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explain in the next section, we can analyze the singular terms in (4.2) in terms of

these subquotient theories.

THEOREM 4.3. Assume that £} is e-invariant for every proper subquotient .J of
G and let Y = [

(i) If G is not elementary Abelian, then k5 (Y; EG) = 0.
(ii) If ¢ = (Z/p)", then k5(Y;EG) is the direct sum of p’~9/2 copies of
NG 6 (59).

Warning: the nonequivariant theory &, is usually quite different from the
underlying nonequivariant theory k* = k.

As we shall explain in Section 6, we can use Adams spectral sequences to analyze
the free terms in (4.2).

THEOREM 4.4. Assume that kg is split and & is bounded below and let Y =
L.

(i) If G is not elementary Abelian, then k5 (Y; FGL) = 0.
(ii) It G = (Z/p)" and H*(k) is finite dimensional, then k5 (Y; EGy) is the
direct sum of p""=Y/2 copies of X7k*(SP).

The hypothesis that H*(k) be finite dimensional in (ii) is extremely restrictive,
although it is satisfied trivially when £ is the sphere spectrum. The hypothesis
is actually necessary. We shall see in Section 7 that the theories 7. (+; BgIly) are
e-invariant for finite groups II. They satisfy all other hypotheses of our theorems,
but here £* and ké/G are different. In such cases, the calculation of kj(Y; EG )
falls out from the e-invariance, which must be proven differently, and (4.2).

Carlsson’s reduction is now the case mg of the following immediate inductive
consequence of the first parts of Theorems 4.3 and 4.4.

THEOREM 4.5. Suppose that G is not elementary Abelian. Assume

(i) k5 is e-invariant for all elementary Abelian subquotients .J;
(ii) ky is split and kg, k is bounded below for all non-elementary Abelian sub-
quotients J = H/K.

Then k% is e-invariant for all subquotients J, including J = G.

Returning to cohomotopy and the proot of the Segal conjecture, it only remains
to prove that the map ¢ in (4.2) is an isomorphism when G = (Z/p)”. We assume
that the result has been proven for 1 < ¢ < r. Comparing Theorems 4.3 and 4.4,
we see that the map 6 in (4.2) is a map between free 7*-modules on the same
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number of generators. It suffices to show that ¢ is a bijection on generators, which
means that it is an isomorphism in degree r — 1. Here ¢ is a map between free
modules on the same number of generators over the p-adic integers Z7' , so that it
will be an isomorphism if it is a monomorphism when reduced mod p.

To prove this, let kg = F(EGy, HF,), where HF, is the Eilenberg-MacLane G-
spectrum associated to the “constant Mackey functor” at F, that we obtain from
[X.4.3. This theory, like any other theory represented by a function spectrum
F(EG.,+), is e-invariant. Since n§'(HF,) = F,, we have a unit map S¢ — HF,,
and we compose with ¢ : HF, — kg to obtain n : S¢ — kg. There is an
induced map S = Sq/¢ — kq/q, and a little calculation shows that it sends the
unit in 7°(5) to an element that is non-zero mod p. We can also check that the
subquotient theories k% are all e-invariant. By the naturality of (4.2), we have the
commutative diagram

(Y BG) — = 7Y EGL)

n*l lm

ke (Y5 BG) — = k(Y EGL).

The bottom map 6 is an isomorphism since k5(Y) = 0. The left map 7. is

the sum of prr=1/2

copies of X" 7'n,, n. : 7%(S) — 7°%(kg/), and is therefore a
monomorphism mod p. Thus the top map é is a monomorphism mod p, and this
concludes the proof.
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5. Approximations of singular subspaces of G-spaces

Let SX denote the singular set of a G-space X, namely the set of points with
non-trivial isotropy group. The starting point of the proof of Theorem 4.3 is the
space level observation that the inclusions

SX — X and S° — EG
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induce bijections
[X,EG A X' — [SX,EGAX'lg — [SX, X'

We may represent theories on finite G-CW complexes via colimits of space level
homotopy classes of maps. The precise formula is not so important. What is
important is that, when calculating k% (X EG), we get a colimit of terms of the
general form [SW, Z]s. We can replace S here by other functors T' on spaces that
satisfy appropriate axioms and still get a cohomology theory in X, called k% (X; 7).
Such functors are called “S-functors”. Natural transformations 7" — T” induce
maps of theories, contravariantly. We have a notion of a cofibration of S-functors,
and cofibrations give rise to long exact sequences. In sum, we have something like
a cohomology theory on S-functors T

We construct a filtered S-functor A that approximates the singular functor 5.
Let & = &/(() be the partially ordered set of non-trivial elementary Abelian
subgroups of G, thought of as a G-category with a map A — B when B C A,
with G acting by conjugation. If G # e, the classifying space B.</ is G-contractible.
In fact, if C' is a central subgroup of order p, then the diagram A «— AC — C
displays the values on an object A of three G-equivariant functors on @/ together
with two equivariant natural transformations between them; these induce a G-
homotopy from the identity to the constant G-map at the vertex C.

We can parametrize &/ by points of SX. Precisely, we construct a topological
G-category /[ X] whose objects are pairs (A, z) such that z € X4; there is a mor-
phism (A,z) — (B,y) if BC Aand y = z, and G acts by g(A, z) = (gAg™, gz).
Projection on the X-coordinate gives a functor &/[X] — SX, where S X is a cate-
gory in the trivial way, and B&/[X] — BSX = SX is a G-homotopy equivalence.
The subspace B/ [*] of B&/[X] is G-contractible. Let AX = Ba/[X]/Ba/[*]. We
still have a G-homotopy equivalence AX — SX, but now A is an S-functor and
our equivalences give a map of S-functors. For any space Y, we have

k(Y5 BG) 2 k(Y S) 2 kLY A).

The functor A arises from geometric realizations of simplicial spaces and carries
the simplicial filtration F,A; here F_1A = % and F,_1A = A, where r = rank (G).

Inspection of definitions shows that the successive subquotients satisty

(Fy APy A)X) =\ SUGy Ay XAW).
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Here w runs over the G-conjugacy classes of strictly ascending chains (Ag, -+, A,)
of non-trivial elementary Abelian subgroups of ¢, H(w) is the isotropy group of w,
namely {glgA;g™' = A;, 0 < i < g}, and A(w) = A,. For each normal subgroup
K of a subgroup H of (7, there is an S-functor C'(K, H) whose value on X is
Gy Ag X%, and, as S-functors,

(5.1) (FyA/ Pyt A) =\ S1C(A(w), H(w)).
By direct inspection of definitions, we find that, for any space Y,
(52) KoY OO H)) 2 by (V5.

This is why the ®-fixed point functors enter into the picture.

To prove Theorem 4.3, we restrict attention to Y = F.Z2. If (¢ is not elementary
Abelian, then Y is contractible and the subquotients H/K are proper for all
pairs (K, H) that appear in (5.1). If G = (Z/p)", and ¢ < r — 2, this is still true.
All these terms vanish by hypothesis. If G = (Z/p)", we are left with the case
g=r—1. Here A(w) = H(w) = G for all chains w, there are p(p — 1)/2 chains w,
and Y9 = S° Using (5.2), Theorem 4.3 follows.
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6. An inverse limit of Adams spectral sequences

We turn to the proof of Theorem 4.4. Its hypothesis that kg is split allows
us to reduce the problem to a nonequivariant one, and the hypothesis that the
underlying nonequivariant spectrum k is bounded below ensures the convergence
of the relevant Adams spectral sequences. We prove Theorem 4.4 by use of a
particularly convenient model Y for £ | namely the union of the G-spheres
S where V is the reduced regular complex representation of Gi. It is a model
since V¢ = {0} and V¥ #£ 0 for H € 2.

In general, for any representation V', there is a Thom spectrum BG™Y. Here we
may think of —V" as the negative of the representation bundle EG' x5V — BG,
regarded as a map —V : BG' — BO x Z. If V is suitably oriented, for example
if V is complex, there is a Thom isomorphism showing that H*(BG~") is a free
H*(BG)-module on one generator ¢, of degree —n, where n is the (real) dimension
of V. We take cohomology with mod p coefficients. For V' C W, there is a
map f : BG™" — BG™V such that f* : H*(BG™Y) — H*(BG™") carries
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ty to X(W — V). Here x(V) € H*(BG) is the Euler class of V, which is the
Euler class of its representation bundle. For a split G-spectrum kg we have an
isomorphism

kS(SY, EGL) = k(BGTY).
For V. C W, the map f. : k(BG™") — k. (BG™) corresponds under the
isomorphisms to the map induced by e : SV — SW. (The paper of mine cited at
the end gives details on all of this.) With our model Y for E 2, we now see that

k' (Y EGy) = k(Y EGy) 2 limk,(BG™).

Remember that we are working p-adically; we complete spectra at p without
change of notation. The inverse limit £, of Adams spectral sequences of an inverse
sequence { X, } of bounded below spectra of finite type over the p-adic integers Z,
converges from

Fy = Exta(colim H*(X,,),F,)
to limm.(X,,). With X,, = kABG™ this gives an inverse limit of Adams spectral
sequences that converges from
Ey = Exto(H* (k) ® colim H*(BG™),F,)
to kL(Y; EGL). The colimit is taken with respect to the maps
x(V): H(BG™Y) — H*(BG~"DY),

Since VH £ {0}, (V) restricts to zero in H*(BH) for all H € 2. A theorem of
Quillen implies that y (V') must be nilpotent if ¢ is not elementary Abelian, and
this implies that £y = 0. This proves part (i) of Theorem 4.4.

Now assume that G' = (Z/p)". Let L = x(V) € H*®" =Y (BG). Then

colim H*(BG™Y) = H*(BG)[L™"].
It is easy to write L down explicitly, and the heart of part (ii) is the following

purely algebraic calculation of Adams, Gunawardena, and Miller, which gives the

F5 term of our spectral sequence.

THEOREM 6.1. Let St = H*(BG)[L™'] @4 F,, and regard St as a trivial A-
module. Then St is concentrated in degree —r and has dimension p""=1)/2, The

quotient homomorphism ¢ : H*(BG)[L™'] — St induces an isomorphism
Exta(K @ St,F,) — Exta(K © H(BG)[L™],F,)

for any finite dimensional A-module K.
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The notation “St” stands for Steinberg: G'L(r,F,) acts naturally on everything
in sight, and St is the classical Steinberg representation.
Let W be the wedge of p""=1/2 copies of S=". It follows by convergence that

there is a compatible system of maps W — BG™"Y that induces an isomorphism
k(W) = 7ok AW) — limm.(k A BG™Y) = kz*(Y; EGY).

This gives Theorem 4.4(ii). It also implies the following remarkable corollary,
which has had many applications.

COROLLARY 6.2. The wedge of spheres W is equivalent to the homotopy limit,
BG=V of the Thom spectra BG™Y. In particular, with G = Z/2, S7! is
equivalent to the spectrum holim RP%.
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7. Further generalizations; maps between classifying spaces

Even before the Segal conjecture was proven, Lewis, McClure, and 1 showed
that it would have the following implication. Let G and II be finite groups and
let A(G,1I) be the Grothendieck group of Il-free finite (G x II)-sets. Observe that
A(G, 1) is an A(G)-module and let I be the augmentation ideal of A(G).

THEOREM 7.1. There is a canonical isomorphism
af t A(G )} — [E*°BGL, Y BILL].

The map o : A(G,II) — [E*BG,, X Bl can be described explicitly in
terms of transfer maps and classifying maps (and the paper of mine cited at the
end gives more about the relationship between the algebra on the left and the
topology on the right). A Il-free (G x II)-set T" determines a principal II-bundle

EG XgT—>EG XgT/H,
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which is classified by a map &(T') : EFG xgT/Il — BII. It also determines a (not

necessarily connected) finite cover
EG X G T/H — FG X G {*} = BG,
which has a stable transfer map 7(7T') : BG4 — (EG x¢ T/1)4. Both ¢ and 7

are additive in T', and « is the unique homomorphism such that
a(T) = &(T) o 7(T).

In principle, this reduces to pure algebra the problem of computing stable maps
between the classifying spaces of finite groups. Many authors have studied the
relevant algebra — Nishida, Martino and Priddy, Harris and Kuhn, Benson and
Feshback, and Webb, among others — and have obtained a rather good under-
standing of such maps. We shall not go into these calculations. Rather, we shall
place the result in a larger context and describe some substantial generalizations.

Recall that we interpreted the consequences of the Sullivan conjecture for maps
between classifying spaces as statements about equivariant classifying spaces. Anal-
ogously, Theorem 7.1 is a consequence of a result about the suspension G-spectra
of equivariant classifying spaces.

THEOREM 7.2. The cohomology theory 7 (+; ¥ (Bgll) )7 is e-invariant. There-
fore the map F(G' — * induces an isomorphism

Te(S% Y (Bell) )] — 75 (EG; X°(Bell)y ) & 7*(BGy; X BIL, ).

The isomorphism on the right comes from XVI.2.4. In degree zero, this is
Theorem 7.1. The description of the map « of that result is obtained by describing
the map of Theorem 7.2 in nonequivariant terms, using the splitting theorem for
(BsIN)“ of VIL2.7, the splitting theorem for the homotopy groups of suspension
spectra of XIX.1.2, and some diagram chasing.

We next point out a related consequence of the generalization of the Segal
conjecture to families. In it, we let II be a normal subgroup of a finite group I'.

THEOREM 7.3. The projection E(II;T') — * induces an isomorphism
AD)iz@r) — 7 (EALT)4) = 7g(B(ILT),).

This is just the degree zero part of Theorem 2.5 for the family .Z (1I;I') in the
group I'; the last isomorphism is a consequence of XVI.5.4. With the Burnside
ring replaced by the representation ring, a precisely analogous result holds in
K-theory, but in that context the result generalizes to an arbitrary extension of
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compact Lie groups. Of course, these may be viewed as calculations of equivariant
characteristic classes. It is natural to ask if Theorems 7.1 and 7.3 admit a common
generalization or, better, if the completion theorems of which they are special cases
admit a common generalization.

A result along these lines was proven by Snaith, Zelewski, and myself. Here, for
the first time in our discussion, we let compact Lie groups enter into the picture.
We consider finite groups G and J and a compact Lie group II. Let A(G x J,1I)
be the Grothendieck group of principal (G' x J, IT)-bundles over finite (G x .J)-sets.
This is an A(G x J)-module, and we can complete it at the ideal [.Z74(J). As in
VII§1, Z¢(J) is the family of subgroups H of G x J such that H N .J = e.

THEOREM T7.4. There is a canonical isomorphism
Oé}gG(J) . A(G X J7H)}gG(J) — [ZOOng+, ZOOBgﬂ+]G.

Again, the map o : A(G'x J,1I) — [ BgJy, ¥ Bglly )¢ is given on principal
(G x J,II)-bundles as composites of equivariant classifying maps and equivariant
transfer maps. Although the derivation is not quite immediate, this result is a
consequence of an invariance result exactly analogous to the version of the Segal
conjecture given in Theorem 3.2.

THEOREM 7.5. Let II be a normal subgroup of a compact Lie group I' with
finite quotient group G. Let S be a multiplicatively closed subset of A(G) and
let I be an ideal in A(G). Then the cohomology theory S~t'a¥ (+; B(IL;T)4)7 is

¢ -invariant, where
A = J{Supp(P)[PNS=0 and P DI}

The statement is identical with that of Theorem 3.2, except that we have substi-
tuted B(II;T), for S° as the second variable of our bitheory. We could generalize
a bit further by substituting E(II; I'); Ap X for any finite I'-CW complex X. What
other Gi-spaces can be substitutedl” The elementary p-group case of the proof of the
Segal conjecture makes it clear that one cannot substitute an arbitrary G-space.
In fact, very little more than what we have already stated is known.

Theorem 7.5 specializes to give the analog of Theorem 3.1.

THEOREM 7.6. Let .% be a family in GG, where G = I'/Il. The map £.% — x
induces an isomorphism

75(S% BULT) )i s — m(EF S B(ILD),).
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We can restate this in Mackey functor form, as in Theorem 2.5, and then deduce
a conceptual formulation generalizing Theorem 1.10.

THEOREM 7.7. For every family .% in G, the map
& PIK(LF), S B(ILT),) — F(EF,, S B(ILT),)
is an equivalence of G-spectra.

This extends the calculational consequences to the RO(G)-graded represented
theories. Exactly as in Sections 1-3, all of these theorems reduce to the following
special case.

THEOREM 7.8. Let II be a normal subgroup of a compact Lie group I' such
that the quotient group G is a finite p-group. Then the theory @& (-; B(IL; 1)),
is e-invariant.

The proof is a bootstrap argument starting from the Segal conjecture. When
I’ is finite, the result can be deduced from the generalized splitting theorem of
XIX.2.1 and the case of the Segal conjecture for I' that deals with the family of
subgroups of I' that are contained in II. When I" is a finite extension of a torus,
the result is then deduced by approximating I' by an expanding sequence of finite
groups; this part of the argument entails rather rather elaborate duality and colimit
arguments, together with several uses of the generalized Adams isomorphisms
XVI.5.4. Finally, the general case is deduced by a transfer argument.

As is discussed in my paper with Snaith and Zelewski, and more extensively in
the survey of Lee and Minami, these results connect up with and expands what is
known about the Segal conjecture for compact Lie groups.
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CHAPTER XXI

Generalized Tate cohomology

by J. P. C. Greenlees and J. P. May

In this chapter, we will describe some joint work on the generalization of the
Tate cohomology of a finite group G with coefficients in a G-module V' to the Tate
cohomology of a compact Lie group GG with coefficients in a G-spectrum k¢g. There
has been a great deal of more recent work in this area, with many calculations and

applications. We shall briefly indicate some of the main directions.

J. P. C. Greenlees. Representing Tate cohomology of G-spaces. Proc. Edinburgh Math. Soc.
30(1987), 435-443.

J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Memoirs Amer. Math. Soc.
No 543. 1995.

1. Definitions and basic properties

Tate cohomology has long played a prominent role in finite group theory and
its applications. For a finite group G and a G-module V| the Tate cohomology
HE(V) is obtained as follows. One starts with a free resolution

c— P — Py —7Z—0
of Z by finitely generated free Z[G]-modules, dualizes it to obtain a resolution

0 —Z— Py — P — -,

renames P* = P_,_y, and splices the two sequences together to obtain a Z-graded
exact complex P of finitely generated free Z[G]-modules with a factorization
Py — Z — P_q of dy. The complex P is called a “complete resolution of Z”,
and [:](*;(V) is defined to be the cohomology of the cochain complex Homg (P, V).
There results a “norm exact sequence” that relates [:]C*;(V), HE(V), and HE (V).

279
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In connection with Smith theory, Swan generalized this algebraic theory to a
cohomology theory [:](*;(X; V) on G-spaces X, using Hom(P @ C.(X),V). (Swan
took X to be a G-simplicial complex, but singular chains could be used.) When
G = S'or G = 5% and X is a CW-complex with a cellular action by G, there is
a closely analogous theory that is obtained by replacing P by Z[u,u™!], where u
has degree —2 or —4. Here Hom(P @ C.(X), V) has differential

dp@x)=pedx)+pudi-z,

where ¢ € C1(S5') or ¢ € C5(S?) is the fundamental class. For S, this is periodic
cyclic cohomology theory.

We shall give a very simple definition of a common generalization of these vari-
ants of Tate theory. In fact, as part of a general “norm cofibration sequence”, we
shall associate a Tate G-spectrum t(k¢g) to any G-spectrum k¢, where G is any
compact Lie group. The construction is closely related to the “stable homotopy
limit problem” and to nonequivariant stable homotopy theory.

We have the cofiber sequence
(1.1) EG, — S° — EG,
and the projection EG, — SY induces the canonical map of G-spectra
(1.2) g1k =F(S° ka) — F(EGL, ka).

Taking the smash product of the cofibering (1.1) with the map (1.2), we obtain
the following map of cofiberings of G-spectra:

ke N EG, ke ko N EG
(1.3) s/\idl ls ls/\id
F(EGy, ka) N EGy — F(EG,, kG) — F(EG,, kG) N EG.

We have seen most of the ingredients of this diagram in our discussion of the Segal
conjecture. We introduce abbreviated notations for these spectra. Define

(1.4) f(ka) = ke A EG..

We call f(k¢g) the free G-spectrum associated to k¢. It represents the appropri-
ate generalized version of the Borel homology theory H.(EG x¢ X). Precisely, if
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k¢ is split with underlying nonequivariant spectrum £, then, by XVI1.2.4,
(1.5) Flke)o(X) Z ko (BEGy N SAMD X)),

We refer to the homology theories represented by G-spectra of the form f(kq) as
Borel homology theories. We refer to the cohomology theories represented by the
f(kg) simply as f-cohomology theories. Define

(1.6) F'(ke) = F(EG, ke) A EG,.

It is clear that the map e Ald : f(kg) — f'(kg) is always an equivalence, so that
the G-spectra f(kg) and f'(kg) can be used interchangeably. We usually drop the
notation f’, preferring to just use f. Define

(1.7) f(ke) = ke A EG.

We call f~(kg) the singular G-spectrum associated to ke.
Define

(1.8) clka) = F(EG4, kg).

We call ¢(kg) the geometric completion of kg. The problem of determining the
behavior of ¢ : k¢ — ¢(kg) on G-fixed point spectra is the “stable homotopy limit
problem”. We have already discussed this problem in several cases, and we have
seen that it is best viewed as the equivariant problem of comparing the geometric
completion ¢(k¢g) with the algebraic completion (kg )7 of kg at the augmentation
ideal of the Burnside ring or of some other ring more closely related to kg. As
one would expect, ¢(kq) represents the appropriate generalized version of Borel
cohomology H*(EG x ¢ X). Precisely, if kg is a split G-spectrum with underlying
nonequivariant spectrum k, then, by XVI1.2.4,

(1.9) clhe) (X) 2 K (EG, Ag X).

We therefore refer to the cohomology theories represented by G-spectra ¢(kq) as
Borel cohomology theories. We refer to the homology theories represented by the
c(kg) as c-homology theories.

Finally, define

(1.10) t(ke) = F(EGy, ka) A EG = f~ (k).

We call t(k¢g) the Tate G-spectrum associated to kg. It is the singular part of the
geometric completion of kg. Our primary focus will be on the theories represented
by the t(kg). These are our generalized Tate homology and cohomology theories.
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With this cast of characters, and with the abbreviation of ¢ Aid to ¢, the diagram
(1.3) can be rewritten in the form

flka) e S~ (ka)

(L.11) sl: l l

f'(ke) — c(ka) — t(kc).

The bottom row is the promised “norm cofibration sequence”. The theories rep-
resented by the spectra on this row are all e-invariant.
The definition implies that if X is a free G-spectrum, then

Hke)o(X) = 0 and t(ka)*(X) = 0.
Similarly, if X is a nonequivariantly contractible G-spectrum, then
c(kq)"(X) =0 and f(ka).(X)=0.
By definition, Tate homology i a special case of c-homology,
(1.12) Hke)n(X) = e(ka)n(EG A X).

The two vanishing statements imply that Tate cohomology is a special case of

f-cohomology,

(1.13) tka)"(X) = f(ke)"™(EG A X).

In fact, on the spectrum level, the vanishing statements imply the remarkable
equivalence

(1.14)

t(ka) = F(EG, ka) N EG ~ F(EG,YEG, Akg) = F(EG, S f(ka)).

It is a consequence of the definition that ¢(k¢) is a ring G-spectrum if k¢ is a
ring G-spectrum, and then #(kg) is a ring spectrum.

Much of the force of our definitional framework comes from the fact that (1.11)
is a diagram of genuine and conveniently explicit G-spectra indexed on representa-
tions, so that all of the Z-graded cohomology theories in sight are RO(G)-gradable.
The RO(G)-grading is essential to the proofs of many of the results discussed be-
low. Nevertheless, it is interesting to give a naive reinterpretation of the fixed
point cofibration sequence associated to the norm sequence.

With our definitions, the Tate homology of X is

t(ka)«(X) = m((t(ka) A X))
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Since any kg is e-equivalent to ji for a naive G-spectrum jg and Tate theory is
e-invariant, we may as well assume that kg = i,j5. Provided that X is a finite
G-CW complex, the spectrum (#(kg) A X)“ is then equivalent to the cofiber of an

appropriate transfer map

(jo ASANDX )0 = (jo A BEGy ASAND X)) /G

|

(o A X)) = F(EGy, ja A X)C.

A description like this was first written down by Adem, Cohen, and Dwyer. When
(7 is finite, X = S°, and j; is a nonequivariant spectrum & given trivial action by
G, this reduces to

The interpretation of Tate theory as the third term in a long sequence whose other
terms are Borel k-homology and Borel k-cohomology is then transparent.

A. Adem, R. L. Cohen, and W. G. Dwyer. Generalized Tate homology, homotopy fixed points,
and the transfer. Contemporary Math. Volume 96(1989), 1-13.

J. D. S. Jones. Cyclic homology and equivariant homology. Inv. Math. 87(1987), 403-423.
R. G. Swan. A new method in fixed point theory. Comm. Math. Helv. 34(1960), 1-16.

2. Ordinary theories; Atiyah-Hirzebruch spectral sequences

Let M be a Mackey functor and V' be the mo(G)-module M(G/e). The norm
sequence of HM depends only on V: if M and M’ are Mackey functors for which
M(GJe) = M'(G/e) as mo(G)-modules, then the norm cofibration sequences of
HM and HM' are equivalent. We therefore write

(2.1) HE(X;V) = t(HM).(X) and H5(X;V) = t(HM)"(X).

For finite groups (5, this recovers the Tate-Swan cohomology groups, as the nota-
tion anticipates. We sketch the proof. The simple objects to the eyes of ordinary
cohomology are cells, and the calculation depends on an analogue of the skeletal
filtration of a CW complex that mimics the construction of a complete resolution.
The idea is to splice the skeletal filtration of KG, with its Spanier-Whitehead
dual. More precisely, we define an integer graded filtration on G, or rather on
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its suspension spectrum, by letting

N EGO =00 c(BGY™) fori>1
I"EG = SON forz =10
D(EG1) for s < —1.

The ith subquotient of this filtration is a finite wedge of spectra S A G, and the
E' term of the spectral sequence that is obtained by applying ordinary nonequiv-
ariant integral homology is a complete resolution of Z. Therefore, if one takes the
smash product of this filtration with the skeletal filtration of X and applies an
equivariant cohomology theory kf(-), one obtains the “Atiyah-Hirzebruch-Tate”
spectral sequence

(2.2) B3 = (X5 K) = (k)57 (X).

Here k is the underlying nonequivariant spectrum of k¢, and k? = 7_,(k) regarded
as a G-module. To see that the target is Tate cohomology as claimed, note that
the “cohomological” description (1.14) of the Tate spectrum gives

t(R)e(X) = [EG A X, kEASEG, .

There are compensating shifts of grading in the identifications of the Fy terms and
of the target, so that the grading works out as indicated in (2.2).

When kg = HM, the spectral sequence collapses at the Fy-term by the dimen-
sion axiom, and this proves that t(HM ), (X) is the Tate-Swan cohomology of X.
In general, we have a whole plane spectral sequence, but it converges strongly
to t(ke)*(X) provided that there are not too many non-zero higher differentials.
When k¢ is a ring spectrum, it is a spectral sequence of differential algebras.

With a little care about the splice point and the model of FG used, we can
apply part of this construction to compact Lie groups G of dimension d > 0. In

this case, there is a “gap” in the appropriate filtration of EG:

N EGH = 50U C(EGY™) fori>1
M"EG = SON for —d<21<0
D(EG(D) for i < —d.

The gap is dictated by the fact that the Spanier-Whitehead dual of G is G4 AS™%
In the case of Eilenberg-MaclLane spectra, this gives an explicit chain level
calculation of the coefficient groups ﬁf(V) = [:]*G(SO; V) in terms of the ordinary
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(unreduced) homology and cohomology groups of the classifying space BG:

H"(BG;V) if0<n
(2.3) HAL(V) = t(HM)" = {0 if —d <n <0
H_,_1-4(BG;V) iftn<—d—1.

However, we would really like a chain complex for calculating the ordinary Tate
cohomology of G-CW complexes X, and for groups of positive dimension it is not
obvious how to make one. At present, we only have such descriptions for G = S!
and GG = 5. In these cases, we can exploit the obvious cell structure on G and the
standard models S(C*>) and S(H*>) for £G to put a cunning G-CW structure on
EG 4 AX and to derive an appropriate filtration of EG A X when (' acts cellularly
on X. In the case of S, the resulting chain complex is a cellular version of Jones’
complex for cyclic cohomology, and this proves that t(HZ)%: (X) is the periodic
cyclic cohomology [:Igl (X), as defined by Jones in terms of the singular complex
of X. There is a precisely analogous identification in the case of S®. In general,
the problem of giving FG' A X an appropriate filtration appears to be intractable,
although a few other small groups are under investigation.

Despite this difficulty, we still have spectral sequences of the form (2.2) for
general compact Lie groups i, where k% = n_ (k) is now regarded as a wo(G)-
module. However, in the absence of a good filtration of EG A X, we construct
the spectral sequences by using a Postnikov filtration of kg. In this generality, the
ordinary Tate groups [:](*;(X; V') used to describe the Ey terms are not familiar ones,
and systematic techniques for their calculation do not appear in the literature. One
approach to their calculation is to use the skeletal filtration of X together with
(2.3) and change of groups. More systematic approaches involve the construction
of spectral sequences that converge to [:](*;(X; V), and there are several sensible
candidates. This is an area that needs further investigation, and we shall say no
more about it here.

We have similar and compatible spectral sequences for Borel and f-cohomology,
and in these cases too the FEy-terms depend only on the graded 7o(G)-module £*,
as one would expect from the e-invariance of the bottom row of Diagram (1.11).
This very weak dependence on kg makes the bottom row much more calculationally

accessible than the top row.
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3. Cohomotopy, periodicity, and root invariants

For finite groups G, the Segal conjecture directly implies the determination of
the Tate spectrum associated to the sphere spectrum Sg. Indeed, we have

(3.1) t1(Sq) = F(EG4,S°) A EG = (S6)} A EG ~ (S EG)}.
For instance, if GG is a p-group, then
(3.2) t(Sq) ~ (8 EG)),
and we may calculate from the splitting theorem XIX.1.1 that, after completion,
(33) S = @ (EWal)s M X,
H)#(1

With X = S° the summand for H = G is 7.(5°%), and it follows that, for each
(G, the Atiyah-Hirzebruch-Tate spectral sequence defines a “root invariant” on the
stable stems. Its values are cosets in the Tate cohomology group [:]*(G; 7.(59)).
Essentially, the root invariant assigns to an element o € 7,(SY) all elements of F?
of the appropriate filtration that project to the image of o in the £* term of the
spectral sequence.

These invariants have not been much investigated beyond the classical case of
G = C,, the cyclic group of order p. In this case, our construction agrees with
earlier constructions of the root invariant. Indeed, this is a consequence of the
observations that, if G = (5 and kg = 1.k is the G-spectrum associated to a
non-equivariant spectrum k&, then

(3.4) (k) ~ holim(RP> A k)
and, if G = C, for an odd prime p and kg = 2.k, then
(3.5) t(ke)® ~ holim(L>% A Xk),
where L% is the lens space analog of RP>. Taking & = .5, there results a spectral
sequence that agrees with our Atiyah-Hirzebruch-Tate spectral sequence and was
used in the classical definition of the root invariant.
Similarly, if GG is the circle group and kg = i.k, then
(3.6) t(ke)® ~ holim(CP> A X%k).

These are all special cases of a phenomenon that occurs whenever G acts freely on
the unit sphere of a representation V', and this phenomenon is the source of periodic
behavior in Tate theory. The point is that the union of the S™ is then a model
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for G, and we can use this model to evaluate the right side as a homotopy limit
in the equivalence (1.14). This immediately gives (3.4)—(3.6). These equivalences
allow us to apply nonequivariant calculations of Davis, Mahowald, and others of
spectra on the right sides to study equivariant theories. We will say a little more
about this in Section 6. It also gives new insight into the nonequivariant theories.
In particular, if k is a ring spectrum, then (k) is a ring spectrum. Looking
nonequivariantly at the right sides, this is far from clear.

D. M. Davis and M. Mahowald. The spectrum (PAbo)_«. Proc. Cambridge Phil. Soc. 96(1984)
85-93.

D. M. Davis, D. C. Johnson, J. Klippenstein, M. Mahowald and S. Wegmann. The spectrum
(P ABP{2))_os. Trans. American Math. Soc. 296(1986) 95-110.

4. The generalization to families

The theory described above is only part of the story: it admits a generalization
in which the universal free G-space EG is replaced by the universal .#-space E.%
for any family .# of subgroups of G. The definitions above deal with the case
F = {e}, and there is a precisely analogous sequence of definitions for any other
family. We have the cofibering
(4.1) EZ, —S° — EZ,
and the projection £.Z, — S° induces a G-map
(42) [ kG = F(SO, kg) — F(Egﬂ_, kg)

Taking the smash product of the cofibering (4.1) with the map (4.2), we obtain
the following map of cofiberings of G-spectra:

ke N EZ, ke ko A E
(4.3) s/\idl ls ls/\id
F(EF., kG) N EFy — F(BF4, kG) — F(EZ, kG) N BE.Z
Define the .#-free G-spectrum associated to kg to be
(4.4) fz(ka) = ka N EF,.

We refer to the homology theories represented by G-spectra fz(kg) as F#-Borel
homology theories. Define

(4.5) Fiolke) = F(EF 4, ke) N BEZ,.
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Again, e Ald @ fo(ke) — f(ke) is an equivalence, hence we usually use the
notation fz. Define the .#-singular G-spectrum associated to kg to be

(4.6) f7(ka) =ke NEZ.

Define the geometric .%-completion of kG to be
(4.7) colka) = F(EZ:, kq).

We refer to the cohomology theories represented by G-spectra cg(kg) as 7 -
Borel cohomology theories. The map ¢ : k¢ — ca (k) of (4.2) is the object
of study of such results as the generalized Atiyah-Segal completion theorem and
the generalized Segal conjecture of Adams-Haeberly-Jackowski-May. As in these
results, one version of the .#-homotopy limit problem is the equivariant problem
of comparing the geometric .#-completion ¢z (k) with the algebraic completion
(ka)1.2 of ke at the ideal [.# of the Burnside ring or at an analogous ideal in a
ring more closely related to kg. Observe that we usually do not have analogs of
(1.5) and (1.9) for general families .#; the Adams isomorphism XVI1.5.4 and the
discussion around it are relevant at this point.

Define
(4.8) to(ke) = F(EFy k) N EF = [Fez(ka).

We call t(kg) the F-Tate G-spectrum associated to kg. These G-spectra rep-
resent .%-Tate homology and cohomology theories. With this cast, and with the
abbreviation of £ Aid to ¢, the diagram (4.3) can be rewritten in the form

(4.9) sl: j l
f7(ke) — cz(ke) —tz(ka).

We call the bottom row the “.%-norm cofibration sequence”. The theories repre-

sented by the spectra on this row are all .#-invariant.

The diagram leads to a remarkable and illuminating relationship between the
Tate theories and the .#-homotopy limit problem. Recall that [.# C A(G) is the
intersection of the kernels of the restrictions A(G) — A(H) for H € Z#.

THEOREM 4.10. The spectra ¢z (k) are [.#-complete. The spectra fz(kG)
and t (kg ) are I.7-complete if k¢ is bounded below.
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We promised in XX§1 to relate the questions of when
i (ka)iz = F(K(IF), k) — F(EZ, ka) = cz(ka)

and
f*ikg/\Egﬂ_ —>kg/\[((132)

are equivalences. The answer is rather surprising.

THEOREM 4.11. Let kg be a ring G-spectrum, where G is finite. Then £, is an
equivalence if and only if £* is an equivalence and t #(k¢) is rational.

The proof is due to the first author and will be discussed in XXIV§8. We shall
turn to relevant examples in the next section.

When G is finite and kg is an Eilenberg-MacLane G-spectrum H M, the .%-Tate
G-spectrum t & (H M) represents the generalization to homology and cohomology
theories on G-spaces and G-spectra of certain “Amitsur-Dress-Tate cohomology
theories” f{}(M) that figure prominently in induction theory. We again obtain
generalized Atiyah-Hirzebruch-Tate spectral sequences in the context of families.
These vastly extend the web of symmetry relations relating equivariant theory
with the stable homotopy groups of spheres. In particular, for a finite p-group G,
if we use the family &7 of all proper subgroups of (¢, we obtain a spectral sequence
whose Fy-term is [:]fz([f) and which converges to (7.),. We have moved the
groups m.(BW H,) from the target to ingredients in the calculation of Ey. In this
spectral sequence the “root invariant” of an element a € 7, lies in degree at least
q(|G] —1). The root invariant measures where elements are detected in E? of the
spectral sequence, and the dependence on the order of (G indicates an increasing
dependence of lower degree homotopy groups of spheres on higher degree homotopy
groups of classifying spaces.

More generally, if (¢ is any finite group, we use the family .27 to obtain two re-
lated spectral sequences, both of which converge to the completion of the nonequiv-
ariant stable homotopy groups of spheres at n(%?), where n(.2?) is the product of
those primes p such that Z/pZ is a quotient of G. For example, if G is a nonabelian
group of order pg, p < ¢, then n(Z?) = p and the spectral sequences provide a
mechanism for the prime ¢ to affect stable homotopy groups at the prime p. One
of the spectral sequences is the Atiyah-Hirzebruch-Tate spectral sequence whose
FEs-term is the Amitsur-Dress-Tate homology [:]fz([f) The other comes from a
filtration of FG in terms of the regular representation of (. These spectral se-
quences lead to new equivariant root invariants, and the basic Bredon-Jones-Miller
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root invariant theorem generalizes to the spectral sequence constructed by use of
the regular representation.

A. W. M. Dress. Contributions to the theory of induced representations. Springer Lecture Notes
in Mathematics Vol. 342, 1973, 183-240.

J. P. C. Greenlees. Tate cohomology in commutative algebra. J. Pure and Applied Algebra.
94(1994), 59-83.

J. D. S. Jones. Root invariants, cup-r-products and the Kahn-Priddy theorem. Bull. London

Math. Soc. 17(1985), 479-483.
H. R. Miller. On Jones’s Kahn-Priddy theorem. Springer Lecture Notes in Mathematics Vol.
1418, 1990, 210-218.

5. Equivariant K-theory

Our most interesting calculation shows that, for any finite group G, t{(K¢) is a
rational G-spectrum, namely

(5.1) HKg)~\ K(J©Q,2),

where J is the Mackey functor of completed augmentation ideals of representation
rings and ¢ ranges over the integers. In this case, the relevant Atiyah-Hirzebruch-
Tate spectral sequence is rather amazing. Its Fy-term is torsion, being annihilated
by multiplication by the order of G. If G is cyclic, then Fy = E, and the spectral
sequence certainly converges strongly. In general, the Fs-term depends solely
on the classical Tate cohomology of G and not at all on its representation ring,
whereas t(K¢g)* depends solely on the representation ring and not at all on the
Tate cohomology. Needless to say, the proof of (5.1) is not based on use of the
spectral sequence.

In fact, and the generalization is easier to prove than the special case, t #(K¢)
turns out to be rational for every family .. Again, there results an explicit
calculation of t#(K¢) as a wedge of Eilenberg-MacLane spectra. Let J.# be the
intersection of the kernels of the restrictions R(G) — R(H) for H € Z#. It is
clear by character theory that

J.Z ={x|x(g) = 0 if the group generated by ¢ is in .F },
and we define a rationally complementary ideal J'.# by
J'Z = {x|x(g) = 0 if the group generated by ¢ is not in .7 }.

Then (5.1) generalizes to

(5.2) to(Kg) =\ K(R/T'Z) % @ Q,2),
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where (R/.J' %) 7 denotes the Mackey functor whose value at GG/H is the com-
pletion at the ideal J(.Z|g) of the quotient R(H)/J'(.#|H). This is consistent
with (5.1) since, when .# = {e}, J'(F|H) is a copy of Z generated by the regular
representation of H and JH maps isomorphically onto R(H)/Z. 1t follows in all
cases that the completions t #(K¢)r% are contractible.

The following folklore result is proven in our paper on completions at ideals of the
Burnside ring. On passage to 7§, the unit S¢ — K¢ induces the homomorphism
A(G) — R(G) that sends a finite set X to the permutation representation C[.X].
We regard R((G)-modules as A((G)-modules by pullback.

THEOREM 5.3. The completion of an R(G)-module M at the ideal J.Z of R(()
is isomorphic to the completion of M at the ideal [.# of the Burnside ring A(G).

In fact, the proof shows that the ideals I.# R(G) and J.# of R(G') have the
same radical. Therefore the generalized completion theorem of Adams-Haeberly-
Jackowski-May discussed in XIV.6.1 implies that

& (Kg)izg — F(EF4, Kg)
is an equivalence. By (5.2) and Theorem 4.11, this in turn implies that
f* : kg/\Egﬂ_ — kg/\[((]gz)

is an equivalence. In fact, the latter result was proven by the first author before
the implication was known; we shall explain his argument and discuss the algebra

behind it in Chapter XXIV.

As a corollary of the calculation of #(K), we obtain a surprisingly explicit

calculation of the nonequivariant K-homology of the classifying space BG:
(5.4) Ko(BG) = 7Z and K,(BG)= J(G)ja @ (Q/Z).

In fact, (5.1) and (5.4) both follow easily once we know that ¢(K¢) is rational.
Given that, we have the exact sequence

= KE(EGL) 0 Q = K5(EGL) 0 Q — H(K)g — -,
which turns out to be short exact. The Atiyah-Segal theorem shows that

Ki(EGy) © Q= R(G)H[8,87 0 Q,
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where 3 is the Bott element. Rationally, the K-homology of EG is a summand
of K&, and in fact KE(EG,)© Q= Q|[B, 371]. Tt is not hard to identify the maps

*

and conclude that

HE)G ={R(G)/Z}[3, 57" © Q.
Since, as explained in XIX$§5, all rational G-spectra split, this gives the exact
equivariant homotopy type claimed in (5.1). Now we can deduce (5.4) by analy-
sis of the integral norm sequence, using the Atiyah-Segal completion theorem to
identify KE&(EGL).

We must still say something about why ¢(K¢) and all other ¢ (K¢ ) are rational.
An inductive scheme reduces the proof to showing that t & (Kq) A E 2 is rational,
where &7 is the family of proper subgroups of . If V is the reduced regular
complex representation of V, then 5V is a model for 2. It follows that, for any
Kg-module spectrum M and any spectrum X, (M/\E 22)%(X) is the localization of
ME (X) away from the Euler class (which is the total exterior power) A\(V) € R(G).
Since A(V') is in J 22, it restricts to zero in all proper subgroups. Since the product
over the cyclic subgroups C of GG of the restrictions R(G') — R(C) is an injection,
A(V) = 0 and the conclusion holds trivially unless G is cyclic. In that case, the
Atiyah-Hirzebruch-Tate spectral sequence for ¢ 5»(K¢).(X) gives that primes that
do not divide the order n of GG act invertibly since n annihilates the £%term. An
easy calculational argument in representation rings handles the remaining primes.

The evident analogs of all of these statements for real K-theory are also valid.

In the case of connective K-theory, we do not have the same degree of periodicity
to help, and the calculations are harder. Results of Davis and Mahowald give the

following result.

THEOREM 5.5. If G = (), for a prime p, then
Hkug) ~ [] > H(J),

neZ

and similarly for connective real K-theory.

This result led us to the overoptimistic conjecture that its conclusion would
generalize to arbitrary finite groups. However, Bayen and Bruner have shown that
the conjecture fails for both real and complex connective K-theory.

Finally, we must point out that the restriction to finite groups in the discussion
above is essential; even for ¢ = S' something more complicated happens since
in that case t(Kg)“ is a homotopy inverse limit of wedges of even suspensions of
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K and each even degree homotopy group of ¢(Ks)“ is isomorphic to Z[[x]][x~!],
where 1 — y is the canonical irreducible one-dimensional representation of GG. In
particular, {(Kg) is certainly not rational. Similarly, still taking G = S*, each
even degree homotopy group of #(kg)“ is isomorphic to Z[[x]]. In this case, we
can identify the homotopy type of the fixed point spectrum:

(5.6) tkug)® o~ J[ 2 kug:.

neZ

J. F. Adams, J.-P. Haeberly, S. Jackowski, and J. P. May. A generalization of the Atiyah-Segal
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6. Further calculations and applications

Philosophically, one of the main differences between the calculation of the Tate
K-theory for finite groups and for the circle group is that the Krull dimension of
R(G) is one in the case of finite groups and two in the case of the circle group. Quite
generally, the complexity of the calculations increases with the Krull dimension of
the coefficient ring. It is relevant that the Krull dimension of R(() for a compact
connected Lie group (7 is one greater than its rank.

For finite groups, most calculations that have been carried out to date con-
cern ring GG-spectra k¢, like those that represent K-theory, that are so related to
cobordism as to have Thom isomorphisms of the general form

(6.1) G (EY X)) 2 kG(2VIX)

for all complex representations V. Let ¢(V) : S — SV be the inclusion. Ap-
plying e(V)* to the element 1 € k%(S%) = k%(SY), we obtain an element of
kL (S%) = k%, (SY). The Thom isomorphism yields an isomorphism between this
group and the integer coefficient group k§|v|, and there results an Fuler class
x(V) e kgm. As in our indication of the rationality of ¢(K¢), localizations and
other algebraic constructions in terms of such Fuler classes can often lead to ex-

plicit calculations.
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This works particularly well in cases, such as p-groups, where G acts freely on
a product of unit spheres S(V;) x --- x S(V,,) for some representations V4,..., V.
This implies that the smash product S(coVi)y A -+ A S(ooV, )4 is a model for
EG,, and there results a filtration of EG that has subquotients given by wedges
of smash products of spheres. This gives rise to a different spectral sequence for
the computation of ¢(kg)5(X). When X = S° the Ej-term can be identified as
the “Cech cohomology %, (k*(BG)) of the kj-module k*(BG,) with respect to
the ideal J" = (x(V1), -+, x(Va)) C k7. The relevant algebraic definitions will be
given in Chapter XXIV. These groups depend only on the radical of J', and, when
ki is Noetherian, it turns out that J’ has the same radical as the augmentation
ideal J = Ker(kf, — k).

The interesting mathematics begins with the calculation of the Fy-term, where
the nature of the Euler classes for the particular theory becomes important. In
fact, this spectral sequence collapses unusually often because the complexity is
controlled by the Krull dimension of the coefficients. In cases where one can
calculate the coefficients ¢(k)7;, one can often also deduce the homotopy type of
the fixed point spectrum #(kg)“ because t(kg)“ is a module spectrum over k.
However, the periodic and connective cases have rather different flavors. In the
periodic case the algebra of the coefficients has a field-like appearance and is
more often enough to determine the homotopy type of the fixed point spectrum
t(ke)“. In the connective case the algebra of the coefficients in the answer has
the appearance of a complete local ring and some sort of Adams spectral sequence
argument seems to be necessary to deduce the topology from the algebra. In very
exceptional circumstances, such as the use of rationality in the case of K, one
can go on to deduce the equivariant homotopy type of t(kq).

In the discussion that follows, we consider equivariant forms k¢ of some familiar
nonequivariant theories k. We may take kg to be ik, but any split G-spectrum
with underlying nonequivariant spectrum k could be used instead. Technically,
it is often best to use F(FG4,u.k). This has the advantage that its coefficients
can often be calculated, and it can be thought of as a geometric completion of
any other candidate (and an algebraic completion of any candidate for which a
completion theorem holds).

The most visible feature of the calculations to date is that the Tate construction
tends to decrease chromatic periodicity. We saw this in the case of K¢, where the
periodicity reduced from one to zero. This appears in especially simple form in a
theorem of Greenlees and Sadofsky: if K'(n) is the nth Morava K-theory spectrum,
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whose coefficient ring is the graded field
K(n). =F,[v,, v, '], degv, = 2p" — 2,
then
(6.2) HK(n)g) =~ *.

In fact, this is a quite easy consequence of Ravenel’s result that K(n)*(BGy) is
finitely generated over K(n)*. Another example of this nature is a calculation of
Fajstrup, which shows that if the spectrum K R that represents K-theory with
reality is regarded as a Cy-spectrum, then the associated Tate spectrum is trivial.

These calculations illustrate another phenomenon that appears to be general: it
seems that the Tate construction reduces the Krull dimension of periodic theories.
More precisely, the Krull dimension of ¢(kg)% is usually less than that of k%. In the
case of Morava K-theory, one deduces from Ravenel’s result that K (n)% is finite
over K (n)? and thus has dimension 0. The contractibility of (K (n)g) can then be
thought of as a degenerate form of dimension reduction. More convincingly, work
of Greenlees and Sadofsky shows that for many periodic theories for which k2 is
one dimensional, {(kg)% is finite dimensional over a field. The higher dimensional
case is under consideration by Greenlees and Strickland.

This reduction of Krull dimension is reflected in the Fs-term of the spectral
sequence cited above. When £k is v,-periodic for some n, one typically first proves
that some v;, ¢+ < n is invertible on #(kg) and then uses the localisation of the
norm sequence

K3

> KS(EGL) [07Y] = kL (EGL) [o7Y] = tlka)g — -+
to assist calculations. For example, consider the spectra F(n) with coefficient rings

E(n)* = Z(p)[vlv U2, 5 Un, v_l]'

n

Since there is a cofiber sequence E(2)/p = E(2)/p — K(2), we deduce from (6.2)
that vy is invertibleon ¢((£(2)/p)e). More generally v,,_; is invertible on a suitable
completion of t(E(n)g).

The intuition that the Tate construction lowers Krull dimension is reflected in
the following conjecture about the spectra BP(n) with coefficient rings

BP{n). = Z(p)[vl, Vg, o 4 Uy
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CONJECTURE 6.3 (DAVIS-JOHNSON-KLIPPENSTEIN-MAHOWALD-WEGMANN).

t(BP(n)c,) ~ [[ ""BP(n —1)).
neZ

The cited authors proved the case n = 2; the case n = 1 was due to Davis and
Mahowald. Since BP(n). has Krull dimension n + 1, the depth of the conjecture
increases with n.

We end by pointing the reader to what is by far the most striking application of
generalized Tate cohomology. In a series of papers, Madsen, Bokstedt, Hesselholt,
and Tsalidis have used the case of S! and its subgroups to carry out fundamentally
important calculations of the topological cyclic homology and thus of the algebraic
K-theory of number rings. It would take us too far afield to say much about this.
Madsen has given two excellent surveys. In another direction, Hesselholt and
Madsen have calculated the coefficient groups of the S!-tate spectrum associated
to the periodic J-theory spectrum at an odd prime. The calculation is consistent

with the following conjecture.
CONJECTURE 6.4 (HESSELHOLT-MADSEN).

t(Jo)" ~ K'(1) v SE'(1) v (] S K)/(\) S EK),

n€EZ neZ

where K'(1) is the Adams summand of p-complete K-theory with homotopy groups
concentrated in degrees = 0mod 2(p — 1).
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CHAPTER XXII

Brave new algebra

1. The category of S-modules

Let us return to the introductory overview of the stable homotopy category given
in XII§1. As said there, Elmendorf, Kriz, Mandell, and I have gone beyond the
foundations of Chapter XII to the construction of a new category of spectra, the
category of “S-modules”, that has a smash product that is symmetric monoidal
(associative, commutative, and unital up to coherent natural isomorphisms) on the
point-set level. The complete treatment is given in [EKMM], and an exposition
has been given in [EKMM’]. The latter emphasizes the logical development of the
foundations. Here, instead, we will focus more on the structure and applications
of the theory. Working nonequivariantly in this chapter, we will describe the
new categories of rings, modules, and algebras and summarize some of their more
important applications. All of the basic theory generalizes to the equivariant
context and, working equivariantly, we will return to the foundations and outline
the construction of the category of S-modules in the next chapter. We begin work
here by summarizing its properties.

An S-module is a spectrum (indexed on some fixed universe U) with additional
structure, and a map of S-modules is a map of spectra that preserves the additional
structure. The sphere spectrum S and, more generally, any suspension spectrum
Y% X has a canonical structure of S-module. The category of S-modules is denoted
M. 1t 1s symmetric monoidal with unit object S under a suitable smash product,
which is denoted Ag, and it also has a function S-module functor, which is denoted
Fs. The expected adjunction holds:

Ms(M As N, P) = _#s(M, Fs(N, P)).

299
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Moreover, for based spaces X and Y, there is a natural isomorphism of S-modules
EUX A EFY ZEF(XAY).

When regarded as a functor from spaces to S-modules, rather than as a functor
from spaces to spectra, X*° is not left adjoint to the zeroth space functor
rather, we have an adjunction

M(SFX, M) = T (X, Ms(S, M)).

Here the space of maps .#s(5, M) is not even equivalent to QM. As observed by
Hastings and Lewis, this is intrinsic to the mathematics: since .#Zs is symmetric
monoidal, .Zs(.S,5) is a commutative topological monoid, and it therefore cannot
be equivalent to the space Q.S = Q9.

For an S-module M and a based space X, the smash product M A X is an
S-module and

MAX=ZMAg XX,

Cylinders, cones, and suspensions of S-modules are defined by smashing with
I., I, and S'. A homotopy between maps f,g : M — N of S-modules is a
map M A I, — N that restricts to f and g on the ends of the cylinder. The
function spectrum F(X, M) is not an S-module; Fs(X*% X, M) is the appropriate
substitute and must be used when defining cocylinder, path, and loop S-modules.

The category .#s is cocomplete (has all colimits), its colimits being created in
7. That is, the colimit in .% of a diagram of S-modules is an S-module that is
the colimit of the given diagram in .#s. It is also complete (has all limits). The
limit in . of a diagram of S-modules is not quite an S-module, but it takes values
in a category .Z[L] of “L-spectra” that lies intermediate between spectra and S-
modules. Limitsin .#[L] are created in ., and the forgetful functor .#Zs — #[L]
has a right adjoint that creates the limits in .#s. We shall explain this scaffolding
in XXIII§2. For pragmatic purposes, what matters is that limits exist and have
the same weak homotopy types as if they were created in ..

There is a “free S-module functor” Fg : . — #s. 1t is not quite free in the
usual sense since its right adjoint Ug : .#s — .% is not quite the evident forgetful
functor. This technicality reflects the fact that the forgetful functor .#s — Z[L]
is a left rather than a right adjoint. Again, for pragmatic purposes, what matters
is that Ug is naturally weakly equivalent to the evident forgettul functor.

We define sphere S-modules by
¢ =TFgS5".
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We define the homotopy groups of an S-module to be the homotopy groups of the
underlying spectrum and find by the adjunction cited in the previous paragraph
that they can be computed as

wo(M) = hott's(S2, M).

From here, we develop the theory of cell and CW S-modules precisely as we
developed the theory of cell and CW spectra, taking the spheres S¢ as the domains
of attaching maps of cells C'S%. We construct the “derived category of S-modules”,
denoted Zs, by adjoining formal inverses to the weak equivalences and find that
Ps 1s equivalent to the homotopy category of CW S-modules. The following
fundamental theorem then shows that no homotopical information is lost if we
replace the stable homotopy category h.# by the derived category Zs.

THEOREM 1.1. The following conclusions hold.

(i) The free functor Fg : ¥ — #s carries CW spectra to CW S-modules.
(ii) The forgetful functor .#Zs — & carries S-modules of the homotopy types
of CW S-modules to spectra of the homotopy types of CW spectra.
(iii) Every CW S-module M is homotopy equivalent as an S-module to FsF
for some CW spectrum F.

The free functor and forgetful functors establish an adjoint equivalence between

the stable homotopy category h.# and the derived category Zs. This equivalence
of categories preserves smash products and function objects. Thus

Is(Fsk, M) = h.(E, M),
Fs : h./(E, E')—=>92s(FsE,FsE'),
Fs(E A E') ~ (FsE) As (FsE'),

and

Fs(F(E, E/)) ~ Fs(FsE, FsE/).

We can describe the equivalence in the language of (closed) model categories
in the sense of Quillen, but we shall say little about this. Both . and .#s are
model categories whose weak equivalences are the maps that induce isomorphisms
of homotopy groups. The g-cofibrations (or Quillen cofibrations) are the retracts
of inclusions of relative cell complexes (that is, cell spectra or cell S-modules).
The g¢-fibrations in . are the Serre fibrations, namely the maps that satisfy the
covering homotopy property with respect to maps defined on the cone spectra
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¥rCS", where ¢ > 0 and n > 0. The g-fibrations in .#Zs are the maps M — N
of S-modules whose induced maps UsM — Ug/N are Serre fibrations of spectra.
[EKMM] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras in
stable homotopy theory. Preprint, 1995.

[EKMM’] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Modern foundations for stable
homotopy theory. In “Handbook of Algebraic Topology”, edited by I. M. James. North Holland,
1995, pp 213-254.

H. Hastings. Stabilizing tensor products. Proc. Amer. Math. Soc. 49(1975), 1-7.

L. G. Lewis, Jr. Is there a convenient category of spectra? J. Pure and Applied Algebra 73(1991),
233-246.

J. P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave). FE ring spaces and
FEo ring spectra. Springer Lecture Notes in Mathematics Volume 577. 1977.

2. Categories of R-modules

Let us think about S-modules algebraically. There is a perhaps silly analogy
that I find illuminating. Algebraically, it is of course a triviality that Abelian
groups are essentially the same things as Z-modules. Nevertheless, these notions
are conceptually different. Thinking of brave new algebra in stable homotopy
theory as analogous to classical algebra, I like to think of spectra as analogues of
Abelian groups and S-modules as analogues of Z-modules. While it required some
thought and work to figure out how to pass from spectra to S-modules, now that
we have done so we can follow our noses and mimic algebraic definitions word for
word in the category of S-modules, thinking of Ag as analogous to @z and Fs as
analogous to Homy,.

We think of rings as Z-algebras, and we define an S-algebra R by requiring a
unit S — R and product R As R — R such that the evident unit and asso-
ciativity diagrams commute. We say that R is a commutative S-algebra if the
evident commutativity diagram also commutes. We define a left R-module simi-
larly, requiring a map R As M — M such that the evident unit and associativity
diagrams commute.

For a right R-module M and left R-module N, we define an S-module M Ar N

by the coequalizer diagram

uAsld

M As RAs N MAs N— M Ar N,

IdAgy

where p and v are the given actions of R on M and N. Similarly, for left R-modules
M and N, we define an S-module Fr(M, N) by an appropriate equalizer diagram.
We then have adjunctions exactly like those relating @r and Hompg in algebra.
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If R is commutative, then M Ag N and Fr(M,N) are R-modules, the category
M of R-modules is symmetric monoidal with unit R, and we have the expected
adjunction relating Ag and Fr. We can go on to define (R, R’)-bimodules and to
derive a host of formal relations involving smash products and function modules
over varying rings, all of which are exactly like their algebraic counterparts.

For a left R-module M and a based space X, M A X =2 M Ag X*X and
Fs(X°X, M) are left R-modules. If K is an S-module, then M Ag K is a left and
Fs(M, K) is a right R-module. We have theories of cofiber and fiber sequences
of R-modules exactly as for spectra. We define the free R-module generated by a
spectrum X to be

FrX = RAsFsX.

Again the right adjoint Ugr of this functor is naturally weakly equivalent to the
forgetful functor from R-modules to spectra. We define sphere R-modules by

&=TFpS™ = R As S2

and find that
(M) = hottr(S}, M).

There is also a natural weak equivalence of R-modules FpS — R.

We develop the theory of cell and CW R-modules exactly as we developed the
theory of cell and CW spectra, using the spheres S}, as the domains of attaching
maps. However, the CW theory is only of interest when R is connective (7,(R) =0
for n < 0) since otherwise the cellular approximation theorem fails. We construct
the derived category Zr from the category .#r of R-modules by adjoining formal
inverses to the weak equivalences and find that Zg is equivalent to the homotopy
category of cell R-modules.

Brown’s representability theorem holds in the category Zgr: a contravariant
set-valued functor k on Zg is representable in the form kM = Zgr(M, N) if and
only if k£ converts wedges to products and converts homotopy pushouts to weak
pullbacks. However, as recently observed by Neeman in an algebraic context,
Adams’ variant for functors defined on finite cell R-modules only holds under a
countability hypothesis on 7.(R).

The category .#p is a model category. The weak equivalences and ¢-fibrations
are the maps of R-modules that are weak equivalences and ¢-fibrations when re-
garded as maps of S-modules. The g-cofibrations are the retracts of relative cell
R-modules. It is also a tensored and cotensored topological category. That is, its



304 XXII. BRAVE NEW ALGEBRA

Hom sets are based topological spaces, composition is continuous, and we have
adjunction homeomorphisms

Mp(MANX,N)2 T (X, Mp(M,N)) = Mp(M, Fs(S<X, N)).

Recently, Hovey, Palmieri, and Strickland have axiomatized the formal prop-
erties that a category ought to have in order to be called a “stable homotopy
category”. The idea is to abstract those properties that are independent of any
underlying point-set level foundations and see what can be derived from that
starting point. Our derived categories Zr provide a wealth of examples.

M. Hovey, J. H. Palmieri, and N. P. Strickland. Axiomatic stable homotopy theory. Preprint.
1995.
A. Neeman. On a theorem of Brown and Adams. Preprint, 1995.

3. The algebraic theory of R-modules

The categories Zg are both tools for the the study of classical algebraic topol-
ogy, and interesting new subjects of study in their own right. In particular, they
subsume much of classical algebra. The Filenberg-MacLane spectrum HR asso-
ciated to a (commutative) discrete ring R is a (commutative) S-algebra, and the
Eilenberg-MacLane spectrum HM associated to an R-module is an H R-module.
Moreover, the derived category Zppg is equivalent to the algebraic derived cate-
gory Zg of chain complexes over R, and the equivalence converts derived smash
products and function modules in topology to derived tensor products and Hom
functors in algebra. In algebra, the homotopy groups of derived tensor product
and Hom functors compute Tor and Ext, and we have natural isomorphisms

To(HM Aprr HN) = Tor® (M, N)
for a right R-module M and left R-module N and
Ten(Fur(HM,HN)) 2 Exth(M, N)

for left R-modules M and N, where HM is taken to be a CW H R-module.
Now return to the convention that R is an S-algebra. By the equivalence of h.%

and Zs, we see that homology and cohomology theories on spectra are subsumed

as homotopy groups of smash products and function modules over S. Precisely,

for a CW S-module M and an S-module NV,
(M As N) = M,(N)

and

_o(Fs(M, N)) = N"(M).



3. THE ALGEBRAIC THEORY OF R-MODULES 305

These facts suggest that we should think of the homotopy groups of smash
product and function R-modules ambiguously as generalizations of both Tor and
Ext groups and homology and cohomology groups. Thus, for a right cell R-module
M and a left R-module N, we define

(3.1) Torf(M,N) = 7,(M Ap N) = ME(N)
and, for a left cell R-module M and a left R-module N, we define
(3.2) Exthy(M,N) = rm_,(Fr(M,N)) = Nj(M).

We assume that M is a cell module to ensure that these are well-defined derived
category invariants.

These functors enjoy many properties familiar from both the algebraic and topo-
logical settings. For example, assuming that R is commutative, we have a natural,
associative, and unital system of pairings of R*-modules (R" = 7_,(R))

ExtRp(M, N) @pgs Exti(L, M) — Exti(L, N).

Similarly, setting DpM = Fr(M, R), a formal argument in duality theory implies
a natural isomorphism

Tor®(DrM,N) = Extz"(M, N)

for finite cell R-modules M and arbitrary R-modules N. Thought of homologically,
this isomorphism can be interpreted as Spanier-Whitehead duality: for a finite cell

R-module M and any R-module NV,
NE(DrM) = N5"(M).

There are spectral sequences for the computation of these invariants. As usual,
for a spectrum F, we write £, = n,(E) = E~".

THEOREM 3.3. For right and left R-modules M and N, there is a spectral se-
quence

2 Ra R
E = Torp7q(M*,N*) = Tor

p+q

(M, N);
For left R-modules M and N, there is a spectral sequence
EP? = ExtBi(M™, N*) = Exth (M, N).

It R is commutative, these are spectral sequences of differential R.-modules, and
the second admits pairings converging from the evident Yoneda pairings on the £
terms to the natural pairings on the limit terms.
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Setting M = FrX in these two spectral sequences, we obtain universal coeffi-
cient spectral sequences.

THEOREM 3.4 (UNIVERSAL COEFFICIENT). For an R-module N and any spec-
trum X, there are spectral sequences of the form

Torf (R.(X), N.) = N.(X)

k3%

and

Extii(R_.(X), N*) = N*(X).

Replacing R and N by FEilenberg-Mac Lane spectra HR and HN for a discrete
ring R and R-module N, we obtain the classical universal coefficient theorems.
Replacing N by FrY and by Fr(FrY, R) in the two universal coefficient spectral
sequences, we obtain Kiinneth spectral sequences.

THEOREM 3.5 (KUNNETH). For any spectra X and Y, there are spectral se-
quences of the form

Torf (R.(X), R(Y)) = R(X AY)

k3%

and

Extii(R_.(X), R (Y)) = R* (X AY).

Under varying hypotheses, the Kiinneth theorem in homology generalizes to an
Eilenberg-Moore type spectral sequence. Here is one example.

THEOREM 3.6. Let F and R be commutative S-algebras and M and N be R-
modules. Then there is a spectral sequence of differential F.(R)-modules of the
form

Tor?*FE (M), E.(N)) = E,o(M Ag N).

p,q

4. The homotopical theory of R-modules

Thinking of the derived category of R-modules as an analog of the stable ho-
motopy category, we have the notion of an R-ring spectrum, which is just like the
classical notion of a ring spectrum in the stable homotopy category.
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DEFINITION 4.1. An R-ring spectrum A is an R-module A with unit n : R —
A and product ¢ : AAR A — A in PR such that the following left and right unit
diagram commutes in Zg:

nAid id An

RARA—— ANgRA<~—ANRR
A AT
A.

A is associative or commutative if the appropriate diagram commutes in Zg. If A
is associative, then an A-module spectrum M is an R-module M with an action

pw: ANg M — M such that the evident unit and associativity diagrams commute
in @R-

LEMMA 4.2. If A and B are R-ring spectra, then so is AAr B. If A and B are
associative or commutative, then so is A Ap B.

When R = 5, S-ring spectra and their module spectra are equivalent to classical
ring spectra and their module spectra. By neglect of structure, an R-ring spectrum
Ais an S-ring spectrum and thus a ring spectrum in the classical sense; its unit is
the composite of the unit of R and the unit of A and its product is the composite
of the product of A and the canonical map

ANA~ANg A — AN A

It A is commutative or associative as an R-ring spectrum, then it is commutative
and associative as an S-ring spectrum and thus as a classical ring spectrum. The
R-ring spectra and their module spectra play a role in the study of Zr analogous
to the role played by ring and module spectra in classical stable homotopy theory.
Moreover, the new theory of R-ring and module spectra provides a powerful con-
structive tool for the study of the classical notions. The point is that, in Zg, we
have all of the internal structure, such as cofiber sequences, that we have in the
stable homotopy category.

This can make it easy to construct R-ring spectra and modules in cases when
a direct proof that they are merely classical ring spectra and modules is far more
difficult, if it can be done at all. We assume that R is a commutative S-algebra
and illustrate by indicating how to construct M/IM and M[Y '] for an R-module
M, where [ is the ideal generated by a sequence {x;} of elements of R, and Y is
a countable multiplicatively closed set of elements of R.. We shall also state some
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results about when these modules have R-ring structures and when such structures
are commutative or associative.
We have isomorphisms
M, = httr(Sy, M).
The suspension X" M is equivalent to S Ag M and, for x € R,, the composite
map of R-modules

zAid

(4.3) Sp AR MY R AR M 2> 0
is a module theoretic version of the map x-: ¥"M — M.

DEFINITION 4.4. Define M/xM to be the cofiber of the map (4.3) and let
p: M — M/xM be the canonical map. Inductively, for a finite sequence
{x1,...,2,} of elements of R,, define

M/(x1,...,2,)M = N/x,N, where N = M/(x1,...,0,-1)M.
For a sequence X = {z;}, define M/XM = tel M/(x1,...,2,)M, where the

telescope is taken with respect to the successive canonical maps p.
Clearly we have a long exact sequence
T Wq—n(M)LWq(M)&Wq(M/xM) — Tyen-1(M) — -+

If « is regular for 7.(M) (xm = 0 implies m = 0), then p, induces an isomorphism
of R.-modules

T(M)/x 7 (M) = r (M/xM).

If {x1,...,2,} is a regular sequence for m.(M), in the sense that x; is regular for

T(M)/(21,... ,2i-1)m(M) for 1 <i < n, then
T(M)/(21,... ,2)7(M) Z 7(M/(21,... ,2,)M),

and similarly for a possibly infinite regular sequence X = {x;}. The following
result implies that M/ X M is independent of the ordering of the elements of the
set X. We write R/X instead of R/ XR.

LEMMA 4.5. For a set X of elements of R,, there is a natural weak equivalence
(R/IX)Ae M — M/XM.
In particular, for a finite set X = {ay,... ,2,},

R/(x1,...,¢n) ~ (R/x1) AR -+ Ar (R/x,).



4. THE HOMOTOPICAL THEORY OF R-MODULES 309

It I denotes the ideal generated by X, then it is reasonable to define
M/IM = M/XM.

However, this notation must be used with caution since, if we fail to restrict
attention to regular sequences X, the homotopy type of M/X M will depend on
the set X and not just on the ideal it generates. For example, quite different
modules are obtained if we repeat a generator x; of [ in our construction.

To construct localizations, let {y;} be any sequence of elements of Y that is
cofinal in the sense that every y € Y divides some y;. If y; € R,,, we may
represent y; by an R-map S% — Sz™, which we also denote by ;. Let ¢o = 0
and, inductively, ¢; = ¢;—1 + n;. Then the R-map

yi/\id:S]O%/\RM—>S§”" /\RM

represents multiplication by y;. Smashing over R with Sz~', we obtain a sequence
of R-maps

(46) S];qi_l Ap M — Sﬁql Ar M.

DEFINITION 4.7. Define the localization of M at Y, denoted M[Y '], to be the
telescope of the sequence of maps (4.6). Since M = S% Arp M in Zg, we may
regard the inclusion of the initial stage S% Ar M of the telescope as a natural map

A M — M[Y_l].

Since homotopy groups commute with localization, we see immediately that A
induces an isomorphism of R,-modules

T (MYTH) = m (MY

As in Lemma 4.5, the localization of M is the smash product of M with the
localization of R.

LEMMA 4.8. For a multiplicatively closed set Y of elements of R,, there is a
natural equivalence

RY Y Ap M — M[Y ™.

Moreover, R[Y '] is independent of the ordering of the elements of Y. For sets X
and Y, R[(X UY)™!] is equivalent to the composite localization R[X ~'][Y~'].

The behavior of localizations with respect to R-ring structures is now immediate.
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PROPOSITION 4.9. Let Y be a multiplicatively closed set of elements of R,. If
A is an R-ring spectrum, then so is A[Y™!]. If A is associative or commutative,

then so is A[Y ™'].

PROOF. It suffices to observe that R[Y '] is an associative and commutative

R-ring spectrum with unit A and product the equivalence
RY T Ar RY ™) =~ RY Y]~ RY™'. O

This doesn’t work for quotients since (R/X)/X is not equivalent to R/ X. How-
ever, we can analyze the problem by analyzing the deviation, and, by Lemma 4.5,
we may as well work one element at a time. We have a necessary condition for R/x
to be an R-ring spectrum that is familiar from classical stable homotopy theory.

LEMMA 4.10. Let A be an R-ring spectrum. If A/xA admits a structure of
R-ring spectrum such that p : A — A/xA is a map of R-ring spectra, then
x:AJerA — A/xA is null homotopic as a map of R-modules.

Thus, for example, the Moore spectrum S/2 is not an S-ring spectrum since
the map 2 : S/2 — 5/2 is not null homotopic. We have the following sufficient
condition for when R/x does have an R-ring spectrum structure.

THEOREM 4.11. Let « € R,,,, where 7,11 (R/2) = 0 and ma,41(R/2x) = 0. Then
R/x admits a structure of R-ring spectrum with unit p : R — R/x. Therefore,
for every R-ring spectrum A and every sequence X of elements of R. such that
Tme1(R/x) = 0 and mapmi(R/z) = 0 if @ € X has degree m, A/XA admits
a structure of R-ring spectrum such that p : A — A/X A is a map of R-ring
spectra.

For an R-ring spectrum A and an element z as in the theorem, we give A/z A ~
(R/x) Ar A the product induced by one of our constructed products on R/x and
the given product on A. We refer to any such product as a “canonical” product
on A/xA. We also have sufficient conditions for when the canonical product is
unique and when a canonical product is commutative or associative.

THEOREM 4.12. Let # € R,,, where m,41(R/2) = 0 and map41(R/2x) = 0.
Let A be an R-ring spectrum and assume that ma,42(A/2A) = 0. Then there
is a unique canonical product on A/xA. If A is commutative, then A/zA is
commutative. If A is associative and 73,,43(A/xA) =0, then A/xA is associative.

This leads to the following conclusion.
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THEOREM 4.13. Assume that R; = 0 if ¢z is odd. Let X be a sequence of non
zero divisors in R, such that 7.(R/X) is concentrated in degrees congruent to zero
mod 4. Then R/X has a unique canonical structure of R-ring spectrum, and it is
commutative and associative.

This is particularly valuable when applied with R = MU. The classical Thom
spectra arise in nature as F., ring spectra and give rise to equivalent commutative
S-algebras. In fact, inspection of the prespectrum level definition of Thom spectra
in terms of Grassmannians first led to the theory of E., ring spectra and therefore
of S-algebras. Of course,

MU, = Z[x;|deg x; = 21]
Thus the results above have the following immediate corollary.

THEOREM 4.14. Let X be a regular sequence in MU,, let I be the ideal gen-
erated by X, and let Y be any sequence in MU,. Then there is an MU-ring
spectrum (MU/X)[Y '] and a natural map of MU-ring spectra (the unit map)

n: MU — (MU/X)[Y ]

such that
N : MU, — m((MU/X)[Y_l])

realizes the natural homomorphism of MU.-algebras
MU, — (MU./D[Y™'].

If MU,/I is concentrated in degrees congruent to zero mod 4, then there is a
unique canonical product on (MU/X)[Y '], and this product is commutative and
associative.

In comparison with earlier constructions of this sort based on the Baas-Sullivan
theory of manifolds with singularities or on Landweber’s exact functor theorem
(where it applies), we have obtained a simpler proof of a substantially stronger
result since an MU-ring spectrum is a much richer structure than just a ring
spectrum and commutativity and associativity in the MU-ring spectrum sense
are much more stringent conditions than mere commutativity and associativity of
the underlying ring spectrum.
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5. Categories of R-algebras

In the previous section, we considered R-ring spectra, which are homotopical
versions of R-algebras. We also have a pointwise definition of R-algebras that is
just like the definition of S-algebras. That is, R-algebras and commutative R-
algebras A are defined via unit and product maps R — A and AAg A — A
such that the appropriate diagrams commute in the symmetric monoidal category
M. All of the standard formal properties of algebras in classical algebra carry
over directly to these brave new algebras. For example, a commutative R-algebra
A is the same thing as a commutative S-algebra together with a map of S-algebras
R — A (the unit map), and the smash product AARA’ of commutative R-algebras
A and A’ is their coproduct in the category of commutative R-algebras.

Some of the most subtantive work in [EKMM] concerns the understanding of the
categories @/p and € @/ of R-algebras and commutative R-algebras. The crucial
point is to be able to compute the homotopical behavior of formal constructions in
these categories. Technically, what is involved is the homotopical understanding
of the forgettul functors from @/ and € .@/r to .#r. Although not in itself enough
to answer these questions, the context of enriched model categories is essential
to give a framework in which they can be addressed. We shall indicate some of
the main features here, but this material is addressed to the relatively sophisti-
cated reader who has some familiarity with enriched category and model category
theory. It provides the essential technical underpinning for the applications to
Bousfield localization and topological Hochschild homology that are summarized
in the following two sections.

Both @/ and € ./r are tensored and cotensored topological categories. In fact,
they are topologically complete and cocomplete, which means that they have not
only the usual limits and colimits but also “indexed” limits and colimits. Limits are
created in the category of R-modules, but colimits are less obvious constructions.
In the absence of basepoints in their Hom sets, these categories are enriched over
the category % of unbased spaces. The cotensors in both cases are the function
S-algebras Fis(X* Xy, A) with the R-algebra structure induced from the diagonal
on X and the product on A. The tensors are less familiar. They are denoted
A Qg X and A @4y, X. These are different constructions in the two cases, but
we write A @ X when the context is understood. We have adjunctions

(5.1) Fr(A @ X,B) = % (X, dr(A,B)) 2 on(A, Fs(S*X,, B)),

and similarly in the commutative case. Some idea of the structure and meaning of
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tensors is given by the following result. For R-algebras A and B and a space X, we
say that a map f: AN X, — B of R-modules is a pointwise map of R-algebras
if each composite f o, : A — B is a map of R-algebras, where, for x € X,
iy : A— AN X, is the map induced by the evident inclusion {z}; — X.

PROPOSITION 5.2. For R-algebras A and spaces X there is a natural map of
R-modules

wiANX, — AR X

such that a pointwise map f: AN Xy — B of R- algebras uniquely determines
amap f: A®@ X — Bof R- algebras such that f = f ow. The same statement
holds for commutative R-algebras.

More substantial results tell how to compute tensors when X is the geometric
realization of a simplicial set or simplicial space. These results are at the heart of
the development and understanding of model category structures on the categories
o/p and € /p. In both categories, the weak equivalences and g-fibrations are the
maps of R-algebras that are weak equivalences or g-fibrations of underlying R-
modules. It follows that the g-cofibrations are the maps of R-algebras that satisfy
the left lifting property with respect to the acyclic ¢-fibrations. (The LLP is
recalled in VI§5.) However, the g-cofibrations admit a more explicit description
as retracts of relative “cell R-algebras” or “cell commutative R-algebras”. Such
cell algebras are constructed by using free algebras generated by sphere spectra as
the domains of attaching maps and mimicking the construction of cell R-modules,
using coproducts, pushouts, and colimits in the relevant category of R-algebras.

The question of understanding the homotopical behavior of the forgetful functors
from @/r and € @/p to .#Rr now takes the form of understanding the homotopical
behavior of ¢-cofibrant algebras (retracts of cell algebras) with respect to these
forgetful functors. However, the formal properties of model categories have nothing
to say about this homotopical question.

In what follows, let R be a fixed ¢-cofibrant commutative R-algebra. Since R
is the initial object of &g and of €4’k it is g-cofibrant both as an R-algebra
and as a commutative R-algebra. However, it is not ¢-cofibrant as an R-module.
Therefore the most that one could hope of the underlying R-module of a ¢-cofibrant
R-algebra is the conclusion of the following result.

THEOREM 5.3. If A is a ¢-cofibrant R-algebra, then A is a retract of a cell R-
module relative to R. That is, the unit K — A is a g-cofibration of R-modules.
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The conclusion fails in the deeper commutive case. The essential reason is that
the free commutative R-algebra generated by an R-module M is the wedge of the
symmetric powers M7 /Y and passage to orbits obscures the homotopy type of
the underlying R-module. The following technically important result at least gives
the homotopy type of the underlying spectrum.

THEOREM 5.4. Let R be a g-cofibrant commutative S-algebra. If M is a cell
R-module, then the projection

71 (BY))y As, M7 — MY/,
is a homotopy equivalence of spectra.

The following theorem provides a workable substitute for Theorem 5.3. It shows
that the derived smash product is represented by the point-set level smash product
on a large class €r of R-modules, one that in particular includes the underlying
R-modules of all ¢-cofibrant R-algebras and commutative R-algebras.

THEOREM 5.5. There is a collection ér of R-modules of the underlying ho-
motopy types of CW spectra that is closed under wedges, pushouts, colimits of
countable sequences of cofibrations, homotopy equivalences, and finite smash prod-
ucts over R and that contains all ¢-cofibrant R-modules and the underlying R-
modules of all ¢g-cofibrant R-algebras and all ¢-cofibrant commutative R-algebras.
Moreover, if M, ---, M, are R-modules in &z and Vi« N; — M, are weak
equivalences, where the N; are cell R-modules, then

NAR ARV NiAr--- AR Ny — My Ar--- Ar M,

is a weak equivalence. Therefore the cell R-module Ny Ag -+ Agr N, represents
My AR -+ Arp M, in the derived category Znp.

W. G. Dwyer and J. Spalinski. Homotopy theories and model categories. In “A handbook of
algebraic topology”, edited by I. M. James. North-Holland, 1995, pp 73-126.

G. M. Kelly. Basic concepts of enriched category theory. London Math. Soc. Lecture Note
Series Vol. 64. Cambridge University Press. 1982.

D. G. Quillen. Homotopical algebra. Springer Lecture Notes in Mathematics Volume 43. 1967.

6. Bousfield localizations of R-modules and algebras

Bousfield localization is a basic tool in the study of classical stable homotopy
theory, and the construction generalizes readily to the context of brave new alge-
bra. In fact, using our model category structures, this context leads to a smoother
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treatment than can be found in the classical literature. More important, as we shall
sketch, any brave new algebraic structure is preserved by Bousfield localization.
Let R be an S-algebra and F be a cell R-module. A map f: M — N of

R-modules is said to be an E-equivalence if
id/\RfiE/\RM—>E/\RN

is a weak equivalence. An R-module W is said to be E-acyclicif EArW =~ %, and
a map [ is an F-equivalence if and only if its cofiber is F-acyclic. We say that
an R-module L is E-local if f*: Zp(N,L) — Zr(M, L) is an isomorphism for
any F-equivalence f or, equivalently, if Zr(W, L) = 0 for any E-acyclic R-module
W. Since this is a derived category criterion, it suffices to test it when W is a
cell R-module. A localization of M at F is a map A : M — My such that A is
an F-equivalence and Mg is F-local. The formal properties of such localizations
discussed by Bousfield carry over verbatim to the present context. There is a model
structure on .#p that implies the existence of E-localizations of R-modules.

THEOREM 6.1. The category .#r admits a new structure as a topological model
category in which the weak equivalences are the E-equivalences and the cofibra-
tions are the g-cofibrations in the standard model structure, that is, the retracts
of the inclusions of relative cell R-modules.

We call the fibrations in the new model structure F-fibrations. They are deter-
mined formally as maps that satisfy the right lifting property with respect to the
FE-acyclic g-cofibrations, namely the ¢-cofibrations that are E-equivalences. (The
RLP is recalled in VI§5.) One can characterize the E-fibrations more explicitly,
but the following result gives all the relevant information. Say that an R-module
L is E-fibrant if the trivial map L. — * is an F-fibration.

THEOREM 6.2. An R-module is F-fibrant if and only if it is F-local. Any R-
module M admits a localization A : M — Mg at F.

In fact, one of the standard properties of a model category shows that we can
factor the trivial map M —— % as the composite of an FE-acyclic ¢-cofibration
A: M — Mg and an E-fibration Mg — *, so that the first statement implies
the second. The following complement shows that the localization of an R-module
at a spectrum (not necessarily an R-module) can be constructed as a map of
R-modules.
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PROPOSITION 6.3. Let K be a CW-spectrum and let F be the R-module Fr K.
Regarded as a map of spectra, a localization A : M — Mg of an R-module M at
FE is a localization of M at K.

The result generalizes to show that, for an R-algebra A, the localization of an
A-module at an R-module F can be constructed as a map of A-modules.

PROPOSITION 6.4. Let A be a g-cofibrant R-algebra, let E be a cell R-module,
and let F' be the A-module AARFE. Regarded as a map of R-modules, a localization
A M — Mg of an A-module M at [ is a localization of M at F.

Restrict R to be a ¢-cofibrant commutative S-algebra in the rest of this section.
We then have the following fundamental theorem about localizations of R-algebras.

THEOREM 6.5. For a cell R-algebra A, the localization A : A — Ag can be
constructed as the inclusion of a subcomplex in a cell R-algebra Ag. Moreover, if
f:+A— Bis amap of R-algebras into an F-local R-algebra B, then f lifts to a
map of R-algebras f: Ap — Bsuch that fo) = f;if fis an E-equivalence, then
f is a weak equivalence. The same statements hold for commutative R-algebras.

The idea is to replace the category .#x by either the category /g or the cat-
egory € </r in the development just sketched. That is, we attempt to construct
new model category structures on @/r and € .</p in such a fashion that a factor-
ization of the trivial map A — * as the composite of an E-acyclic ¢-cofibration
and a g¢-fibration in the appropriate category of R-algebras gives a localization of
the underlying R-module of A. The argument doesn’t quite work to give a model
structure because the module level argument uses vitally that a pushout of an
FE-acyclic g-cofibration of R-modules is an E-equivalence. There is no reason to
believe that this holds for ¢-cofibrations of R-algebras. However, we can use Theo-
rems 5.3-5.5 to prove that it does hold for pushouts of inclusions of subcomplexes
in cell R-algebras along maps to cell R-algebras. This gives enough information
to prove the theorem.

The theorem implies in particular that we can construct the localization of R at
I as the unit R — Rpg of a g-cofibrant commutative R-algebra. This leads to a
new perspective on localizations in classical stable homotopy theory. To see this,
we compare the derived category Zg, to the stable homotopy category Zr[E™!]
associated to the model structure on .#y that is determined by E. Thus Zg[E™"]
is obtained from Zpr by inverting the F-equivalences and is equivalent to the full
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subcategory of Zr whose objects are the E-local R-modules. Observe that, for a
cell R-module M, we have the canonical E-equivalence

fznAidngR/\RM%RE/\RM.
The following observation is the same as in the classical case.

LEMMA 6.6. If M is a finite cell R-module, then Rp Ap M is E-local and there-
fore £ is the localization of M at E.

We say that localization at E is smashing if, for all cell R-modules M, Rgp Ap M
is FE-local and therefore ¢ is the localization of M at K. The following observation
is due to Wolbert.

PROPOSITION 6.7 (WOLBERT). If localization at £ is smashing, then the cat-
egories Zp[E~'] and Zg, are equivalent.

These categories are closely related even when localization at E is not smash-
ing, as the following elaboration of Wolbert’s result shows. Remember that R is
assumed to be commutative.

THEOREM 6.8. The following three categories are equivalent.

(i) The category Zr[E~!] of E-local R-modules.
(i1) The full subcategory Zg, [FE~"'] of Zr, whose objects are the Rg-modules
that are F-local as R-modules.

(iii) The category Zr,[F'~'] of F-local Rg-modules, where F' = R Ag E.

This implies that the question of whether or not localization at E is smashing
is a question about the category of Rp-modules, and it leads to the following
factorization of the localization functor. In the case R = 5, this shows that the
commutative S-algebras Sg and their categories of modules are intrinsic to the
classical theory of Bousfield localization.

THEOREM 6.9. Let ' = Rg Ar £/. The E-localization functor
(g : Zr — Zr[E7]
is equivalent to the composite of the extension of scalars functor
ReAr (*): Pr — Pr,
and the F-localization functor

()r : Dry — Zry[F7.
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COROLLARY 6.10. Localization at I is smashing if and only if all Rg-modules
are F-local as R-modules, so that

.@R[E_l] ~ @RE ~ .@RE[F_I].

We illustrate the constructive power of Theorem 6.5 by showing that the alge-
braic localizations of R considered in Section 4 actually take R to commutative
R-algebras on the point set level and not just on the homotopical level (as given
by Proposition 4.9). Thus let ¥ be a countable multiplicatively closed set of ele-
ments of R,. Using Lemma 4.8, we see that localization of R-modules at R[Y™!]
is smashing and is given by the canonical maps

)\:)\/\RidiMgR/\RM—>R[Y_1]/\RM.

THEOREM 6.11. The localization R — R[Y '] can be constructed as the unit
of a cell R-algebra.

By multiplicative infinite loop space theory and our model category structure on
the category of S-algebras, the spectra ko and ku that represent real and complex
connective K-theory can be taken to be g-cofibrant commutative S-algebras. The
spectra that represent periodic K-theory can be reconstructed up to homotopy by
inverting the Bott element o € ws(ko) or Sy € mo(ku). That is,

KO ~ ko[35'] and KU ~ ku[37'].
We are entitled to the following result as a special case of the previous one.

THEOREM 6.12. The spectra KO and KU can be constructed as commutative
ko and ku-algebras.

In particular, KO and KU are commutative S-algebras, but it seems very hard
to prove this directly. Wolbert has studied the algebraic structure of the derived
categories of modules over the connective and periodic versions of the real and
complex K-theory S-algebras.

REMARK 6.13. For finite groups G, Theorem 6.12 applies with the same proof
to construct the periodic spectra KOg and KUg of equivariant K-theory as com-
mutative kog and kug-algebras. As we shall discuss in Chapter XXIV, this leads
to an elegant proof of the Atiyah-Segal completion theorem in equivariant K-
cohomology and of its analogue for equivariant K-homology.
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7. Topological Hochschild homology and cohomology

As another application of brave new algebra, we describe the topological Hoch-
schild homology of R-algebras with coefficients in bimodules. We assume familiar-
ity with the classical Hochschild homology of algebras (as in Cartan and Eilenberg,
for example). The study of this topic and of topological cyclic homology, which
takes topological Hochschild homology as its starting point and involves equivari-
ant considerations, is under active investigation by many people. We shall just
give a brief introduction.

We assume given a ¢-cofibrant commutative S-algebra R and a ¢-cofibrant R-
algebra A. If A is commutative, we require it to be ¢-cofibrant as a commutative

R-algebra. We define the enveloping R-algebra of A by
A® = A Ng AP,

where A% is defined by twisting the product on A, as in algebra. If A is commu-
tative, then A¥ & A Ar A and the product A° — A is a map of R-algebras. We
also assume given an (A, A)-bimodule M; it can be viewed as either a left or a
right A°-module.

DEFINITION 7.1. Working in derived categories, define topological Hochschild
homology and cohomology with values in Zr by

THHMA; M) =M Age A and  THHR(A; M) = Fy-(A,M).

It A is commutative, then these functors take values in the derived category Z4e.
On passage to homotopy groups, define

THHFA; M) = Tor2 (M, A)  and THH(A; M) = Ext’.(A, M).
When M = A, we delete it from the notations.

Since we are working in derived categories, we are implicitly taking M to be
a cell A>module in the definition of THH®(A; M) and approximating A by a
weakly equivalent cell A°-module in the definition of TH Hg(A; M).

PROPOSITION 7.2. If A is a commutative R-algebra, then T H H(A) is isomor-
phic in Z4 to a commutative A®-algebra.
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The module structures on T H H?( A; M) have the following implication.

PROPOSITION 7.3. If either R or A is the Eilenberg-Mac Lane spectrum of a
commutative ring, then 7 H H®(A; M) is a product of Eilenberg-Mac Lane spectra.

We have spectral sequences that relate algebraic and topological Hochschild
homology. For a commutative graded ring R., a graded R.-algebra A, that is flat
as an R.-module, and a graded (A., A.)-bimodule M., we define

HHE (A M) = Torll)" (M., A) - and  HHEI(A® M) = Ext{. (A", M*),

where p is the homological degree and ¢ is the internal degree. (This algebraic
definition would not be correct in the absence of the flatness hypothesis.) When
M, = A,, we delete it from the notation. If A, is commutative, then HHE: (A.)
is a graded A,-algebra. Observe that (A%?), = (A.).

In view of Theorem 5.5, the spectral sequence of Theorem 3.2 specializes to
give the following spectral sequences relating algebraic and topological Hochschild
homology.

THEOREM T7.4. There are spectral sequences of the form
B}, = Torga (A, A7) = (A)piq,

2 A°), R
B! = Torl*)*(M,, A,) = THH

p+q

(4; M),
and
BT = Ext{fl (A, M™) = THH}™(A; M).
It A, is a flat R.-module, so that the first spectral sequence collapses, then the
initial terms of the second and third spectral sequences are, respectively,

HHI% (A M) and  HHZ (A" M™).

This is of negligible use in the absolute case R = S, where the flatness hypoth-
esis on A, is unrealistic. However, in the relative case, it implies that algebraic
Hochschild homology and cohomology are special cases of topological Hochschild
homology and cohomology.

THEOREM 7.5. Let R be a (discrete, ungraded) commutative ring, let A be an
R-flat R-algebra, and let M be an (A, A)-bimodule. Then

HHE(A; M) = THHPR(HA; HM)

and

HH(A; M) = THH, W (HA; HM).
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If Ais commutative, then HH(A) = THHIR(HA) as A-algebras.

We concentrate on homology henceforward. In the absolute case R = 5, it is
natural to approach TH HZ(A; M) by first determining the ordinary homology of
THH?(A; M), using the case I/ = HF, of the following spectral sequence, and
then using the Adams spectral sequence. A spectral sequence like the following
one was first obtained by Bokstedt. Under flatness hypotheses, there are variants
in which F need only be a commutative ring spectrum, e.g. Theorem 7.12 below.

THEOREM 7.6. Let F be a commutative S-algebra. There are spectral sequence
of differential F.(R)-modules of the forms

B = TortF(E.A, E(A7)) = Epyq(A°)
and
B2 = Torx M (B (M), E(A)) = E,p (THH"(A; M)).

There is an alternative description of topological Hochschild homology in terms
of the brave new algebra version of the standard complex for the computation of
Hochshild homology. Write A for the p-fold Ag-power of A, and let

o6 ANpA— A and n:R— A
be the product and unit of A. Let
b AANRM — M and ¢ MARA— M
be the left and right action of A on M. We have cyclic permutation isomorphisms
T: MAR AP Ap A — AAg M AR AP,

The topological analogue of passage from a simplicial k-module to a chain com-
plex of k-modules is passage from a simplicial spectrum F, to its spectrum level
geometric realization |F.|; this construction is studied in [EKMM].

DEFINITION 7.7. Define a simplicial R-module thhf(A; M), as follows. Its R-
module of p-simplices is M A AP. Its face and degeneracy operators are

& A (idy! ifi=0
d; = CidAGD) TP A @A (Gd)P=7E i1 <i<p
(& A (id)PY)or ifi=p

and s; = id A(id)* A5 A (id)P~%. Define
thAf(A; M) = [thh™(A; M).|;
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When M = A, we delete it from the notation, writing thhf(A). and |thh®(A).|.

PROPOSITION 7.8. Let A be a commutative R-algebra. Then thhf*(A) is a
commutative A-algebra and thh®(A; M) is a thh®(A)-module.

As in algebra, the starting point for a comparison of definitions is the relative
two-sided bar construction B¥(M, A, N). It is defined for a commutative S-algebra

R, an R-algebra A, and right and left A-modules M and N. Its R-module of p-
simplices is M Ar A A N. There is a natural map

W BRA,AN) — N

of A-modules that is a homotopy equivalence of R-modules. More generally, there
is a natural map of R-modules

i BR(M,A,N) — M Ay N

that is a weak equivalence of R-modules when M is a cell A-module. The relevance
of the bar construction to thh is shown by the following observation, which is the
same as in algebra. We write

BR(A) = BR(A, A, A);
BT(A) is an (A, A)-bimodule; on the simplicial level, BE(A) = Ae.
PROPOSITION 7.9. For (A, A)-bimodules M, there is a natural isomorphism
thh®(A; M) = M A4 BE(A).
Therefore, for cell A°-modules M, the natural map
thhB(A; M) = M Age BRALSYM Age A= THHR(A; M)
is a weak equivalences of R-modules, or of A°-modules if A is commutative.

While we assumed that M is a cell A°-module in our derived category level
definition of T'H H, we are mainly interested in the case M = A of our point-set
level construction thh, and A is not of the A®-homotopy type of a cell A°-module
except in trivial cases. However, Theorem 5.5 leads to the following result.

THEOREM T7.10. Let v : M — A be a weak equivalence of A°-modules, where
M is a cell A°-module. Then the map

thRB(id; ) : thhB(A; M) — thhP(A; A) = thhE(A)

is a weak equivalence of R-modules, or of A°-modules if A is commutative. There-

fore T H H™(A; M) is weakly equivalent to thh(A).
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COROLLARY 7.11. In the derived category Zp, THHT(A) = thhf(A).

Use of the standard simplicial filtration of the standard complex gives us the
promised variant of the spectral sequence of Theorem 7.6. For simplicity, we
restrict attention to the absolute case R = 5.

THEOREM T7.12. Let F be a commutative ring spectrum, A be an S-algebra,
and M be a cell A°module. If F,(A) is F.-flat, there is a spectral sequence of the
form

By, = HH,G(E(A); B(M)) = By (thh®(A; M)).

If Ais commutative and M = A, this is a spectral sequence of differential £.(A)-
algebras, the product on E? being the standard product on Hochschild homology.

McClure, Schwanzl, and Vogt observed that, when A is commutative, as we
assume in the rest of the section, there is an attractive conceptual reinterpreta-
tion of the definition of thAf(A). Recall that the category € </g of commutative
R-algebras is tensored over the category of unbased spaces. By writing out the
standard simplicial set S} whose realization is the circle and comparing faces and
degeneracies, it is easy to check that there is an identification of simplicial com-
mutative R-algebras

(7.13) thh®(A), 2 A® S!.

Passing to geometric realization and identifying S* with the unit complex numbers,
we obtain the following consequence.

THEOREM 7.14 (McCLURE, SCHWANZL, VOGT). For commutative R-algebras
A, there is a natural isomorphism of commutative R-algebras

thh®(A)= A @ S

The product of thh*(A) is induced by the codiagonal S'[[S! — S'. The unit
¢ : A — thh®(A) is induced by the inclusion {1} — ST.

The adjunction (5.1) that defines tensors implies that the functor thhf(A) pre-
serves colimits in A, something that is not at all obvious from the original def-
inition. The theorem and the adjunction (5.1) imply much further structure on

thiB(A).
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COROLLARY 7.15. The pinch map S' — S' Vv S! and trivial map S — *
induce a (homotopy) coassociative and counital coproduct and counit

i thhT(A) — thR"(A) Ay thR®(A)  and e :thh"(A) — A
that make thh'(A) a homotopical Hopf A-algebra.

The product on St gives rise to a map
a: (A SHeSt2Ae (ST xS — Ae S

COROLLARY 7.16. For an integer r, define ¢" : St — S by ¢"(e2™) = 2™,
The ¢" induce power operations

O : thhfi(A) — thh®(A).
These are maps of R-algebras such that
P’ = (e, B =id, "0 ®° =",
and the following diagrams commute:

thh®(A) @ St =—— thhF(A)

<I>T®¢Sl lws

thhR(A) @ ST — thhf(A).

Consider naive S'-spectra and let S! act trivially on R and A. Via the adjunc-
tion (5.1), the map « gives rise to an action of S* on thhf(A).

COROLLARY 7.17. thhf(A) is a naive commutative S'-R-algebra. If B is a
naive commutative S'-R-algebra and f : A — B is a map of commutative R-
algebras, then there is a unique map f : thh®(A) — B of naive commutative

S1-R-algebras such that fo ¢ = f.
Finally, the description of tensors in Proposition 5.2 leads to the following result.
COROLLARY 7.18. There is a natural S'-equivariant map of R-modules
w:ANSL — thafi(A)

such that if B is a commutative R-algebra and f : AA S, — B is a map of
R-modules that is a pointwise map of R-algebras, then f uniquely determines a

map of R-algebras f : thh®(A) — B such that f = fow.
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CHAPTER XXIII

Brave new equivariant foundations

by A. D. Elmendort, L. G. Lewis, Jr., and J. P. May

1. Twisted half-smash products

We here give a quick sketch of the basic constructions behind the work of the
last chapter. Although the basic source, [EKMM], is written nonequivariantly, it
applies verbatim to the equivariant context in which we shall work in this chapter.
We shall take the opportunity to describe some unpublished perspectives on the
role of equivariance in the new theory.

The essential starting point is the twisted half-smash product construction from
[LMS]. Although we have come this far without mentioning this construction, it is
in fact central to equivariant stable homotopy theory. Before describing it, we shall
motivate it in terms of the main theme of this chapter, which is the construction of
the category of L-spectra. As we shall see, this is the main step in the construction
of the category of S-modules.

Fix a compact Lie group (¢ and a G-universe U and consider the category G.U
of G-spectra indexed on /. Write U7 for the direct sum of j copies of U. Recall
that we have an external smash product A : G.¥U x G¥U — G.¥U? and an
internal smash product f, o A : GFU?* — G.SU for each G-linear isometry
f : U? — U. The external smash product is suitably associative, commutative,
and unital on the point set level, hence we may iterate and form an external smash
product A : (G.FLU)Y — GFU’ for each j > 1, the first external smash power
being the identity functor. For each G-linear isometry f : U/ — U, we have an
associated internal smash product f, o A : G.XU’ — G.ZU. We allow the case
J = 0; here G#{0} = G.7, the only linear isometry {0} — U is the inclusion ¢,
and i, is the suspension G-spectrum functor. At least if we restrict attention to

327
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tame G-spectra, the functors induced by varying f are all equivalent (see Theorem
1.5 below). Thus varying G-linear isometries f : U/ — U parametrize equivalent
internal smash products.

There is a language for the discussion of such parametrized products in various
mathematical contexts, namely the language of “operads” that was introduced
for the study of iterated loop space theory in 1972. Let .Z(j) denote the space
I (U7,U) of linear isometries U/ — U. Here we allow all linear isometries, not
just the G-linear ones, and G acts on .Z(j) by conjugation. Thus the fixed point
space Z(7) is the space of G-linear isometries // — U. The symmetric group
¥, acts freely from the right on .Z(7), and the actions of G and ¥; commute. The
equivariant homotopy type of .Z(j) depends on U. If U is complete, then, for
ACGxX;, Z(j)" is empty unless AN Y; = ¢ and contractible otherwise. That
is, Z(7) is a universal (G, ¥;)-bundle. We have maps

VL (k) X L) X X L) — L+ + k)
defined by
Vg frooo s fo)=go(fid- D fr)

These data are interrelated in a manner codified in the definition of an operad,
and £ is called the “linear isometries G-operad” of the universe U. When U is
complete, < is an F., G-operad.

There is a “twisted half-smash product”

(1.1) L)< (EyAN---NE))

into which we can map each of the j-fold internal smash products f.(F1A---AE;).
Moreover, if we restrict attention to tame G-spectra, then each of these maps into
the twisted half-smash product (1.1) is an equivalence. The twisted half-smash
products .Z(1) x £ and .Z(2) x £ A E’ are the starting points for the construction
of the category of L-spectra and the definition of its smash product. We shall
return to this point in the next section, after saying a little more about twisted
smash products of G-spectra.

Suppose given G-universes U and U’, and let Z(U,U’) be the G-space of linear
isometries U — U’, with (G acting by conjugation. Let A be an (unbased) G-
space together with a given G-map a : A — (U, U’). We then have a twisted
half-smash product functor

ax():GFU — GLU.

When A has the homotopy type of a G-CW complex and £ € G.ZU is tame,
different choices of a give homotopy equivalent G-spectra « x F. For this reason,
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and because we often have a canonical choice of a in mind, we usually abuse
notation by writing A X £ instead of a x K. Thus we think of A as a space over
J(U,U.

When A is a point, « is a choice of a G-linear isometry f : U — U’'. In
this case, the twisted half-smash functor is just the change of universe functor
fo 1 GFU — GZLU (see XI1.3.1-3.2). Intuitively, one may think of a x F
as obtained by suitably topologizing and giving a G-action to the union of the
nonequivariant spectra a(a).(F) as a runs through A. Another intuition is that
the twisted half-smash product is a generalization to spectra of the “untwisted”
functor Ay A X on based G-spaces X. This intuition is made precise by the
following “untwisting formula” that relates twisted half-smash products and shift
desuspensions.

PROPOSITION 1.2. For a G-space A over #(U,U’) and an isomorphism V = V'
of indexing G-spaces, where V. C U and V' C U’, there is an isomorphism of
Gi-spectra

AxEFX =2 AL ANYNEX
that is natural in G-spaces A over Z(U,U’) and based G-spaces X.

The twisted-half smash product functor enjoys essentially the same formal prop-
erties as the space level functor Ay A X. For example, we have the following
properties, whose space level analogues are trivial to verify.

PRrOPOSITION 1.3. The following statements hold.

(i) There is a canonical isomorphism {idy} x F = F.
(ii) Let A — Z(U,U") and B — Z(U',U") be given and give B x A the

composite structure map
Bx A—s Z(U,U") x Z(U U —— 7(U,U").
Then there is a canonical isomorphism
(BxA)x EZBx (Ax E).

(iii) Let A — Z(Uy,U]) and B — (U, U}) be given and give A x B the

composite structure map

Ax B—s 72U, U x 7(Uy, U} —2» 7(Uy & Uy, U, & UY).
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Let Fy and K5 be G-spectra indexed on U7 and Us; respectively. Then there
is a canonical isomorphism

(Ax B) x (Ey ANEy) = (Ax Ey) A (B x Ey).

(iv) For A —» Z(U,U"), F € GZU, and a based G-space X, there is a canonical

isomorphism

Ax (EANX)Z (A E)AX.
The functor A x (e) has a right adjoint twisted function spectrum functor
FlA): GLU — GZU,
which is the spectrum level analog of the function G-space F(Ay, X). Thus
(1.4) GIU(Ax E,E")Y= GSU(E,F|AE")).

The functor A x E is homotopy-preserving in F. and it therefore preserves
homotopy equivalences in the variable F. However, it only preserves homotopies
over (U, U") in A. Nevertheless, it very often preserves homotopy equivalences
in the variable A. The following central technical result is an easy consequence
of Proposition 1.2 and XI1.9.2. It explains why all j-fold internal smash products
are equivalent to the twisted half-smash product (1.1).

THEOREM 1.5. Let E € GG.¥U be tame and let A be a G-space over .7 (U, U"). If
¢ : A" — Ais a homotopy equivalence of G-spaces, then ¢ xid : A/ F — A E
is a homotopy equivalence of G-spectra.

Since A x F is a G-CW spectrum it A is a G-CW complex and F is a G-CW

spectrum, this has the following consequence.

COROLLARY 1.6. Let £ € G.%U have the homotopy type of a G-CW spectrum

and let A be a G-space over .#(U,U’) that has the homotopy type of a G-CW
complex. Then A x F has the homotopy type of a G-CW spectrum.

[LMS, Chapter VI]
J. P. May. The Geometry of Iterated Loop Spaces. Springer Lecture Notes in Mathematics
Volume 271. 1972.
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2. The category of L-spectra

Return to the twisted half-smash product of (1.1). We think of it as a canonical
j-fold internal smash product. However, if we are to take this point of view
seriously, we must take note of the difference between £ and its “1-fold smash
product” Z(1) x E. The space .Z(1) is a monoid under composition, and the
formal properties of twisted half-smash products imply a natural isomorphism

) x (L) x B)y2(ZL(1)x Z(1)) x E,

where, on the right, .Z(1) x .Z(1) is regarded as a G-space over .Z(1) via the
composition product. This product induces a map

p(Z)xZ(1)x BE— Z(1)x E,

and the inclusion {1} — .Z(1) induces a map n: £ — Z(1) x F. The functor
L given by LE = Z(1) x F is a monad under the product g and unit n. We
therefore have the notion of a G-spectrum F with an action ¢ : LE — F of L;
the evident associativity and unit diagrams are required to commute.

DEFINITION 2.1. An L-spectrum is a G-spectrum M together with an action of
the monad L. Let G.¥[L] denote the category of L-spectra.

The formal properties of G.#[LL] are virtually the same as those of G.¥; since
Z(1) is a contractible G-space, so are the homotopical properties. For tame G-
spectra F, we have a natural equivalence £ = id, £/ — LE. For L-spectra M that
are tame as G-spectra, the action ¢ : LM — M is a weak equivalence. Taking
the LS™ as sphere L-modules, we obtain a theory of G-CW L-spectra exactly like
the theory of G-CW spectra. The functor L preserves G-CW spectra. We let
hG.#[L] be the category that is obtained from the homotopy category hG.7[L]
by formally inverting the weak equivalences and find that it is equivalent to the
homotopy category of G-CW L-spectra. The functor L : G.¥ — G.¥[L] and
the forgetful functor G.¥[L] — G.¥ induce an adjoint equivalence between the
stable homotopy category h(G.# and the category h(G.%[L).

Via the untwisting isomorphism .2 (1) x ¥ X = Z(1); AX*X and the obvious
projection Z(1); — S°, we obtain a natural action of L on suspension spectra.
However, even when X is a G-CW complex, ¥* X is not of the homotopy type of
a G-CW L-spectrum, and it is the functor L o ¥*° and not the functor X*° that is
left adjoint to the zeroth space functor G.[L] — 7.

The reason for introducing the category of L-spectra is that it has a well-behaved
“operadic smash product”, which we define next. Via instances of the structural
maps v of the operad .Z, we have both a left action of the monoid .Z(1) and a
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right action of the monoid .Z(1) x .Z(1) on .Z(2). These actions commute with
each other. If M and N are L-spectra, then .Z(1) x .Z(1) acts from the left on

the external smash product M A N via the map

£ (L) x L(1) ) (MAN) 2 (Z(1) x M) A(ZL(1) x N) L5 41 A N

To form the twisted half smash product on the left, we think of .Z(1) x .Z(1) as
mapping to .#(U?, U?) via direct sum of linear isometries. The smash product over

Z of M and N is simply the balanced product of the two .Z(1) x .Z(1)-actions.
DEFINITION 2.2. Let M and N be L-spectra. Define the operadic smash prod-
uct M A N to be the coequalizer displayed in the diagram
xid
(Z2)x ZL(1)x Z(1))x (M AN) W:;D?(Z) X (MAN)—= M Ag N.
id x ¢
Here we have implicitly used the isomorphism
(Z2)x L) x L) x (MAN)=ZZ22)x [(Z(1) x Z(1)) x (M AN)]
given by Proposition 1.4(ii). The left action of .Z(1) on .Z(2) induces a left action
of Z(1)on M Ag N that gives it a structure of L-spectrum.
We may mimic tensor product notation and write

M/\gN:g(Q) X 2 (1)x2(1) (M/\N)

This smash product is commutative, and a special property of the linear isome-
tries operad, first noticed by Hopkins, implies that it is also associative. There
is a function L-spectrum functor Fl¢ to go with Ag; it is constructed from the
external and twisted function spectra functors, and we have the adjunction

(2.3) GIL) M Age M',M") = GL LM, Fe(M, M")).
The smash product A is not unital. However, there is a natural map
AiSAe M — M

of L-spectra that is always a weak equivalence of spectra. It is not usually an
isomorphism, but another special property of the linear isometries operad implies
that it is an isomorphism if M = S or it M = SA ¢ N for any L-spectrum N. Thus
any L-spectrum is weakly equivalent to one whose unit map is an isomorphism.
This makes sense of the following definition, in which we understand S to mean
the sphere G-spectrum indexed on our fixed chosen G-universe U.
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DEFINITION 2.4. An S-module is an L-spectrum M such that A : SAe M —
M is an isomorphism. The category G.#s of S-modules is the full subcategory of
(.7 [L] whose objects are the S-modules. For S-modules M and M’, define

MAsM/:M/\gM/ and Fs(M,M/):S/\gFg(M,M/).

Although easy to prove, one surprising formal feature of the theory is that the
functor S Ag (+) : GF[L] — G.4s is right and not left adjoint to the forgetful
functor; it is left adjoint to the functor F¢ (5, -). This categorical situation dictates
our definition of function S-modules. It also dictates that we construct limits of
S-modules by constructing limits of their underlying L-spectra and then applying
the functor S Ay (e), as indicated in XXII§1. The free S-module functor Fg :
G.Y — G.#s is defined by

Fs(E) =S Ay LE.

It is left adjoint to the functor Fe(S,-) : G.dls — G, and this is the functor
that we denoted by Ug in XXII§1. From this point, the properties of the category
of S-modules that we described in XXII§1 are inherited directly from the good
properties of the category of L-spectra.

3. A, and F, ring spectra and S-algebras

We defined S-algebras and their modules in terms of structure maps that make
the evident diagrams commute in the symmetric monoidal category of S-modules.
There are older notions of A,, and F, ring spectra and their modules that May,
Quinn, and Ray introduced nonequivariantly in 1972; the equivariant generaliza-
tion was given in [LMS]. Working equivariantly, an A, ring spectrum is a spectrum
R together with an action by the linear isometries G-operad £°. Such an action
is given by G-maps

0;: L(j)x R — R, j >0,

such that appropriate associativity and unity diagrams commute. If the ; are
¥ ;-equivariant, then R is said to be an F., ring spectrum. Similarly a left module
M over an A, ring spectrum R is defined in terms of maps

pi s L)X RTVAM — M, j > 1

in the F., case, we require these maps to be X;_j-equivariant. It turns out that
the higher 0; and p; are determined by the 0; and p; for 5 < 2. That is, we have
the following result, which might instead be taken as a definition.
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THEOREM 3.1. An A, ring spectrum is an L-spectrum R with a unit map
n:S — R and a product ¢ : R ANy R — R such that the following diagrams

commute:
nAid id An

SANg R—= RNy R<—RAx S

\Jg/

idAg
R/\gR/\gR—>R/\3R

oni | |+

RAy R R;

and

R is an F., ring spectrum if the following diagram also commutes:

R/\gR R/\XR
x %
R.

A module over an A, or E ring spectrum R is an L-spectrum M with a map
pw: RANe M — M such that the following diagrams commute:

nAid id Ap

SANeM — RN M and ENe RAoe M ——= RN M
\ l#« (b/\idl l#«
A
M RAy M —- M.

This leads to the following description of S-algebras.

COROLLARY 3.2. An S-algebra or commutative S-algebra is an A, or F. ring
spectrum that is also an S-module. A module over an S-algebra or commutative
S-algebra R is a module over the underlying A, or ., ring spectrum that is also
an S-module.

In particular, we have a functorial way to replace A, and FE., ring spectra and
their modules by weakly equivalent S-algebras and commutative S-algebras and
their modules.

COROLLARY 3.3. For an A, ring spectrum R, S Ae R is an S-algebra and
A SAg R — R is a weak equivalence of A, ring spectra, and similarly in
the F. case. If M is an R-module, then S Ao M is an S Ay R-module and
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A: SAg M — M is a weak equivalence of R-modules and of modules over
S Ae R regarded as an A, ring spectrum.

Thus the earlier definitions are essentially equivalent to the new ones, and earlier
work gives a plenitude of examples. Thom G-spectra occur in nature as F, ring
Gi-spectra. For finite groups (/, multiplicative infinite loop space theory works
as 1t does nonequivariantly; however, the details have yet to be fully worked out
and written up: that is planned for a later work. This theory gives that the
Eilenberg-Mac Lane G-spectra of Green functors, the G-spectra of connective real
and complex K-theory, and the G-spectra of equivariant algebraic K-theory are
E ring spectra. As observed in XXII.6.13, it follows that the G-spectra of pe-
riodic real and complex K-theory are also E, ring G-spectra. Nonequivariantly,
many more examples are known due to recent work, mostly unpublished, of such
people as Hopkins, Miller, and Kriz.

J. P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave). FE ring spaces and
FEo ring spectra. Springer Lecture Notes in Mathematics Volume 577. 1977.

J. P. May. Multiplicative infinite loop space theory. J. Pure and Applied Algebra, 26(1982),
1-69.

4. Alternative perspectives on equivariance

We have developed the theory of L-spectra and S-modules starting from a fixed
given G-universe U. However, there are alternative perspectives on the role of the
universe and of equivariance that shed considerable light on the theory. Much of
this material does not appear in the literature, and we give proofs in Section 6
after explaining the ideas here. Let Siy denote the sphere G-spectrum indexed on a
G-universe U. The essential point is that while the categories G.U of G-spectra
indexed on U vary as U varies, the categories G.#s, of Sy-modules do not: all
such categories are actually isomorphic. These isomorphisms preserve homotopies
and thus pass to ordinary homotopy categories. However, they do not preserve
weak equivalences and therefore do not pass to derived categories, which do vary
with UU. This observation first appeared in a paper of Elmendorf and May, but we
shall begin with a different explanation than the one we gave there.

We shall explain matters by describing the categories of GG-spectra and of L-G-
spectra indexed on varying universes U in terms of algebras over monads defined
on the ground category . = .ZR*> of nonequivariant spectra indexed on R*.
Abbreviate notation by writing L for the monoid .Z(1) = #(R*,R>). Any G-
universe U is isomorphic to R* with an action by G through linear isometries. The
action may be written in the form gz = f(g)(x) for # € R*, where f : G — L is
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a homomorphism of monoids. To fix ideas, we shall write R} for the G-universe
determined by such a homomorphism f. For a spectrum F, we then define

GfE:G[XE,

where the twisted half-smash product is determined by the map f. The multi-

plication and unit of ¢ determine maps p: G;GjEl — GsFE and n: E — G F
that give G a structure of monad in .%". As was observed in [LMS], the category
GYRY of G-spectra indexed on R is canonically isomorphic to the category
Z[Gy] of algebras over the monad G;. Of course, we also have the monad L in .
with LE = L x F; by definition, a nonequivariant L-spectrum is an algebra over
this monad.

ProOPOSITION 4.1. The following statements about the monads L. and G; hold
for any homomorphism of monoids f: G — L = Z(R>,R>).

1) L restricts to a monad in the category . |G| of G-spectra indexed on R%.
gory f p f
(ii) Gy restricts to a monad in the category .#[L] of L-spectra indexed on R*.
111) The composite monads LG, and G¢L in .¥ are isomorphic.
p f f p

Moreover, up to isomorphism, the composite monad LGy is independent of f.

COROLLARY 4.2. The category G.¥R¥[L] = #[G(][L] of L-G-spectra indexed
on R is isomorphic to the category .#[L}[Gy] of G-L-spectra indexed on R7. Up
to isomorphism, this category is independent of f.

The isomorphisms that we shall obtain preserve spheres and operadic smash
products and so restrict to give isomorphisms between categories of S-modules.

COROLLARY 4.3. Up to isomorphism, the category G.#g, of Sy-modules is
independent of the G-universe U.

Thus a structure of Sgpe-module on a naive G-spectrum is so rich that it en-
compasses an Sy-action on a G-spectrum indexed on U for any universe U. This
richness is possible because the action of G on U can itselt be expressed in terms
of the monoid L.

There is another way to think about these isomorphisms, which is given in
Elmendorf and May and which we now summarize. It is motivated by the definition
of the operadic smash product.
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DEFINITION 4.4. Fix universes U and U’, write I and L' for the respective
monads in G.¥U and G.¥U" and write .Z and ¢’ for the respective G-operads.
For an L-spectrum M, define an L'-spectrum I M by

IT'M = 7(UU") % sy M.
That is, I5' M is the coequalizer displayed in the diagram
yKid ,
FJUU)x (AU, U)yx M) —= J(U,U")x M — IJ'M.
id x ¢
Here ¢ : (U, U) x M — M is the given action of L. on M. We regard the
product (U, U") x Z(U,U) as a space over .7 (U, U’) via the composition map
v L (UU) x J(UU) — F(U,U";
Proposition 1.3(ii) gives a natural isomorphism
J(UU Y x (F(UU)x M) = (F(U,U") x Z(U,U)) x M.
This makes sense of the map v x id in the diagram. The required left action of
F(U' Uy on I M is induced by the composition product
v LUU) x £(UU) — 2(U U,
which induces a natural map of coequalizer diagrams on passage to twisted half-
smash products.

PROPOSITION 4.5. Let U, U’, and U"” be G-universes. Consider the functors

IV GIUL] — GLUL]  and ¥ :G7 — GZUL).

(i) 1Y o ¥¢¢ is naturally isomorphic to %25
(ii) 1Y) o 1Y is naturally isomorphic to 15"
(iii) I7 is naturally isomorphic to the identity functor.
Therefore the functor IJ' is an equivalence of categories with inverse I,. Moreover,
the functor 15 is continuous and satisfies 15 (M A X) = (I§' M)A X for L-spectra
M and based G-spaces X. In particular, it is homotopy preserving, and ][[]]/ and
IY, induce inverse equivalences of homotopy categories.

Now suppose that U = R¥ and U’ = R%. Since the coequalizer defining
IY" is the underlying nonequivariant coequalizer with a suitable action of G, we
see that, with all group actions ignored, the functor ][[]]/ is naturally isomorphic
to the identity functor on .#[L]. In this case, the equivalences of categories of
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the previous result are natural isomorphisms and, tracing through the definitions,
one can check that they agree with the equivalences given by the last statement of
Corollary 4.2. Therefore the following result, which applies to any pair of universes
U and U’ is an elaboration of Corollary 4.3.

PROPOSITION 4.6. The following statements hold.

(i) 14 Sy is canonically isomorphic to Sp.
(ii) For L-spectra M and N, there is a natural isomorphism
w: I (M Ay NY = (IF M) Ao (IF'N).
(iii) The following diagram commutes for all L-spectra M:

w

15 (S Ae M) St N (15 M)

! /
IZU]\

IT'M.

(iv) M is an Spy-module if and only if ][[]]/M is an Sy/-module.

Therefore the functors 15" and IY, restrict to inverse equivalences of categories
between GG.#s, and G.#s,, that induce inverse equivalences of categories between

hG. s, and hG.As,,.

This has the following consequence, which shows that, on the point-set level,
our brave new equivariant algebraic structures are independent of the universe in
which they are defined.

THEOREM 4.7. The functor ][[]]/ : GMls, — G.Ms,, is monoidal. If R is an
Syr-algebra and M is an R-module, then If'R is an Sy-algebra and IJ'M is an
1Y’ R-module.

The ideas of this section are illuminated by thinking model theoretically. We
focus attention on the category G.#p~, where GG acts trivially on R*. We can
reinterpret our results as saying that the model categories of Sy-modules for vary-
ing universes U are all isomorphic to the category G.#g~, but given a model
structure that depends on U. Indeed, for any U = R, we have the isomorphism
of categories Iy : G.#yy — G.Mlg, and we can transport the model category
structure of G.#Zy to a new model category structure on G g, which we call
the U-model structure on G.#pe.

The essential point is that I+ does not carry the cofibrant sphere Sp-modules
SgU = Su ANg LS™ to the corresponding cofibrant sphere Sge-modules. The weak
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equivalences in the U-model structure are the maps that induce isomorphisms on
homotopy classes of Sg~-module maps out of the “U-spheres” G/H, A I} 5%,
We define U-cell and relative U-cell Sgp~-modules by using these U-spheres as the
domains of their attaching maps. The U-cofibrations are the retracts of the relative
U-cell Sgeo-modules, and the U-fibrations are then determined as the maps that
satisfy the right lifting property with respect to the acyclic U-cofibrations.

A. D. Elmendorf and J. P. May. Algebras over equivariant sphere spectra. Preprint, 1995.

5. The construction of equivariant algebras and modules

The results of the previous section are not mere esoterica. They lead to homo-
topically well-behaved constructions of brave new equivariant algebraic structures
from brave new nonequivariant algebraic structures. The essential point is to un-
derstand the homotopical behavior of point-set level constructions that have de-
sirable formal properties. We shall explain the solutions to two natural problems
in this direction.

First, suppose given a nonequivariant S-algebra R and an R-module M; for
definiteness, we suppose that these spectra are indexed on the fixed point universe
U% of a complete G-universe U. Is there an Sg-algebra R and an Rg-module Mg
whose underlying nonequivariant spectra are equivalent to R and M in a way that
preserves the brave new algebraic structuresl’ In this generality, the only obvious
candidates for Rg and Mg are 1, R and 1, M, where i : U9 — U is the inclusion.
In any case, we want R and Mg to be equivalent to ¢, R and 1, M. However, the
change of universe functor i, does not preserve brave new algebraic structures.
Thus the problem is to find a functor that does preserve such structures and yet is
equivalent to 7,. A very special case of the solution of this problem has been used
by Benson and Greenlees to obtain calculational information about the ordinary
cohomology of classifying spaces of compact Lie groups.

Second, suppose given an Sg-algebra Rg with underlying nonequivariant S-
algebra R and suppose given an R-module M. Can we construct an Rg-module
M¢ whose underlying nonequivariant R-module is MT' Note in particular that
the problem presupposes that, up to equivalence, the underlying nonequivariant
spectrum of Rg is an S-algebra, and similarly for modules. We are thinking of
MUg and MU, and the solution of this problem gives equivariant versions as
MUg-modules of all of the spectra, such as the Brown-Peterson and Morava K-
theory spectra, that can be constructed from MU by killing some generators and
inverting others.

The following homotopical result of Elmendorf and May combines with Theo-
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rem 4.7 to solve the first problem. In fact, it shows more generally that, up to
isomorphism in derived categories, any change of universe functor preserves brave
new algebraic structures. Observe that, for a linear isometry f : U — U’ and
Sy-modules M € G4, , we have a composite natural map

a: foM — J(UU)x M — [5,M

of G-spectra indexed on U’, where the first arrow is induced by the inclusion
{f} — FA(U,U’) and the second is the evident quotient map.

THEOREM 5.1. Let f: U — U’ be a G-linear isometry. Then for sufficiently
well-behaved Spy-modules M € G.#s,, (those in the collection &5, of XXII.5.5), the
natural map o : f,M — IJ'M is a homotopy equivalence of G-spectra indexed

on U’

Remember that &s, includes the ¢-cofibrant objects in all of our categories
of brave new algebras and modules. We are entitled to conclude that, up to
equivalence, the change of universe functor f, preserves brave new algebras and
modules. The most important case is the inclusion ¢ : U9 — U. If we start
from any nonequivariant ¢-cofibrant brave new algebraic structure, then, up to
equivalence, the change of universe functor z, constructs from it a corresponding
equivariant brave new algebraic structure.

Turning to the second problem that we posed, we give a result (due to May)
that interrelates brave new algebraic structures in G.#y and #6. Its starting
point is the idea of combining the operadic smash product with the functors I7,.
We think of U as the basic universe of interest in what follows.

DEFINITION 5.2. Let U, U’, and U"” be G-universes. For an L/-spectrum M and
an L"-spectrum N, define an L-spectrum M Ag N by

M Ay N=1I5M Ay I5N.

The formal properties of this product can be deduced from those of the functors
I, together with those of the operadic smash product for the fixed universe U/. In
particular, since the functor Ijj, takes Spr-modules to Sy-modules and the smash
product over Sy is the restriction to Sy-modules of the smash product over £,
we have the following observation.

LEMMA 5.3. The functor Ag : GFLU'[L/] x GFU"L"] — GLU[L] restricts

to a functor

/\SU : G%SU’ X G%SU” E— G%SU-
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This allows us to define modules indexed on one universe over algebras indexed
on another.

DEFINITION 5.4. Let R € G.#5s,,, be an Synr-algebra and let M € G.#s,,. Say
that M is a right R-module if it is a right I, R-module, and similarly for left
modules.

To define smash products over R in this context, we use the functors IJ, to
index everything on our preferred universe U and then take smash products there.

DEFINITION 5.5. Let R € G.#s,, be an Sys-algebra, let M € G.#s,, be a
right R-module and let N € G be a left R-module. Define

M/\R N - ]g/M /\IZZ]]HR ][[]]///N.

These smash products inherit good formal properties from those of the smash
products of R-modules, and their homotopical properties can be deduced from the
homotopical properties of the smash product of R-modules and the homotopical
properties of the functors I, as given by Theorem 5.1.

Now specialize to consideration of UY C U. Write Sg for the sphere G-spectrum
indexed on U/ and S for the nonequivariant sphere spectrum indexed on U“. We
take Sg-modules to be in G.#;; and S-modules to be in .#;¢ in what follows.

THEOREM 5.6. Let Rg be a commutative Sg-algebra and assume that Rg is
split as an algebra with underlying nonequivariant S-algebra R . Then there is
a monoidal functor Rg Ar (+) : M — Gtlp,. If M is a cell R-module, then
Ra Ar M is split as a module with underlying nonequivariant E-module M. The
functor Rg Agr(-) induces a derived monoidal functor Zr — G'Zg,. Therefore, if
M is an R-ring spectrum (in the homotopical sense), then Rg Ap M is an Rg-ring
Gi-spectrum.

The terms “split as an algebra” and “split as a module” are a bit technical,
and we will explain them in a moment. However, we have the following important
example; see XV§2 for the definition of MUs;.

PRrROPOSITION 5.7. The G-spectrum M U that represents stable complex cobor-
dism is a commutative Sg-algebra, and it is split as an algebra with underlying
nonequivariant S-algebra MU.

We shall return to this point and say something about the proof of the propo-
sition in XXV§7. We conclude that, for any compact Lie group ¢ and any MU-
module M, we have a corresponding split MUg-module Mg = MUg Apyp M. This
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allows us to transport the nonequivariant constructions of XXII§4 into the equiv-
ariant world. For example, taking M = BP or M = K(n), we obtain equivariant
Brown-Peterson and Morava K-theory MUg-modules BPg and K(n)q. Moreover,
if M is an MU-ring spectrum, then Mg is an MUg-ring G-spectrum, and Mg is
associative or commutative it M is so.

We must still explain our terms and sketch the proof of Theorem 5.6. The notion
of a split G-spectrum was a homotopical one involving the change of universe
functor 7., and neither that functor nor its right adjoint ¢* preserves brave new
algebraic structures. We are led to the following definitions.

DEFINITION 5.8. A commutative Sg-algebra R is split as an algebra if there is
a commutative S-algebra R and a map 7 : I}s R — Rg of Sg-algebras such that
is a (nonequivariant) equivalence of spectra and the natural map o : i, R — IR
is an (equivariant) equivalence of G-spectra. We call R the (or, more accurately,
an) underlying nonequivariant S-algebra of Rg.

Since the composite 7 0 « is a nonequivariant equivalence and the natural map
R — "R is a weak equivalence (provided that R is tame), R is weakly equiva-
lent to "R with G-action ignored. Thus R is a highly structured version of the
underlying nonequivariant spectrum of Rg. Clearly Ry is split as a G-spectrum
with splitting map 7 o a.

We have a parallel definition for modules.

DEFINITION 5.9. Let R be a commutative Sg-algebra that is split as an algebra
with underlying S-algebra R and let Mg be an Rg-module. Regard Mg as an
Ifs R-module by pullback along 5. Then Mg is split as a module if there is an
R-module M and a map x : IJeM — Mg of IjsR-modules such that y is a
(nonequivariant) equivalence of spectra and the natural map o : inM — [/cM
is an (equivariant) equivalence of G-spectra. We call M the (or, more accurately,
an) underlying nonequivariant R-module of M.

Again, M is a highly structured version of the underlying nonequivariant spec-
trum of Mg, and Mg is split as a G-spectrum with splitting map y o a. The
ambiguity that we allow in the notion of an underlying object is quite useful: it
allows us to use Theorem 5.1 and ¢-cofibrant approximation (of S-algebras and of
R-modules) to arrange the condition on « in the definitions if we have succeeded
in arranging the other conditions.

For the proof of Theorem 5.6, Definition 5.5 specializes to give the required
functor Rg Ag (+), and it is clearly monoidal. We may as well assume that our
given underlying nonequivariant S-algebra R is ¢-cofibrant as an S-algebra. Let



6. COMPARISONS OF CATEGORIES OF L-G-SPECTRA 343

M be a cell R-module. By Theorem 5.1, the condition on « in the definition of an
underlying R-module is satisfied. Define

X =nAid: IjeM = IfeR Ao_g IeM — Re Ajo_g IiaM = Mg
U U

Clearly y is a map of ][[]]GR—modules, and it is not hard to prove that it is an equiv-
alence of spectra. Thus Mg is split as a module with underlying nonequivariant
R-module M. That is the main point, and the rest follows without difficulty.

D. J. Benson and J. P. C. Greenlees. Commutative algebra for cohomology rings of classifying
spaces of compact Lie groups. Preprint. 1995.

A. D. Elmendorf and J. P. May. Algebras over equivariant sphere spectra. Preprint, 1995.

J. P. May. Equivariant and nonequivariant module spectra. Preprint, 1995.

6. Comparisons of categories of L-G-spectra

We prove Proposition 4.1 and Corollary 4.2 here. The proof of Proposition 4.1
is based on the comparison of certain monoids constructed from the monoids G

and L and the homomorphism f : G — L. Thus let G xy L and L x; GG be the
left and right semidirect products of G and L determined by f. As spaces,

GryL=GxL and Lx;G=LxG,
and their multiplications are specified by
(g9, m)(g'sm") = (99, f(g"™ ym [ (g'ym)
and

(m,g)(m',¢") = (mf(g)m'f(g7), 99").

There is an isomorphism of monoids
T:Gxy L — Lx;G
specified by
(g,m) = (flg)mflg™"),9);

there is also an isomorphism of monoids
(:Gxy L —GxL

specified by
C(g,m) = (g, f(g)m);
its inverse takes (g, m) to (g, f(¢~')m). Let

7:Gx L — L
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be the projection. We regard G x L as a monoid over L via m and we regard
G x; L and L x; G as monoids over L via the composites 7 o ( and 7o (o717t
so that ¢ and 7 are isomorphisms over L. Using Proposition 1.3, we see that, for

spectra E € .7, the map 7 induces a natural isomorphism

(6.1) T:GLEZ(GxyL)x E— (L x;G)x E=ZLGE
and the map ( induces a natural isomorphism

(6.2) (:GLE=Z (Gx;L)x E— (Gx L)x E= G4 ANLE.

In the domains and targets here, the units and products of the given monoids
determine natural transformations n and p that give the specified composite monad
structures to the displayed functors . — .. Elementary diagram chases on the
level of monoids imply that the displayed natural transformations are well-defined
isomorphisms of monads. If f is the trivial homomorphism that sends all of G to
1 € L, then G xy L =G x L. Thus in (6.2) we are comparing the monad for the
G-universe R} to the monad determined by R™ regarded as a trivial G-universe.
The conclusions of Proposition 4.1 follow, and Corollary 4.2 follows as a matter of
category theory.

The following two lemmas in category theory may or may not illuminate what is
going on. The first is proven in [EKMM] and shows why Corollary 4.2 follows from
Proposition 4.1. The second dictates exactly what “elementary diagram chases”
are needed to complete the proof of Proposition 4.1.

LEMMA 6.3. Let S be a monad in a category € and let T be a monad in the
category €’[S] of S-algebras. Then the category €’[S|[T] of T-algebras in €7[S] is
isomorphic to the category €’ [TS] of algebras over the composite monad TS in %.

Here the unit of TS is the composite id — S — TS given by the units of S
and T and the product on TS is the composite TSTS — TTS — TS, where the
second map is given by the product of T and the first is obtained by applying T
to the action STS — TS given by the fact that T is a monad in €[S]. In our
applications, we are taking T to be the restriction to €[S] of a monad in €. This
requires us to start with monads S and T that commute with one another.

LEMMA 6.4. Let S and T be monads in €. Suppose there is a natural isomor-
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phism 7 : ST — TS such that the following diagrams commute:

I

SST ST and T
| | RN
St T
STS — TSS T TS ST - TS.

Then T restricts to a monad in €[S] to which the previous lemma applies. Suppose
further that these diagrams with the roles of S and T reversed also commute, as
do the following diagrams:

STST > SSTT —“~ SST > ST and id -~ T —"~§T
TOSTT\L lT H lﬂ'
TSTS ? TTSS W TTS T> TS id T> S —77> TS.

Then 7 : ST — TS is an isomorphism of monads. Therefore the categories

¢ [S][T] and €[T][S] are both isomorphic to the category €[ST| = €[TS].

Here, for the first statement, if X is an S-algebra with action £, then the required
action of S on TX is the composite STX 5TSX 5 TX,
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CHAPTER XXIV

Brave New Equivariant Algebra

by J. P. C. Greenlees and J. P. May

1. Introduction

We shall explain how useful it is to be able to mimic commutative algebra
in equivariant topology. Actually, the nonequivariant specializations of the con-
structions that we shall describe are also of considerable interest, especially in
connection with the chromatic filtration of stable homotopy theory. We have dis-
cussed this in an expository paper [GM1], and that paper also says more about the
relevant algebraic constructions than we shall say here. We shall give a connected
sequence of examples of brave new analogues of constructions in commutative al-
gebra. The general pattern of how the theory works is this. We first give an
algebraic definition. We next give its brave new analogue. The homotopy groups
of the brave new analogue will be computable in terms of a spectral sequence that
starts with the relevant algebraic construction computed on coefficient rings and
modules. The usefulness of the constructions is that they are often related by a
natural map to or from an analogous geometric construction that one wishes to
compute. Localization and completion theorems say when such maps are equiva-
lences.

The Atiyah-Segal completion theorem and the Segal conjecture are examples of
this paradigm that we have already discussed. However, very special features of
those cases allowed them to be handled without explicit use of brave new alge-
bra: the force of Bott periodicity in the case of K-theory and the fact that the
sphere G-spectrum acts naturally on the stable homotopy category in the case of
cohomotopy. We shall explain how brave new algebra gives a coherent general

347
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framework for the study of such completion phenomena in cohomology and anal-
ogous localization phenomena in homology. We have given another exposition of
these matters in [GM2], which says more about the basic philosophy. We shall
describe the results in a little greater generality here and so clarify the application
to K -theory. We shall also explain the relationship between localization theorems
and Tate theory, which we find quite illuminating.

[GM1] J. P. C. Greenlees and J. P. May. Completions in algebra and topology. In “Handbook
of Algebraic Topology”, edited by I.M. James. North Holland, 1995, pp 255-276.
[GM2] J. P. C. Greenlees and J. P. May. Equivariant stable homotopy theory. In “Handbook of
Algebraic Topology”, edited by .M. James. North Holland, 1995, pp 277-324.

2. Local and Cech cohomology in algebra

Suppose given a ring R, which may be graded and which need not be Noetherian,
and suppose given a finitely generated ideal I = (ay,aq,...,a,). If R is graded
the «; are required to be homogeneous.

For any element a, we may consider the stable Koszul cochain complex
K*(a) = (R — R[a™"])
concentrated in codegrees 0 and 1. Notice that we have a fiber sequence
K*a)—R — R[]

of cochain complexes.

We may now form the tensor product
Ko, .. ,a,) = K1) @ ... 0 K*(ay).

It is clear that this complex is unchanged if we replace some «; by a power, and
it is not hard to check the following result.

LEMMA 2.1. If 3 € I, then K*(ay,...,a,)[f7"] is exact. Up to quasi-isomor-
phism, the complex K*(aq, ... ,a,) depends only on the ideal I.
Therefore, up to quasi-isomorphism, K*(aq,. .. ,a,) depends only on the radical

of the ideal I, and we henceforth write K*(I) for it.

Following Grothendieck, we define the local cohomology groups of an R-module

M by

(2.2) (R M) = H*(K*(I) ® M),
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It is easy to see that HY(R; M) is the submodule
L;(M) = {m € M|I*m = 0 for some positive integer k}

of I-power torsion elements of M. If R is Noetherian it is not hard to prove
that Hj(R;-) is effaceable and hence that local cohomology calculates the right
derived functors of I';(+). It is clear that the local cohomology groups vanish above
codegree n; in the Noetherian case Grothendieck’s vanishing theorem shows that
they are actually zero above the Krull dimension of R. Observe that if 5 € [ then
H;(R; M)[3~'] = 0; this is a restatement of the exactness of K*(I)[57].

The Koszul complex K*(«) comes with a natural map ¢ : K*(a) — R; the
tensor product of such maps gives an augmentation ¢ : K*(/) — R. Define
the Cech complex C*(I) to be Y(Ker ). (The name is justified in [GM1].) By
inspection, or as an alternative definition, we then have the fiber sequence of
cochain complexes

(2.3) K*(I) — R — C*(I).
We define the Cech cohomology groups of an R-module M by
(2.4) CH;(R; M) = H*(C*(1) @ M).

We often delete R from the notation for these functors. The fiber sequence (2.3)
gives rise to long exact sequences relating local and Cech cohomology, and these
reduce to exact sequences

0— HY M) — M — CHYM) — H;} (M) — 0
together with isomorphisms

Hiy(M) = CH7Y(M).

A. Grothendieck (notes by R.Hartshorne). Local cohomology. Springer Lecture notes in mathe-
matics, Vol. 42. 1967.

3. Brave new versions of local and Cech cohomology

Turning to topology, we fix a compact Lie group G and consider G-spectra
indexed on a complete G-universe U. We let Si be the sphere GG-spectrum, and
we work in the category of Sg-modules. Fix a commutative Sg-algebra R and
consider R-modules M. We write

MS =x8(M) = Mz".

n
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Thus R is a ring and ME is an R-module.
Mimicking the algebra, for a € RS we define the Koszul spectrum K (a) by the

fiber sequence
K(a) — R — R[a™"].

Here, suppressing notation for suspensions, R[a™!] = hocolim(R - R - ...);
it is an R-module and the inclusion of R is a module map; therefore K(«) is an
R-module. Analogous to the filtration at the chain level, we obtain a filtration of
K(a) by viewing it as X' (R[1/a] U C'R).

Next we define the Koszul spectrum of a sequence aq,... ,«a, by
K(oaq,...,an) = K(a1) Ag ... A K(ay,).

Using the same proof as in the algebraic case we conclude that, up to equivalence,
K(aq,... ,a,) depends only on the radical of [ = (ay, ... ,a,); we therefore denote
it K(I). We then define the homotopy [-power torsion (or local cohomology)
module of an R-module M by

(3.1) T1(M) = K(I) Ar M.

In particular, I';(R) = K(I).

To calculate the homotopy groups of I';( M) we use the product of the filtrations
of the K(«;) given above. Since the filtration models the algebra precisely, there
results a spectral sequence of the form

(3:2) B3y = Hr (RO MO = ml(T1(M)
with differentials d" : B, — E{_ . .

REMARK 3.3. In practice it is often useful to use the fact that the algebraic local
cohomology Hj(R; M) is essentially independent of R. Indeed if the generators of [
come from a ring Ry (in which they generate an ideal Iy) via a ring homomorphism
0 : Ry — R, then H} (Ro; M) = Hj(R; M). In practice we often use this if the
ideal I of RS may be radically generated by elements of degree 0. This holds for
any ideal of S since the elements of positive degree in S& are nilpotent.

Similarly, we define the Cech spectrum of I by the cofiber sequence of R-modules

(3.4) K(I) — R — C(I).
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We think of C(1) as analogous to EG. We then define the homotopical localization
(or Cech cohomology) module associated to an R-module M by

(3.5) MY = C(I) Ar M.
In particular, R[I~'] = C(I). Again, we have a spectral sequence of the form
(3-6) E?,t = OH;S(RSQ M*G)t = 7T§+t(M[]_1])

with differentials d" : B, — E{_ . .
The “localization” M[I7'] is generally not a localization of M at a multiplica-

tively closed subset of R,. However, the term is justified by the following theorem
from [GM1, §5]. Recall the discussion of Bousfield localization from XXII§6.

THEOREM 3.7. For any finitely generated ideal I = (ay,...,a,) of RY, the
map M — M[I™'] is Bousfield localization with respect to the R-module R[I™]

or, equivalently, with respect to the wedge of the R-modules R[a;*].
Observe that we have a natural cofiber sequence

(3.8) Ly(M) — M — M[I7]

relating our [-power torsion and localization functors.

4. Localization theorems in equivariant homology

For an R-module M, we have the fundamental cofiber sequence of R-modules
(4.1) EGo ANM — M — EG A M.

Such sequences played a central role in our study of the Segal conjecture and
Tate cohomology, for example, and we would like to understand their homotopical
behavior. In favorable cases, the cofiber sequence (3.8) models this sequence and
so allows computations via the spectral sequences of the previous section. The

relevant ideal is the augmentation ideal
I = Ker(res$ : RS — R.).

In order to apply the constructions of the previous section, we need an assumption.
It will be satisfied automatically when RS is Noetherian.

ASSUMPTION 4.2. Up to taking radicals, the ideal [ is finitely generated. That
is, there are elements a4, ... ,a, € [ such that

V0, ..o ap) = V1.
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Under Assumption (4.2), it is reasonable to let K (/) denote K (a1, ..., ;). The
canonical map ¢ : K(I) — R is then a nonequivariant equivalence. Indeed, this is
a special case of the following observation, which is evident from our constructions.

LEMMA 4.3. Let H C G, let 3; € RY, and let v, = res%(3;) € RI. Then,

* 9

regarded as a module over the Sy-algebra R|y,

I((ﬂlv 76n)|H = [((717 7771)

Therefore, if 3; € Kerres$;, then the natural map K(3,---,3,) — R is an
H-equivalence.

Here the last statement holds since K(0) = R. If we take the smash product
of ¢ with the identity map of EG,, we obtain a G-equivalence of R-modules
EGi NK(I) — EGL A R. Working in the derived category (GZg, we may invert
this map and compose with the map

EGLNK(I)— S°ANK(I)= K(I)
induced by the projection EG, — S to obtain a map of R-modules over R
(4.4) k: EGL NR— K(I).
Passing to cofibers we obtain a compatible map
(4.5) ki EGANR— C(I).

Finally, taking the smash product over R with an R-module M, there results a
natural map of cofiber sequences

EGANM — M — EGA M

(4.6) l H
I';(M) M MI[I7"].

Clearly & is an equivalence if and only if kK is an equivalence. When the latter
holds, it should be interpreted as stating that the ‘topological’ localization of M
away from its free part is equivalent to the ‘algebraic’ localization of M away
from I. We adopt this idea in a definition. Recall the homotopical notions of
an R-ring spectrum A and of an A-module spectrum from XXII.4.1; we tacitly
assume throughout the chapter that all given R-ring spectra are associative and
commutative.



4. LOCALIZATION THEOREMS IN EQUIVARIANT HOMOLOGY 353

DEFINITION 4.7. The ‘localization theorem’ holds for an R-ring spectrum A if
fg=hkANid: EGANA=EGANRARA — C(I)Ar A

is a weak equivalence of R-modules, that is, if it is an isomorphism in G%g. It is
equivalent that

ka=kANid: EGENA=FEG, NRArA— K(I)Ar A
be an isomorphism in GZg.
In our equivariant context, we define the A-homology of an R-module M by
(4.8) AR (M) = 79 (M AR A);

compare XXII.3.1. This must not be confused with AY(X) = 7%(X A A), which
is defined on all G-spectra X. When A = R, A%% is the restriction of AY to
R-modules. When R = Sg, A9 is AS thought of as a theory defined on Se-

modules. In general, for G-spectra X, we have the relation
(19) AS(X) = ASH(E LX),

where the free R-module FrX is weakly equivalent to the spectrum X A R. The
localization theorem asserts that s is an AfF-isomorphism for all subgroups H
of G and thus that the cofiber Ok is Al acyclic for all H. Observe that the
definition of x impliesthat C'x is equivalent to EG/\K(]). We are mainly interested
in the case A = R, but we shall see in the next section that the localization theorem
holds for K¢ regarded as an Sg-ring spectrum, although it fails for S¢ itself. The
conclusion of the localization theorem is inherited by arbitrary A-modules.

LEMMA 4.10. If the localization theorem holds for the R-ring spectrum A, then
the maps
EGyAM — Ty M) and EGAM — M[I7]

of (4.6) are isomorphisms in G%g for all A-modules M.
PRrOOF. Cx Agr M 1s trivial since it 1s a retract in GPr of Ck AR AAg M. O
When this holds, we obtain the isomorphism
ME(EGy) =70 (EG A M) = 721 (M)

on passage to homotopy groups. Here, in favorable cases, the homotopy groups on
the right can be calculated by the spectral sequence (3.2). When M is split and
(¢ is finite, the homology groups on the left are the (reduced) homology groups
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M. (BG,) defined with respect to the underlying nonequivariant spectrum of M;
see XVI§2. We also obtain the isomorphism

ME(EG) = xZ(EGAM) = 3 (M[I7);

the homotopy groups on the right can be calculated by the spectral sequence (3.5).

More generally, it is valuable to obtain a localization theorem about FG 4 Ag X
for a general based G-space X, obtaining the result about BG . by taking X to
be S°. To obtain this, we simply replace M by M A X in the first equivalence of
the previous lemma. If M is split, we conclude from XVI§2 that

rEETANNEGL A X AM)) 2 MJ(EG, A X),
where Ad((G') is the adjoint representation of (. Thus we have the following
implication.
COROLLARY 4.11. If the localization theorem holds for A and M is an A-module
spectrum that is split as a G-spectrum, then
TS AMDM A X)) = M(EG, A X)
for any based G-space X. Therefore there is a spectral sequence of the form

B2, = Hi*(RY; ME (S48 X)), = Moy (BG4 A X).

5. Completions, completion theorems, and local homology

The localization theorem also implies a completion theorem. In fact, applying
the functor Fr(-, M) to the map &, we obtain a cohomological analogue of Lemma
4.10. To give the appropriate context, we define the completion of an R-module
M at a finitely generated ideal I by

(5.1) M} = Fr(K(I), M).

We shall shortly return to algebra and define certain “local homology groups”
Hy(R; M) that are closely related to the [-adic completion functor. In the topo-
logical context, it will follow from the definitions that the filtration of K(I) gives
rise to a spectral sequence of the form

(5.2) Byt = HL (Rg Mg)' = w2, (M])

with differentials d, : E*' — ESt71="+1 Here, if R} is Noetherian and M is
finitely generated, then
G *
T2 (Mp) = (Mg)7
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Again, a theorem from [GMI1, §5] gives an interpretation of the completion
functor as a Bousfield localization.

THEOREM 5.3. For any finitely generated ideal I = (ay,. .. ,a,) of RS, the map
M — M7 is Bousfield localization in the category of R-modules with respect to

the R-module K(I) or, equivalently, with respect to the smash product of the
R-modules R/ ;.

Returning to the augmentation ideal I, we have the promised cohomological
implication of the localization theorem; the case M = A is called the ‘completion
theorem’ for A.

LEMMA 5.4. If the localization theorem holds for the R-ring spectrum A, then
the map

M} = Fr(K(I),M) — Fp(EG. NR,M) = F(EG,, M)
is an isomorphism in GZp for all A-module spectra M.
PROOF. Fr(Ck, M) is trivial since any map C'x — M factors as a composite
Ck — CkARA— M A A— M,
and similarly for suspensions of C'k. [
When this holds, we obtain the isomorphism
7O (M) = ME(EG,)

on passage to homotopy groups. If M is split, the cohomology groups on the
right are the (reduced) cohomology groups M*(BG ) defined with respect to the
underlying nonequivariant spectrum of M; see XVI§2.

To obtain a completion theorem about FG Ag X for a based G-space X, we
replace M by F(X, M) in the previous lemma. If M is split, then

rS(F(EGy AN X, M)) = M*(EGy A X).

COROLLARY 5.5. If the localization theorem holds for A and M is an A-module
spectrum that is split as a G-spectrum, then

(P(X, M)} = M*(EGy Aq X)
for any based G-space X. Therefore there is a spectral sequence of the form

By = H (Ris ME(X))' = M (EGL Ao X).



