
102 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPY5. RO(G)-graded homology and cohomologyWe shall be precise about how to de�ne RO(G)-graded homology and cohomol-ogy theories in XIIIx1. Here we give an intuitive description. The basic idea isthat if we understand G-spheres to be representation spheres SV , then we mustunderstand the suspension axiom to allow suspension by such spheres. This forcesus to grade on representations. However, the standard term \RO(G)-grading" isa technical misnomer since the real representation ring RO(G) is de�ned in termsof isomorphism classes of representations, and this is too imprecise to allow thecontrol of \signs" (which must be interpreted as units in the Burnside ring of G).Thus, intuitively, a reduced RO(G)-graded homology theory ~EG� de�ned onbased G-spaces X consists of functors ~EG� : �hGT �! A b for all � 2 RO(G)together with suitably compatible natural suspension isomorphisms~EG� (X) �= ~EG�+V (�VX)for all G-representations V . We require each ~EG� to carry co�bration sequencesA �! X �! X=A of based G-spaces to three term exact sequences and to carrywedges to direct sums. We have combined the homotopy and weak equivalenceaxioms in the statement that the ~EG� are de�ned on �hGT .For each representation V with V G = 0, it follows by use of the suspension iso-morphism for S1 that the groups f ~EGV+njn 2Zg give a reducedZ-graded homologytheory in the sense that the evident equivariant analogs of the Eilenberg-Steenrodaxioms, other than the dimension axiom, are satis�ed. Taking V = 0, this givesthe underlying Z-graded homology theory of the given RO(G)-graded theory. Wecould elaborate by de�ning unreduced theories, showing how to construct unre-duced theories from reduced ones by adjoining disjoint basepoints and de�ningappropriate relative groups, and showing that unreduced theories give rise to re-duced ones in the usual fashion. However, we concentrate on the essential newfeature, which is the suspension axiom for general representations V .Of course, we have a precisely similar de�nition of an RO(G)-graded cohomol-ogy theory. There are two quite di�erent philosophies about these RO(G)-gradedtheories. One may view them as the right context in which to formulate calcula-tions. For example, there are calculations of Lewis that show that the cohomologyof a space may have an elegant algebraic description in RO(G)-graded cohomol-ogy that is completely obscured when one looks only at the Z-graded part of therelevant theory. In contrast, one may view RO(G)-gradability as a tool for thestudy of theZ-graded parts of theories. Our proof of the Conner conjecture in the



6. THE CONNER CONJECTURE 103next section will be a direct application of that philosophy.When can the Z-graded cohomology theory with coe�cients in a coe�cientsystem M be extended to an RO(G)-graded cohomology theory? If we are givensuch an extension, then the transfer maps � (G=H) : SV �! G=H+ ^ SV of (3.4)will induce transfer homomorphisms~HnH (X;M jH) �= ~Hv+nG (�V (G=H+ ^X);M)� �~HnG(X;M) �= ~Hv+nG (�VX;M):(5.1)Taking n = 0 and X = S0, we obtain a transfer homomorphism M(G=H) �!M(G=G). An elaboration of this argument shows that the coe�cient system Mmust extend to a Mackey functor. It is a pleasant fact that this necessary conditionis su�cient.Theorem 5.2. Let G be a compact Lie group and letM and N be a contravari-ant and a covariant coe�cient system The ordinary cohomology theory ~H�G(�;M)extends to an RO(G)-graded cohomology theory if and only if M extends to aMackey functor. The ordinary homology theory ~HG� (�;N) extends to an RO(G)-graded homology theory if and only if N extends to a coMackey functor.We shall later explain two very di�erent proofs. Waner will describe a chain levelconstruction in terms of G-CW(V ) complexes in the next chapter. I will describea spectrum level construction of the representing Eilenberg-MacLane G-spectrain XIIIx4.L. G. Lewis, Jr. The RO(G)-graded equivariant ordinary cohomology of complex projectivespaces with linearZ=p actions. Springer Lecture Notes in Mathematics Vol. 1361, 1988, 53-122.6. The Conner conjectureTo illustrate the force of RO(G)-gradability, we explain how the results statedin the previous two sections directly imply the following conjecture of Conner.Theorem 6.1 (Conner conjecture). Let G be a compact Lie group and letX be a �nite dimensional G-space with �nitely many orbit types. Let A be anyAbelian group. If ~H�(X;A) = 0, then ~H�(X=G;A) = 0.This was �rst proven by Oliver, using �Cech cohomology and wholly di�erenttechniques. It was known early on that the conjecture would hold if one couldconstruct a suitable transfer map.



104 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPYTheorem 6.2. Let X be any G-space and let � : X=H �! X=G be the naturalprojection, where H � G. For n � 0, there is a natural transfer homomorphism� : ~Hn(X=H;A) �! ~Hn(X=G;A)such that � � �� is multiplication by the Euler characteristic �(G=H).Proof. Tensoring the Mackey functorZof Proposition 4.3 with A, we obtain aMackey functor A whose underlying coe�cient system is constant at A. The mapA(G=H) �! A(G=G) associated to the stable transfer map G=G+ �! G=H+ ismultiplication by �(G=H). As we observed in our �rst treatment of Smith theory(IVx1), ordinary G-cohomology with coe�cients in a constant coe�cient systemis the same as ordinary nonequivariant cohomology on orbit spaces:Hn(X=H;A) �= HnH(X;AjH) and Hn(X=G;R) �= HnG(X;A):Taking M = A, (5.1) already displays the required transfer map. The formula for� ��� follows formally, but it can also be derived from the fact that the equivariantEuler characteristic SV �! G=H+ ^ SV �! SV ;regarded as a nonequivariant map, has degree �(G=H).How does the Conner conjecture follow? Conner himself proved it when G is a�nite extension of a torus, the methods being induction and use of Smith theory| one proves that both XG and X=G are A-acyclic. For example, the result for atorus reduces immediately to the result for a circle. Here the \�nitely many orbittypes" hypothesis implies that XG = XC for C cyclic of large enough order, sothat we really are in the realm where Smith theory can be applied. Assuming thatthe result holds when G is a �nite extension of a torus, let N be the normalizer ofa maximal torus in G. Then N is a �nite extension of a torus and �(G=N) = 1.The composite� � �� : ~Hn(X=G;A) �! ~Hn(X=N ;A) �! ~Hn(X=G;A)is the identity, and that's all there is to it.P. Conner. Retraction properties of the orbit space of a compact topological transformationgroup. Duke Math. J. 27(1960), 341-357.G. Lewis, J. P. May, and J. McClure. Ordinary RO(G)-graded cohomology. Bulletin Amer.Math. Soc. 4(1981), 208-212.R. Oliver. A proof of the Conner conjecture. Annals of Math. 103(1976), 637-644.



CHAPTER XG-CW(V ) complexes and RO(G)-graded cohomologyby Stefan Waner1. Motivation for cellular theories based on representationsIf a compact Lie group G acts smoothly on a smooth manifoldM then the actionis locally orthogonal. That is, for each x 2 M there is a Gx-invariant neighborhoodU of x di�eomorphic to the open unit disc in a representation V of Gx. Moreover,writing Gx as H, if L(H) is the tangent representation of H at eH 2 G=H, thenL(H) is a summand of V . (Of course, L(H) = 0 if G is �nite.) It follows thatthe G-orbit of x has a neighborhood di�eomorphic to G�H D(V � L(H)), whereV � L(H) is the orthogonal complement of L(H) in V .The above remarks seem to suggest that one ought to consider G-complexesmodeled by cells of this form. On the other hand, it has been established byBredon and others that ordinary G-CW complexes seem to su�ce for practicalpurposes. These are G-complexes with \cells" of the form G=H � Dn, where Gacts trivially on Dn. Basically, the local neighborhoods G �H D(V � L(H)) canbe G-triangulated into cells of the above form, so it would seem that there is noneed to consider anything more elaborate than G-CW complexes. But there aresome theoretical di�culties:(1) Duality doesn't work. That is, the cellular chains obtained from G-CWstructures on smooth G-manifolds do not exhibit Poincar�e duality. The geometricreason for this is that the dual of an n-dimensional G-cell G=H � Dn is not aG-cell. The dual cell to a zero dimensional cell G=H is de�ned as its star inthe �rst barycentric subdivision, while the duals of higher dimensional cells are105



106 X. G-CW(V ) COMPLEXES AND RO(G)-GRADED COHOMOLOGYintersections of such stars. In general, the dual of a G-cell G=H�Dn has the formG �H D(V � L(H) �Rn), where V is the local representation at eH. This reallyforces our hand.(2) One has the result, due to various authors (Lewis, May, McLure, Waner)that, if M is a Mackey functor, then Bredon cohomology with coe�cients in Mextends to an RO(G)-graded cohomology theory. This will be treated from thestable homotopy category point of view later in the book. The question then is:what is the geometric representation of the cells in dimension V ? In particular,can we write the V th cohomology group in terms of the cohomology of a cellularcochain complex?The purpose of this chapter is to outline the basic theory of cell complexesmodeled on representations of G, and to use them to construct explicit models ofordinary RO(G)-graded cohomology in which Poincar�e duality holds for certainclasses of G-manifolds. For reasons of clarity, only complexes modeled on a singlerepresentation V of G will be discussed. The more elaborate theory in which V isallowed to vary is already completed as joint work with Costenoble and May, andsome of it has appeared in papers of Costenoble and myself. Roughly speaking,whatever works for a single representation generalizes to the more elaborate case.When G is not �nite, there appear to be two theories of G-CW(V ) complexes.The one that I will concentrate on will be the one that is not dual to the usualG-CW theory (on suitable G-manifolds), but that does work as a cellular theoryand gives rise to ordinary RO(G)-graded cohomology. To make amends, we willvery briey indicate the present state of the variant that gives the true dual theory.S. R. Costenoble and S. Waner. The equivariant Thom isomorphism theorem. Paci�c J. Math.152(1992), 21-39.S. R. Costenoble and S. Waner. Equivariant Poincar�e duality. Michigan Math. J. 39(1992).2. G-CW(V ) complexesLet V be a �xed given orthogonal representation of G and write dim V = jV j.To understand the de�nitions that follow, it is useful to keep in mind the followingobservation, whose easy inductive proof will be left to the reader.Lemma 2.1. Let Hn � Hn�1 � � � � � H0 = G be a strictly increasing chain ofsubgroups of G such that each Hi occurs as the isotropy subgroup of some pointin V (the point 0 having isotropy group G). Then, as a representation of Hn, Vcontains a trivial representation of dimension n.



2. G-CW(V ) COMPLEXES 107For H � G, we let V (H) denote the orthogonal complement of V H in V . If Wis an H-module, we let D(W ) and S(W ) denote the unit disc and sphere in W .Definition 2.2. A G-CW(V ) complex is a G-space X with a decompositionX = colimnXn such that X0 is a disjoint union of G-orbits of the form G=H,where H acts trivially on V , and Xn is obtained from Xn�1 by attaching \cells"G �H D(V (H) �Rt), where jV (H)j+ t = n, along attaching G-mapsG�H S(V +Rt) �! Xn�1:A map f : X �! Y between G-CW(V ) complexes is cellular if f(Xn) � Y n for alln, and the notions of skeleta, dimension, subcomplex, relativeG-CW(V ) complex,and so on are de�ned as one would expect from the classical case V = 0.Remarks 2.3. (i) Although imprecise, it is convenient to think of V (H) � Rtas V +Rs, where jV j+ s = n and thus jV Hj+ s = t; here s may be negative, butthen the de�nition implies that jV Hj � �s for all subgroups H occurring in thedecomposition.(ii) The stipulation on the dimension implies that the cell G�H D(V (H)�Rt) isan (n+ dimG=H)-dimensional G-manifold.The last observation explains why the de�nition does not give the true dualtheory when G has positive dimension. The following variant recti�es this. How-ever, this theory has not yet been worked out thoroughly or extended to deal withvarying representations, although we suspect that all works well.Variant 2.4. Let G be an in�nite compact Lie group. There is a variant def-inition of a G-CW(V ) complex which di�ers from the de�nition given in that werequire X0 to be a disjoint union of �nite orbits G=H such that H acts trivially onV and we attach cells of the form G�H D((V � L(H)) +Rs), where jV j+ s = n,when constructing Xn from Xn�1. Here L(H) is the tangent representation ofG=H at eH, and the de�nition implies that L(H) is contained in V jH for all sub-groups H occurring in the decomposition. With these stipulations on dimensions,the n-cells that we attach are n-dimensional G-manifolds.Part of our motivation comes from consideration of G-manifolds that are locallymodeled on a single representation.



108 X. G-CW(V ) COMPLEXES AND RO(G)-GRADED COHOMOLOGYDefinition 2.5. A smooth G-manifoldM has dimension V if, for each x 2M ,there is a Gx-invariant neighborhood U of x that is di�eomorphic to the open unitdisc in the restriction of V to Gx. It follows that L(H) embeds in V jH and theorbit Gx has a neighborhood of the form G �H D(V � (L(H)). Any smooth G-manifoldM each of whose �xed point sets is non-empty and connected must havedimension V , where V is the tangent representation at any G-�xed point. Moregenerally,M has dimension V � i for a positive integer i � jV j if, for each x 2M ,Gx acts on V with an i-dimensional trivial summand and there is a Gx-invariantneighborhood U of x that is Gx-di�eomorphic to the open unit disc in V � Ri.Thus, if M has dimension V , then @M has dimension V � 1. For example, D(V )is a V -dimensional manifold and S(V ) is a (V � 1)-dimensional manifold.When G is �nite, G-manifolds of dimension V and their bordism theories were�rst discussed by Pulikowski and Kosniowski; I later carried the study further. Bya theorem of Stong, if G is �nite of odd order, then any G-manifold is cobordantto a sum of G-manifolds of the form G�H N , where N has dimensionW for someH-module W .The classical theory of dual cell decompositions of smooth manifolds (for whichsee Seifert and Threlfall) generalizes to V -manifolds. We shall not go into thede�nitions needed to make this precise. The intuition comes from equivariantSpanier-Whitehead and Atiyah duality, which will be discussed in XVIxx7-8. If aclosed smooth G-manifoldM embeds in V , thenM+ is V -dual to the Thom spaceT� of the normal bundle of the embedding. In the case M = G=H, this normalbundle is T� = G+ ^H SV�L(H).Proposition 2.6. If G is �nite, then we obtain a G-CW(V ) structure on a(V � i)-dimensional manifold M by passage to dual cells from an ordinary G-CW structure. With the variant de�nition of a G-CW(V ) complex, the statementremains true for general compact Lie groups G.From now on, we restrict attention to our �rst de�nition of a G-CW(V ) complex.Lemma 2.7. If X is a G-CW complex, then X �D(V ) has the structure of aG-CW(V ) complex under the usual product structure. Therefore, for any V , anyG-CW complex is G-homotopy equivalent to a G-CW(V ) complex.Proposition 2.8. For any V , a G-space has the G-homotopy type of a G-CWcomplex if and only if it has the G-homotopy type of a G-CW(V ) complex.



3. HOMOTOPY THEORY OF G-CW(V ) COMPLEXES 109The lemma gives the forward implication in the case of �nite G. The casefor general compact Lie groups is harder, and we need to use the equivariantversion of Brown's construction to give a brute force weak G-approximation by aG-CW(V ) complex. That this approximation is in fact a G-homotopy equivalencethen follows from the converse and the G-Whitehead theorem. For the converse,if X is a G-CW(V ) complex, then X is a colimit of spaces of the G-homotopytype of G-CW complexes, and thus X is also such a homotopy type by a telescopeargument and the homotopy invariance of colimits.Proposition 2.9. If X and Y have, respectively, a G-CW(V ) and G-CW(W )structure, then X � Y has a G-CW(V �W ) structure.C. Kosniowski. A note on RO(G)-graded G-bordism. Quart J. Math. Oxford 26(1975), 411-419.W. Pulikowski. RO(G)-graded G-bordism theory. Bull. de L'academie Pol. des Sciences11(1973), 991-999.H. Seifert and W. Threlfall. A Textbook of Topology (translation). Academic Press. 1980.R. E. Stong. Unoriented bordism and actions of �nite groups. Memoirs A.M.S. No. 103. 1970.Equivariant RO(G)-graded bordism theories. Topology and its Applications. 17(1984), 1-26.3. Homotopy theory of G-CW(V ) complexesWe now do a little homotopy theory. Since we are using representations tode�ne attaching maps, it is reasonable to consider the homotopy groups that werede�ned in terms of representations in IX.1.1.Definition 3.1. A G-space X is V -connected ifXH is jV H j-connected for eachclosed subgroup H � G. Let e : X �! Y be a G-map and let n be an integer.Then e is a (V + n)-equivalence if, for each H � G and each choice of basepointin XH , e� : �HV (H)+q(X) �! �HV (H)+q(Y ) is an isomorphism if q � jV Hj+n� 1 andan epimorphism if q � jV Hj+ n.Theorem 3.2 (HELP). Let e : Y �! Z be a (V + n)-equivalence and let(X;A) be a relative G-CW(V ) complex of dimension � jV j + n. Then we can



110 X. G-CW(V ) COMPLEXES AND RO(G)-GRADED COHOMOLOGYcomplete the following homotopy extension and lifting diagram:A //i0��i A� I��{{ hxxxxxxxxx Ao o i1 ~~ g}}}}}}}} �� iZ Yoo eX ??f ~~~~~~~~ //i0 X � I~hccF F F F F X:oo i1 ~g` `A A A ASketch of Proof. We extend the G-maps g and h cell-by-cell and work in-ductively. This reduces the problem to the special case where A = G �H S(W )and X = G�H D(W ). The pair (X;A) then has the structure of a relative G-CWcomplex with G-cells of the form G=K �Dr with r � jWKj � jV Kj + n and Ksubconjugate to H. Since eK is a (jV Kj+ n)-equivalence, this allows us to applythe HELP theorem of ordinary G-homotopy theory to complete the proof.Theorem 3.3 (G-CW(V ) Whitehead). Let e : Y �! Z be a (V + n)-equivalence and let X be a G-CW(V ) complex. Then e� : [X;Y ]G �! [X;Z]G(unbased G-homotopy classes) is an isomorphism if dimX < n + jV j and an epi-morphism if dimX = n+ jV j. Moreover the conclusion remains true if n =1.Proof. As usual, apply HELP to the pair (X; ;) for surjectivity and to thepair (X � I;X � @I) for injectivity.Theorem 3.4 (Cellular Approximation). Every G-map f : X �! Y ofG-CW(V ) complexes is G-homotopic to a cellular map. If f is already cellular ona subcomplex A, then the homotopy can be taken relative to A.Sketch of proof. One easily shows that the inclusion i : Y n �! Y is a(V +n�jV j)-equivalence, and HELP then applies inductively to push Xn into Y nand give the required homotopy.Theorem 3.5. For any G-space X, there is a G-CW(V ) complex �X and aweak equivalence  : �X �! X.Sketch of proof. In view of Proposition 2.8, this follows directly from theanalog for ordinary G-CW complexes.



4. ORDINARY RO(G)-GRADED HOMOLOGY AND COHOMOLOGY 1114. Ordinary RO(G)-graded homology and cohomologyRecall the discussion of stable coe�cient systems, alias Mackey and coMackeyfunctors, from IXx4. The algebra of stable coe�cient systems works in the sameway as the algebra of coe�cient systems discussed in Ix3. The categories of Mackeyfunctors and of coMackey functors are Abelian. If M and N are, respectively,Mackey and coMackey functors, we have the coend or tensor product M 
BG N .If M and M 0 are Mackey functors, we have the group of natural transformationsHomBG(M;M 0):Observe that, for any based G-spaces X and Y , we have a Mackey functorfX;Y gG with values fX;Y gG(G=H) = fG=H+ ^X;Y gG:The contravariant functoriality is given by composition in the evident way.Definition 4.1. Let X be a G-CW(V ) complex. De�ne a chain complexCV� (X) in the Abelian category of Mackey functors as follows. LetCVn (X) = nSV�jV j+n;Xn=Xn�1oG:This is the stable H-homotopy group of Xn=Xn�1 in dimension V � jV j+ n. Letdn : CVn (X) �! CVn�1(X)be the stable connecting homomorphism of the triple (Xn;Xn�1;Xn�2).Observe that Xn=Xn�1 is the wedge over the n-cells of X of G-spaces of theform G=H+ ^ SV�jV j+n and that CVn (X) is the direct sum of corresponding freeMackey functors represented by the objects G=H.Definition 4.2. Let X be a G-CW(V ) complex. For a Mackey functor M ,de�ne the ordinary cohomology of X with coe�cients in M to beHV+nG (X;M) = H jV j+nHomBG(CV� (X);M):For a coMackey functor N , de�ne the ordinary homology of X with coe�cients inN to be HGV+n(X;N) = HjV j+n(CV� (X) 
BG N):



112 X. G-CW(V ) COMPLEXES AND RO(G)-GRADED COHOMOLOGYPrecisely similar de�nitions apply to give relative homology and cohomologygroups for relative G-CW(V ) complexes (X;A). In the special case when A is asubcomplex of X, CV� (X;A) is isomorphic to CV� (X)=CV� (A), and we obtain theexpected long exact sequences. If � 2 X is a G-�xed basepoint and (X; �) is arelative G-CW(V ) complex, we de�ne the reduced homology and cohomology ofX by~HV+nG (X;M) = HV+nG (X; �;M) and ~HGV+n(X;N) = HGV+n(X; �;N):Observe, however, that � cannot be a vertex of X unless G acts trivially on V , byour limitation on the orbits G=H that are allowed in the zero skeleta of G-CW(V )complexes.Using cellular approximation, homology and cohomology are seen to be functo-rial on the homotopy category of G-CW(V ) complexes. We extend the de�nitionto arbitrary G-spaces by using approximations by weakly equivalent G-CW(V )complexes. The de�nitions for pairs extend similarly. Finally, we extend thegrading to all of RO(G) by setting~HW�V +nG (X;M) = ~HW+nG (�VX;M)and ~HGW�V+n(X;N) = ~HGW+n(�VX;N):We easily deduce from a relative version of Proposition 2.9 that, for a relativeG-CW(W ) complex (X; �) and any representation V , (�VX; �) inherits a structureof relative G-CW(V � W ) complex such that the W -cellular chain complex of(X; �) is isomorphic to the (V �W )-cellular chain complex of (�VX; �), with anappropriate shift of dimensions. This gives isomorphisms~HW+nG (X;M) �= ~HV�W+nG (�VX)and ~HGW+n(X;M) �= ~HGV�W+n(�VX):It is quite tedious, but not di�cult, to verify the precise axioms for RO(G)-graded homology and cohomology theories from the de�nitions just indicated.The alternative construction by stable homotopy category techniques in XIIIx4 isless tedious, but perhaps less intuitive.



4. ORDINARY RO(G)-GRADED HOMOLOGY AND COHOMOLOGY 113Remarks 4.3. (1) There is a twisted version of the theory, where the twistingis taken over the fundamental groupoid of X.(2) As already indicated, this theory also extends to a theory graded on represen-tations of the fundamental groupoids of G-spaces. Roughly, such a representationassigns a representation to each component of each �xed point set in an appropri-ately coherent fashion. We also have a twisted version of this fancier theory.(3) In the untwisted theory given above, Poincar�e duality and the Thom iso-morphism theorem hold for oriented V -manifolds. These are V -manifolds whosetangent bundles admit orientations in the geometric sense. They possess funda-mental classes in dimension V .(4) There is also a version of the Hurewicz theorem, which Lewis will discuss inthe next chapter.(5) There is an unpublished theory of equivariant Chern classes which live ino�-integral dimensions, but this theory is not yet well-understood.(6) The cohomology of a point is highly nontrivial, since there is no dimensionaxiom away from integer gradings. Indeed, among other applications related toordinary cohomology, I have a curious result to the e�ect that if you localize thecohomology of a point by inverting a Chern class in dimension V � jV j, where Vcontains a free G-orbit, then you get the cohomology of BG.Remark 4.4. The chain level construction just sketched has applications tomanifold theory. Since Poincar�e duality works for this theory (V -manifolds havefundamental classes in the twisted theory), Costenoble and I have been able touse it to obtain a workable de�nition of Poincar�e duality spaces and to prove a��� theorem for such spaces, giving a criterion for a G-CW complex to have theG-homotopy type of a G-manifold in the presence of suitable \gap hypotheses"on the homotopy groups of its �xed point spaces. We have also extended this tothe case of simple G-homotopy theory, since it turns out that Poincar�e duality isgiven by a simple chain equivalence, just as in the nonequivariant case. Thus wecan say when a G-CW complex has the simple G-homotopy type of a G-manifold.S. R. Costenoble and S. Waner. G-transversality revisited. Proc. A.M.S. 116(1992), 535-546.S. R. Costenoble and S. Waner. The equivariant Spivak normal bundle and equivariant surgery.Michigan Math. J. To appear.L. G. Lewis, Jr., Equivariant Eilenberg-MacLane spaces and the equivariant Seifert-van Kampenand suspension theorems. Topology and its Applications 48 (1992), 25-61.S. Waner. A generalization of the cohomology of groups. Proc. Amer. Math. Soc. 85(1982),469-474.



114 X. G-CW(V ) COMPLEXES AND RO(G)-GRADED COHOMOLOGYS. Waner. Equivariant covering spaces and cohomology. Proc. Amer. Math. Soc. 88(1983),351-356.S. Waner. Mackey functors and G-cohomology. Proc. Amer. Math. Soc. 90(1984), 641-648.S. Waner. Periodicity in the cohomology of universal G-spaces. Illinois J. Math. 30(1986),468-478.



CHAPTER XIThe equivariant Hurewicz and Suspension Theoremsby L. Gaunce Lewis, Jr.1. Background on the classical theoremsWe begin by recalling the statements of two basic theorems in nonequivarianthomotopy theory. The �rst of these is the very familiar Hurewicz Theorem.Theorem A. If Y is a simply connected space and n � 2, then the followingare equivalent:(i) Hk(Y ;Z) = 0 for all k < n.(ii) �kY = 0 for all k < n.Moreover, either of these implies that the Hurewicz homomorphismh : �nY ! Hn(Y ;Z)is an isomorphism.There is, of course, an extension of this theorem that describes the relationbetween �1Y and H1(Y ;Z), but we shall here restrict attention to the simply con-nected case, in both nonequivariant and equivariant homotopy theory, to avoidsome unpleasant technicalities that obscure the central issues. The Hurewicz the-orem is important because it describes the basic connection between the two mostcommonly used functors in algebraic topology. It allows us to convert informationabout homology groups, which are relatively easy to compute, into informationabout homotopy groups, which are much harder to compute but also much moreuseful.The second theorem is the Freudenthal suspension theorem.115



116 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSTheorem B. Let Y be an n-connected space, where n � 1, and let X be a�nite CW complex. Then the suspension map� : [X;Y ] ! [�X;�Y ]is surjective if dimX � 2n + 1 and bijective if dimX � 2n.Historically, this result grew out of Freudenthal's study of the homotopy groupsof spheres. His original version of this result merely gave conditions on m and nunder which the suspension map� : �nSm ! �n+1Sm+1was surjective or bijective. This initial result was rather quickly extended to onegiving conditions under which the suspension map� : �nY ! �n+1�Ywas surjective or bijective. Eventually, the result was generalized to Theorem B.As with the Hurewicz Theorem, this result allows us to compare a well-behavedobject that we have some hope of understanding with an apparently less well-behaved one. The point here is that [�X;�Y ] is a group and, if we suspend itonce more, it becomes an abelian group. On the other hand, [X;Y ] need onlybe a pointed set. As a vague general principle, which will be made more preciselater, the more we suspend a space, the more algebraic tools (like group structures)we gain for the study of the space. The Freudenthal result allows us to convertinformation that we obtain working in the more structured setting of objects thathave been repeatedly suspended into information about the original, unsuspended,objects.These two basic theorems are actually quite closely related. If one constructshomology using Eilenberg-MacLane spaces, then the Hurewicz theorem follows di-rectly from the suspension theorem and the simple observation that the Eilenberg-MacLane space K(Z; n) in dimension n associated to the groupZhas a CW struc-ture in which the bottom cell is a sphere in dimension n and in which there are no(n+1)-cells. The Hurewicz map itself is derived from the inclusion of this bottomcell. If one thinks of homology in terms of the Eilenberg-MacLane spectrum KZassociated to the group Z, then the Hurewicz theorem follows even more directlyfrom the suspension theorem and the observation that KZhas a CW structurein which the bottom cell is a copy of the zero sphere and in which there are no1-cells.



2. FORMULATION OF THE PROBLEM AND COUNTEREXAMPLES 117We shall discuss the equivariant analogues of these two theorems in this chapter.Full details and more general versions of the results are given in the �rst two ofthe following three papers; we shall occasionally refer to these papers by number,and a little guide to them is given in a scholium at the end of the chapter.[L1] L. G. Lewis, Jr., Equivariant Eilenberg-Mac Lane spaces and the equivariant Seifert-vanKampen and suspension theorems. Topology and its Applications 48 (1992), 25-61.[L2] L. G. Lewis, Jr., The equivariant Hurewicz map. Trans. Amer. Math. Soc., 329 (1992),433-472.[L3] L. G. Lewis, Jr., Change of universe functors in equivariant stable homotopy theory. Fund.Math. To appear.2. Formulation of the problem and counterexamplesThroughout the chapter, we assume that G is a compact Lie group and that thespaces considered are leftG-spaces. There are two issues that come up immediatelywhen one starts thinking about generalizing these basic theorems to the equivariantcontext. The �rst is how one should measure the connectivity of G-spaces. Thereare two solutions to this problem. The �rst is the notion of V -connectivity thatStefan Waner introduced in the previous chapter. This notion focuses on a singleG-representation V and measures the connectivity of a G-space Y as seen throughthe \eyes" of that representation. The other notion of equivariant connectivityis less dependent on individual representations and somewhat less exotic in itsde�nition. It too has already been introduced earlier, but we recall the de�nition.Definition 2.1. (a) A dimension function � is a function from the set of con-jugacy classes of subgroups of G to the integers � �1. Write n� for the dimensionfunction that takes the value n at each H. Associated to any G-representationV is the dimension function jV �j whose value at K is the real dimension of theK-�xed subspace V K of V .(b) Let � be a dimension function. Then a G-space Y is G-�-connected if, foreach subgroup K of G, the �xed point space Y K is �(K)-connected. The basedG-space Y is homologically G-�-connected if, for every subgroup K of G and everyinteger m with 0 � m � �(K), the equivariant homology group ~HKmY is zero. AG-space Y is G-connected if it is G-0�-connected. A G-space is simply G-connectedif it is G-1�-connected. The pre�x \G-" will be deleted from the notation wheneverthe omission should not lead to confusion.(c) De�ne the connectivity function c�Y of a G-space Y by letting cKY be theconnectivity of the space Y K for each subgroup K of G. De�ne cKY = �1 if Y Kis not path connected.



118 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSA basic result of Waner indicates that the two rather di�erent measures ofequivariant connectivity that we have described are intimately related.Lemma 2.2. Let Y be a G-space and V be a G-representation. Then the spaceY is V -connected if and only if it is jV �j-connected.Because of this lemma, we will use the terms V -connected and jV �j-connectedinterchangeably.The second issue that comes up immediately is what sort of suspensions onewishes to allow in the equivariant context and, intimately tied to that, how onegrades equivariant homotopy and homology groups. The point here is that onemay de�ne �Y to be Y ^ S1. Therefore, in the equivariant context, if V is aG-representation and SV is its one-point compacti�cation (with G acting triviallyon the point at in�nity, which is taken to be the basepoint), then it is natural tothink of Y ^ SV as the suspension �V Y of Y by V . With this viewpoint, it isnatural to want an equivariant suspension theorem which describes the map�V : [X;Y ]G ! [�VX;�V Y ]G:Moreover, since, in the nonequivariant context, �nY is just [Sn; Y ], it is naturalto regard [SV ; Y ]G as the V th homotopy group (or set) �GV Y . Thus, we would liketo have a V th homology group HGV Y , an equivariant Hurewicz maph : �GV Y ! HGV Y ;and an equivariant Hurewicz theorem that tells us when this map is an isomor-phism. The previous chapter has already given one construction of HGV Y , andChapter XIII will give another. The precise de�nition of the map h is given in[L2], but it should become apparent from the discussion of the relationship betweenequivariant spectra and equivariant homology to be given later.We must still resolve the issue of what coe�cients should be used for this ho-mology group since it is very important in the nonequivariant Hurewicz Theoremthat integral coe�cients be used. Burnside ring coe�cients turn out to be theappropriate ones, essentially because the equivariant zero stem is the Burnsidering.It should be fairly clear that the sort of equivariant suspension theorem that wewould like to have would be something along the lines of:



2. FORMULATION OF THE PROBLEM AND COUNTEREXAMPLES 119\Theorem". Let Y be a simply G-connected space, X be a �nite G-CW com-plex, and V be a G-representation. Then the suspension map�V : [X;Y ]G ! [�VX;�V Y ]Gis surjective if, for every subgroup K of G, dimXK � 2cKY + 1 and is bijectiveif, for every subgroup K, dimXK � 2cKY .Unfortunately, this result is wildly false. For example, let G = Z=2, n � 3,and V be the real one-dimensional sign representation of G. Then our proposed\Theorem" would require that the maps�V : [Sn; Sn]G ! [Sn+V ; Sn+V ]Gand �V : [Sn+V ;�n+VG+]G ! [Sn+2V ;�n+2VG+]Gbe isomorphisms. However, simple calculations give that[Sn; Sn]G =Z and [Sn+V ; Sn+V ]G =Z2;[Sn+V ;�n+VG+]G =Z2 and [Sn+2V ;�n+2VG+]G =Z:Thus, the �rst of the two maps above can't be surjective and the second can'tbe injective. In fact, calculations for arbitrary groups G and low-dimensionalnontrivial G-representations V and W suggest that the suspension map�W : [SV ; SV ]G ! [SV+W ; SV+W ]Gis almost never an isomorphism. The restriction of \low dimension" is essentialhere because, as we have seen in IX.2.3, if G is �nite and V contains enoughcopies of the regular representation of G, then �W is an isomorphism for anyG-representation W . Similar calculations of equivariant homotopy and homologygroups suggest rather quickly that there is no simple generalization of the Hurewicztheorem to the equivariant context.One way to save the equivariant suspension theorem is to insert additionalhypotheses, as in IX.1.4. The inequalities required there between the dimensionof Y H and the connectivity of Y K when K � H with V K 6= V H tend to be quiterestrictive and hard to verify. Thus, what we intend to discuss is another approachto generalizing the Hurewicz and suspension theorems to the equivariant context.For this alternative approach, we must revert to the earlier form of the suspensiontheorem which deals only with the suspension of homotopy groups.



120 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMS3. An oversimpli�ed description of the resultsHereafter, in discussing the suspension map�W : [X;Y ]G ! [�WX;�WY ]G;we will consider only the case in which X = SV for some G-representation V . As amatter of convenience, we will assume that the representation V contains at leasttwo copies of the one-dimensional trivial G-representation. This ensures that theset �GV Y is an abelian group. The motivation for the alternative approach is that,even though the suspension map�W : [SV ; SV ]G ! [SV+W ; SV+W ]Gis rather badly behaved, we can, at least in theory, compute exactly what it does.Thus, it is reasonable to ask if our understanding of this map can be used to shedsome light on the suspension map�W : �GV Y = [SV ; Y ]G ! [SV+W ;�WY ]G = �GV+W�WYfor any suitably connected G-space Y .A feeling for the sort of result that we should expect is best conveyed by aslight oversimpli�cation of the actual result. The set [SV ; SV ]G is a ring undercomposition. Here the right distributivity law depends on the fact that V containstwo copies of R and uses IX.1.4, which ensures that every element of [SV ; SV ]G isa suspension. Moreover,�W : [SV ; SV ]G ! [SV+W ; SV+W ]Gis a ring homomorphism. For any based G-space Y , the abelian groups �GV Yand �GV+W�WY may be regarded as modules over [SV ; SV ]G and [SV+W ; SV+W ]G,respectively. If �GV+W�WY is regarded as a [SV ; SV ]G-module via the ring homo-morphism [SV ; SV ]G ! [SV+W ; SV+W ]G;then the map �W : �GV Y ! �GV+W�WYis a [SV ; SV ]G-module homomorphism. The usual change of rings functor convertsthe [SV ; SV ]G-module �GV Y into the [SV+W ; SV+W ]G-module�GV Y 
[SV ;SV ]G [SV+W ; SV+W ]G:



3. AN OVERSIMPLIFIED DESCRIPTION OF THE RESULTS 121The homomorphism �W induces an [SV+W ; SV+W ]G-module homomorphismb�W : �GV Y 
[SV ;SV ]G [SV+W ; SV+W ]G ! �GV+W�WY:The alternative suspension theorem should, in this oversimpli�ed form, assert thatthe map b�W , rather than �W , is an isomorphism or epimorphism.We would also like to obtain an equivariant Hurewicz theorem along the samelines. Again, to convey some intuition for what we hope to prove, we begin withan oversimpli�ed version of the desired theorem. If one has a su�ciently slickde�nition of the homology group HGV Y , then it is obvious that this group is amodule over the ring [SV ; SV ]G . Moreover, there is an equivariant Hurewicz maph : �GV Y ! HGV Ythat is a [SV ; SV ]G-module homomorphism. However, the group HGV Y carries a farricher structure than just that of a [SV ; SV ]G-module. For any G-representationW , there is a homology suspension isomorphism HGV Y �= HGV+W�WY . Here, ourassumption that V contains at least two copies of the trivial representation removesthe need to worry about reduced and unreduced homology. This isomorphismindicates that HGV Y actually carries the structure of a [SV+W ; SV+W ]G-module. Abit of �ddling with the de�nitions indicates that the [SV ; SV ]G-module structureon HGV Y is just that obtained by restricting the [SV+W ; SV+W ]G-module structurealong the ring homomorphism�W : [SV ; SV ]G ! [SV+W ; SV+W ]G:Since this is true for everyG-representationW , what we have onHGV Y is a coherentfamily of [SV+W ; SV+W ]G-module structures for all possible representations W .This suggests that we introduce a new ring in which we let W go to in�nity. Thisring ought to be de�ned as some sort of colimit of the rings [SV+W ; SV+W ]G, whereW ranges over all possible �nite-dimensional representations of G.As was explained in IXxx3,4, we use a complete G-universe U to make thiscolimit precise. With the notations there, the ring structure on BG = fS0; S0gG isthat inherited from the ring structures on the [SV ; SV ]G. Since U is complete, itcontains a copy of every representation V . Selecting one of these copies, we obtaina ring homomorphism �1 : [SV ; SV ]G ! BG:It can be shown that �1 is actually independent of the choice of the copy of V in U .It follows from our observation about the module structures on HGV Y that HGV Ycarries the structure of a BG-module. Moreover, its natural [SV ; SV ]G-module



122 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSstructure is just that obtained by restricting the BG-module structure along �1.The Hurewicz map h : �GV Y ! HGV Yinduces a map bh : �GV Y 
[SV ;SV ]G BG ! HGV Yof BG-modules. In this oversimpli�ed outline form, our equivariant Hurewicz the-orem gives conditions under which the map bh, rather than the map h, is an iso-morphism.The proposed equivariant suspension and Hurewicz theorems may seem morereasonable if one considers the nonequivariant Hurewicz theorem in dimension 1.This result asserts that, if Y is connected, then the map h : �1Y ! H1Y inducesan isomorphism between H1Y and the abelianization of �1Y . We are encounteringthe same sort of phenomenon in the equivariant context|that is, we are tryingto compare two objects which carry rather di�erent structures. The two objectsbecome isomorphic when we modify the less well-structured one to have the samesort of structure as that carried by the nicer object.4. The statements of the theoremsThe oversimpli�cation in the introduction to our two theorems comes from thefact that, in order to understand the maps�W : �GV Y ! �GV+W�WYand h : �GV Y ! HGV Yfully, one must look not only at the group �GV Y , but also at the groups �KV Y forall the subgroups K of G. The maps b�W and bh constructed in the rough sketchof our results do not take into account the inuence that the groups �KV Y have onthe maps �W and h. In order to take this inuence into account, we must replacethe ring [SV ; SV ]G with a small Ab-category BG(V ) and replace the module �GV Ywith a contravariant additive functor �GV Y from BG(V ) into the category Ab ofabelian groups. The category BG(V ) and the functor �GV Y should be regardedas bookkeeping devices that allow us to keep track of the inuence of the groups�KV Y on the maps �W and h.Recall the de�nitions of the Burnside categoryBG and of Mackey functors fromIX.4.1 and IX.4.2.



4. THE STATEMENTS OF THE THEOREMS 123Definition 4.1. (a) Let V be a �nite-dimensional representation of G thatcontains at least two copies of the trivial representation. The V -Burnside categoryBG(V ) has as its objects the orbits G=K. The set of morphisms from G=K toG=J in BG(V ) is [�VG=K+;�VG=J+]G. Note that the morphism sets of BG(V )are abelian groups.(b) If V and W are G-representations of G, then suspension gives a functors : BG(V ) ! BG(V +W )that is the identity on objects. Moreover, any inclusion of V into the G-universeU gives a functor s1 :BG(V ) ! BGthat is also the identity on objects. It can be shown that the functor s1 isindependent of the choice of the copy of V in U .Motivated by the interpretation of contravariant additive functors BG �! A bas Mackey functors, we refer to contravariant additive functors BG(V ) �! A b asV -Mackey functors for any compact Lie group G and G-representation V . The cat-egory of V -Mackey functors and natural transformations between such is denotedMG(V ). The category of Mackey functors is denoted MG.Examples 4.2. (a) If V is a representation of G that contains at least two copiesof the trivial representation and Y is a G-space, then the homotopy group �GV Ycan be extended to a V -Mackey functor �GV Y . For K � G, we de�ne (�GV Y )(G=K)to be the group [�VG=K+; Y ]G �= [SV ; Y ]K = �KV Y:The e�ect of a morphism f in BG(V )(G=K;G=J) = [�VG=K+;�VG=J+]G on(�GV Y )(G=J) is just that of precomposition by f .(b) If V is a G-representation and Y is a G-space, then the homology groupHGV Y can be extended to a Mackey functor HGV Y . If K � G, then(HGV Y )(G=K) = HKV Y:The functoriality of HGV Y on BG will be apparent from the spectrum level con-struction of XIIIx4.Our actual equivariant suspension and Hurewicz theorems describe the relationsamong the functors �GV Y , �GV+W�WY , and HGV Y . In order to state these theorems,we must introduce the change of category functors that replace the change of ringfunctors that were used in the intuitive presentation of our results.



124 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSDefinition 4.3. (a) Precomposition by the functors s and s1 of De�nition 4.1gives functors s� :MG(V +W ) ! MG(V )and s�1 :MG ! MG(V ):These functors have left adjointss� :MG(V ) ! MG(V +W )and s1� :MG(V ) ! MGthat are given categorically by left Kan extension.(b) The suspension maps�KW : �KV Y ! �KV+W�WY;as K varies over the subgroups of G, �t together to form a natural transformation�W : �GV Y ! s��GV+W�WY:The adjoint of this map under the (s� ; s�)-adjunction is denotede�W : s��GV Y ! �GV+W�WY:(c) The Hurewicz maps hKW : �KV Y ! HKV Y;as K varies over the subgroups of G, �t together to form a natural transformationh : �GV Y ! s�1HGV Y:The adjoint of this map under the (s1� ; s�1)-adjunction is denotedeh : s1� �GV Y ! HGV Y:It is the maps e�W and eh that play the role in the precise statements of ourHurewicz and suspension theorems that was played by the maps b�W and bh in ourintuitive sketch of these results.Theorem 4.4 (Hurewicz). Let Y be a based G-CW complex and let V be arepresentation of G that contains at least two copies of the trivial representation.Then the following two conditions are equivalent.(i) Y is j(V � 1)�j-connected.(ii) Y is simply G-connected and homologically j(V � 1)�j-connected.



4. THE STATEMENTS OF THE THEOREMS 125Moreover, if W is any representation of G such that 2� � jW �j � jV �j, then eitherof these conditions implies that the mapeh : s1� �GWY ! HGWYis an isomorphism and that both �GWY and HGWY are zero if jW �j < jV �j.Theorem 4.5 (Freudenthal suspension). Let V andW be representationsof G and let Y be a based G-CW complex. If V contains at least two copies ofthe trivial representation and Y is j(V � 1)�j-connected, then the suspension mape�W : s��GV Y ! �GV+W�WYis an isomorphism.There are several ways in which these two theorems are a bit disappointing. Oneof the most obvious is that, in our anticipated applications, we expect to be ableto compute HGWY and �GV+W�WY , and we want to derive information about �GV Yfrom these computations. The presence of the functors s1� and s� would seem tomake it di�cult to learn much about �GV Y in this fashion. However, the followinglemma ensures that we can, at least, detect the vanishing of �GV Y with these twotheorems.Lemma 4.6. Let V be a representation of G that contains at least two copies ofthe trivial representation and M be a V -Mackey functor. Then the following areequivalent:(i) M = 0.(ii) s�M = 0 for any representation W of G.(iii) s1� M = 0.Moreover, the explicit descriptions of the functors s� and s1� given in [L1, L2]can be used to extract some information about �GV Y from a knowledge of s��GV Yor s1� �GV Y even in the cases where �GV Y does not vanish.A second disappointment in these two theorems is that they say nothing aboutthe case in which V contains only one copy of the trivial representation. In thiscontext, �GV Y need not be an abelian group, but one would expect generaliza-tions of our two theorems which relate the abelianization of �GV Y to HGWY and�GV+W�WY (or more precisely, to HGWY and �GV+W�WY ). Generalizations of thisform are given in [L1]. They are omitted here because including them wouldrequire introducing some unpleasant technicalities that would only obscure thecentral ideas.



126 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSA third disappointment is that, in our suspension theorem, Y is required to bej(V � 1)�j-connected, whereas one would expect that connectivity on the order ofjV �j=2 would su�ce. There are counterexamples (see [L1]) which show that thereis no simple way to weaken this connectivity condition on Y . The source of thisproblem is that the functor s� is not exact. It is therefore able to capture thee�ects of suspension only in the lowest dimensions. There is, however, a spectralsequence whose E2-term is formed from the homotopy groups of Y . This spectralsequence converges to the homotopy groups of �WY in the range of dimensionsthat one would expect based on the connectivity restrictions in Theorem B; see[L3].A further disappointing aspect of our suspension theorem is that it applies onlyto the homotopy groups �GV Y and not to the set [X;Y ]G of G-homotopy classes ofG-maps out of an arbitrary space X. This restriction seems to be unavoidable inthe equivariant context.5. Sketch proofs of the theoremsWe turn now to the matter of proving our two theorems. The equivariantHurewicz theorem follows almost trivially from the equivariant suspension theoremif one is willing to use a little equivariant stable homotopy theory. We will devoteour attention to the proof of the suspension theorem. The best way to gaininsight into the proof is to look at a rather nonstandard proof of a special caseof the corresponding nonequivariant result. This nonstandard proof uses nothingmore than two rather simple facts about Eilenberg-MacLane spaces and a simplelemma from category theory.Recall that, if n is a positive integer and M is an abelian group, then theEilenberg-MacLane space K(M;n) is a CW-complex such that �nK(M;n) = Mand �jK(M;n) = 0 for j 6= n. This property characterizes K(M;n) up to ho-motopy. The �rst fact that we need about Eilenberg-MacLane spaces is that, forany positive integer n and any abelian group M , 
Kn+1M ' K(M;n). This factfollows immediately from a computation of the homotopy groups of 
K(M;n+1).If X is any based space, then taking nth homotopy groups gives a map� : [X;K(M;n)] �! hom(�nX;�nK(M;n)) = hom (�nX;M)from the set [X;K(M;n)] of based homotopy classes of maps fromX intoK(M;n)to the set hom(�nX;M) of group homomorphisms from �nX to M . Since theEilenberg-MacLane space K(M;n) represents cohomology in dimension n with



5. SKETCH PROOFS OF THE THEOREMS 127M coe�cients, the set [X;K(M;n)] is just Hn(X;M). It follows easily from thenonequivariant Hurewicz theorem and the universal coe�cient theorem that themap � is an isomorphism if X is an (n � 1)-connected CW-complex. Homotopytheorists use this observation on a regular basis.For our proof of the nonequivariant suspension theorem, we need a categoricalinterpretation of this result. Let Wn be the category of (n � 1)-connected basedspaces that have the homotopy types of CW-complexes, and let hWn be the associ-ated (based) homotopy category. Then the assignment of the Eilenberg-MacLanespace K(M;n) to the abelian group M gives a functor K(�; n) from the categoryAb of abelian groups to the category hWn. On the other hand, taking nth homo-topy groups gives a functor �n from hWn to Ab. Our assertion that the map �above is an isomorphism when X is (n� 1)-connected translates formally into thecategorical assertion that the functor K(�; n) is right adjoint to the functor �n.This adjunction is the second fact about Eilenberg-MacLane spaces that we need.Now consider the diagram of categories and functorsA b�� K(�;n)�������������� � �K(�;n+1)888888888888888hWn DD�n �������������� //� hWn+1\\ �n+1888888888888888oo 
The functor � is left adjoint to the functor 
. Thus, we have two functors,
K(�; n+ 1) and K(�; n), from Ab to hWn with left adjoints �n+1 �� and �n, re-spectively. The homotopy equivalences 
Kn+1M ' K(M;n) �t together to give anatural isomorphism between the functors 
K(�; n+1) and K(�; n). The follow-ing easy lemma from category theory allows us to convert this natural isomorphisminto a nonequivariant suspension theorem.Lemma 5.1. Let C and D be categories, R1; R2 : C ! D be functors from Cto D , and L1; L2 : D ! C be functors from D to C such that Li is left adjointto Ri. Then there is a one-to-one correspondence between natural transformations� : R1 ! R2 and natural transformations e� : L2 ! L1. Moreover, the naturaltranformation � : R1 ! R2 is a natural isomorphism if and only if the associatednatural transformation e� : L2 ! L1 is a natural isomorphism.The lemma gives us a natural isomorphism �nY �! �n+1�Y for (n � 1)-connected spaces Y of the homotopy types of CW-complexes. By examining the



128 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSproof of the lemma and chasing a few diagrams, it is possible to see that thisisomorphism is, in fact, the usual suspension map � : �nY �! �n+1�Y .This nonequivariant suspension theorem is, of course, substantially weaker thanTheorem B because it requires much more connectivity of Y and because it appliesonly to the homotopy group �nY rather than to an arbitrary set [X;Y ] of homotopyclasses of maps. However, counterexamples exist which show that limitations ofthis sort are an essential part of an equivariant suspension theorem. Thus, ouralternative approach to proving the nonequivariant suspension theorem is an idealapproach to proving the equivariant theorem.Let V be a representation of G that contains at least two copies of the trivialrepresentation. Let WG(V ) be the category of based j(V � 1)�j-connected G-spacesthat have the G-homotopy types of G-CW complexes, and let hWG(V ) be theassociated homotopy category; its morphisms are based G-homotopy classes ofbased G-maps.To prove our equivariant suspension theorem, we must associate an Eilenberg-MacLane space KG(M;V ) to each V -Mackey functor M in such a way that weobtain a functor from MG(V ) to hWG(V ). We must show that this functor isright adjoint to the functor �GV : hWG(V ) ! MG(V ). Then we must demon-strate that, if N is a (V +W )-Mackey functor, there is a G-homotopy equivalence
WKG(N;V +W ) ' KG(s�N;V ). Here, the functor s� enters in a way that noanalogous functor appears in the nonequivariant case because, in the equivariantcase, the functors �GV and �GV+W land in di�erent categories, whereas the func-tors �n and �n+1 both produce abelian groups in the nonequivariant case. Nowconsider the diagram MG(V ) //s��� KG(�;V ) MG(V +W )oo s� �� KG(�;V+W )hWG(V ) //�WOO�GV hWG(V +W )oo 
W OO�GV+Wof categories and functors. The composites 
WKG(�; V +W ) and KG(s��; V )have left adjoints �GV+W�W and s��GV respectively. Thus the natural isomor-phism 
WKG(�; V +W ) �! KG(s��; V ) that is derived from our G-homotopyequivalences 
WKG(N;V +W ) ' KG(s�N;V ) implies a natural isomorphisms��GV �! �GV+W�W . Again, a bit of diagram chasing con�rms that this isomor-



5. SKETCH PROOFS OF THE THEOREMS 129phism is just the standard suspension mape�W : s��GV �! �GV+W�W :It is easy enough to say what a V -Eilenberg-MacLane space ought to be.Definition 5.2. Let V be a representation of G that contains at least twocopies of the trivial representation and M be a V -Mackey functor. A V -Eilenberg-MacLane space KG(M;V ) is a based, j(V � 1)�j-connected G-space KG(M;V )of the G-homotopy type of a G-CW complex such that �GVKG(M;V ) = M and�GV+kKG(M;V ) = 0 for k > 0.The problem is to show that such spaces exist, that the assignment of KG(M;V )to M gives a functor from MG(V ) to hWG(V ), and that this functor is rightadjoint to �GV . In order to �ll in these details, we utilize a variant of the G-CW(V ) complexes that Waner described in the previous chapter. Waner workedwith unbased complexes and adjoined his cells using unbased maps. The variantwith which we must work is that of based complexes formed using based attachingmaps. We take our cells to be the cones on spheres of the form �V+kG=K+, wherek � �1 and K runs over the (closed) subgroups of G. A based G-CW(V ) complexis then a G-space Y together with a sequence fY kgk��1 of closed subspaces suchthat Y �1 is a point, Y k+1 is the co�bre of a based map � : Wj2Jk �V+kG=Kj ! Y kfor some indexing set Jk and some collection fKjgj2Jk of subgroups of G, and Yis the colimit of the Y k.There is a general theory of abstract CW complexes that applies to spaces con-structed in this form. This theory ensures that G-CW(V ) complexes have all thenice properties that one might expect. For us, their most important properties arethat they have the homotopy types of G-CW complexes, that they are j(V � 1)�j-connected, and that they can be used to approximate, up to weak G-equivalence,any G-space that is j(V � 1)�j-connected. Using G-CW(V ) complexes, one canconstruct a V -Eilenberg-MacLane space KG(M;V ) for any V -Mackey functor Mby attaching cells of the form C�V+kG=K+ in exactly the same way that one con-structs ordinary, nonequivariant, Eilenberg-MacLane spaces by attaching ordinarycells.As in the nonequivariant context, there is a map� : [X;KG(M;V )]G �! hom(�GVX;�GVK(M;n)) = hom(�GVX;M)



130 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSgiven by taking V th homotopy \groups". Here, hom means the set of naturaltransformations between two functors in MG(V ). If X is j(V � 1)�j-connected,then it can be approximated by a G-CW(V ) complex. This approximation canbe used to show that the map � is an isomorphism. We proved the analogousresult in the nonequivariant context using the Hurewicz theorem and the universalcoe�cient theorem. It can, however, be just as easily proved by using a CWapproximation to X and arguing inductively up the skeleton of the approximation.From here, the second approach to the nonequivariant result generalizes withoutany trouble to the equivariant context. The fact that � is an isomorphism when Xis j(V � 1)�j-connected can be used to show that the assignment of KG(M;V ) toM gives a functor and that this functor is right adjoint to �GV . It can also be used toconstruct a G-homotopy equivalence between 
WKG(N;V +W ) ' KG(s�N;V )for any (V +W )-Mackey functor N . This completes the proof of the equivariantsuspension theorem.Scholium 5.3. This presentation has been an overview of the papers [L1] and [L2]. Reference[L1] provides full details on everything that has been said here about the equivariant suspensiontheorem. It includes a careful treatment of based G-CW(V ) complexes and of V -Eilenberg-MacLane spaces. In that paper, V is assumed to have at least one copy, rather than at leasttwo copies, of the trivial representation. Thus the theorems in [L1] are more general in thatthey describe the e�ects of the presence of a nontrivial fundamental group on the suspensionand Hurewicz maps. However, this extra generality necessitates several unpleasant technicalcomplications in the arguments that obscure the basic simplicity of the ideas. Reference [L2]is an older paper and in some respects obsolete. Its most important results, the absolute andrelative unstable Hurewicz theorems (Theorems 1.7 and 1.8), are restated in a better and moregeneral form as Theorems 2.8 and 2.9 of [L1]. The improved versions of these theorems takeinto account the results in [L1] dealing with the case in which V contains only one copy of thetrivial representation. On the positive side, [L2] contains a description of the structure of thecategories BG(V ) and of the functors s� and s1� . It contains the proof of Lemma 2.2 above onthe equivalence of V - and jV �j-connectivity in the case when G is a compact Lie group; Wanerproved this result only for �nite groups. Lemma 4.6 above on the vanishing of s�M and s1� Mis also proved in [L2]. The de�nitions of the absolute and relative stable and unstable Hurewiczmaps are contained in [L2]. The proof of the stable Hurewicz isomorphism theorem in section2 of [L2] is a simple application of some of the basic techniques in equivariant stable homotopytheory that will be covered in later chapters. Going over that argument is a good way to solidifyone's grasp on these basic tricks. Reference [L2] also contains a description of the process forderiving the relative Hurewicz theorem from the absolute Hurewicz theorem. All of the otherarguments in [L2], and especially those in sections 5 and 6, are correct but obsolete. I developedthem before I became aware of the basic connection between equivariant Eilenberg-Mac Lanespaces and the equivariant suspension theorem. The results presented in section 6 of [L2] arepresented in a better and more general form in [L3], which is, essentially, an extension of [L1]from the realm of equivariant unstable homotopy theory to that of equivariant stable homotopytheory.



CHAPTER XIIThe Equivariant Stable Homotopy Category1. An introductory overviewLet us start nonequivariantly. As the home of stable phenomena, the subjectof stable homotopy theory includes all of homology and cohomology theory. Overthirty years ago, it became apparent that very signi�cant bene�ts would accrueif one could work in an additive triangulated category whose objects were \stablespaces", or \spectra", a central point being that the translation from topologyto algebra through such tools as the Adams spectral sequence would become farsmoother and more structured. Here \triangulated" means that one has a sus-pension functor that is an equivalence of categories, together with co�brationsequences that satisfy all of the standard properties.The essential point is to have a smash product that is associative, commutative,and unital up to coherent natural isomorphisms, with unit the sphere spectrumS. A category with such a product is said to be \symmetric monoidal". Thisstructure allows one to transport algebraic notions such as ring and module intostable homotopy theory. Thus, in the stable homotopy category of spectra |which we shall denote by �hS | a ring is just a spectrum R together with aproduct � : R ^ R �! R and unit � : S �! R such that the following diagramscommute in �hS :S ^R //�^1 %%' KKKKKKKKKK R ^R�� � R ^ Soo 1^�yy 'ssssssssss and R ^ R ^ R���^1 //1^� R ^ R�� �R R ^R //� R:The unlabelled isomorphisms are canonical isomorphisms giving the unital prop-131



132 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYerty, and we have suppressed associativity isomorphisms in the second diagram.Similarly, there is a transposition isomorphism � : E ^ F �! F ^ E in �hS , andR is said to be commutative if the following diagram commutes in �hS :R ^R ##� GGGGGGGGG //� R ^R{{ �wwwwwwwwwR:A left R-module is a spectrum M together with a map � : R ^M �! M suchthat the following diagrams commute in �hS :S ^M //�^1 %%' LLLLLLLLLL R ^M�� � and R ^R ^M���^1 //1^� R ^M�� �M R ^M //� M:Over twenty years ago, it became apparent that it would be of great value tohave more precisely structured notions of ring and module, with good propertiesbefore passage to homotopy. For example, when one is working in �hS it is noteven true that the co�ber of a map of R-modules is an R-module, so that onedoes not have a triangulated category of R-modules. More deeply, when R iscommutative, one would like to be able to construct a smash product M ^R Nof R-modules. Quinn, Ray, and I de�ned such structured ring spectra in 1972.Elmendorf and I, and independently Robinson, de�ned such structured modulespectra around 1983. However, the problem just posed was not fully solved untilafter the Alaska conference, in work of Elmendorf, Kriz, Mandell, and myself. Weshall return to this later.For now, let us just say that the technical problems focus on the constructionof an associative and commutative smash product of spectra. Before June of1993, I would have said that it was not possible to construct such a product on acategory that has all colimits and limits and whose associated homotopy categoryis equivalent to the stable homotopy category. We now have such a construction,and it actually gives a point-set level symmetric monoidal category.However, it is not a totally new construction. Rather, it is a natural extensionof the approach to the stable category �hS that Lewis and I developed in theearly 1980's. Even from the viewpoint of classical nonequivariant stable homotopytheory, this approach has very signi�cant advantages over any of its predecessors.



2. PRESPECTRA AND SPECTRA 133What is especially relevant to us is that it is the only approach that extendse�ortlessly to the equivariant context, giving a good stable homotopy categoryof G-spectra for any compact Lie group G. Moreover, for a great deal of thehomotopical theory, the new point-set level construction o�ers no advantages overthe original Lewis-May theory: the latter is by no means rendered obsolete by thenew theory.From an expository point of view this raises a conundrum. The only real defectof the Lewis-May approach is that the only published account is in the generalequivariant context, with emphasis on those details that are special to that setting.Therefore, despite the theme of this book, I will �rst outline some features of thetheory that are nearly identical in the nonequivariant and equivariant contexts,returning later to a discussion of signi�cant equivariant points. I will follow inpart an unpublished exposition of the Lewis-May category due to Jim McClure.A comparison with earlier approaches and full details of de�nitions and proofs maybe found in the encyclopedic �rst reference below. The second reference containsimportant technical re�nements of the theory, as well as the new theory of highlystructured ring and module spectra. The third reference gives a brief generaloverview of the theory that the reader may �nd helpful. We shall often refer tothese as [LMS], [EKMM], and [EKMM0].General References[LMS] L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure).Equivariant stable homotopy theory. Springer Lecture Notes in Mathematics. Vol. 1213. 1986.[EKMM] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras instable homotopy theory. Preprint, 1995.[EKMM0] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Modern foundations for stablehomotopy theory. In \Handbook of Algebraic Topology", edited by I.M. James. North Holland,1995, pp 213-254. 2. Prespectra and spectraThe simplest relevant notion is that of a prespectrum E. The naive version is asequence of based spaces En, n � 0, and based maps�n : �En �! En+1:A map D �! E of prespectra is a sequence of maps Dn �! En that commutewith the structure maps �n. The structure maps have adjoints~�n : En �! 
En+1;



134 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYand it is customary to say that E is an 
-spectrum if these maps are equivalences.While this is the right kind of spectrum for representing cohomology theorieson spaces, we shall make little use of this concept. By a spectrum, we mean aprespectrum for which the adjoints ~�n are homeomorphisms. (The insistence onhomeomorphisms goes back to a 1969 paper of mine that initiated the presentapproach to stable homotopy theory.) In particular, for us, an \
-spectrum" neednot be a spectrum: henceforward, we use the more accurate term 
-prespectrumfor this notion.One advantage of our de�nition of a spectrum is that the obvious forgetfulfunctor from spectra to prespectra | call it ` | has a left adjoint spectri�cationfunctor L such that the canonical map L`E �! E is an isomorphism. Thus thereis a formal analogy between L and the passage from presheaves to sheaves, whichis the reason for the term \prespectrum". The category of spectra has limits,which are formed in the obvious way by taking the limit for each n separately. Italso has colimits. These are formed on the prespectrum level by taking the colimitfor each n separately; the spectrum level colimit is then obtained by applying L.The central technical issue that must be faced in any version of the category ofspectra is how to de�ne the smash product of two prespectra fDng and fEng. Anysuch construction must begin with the naive bi-indexed smash product fDm^Eng.The problem arises of how to convert it back into a singly indexed object insome good way. It is an instructive exercise to attempt to do this directly. Onequickly gets entangled in permutations of suspension coordinates. Let us think ofa circle as the one-point compacti�cation of R and the sphere Sn as the one-pointcompacti�cation of Rn. Then the iterated structure maps �nEm = Em ^ Sn �!Em+n seem to involve Rn as the last n coordinates in Rm+n. This is literally trueif we consider the sphere prespectrum fSng with identity structural maps. Thissuggests that our entanglement really concerns changes of basis. If so, then weall know the solution: do our linear algebra in a coordinate-free setting, choosingbases only when it is convenient and avoiding doing so when it is inconvenient.Let R1 denote the union of the Rn, n � 0. This is a space whose elementsare sequences of real numbers, all but �nitely many of which are zero. We giveit the evident inner product. By a universe U , we mean an inner product spaceisomorphic to R1. If V is a �nite dimensional subspace of U , we refer to V asan indexing space in U , and we write SV for the one-point compacti�cation of V ,which is a based sphere. We write �VX for X ^ SV and 
VX for F (SV ;X).



2. PRESPECTRA AND SPECTRA 135By a prespectrum indexed on U , we mean a family of based spaces EV , one foreach indexing space V in U , together with structure maps�V;W : �W�VEV �! EWwhenever V � W , where W � V denotes the orthogonal complement of V in W .We require �V;V = Id, and we require the evident transitivity diagram to commutefor V �W � Z: �Z�W�W�V EV //���= �Z�WEW���Z�VEV // EZ:We call E a spectrum indexed on U if the adjoints~� : EV �! 
W�VEWof the structural maps are homeomorphisms. As before, the forgetful functor `from spectra to prespectra has a left adjoint spectri�cation functor L that leavesspectra unchanged. We denote the categories of prespectra and spectra indexedon U byPU and SU . When U is �xed and understood, we abbreviate notationto P and S .If U = R1 and E is a spectrum indexed on U , we obtain a spectrum in ouroriginal sense by setting En = ERn. Conversely, if fEng is a spectrum in ouroriginal sense, we obtain a spectrum indexed on U by setting EV = 
Rn�VEn,where n is minimal such that V � Rn. It is easy to work out what the structuralmaps must be. This gives an isomorphism between our new category of spectraindexed on U and our original category of sequentially indexed spectra.More generally, it often happens that a spectrum or prespectrum is naturallyindexed on some other co�nal setA of indexing spaces in U . Here co�nality meansthat every indexing space V is contained in some A 2 A ; it is convenient to alsorequire that f0g 2 A . We write PA and SA for the categories of prespectraand spectra indexed on A . On the spectrum level, all of the categories SA areisomorphic since we can extend a spectrum indexed on A to a spectrum indexedon all indexing spaces V in U by the method that we just described for the caseA = fRng.J. P. May. Categories of spectra and in�nite loop spaces. Springer Lecture Notes in MathematicsVol. 99. 1969, 448{479.



136 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORY3. Smash productsWe can now de�ne a smash product. Given prespectra E and E 0 indexed onuniverses U and U 0, we form the collection fEV ^ E 0V 0g, where V and V 0 runthrough the indexing spaces in U and U 0, respectively. With the evident structuremaps, this is a prespectrum indexed on the set of indexing spaces in U � U 0 thatare of the form V � V 0. If we start with spectra E and E 0, we can apply thefunctor L to get to a spectrum indexed on this set, and we can then extend theresult to a spectrum indexed on all indexing spaces in U �U 0. We thereby obtainthe \external smash product" of E and E 0,E ^ E 0 2 S (U � U 0):Thus, if U = U 0, then two-fold smash products are indexed on U2, three-fold smashproducts are indexed on U3, and so on.This external smash product is associative up to isomorphism,(E ^ E 0) ^ E 00 �= E ^ (E 0 ^ E 00):This is evident on the prespectrum level. It follows on the spectrum level by aformal argument of a sort that pervades the theory. One need only show that, forprespectra D and D0,L(`L(D) ^D0) �= L(D ^D0) �= L(D ^ `L(D0)):Conceptually, these are commutation relations between functors that are left ad-joints, and they will hold if and only if the corresponding commutation relationsare valid for the right adjoints. We shall soon write down the right adjoint functionspectra functors. They turn out to be so simple and explicit that it is altogethertrivial to check the required commutation relations relating them and the rightadjoint `.The external smash product is very nearly commutative, but to see this we needanother observation. If f : U �! U 0 is a linear isometric isomorphism, then weobtain an isomorphism of categories f� : S U 0 �! SU via(f�E 0)(V ) = E 0(fV ):Its inverse is f� = (f�1)�. If � : U � U 0 �! U 0 � U is the transposition, then thecommutativity isomorphism of the smash product isE0 ^ E �= ��(E ^ E 0):



3. SMASH PRODUCTS 137Analogously, the associativity isomorphism implicitly used the obvious isomor-phism of universes (U � U 0)� U 00 �= U � (U 0 � U 00).What about unity? We would like E^S to be isomorphic to E, but this doesn'tmake sense on the face of it since these spectra are indexed on di�erent universes.However, for a based space X and a prespectrum E, we have a prespectrum E^Xwith (E ^X)(V ) = EV ^X:If we start with a spectrum E and apply L, we obtain a spectrum E ^ X. It isquite often useful to think of based spaces as spectra indexed on the universe f0g.This makes good sense on the face of our de�nitions, and we have E ^ S0 �= E,where S0 means the space S0.Of course, this is not adequate, and we have still not addressed our originalproblem about bi-indexed smash products: we have only given it a bit more formalstructure. To solve these problems, we go back to our \change of universe functors"f� : S U 0 �! SU . Clearly, to de�ne f�, the map f : U �! U 0 need only be alinear isometry, not necessarily an isomorphism. While a general linear isometry fneed not be an isomorphism, it is a monomorphism. For a prespectrum E 2PU ,we can de�ne a prespectrum f�E 2 U 0 by(f�E)(V 0) = EV ^ SV 0�fV ; where V = f�1(V 0 \ f(U)):(3.1)Its structure maps are induced from those of E via the isomorphismsEV ^ SV 0�fV ^ SW 0�V 0 �= EV ^ SW�V ^ SW 0�fW :(3.2)As usual, we use the functor L to extend to a functor f� : S U �! S U 0. As iseasily veri�ed on the prespectrum level and follows formally on the spectrum level,the inverse isomorphisms that we had in the case of isomorphisms generalize toadjunctions in the case of isometries:S U 0(f�E;E 0) �= SU(E; f�E 0):(3.3)How does this help us? Let I (U;U 0) denote the set of linear isometries U �!U 0. If V is an indexing space in U , then I (V;U 0) has an evident metric topology,and we giveI (U;U 0) the topology of the union. It is vital | and not hard to prove| that I (U;U 0) is in fact a contractible space. As we shall explain later, this canbe used to prove a version of the following result (which is slightly misstated forclarity in this sketch of ideas).



138 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYTheorem 3.4. Any two linear isometries U �! U 0 induce canonically andcoherently weakly equivalent functors SU �! SU 0.We have not yet de�ned weak equivalences, nor have we de�ned the stablecategory. A map f : D �! E of spectra is said to be a weak equivalence if each ofits component maps DV �! EV is a weak equivalence. Since the smash productof a spectrum and a space is de�ned, we have cylinders E ^ I+ and thus a notionof homotopy in SU . We let hS U be the resulting homotopy category, and welet �hS U be the category that is obtained from hS U by adjoining formal inversesto the weak equivalences. We shall be more explicit later.This is our stable category, and we proceed to de�ne its smash product. Wechoose a linear isometry f : U2 �! U . For spectra E and E 0 indexed on U , wede�ne an internal smash product f�(E ^E 0) 2 S U . Up to canonical isomorphismin the stable category �hS U , f�(E ^ E 0) is independent of the choice of f . Forassociativity, we havef�(E^f�(E 0^E 00)) �= (f(1�f))�(E^E 0^E 00) ' (f(f�1))� �= f�(f�(E^E 0)^E 00):Here we write �= for isomorphisms that hold on the point-set level and ' forisomorphisms in the category �hS U . For commutativity,f�(E 0 ^ E) �= f���(E ^ E 0) �= (f� )�(E ^ E 0) ' f�(E ^ E 0):For a space X, we have a suspension prespectrum f�VXg whose structure mapsare identity maps. We let �1X = Lf�VXg. In this case, the construction of L isquite concrete, and we �nd that�1X = fQ�VXg; where QY = [
W
WY:(3.5)This gives the suspension spectrum functor �1 : T �! SU . It has a rightadjoint 
1 which sends a spectrum E to the space E0 = Ef0g:SU(�1X;E) �= T (X;
1E):(3.6)The functor Q is the same as 
1�1. For a linear isometry f : U �! U 0, we havef��1X �= �1X(3.7)since, trivially, 
1f�E 0 = E 00 = 
1E 0. A space equivalent to E0 for some spec-trum E is called an in�nite loop space.



4. FUNCTION SPECTRA 139Remember that we can think of the category T of based spaces as the categoryS f0g of spectra indexed on the universe f0g. With this interpretation, 
1 coin-cides with i�, where i : f0g �! U is the inclusion. Therefore, by the uniquenessof adjoints, �1X is isomorphic to i�X. Let i1 : U �! U2 be the inclusion of Uas the �rst summand in U � U . The unity isomorphism of the smash product isthe case X = S0 of the following isomorphism in �hS U :f�(E ^ �1X) �= f�(i1)�(E ^X) �= (f � i1)�(E ^X) ' 1�(E ^X) = E ^X:(3.8)We conclude that, up to natural isomorphisms that are implied by Theorem 3.4and elementary inspections, the stable category �hS U is symmetric monoidal withrespect to the internal smash product f�(E ^E 0) for any choice of linear isometryf : U2 �! U . It is customary, once this has been proven, to write E ^E 0 to meanthis internal smash product, relying on context to distinguish it from the externalproduct. 4. Function spectraWe must de�ne the function spectra that give the right adjoints of our variouskinds of smash products. For a space X and a spectrum E, the function spectrumF (X;E) is given by F (X;E)(V ) = F (X;EV ):Note that this is a spectrum as it stands, without use of the functor L. We havethe isomorphism F (E ^X;E 0) �= F (E;F (X;E 0))and the adjunctionS U(E ^X;E 0) �= T (X;S U(E;E 0)) �= S U(E;F (X;E 0));(4.1)where the set of maps E �! E 0 is topologized as a subspace of the product overall indexing spaces V of the spaces F (EV;E 0V ). As an example of the use of rightadjoints to obtain information about left adjoints, we have isomorphisms(�1X) ^ Y �= �1(X ^ Y ) �= X ^ (�1Y ):(4.2)For the �rst, the two displayed functors of X both have right adjointF (Y;E)0 = F (Y;E0):



140 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYMore generally, for universes U and U 0 and for spectra E 0 2 SU 0 and E 00 2S (U � U 0), we de�ne an external function spectrumF (E 0; E 00) 2 S Uas follows. For an indexing space V in U , de�ne E 00[V ] 2 S U 0 byE00[V ](V 0) = E 00(V � V 0):The structural homeomorphisms are induced by some of those of E 00, and othersgive a system of isomorphisms E 00[V ] �! 
W�V E 00[W ]. De�neF (E 0; E 00)(V ) = S U 0(E 0; E 00[V ]):We have the adjunctionS (U � U 0)(E ^ E 0; E 00) �= S U(E;F (E 0; E 00)):(4.3)When E 0 = �1Y , S U 0(E 0; E 00[V ]) �= T (Y;E 00(V )). Thus, if i1 : U �! U � U 0 isthe inclusion, then F (�1Y;E 00) �= F (Y; (i1)�E 00):By adjunction, this implies the �rst of the following two isomorphisms:(i1)�((�1X) ^ Y ) �= �1X ^ �1Y �= (i2)�(X ^ (�1Y )):(4.4)When U = U 0 and f : U2 �! U is a linear isometry, we obtain the internalfunction spectrum F (E 0; f�E) 2 S U for spectra E;E 0 2 S U . Up to canonicalisomorphism in �hS U , it is independent of the choice of f . For spectra all indexedon U , we have the composite adjunctionS U(f�(E ^ E 0); E 00) �= S U(E;F (E 0; f�E00)):(4.5)Again, it is customary to abuse notation by also writing F (E 0; E) for the internalfunction spectrum, relying on the context for clarity. By combining the three iso-morphisms (3.7), (4.2), and (4.4) | all of which were proven by trivial inspectionsof right adjoints | we obtain the following non-obvious isomorphism for internalsmash products. �1(X ^ Y ) �= (�1X) ^ (�1Y ):(4.6)Generalized a bit, this will be seen to determine the structure of smash productsof CW spectra.



5. THE EQUIVARIANT CASE 1415. The equivariant caseWe now begin working equivariantly, and we have a punch line: we were ledto the framework above by nonequivariant considerations about smash products,and yet the framework is ideally suited to equivariant considerations. Let G bea compact Lie group and recall the discussion of G-spheres and G-universes fromIXxx1,2. On the understanding that every space in sight is a G-space and everymap in sight is a G-map, the de�nitions and results above apply verbatim to givethe basic de�nitions and properties of the stable category of G-spectra. For a givenG-universe U , we write GS U for the resulting category of G-spectra, hGS U forits homotopy category, and �hGS U for the stable homotopy category that resultsby adjoining inverses to the weak equivalences.The only caveat is that I (U;U 0) is understood to be the G-space of linearisometries, with G acting by conjugation, and not the space of G-linear isometries.If the G-universes U and U 0 are isomorphic | which means that they contain thesame irreducible representations | then I (U;U 0) is G-contractible, and thereforeits subspace I (U;U 0)G of G-linear isometries is contractible.We already see something new in the equivariant context: we have di�erentstable categories ofG-spectra depending on the isomorphism type of the underlyinguniverse. This fact will play a vital role in the theory. Remember that a G-universeU is said to be complete if it contains every irreducible representation and trivialif it contains only the trivial irreducible representation. We sometimes refer toG-spectra indexed on a complete G-universe U as genuine G-spectra. We alwaysrefer to G-spectra indexed on a trivial G-universe, such as UG, as naive G-spectra;they are essentially just spectra fEng of the sort we �rst de�ned, but with eachEn a G-space and each structure map a G-map. We have concomitant notions ofgenuine and naive in�nite loop G-spaces. The inclusion i : UG �! U gives us anadjoint pair of functors relating naive and genuine G-spectra:GS U(i�E;E 0) �= GS UG(E; i�E 0):(5.1)We will see that naive G-spectra representZ-graded cohomology theories, whereasgenuine G-spectra represent cohomology theories graded over the real representa-tion ring RO(G). Before getting to this, however, we must complete our develop-ment of the stable category.



142 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORY6. Spheres and homotopy groupsWe have deliberately taken a more or less geodesic route to smash productsand function spectra, and we have left aside a number of other matters that mustbe considered. At the risk of obscuring the true simplicity of the nonequivarianttheory, we work with G-spectra indexed on a �xed G-universe U from now on inthis chapter. We write GS for GS U . Since G will act on everything in sight, weoften omit the pre�x, writing spectra for G-spectra and so on.We shall shortly de�ne G-CW spectra in terms of sphere spectra and their cones,which provide cells. We shall deduce properties of G-CW spectra, such as HELP,by reducing to the case of a single cell and there applying an adjunction to reduceto the G-space level. For this, spheres must be de�ned in terms of suitable leftadjoint functors from spaces to spectra. For n � 0, there is no problem: we takeSn = �1Sn. We shall later write Sn ambiguously for both the sphere space andthe sphere spectrum, relying on context for clarity, but we had better be pedanticat �rst.We also need negative dimensional spheres. We will de�ne them in terms of shiftdesuspension functors, and these functors will also serve to clarify the relationshipbetween spectra and their component spaces. Generalizing 
1, de�ne a functor
1V : GS �! GTby 
1V = EV for an indexing space V in U . The functor 
1V has a left adjointshift desuspension functor �1V : GS �! GT :The spectrum �1V X is Lf�W�VXg. Here the prespectrum f�W�VXg has W thspace �W�V if V � W and a point otherwise; if V � W � Z, then the corre-sponding structure map is the evident identi�cation�Z�W�W�VX �= �Z�VX:The V th space of �1V X is the zeroth space QX of �1X. It is easy to checkthe prespectrum level version of the claimed adjunction, and the spectrum leveladjunction follows: GS (�1V X;E) �= GT (X;
1V E):(6.1)Exactly as in (4.2) and (4.6), we have natural isomorphisms(�1V X) ^ Y �= �1V (X ^ Y ) �= X ^ (�1V Y )(6.2)



6. SPHERES AND HOMOTOPY GROUPS 143and, for the internal smash product,�1V+W (X ^ Y ) �= �1V X ^ �1WY if V \W = f0g:(6.3)Another check of right adjoints gives the relation�1V X �= �1W�W�VX if V � W:(6.4)It is not hard to see that any spectrum E can be written as the colimit of theshift desuspensions of its component spaces. That is,E �= colim�1V EV;(6.5)where the colimit is taken over the maps�1W� : �1V EV �= �1W (�W�V EV ) �! �1WEW:Let us write U in the form U = UG�U 0 and �x an identi�cation of UG with R1.We abbreviate notation by writing 
1n and �1n when V = Rn. Now de�ne S�n =�1n S0 for n > 0. The reader will notice that we can generalize our de�nitionsto obtain sphere spectra SV and S�V for any indexing space V . We can evende�ne spheres SV�W = �1WSV . We shall need such generality later. However, indeveloping G-CW theory, it turns out to be appropriate to restrict attention tothe spheres Sn for integers n. Theorem 6.8 will explain why.In view of our slogan that orbits are the equivariant analogues of points, we alsoconsider all spectra SnH � G=H+ ^ Sn; H � G and n 2Z;(6.6)as spheres. By (6.2), SnH �= �1(G=H+ ^ Sn) if n � 0 and SnH �= �1n G=H+ ifn < 0. We shall be more systematic about change of groups later, but we prefer tominimize such equivariant considerations in this section. We de�ne the homotopygroup systems of G-spectra by setting�Hn (E) = �n(E)(G=H) = hGS (SnH ; E):(6.7)Let BGU be the homotopy category of orbit spectra S0H = �1G=H+; we gen-erally abbreviate the names of its objects to G=H. This is an additive cate-gory, as will become clear shortly, and �n(E) is an additive contravariant functorBGU �! A b. Recall from IXx4 that such functors are called Mackey functorswhen the universe U is complete. They play a fundamentally important role inequivariant theory, both in algebra and topology, and we shall return to them



144 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYlater. For now, however, we shall concentrate on the individual homotopy groups�Hn (E). We shall later reinterpret these as homotopy groups �n(EH) of �xed pointspectra, but that too can wait.The following theorem should be viewed as saying that a weak equivalence ofG-spectra really is a weak equivalence of G-spectra. Recall that we de�ned aweak equivalence f : D �! E to be a G-map such that each space level G-mapfV : DV �! EV is a weak equivalence. In setting up CW-theory, which logicallyshould precede the following theorem, one must mean a weak equivalence to be amap that induces an isomorphism on all of the homotopy groups �Hn of (6.7).Theorem 6.8. Let f : E �! E 0 be a map of G-spectra. Then each componentmap fV : EV �! E 0V is a weak equivalence of G-spaces if and only if f� :�Hn E �! �Hn E0 is an isomorphism for all H � G and all integers n.By our adjunctions, we have�Hn (E) �= �n((E0)H) if n � 0 and �Hn (E) �= �0((ERn)H) if n < 0:(6.9)Therefore, nonequivariantly, the theorem is a tautological triviality. Equivariantly,the forward implication is trivial but the backward implication says that if eachERn �! E 0Rn is a weak equivalence, then each EV �! E 0V is also a weakequivalence. Thus it says that information at the trivial representations in Uis somehow capturing information at all other representations in U . Its validityjusti�es the development of G-CW theory in terms of just the sphere spectra ofintegral dimensions.We sketch the proof, which goes by induction. We want to prove that each mapf� : ��(EV )H �! ��(E 0V )H is an isomorphism. Since G contains no in�nite de-scending chains of (closed) subgroups, we may assume that f� is an isomorphismfor all proper subgroups of H. An auxiliary argument shows that we may assumethat V H = f0g. We then use the co�bration S(V )+ �! D(V )+ �! SV , whereS(V ) and D(V ) are the unit sphere and unit ball in V and thus D(V )+ ' S0. Ap-plying f : F (�; EV )H �! F (�; E 0V )H to this co�bration, we obtain a comparisonof �bration sequences. On one end, this isf0 : (
VEV )H = (E0)H �! (E 00)H = (
VE 0V )H ;which is given to be a weak equivalence. On the other end, we can triangulate S(V )as an H-CW complex with cells of orbit type H=K, where K is a proper subgroupof H. We can then use change of groups and the inductive hypothesis to deduce



7. G-CW SPECTRA 145that f induces a weak equivalence on this end too. Modulo an extra argument tohandle �0, we can conclude that the middle map f : (EV )H �! (E 0V )H is a weakequivalence. 7. G-CW spectraBefore getting to CW theory, we must say something about compactness, whichplays an important role. A compact spectrum is one of the form �1V X for someindexing space V and compact space X. Since a map of spectra with domain�1V X is determined by a map of spaces with domain X, facts about maps out ofcompact spaces imply the corresponding facts about maps out of compact spectra.For example, if E is the union of an expanding sequence of subspectra Ei, thenGS (�1V X;E) �= colimGS (�1V X;Ei):(7.1)The following lemma clari�es the relationship between space level and spectrumlevel maps. Recall the isomorphisms of (6.4).Lemma 7.2. Let f : �1V X �! �1WY be a map of G-spectra, where X is com-pact. Then, for a large enough indexing space Z, there is a map g : �Z�VX �!�Z�WY of G-spaces such that f coincides with�1Z g : �1V X �= �1Z (�Z�VX) �! �1Z (�Z�WY ) �= �1WY:This result shows how to calculate the full subcategory of the stable categoryconsisting of those G-spectra of the form �1V X for some indexing space V and �niteG-CW complex X in space level terms. It can be viewed as giving an equivariantreformulation of the Spanier-Whitehead S-category. In particular, we have thefollowing consistency statement with the de�nitions of IXx2.Proposition 7.3. For a �nite based G-CW complex X and a based G-spaceY , fX;Y gG �= [�1X;�1Y ]G:From here, the development of CW theory is essentially the same equivariantlyas nonequivariantly, and essentially the same on the spectrum level as on the spacelevel. The only novelty is that, because we have homotopy groups in negativedegrees, we must use two �ltrations. Older readers may see more novelty. Incontrast with earlier treatments, our CW theory is developed on the spectrum leveland has nothing whatever to do with any possible cell structures on the component



146 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYspaces of spectra. I view the use of space level cell structures in this context as anobsolete historical detour that serves no useful mathematical purpose.Let CE = E ^ I denote the cone on a G-spectrum E.Definition 7.4. A G-cell spectrum is a spectrum E 2 GS that is the unionof an expanding sequence of subspectra En, n � 0, such that E0 is the trivialspectrum (each of its component spaces is a point) and En+1 is obtained from Enby attachingG-cells CSqH �= G=H+^CSq along attaching G-maps SqH �! En. Cellsubspectra, or \subcomplexes\, are de�ned in the evident way. A G-CW spectrumis a G-cell spectrum each of whose attaching maps SqH �! En factors through asubcomplex that contains only cells of dimension at most q. The n-skeleton En isthen de�ned to be the union of the cells of dimension at most n.Lemma 7.5. Amap from a compact spectrum to a cell spectrum factors througha �nite subcomplex. Any cell spectrum is the union of its �nite subcomplexes.The �ltration fEng is called the sequential �ltration. It records the order inwhich cells are attached, and it can be chosen in many di�erent ways. In fact,using the lemma, we see that by changing the sequential �ltration on the domain,any map between cell spectra can be arranged to preserve the sequential �ltration.Using this �ltration, we �nd that the inductive proofs of the following results thatwe sketched on the space level work in exactly the same way on the spectrum level.We leave it to the reader to formulate their more precise \dimension �" versions.Theorem 7.6 (HELP). Let A be a subcomplex of a G-CW spectrum D andlet e : E �! E 0 be a weak equivalence. Suppose given maps g : A �! E,h : A ^ I+ �! E 0, and f : D �! E 0 such that eg = hi1 and fi = hi0 in thefollowing diagram: A��i //i0 A ^ I+{{ hwwwwwwwww �� Aoo i1 �� g�������� �� iE0 Eoo eD //i0??f ~~~~~~~~ D ^ I+~hccG G G G G D~g_ _? ? ? ?oo i1Then there exist maps ~g and ~h that make the diagram commute.



7. G-CW SPECTRA 147Theorem 7.7 (Whitehead). Let e : E �! E 0 be a weak equivalence and Dbe a G-CW spectrum. Then e� : hGS (D;E) �! hGS (D;E 0) is a bijection.Corollary 7.8. If e : E �! E 0 is a weak equivalence between G-CW spectra,then e is a G-homotopy equivalence.Theorem 7.9 (Cellular Approximation). Let (D;A) and (E;B) be rela-tive G-CW spectra, (D0; A0) be a subcomplex of (D;A), and f : (D;A) �! (E;B)be a G-map whose restriction to (D0; A0) is cellular. Then f is homotopic relD0[Ato a cellular map g : (D;A) �! (E;B).Corollary 7.10. Let D and E be G-CW spectra. Then any G-map f : D �!E is homotopic to a cellular map, and any two homotopic cellular maps are cellu-larly homotopic.Theorem 7.11. For any G-spectrum E, there is a G-CW spectrum �E and aweak equivalence  : �E �! E.Exactly as on the space level, it follows from the Whitehead theorem that �extends to a functor hGS �! hGC , where GC is here the category of G-CWspectra and cellular maps, and the morphisms of the stable category �hGS can bespeci�ed by �hGS (E;E 0) = hGS (�E;�E 0) = hGC (�E;�E 0):(7.12)From now on, we shall write [E;E 0]G for this set. Again, � gives an equivalenceof categories �hGS �! hGC .We should say something about the transport of functors F on GS to thecategory �hGS . All of our functors preserve homotopies, but not all of thempreserve weak equivalences. If F does not preserve weak equivalences, then, onthe stable category level, we understand F to mean the functor induced by thecomposite F ��, a functor which preserves weak equivalences by converting themto genuine equivalences.For this and other reasons, it is quite important to understand when functorspreserve CW-homotopy types and when they preserve weak equivalences. Thesequestions are related. In a general categorical context, a left adjoint preservesCW-homotopy types if and only if its right adjoint preserves weak equivalences.When these equivalent conditions hold, the induced functors on the categoriesobtained by inverting the weak equivalences are again adjoint.



148 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYFor example, since 
1V preserves weak equivalences (with the correct logicalorder, by Theorem 6.8), �1V preserves CW homotopy types. Of course, since ourleft adjoints preserve colimits and smash products with spaces, their behavior onCW spectra is determined by their behavior on spheres. Since �1n clearly preservesspheres, it carries G-CW based complexes (with based attaching maps) to G-CWspectra. This focuses attention on a signi�cant di�erence between the equivariantand nonequivariant contexts. In both, a CW spectrum is the colimit of its �nitesubcomplexes. Nonequivariantly, Lemma 7.2 implies that any �nite CW spectrumis isomorphic to �1n X for some n and some �nite CW complex X. Equivariantly,this is only true up to homotopy type. It would be true up to isomorphism ifwe allowed non-trivial representations as the domains of attaching maps in ourde�nitions of G-CW complexes and spectra. We have seen that such a theory of\G-CW(V )-complexes" is convenient and appropriate on the space level, but itseems to serve no useful purpose on the spectrum level.Along these lines, we point out an important consequence of (6.3). It impliesthat the smash product of spheres SmH and SnJ is (G=H �G=J)+ ^Sm+n. When Gis �nite, we can use double cosets to describe G=H � G=J as a disjoint union oforbits G=K. This allows us to deduce that the smash product of G-CW spectra isa G-CW spectrum. For general compact Lie groups G, we can only deduce thatthe smash product of G-CW spectra has the homotopy type of a G-CW spectrum.8. Stability of the stable categoryThe observant reader will object that we have called �hGS the \stable category",but that we haven't given a shred of justi�cation. As usual, we write �VE = E^SVand 
VE = F (SV ; E).Theorem 8.1. For all indexing spaces V in U , the natural maps� : E �! 
V�VE and " : �V
VE �! Eare isomorphisms in �hGS . Therefore 
V and �V are inverse self-equivalences of�hGS .Thus we can desuspend by any representations that are in U . Once this isproven, it is convenient to write ��V for 
V . There are several possible proofs,all of which depend on Theorem 6.8: that is the crux of the matter, and thismeans that the result is trivial in the nonequivariant context. In fact, once we



9. GETTING INTO THE STABLE CATEGORY 149have Theorem 6.8, we have that the functor �1V preserves G-CW homotopy types.Using (6.2), (6.4), and the unit equivalence for the smash product, we obtainE ' E ^ S0 �= E ^ �1V SV �= E ^ (�1V S0 ^ SV ):This proves that the functor �V is an equivalence of categories. By playing withadjoints, we see that 
V must be its inverse. Observe that this proof is indepen-dent of the Freudenthal suspension theorem. This argument and (6.2) give thefollowing important consistency relations, where we now drop the underline fromour notation for sphere spectra:
VE ' E ^ S�V and �1V X �= X ^ S�V ; where S�V � �1V S0:(8.2)Since all universes contain R, all G-spectra are equivalent to suspensions. Thisimplies that �hGS is an additive category, and it is now straightforward to provethat �hGS is triangulated. In fact, it has two triangulations, by co�brations and�brations, that di�er only by signs. We have already seen that it is symmetricmonoidal under the smash product and that it has well-behaved function spectra.We have established a good framework in which to do equivariant stable homotopytheory, and we shall say more about how to exploit it as we go on.9. Getting into the stable categoryThe stable category is an ideal world, and the obvious question that arisesnext is how one gets from the prespectra that occur \in nature" to objects in thiscategory. Of course, our prespectra are all encompassing, since we assumed nothingabout their constituent spaces and structure maps, and we do have the left adjointL : GP �! GS . However, this is a theoretical tool: its good formal propertiescome at the price of losing control over homotopical information. We need analternative way of getting into the stable category, one that retains homotopicalinformation.We �rst need to say a little more about the functor L. If the adjoint structuremaps ~� : EV �! 
W�V EW of a prespectrum E are inclusions, then (LE)(V ) isjust the union over W � V of the spaces 
W�VEW . Taking W = V , we obtainan inclusion � : EV �! (LE)(V ), and these maps specify a map of prespectra.If, further, each ~� is a co�bration and an equivalence, then each map � is anequivalence.Thus we seek to transform given prespectra into spacewise equivalent ones whoseadjoint structural maps are co�brations. The spacewise equivalence property will



150 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYensure that 
-prespectra are transported to 
-prespectra. It is more natural toconsider co�bration conditions on the structure maps � : �W�VEV �! EW , andwe say that a prespectrum E is \�-co�brant" if each � is a co�bration. If E isa �-co�brant prespectrum and if each EV has co�bered diagonal, in the sensethat the diagonal map EV �! EV �EV is a co�bration, then each adjoint map~� : EV �! 
W�V EW is a co�bration, as desired.Observe that no non-trivial spectrum can be �-co�brant as a spectrum sincethe structure maps � of spectra are surjections rather than injections. We saythat a spectrum is \tame" if it is homotopy equivalent to LE for some �-co�brantprespectrum E. The importance of this condition was only recognized during thework of Elmendorf, Kriz, Mandell, and myself on structured ring spectra. Its useleads to key technical improvements of [EKMM] over [LMS]. For example, thesharpest versions of Theorems 3.4 and 8.1 read as follows.Theorem 9.1. Let StU be the full subcategory of tame spectra indexed onU . Then any two linear isometries U �! U 0 induce canonically and coherentlyequivalent functors hStU �! hStU 0. The maps � : E �! 
�E and " : �
E �!E are homotopy equivalences of spectra when E is tame.Moreover, analogously to (6.5), but much more usefully, if E is a �-co�brantprespectrum, then LE �= colim�1V EV;(9.2)where the maps of the colimit system are the co�brations�1W� : �1V EV �= �1W (�W�V EV ) �! �1WEW:Here the prespectrum level colimit is already a spectrum, so that the colimit isconstructed directly, without use of the functor L. Given a G-spectrum E 0, thereresults a valuable lim1 exact sequence0 �! lim1[�EV;E 0V ]G �! [LE;E 0]G �! lim[EV;E 0V ]G �! 0(9.3)for the calculation of maps in �hGS in terms of maps in �hGT .To avoid nuisance about inverting weak equivalences here, we introduce anequivariant version of the classical CW prespectra.Definition 9.4. A G-CW prespectrum is a �-co�brant G-prespectrum E suchthat each EV has co�bered diagonal and is of the homotopy type of a G-CWcomplex.



9. GETTING INTO THE STABLE CATEGORY 151We can insist on actual G-CW complexes, but it would not be reasonable to askfor cellular structure maps. We have the following reassuring result relating thisnotion to our notion of a G-CW spectrum.Proposition 9.5. If E is a G-CW prespectrum, then LE has the homotopytype of a G-CW spectrum. If E is a G-CW spectrum, then each component spaceEV has the homotopy type of a G-CW complex.Now return to our original question of how to get into the stable category.The kind of maps of prespectra that we are interested in here are \weak maps"D �! E, whose components DV �! EV are only required to be compatible upto homotopy with the structural maps. If D is �-co�brant, then any weak map isspacewise homotopic to a genuine map. The inverse limit term of (9.3) is given byweak maps, which represent maps between cohomology theories on spaces, and itslim1 term measures the di�erence between weak maps and genuine maps, whichrepresent maps between cohomology theories on spectra.Applying G-CW approximation spacewise, using I.3.6, we can replace any G-prespectrum E by a spacewise weakly equivalent G-prespectrum �E whose com-ponent spaces are G-CW complexes and therefore have co�bered diagonal maps.However, the structure maps, which come from the Whitehead theorem and areonly de�ned up to homotopy, need not be co�brations. The following \cylin-der construction" converts a G-prespectrum E whose spaces are of the homotopytypes of G-CW complexes and have co�bered diagonals into a spacewise equivalentG-CW prespectrum KE. Both constructions are functorial on weak maps.The composite K� carries an arbitrary G-prespectrum E to a spacewise equiv-alent G-CW prespectrum. By Proposition 9.5, LK�E has the homotopy typeof a G-CW spectrum. In sum, the composite LK� provides a canonical passagefrom G-prespectra to G-CW spectra that is functorial up to weak homotopy andpreserves all homotopical information in the given G-prespectra.The version of the cylinder construction presented in [LMS] is rather clumsy.The following version is due independently to Elmendorf and Hesselholt. It enjoysmuch more precise properties, details of which are given in [EKMM].Construction 9.6 (Cylinder construction). Let E be a G-prespectrumindexed on U . De�ne KE as follows. For an indexing space V , let V be thecategory of subspaces V 0 � V and inclusions. De�ne a functor EV from V to



152 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYG-spaces by letting EV (V 0) = �V�V 0EV 0. For an inclusion V 00 �! V 0,V � V 00 = (V � V 0)� (V 0 � V 00)and � : �V 0�V 00EV 00 �! EV 0 induces EV (V 00) �! EV (V 0). De�ne(KE)(V ) = hocolimEV :An inclusion i : V �! W induces a functor i : V �! W , the functor �W�V com-mutes with homotopy colimits, and we have an evident isomorphism �W�VEV �=Ei of functors V �! W . Therefore i induces a map� : �W�V hocolimEV �= hocolim�W�VEV �= hocolimEi �! hocolimEW :One can check that this map is a co�bration. Thus, with these structural maps,KE is a �-co�brant prespectrum. The structural maps � : EV V 0 �! EV specifya natural transformation to the constant functor at EV and so induce a mapr : (KE)(V ) �! EV , and these maps r specify a map of prespectra. Regardingthe object V as a trivial subcategory of V , we obtain j : EV �! (KE)(V ). Clearlyrj = Id, and jr ' Id via a canonical homotopy since V is a terminal object of V .The maps j specify a weak map of prespectra, via canonical homotopies. ClearlyK is functorial and homotopy-preserving, and r is natural. If each space EV hasthe homotopy type of a G-CW complex, then so does each (KE)(V ), and similarlyfor the co�bered diagonals condition.A striking property of this construction is that it commutes with smash prod-ucts: if E and E 0 are prespectra indexed on U and U 0, thenKE^KE 0 is isomorphicover E ^ E 0 to K(E ^ E 0).



CHAPTER XIIIRO(G)-graded homology and cohomology theories1. Axioms for RO(G)-graded cohomology theoriesSwitching to a homological point of view, we now consider RO(G)-graded ho-mology and cohomology theories. There are several ways to be precise about this,and there are several ways to be imprecise. The latter are better represented inthe literature than the former. As we have already said, no matter how things areset up, \RO(G)-graded" is technically a misnomer since one cannot think of rep-resentations as isomorphism classes and still keep track of signs. We give a formalaxiomatic de�nition here and connect it up with G-spectra in the next section.From now on, we shall usually restrict attention to reduced homology and co-homology theories and shall write them without a tilde. Of course, a Z-gradedhomology or cohomology theory on G-spaces is required to satisfy the redun-dant axioms: homotopy invariance, suspension isomorphism, exactness on co�bersequences, additivity on wedges, and invariance under weak equivalence. Hereexactness only requires that a co�ber sequence X �! Y �! Z be sent to a threeterm exact sequence in each degree. The homotopy and weak equivalence axiomssay that the theory is de�ned on �hGT . Such theories determine and are deter-mined by unreduced theories that satisfy the Eilenberg-Steenrod axioms, minusthe dimension axiom. Since k�nG (X) �= k0G(�nX);only the non-negative degree parts of a theory need be speci�ed, and a non-negativeinteger n corresponds to Rn. Indexing on Zamounts to either choosing a basis forR1 or, equivalently, choosing a skeleton of a suitable category of trivial represen-tations. 153



154 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESNow assume given a G-universe U , say U = �(Vi)1 for some sequence of distinctirreducible representations Vi with V1 = R. An RO(G;U)-graded theory can bethought of as graded on the free Abelian group on basis elements correspondingto the Vi. It is equivalent to grade on the skeleton of a category of representationsembeddable in U , or to grade on this entire category. The last approach seems tobe preferable when considering change of groups, so we will adopt it.Thus let RO(G;U) be the category whose objects are the representations em-beddable in U and whose morphisms V �! W are the G-linear isometric isomor-phisms. Say that two such maps are homotopic if their associated based G-mapsSV �! SW are stably homotopic, and let hRO(G;U) be the resulting homotopycategory. For each W , we have an evident functor�W : RO(G;U) � �hGT �! RO(G;U) � �hGTthat sends (V;X) to (V �W;�WX).Definition 1.1. An RO(G;U)-graded cohomology theory is a functorE�G : hRO(G;U) � (�hGT )op �! A b;written (V;X) �! EVG (X) on objects and similarly on morphisms, together withnatural isomorphisms �W : E�G �! E�G � �W , written�W : EVG (X) �! EV�WG (�WX);such that the following axioms are satis�ed.(1) For each representation V , the functor EVG is exact on co�ber sequencesand sends wedges to products.(2) If � : W �! W 0 is a map in RO(G;U), then the following diagram com-mutes: EVG (X) //�W���W 0 EV�WG (�WX)�� Eid��G (id)EV�W 0G (�W 0X) //(�� id)� EV�W 0G (�WX):



1. AXIOMS FOR RO(G)-GRADED COHOMOLOGY THEORIES 155(3) �0 = id and the � are transitive in the sense that the following diagramcommutes for each pair of representations (W;Z):EVG (X) //�W((�W�Z QQQQQQQQQQQQ EV�WG (�WX)uu �ZkkkkkkkkkkkkkkEV�W�ZG (�W�ZX):We extend a theory so de�ned to \formal di�erences V 	W" for any pair ofrepresentations (V;W ) by settingEV	WG (X) = EVG (�WX):We use the symbol 	 to avoid confusion with either orthogonal complement ordi�erence in the representation ring. Rigorously, we are thinking of V 	 W asan object of the category hRO(G;U) � hRO(G;U)op, and, for each X, we havede�ned a functor from this category to the category of Abelian groups.The representation group RO(G;U) relative to the given universe U is obtainedby passage to equivalence classes from the set of formal di�erences V 	W , whereV 	W is equivalent to V 0 	W 0 if there is a G-linear isometric isomorphism� : V �W 0 �! V 0 �W ;RO(G;U) is a ring if tensor products of representations embeddable in U areembeddable in U .When interpreting RO(G;U)-graded cohomology theories, we must keep trackof the choice of �, and we see that a given � determines the explicit isomorphismdisplayed as the unlabelled arrow in the diagram of isomorphismsEVG (�WX)�� //�W 0 EV�W 0G (�W�W 0X)�� E�G(�� id)EV 0G (�W 0X) //�W EV 0�WG (�W 0�WX);where � :W �W 0 �!W 0 �W is the transposition isomorphism.If V G = 0, write V � Rn = V + n. Axiom (1) ensures that, for each suchV , the EV+nG and �1 de�ne a Z-graded cohomology theory. Axiom (2), togetherwith some easy category theory, ensures that we obtain complete information ifwe restrict attention to one object in each isomorphism class of representations,



156 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESthat is, if we restrict to any skeleton of the category RO(G;U). One can evenrestrict further to a skeleton of its homotopy category. We shall say more aboutthis in the next section.We can replace the category �hGT of based G-spaces by the category �hGS Uof G-spectra in the de�nition just given and so de�ne an RO(G;U)-graded co-homology theory on G-spectra. Observe that, by our de�nition of the categoryRO(G;U), the isomorphism type of the functor EVG depends only on the stable ho-motopy type of the G-sphere SV . Such stable homotopy types have been classi�edby tom Dieck.We have the evident dual axioms for RO(G;U)-graded homology theories on G-spaces or G-spectra. The only point that needs to be mentioned is that homologytheories must be given by contravariant functors on RO(G;U) in order to makesense of the homological counterpart of Axiom (2).T. tom Dieck. Transformation groups and representation theory. Springer Lecture Notes inMathematics. Vol. 766. 1979.2. Representing RO(G)-graded theories by G-spectraWith our categorical de�nition of RO(G;U)-graded cohomology theories, it isnot obvious that they are represented by G-spectra. We show that they are inthis and the following section, �rst showing how to obtain an RO(G;U)-gradedtheory from a G-spectrum and then showing how to obtain a G-spectrum froman RO(G;U)-graded theory. Since I �nd the equivariant forms of these resultsin the literature to be unsatisfactory, I shall go into some detail. The problem isto pass from indexing spaces to general representations embeddable in our givenuniverse U , and the idea is to make explicit structure that is implicit in the notionof a G-spectrum and then exploit standard categorical techniques. We begin withsome of the latter.Let IO(G;U) and hIO(G;U) be the full subcategories of RO(G;U) andhRO(G;U) whose objects are the indexing spaces in U , let	 : IO(G;U) �! RO(G;U)be the inclusion, and also write 	 for the inclusion hIO(G;U) �! hRO(G;U).For each representation V that is embeddable in U , choose an indexing space �Vin U and a G-linear isomorphism �V : V �! �V . If V is itself an indexing space



2. REPRESENTING RO(G)-GRADED THEORIES BY G-SPECTRA 157in U , choose �V = V and let �V be the identity map. Extend � to a functor� : RO(G;U) �! IO(G;U)by letting ��, � : V �! V 0, be the composite�V //��1V V //� V 0 //�V 0 �V 0:Then � � 	 = Id and the �V de�ne a natural isomorphism Id �! 	 � �. Thisequivalence of categories induces an equivalence of categories between hIO(G;U)and hRO(G;U). A functor F from hIO(G;U) to any category C extends to thefunctor F� from hRO(G;U) to C , and we agree to write F instead of F� forsuch an extended functor.Lemma 2.1. Let E be an 
G-prespectrum. Then E gives the object functionof a functor E : hRO(G;U) �! �hGT .Proof. By the observations above, it su�ces to de�ne E as a functor onhIO(G;U). Suppose given indexing spaces V and V 0 in U and a G-linear iso-morphism � : V �! V 0. Choose an indexing space W large enough that itcontains both V and V 0 and that W � V and W � V 0 both contain copies ofrepresentations isomorphic to V and thus to V 0. Then there is an isomorphism� : W � V �! W 0 � V 0 such that� ^ � : SW �= SW�V ^ SV �! SW�V 0 ^ SV 0 �= SWis stably homotopic to the identity. (For the veri�cation, one relates smash productto composition product in the zero stem �G0 (S0), exactly as in nonequivariant stablehomotopy theory.) Then de�ne E� : EV �! EV 0 to be the compositeEV //~� 
W�V EW //
��1 
W 0�V 0EW //��1 EV 0:It is not hard to check that this construction takes stably homotopic maps � and�0 to homotopic maps E� and E�0 and that the construction is functorial onIO(G;U).Proposition 2.2. An 
-G-prespectrum E indexed on a universe U representsan RO(G;U)-graded cohomology theory E�G on based G-spaces.



158 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESProof. For a representation V that embeds in U , de�neEVG (X) = [X;E�V ]G:For each � : V �! V 0, de�ne E�G(X) = [X;E��]G:This gives us the required functorE�G : hRO(G;U) � (�hGT )op �! A b;and it is obvious that Axiom (1) of De�nition 1.1 is satis�ed.Next, suppose given representations V and W that embed in U . We may write�(V �W ) = V 0 +W 0;where V 0 = �V�W (V ) and W 0 = �V�W (W ). There result isomorphisms�V : �V ��1V�!V �0V�!V 0 and �W : �W ��1W�!W �0W�!W 0;where �0V = �V�W jV and �0W = �V�W jW . De�ne�W : EVG (X) �! EV�WG (�WX)by the commutativity of the following diagram:EVGX = [X;E�V ]G���W //[id;E�V ] [X;EV 0]G�� [id;~�][X;
W 0E(V 0 +W 0)]G�� �=EV�WG (�WX) = [�WX;E�(V �W )]G [�W 0X;E(V 0 �W 0)]G:oo [��0W id;id]Diagram chases from the de�nitions demonstrate that �W is natural, that thediagram of Axiom (2) of De�nition 1.1 commutes, and that the transitivity diagramof Axiom 3 commutes because of the transitivity condition that we gave as partof the de�nition of a G-prespectrum.There is an analog for homology theories.A slight variant of the proof above could be obtained by �rst replacing thegiven 
-G-prespectrum by a spacewise equivalent G-spectrum indexed on U andthen specializing the following result to suspension G-spectra. Recall that, for an



2. REPRESENTING RO(G)-GRADED THEORIES BY G-SPECTRA 159indexing space V , we have the shift desuspension functor �1V from based G-spacesto G-spectra. It is left adjoint to the V th space functor:[�1V X;E]G �= [X;EV ]G:(2.3)Definition 2.4. For a formal di�erence V 	 W of representations of G thatembed in U , de�ne the sphere G-spectrum SV	W bySV	W = �1�WSV ;(2.5)where � : RO(G;U) �! IO(G;U) is the equivalence of categories constructedabove.Proposition 2.6. A G-spectrum E indexed on U determines an RO(G;U)-graded homology theory EG� and an RO(G;U)-graded cohomology theory E�G onG-spectra.Proof. For G-spectra X and formal di�erences V 	W of representations thatembed in U , we de�ne EGV	W (X) = [SV	W ; E ^X]G(2.7)and EV	WG (X) = [SW	V ^X;E]G = [SW	V ; F (X;E)]G:(2.8)Of course, in cohomology, to verify the axioms, we may as well restrict attentionto the case W = 0, and similarly in homology. Obviously, the veri�cation reducesto the study of the properties of the G-spheres �V S0, or of the functors �V . First,we need functoriality on RO(G;U), but this is immediate from (2.3) and thefunctoriality of the EV given by Lemma 2.1. With the notations of the previousproof, we obtain the �W from the composite isomorphism of functors�1�V �= �1V 0 �= �W 0�1V 0+W 0 �= �W�1�(V�W );where the three isomorphisms are given by use of �V , passage to adjoints from thehomeomorphism ~� : EV 0 �! 
W 0E(V 0 + W 0), and use of �0W . From here, theveri�cation of the axioms is straightforward.



160 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIES3. Brown's theorem and RO(G)-graded cohomologyWe next show that, conversely, all RO(G)-graded cohomology theories on basedG-spaces are represented by 
-G-prespectra and all theories on G-spectra arerepresented by G-spectra. We then discuss the situation in homology, which isconsiderably more subtle equivariantly than nonequivariantly.We �rst record Brown's representability theorem. Brown's categorical proofapplies just as well equivariantly as nonequivariantly, on both the space and thespectrum level. Recall that homotopy pushouts are double mapping cylindersand that weak pullbacks satisfy the existence but not the uniqueness property ofpullbacks. Recall that a G-space X is said to be G-connected if each of its �xedpoint spaces XH is non-empty and connected.Theorem 3.1 (Brown). A contravariant set-valued functor k on the homo-topy category of G-connected based G-CW complexes is representable in the formkX �= [X;K]G for a based G-CW complexK if and only if k satis�es the wedge andMayer-Vietoris axioms: k takes wedges to products and takes homotopy pushoutsto weak pullbacks. The same statement holds for the homotopy category of G-CWspectra indexed on U for any G-universe U .Corollary 3.2. An RO(G;U)-graded cohomology theory E�G on based G-spaces is represented by an 
-G-prespectrum indexed on U .Proof. Restricting attention to G-connected based G-spaces, which is harmlessin view of the suspension axiom for trivial representations, we see that (1) ofDe�nition 1.1 implies the Mayer-Vietoris and wedge axioms that are needed toapply Brown's representability theorem. This gives that EVG is represented by aG-CW complexEV for each indexing space V in U . If V � W , then the suspensionisomorphism �W�V : EVG (X) �= EWG (�W�VX)is represented by a homotopy equivalence ~� : EV �! 
W�VEW . The transitivityof the given system of suspension isomorphisms only gives that the structural mapsare transitive up to homotopy, whereas the de�nition of a G-prespectrum requiresthat the structural maps be transitive on the point-set level. If we restrict toa co�nal sequence of indexing spaces, then we can use transitivity to de�ne thestructural weak equivalences for non-consecutive terms of the sequence. We can



3. BROWN'S THEOREM AND RO(G)-GRADED COHOMOLOGY 161then interpolate using loop spaces to construct a representing 
-G-prespectrumindexed on all indexing spaces.We emphasize a di�erent point of view of the spectrum level analog. In fact, weshall exploit the following result to construct ordinary RO(G)-graded cohomologytheories in the next section.Corollary 3.3. AZ-graded cohomology theory on G-spectra indexed on U isrepresented by a G-spectrum indexed on U and therefore extends to an RO(G;U)-graded cohomology theory on G-spectra indexed on U .Proof. Since the loop and suspension functors are inverse equivalences on thestable category �hGS U , we can reconstruct the given theory from its zeroth term,and Brown's theorem applies to represent the zeroth term.We showed in the previous chapter that an 
-G-prespectrum determines a space-wise equivalent G-spectrum, so that a cohomology theory on based G-spaces ex-tends to a cohomology theory on G-spectra. The extension is unique up to non-unique isomorphism, where the non-uniqueness is measured by the lim1 term in(XII.9.3).Adams proved a variant of Brown's representability theorem for functors de�nedonly on connected �nite CW complexes, removing a countability hypothesis thatwas present in an earlier version due to Brown. This result also generalizes to theequivariant context, with the same proof as Adams' original one.Theorem 3.4 (Adams). A contravariant group-valued functor k de�ned on thehomotopy category of G-connected �nite based G-CW complexes is representablein the form kX �= [X;K]G for some G-CW spectrum K if and only if k converts�nite wedges to direct products and converts homotopy pushouts to weak pullbacksof underlying sets. The same statement holds for the homotopy category of �niteG-CW spectra.Here the representing G-CW spectrum K is usually in�nite and is unique onlyup to non-canonical equivalence. More precisely, maps g; g0 : Y �! Y 0 are said tobe weakly homotopic if gf is homotopic to g0f for any map f : X ! Y de�ned ona �nite G-CW spectrum X, and K is unique up to isomorphism in the resultingweak homotopy category of G-CW spectra.Nonequivariantly, we pass from here to the representation of homology theoriesby use of Spanier-Whitehead duality. A �nite CW spectrum X has a dual DX



162 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESthat is also a �nite CW spectrum. Given a homology theory E� on based spacesor on spectra, we obtain a dual cohomology theory on �nite X by settingEn(X) = E�n(DX):We then argue as above that this cohomology theory on �nite X is representableby a spectrum E, and we deduce by duality that E also represents the originallygiven homology theory.Equivariantly, this argument works for a complete G-universe U , but it doesnot work for a general universe. The problem is that, as we shall see later, onlythose orbit spectra �1G=H+ such that G=H embeds equivariantly in U havewell-behaved duals. For example, if the universe U is trivial, then inspection ofde�nitions shows that F (G=H+; S) = S for all H � G, where S is the spherespectrum with trivial G-action. Thus X is not equivalent to DDX in general andwe cannot hope to recover E�(X) as E�(DX).Corollary 3.5. If U is a complete G-universe, then an RO(G;U)-graded ho-mology theory on based G-spaces or on G-spectra is representable.From now on, unless explicitly stated otherwise, we take our given universe Uto be complete, and we write RO(G) = RO(G;U): As shown by long experiencein nonequivariant homotopy theory, even if one's primary interest is in spaces, thebest way to study homology and cohomology theories is to work on the spectrumlevel, exploiting the virtues of the stable homotopy category.J. F. Adams. A variant of E. H. Brown's representability theorem. Topology, 10(1971), 185{198.E. H. Brown, Jr. Cohomology theories. Annals of Math. 75(1962), 467{484.E. H. Brown, Jr. Abstract homotopy theory. Trans. Amer. Math. Soc. 119(1965), 79{85.4. Equivariant Eilenberg-MacLane spectraFrom the topological point of view, a coe�cient system is a contravariant addi-tive functor from the stable category of naive orbit spectra to Abelian groups. Infact, it is easy to see that the group of stable maps G=H+ �! G=K+ in the naivesense is the free Abelian group on the set of G-maps G=H �! G=K.Recall from IXx4 that a Mackey functor is de�ned to be an additive contravariantfunctor BG �! A b. Clearly the Burnside category B = BG introduced there isjust the full subcategory of the stable category whose objects are the orbit spectra�1G=H+. The only di�erence is that, when de�ning BG, we abbreviated thenames of objects to G=H.



4. EQUIVARIANT EILENBERG-MACLANE SPECTRA 163From this point of view, the forgetful functor that takes a Mackey functor toa coe�cient system is obtained by pullback along the functor i� from the stablecategory of genuine orbit spectra to the stable category of naive orbit spectra. InXx4, Waner described a space level construction of an RO(G)-graded cohomologytheory with coe�cients in a Mackey functorM that extends the ordinaryZ-gradedcohomology theory determined by its underlying coe�cient system i�M . We shallhere give a more sophisticated, and I think more elegant and conceptual, spectrumlevel construction of such \ordinary" RO(G)-graded cohomology theories, andsimilarly for homology.Our strategy is to construct a genuine Eilenberg-MacLane G-spectrum HM =K(M; 0) to represent our theory. Just as nonequivariantly, an Eilenberg-MacLaneG-spectrum HM is one such that �n(HM) = 0 for n 6= 0. Of course, �0(HM) =M must be a Mackey functor since that is true of �n(E) for any n and any G-spectrum E. We shall explain the following result.Theorem 4.1. For a Mackey functor M , there is an Eilenberg-MacLane G-spectrum HM such that �0(HM) =M . It is unique up to isomorphism in �hGS .For Mackey functors M and M 0, [HM;HM 0]G is the group of maps of Mackeyfunctors M �!M 0.There are several possible proofs. For example, one can exploit projective res-olutions of Mackey functors. The proof that we shall give is the original one ofLewis, McClure, and myself, which I �nd rather amusing.What is amusing is that, motivated by the desire to construct an RO(G)-gradedcohomology theory, we instead construct a Z-graded theory. However, this is aZ-graded theory de�ned on G-spectra. As observed in Corollary 4.3, it can berepresented and therefore extends to an RO(G)-graded theory. The representingG-spectrum is the desired Eilenberg-MacLane G-spectrum HM . What is alsoamusing is that the details that we shall use to construct the desired cohomologytheories are virtually identical to those that we used to construct ordinary theoriesin the �rst place.We start with G-CW spectra X. They have skeletal �ltrations, and we de�neMackey-functor valued cellular chains by settingCn(X) = �n(Xn=Xn�1):(4.2)We used homology groups in Ix4, but, aside from nuisance with the cases n = 0



164 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESand n = 1, we could equally well have used homotopy groups. Of course, Xn=Xn�1is a wedge of n-sphere G-spectra SnH ' G=H+ ^ Sn. We see that the Cn(X) areprojective objects of the Abelian category of Mackey functors by essentially thesame argument that we used in Ix4. As there, the connecting homomorphism ofthe triple (Xn;Xn�1;Xn�2) speci�es a map of Mackey functorsd : Cn(X) �! Cn�1(X);and d2 = 0. Write HomB(M;M 0) for the Abelian group of maps of Mackeyfunctors M �!M 0. For a Mackey functor M , de�neCnG(X;M) = HomB(Cn(X);M); with � = HomB(d; Id):(4.3)Then C�G(X;M) is a cochain complex of Abelian groups. We denote its homologyby H�G(X;M).The evident cellular versions of the homotopy, exactness, wedge, and excisionaxioms admit exactly the same quick derivations as on the space level, and weuse G-CW approximation to extend from G-CW spectra to general G-spectra: wehave a Z-graded cohomology theory on �hGS . It satis�es the dimension axiomH�G(S0H ;M) = H0G(S0H ;M) =M(G=H);(4.4)these giving isomorphisms of Mackey functors. The zeroth term is represented bya G-spectrum HM , and we read o� its homotopy group Mackey functors directlyfrom (4.4): �0(HM) =M and �n(HM) = 0 if n 6= 0:The uniqueness of HM is evident, and the calculation of [HM;HM 0]G followseasily from the functoriality in M of the theories H�G(X;M).We should observe that spectrum level obstruction theory works exactly ason the space level, modulo connectivity assumptions to ensure that one has adimension in which to start inductions.For G-spaces X, we now have two meanings in sight for the notation HnG(X;M):we can regard our Mackey functor as a coe�cient system and take ordinary co-homology as in Ix4, or we can take our newly constructed cohomology. We knowby the axiomatic characterization of ordinary cohomology that these must in factbe isomorphic, but it is instructive to check this directly. At least after a singlesuspension, we can approximate any G-space by a weakly equivalent G-CW based



4. EQUIVARIANT EILENBERG-MACLANE SPECTRA 165complex, with based attaching maps. The functor �1 takes G-CW based com-plexes to G-CW spectra, and we �nd that the two chain complexes in sight areisomorphic. Alternatively, we can check on the represented level:[�1X;�nHM ]G �= [X;
1�nHM ]G �= [X;K(M;n)]G:What about homology? Recall that a coMackey functor is a covariant functorN : B �! A b. Using the usual coend construction, we de�neCGn (X;N) = C�(X) 
B N; with @ = d 
 Id :(4.5)Then CG� (X;N) is a chain complex of Abelian groups. We denote its homology byHG� (X;N). Again, the veri�cation of the axioms for a Z-graded homology theoryon �hGS is immediate. The dimension axiom now readsHG� (S0H ;N) = HG0 (S0H ;N) = N(G=H):(4.6)We de�ne a cohomology theory on �nite G-spectra X byH�G(X;N) = HG��(DX;N):(4.7)Applying Adams' variant of the Brown representability theorem, we obtain aG-spectrum JN that represents this cohomology theory. For �nite X, we obtainHG� (X;N) = H��G (DX;N) �= [DX;JN ]��G �= [S; JN ^X]G� = JNG� (X):Thus JN represents the Z-graded homology theory that we started with and ex-tends it to an RO(G)-graded theory. We again see that, on G-spaces X,HG� (X;N)agrees with the homology of X with coe�cients in the underlying covariant coef-�cient system of N , as de�ned in Ix4.What are the homotopy groups of JN? The answer must be�Hn (JN) = HGn (D(G=H+);N):For �nite G, orbits are self-dual and the resulting isomorphism of the stable orbitcategory with its opposite category induces the evident self-duality of the alge-braically de�ned category of Mackey functors to be discussed in XIXx3. Thisallows us to conclude that JN = H(N�);where N� is the Mackey functor dual to the coMackey functor N .For general compact Lie groups, however, the dual of G=H+ is G nH S�L(H),and it is not easy to calculate the homotopy groups of JN . This G-spectrum is



166 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESbounded below, but it is not connective. We must learn to live with the fact thatwe have two quite di�erent kinds of Eilenberg-MacLane G-spectra, one that issuitable for representing \ordinary" cohomology and the other that is suitable forrepresenting \ordinary" homology.G. Lewis, J. P. May, and J. McClure. Ordinary RO(G)-graded cohomology. Bulletin Amer.Math. Soc. 4(1981), 208-212.5. Ring G-spectra and productsGiven our precise de�nition of RO(G)-graded theories and our understanding oftheir representation by G-spectra, the formal apparatus of products in homologyand cohomology theories can be developed in a straightforward manner and is littledi�erent from the nonequivariant case in classical lectures of Adams. However,in that early work, Adams did not take full advantage of the stable homotopycategory. We here recall briey the basic de�nitions from the equivariant treatmentin [LMS, IIIx3].There are four basic products to consider, two external products and two slantproducts. The reader should be warned that the treatment of slant products in theliterature is inconsistent, at best, and often just plain wrong. These four productscome from the following four natural maps in �hGS ; all variables are G-spectra.X ^ E ^X 0 ^ E 0 //id^�^id X ^X 0 ^ E ^ E 0(5.1) F (X;E) ^ F (X 0; E 0) //^ F (X ^X 0; E ^ E 0)(5.2) F (X ^X 0; E) ^X ^ E 0 //=���= F (X 0; E ^ E 0)F (X;F (X 0; E)) ^X ^ E 0 //"^id F (X 0; E) ^ E 0OO �(5.3) X ^X 0 ^ E ^ F (X;E 0) **� VVVVVVVVVVVVVVVVVV //n X 0 ^ E ^ E 0X 0 ^ E ^ F (X;E 0) ^X 55id^ id^" jjjjjjjjjjjjjjjj(5.4)



5. RING G-SPECTRA AND PRODUCTS 167The � are transposition maps and the " are evaluation maps. The map �can be described formally, but it is perhaps best understood by pretending thatF means Hom and ^ means 
 over a commutative ring and writing down theobvious analog. Categorically, such coherence maps are present in any symmetricmonoidal category with an internal hom functor. A categorical coherence theoremasserts that any suitably well formulated diagram involving these transformationswill commute.On passage to homotopy groups, these maps give rise to four products inRO(G)-graded homology and cohomology. With our details on RO(G)-grading, we leaveit as an exercise for the reader to check exactly how the grading behaves.EG� (X) 
 E 0G� (X 0) �! (E ^ E 0)G� (X ^X 0)(5.5) E�G(X)
 E 0�G(X 0) �! (E ^ E 0)�G(X ^X 0)(5.6) = : E�G(X ^X 0)
E 0G� (X) �! (E ^ E 0)�G(X 0)(5.7) n : EG� (X ^X 0)
 E 0�G(X) �! (E ^ E 0)G� (X 0)(5.8)A ring G-spectrum E is one with a product � : E ^ E �! E and a unit map� : S �! E such that the following diagrams commute in �hGS :S ^ E //�^1 %%' KKKKKKKKKK E ^ E�� � E ^ Soo 1^�yy 'ssssssssss and E ^ E ^ E���^1 //1^� E ^ E�� �E E ^ E //� E:The unlabelled equivalences are canonical isomorphisms in �hGS that give theunital property, and we have suppressed such an associativity isomorphism in thesecond diagram. Of course, there is a weaker notion in which associativity is notrequired; E is commutative if the following diagram commutes in �hGS :E ^ E ##� GGGGGGGGG //� E ^ E{{ �wwwwwwwwwE:



168 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESAn E-module is a spectrum M together with a map � : E ^M �! M suchthat the following diagrams commute in �hGS :S ^M //�^1 %%' LLLLLLLLLLL E ^M�� � and E ^ E ^M���^1 //1^� E ^M�� �M E ^M //� M:We obtain various further products by composing the four external productsdisplayed above with the multiplication of a ring spectrum or with its action ona module spectrum. If X = X 0 is a based G-space (or rather its suspensionspectrum), we obtain internal products by composing with the reduced diagonal� : X �! X ^X. Of course, it is more usual to think in terms of unbased spaces,but then we adjoin a disjoint basepoint. In particular, for a ring G-spectrum Eand a based G-space X, we obtain the cup and cap products[ : E�G(X) 
 E�G(X) �! E�G(X)(5.9)and \ : EG� (X) 
 E�G(X) �! EG� (X)(5.10)from the external products ^ and n.It is natural to ask when HM is a ring G-spectrum. In fact, in common withall such categories of additive functors, the category of Mackey functors has aninternal tensor product (see Mitchell). In the present topological context, we cande�ne it simply by settingM 
M 0 = �0(HM ^HM 0):There results a notion of a pairingM
M 0 �!M 00 of Mackey functors. By killingthe higher homotopy groups of HM ^HM 0, we obtain a canonical map� : HM ^HM 0 �! H(M 
M 0);and � induces an isomorphism on H0G(�;M 00) = [�;HM 00]G. It follows that pairingsof G-spectra HM ^HM 0 �! HM 00 are in bijective correspondence with pairingsM 
M 0 �! M 00. From here, it is clear how to de�ne the notion of a ring inthe category of Mackey functors | such objects are called Green functors |and to conclude that a ring structure on the G-spectrum HM determines andis determined by a structure of Green functor on the Mackey functor M . Theseobservations come from work of Greenlees and myself on Tate cohomology.



5. RING G-SPECTRA AND PRODUCTS 169There is a notion of a ring G-prespectrum; modulo lim1 problems, its associatedG-spectrum (here constructed using the cylinder construction since one wishes toretain homotopical information) inherits a structure of ring G-spectrum. A goodnonequivariant exposition that carries over to the equivariant context has beengiven by McClure.J. F. Adams. Lectures on generalized cohomology. in Springer Lecture Notes in Mathematics,Vol. 99, 1-138.J. P. C. Greenlees and J. P. May. Generalized Tate cohomology (x8). Memoirs Amer. Math.Soc. Number 543. 1995.J. E. McClure. H1-ring spectra via space-level homotopy theory (xx1-2). In R. Bruner, etal, H1-ring spectra and their applications. Springer Lecture Notes in Mathematics, Vol. 1176.1986.B. Mitchell. Rings with several objects. Advances in Math 8(1972), 1-16.
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CHAPTER XIVAn introduction to equivariant K-theoryby J. P. C. Greenlees1. The de�nition and basic properties of KG-theoryThe aim of this chapter is to explain the basic facts about equivariant K-theorythrough the Atiyah-Segal completion theorem. Throughout, G is a compact Liegroup and we focus on complex K-theory. Real K-theory works similarly.We briey outline the geometric roots of equivariant K-theory. A G-vectorbundle over a G-space X is a G-map � : E �! X which is a vector bundle suchthat G acts linearly on the �bers, in the sense that g : Ex �! Egx is a linear map.Since G is compact, all short exact sequences of G-vector bundles split. If X isa compact space, then KG(X) is de�ned to be the Grothendieck group of �nitedimensional G-vector bundles over X. Tensor product of bundles makes KG(X)into a ring.Many applications arise; for example, the equivariant K-groups are the homesfor indices of G-manifolds and families of elliptic operators.Any complex representation V of G de�nes a trivial bundle over X and, by thePeter-Weyl theorem, any G-vector bundle over a compact base space is a summandof such a trivial bundle. The cokernel of KG(�) �! KG(X) can therefore bedescribed as the group of stable isomorphism classes of bundles over X, wheretwo bundles are stably isomorphic if they become isomorphic upon adding anappropriate trivial bundle to each. When X has a G-�xed basepoint �, we write~KG(X) for the isomorphic group ker(KG(X) �! KG(�)).171



172 XIV. AN INTRODUCTION TO EQUIVARIANT K-THEORYThe de�nition of a G-vector bundle makes it clear that G-bundles over a free G-space correspond to vector bundles over the quotient under pullback. We deducethe basic reduction theorem:KG(X) = K(X=G) if X is G � free:(1.1)This is essentially the statement that K-theory is split in the sense to be discussedin XVIx2. It provides the fundamental link between equivariant and nonequivari-ant K-theory.Restriction and induction are the basic pieces of structure that link di�erentambient groups of equivariance.If i : H �! G is the inclusion of a subgroup it is clear that a G-space or bundlecan be viewed as an H-space or bundle; we thereby obtain a restriction mapi� : KG(X) �! KH(X):There is another way of thinking about this map. For an H-space Y ,KG(G �H Y ) �= KH(Y )(1.2)since a G-bundle over G �H Y is determined by its underlying H-bundle over Y .For a G-space X, G �H X �= G=H �X, and the restriction map coincides withthe map KG(X) �! KG(G=H �X) �= KH(X)induced by the projection G=H �! �.If H is of �nite index in G, an H-bundle over a G-space may be made into aG-bundle by applying the functor HomH(G; �). We thus obtain an induction mapi� : KH(X) �! KG(X). However ifH is of in�nite index this construction gives anin�nite dimensional bundle. There are three other constructions one may hope touse. First, there is smooth induction, which Segal describes for the representationring and which should apply to more general base manifolds than a point.Second, there is the holomorphic transfer, which one only expects to exist whenG=H admits the structure of a projective variety. The most important case is whenH is the maximal torus in the unitary group U(n), in which case a constructionusing elliptic operators is described by Atiyah. Its essential property is that itsatis�es i�i� = 1. It is used in the proof of Bott periodicity.Third, there is a transfer maptr : ~KH(�WX) �= ~KG(G+ ^H �WX) �! ~KG(�VX)



2. BUNDLES OVER A POINT: THE REPRESENTATION RING 173induced by the Pontrjagin-Thom construction t : SV �! G+ ^H SW associatedto an embedding of G=H in a representation V , where W is the complement ofthe image in V of the tangent H-representation L = L(H) at the identity coset ofG=H. Once we use Bott periodicity to set up RO(G)-graded K-theory, this maybe interpreted as a dimension-shifting transfer ~Kq+LH (X) �! ~KqG(X). Clearly thistransfer is not special to K-theory: it is present in any RO(G)-graded theory.M. F.Atiyah. Bott periodicity and the index of elliptic operators. Quart. J. Math. 19(1968),113-140.G. B.Segal. Equivariant K-theory. Pub. IHES 34(1968), 129-151.2. Bundles over a point: the representation ringBundles over a point are representations and hence equivariant K-theory ismodule-valued over the complex representation ring R(G). More generally, anyG-vector bundle over a transitiveG-space G=H is of the formG�HV �! G�H� =G=H for some representation V of H. Hence KG(G=H) = R(H). It follows thatKG(X) takes values in the category of R(G)-modules, and thus it is important tounderstand the algebraic nature of R(G).Before turning to this, we observe that if G acts trivially on X, thenKG(X) �= R(G) 
K(X):Indeed, the map K(X) �! KG(X) obtained by regarding a vector bundle as a G-trivial G-vector bundle extends to a map � : R(G)
K(X) of R(G)-modules, andthis map is the required isomorphism. An explicit inverse can be constructed asfollows. For a representation V , let V denote the trivialG-vector bundleX�V �!X. The functor that sends a G-vector bundle � to the vector bundle HomG(V; �)induces a homomorphism "V : KG(X) �! K(X). Let fVig run through a setconsisting of one representation Vi from each isomorphism class [Vi] of irreduciblerepresentations. Then a G-vector bundle � over X breaks up as the Whitneysum of its subbundles Vi 
 HomG(Vi; �). De�ne � : KG(X) �! R(G) 
 K(X)by �(�) = Pi[Vi] 
 "Vi(�). It is then easy to check that � and � are inverseisomorphisms.To understand the algebra of R(G), one should concentrate on the so called\Cartan subgroups" of G. These are topologically cyclic subgroups H with �niteWeyl groups WG(H) = NG(H)=H. Conjugacy classes of Cartan subgroups arein one-to-one correspondence with conjugacy classes of cyclic subgroups of the



174 XIV. AN INTRODUCTION TO EQUIVARIANT K-THEORYcomponent group �0(G). Every element of G lies in some Cartan subgroup, andtherefore the restriction maps give an injective ring homomorphismR(G) �!Y(C)R(C)(2.1)where the product is over conjugacy classes of Cartan subgroups.The ringR(G) is Noetherian. Indeed, by explicit calculation,R(U(n)) is Noethe-rian and the representation ring of a maximal torus T is �nite over it. Any groupG may be embedded in some U(n), and it is enough to show that R(G) is �nitelygenerated as an R(U(n))-module. Now R(G) is detected on �nitely many topolog-ically cyclic subgroups C, so it is enough to show each R(C) is �nitely generatedover R(U(n)). But each such C is conjugate to a subgroup of T , and R(C) is �niteover R(T ).The map (2.1) makes the codomain a �nitely generated module over the domainand consequently the induced map of prime spectra is surjective and has �nite�bers. By identifying the �bers it can then be shown that for any prime } ofR(G) the set of minimal elements offH � G j } is the restriction of a prime of R(H)gconstitutes a single conjugacy class (H) of subgroups, with H topologically cyclic.We say that (H) is the support of }. If R(G)=} is of characteristic p > 0 then thecomponent group of H has order prime to p.The �rst easy consequence is that the Krull dimension of R(G) is one more thanthe rank of G.A more technical consequence which will become important to us later is thatcompletion is compatible with restriction. Indeed restriction gives a ring homo-morphism res : R(G) �! R(H) by which we may regard an R(H)-module as anR(G)-module. Using supports, we see that if I(G) = kerfdim : R(G) �! Zg isthe augmentation ideal, the ideals I(H) and res(I(G)):R(H) have the same rad-ical. Consequently the I(H)-adic and I(G)-adic completions of an R(H)-modulecoincide.Finally, using supports it is straightforward to understand localizations of equiv-ariant K-theory at primes of R(G). In fact if (H) is the support of } the inclusionX(H) �! X induces an isomorphism of KG( )}, where X(H) is the union of the�xed point spaces XH 0 with H 0 conjugate to H.G. B.Segal. The representation ring of a compact Lie group. Pub. IHES 34(1968), 113-128.



3. EQUIVARIANT BOTT PERIODICITY 1753. Equivariant Bott periodicityEquivariant Bott periodicity is the most important theorem in equivariant K-theory and is even more extraordinary than its nonequivariant counterpart. Itunderlies all of the amazing properties of equivariant K-theory. For a locallycompact G-space X, de�ne KG(X) to be the reduced K-theory of the one-pointcompacti�cation X# of X. That is, writing � for the point at in�nity,KG(X) = ker(KG(X#) �! KG(�):WhenX is compact,X# is the unionX+ ofX and a disjointG-�xed basepoint. Weissue a warning: in general, for in�nite G-CW complexes, KG(X) as just de�nedwill not agree with the represented KG-theory of X that will become availablewhen we construct the K-theory G-spectrum in the next section.Theorem 3.1 (Thom isomorphism). For vector bundles E over locally com-pact base spaces X, there is a natural Thom isomorphism� : KG(X) �=�! KG(E):There is a quick reduction to the case whenX is compact, and in this case we canuse that any G-bundle is a summand of the trivial bundle of some representationV to reduce to the case when E = V �X. Here, with an appropriate descriptionof the Thom isomorphism, one can reinterpret the statement as a convenient andexplicit version of Bott periodicity. To see this, let �(V ) 2 R(G) denote thealternating sum of exterior powers�(V ) = 1 � V + �2V � � � �+ (�1)dimV �dimV V;let eV : S0 �! SV be the based map that sends the non-basepoint to 0, and,taking X to be a point, let bV = �(1) 2 ~K(SV ). Observe that eV inducese�V : ~K(SV ) �! ~K(S0) = R(G):Theorem 3.2 (Bott periodicity). For a compact G-space X and a complexrepresentation V of G, multiplication by bV speci�es an isomorphism� : ~KG(X+) = KG(X) �=�! KG(V �X) = ~K(SV ^X+):Moreover, e(V )�(bV ) = �(V ).



176 XIV. AN INTRODUCTION TO EQUIVARIANT K-THEORYThe Thom isomorphism can be proven for line bundles, trivial or not, by arguingwith clutching functions, as in the nonequivariant case. The essential point is toshow that the K-theory of the projective bundle P (E � C ) is the free KG(X)-module generated by the unit element f1g and the Hopf bundle H. This impliesthe case when E is a sum of trivial line bundles. If G is abelian, every V is a sumof one dimensional representations so the theorem is proved. This deals with thecase of a torus T . The signi�cantly new feature of the equivariant case is the useof holomorphic transfer to deduce the case of U(n). Finally, by change of groups,the result follows for any subgroup of U(n).For real equivariant K-theory KOG, the Bott periodicity theorem is true asstated provided that we restrict V to be a Spin representation of dimension divis-ible by eight. However, the proof is signi�cantly more di�cult, requiring the useof pseudo-di�erential operators.Now we may extend KG(�) to a cohomology theory. Following our usual con-ventions, we shall write K�G for the reduced theory on based G-spaces X. Since weneed compactness, we consider based �nite G-CW complexes, and we then havethe notational conventions that in degree zeroK0G(X+) = KG(X) for �nite G-CW complexes Xand K0G(X) = ~KG(X) for based �nite G-CW complexes X:Of course we could already have made the de�nition K�qG (X) = K0G(�qX) forpositive q, but we now know that these are periodic with period 2 since R2 = C .Thus we may takeK2nG (X) = K0G(X) and K2n+1G (X) = K0G(�1X) for all n:Note in particular that the coe�cient ring is R(G) in even degrees. It is zero inodd degrees because all bundles over S1 are pullbacks of bundles over a point,GLn(C ) being connected. We can extend this to an RO(G)-graded theory thatis R(G)-periodic, but we let the construction of a representing G-spectrum in thenext section take care of this for us.M. F.Atiyah. Bott periodicity and the index of elliptic operators. Quart. J. Math. 19(1968),113-140.M. F.Atiyah and R. Bott. On the periodicity theorem for complex vector bundles. Acta math.112(1964), 229-247.G. B.Segal. Equivariant K-theory. Pub. IHES 34(1968), 129-151.



4. EQUIVARIANT K-THEORY SPECTRA 1774. Equivariant K-theory spectraFollowing the procedures indicated in XIIx9, we run through the construction ofa G-spectrum that represents equivariant K-theory. Recall from VII.3.1 that theGrassmannian G-space BU(n; V ) of complex n-planes in a complex inner productG-space V classi�es complex n-dimensional G-vector bundles if V is su�cientlylarge, for example if V contains a complete complex G-universe.Diverging slightly from our usual notation, �x a complete G-universe U . Foreach indexing space V � U and each q � 0, we have a classifying spaceBU(q; V �U )for q-plane bundles. For V � W , we have an inclusionBU(q; V �U ) �! BU(q + jW � V j;W �U )that sends a plane A to the plane A+ (W � V ). De�neBUG(V ) = aq�0BU(q; V �U ):We take the plane V in BU(jV j; V �U ) as the canonical G-�xed basepoint ofBUG(V ). For V � W , we then have an inclusion BUG(V ) in BUG(W ) of basedG-spaces. De�ne BUG to be the colimit of the BUG(V ).For �nite (unbased) G-CW complexes X, the de�nition of KG(X) as a Groth-endieck group and the classi�cation theorem for complex G-vector bundles lead toan isomorphism [X+; BUG]G �= KG(X) = K0G(X+):The �niteness ensures that our bundles embed in trivial bundles and thus havecomplements. In turn, this ensures that every element of the Grothendieck groupis the di�erence of a bundle and a trivial bundle. For the proof, we may as wellassume that X=G is connected. In this case, a G-map � : X �! BUG factorsthrough a map f : BUG(q; V �U ) for some q and V . If f classi�es the G-bundle�, then the isomorphism sends � to � � V .The spaces BUG(V ) and BUG have the homotopy types of G-CW complexes.If we wish, we can replace them by actual G-CW complexes by use of the functor� from G-spaces to G-CW complexes. For a complex representation V and based�nite G-CW complexes X, Bott periodicity implies a natural isomorphism[X;BUG]G �= K0G(X) �= K0G(�VX) �= [X;
VBUG]G:



178 XIV. AN INTRODUCTION TO EQUIVARIANT K-THEORYBy Adams' variant XIII.3.4 of Brown's representability theorem, this isomorphismis represented by a G-map ~� : BUG �! 
VBUG, which must be an equivalence.However, we must check the vanishing of the appropriate lim1-term to see that thehomotopy class of ~� is well-de�ned. Restricting to a co�nal sequence of represen-tations so as to arrange transitivity (as in XIII.3.2), we have an 
-G-prespectrum.It need not be �-co�brant, but we can apply the cylinder construction K to makeit so. Applying L, we then obtain a G-spectrum KG. It is related to the 
-G-prespectrum that we started with by a spacewise equivalence. Of course, therestriction to complex indexing spaces is no problem since we can extend to allreal indexing spaces, as explained in XIIx2.Using real inner product spaces, we obtain an analogous G-space BOG and ananalogous isomorphism [X;BOG]G �= KOG(X):If we start with Spin representations of dimension 8n, those being the ones forwhich we have real Bott periodicity, the same argument works to construct aG-spectrum KOG that represents real K-theory.5. The Atiyah-Segal completion theoremIt is especially important to understand bundles over the universal space EG,because of their role in the theory of characteristic classes. We have already men-tioned one very simple construction of bundles. In fact for any representation V wemay form the bundle EG�V �! EG�� and hence we obtain the homomorphism� : R(G) �! KG(EG):Evidently � is induced by the projection map � : EG �! �. The Atiyah-Segalcompletion theorem measures how near � is to being an isomorphism.Of course, EG is a free G-CW complex. Any free G-CW complex is constructedfrom the G-spaces G+ ^Sn by means of wedges, co�bers, and passage to colimits.From the change of groups isomorphism K�G(G+ ^ X) �= K�(X) we see that theaugmentation ideal I = I(G) acts as zero on the K-theory of any space G+ ^X.In particular the K-theory of a free sphere is complete as an R(G)-module forthe topology de�ned by powers of I. Completeness is preserved by extensions of�nitely generated modules, so we that K�G(X) is I-complete for any �nite freeG-CW complex X. Completeness is also preserved by inverse limits so, providedlim1 error terms vanish, the K-theory of EG is I-complete.



5. THE ATIYAH-SEGAL COMPLETION THEOREM 179Remarkably the K-theory of EG is fully accounted for by the representationring, in the simplest way allowed for by completeness. The Atiyah-Segal theoremcan be seen as a comparison between the algebraic process of I-adic completionand the geometric process of \completion" by making a space free.The map � has a counterpart in all degrees, and it is useful to allow a parameterspace, which will be a based G-space X. Thus we consider the map�� : K�G(X) �! K�G(EG+ ^X):Note that the target is isomorphic to the non-equivariantK-theoryK�(EG+^GX),and the following theorem may be regarded as a calculation of this in terms of themore approachable group K�G(X).Theorem 5.1 (Atiyah-Segal). Provided that X is a �nite G-CW-complex,the map �� above is completion at the augmentation ideal, so thatK�G(EG+ ^X) �= K�G(X)Î :In particular, K0G(EG+) = R(G)Î and K1G(EG+) = 0:We sketch the simplest proof, which is that of Adams, Haeberly, Jackowski,and May. We skate over two technical points and return to them at the end.For simplicity of notation, we omit the parameter space X. We do not yet knowthat K�G(EG+) is complete since we do not yet know that the relevant lim1-termvanishes. If we did know this, we would be reduced to proving that � : EG+ �! S0induces an isomorphism of I-completed K-theory.If we also knew that \completed K-theory" was a cohomology theory it wouldthen be enough to show that the co�ber of � was acyclic. It is standard to let~EG denote this co�ber, which is easily seen to be the unreduced suspension of EGwith one of the cone points as base point. That is, it would be enough to provethat K�G( ~EG) = 0 after completion.The next simpli�cation is adapted from a step in Carlsson's proof of the Segalconjecture. If we argue by induction on the size of the group (which is possible sincechains of subgroups of compact Lie groups satisfy the descending chain condition),we may suppose the result proved for all proper subgroups H of G. Accordingly,by change of groups, K�G(G=H+^Y ) = 0 after completion for any nonequivariantlycontractible space Y and hence by wedges, co�bers, and colimits K�G(E ^ Y ) = 0


