shall use the notation ST for the corresponding unit circle
bundle, and T° for T'— ST. We remark that M —T° and ST are .%;_;-manifolds.
When there is no danger of confusion, we shall make no notational distinction
between a bundle and its total space.

Let A denote a generator of Z; C S' C C, and let V;, 0 < k < 1, be 1-
dimensional representations of Z; such that A acts by multiplication by A\*. These
form a complete, non-redundant set of nontrivial irreducible representations, and
each of the V}’s obviously extends to G x S' (an element (g,s) € G x S! acts by
multiplication by s¥). We use these to obtain an isotypical decomposition of T
Let T} denote the bundle Homy, (ev,, T).

Since M%iis (S1/Z;)-free, our proof in the case i = 1 shows that f|,;z bounds

amap [ : W — X, where W is the total space of a Z;-trivial 1-dimensional
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(G x SY)-disc bundle over Z = M?%:/(S1/Z;) whose unit circle bundle is MZi.

Passage to orbits gives a pull-back diagram

T, — Ty /(S Z;)

.

N — N/(5'/Zi),

for each k, where the right vertical arrow is a G-disc bundle, which may also be
thought of as a (G x (S'/Z;))-bundle with trivial (S'/Z;)-action. This makes the
diagram above a pull-back of (G x (S'/Z;))-vector bundles. Since the zero-section
of this bundle can be identified with Z = SW/(S'/Z;), we have a diagram of
(G x (Sl/Zi))—bundles

T/ (") )

I~

v (T (SYZ:))

Clearly the bundle 7' = &, p (T /(S Z;)) @ ey, extends T to W; we claim that

its unit sphere bundle is an .%;_;-manifold. To prove this, observe that
W — 7= M% x[0,1),

where [0,1) has trivial action, and so ST|W_Z is equivariantly homeomorphic to
ST|W_Z % [0,1). Therefore, S'-stabilizers of points in ST — ST not already present
in ST can only appear in ST|Z, but since there is no component associated to the
trivial representation (recall our remark in the course of the proof of Proposition
4.2) all these are proper subgroups of Z;, so the claim follows.
Let
M' = (M —T°) Ugp ST}

by construction, this is an .%;_;-manifold. Since T'U W is a (G x S')-deformation
retract of 1", there is a map f : W — X with f|T = f|r and f|W — f. We obtain
a bordism by crossing M with the closed unit interval, pasting T to M x {1} along



8. PASSING FROM G TO G x St AND G x Z 407

T x {1}, and extending f in the obvious way to a map F' from the bordism into
X. The maps f' = F|yr and f represent the same element in the bordism of X

with no isotropy restrictions, as required. [

8. Passing from G to GG x S' and G x Z,

To complete the proofs of our theorems, it suffices to prove the following result,

in which we again assume that we have proven all of our theorems for G.

THEOREM 8.1. Let C' = S' or C = Z;. The following statements hold.

(1) QUEX9(X) is a free MU,-module concentrated in even degrees.
2) The ma
(2) p

W QU BU(n, G x SY) x X) — QUEC(BU(n +1,G x S') x X)

is a split monomorphism of MU,-modules.

(3) If W is an irreducible complex (G' x C')-module, then
o QUIC(X) — QLT (DW, SW) x X)
is a split monomorphism of MU,-modules.

We first show that QU6*5' [ Z.](X) is a free MU,-module concentrated in
even degrees and that ¢" and v here are split monomorphisms of MU,-modules.
By Proposition 4.2, we have

WO, FNX) 2 D QXY < BUPG)).

0<2k<n
Pe2(2k,GxSt,S1)

Thus, by the induction hypothesis, QU&*5" [/, Fool(X) is free over MU, and
concentrated in even degrees, and the maps ¢ induced by addition of ¢¢ are split
monomorphisms of MU.-modules.

Theorem 7.1(4) implies that the long exact sequence of the pair (&7, %) breaks

into short exact sequences. In particular, the map
Q?stl (X) N Q*U’stl [%7 ngoo](X)

is a monomorphism, hence QU-6%5! (X)) is concentrated in even degrees.

In order to study the effect of o on QUE*5" (o7, Fo](X), it is necessary to
distinguish two cases:

(1) W =W and

(2) W= = {0}.



408 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISM

The analysis is similar to the one carried out in the previous section and will

be omitted; it yields the expected conclusion: o

MU,-modules on QUG*5" (o7 . Z_](X).

The diagram with exact columns

is a split monomorphism of

0 0
0 (x) T QU (DW,SW) x X)
O of | F)(X) ——= Q5 [ Z)(DW.SW) x X)
LS 2] () e QUGS ZL(DW, SW) x X)
0 0

together with Lemmas 6.2 and 6.3 shows that QHGXSl (X)) is projective, and there-
fore free, and that ¢ is a split monomorphism of MU,-modules on QHGXSl (X).
A similar diagram gives the corresponding conclusion for .

This completes the proof of Theorem 8.1 for C' = S!, and it remains to deal with
the case C' = Zj,. Let V denote the 1-dimensional complex representation of G x St

on which G acts trivially and an element ¢?™ € St acts by multiplication by e?7¥,

Since S1 acts without fixed points on SV x X, QUG*S" o7, Fo](SV x X) = 0.
Therefore, by the long exact sequence of the pair (DV, SV),

OV o T (X)) — QU Lo Z)((DV, SV) x X))
is an isomorphism, and, by the long exact sequence of the pair (<7, .Z..),
QUEST [ Z 1SV x X) — QU (Y x X)

is an isomorphism.

By Theorem 7.1, we conclude that QE’GXSI(SV x X) is a free MU,-module
concentrated in odd degrees. This being so, the long exact sequence of the pair
(DV, SV) breaks up into short exact sequences

0 — QL (X) 5 QU (DV, SV) x X) — Q5DF(SV x X) — 0.
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Since SV can be identified with S'/Zj., we conclude from Lemma 3.4 that
QUEIr( X)) = coker a.

Now apply the Snake Lemma to the diagram with exact columns

0 0
05 (X) - OSSN (DV, SV) x X)
QLGS o/ F.)(X) —— QS o Z)(DV, SV) x X)
L [ F.0) (X) e QLTS [ ZL(DV.SV) x X)

0 0.

Since « is a monomorphism and /3 is an epimorphism, we see that coker a = ker /3.
Since ker 3 is a free MU,-module concentrated in odd degrees, QU:“*Zx( X) is free
and concentrated in even degrees.

To show that " is a split monomorphism, let Y = (DW, SW) x X and consider
the maps

o s QTEET(Y) — VST (DY, SV) x Y)
and
B QT ZY) — 5T [ ZL(DV,SV) x V)

that fit into the diagram obtained from the previous one by raising all degrees by
two and replacing X by Y. Then ¢" induces a map from the original diagram to
the new diagram, and there results a commutative square

CTW
coker o« — coker o

g E

ker f ——— ker f'.

By Lemma 6.2, the bottom arrow is a split monomorphism of M U,-modules, hence

so 1s the top arrow. The proof that ¢ is a split monomorphism is similar.
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Bousfield localization
factorization of, 305
of R-algebras, 304
of R-modules, 303
smashing, 305
Brauer induction theorem, 245
Bredon cohomology, 20
Bredon homology, 20
Brown’s representability theorem, 158, 291
Adams’ variant, 159, 291
Brown-Peterson spectra

equivariant, 327
Burnside category, 97
V-Burnside category, 121
Burnside Green functor, 246
Burnside ring, 98

cap product, 166
Carlsson’s theorem, 257
Cartan subgroup, 169
Cech cohomology groups, 333
Cech complex, 333
Cech spectrum, 334
G-cell spectrum, 144
cellular approximation theorem
for G-CW complexes, 17
for G-spaces, 108
for G-spectra, 145
for diagrams, 61
change of universe functor, 135
chromatic periodicity, 284
classifying space
for equivariant bundles, 71
of a category, 49
cobar construction, 50
coefficient system, 19, 63
projective, 21
projective rational, 36
coend, 20, 47
coequalizer, 47
cofamily, 256
cofibration, 16
of diagrams, b8
g-cofibration, 65, 289
cohomology
of diagrams, 64
coinduced G-space, 14
coMackey functor, 98
compact spectrum, 143
compactly generated, 13
complete resolution of Z, 269
completion
of G-spaces, 31
of G-spectra, 252
of R-modules, 338
of spaces, 29
completion theorem, 339
complex-stable, 371



conjugation map, 97
G-connected, 115
G-v-connected, 115
V-connected, 107, 116
connectivity function, 92
Conner conjecture, 101
Conner-Floyd isomorphism, 364
cosimplicial space, 51

cup product, 166

CW complex, 60

G-CW prespectrum, 148
G-CW spectrum, 144
cyclic cohomology, 270
cylinder construction, 149

defect set, 245
derived category
of R-modules; 291
of S-modules, 289
of chain complexes, 292
DGA, 33
minimal, 33
DGA’s
minimal system of, 37
system of, 36
diagram, 57
dimension function, 115

double coset formula, 231, 354, 356

Eilenberg Mac Lane G-spectrum, 161, 163
Eilenberg-Mac Lane G-space, 25, 127
Eilenberg-MacLane G-space, 54
Eilenberg-Moore spectral sequence, 294
FE ring spectrum, 319
Elmendorf’s theorem, 53, 68
end, 48
ENR, 205
equalizer, 48
V-equivalence, 107
equivariant cohomology, 43
Euler characteristic, 96, 209

internal, 211

of a bundle, 229
Euler class, 342

in bordism, 184

of a representation, 202

Ext, 292, 293

INDEX
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external smash product, 134

family, 55
Z-Borel cohomology, 278
Z-Borel homology, 277
Feit-Thompson theorem, 217
Z-equivalence, 199
fibration, 16
Serre, 289
g-fibration, 65, 289
Fix(M), 81
fixed point spectrum, 192
geometric, 195
Z-localization theorem, 343, 344
Z-manifold, 186
Z-norm cofibration sequence, 278
Freudenthal suspension, 123
Freudenthal suspension theorem, 92, 114
Z-space, bb
universal, 55
Z-spectrum, 199
Z-Tate cohomology, 278
Z-Tate G-spectrum, 278
function spectrum, 137
external, 138
internal, 138

G-bundle, 69

n-plane, 69

trivial, 70
(G, )-bundle, 69
G-connected, 18
G-CW based complex, 18
G-CW approximation, 18
G-CW complex, 16
G-CW(V) complex, 105
geometric realization, 48
Grassmannian manifold, 73
Green functor, 166, 245
Grothendieck’s vanishing theorem, 333
G-spectra, 139
G-spectrum

FE-module, 165

coinduced, 196

free, 194

genuine, 139

induced, 196
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naive, 139

rational, 248

ring, 165

split, 193
G-vector bundle, 167
Gysin sequence, 365

Hausdorff metric, 213
HELP

for G-spaces, 107

for G-spectra, 144

for diagrams, 61
Hochschild cohomology, 308
Hochschild homology, 308
homology

of diagrams, 64
homotopy colimit, 50
homotopy fixed point space, 51, 77
homotopy groups

of diagrams, 59
homotopy limit, 51
homotopy orbit space, 43, 50, 77
Hopf G-space, 38
Hurewicz map, 122
Hurewicz theorem, 113, 122

I-local Tate spectrum, 347
indexing space, 93
induced G-space, 14
induction

in Kg-theory, 168
induction theorem, 245
infinite loop space, 136
internal smash product, 136, 137
invariance theorem, 256
F¥-invariant, 256
I-power torsion module, 334
I-power torsion submodule, 333

Kiunneth spectral sequence, 294
k-invariant, 26

Koszul complex, 332

Koszul spectrum, 334

Lannes’ functor 7', 80
Lannes’ theorem, 83
linear isometries

G-operad, 314
space of, 135, 139
LLP, 65
local cohomology groups, 332
local homology groups, 340
local Tate cohomology groups, 346
localization
of G-spaces, 28
of R-modules, 297
of R-modules at an ideal, 335
of spaces, 27
localization module, 335

localization theorem, 44, 337, 341, 344

IL-spectrum, 317
Z-spectrum, 361

Mackey functor, 98, 244
V-Mackey functor, 121
manifold
of dimension V', 106
stably almost complex, 180
Map(X,Y), 13
Miller’s theorem, 78
minimal model, 33
equivariant, 37
model category, 64
of R-algebras, 301
of R-modules, 291, 303
of S-modules, 289
of commutative R-algebras, 301
of diagrams, 65
of spectra, 289
Morava K-theory spectra
equivariant, 327

neighboring pair of families, 377
nerve, 49

nilpotent G-space, 25

nilpotent space, 25

norm cofibration sequence, 270, 272
norm exact sequence, 269

norm map, 361

norm maps, 354

normally almost complex GG-manifold, 370

normfl, 356
normy, 354
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obstruction theory, 22
operad, 314
operadic smash product, 318
orbit category, 19, 52
orbit spectrum, 193
ordinary RO(G)-graded cohomology, 109, 162
ordinary RO(G)-graded homology, 109, 163
orientation
of a G-bundle, 207
of a G-manifold, 208

perfect compact Lie group, 216
Poincaré duality, 111, 208
Poincaré duality space, 111
Pontrjagin-Thom construction, 181, 182
Pontrjagin-Thom map, 95
Postnikov system, 26
p-perfect group, 215
prespectrum, 131

G-CW, 148

Y-cofibrant, 148

9.7,-, 360

Z, 361

coordinate free, 133

indexed on U, 133
Q-prespectrum, 132
pretransfer map, 210
principal (G;I)-bundle, 69
principal (IT; 7 )-bundle, 69
pro-group, 177
p-toral group, 79

quasi-isomorphism, 33

R-algebra, 300

commutative; 300

enveloping, 307
rationality theorem, 346
restriction

in Kg-theory, 168, 178
RLP, 65
R-module, 290

free, 291

quotient by an ideal, 296

sphere, 291

underlying nonequivariant, 328

RO(G)-graded cohomology, 100

425

RO(G; U)-graded cohomology, 152
RO(G)-graded homology, 100
RO(G; U)-graded homology, 154
root invariant, 276, 279

R-ring spectrum, 295

S-algebra, 290
commutative, 290
underlying nonequivariant, 327
Sec(BH, B?), 75
Sec(EG,E?), 74
Segal conjecture, 253
sequential filtration, 144
simple G-space, 25
simple space, 22, 25
simplicial object, 48
simply G-connected, 115
singular set, 261
slant products, 164
small object argument, 66
smash product
external, 134
internal, 136, 137
operadic, 318
Smith theory, 41
S-module, 287, 318
free, 288
sphere, 288
solvable compact Lie group, 216
Spanier-Whitehead S-category, 143
Spanier-Whitehead duality, 204, 293
spectrification functor, 132, 133
spectrum, 132
G-CW, 144
G-cell, 144
coordinate free, 133
fixed point, 192
geometric fixed point, 195
indexed on {0}, 135
indexed on U, 133
orbit, 193
tame, 148
underlying nonequivariant, 192
Q-spectrum, 132
split G-spectrum, 193
split as a module, 328
split as an algebra, 327
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stable coefficient system, 98 twisted half-smash product, 314
stable element, 233
stable homotopy limit problem, 271 Un(M), 46
stable isomorphism of bundles; 167 universal .Z-space, bb
stable manifold, 184 universal coefficient spectral sequence, 23,
stable map, 93 294
stable orbit category, 98 universal (II;?)-bundle, 71
stably almost complex manifold, 370 universe, 93

tangentially, 373 complete, 93
strongly dualizable, 203 trivial, 93
sufficiently large ideal, 351 untwisting formula, 315
Sullivan conjecture, 78
support Vecg, 35

of a prime in A(G), 257 von Neumann regular ring, 218

of a prime in R(G), 170
suspension map, 122 weak equivalence, 14
suspension prespectrum, 136 of G-spaces, 14
suspension spectrum, 136 of G-spectra, 142

of diagrams, 60

tangential complex bordism, 373 of spectra, 136
Tate G-spectrum, 271 weak Hausdorff, 13
Tate cohomology, 269, 271 weak map of spectra, 149
Tate-Swan cohomology, 273 Weyl group, 13
tensored and cotensored category Whitehead theorem

of R-modules; 291 for G-spaces, 17, 108

of R-algebras, 300 for G-spectra, 145

of commutative R-algebras, 300 for diagrams, 61
Thom G-prespectrum, 182 via geometric fixed point spectra, 201
Thom G-spectrum, 182 Wirthmuller isomorphism, 197
Thom class, 184, 185, 372 wreath product, 355

Thom complex, 95
Thom isomorphism, 207, 341, 372

in Kg-theory, 171

in bordism, 185
Thom prespectrum, 180
Thom spectrum, 180, 263, 299
topological cyclic homology, 286
topological Hochschild cohomology, 307
topological Hochschild homology, 307
Tor, 292, 293
toral group, 352
totalization, 51
totally disconnected, 213
transfer map, 96, 209, 224

dimension shifting, 224
transversality

failure of, 182



