
22 I. EQUIVARIANT CELLULAR AND HOMOLOGY THEORYOur results on G-CW approximation of G-spaces and on cellular approximationof G-maps imply that these are well-de�ned functors on the category �hGU . Sim-ilarly, we can approximate any pair (X;A) by a G-CW pair (�X;�A). Less obvi-ously, if (X;A;B) is an excisive triad, so that X is the union of the interiors of Aand B, we can approximate (X;A;B) by a triad (�X; �A;�B), where �X is theunion of its subcomplexes �A and �B.That is all there is to the construction of ordinary equivariant homology andcohomology groups satisfying the evident equivariant versions of the Eilenberg-Steenrod axioms.G. Bredon. Equivariant cohomology theories. Springer Lecture Notes in Mathematics Vol 34.1967.S. Illman. Equivariant singular homology and cohomology. Memoirs Amer. Math. Soc. No.156. 1975.S. J. Willson. Equivariant homology theories on G-complexes. Trans. Amer. Math. Soc.212(1975), 155-271. 5. Obstruction theoryObstruction theory works exactly as it does nonequivariantly, and I'll just givea quick sketch. Fix n � 1. Recall that a connected space X is said to be n-simpleif �1(X) is Abelian and acts trivially on �q(X) for q � n. Let (X;A) be a relativeG-CW complex and let Y be a G-space such that Y H is non-empty, connected,and n-simple if H occurs as an isotropy subgroup of X nA. Let f : Xn [A �! Ybe a G-map. We ask when f can be extended to Xn+1. Composing the attachingmaps G=H � Sn �! X of cells of X nA with f gives elements of �n(Y H). Theseelements specify a well-de�ned cocyclecf 2 Cn+1G (X;A;�n(Y ));and f extends to Xn+1 if and only if cf = 0. If f and f 0 are maps Xn [ A �! Yand h is a homotopy rel A of the restrictions of f and f 0 to Xn�1 [A, then f , f 0,and h together de�ne a maph(f; f 0) : (X � I)n �! Y:Applying ch(f;f 0) to cells j � I, we obtain a deformation cochaindf;f 0;h 2 CnG(X;A;�n(Y ))such that �df;f 0;h = cf � cf 0. Moreover, given f and d, there exists f 0 that coin-cides with f on Xn�1 and satis�es df;f 0 = d, where the constant homotopy h is



6. UNIVERSAL COEFFICIENT SPECTRAL SEQUENCES 23understood. This gives the �rst part of the following result, and the second partis similar.Theorem 5.1. For f : Xn [A �! Y , the restriction of f to Xn�1 [A extendsto a mapXn+1[A �! Y if and only if [cf ] = 0 inHn+1G (X;A;�n(Y )). Given mapsf; f 0 : Xn �! Y and a homotopy rel A of their restrictions to Xn�1 [ A, there isan obstruction in HnG(X;A;�n(Y )) that vanishes if and only if the restriction ofthe given homotopy to Xn�2 [A extends to a homotopy f ' f 0 rel A.G. Bredon. Equivariant cohomology theories. Springer Lecture Notes in Mathematics Vol 34.1967. 6. Universal coe�cient spectral sequencesWhile easy to de�ne, Bredon cohomology is hard to compute. However, we dohave universal coe�cient spectral sequences, which we describe next.Let W0H be the component of the identity element of WH and de�ne a coe�-cient system J�(X) by J�(X)(G=H) = H�(XH=W0H;Z):(6.1)Thus J�(X) coincides with the obvious coe�cient system H�(X) if G is discrete.We claim that, if G is a compact Lie group, then J�(X) is the coe�cient systemthat is obtained by taking the homology of C�(X). The point is that a Lie theoreticargument shows that �0((G=K)H ) �= (G=K)H=W0H:We deduce that the �ltration of XH=W0H induced by the �ltration of X gives riseto the chain complex C�(X)(G=H).We can construct an injective resolution Q� of the coe�cient system M andform HomG (C�(X); Q�). This is a bicomplex with total di�erential the sum of thedi�erentials induced by those of C�(X) and of Q�. It admits two �ltrations. Usingone of them, the di�erential on E0 comes from the di�erential on Q�, and Ep;q1is Extp;qG (C�(X);M). Since C�(X) is projective, the higher Ext groups are zero,and E1 reduces to C�G(X;M). Thus E2 = E1 = H�G(X;M), and our bicomplexcomputes Bredon cohomology. Filtering the other way, the di�erential on E0comes from the di�erential on C�(X), and we can identify E2. Using a projectiveresolution of N , we obtain an analogous homology spectral sequence.



24 I. EQUIVARIANT CELLULAR AND HOMOLOGY THEORYTheorem 6.2. Let G be either discrete or a compact Lie group and let X be aG-CW complex. There are universal coe�cient spectral sequencesEp;q2 = Extp;qG (J�(X);M) =) HnG(X;M)and E2p;q = TorGp;q(J�(X); N) =) HGn (X;N):We should say something about change of groups and about products in coho-mology, but it would take us too far a�eld to go into detail. For the �rst, we simplynote that, for H � G, we can obtain H-coe�cient systems from G-coe�cient sys-tems via the functor H ! G that sends H=K to G=K = G �H H=K. For thesecond, we note that, for groups H and G, projections give a functor from theorbit category of H �G to the product of the orbit categories of H and of G, sothat we can tensor an H-coe�cient system and a G-coe�cient system to obtainan (H �G)-coe�cient system. When H = G, we can then apply change of groupsto the diagonal inclusion G � G�G. The resulting pairings of coe�cient systemsallow us to de�ne cup products exactly as in ordinary cohomology, using cellularapproximations of the diagonal maps of G-CW complexes.G. Bredon. Equivariant cohomology theories. Springer Lecture Notes in Mathematics Vol 34.1967.S. J. Willson. Equivariant homology theories on G-complexes. Trans. Amer. Math. Soc.212(1975), 155-271.



CHAPTER IIPostnikov Systems, Localization, and Completion1. Eilenberg-MacLane G-spaces and Postnikov systemsLet M be a coe�cient system. An Eilenberg-MacLane G-space K(M;n) is aG-space of the homotopy type of a G-CW complex such that�q(K(M;n)) = ( M if q = n,0 if q 6= n.While our interest is in Abelian group-valued coe�cient systems, we can allow Mto be set-valued if n = 0 and group-valued if n = 1. I will give an explicit construc-tion later. Ordinary cohomology theories are characterized by the usual axioms,and, by checking the axioms, it is easily veri�ed that the reduced cohomology ofbased G-spaces X is represented in the form~HnG(X;M) �= [X;K(M;n)]G;(1.1)where homotopy classes of based maps (in �hGT ) are understood.Recall that a connected space X is said to be simple if �1A is Abelian and actstrivially on �n(X) for n � 2. More generally, a connected space X is said tobe nilpotent if �1(X) is nilpotent and acts nilpotently on �n(X) for n � 2. AG-connected G-space X is said to be simple if each XH is simple. A G-connectedG-space X is said to be nilpotent if each XH is nilpotent and, for each n � 1,the orders of nilpotency of the �1(XH)-groups �n(XH) have a common bound.We shall restrict our sketch proofs to simple G-spaces, for simplicity, in the nextfew sections, but everything that we shall say about their Postnikov towers andabout localization and completion generalizes readily to the case of nilpotent G-spaces. The only di�erence is that each homotopy group system must be built up25



26 II. POSTNIKOV SYSTEMS, LOCALIZATION, AND COMPLETIONin �nitely many stages, rather than all at once.A Postnikov system for a based simple G-space X consists of based G-maps�n : X �! Xn and pn+1 : Xn+1 �! Xnfor n � 0 such that X0 is a point, �n induces an isomorphism �q(X) �! �q(Xn)for q � n, pn+1�n+1 = �n, and pn+1 is the G-�bration induced from the path space�bration over a K(�n+1(X); n+2) by a map kn+2 : Xn �! K(�n+1(X); n+2). Itfollows that X1 = K(�1(X); 1) and that �q(Xn) = 0 for q > n. Our requirementthat Eilenberg-MacLane G-spaces have the homotopy types of G-CW complexesensures that each Xn has the homotopy type of a G-CW complex. The maps�n induce a weak equivalence X �! limXn, but the inverse limit generally willnot have the homotopy type of a G-CW complex. Just as nonequivariantly, thek-invariants that specify the tower are to be regarded as cohomology classeskn+2 2 Hn+2G (Xn;�n+1(X)):These classes together with the homotopy group systems �n(X) specify the weakhomotopy type of X. On passage to H-�xed points, a Postnikov system for Xgives a Postnikov system for XH . We outline the proof of the following standardresult since there is no complete published proof and my favorite nonequivariantproof has also not been published. The result generalizes to nilpotent G-spaces.Theorem 1.2. A simple G-space X of the homotopy type of a G-CW complexhas a Postnikov tower.Proof. Assume inductively that �n : X �! Xn has been constructed. By thehomotopy excision theorem applied to �xed point spaces, we see that the co�berC(�n) is (n + 1)-connected and satis�es�n+2(C�n) = �n+1(X):More precisely, the canonical map F (�n) �! 
C(�n) induces an isomorphism on�q for q � n + 1. We constructj : C(�n) �! K(�n+1(X); n + 2)by inductively attaching cells to C(�n) to kill its higher homotopy groups. Wetake the composite of j and the inclusion Xn � C(�n) to be the k-invariant kn+2.By our de�nition of a Postnikov tower, Xn+1 must be the homotopy �ber of kn+2.Its points are pairs (!; x) consisting of a path ! : I �! K(�n+1(X); n + 2) and a



2. SUMMARY: LOCALIZATIONS OF SPACES 27point x 2 Xn such that !(0) = � and !(1) = kn+2(x). The map pn+1 : Xn+1 �!Xn is given by pn+1(!; x) = x, and the map �n+1 : X �! Xn+1 is given by�n+1(x) = (!(x); �n(x)), where !(x)(t) = j(x; 1 � t), (x; 1 � t) being a point onthe cone CX � C(�n). Clearly pn+1�n+1 = �n. It is evident that �n+1 induces anisomorphism on �q for q � n, and a diagram chase shows that this also holds forq = n+ 1. 2. Summary: localizations of spacesNonequivariantly, localization at a prime p or at a set of primes T is a standard�rst step in homotopy theory. We quickly review some of the basic theory. Saythat a map f : X �! Y is a T -cohomology isomorphism iff� : H�(Y ;A) �! H�(X;A)is an isomorphism for all T -local Abelian groups A.Theorem 2.1. The following properties of a nilpotent space Z are equivalent.When they hold, Z is said to be T -local.(a) Each �n(Z) is T -local.(b) If f : X �! Y is a T -cohomology isomorphism, then f� : [Y;Z] �! [X;Z]is a bijection.(c) The integral homology of Z is T -local.Theorem 2.2. Let X be a nilpotent space. The following properties of a map� : X �! XT from X to a T -local space XT are equivalent. There is one and, upto homotopy, only one such map �. It is called the localization of X at T .(a) �� : [XT ; Z] �! [X;Z] is a bijection for all T -local spaces Z.(b) � is a T -cohomology isomorphism.(c) �� : ��(X) �! ��(XT ) is localization at T .(d) �� : H�(X;Z)! H�(XT ;Z) is localization at T .A. K. Bous�eld and D. M. Kan. Homotopy limits, completions, and localizations. SpringerLecture Notes in Mathematics Vol 304. 1972.D. Sullivan. The genetics of homotopy theory and the Adams conjecture. Annals of Math.100(1974), 1-79.



28 II. POSTNIKOV SYSTEMS, LOCALIZATION, AND COMPLETION3. Localizations of G-spacesNow let G be a compact Lie group. Say that a G-map f : X �! Y is aT -cohomology isomorphism iff� : H�G(Y ;M) �! H�G(X;M)is an isomorphism for all T -local coe�cient systems M .Theorem 3.1. The following properties of a nilpotentG-space Z are equivalent.When they hold, Z is said to be T -local.(a) Each ZH is T -local.(b) If f : X �! Y is a T -cohomology isomorphism, thenf� : [Y;Z]G �! [X;Z]Gis a bijection.Theorem 3.2. Let X be a nilpotent G-space. The following properties of amap � : X �! XT from X to a T -local G-space XT are equivalent. There is oneand, up to homotopy, only one such map �. It is called the localization of X at T .(a) �� : [XT ; Z] �! [X;Z] is a bijection for all T -local G-spaces Z.(b) � is a T -cohomology isomorphism.(c) Each �H : XH �! (XT )H is localization at T .Proofs. We restrict attention to simple G-spaces. Assuming (a) in Theo-rem 3.1, we may replace Z by a weakly equivalent Postnikov tower and we mayassume that the G-spaces X and Y given in (b) are G-CW complexes, so thatwe are dealing with actual homotopy classes of maps. Then (a) implies (b) by aword-for-word dualization of our proof of the Whitehead theorem. Conversely, (b)implies (a) since the specialization of (b) to T -cohomology isomorphisms of theform G=H+ ^ f , where f : X �! Y is a nonequivariant T -cohomology isomor-phism, implies (b) of Theorem 2.1. In Theorem 3.2, (a) implies (b) by letting Zrun through K(M;n)'s, and (b) implies (a) by Theorem 3.1. Let ZT be the local-ization ofZat T . One sees that (c) implies (b) by applying the universal coe�cientspectral sequence of I.6.2, taken with homology and coe�cient systems tensoredwith ZT. The maps �H induce isomorphisms on homology with coe�cients inZT,and one can deduce (with some work in the general compact Lie case) that theytherefore induce an isomorphism J�(X;ZT) �! J�(XT ;ZT). Since the universalproperty (a) implies uniqueness, to complete the proof we need only construct a



4. SUMMARY: COMPLETIONS OF SPACES 29map � that satis�es (c). For this, we may assume that X is a Postnikov tower,and we localize its terms inductively by localizing k-invariants and comparing �-bration sequences. The starting point is just the observation that the algebraiclocalizationM �!MT =M 
ZT of coe�cient systems induces localization maps� : K(M;n) �! K(MT ; n). The relevant diagram is:K(�n+1(X); n+ 1)�� // Xn+1�� // Xn�� // K(�n+1(X); n+ 2)��K(�n+1(X)T ; n+ 1) // (Xn+1)T // (Xn+1)T // K(�n+1(X)T ; n+ 2):We construct the right square by localizing the k-invariant, we de�ne (Xn+1)T tobe the �ber of the localized k-invariant, and we obtain Xn+1 �! (Xn+1)T makingthe middle square commute and the left square homotopy commute by standard�ber sequence arguments.J. P. May. The dual Whitehead theorems. London Math. Soc. Lecture Note Series Vol 86, 1983,46-54.J. P. May, J. McClure, and G. V. Trianta�llou. Equivariant localization. Bull. London Math.Soc. 14(1982), 223-230.4. Summary: completions of spacesCompletion at a prime p or at a set of primes T is another standard �rst stepin homotopy theory. Since completion at T is the product of the completions atp for p 2 T , we restrict to the case of a single prime. We �rst review some of thenonequivariant theory. The algebra we begin with is a preview of algebra to comelater in our discussion of completions of G-spectra at ideals of the Burnside ring.The p-adic completion functor, Âp = lim(A=pnA), is neither left nor right exactin general, and it has left derived functors L0 and L1. If0 �! F 0 �! F �! A �! 0is a free resolution of A, then L0A and L1A are the cokernel and kernel of F̂ 0p �!F̂p, and there results a natural map � : A �! L0A. The higher left derivedfunctors are zero, and a short exact sequence0 �! A0 �! A �! A00 �! 0gives rise to a six term exact sequence0 �! L1A0 �! L1A �! L1A00 �! L0A0 �! L0A �! L0A00 �! 0:



30 II. POSTNIKOV SYSTEMS, LOCALIZATION, AND COMPLETIONIf L1A = 0, then we call � : A �! L0A the \p-completion" of A. It must not to beconfused with the p-adic completion. We say thatA is \p-complete" if L1A = 0 and� is an isomorphism. The groups L0A, L1A, and Âp are p-complete for any Abeliangroup A. While derived functors give the best conceptual descriptions of L0A andL1A, there are more easily calculable descriptions. Let Z=p1 be the colimit of thesequence of homomorphisms p : Z=pn �! Z=pn+1. Then Z=p1 �= Z[p�1]=Zandthere are natural isomorphismsL0(A) �= Ext(Z=p1; A) and L1(A) �= Hom(Z=p1; A):There is also a natural short exact sequence0 �! lim1Hom(Z=pn; A) �! L0A �! Âp �! 0:In particular, L1A = 0 and L0A �= Âp if the p-torsion of A is of bounded order.Say that a map f : X �! Y is a p̂-cohomology isomorphism iff� : H�(Y ;A) �! H�(X;A)is an isomorphism for all p-complete Abelian groups A. This holds if and onlyif it holds for all Fp -vector spaces A, and this in turn holds if and only if f� :H�(X;Fp) �! H�(Y ;Fp) is an isomorphism, where Fp is the �eld with p elements.While this homological characterization is essential to our proofs, we prefer toemphasize cohomology.Theorem 4.1. The following properties of a nilpotent space Z are equivalent.When they hold, Z is said to be p-complete.(a) Each �n(Z) is p-complete.(b) If f : X �! Y is a p̂-cohomology isomorphism, then f� : [Y;Z] �! [X;Z]is a bijection.Theorem 4.2. Let X be a nilpotent space. The following properties of a map
 : X �! X̂p from X to a p-complete space X̂p are equivalent. There is one and,up to homotopy, only one such map 
. It is called the completion of X at p.(a) 
� : [X̂p; Z] �! [X;Z] is a bijection for all p-complete spaces Z.(b) 
 is a p̂-cohomology isomorphism.For n � 1, there is a natural and splittable short exact sequence0 �! L0�n(X) �! �n(X̂p) �! L1�n�1(X) �! 0:If L1��(X) = 0, then 
 is also characterized by



5. COMPLETIONS OF G-SPACES 31(c) 
� : ��(X) �! ��(X̂p) is completion at p.A. K. Bous�eld and D. M. Kan. Homotopy limits, completions, and localizations. SpringerLecture Notes in Mathematics, Vol. 304. 1972.D. Sullivan. The genetics of homotopy theory and the Adams conjecture. Annals of Math.100(1974), 1-79. 5. Completions of G-spacesNow let G be a compact Lie group. Say that a G-map f : X �! Y is ap̂-cohomology isomorphism iff� : H�G(Y ;M) �! H�G(X;M)is an isomorphism for all p-complete coe�cient systemsM . This will hold if eachfH : XH �! Y H is a p̂-cohomology isomorphism by another application of theuniversal coe�cients spectral sequence, with a little work in the general compactLie case to handle J�(f).Theorem 5.1. The following properties of a nilpotentG-space Z are equivalent.When they hold, Z is said to be p-complete.(a) Each ZH is p-complete.(b) If f : X �! Y is a p̂-cohomology isomorphism, then f� : [Y;Z]G �![X;Z]G is a bijection.Theorem 5.2. Let X be a nilpotent G-space. The following properties of amap 
 : X �! X̂p from X to a p-complete G-space X̂p are equivalent. There isone and, up to homotopy, only one such map 
. It is called the completion of Xat p.(a) 
� : [X̂p; Z] �! [X;Z] is a bijection for all p-complete G-spaces Z.(b) 
 is a p̂-cohomology isomorphism.(c) Each 
H : XH �! (X̂p)H is completion at p.For n � 1, there is a natural short exact sequence0 �! L0�n(X) �! �n(X̂p) �! L1�n�1(X) �! 0:Proofs. The proofs are the same as those of Theorems 3.1 and 3.2, except thatcompletions of Eilenberg-MacLane G-spaces are not Eilenberg-MacLane G-spacesin general. For a coe�cient system M , � : M �! L0M induces p-completionsK(M;n) �! K(L0M;n) whenever L1M = 0. For the general case, let FM be



32 II. POSTNIKOV SYSTEMS, LOCALIZATION, AND COMPLETIONthe coe�cient system obtained by applying the free Abelian group functor to Mregarded as a set-valued functor. There results a natural epimorphism FM �!Mof coe�cient systems. Let F 0M be its kernel. Since L1 vanishes on free modules,we can construct the completion of K(M;n) at p via the following diagram of�brations:K(FM;n)�� // K(M;n) //�� K(F 0M;n + 1) //�� K(FM;n+ 1)��K(L0FM;n) // K(M;n)p̂ // K(L0F 0M;n + 1) // K(L0FM;n+ 1):That is, K(M;n)p̂ is the �ber of K(L0F 0M;n + 1) �! K(L0FM;n + 1). It iscomplete since its homotopy group systems are complete. The map K(M;n) �!K(M;n)p̂ is a p̂-cohomology isomorphism because its �xed point maps are so, bythe Serre spectral sequence.J. P. May. Equivariant completion. Bull. London Math. Soc. 14(1982), 231-237.



CHAPTER IIIEquivariant Rational Homotopy Theoryby Georgia Trianta�llou1. Summary: the theory of minimal modelsLet G be a �nite group. In this chapter, we summarize our work on the alge-braicization of rational G-homotopy theory.To simplify the statements we assume simply connected spaces throughout thechapter. The theory can be extended to the nilpotent case in a straightforwardmanner. We recall that by rationalizing a space X, we approximate it by a spaceX0 the homotopy groups of which are equal to ��(X)
Q, thus neglecting the tor-sion. The advantage of doing so is that rational homotopy theory is determinedcompletely by algebraic invariants, as was shown by Quillen and later by Sullivan.Our theory is analogous to Sullivan's theory of minimal models, which we now re-view. For our purposes we prefer Sullivan's approach because of its computationaladvantage and its relation to geometry by use of di�erential forms.The algebraic invariants that determine the rational homotopy type are certainalgebras that we call DGA's. By de�nition a DGA is a graded, commutative,associative algebra with unit over the rationals, with di�erential d : An ! An+1for n � 0. We say that A is connected if H0(A) = Q and simply connected if, inaddition, H1(A) = 0. Again we assume that all DGA's in sight are connected andsimply connected. A map of DGA's is said to be a quasi-isomorphism if it inducesan isomorphism on cohomology.Certain DGA's, the so called minimal ones, play a special role to be describedbelow. A DGA M is said to be minimal if it is free and its di�erential is decom-33



34 III. EQUIVARIANT RATIONAL HOMOTOPY THEORYposable. Freeness means that M is the tensor product of a polynomial algebragenerated by elements of even degree and an exterior algebra generated by elementsof odd degree. Decomposability of the di�erential means that d(M) �M+^M+,where M+ is the set of positive degree elements of M.There is an algebraic notion of homotopy between maps of DGA's that mirrorsthe topological notion. Let Q(t; dt) be the free DGA on two generators t and dtof degree 0 and 1 respectively with d(t) = dt.Definition 1.1. Two morphisms f; g : A ! B are homotopic if there is a mapH : A ! B 
 Q(t; dt) such that e0 � H = f and e1 � H = g, where e0 is theprojection t = 0; dt = 0 and e1 the projection t = 1; dt = 0.The basic example of a DGA in the theory is the PL De Rham algebra EX of asimplicial complex X, which is constructed as follows. Let�n = �n = f(t0; t1; : : : ; tn)j0 � ti � 1;�ni=0ti = 1gbe an n-simplex of X canonically embedded in Rn+1. A polynomial form of degreep on �n is an expressionXI fI(t0; : : : ; tn)dti1 ^ � � � ^ dtip;where I = fi1; : : : ; ipg and fI is a polynomial with coe�cients in Q. A globalPL (piecewise linear) form on X is a collection of polynomial forms, one for eachsimplex of X, which coincide on common faces. The set of PL forms of X is theDGA EX . A version of the classical de Rham theorem holds, namely thatH�(EX) = H�(X;Q):We have the following facts.Theorem 1.2. A quasi-isomorphism between minimal DGA's is an isomor-phism.Theorem 1.3. If f : A ! B is a quasi-isomorphism of DGA's and M is aminimal DGA, then f� : [M;A]! [M;B] is an isomorphism.Theorem 1.4. For any simply connected DGA A there is a minimal DGA Mand a quasi-isomorphism � :M!A. MoreoverM is unique up to (non-canonical)isomorphism, namely if �0 :M0 ! A is another quasi- isomorphism then there isan isomorphism e :M!M0 such that �0 � e and � are homotopic.



2. EQUIVARIANT MINIMAL MODELS 35Here M is said to be the minimal model of A. The minimal model MX ofthe PL de Rham algebra EX of a simply connected space X is called the minimalmodel of X.Theorem 1.5. The correspondance X !MX induces a bijection between ra-tional homotopy types of simplicial complexes on the one hand and isomorphismclasses of minimal DGA's on the other.More precisely, assuming X is a rational space, the homotopy groups �n(X) ofX are isomorphic to Q(MX)n, where Q(M) � M+=M+ ^ M+ is the space ofindecomposables ofM. The nth stage Xn of the Postnikov tower of X hasMX(n)as its minimal model, whereM(n) denotes the subalgebra ofM that is generatedby the elements of degree � n. The k-invariant kn+2 2 Hn+2(Xn; �n+1(X)), whichcan be represented as a map �n+1(X)� ! Hn+2(Xn), is determined by the dif-ferential d : Q(MX)n+1 ! Hn+2(MX(n)). These properties enable the inductiveconstruction of a rational space that realizes a given minimal algebra.On the morphism level we haveTheorem 1.6. If Y is a rational space then[X;Y ] � [MY ;MX]:We warn here that the minimal model, though very useful computationally, isnot a functor. In particular a map of spaces induces a map of the correspondingminimal models only up to homotopy.D. Quillen. Rational Homotopy Theory, Ann of Math. 90(1968), 205-295.D. Sullivan. In�nitesimal Computations in Topology, Publ. Math. IHES 47(1978), 269-332.2. Equivariant minimal modelsFor �nite groups G an analogous theory can be developed for G-rational homo-topy types of G-simplicial complexes. For simplicity we assume throughout thatthe spaces X are G-connected and G-simply connected, which means that each�xed point space XH is connected and simply connected; however, the theoryworks just as well for G-nilpotent spaces. In fact, by work of B. Fine, the the-ory can be extended in such a way that no �xed base point and no connectivityassumption on the �xed point sets are required.Let V ecG be the category of rational coe�cient systems and V ec�G the category ofcovariant functors from G to rational vector spaces. Our invariants for determining



36 III. EQUIVARIANT RATIONAL HOMOTOPY THEORYG-rational homotopy types are functors of a special type from G into DGA's, whichwe now describe.Definition 2.1. A system of DGA's is a covariant functor from G to simplyconnected DGA's such that the underlying functor in V ec�G is injective.The injective objects of V ec�G or, equivalently, the projective rational coe�cientsystems can be characterized as follows.Theorem 2.2. (i) ForH � G and aWH-representation V , there is a projectivecoe�cient system V 2 V ecG such thatV (G=K) = Q[(G=H)K ]
Q[WH] V;where the �rst factor is the vector space generated by the set (G=H)K .(ii) Every projective coe�cient system is a direct sum of such V 's.The basic system of DGA's in the theory is the system of de Rham algebras EXHof the �xed point sets XH of a G-simplicial complex X. We denote this systemby EX . It is crucial to realize that EX is injective and that this property is centralto the theory. The injectivity of EX can be shown by utilising the splitting of Xinto its orbit types.We note that EX together with the induced G-action determine a minimal al-gebra equipped with a G-action. However there are in general many G-rationalhomotopy types of G-simplicial complexes that realize this minimal G-algebra. Inorder to have unique spacial realizations we need to take into account the algebraicdata of all �xed point sets, which leads us to systems of DGA's.De�ne the cohomology of a systemA of DGA's with respect to a covariant coe�-cient systemN 2 V ec�G to be the cohomology of the cochain complexHomG(N;A).An equivariant de Rham theorem follows by use of the universal coe�cients spec-tral sequence.Theorem 2.3. For M 2 V ecG with dual M� 2 V ec�G,H�G(X;M) � H�G(EX ;M�):The lack of functoriality of the minimal model of a space complicates the con-struction of equivariant minimal models. We cannot, for instance, de�ne \thesystem of minimal models" MXH of the �xed point sets of a G-complex X. Itturns out that the right de�nition of minimal models in the equivariant context isthe following.



2. EQUIVARIANT MINIMAL MODELS 37Definition 2.4. A systemM of DGA's is said to be minimal if(i) each algebra M(G=H) is free commutative,(ii) the DGA M(G=G) is minimal, and(iii) the di�erential on each M(G=H) is decomposable when restricted to theintersection of the kernels of the maps M(G=H) !M(G=K) induced byproper inclusions H � K.One can think of (ii) as an \initial condition" and of (iii) as the minimalitycondition that guarantees the uniqueness of equivariant minimal models. As inthe nonequivariant case, minimal systems are classi�ed by their cohomology.Theorem 2.5. A quasi-isomorphism between minimal systems of DGA's is anisomorphism.Also, Theorems 1.3, 1.4, 1.5, and 1.6 have equivariant counterparts.Theorem 2.6. If A is a system of DGA's, then there is a quasi-isomorphismf : M! A, where M is a minimal system. Moreover M is unique up to (non-canonical) isomorphism.This result provides the existence of equivariant minimal models. Unlike thenonequivariant case the proof is rather involved and is based on a careful inves-tigation of the universal coe�cients spectral sequence. We de�ne the equivariantminimal model MX of a G-simplicial complex X to be the minimal system ofDGA's that is quasi-isomorphic to the system of de Rham algebras EX .A notion of homotopy can be de�ned for systems of DGA's. If A is a system ofDGA's we denote by A
Q(t; dt) the functorA
Q(t; dt)(G=H) = A(G=H) 
Q(t; dt):It can be shown that this functor is injective and therefore it forms a system ofDGA's. Homotopy of maps of systems of DGA's can now be de�ned in the obviousway suggested by the nonequivariant case. Let [A;B]G denote homotopy classesof maps of systems.Theorem 2.7. If f : A ! B is a quasi-isomorphism of systems of DGA's andM is a minimal system of DGA's, thenf� : [M;A]G ! [M;B]Gis an isomorphism.



38 III. EQUIVARIANT RATIONAL HOMOTOPY THEORYThe equivariant minimal model determines the rational G-homotopy type of aG-space, namelyTheorem 2.8. The correspondence X !MX induces a bijection between ra-tional G-homotopy types of G-simplicial complexes on the one hand and isomor-phism classes of minimal systems of DGA's on the other.More precisely, there is a �ltration of minimal subsystems of DGA's� � � � MX(n) �MX(n+ 1) � � � � � MXsuch that each stage is the equivariant minimal model of the equivariant Postnikovterm Xn of the space X. The system of rational homotopy groups of the �xedpoint sets �n(X) 
 Q and the rational equivariant k-invariants can also be readfrom the model MX. This makes the inductive construction of the Postnikovdecomposition of the rationalization X0 possible if the equivariant minimal modelis given.On the morphism level we haveTheorem 2.9. If Y is a rational G-simplicial complex then there is a bijection[X;Y ] � [MY ;MX]:G. Trianta�llou. �Aquivariante Rationale Homotopietheorie, Bonner Math. Schriften Vol. 110.1978.G. Trianta�llou. Equivariant minimal models. Trans. Amer. Math. Soc. 274(1982), 509-532.3. Rational equivariant Hopf spacesIn spite of the conceptual analogy of the equivariant theory to the nonequivariantone, the calculations in the equivariant case are much more subtle and can yieldsurprising results. We illustrate this by describing our work on rational Hopf G-spaces. It is a basic feature of nonequivariant homotopy theory that the rationalHopf spaces split as products of Eilenberg-Mac Lane spaces. The equivariantanalogue is false. By a Hopf G-space we mean a based G-space X together with aG-map X �X ! X such that the base point is a two-sided unit for the product.Examples include Lie groups K with a G-action such that G is a �nite subgroupof the inner automorphisms of K, and loop spaces 
(X) of G-spaces based at aG-�xed point of X.



3. RATIONAL EQUIVARIANT HOPF SPACES 39Theorem 3.1. Let X be a G-connected rational Hopf G-space of �nite type.If G is cyclic of prime power order, then X splits as a product of Eilenberg-Mac Lane G-spaces. If G = Zp �Zq for distinct primes p and q, then there arecounterexamples to this statement.Outline of proof: In this outline we suppress the technical part of the proofwhich is quite extensive. As in the nonequivariant case, the nth term Xn ofa Postnikov tower of X is a Hopf G-space. Moreover the k-invariant kn+2 2Hn+2(Xn;�n+1(X)) is a primitive element. This means thatm�(kn+2) = (p1)�(kn+2) + (p2)�(kn+2);in Hn+2(Xn�Xn;�n+1(X)), where m is the product and the pi are the projections.The di�erence in the two casesZpk andZp�Zq stems from the fact that rationalcoe�cient systems for these groups have di�erent projective dimensions. Indeed,systems for Zpk have projective dimension at most 1, whereas there are rationalcoe�cient systems for Zp �Zq of projective dimension 2. Using this fact aboutZpk we can compute inductively the equivariant minimal model of each Postnikovterm Xn and its cohomology. In particular we show that all non-zero elements ofHn+2G (Xn;�n+1(X)) are decomposable and therefore non-primitive.In the case ofZp�Zq we construct counterexamples which are 2-stage Postnikovsystems with primitive k-invariant. As in the nonequivariant case, if X has onlytwo non-vanishing homotopy group systems, then the primitivity of the unique k-invariant is a su�cient condition for X to be a Hopf G-space. By construction, thetwo systems of homotopy groups �n(X) and �n+1(X) are as follows. The groups�n(XH) are zero for all proper subgroups H and �n(XZp�Zq ) = Z. The groups�n+1(XH) are zero for all nontrivial subgroups H and �n+1(X) = Z. The �rstcoe�cient system has projective dimension 2. This and the universal coe�cientsspectral sequence yields Hn+2G (Xn;�n+1(X)) =Z. Moreover all non-zero elementsof this group are primitive. This gives an in�nite choice of primitive k-invariantsand therefore an in�nite collection of rationally distinct Hopf G-spaces which donot split rationally into products of Eilenberg-Mac Lane G-spaces.The counterexamples X constructed in the theorem are in�nite loop G-spacesin the sense that there are G-spaces En and homotopy equivalences En ! 
En+1,with X = E0. For the more sophisticated notion of in�nite loop G-spaces whereindexing over the representation ring of G is used, no such pathological behavioris possible.



40 III. EQUIVARIANT RATIONAL HOMOTOPY THEORYAs a �nal comment we mention that the theory of equivariant minimal modelshas been used by my collaborators and myself to obtain aplications of a moregeometric nature, like the classi�cation of a large class of G-manifolds up to �niteambiguity and the equivariant formality of G-K�ahler manifolds.M. Rothenberg and G. Trianta�llou. On the classi�cation of G-manifolds up to �nite ambiguity.Comm. in Pure and Appl. Math. 1991.B. Fine and G. Trianta�llou. Equivariant formality of G-K�ahler manifolds. Canadian J. Math.To appear.G. Trianta�llou. Rationalization of Hopf G-spaces. Math. Zeit. 182(1983), 485-500.



CHAPTER IVSmith Theory1. Smith theory via Bredon cohomologyWe shall explain two approaches to the classical results of P.A. Smith. We beginwith the statement. Let G be a �nite p-group and let X be a �nite dimensionalG-CW complex such that H�(X;Fp) is a �nite dimensional vector space, whereFp denotes the �eld with p elements. All cohomology will have coe�cients in Fphere.Theorem 1.1. If X is a mod p cohomology n-sphere, then XG is empty or is amod p cohomology m-sphere for some m � n. If p is odd, then n�m is even andXG is non-empty if n is even.If H is a non-trivial normal subgroup of G, then XG = (XH)G=H . By inductionon the order of G, Theorem 1.1 will be true in general if it is true when G =Z=p isthe cyclic group of order p. Our �rst proof is an almost trivial exercise in the useof Bredon cohomology. We restrict attention to G = Z=p, but we do not assumethat X is a mod p cohomology sphere until we put things together at the end.Observe that an exact sequence0 �! L �!M �! N �! 0of coe�cient systems give rise to a long exact sequence� � � �! HqG(X;L) �! HqG(X;M) �! HqG(X;N) �! Hq+1G (X;L) �! � � � :(1.2)Let FX = X=XG. The action of G on FX is free away from the basepoint. Thereare coe�cient systems L, M , and N such that41



42 IV. SMITH THEORYHqG(X;L) �= ~Hq(FX=G);HqG(X;M) �= Hq(X);and HqG(X;N) �= Hq(XG):To determine L, M , and N , we need only calculate the right sides when q = 0 andX is an orbit, that is, X = G or X = �. We �nd:L(G) = Fp L(�) = 0M(G) = Fp [G] M(�) = FpN(G) = 0 N(�) = Fp :Let I be the augmentation ideal of the group ring Fp [G], and let In denote boththe nth power of I and the coe�cient system whose value on G is In and whosevalue on � is zero. Then Ip�1 = L. It is easy to check that we have exact sequencesof coe�cient systems 0 �! I �!M �! L�N �! 0and 0 �! L �!M �! I �N �! 0:These exact sequences coincide if p = 2. By (1.2), they give rise to long exactsequences� � � �! HqG(X; I) �! Hq(X) �! ~Hq(FX=G) �Hq(XG) �! Hq+1G (X; I) �! � � �and� � � �! ~Hq(FX=G) �! Hq(X) �! HqG(X; I)�Hq(XG) �! ~Hq+1(FX=G) �! � � � :De�neaq = dim ~Hq(FX=G); �aq = dimHqG(X; I); bq = dimHq(X); cq = dimHq(XG):Note that aq = �aq if p = 2. We read o� the inequalitiesaq + cq � bq + �aq+1 and �aq + cq � bq + aq+1:Iteratively, these imply the following inequality for q � 0 and r � 0.aq + cq + cq+1 + � � �+ cq+r � bq + bq+1 + � � �+ bq+r + aq+r+1;(1.3)



2. BOREL COHOMOLOGY, LOCALIZATION, AND SMITH THEORY 43where r is odd if p > 2. In particular, with q = 0 and r large,X cq �X bq:(1.4)Using the further short exact sequences0 �! In+1 �! In �! L �! 0; 1 � n � p� 1;we can also read o� the the Euler characteristic formula�(X) = �(XG) + p~�(FX=G):(1.5)First proof of Theorem 1.1. Here P bq = 2, hence P cq � 2. The caseP cq = 1 is ruled out by the congruence �(X) � �(XG) mod p; when p > 2, thiscongruence also implies that n�m is even and that XG is non-empty if n is even.Taking q = n+1 and r large in (1.3), we see that m cannot be greater than n.J. P. May. A generalization of Smith theory. Proc. Amer. Math. Soc. 101 (1987), 728-730.P. A. Smith. Transformations of �nite period. Annals of Math. 39 (1938), 127-164.2. Borel cohomology, localization, and Smith theoryLet EG be a free contractible G-space. For a G-space X, the Borel constructionon X is the orbit space EG �G X and the Borel homology and cohomology ofX (with coe�cients in an Abelian group A) are de�ned to be the nonequivarianthomology and cohomology of this space. For reasons to be made clear later, theBorel construction is also called the \homotopy orbit space" and is sometimesdenoted XhG. People not focused on equivariant algebraic topology very oftenrefer to Borel cohomology as \equivariant cohomology." We can relate it to Bredoncohomology in a simple way. Let A denote the constant coe�cient system at A.Since the orbit spaces (G=H)=G are points, we see immediately from the axiomsthat H�G(X;A) is isomorphic toH�(X=G;A), and similarly in homology. ThereforeH�(EG �G X;A) �= HqG(EG �X;A) and H�(EG �G X;A) �= H�G(EG �X;A):Observe that the Borel cohomology of a point is the cohomology of the classifyingspace BG = EG=G. In this section, we shall use the notationH�G(X) = H�(EG �G X);standard in much of the literature.



44 IV. SMITH THEORYHere we �x a prime p and understand mod p coe�cients. IfX is a basedG-space,we let ~H�G(X) be the kernel of H�G(X) �! H�G(�) = H�(BG). Equivalently,~H�G(X) = ~H�(EG+ ^G X):Because G acts freely on EG, it acts freely on EG � X. Therefore, by theWhitehead theorem, if f : X �! Y is a G-map between G-CW complexes that isa nonequivariant homotopy equivalence, then1� f : EG�X �! EG� Yis a G-homotopy equivalence and therefore1�G f : EG �G X �! EG �G Yis a homotopy equivalence. At �rst sight, it seems unreasonable to expect EG�GXto carry much information about XG, but it does.We now assume that G is an elementary Abelian p-group, G = (Z=p)n for somen, and that X is a �nite dimensional G-CW complex. We shall describe how touse Borel cohomology to determine the mod p cohomology of XG as an algebraover the Steenrod algebra, and we shall sketch another proof of Theorem 1.1. Ourstarting point is the localization theorem.Since G = (Z=p)n, H�(BG) is a polynomial algebra on n generators of degreeone if p = 2 and is the tensor product of an exterior algebra on n generators ofdegree one and the polynomial algebra on their Bocksteins if p > 2. Let S be themultiplicative subset of H�(BG) generated by the non-zero elements of degree oneif p = 2 and by the non-zero images of Bocksteins of degree two if p > 2.Theorem 2.1 (Localization). For a �nite dimensional G-CW complex X,the inclusion i : XG �! X induces an isomorphismi� : S�1H�G(X) �! S�1H�G(XG):Proof. Let FX = X=XG. By the co�ber sequence XG+ �! X+ �! FX,it su�ces to show that S�1 ~H�G(FX) = 0. Here FX is a �nite dimensional G-CW complex and (FX)G = �. By induction up skeleta, it su�ces to show thatS�1 ~H�G(Y ) = 0 when Y is a wedge of copies of G=H+ ^ Sq for some H 6= G,and such a wedge can be rewritten as Y = G=H+ ^ K, where K is a wedge ofcopies of Sq. Since EG �G (G=H) = EG=H is a model for BH, we see thatEG+ ^G Y = BH+ ^K. At least one element of S restricts to zero in H�(BH),and this implies that S�1 ~H�G(Y ) = 0.



2. BOREL COHOMOLOGY, LOCALIZATION, AND SMITH THEORY 45Localization theorems of this general sort appear ubiquitously in equivarianttheory. As here, the proofs of such results reduce to the study of orbits by generalnonsense arguments, and the speci�cs of the situation are then used to determinewhat happens on orbits. When n = 1, we can be a little more precise.Lemma 2.2. If G = Z=p and dimX = r, then i� : HqG(X) �! HqG(XG) is anisomorphism for q > r.Proof. It su�ces to show that ~H�G(FX) = 0 for q > r. Since FX is G-free away from its basepoint, the projection EG+ �! S0 induces a G-homotopyequivalence EG+ ^ FX �! FX and therefore a homotopy equivalence EG+ ^GFX �! FX=G. Obviously dim(FX=G) � r.Since G acts trivially on XG, EG �G XG = BG�XG.Second proof of Theorem 1.1. Take G = Z=p and let X be a mod p ho-mology n-sphere. We assume that XG is non-empty. The Serre spectral sequenceof the bundle EG�G X �! BG converges fromH�(G;H�(X)) = H�(BG) 
H�(X)to H�G(X). Since a �xed point of X gives a section, E2 = E1. Therefore ~H�G(X)is a free H�(BG)-module on one generator of degree n and, in high degrees, thismust be isomorphic to~H�G(XG) = H�(BG+ ^XG) = H�(BG)
 ~H�(XG):By a trivial dimension count, this can only happen if XG is a mod p cohomologym-sphere for some m. Naturality arguments from the H�(BG)-module structureshow that m must be less than n and must be congruent to n mod 2 if p > 2.To see that XG is non-empty if p > 2 and n is even, one assumes that XG isempty and deduces from the multiplicative structure of the spectral sequence thatX cannot be �nite dimensional.Returning to the context of the localization theorem, one would like to retrieveH�(XG) algebraically from S�1H�G(X). As a matter of algebra, S�1H�G(X) inheritsa structure of algebra over the mod p Steenrod algebra A from H�G(X). However,it no longer satis�es the instability conditions that are satis�ed in the cohomology



46 IV. SMITH THEORYof spaces. For any A-module M , the subset of elements that do satisfy theseconditions form a submodule Un(M). Obviously the localization mapH�(BG)
H�(XG) �= H�G(XG) �! S�1H�G(XG) �= S�1H�G(X)takes values in Un(S�1H�G(X)). By a purely algebraic analysis, using basic infor-mation about the Steenrod operations, Dwyer and Wilkerson proved the followingremarkable result. (They assume that X is �nite, but the argument still workswhen X is �nite dimensional.)Theorem 2.3. For any elementary Abelian p-group G and any �nite dimen-sional G-CW complex X,H�(BG)
H�(XG) �! Un(S�1H�G(X))is an isomorphism of A-algebras and H�(BG)-modules. ThereforeH�(XG) �= Fp 
H�(BG) Un(S�1H�G(X)):We will come back to this point when we talk about the Sullivan conjecture.A. Borel, et al. Seminar on transformation groups. Annals of Math. Studies 46. Princeton.1960.G.E. Bredon. Introduction to compact transformation groups. Academic Press. 1972.T. tom Dieck. Transformation groups. Walter de Gruyter. 1987.W.G. Dwyer and C.W. Wilkerson. Smith theory revisited. Annals of Math. 127(1988), 191-198.W.-Y. Hsiang. Cohomology theory of topological transformation groups. Springer. 1975.



CHAPTER VCategorical Constructions; Equivariant Applications1. Coends and geometric realizationWe pause to introduce some categorical and topological constructs that are usedubiquitously in both equivariant and nonequivariant homotopy theory. They willbe needed in a number of later places. We are particularly interested in homotopycolimits. These are examples of geometric realizations of spaces, which in turn areexamples of coends, which in turn are examples of coequalizers.Let � be a small category and let C be a category that has all colimits. Write `for the categorical coproduct in C . The coequalizer C(f; f 0) of maps f; f 0 : X �!Y is a map g : Y �! C(f; f 0) such that gf = gf 0 and g is universal with thisproperty. It can be constructed as the pushout in the following diagram, wherer = 1 + 1 is the folding map:X `X //f+f 0��r Y�� gX // C(f; f 0):Coends are categorical generalizations of tensor products. Given a functor F :�op � � �! C , the coend Z � F (n; n)is de�ned to be the coequalizer of the mapsf; f 0 : a�:m!nF (n;m) �!aF (n; n)47



48 V. CATEGORICAL CONSTRUCTIONS; EQUIVARIANT APPLICATIONSwhose restrictions to the �th summand areF (�; id) : F (n;m) �! F (m;m) and F (Id; �) : F (n;m) �! F (n; n);respectively. It satis�es a universal property like that of tensor products. If theobjects of F (n; n) have points that can be written in the form of \tensors" x
 y,then the coend is obtained from the coproduct of the F (n; n) by identifying x�
ywith x
�y whenever this makes sense. Here � is a map in �, contravariant actionsare written from the right, and covariant actions are written from the left.Dually, if C has limits, a functor F : �op �� �! C has an endZ � F (n; n):It is de�ned to be the equalizer, E(f; f 0), of the mapsf; f 0 :YF (n) �! Y�:m!nF (m;n)whose projections to the �th factor areF (id; �) : F (m;m) �! F (m;n) and F (�; id) : F (n; n) �! F (m;n):Recall that a simplicial object in a category C is a contravariant functor 4 �!C , where4 is the category of sets n = f0; 1; 2; : : : ; ng and monotonic maps. Usingthe usual face and degeneracy maps, we obtain a covariant functor M�: 4 �! Uthat sends n to the standard topological n-simplex 4n. For a simplicial spaceX� : 4 �! U , we have the product functorX�� M�: 4op �4 �! U :De�ne the geometric realization of X� to be the coendjX�j = Z 4Xn �4n:(1.1)If X� is a simplicial based space, so that all its face and degeneracy maps arebasepoint preserving, then all points of each subspace f�g � 4n are identi�ed tothe point (�; 1) 2 X0 �40 in the construction of jX�j, hencejX�j = Z 4Xn ^ (4n)+:(1.2)If X� is a simplicial G-space, then jX�j inherits a G-action such thatjX�jH = jXH� j for all H � G:(1.3)



2. HOMOTOPY COLIMITS AND LIMITS 49S. MacLane. Categories for the Working Mathematician. Springer. 1976.J. P. May. The Geometry of Iterated Loop Spaces (x11). Springer Lecture Notes Vol 271. 1972.2. Homotopy colimits and limitsLet D be any small topological category. We understand D to have a discreteobject set and to have spaces of maps d! d0 such that composition is continuous.Let Bn(D) be the set of n-tuples f = (f1; : : : ; fn) of composable arrows of D ,depicted d0 d1oo f1 � � �oo f2 dn:oo fnHereB0(D) is the set of objects of D and Bn(D) is topologized as a subspace of then-fold product of the total morphism space `D(d; d0). With zeroth and last facegiven by deleting the zeroth or last arrow of n-tuples f (or by taking the source ortarget of f1 if n = 1) and with the remaining face and degeneracy operations givenby composition or by insertion of identity maps in the appropriate position, B�(D)is a simplicial set called the nerve of D . Its geometric realization is the classifyingspace BD . If D has a single object d, then G = D(d; d) is a topological monoid(= associative Hopf space with unit) and BD = BG is its classifying space.We can now de�ne the two-sided categorical bar construction. It will specializeto give homotopy colimits. Let T : D �! U be a continuous contravariantfunctor. This means that each T (d) is a space and each function T : D(d; d0) �!U (T (d0); T (d)) is continuous. Let S : D �! U be a continuous covariant functor.We de�ne B(T;D ; S) = jB�(T;D ; S)j:(2.1)Here B�(T;D ; S) is the simplicial space whose set of n-simplices isf(t; f; s)jt 2 T (d0); f 2 Bn(D); and s 2 S(dn)g;topologized as a subspace of the product (` T (d)) � (`D(d; d0))n � (`S(d));B0(T;D ; S) = ` T (d)� S(d). The zeroth and last face use the evaluation of thefunctors T or S; the remaining faces and the degeneracies are de�ned like those ofB�D .Since the coend of T � S : Dop �D �! U is exactly the coequalizer of d0; d1 :B1(T;D ; S) �! B0(T;D ; S), we obtain a natural map� : B(T;D ; S) �! Z D T (d)� S(d) � T 
D S:(2.2)



50 V. CATEGORICAL CONSTRUCTIONS; EQUIVARIANT APPLICATIONSIt is obtained by using iterated compositions to mapB�(T;D ; S)to the constantsimplicial space at the cited coend, which we denote by T 
D S.Let De be the covariant functor represented by an object e of D , so that De(d) =D(e; d). Then � reduces to a map" : B(T;D ;De) �! T (e);and this map is a homotopy equivalence. In fact, using the identity map of e, weobtain an inclusion � : T (e) �! B(T;D ;De) such that "� = 1 and a simplicialdeformation �" ' id. There is a left{right symmetric analogue.If the functor S takes values in GU , then B�(T;D ; S) is a simplicial G-spaceand B(T;D ; S) is a G-space such thatB(T;D ; S)H = B(T;D ; SH):(2.3)We de�ne the homotopy colimit of our covariant functor S byHocolimS = B(�;D ; S);(2.4)where � : D �! U is the trivial functor to a 1-point space. Here the coend onthe right of (1.5) is exactly the ordinary colimit of S. Thus we have" : hocolimS �! colimS:(2.5)When G is a group regarded as category with a single object and X is a (left) G-space regarded as a covariant functor, the homotopy colimit of X is the \homotopyorbit space" EG �G X = X=hG, and " is the natural map X=hG �! X=G.Our preferred de�nition of homotopy limits is precisely dual. We have a cosim-plicial space C�(T;D ; S), the two-sided cobar construction. Its set of n-cosimplicesis the product over all f 2 Bn(D) of the spaces T (d0) � S(dn), topologized as asubspace of Map(Bn(D);`T (d)� S(d0)). The f th coordinates of the cofaces andcodegeneracies with target Cn(T;D ; S) are obtained by projecting onto the co-ordinate of their source that is indexed by the corresponding face or degeneracyapplied to f , except that, for the zeroth and last coface, we must compose withT (f1)� id : T (d0)� S(dn) �! T (d1)� S(dn)or id�S(fn) : T (d0)� S(dn) �! T (d0)� S(dn�1):



2. HOMOTOPY COLIMITS AND LIMITS 51We de�ne the geometric realization, or totalization, \TotY�" of a cosimplicialspace Y� to be the end TotY� = Z4Map(4n; Yn):(2.6)Here we are using the evident functor 4op � 4 �! U that sends (m;n) toMap(4m; Yn). If Y� takes values in based spaces, we may rewrite this asTotY� = Z4 F ((4n)+; Yn):(2.7)We then de�ne C(T;D ; S) = TotC�(T;D ; S);(2.8)and we have a natural map� : Z D T (d)� S(d) �! C(T;D ; S):(2.9)We de�ne the homotopy limit of our contravariant functor T : D �! U to beHolimT = TotC�(T;D ; �);(2.10)and we see that � specializes to give a natural map� : limT �! holimT:(2.11)When G is a group regarded as a category with a single object and X is a(right) G-space regarded as a contravariant functor, the homotopy limit of X isthe \homotopy �xed point space" of G-maps EG �! X,MapG(EG;X) = Map(EG;X)G = XhG;and � is the natural map XG �! XhG that sends a �xed point to the constantfunction at that point. This map is the object of study of the Sullivan conjecture.A. K. Bous�eld and D. M. Kan. Homotopy limits, completions, and localizations. SpringerLecture Notes in Mathematics Vol 304. 1972.J. P. May. Classifying spaces and �brations (x12). Memoirs Amer. Math. Soc. No. 155, 1975.



52 V. CATEGORICAL CONSTRUCTIONS; EQUIVARIANT APPLICATIONS3. Elmendorf's theorem on diagrams of �xed point spacesRecall that G is the category of orbit spaces. We shall regard G as a topologicalcategory with a discrete set of objects. We write [G=H] for a typical object, toavoid confusing it with the G-space G=H. The space of morphisms [G=H] �![G=K] is the space of G-maps G=H �! G=K, and this space may be identi�edwith (G=K)H . De�ne a G -space to be a continuous contravariant functor G �!U . A map of G -spaces is a natural transformation, and we write GU for thecategory of G-spaces. We shall compare this category with GU . We have alreadyobserved that a G-space X gives a G -space X�, and we write� : GU �! GUfor the functor that sends X to X�. We wish to determine how much informationthe functor � loses.By the de�nition of C�(X), it is clear that the ordinary homology and coho-mology of X depend only on �X. If T : G �! U is a G -space such that eachT (G=H) is a CW-complex and each T (G=K) �! T (G=H) is a cellular map, thenwe can de�ne H�G(T ;M) exactly as we de�ned H�G(X;M). Note, however, thatunless G is discrete, XH will not inherit a structure of a CW-complex from aG-CW complex X. Indeed, for compact Lie groups, we saw that it was not quitethe functor X� that was relevant to ordinary cohomology, but rather the functorthat sends G=H to XH=W0H.There is an obvious way that G -spaces determine G-spaces.Lemma 3.1. De�ne a functor � : GU �! GU by �T = T (G=e), with theG-maps G=e �! G=e inducing the action. Then � is left adjoint to �,GU (T;�X) �= GU (�T;X):Proof. Clearly ��X = X. The quotient map G �! G=H induces a map� : T (G=H) �! T (G=e)H, and these maps together specify a natural map � :T �! ��T . Passage from � : T �! �X to �� : �T �! X is a bijection whoseinverse sends f : �T �! X to �f � �.The following result of Elmendorf shows that G -spaces determine G-spaces in aless obvious way. In fact, up to homotopy, any G -space can be realized as the �xedpoint system of a G-space and, up to homotopy, the functor � has a right adjointas well as a left adjoint. Note that we can form the product T �K of a G -space



3. ELMENDORF'S THEOREM ON DIAGRAMS OF FIXED POINT SPACES 53T and a space K by setting (T �K)(G=H) = T (G=H)�K. In particular, T � Iis de�ned, and we have a notion of homotopy between maps of G -spaces. Write[T; T 0]G for the set of homotopy classes of maps T �! T 0.Theorem 3.2 (Elmendorf). There is a functor 	 : GU �! GU and anatural transformation " : �	 �! id such that each " : (	T )H �! T (G=H) isa homotopy equivalence. If X has the homotopy type of a G-CW complex, thenthere is a natural bijection [X;	T ]G �= [�X;T ]G :Proof. Let S : G �! GU be the covariant functor that sends the object[G=H] to the G-space G=H. On morphisms, it is given by identity mapsG ([G=H]; [G=K]) �! GU (G=H;G=K):For a G -space T , de�ne 	T to be the G-space B(T;G ; S). We haveSH[G=K] = (G=K)H = GU (G=H;G=K) = G ([G=H]; [G=K]);and (2.2) and (2.3) give homotopy equivalences " : (	T )H �! T (G=H) that de�nea natural transformation " : �	 �! id. Clearly�" : 	T = ��	T �! �Tis a weak equivalence of G-spaces for any T . With T = �X, this gives a weakequivalence �" : 	�X �! X. We can check that 	�X has the homotopy typeof a G-CW complex if X does. Therefore �" is an equivalence, and we choose ahomotopy inverse (�")�1. De�ne� : [X;	T ]G �! [�X;T ]G and � : [�X;T ]G �! [X;	T ]Gby �(f) = " � �f and �(�) = 	� � (�")�1. Easy diagram chases show that��(�) ' � and ��(f) ' (	") � (�")�1 � f . Since 	" is a weak equivalence, theWhitehead theorem gives that �� is a bijection. It follows formally that � and �are inverse bijections.A. D. Elmendorf. Systems of �xed point sets. Trans. Amer. Math. Soc. 277(1983), 275-284.



54 V. CATEGORICAL CONSTRUCTIONS; EQUIVARIANT APPLICATIONS4. Eilenberg-MacLane G-spaces and universal F-spacesWe give some important applications of this construction, starting with theconstruction of equivariant Eilenberg-MacLane spaces that we promised earlier.Example 4.1. Let B be the classifying space functor from topological monoidsto spaces. It is product-preserving, and it therefore gives an Abelian topologicalgroup when applied to an Abelian topological group. If � is a discrete Abeliangroup, then the n-fold iterate Bn� is a K(�; n). A coe�cient systemM : hG �!A b may be regarded as a continuous functor G �! U (with discrete values). Wemay compose with Bn to obtain a G -space Bn �M . In view of the equivalences" : 	(Bn �M)H �! K(M(G=H); n), 	(Bn �M) is a K(M;n). Theorem 3.2 givesa homotopical description of ordinary cohomology in terms of maps of G -spaces:~HnG(X;M) �= [X;K(M;n)]G �= [�X;Bn �M ]G :In interpreting this, one must remember that the right side concerns homotopyclasses of genuine natural transformations �X �! BnM , and not just naturaltransformations in the homotopy category. The latter would be directly com-putable in terms of nonequivariant comology.Example 4.2. If M is a contravariant functor from hG to (not necessarilyAbelian) groups, then we can regardB�M as a G -space and so obtain an Eilenberg-MacLane G-space K(M; 1) = 	(B �M).Example 4.3. A set-valued functor M on hG is the same thing as a continu-ous set-valued functor on G . Applying 	 to such an M , we obtain an Eilenberg-MacLane G-space K(M; 0). Its �xed point spaces K(M; 0)H are homotopy equiv-alent to the discrete spaces M(G=H), but the G-space K(M; 0) generally hasnon-trivial cohomology groups in arbitrarily high dimension. For set-valued coef-�cient systemsM and M 0, let NatG (M;M 0) be the set of natural transformationsM �!M 0. Then Theorem 3.2 and the discreteness of M give isomorphisms[X;K(M; 0)]G �= [�X;M ]G �= NatG (�0(X);M):(4.4)This may seem frivolous at �rst sight, but in fact the spaces K(M; 0) are cen-tral to equivariant homotopy theory. For example, we shall see later that theisomorphisms just given specialize to give a classi�cation theorem for equivariantbundles | and to reprove the classical classi�cation of nonequivariant bundles.The relevant K(M; 0)'s are special cases of those in the following basic de�nition.



4. EILENBERG-MACLANE G-SPACES AND UNIVERSAL F-SPACES 55Definition 4.5. A family F in G is a set of subgroups of G that is closedunder subconjugacy: if H 2 F and g�1Kg � H, then K 2 F . An F -space is aG-space all of whose isotropy groups are in F . De�ne a functor F : hG �! Setsby sending G=H to the 1-point set if H 2 F and to the empty set if H 62 F .De�ne the universal F -space EF to be 	F . It is universal in the sense that, foran F -space X of the homotopy type of a G-CW complex, there is one and, up tohomotopy, only one G-map X �! EF . De�ne the classifying space of the familyF to be the orbit space BF = EF=G.In thinking about this example, it should be remembered that there are nomaps from a non-empty set to the empty set. In particular, there are no G-mapsX �! EF if X is not an F -space. This also shows that the functor F onlymakes sense if the given set F of subgroups of G is a family. We augment thede�nition with the following relative version. It will become very important later.Definition 4.6. For a subfamilyF of a familyF 0, de�ne E(F 0;F ) to be theco�ber of the based G-map (unique up to homotopy) EF+ �! EF 0+. Let A ``be the family of all subgroups of G, and let ~EF = E(A ``;F ). Since EA `` isG-contractible, ~EF is equivalent to the unreduced suspension of EF with oneof the cone points as basepoint. The space ( ~EF )H is contractible if H 2 F andis the two-point space S0 if H 62 F . For F � F 0, the G-space E(F 0;F ) isequivalent to EF 0+ ^ ~EF .The following observation will become valuable when we examine the structureof equivariant classifying spaces.Lemma 4.7. Let F be a family in G and H be a subgroup of G.(a) Regarded as an H-space, EF is E(F jH), whereF jH = fKjK 2 F and K � Hg:(b) If H 2 F , then, regarded as a WH-space, (EF )H is E(FH), whereFH = fLjL = K=H for some K 2 F such that H � K � NHg:The classical example is F = feg. An feg-space X is a G-space all of whoseisotropy groups are trivial. That is, X is a free G-space. Then EG � Efeg isexactly the standard example of a free contractible G-space, and the quotient map� : EG �! BG is a principalG-bundle. Given the result that pullbacks of bundlesalong homotopic maps are homotopic, we have already proven that � is universal.



56 V. CATEGORICAL CONSTRUCTIONS; EQUIVARIANT APPLICATIONSIndeed, if p : E �! B is a principal G-bundle, we have a unique homotopy classof G-maps ~f : E �! EG. The map f : B �! BG that is obtained by passage toorbits from ~f is the classifying map of p. Certainly p is equivalent to the bundleobtained by pulling � back along f .When G is discrete, the ordinary homology and cohomology of the G-spacesEF admit descriptions as Ext groups, generalizing the classical identi�cation ofthe homology and cohomology of groups with the homology and cohomology ofK(�; 1)'s. This can be seen from the projectivity of the cellular chains C�(EF )and inspection of de�nitions or by collapse of the universal coe�cients spectralsequences. Write Z[F ] for the free Abelian group functor composed with thefunctor F .Proposition 4.8. Let G be discrete. For a covariant coe�cient system N anda contravariant coe�cient systemM ,HG� (EF ;N) = TorG� (Z[F ];N) and H�G(EF ;M) = Ext�G (Z[F ];M):



CHAPTER VIThe Homotopy Theory of Diagramsby Robert J. Piacenza1. Elementary homotopy theory of diagramsA substantial portion of the homotopy, homology, and cohomology theory ofG-spaces X depends only on the underlying diagram of �xed point spaces �X :G �! U . There is a vast and growing literature in which the homotopy theory ofspaces is generalized to a homotopy theory of diagrams of spaces that are indexedon arbitrary small indexing categories. The purpose of this chapter is to outlinethis theory and to demonstrate the connection between diagrams and equivarianttheory. A very partial list of sources for further reading is given at the end of thissection.Throughout the chapter, we letU be the cartesian category of compactly gener-ated weak Hausdor� spaces and let J be a small topological category over U withdiscrete object space. De�ne U J to be the category of continuous contravariantU -valued functors on J . Its objects are called either diagrams or J -spaces; itsmorphisms, which are natural transformations, are called J -maps. Note that U Jis a topological category: its hom sets are spaces and composition is continuous.Let I be the unit interval in U . If X and Y are diagrams, then a homotopyfrom X to Y is a J -map H : I �X �! Y , where I �X is the diagram de�nedon objects j 2 jJ j by (I �X)(j) = I �X(j) and similarly for morphisms of J . Inthe usual way homotopy de�nes an equivalence relation on the J -maps that givesrise to the quotient homotopy category hU J . We denote the homotopy classes ofJ -maps from X to Y by hU J(X;Y ), abbreviated h(X;Y ). An isomorphism in57



58 VI. THE HOMOTOPY THEORY OF DIAGRAMShU J will be called a homotopy equivalence.A J -map is called a J -co�bration if it has the J homotopy extension property,abbreviated J �HEP . The basic facts about co�brations in U apply readily toJ -co�brations.The following standard results for spaces are inherited by the category U J .Theorem 1.1 (Invariance of pushouts). Suppose given a commutative di-agram: A //f��i ''� PPPPPPPPPPPPPPP B ((� PPPPPPPPPPPPPPPP��X // ''
 PPPPPPPPPPPPPPP Y ((� PPPPPPP PPPPPPPA0�� i0 //f 0 B0��X 0 // Y 0in which i and i0 are J -co�brations, f and f 0 are arbitrary J -maps, �, �, and 
are homotopy equivalences, and the front and back faces are pushouts. Then theinduced map � on pushouts is also a homotopy equivalence.Theorem 1.2 (Invariance of colimits over cofibrations). Supposegiven a homotopy commutative diagramX0��f0 //i0 X1�� f1 //i1 � � � // Xk�� fk //ik � � �Y 0 //j0 Y 1 //j1 � � � // Y k //jk � � �inU J where the ik and jk are J -co�brations and the fk are homotopy equivalences.Then the map colimk fk : colimkXk �! colimk Y k is a homotopy equivalence.The reader will readily accept that other such standard results in the homotopytheory of spaces carry over directly to the homotopy theory of diagrams.W. G. Dwyer and D. M. Kan. An obstruction theory for diagrams of simplicial sets. Proc. Kon.Ned. Akad. van Wetensch A87=Ind. Math. 46(1984), 139-146.W. G. Dwyer and D. M. Kan. Singular functors and realization functors. Proc. Kon. Ned.Akad. van Wetensch A87=Ind. Math. 46(1984), 147-153.W. G. Dwyer, K. M. Kan, and J. H. Smith. Homotopy commutative diagrams and their real-izations. J. Pure and Appl. Alg. 57(1989), 5-24.E. Dror Farjoun. Homotopy and homology of diagrams of spaces. Springer Lecture Notes inMathematics Vol. 1286, 1987, 93-134.



2. HOMOTOPY GROUPS 59E. Dror Farjoun. Homotopy theories for diagrams of spaces. Proc Amer. Math. Soc. 101(1987),181-189.A. Heller. Homotopy in functor categories. Trans. Amer. Math. Soc. 272(1982), 185-202.R. J. Piacenza. Homotopy theory of diagrams and CW-complexes over a category. Canadian J.Math. 43(1991), 814-824.K. Sarnowski. Homology and cohomology of diagrams of topological spaces. Thesis. Universityof Alaska. 1994.Y. Shitanda. Abstract homotopy theory and homotopy theory of functor category. HiroshimaMath. J. 19(1989), 477-497.I. Moerdijk and J. A. Svensson. A Shapiro lemma for diagrams of spaces with appliations toequivariant topology. Compositio Mathematica 96(1995), 249-282.2. Homotopy GroupsLet In be the topological n-cube and @In its boundary. For an object j 2 jJ j,let j 2 U J denote the associated represented functor; its value on an object k isthe space U J (k; j).Definition 2.1. By a pair (X;Y ) in U J , we mean a J -space X together witha sub J -space Y . Morphisms of pairs are de�ned in the obvious way. Similarde�nitions apply to triples, n-ads, etc. Let � : j �! Y be a morphism in U J . Bythe Yoneda lemma, � is completely determined by the point �(idj) = y0 2 Y (j).For each n � 0, de�ne�jn(X;Y; �) = h((In; @In; f0g) � j; (X;Y; Y ))where y0 = �(idj) 2 Y (j) serves as a basepoint, and all homotopies are homotopiesof triples relative to �. The reader may formulate a similar de�nition for theabsolute case �jn(X;�). For n = 0 we adopt the convention that I0 = f0; 1g and@I0 = f0g and proceed as above. These constructions extend to covariant functorson U J . From now on, we shall often drop � from the notation �jn(X;Y; �).The following proposition follows immediately from the Yoneda lemma.Proposition 2.2. There are natural isomorphisms �jn(X) �= �n(X(j)) and�jn(X;Y ) �= �n(X(j); Y (j)) that preserve the group structures when n � 1 (inthe absolute case; the relative case requires n � 2).As a direct consequence of Proposition 2.2 we obtain the usual long exact se-quences.



60 VI. THE HOMOTOPY THEORY OF DIAGRAMSProposition 2.3. For (X;Y ) and j as in De�nition 2.1, there exist naturalboundary maps @ and long exact sequences� � � �! �jn+1(X;Y ) @�!�jn(Y ) �! �jn(X) �! � � � �! �j0(Y ) �! �j0(X)of groups up to �j1(Y ) and pointed sets thereafter.Definition 2.4. A map e : (X;Y ) �! (X 0; Y 0) of pairs in U J is said to bean n-equivalence if e(j) : (X(j); Y (j)) �! (X 0(j); Y 0(j)) is an n-equivalence in Ufor each j 2 jJ j. A map e is said to be a weak equivalence if it is an n-equivalencefor each n � 0. Observe that e is an n-equivalence if for every j 2 jJ j and� : j �! Y , e� : �jp(X;Y; �) �! �jp(X 0; Y 0; e�) is an isomorphism for 0 � p < nand an epimorphism for p = n. The reader may easily formulate similar de�nitionsfor J -maps e : X �! X 0 (the absolute case).3. Cellular TheoryIn this section we adapt May's preferred approach to the classical theory of CWcomplexes to develop a theory of J -CW complexes.Let Dn+1 be the topological (n + 1)-disk and Sn the topological n-sphere. Ofcourse, these spaces are homeomorphic to In+1 and @In+1 respectively. We shallconstruct cell complexes over J by the process of attaching cells of the formDn+1�j by attaching morphisms with domain Sn � j.Definition 3.1. A J -complex is an object X of U J with a decompositionX = colimp�0Xp where X0 = a�2A0Dn� � j�and, inductively, Xp = Xp�1[f ( a�2ApDn� � j�)for some attaching J -map f : `�2Ap Sn��1 � j� �! Xp�1; here, for each p � 0,fj� j � 2 Apg is a set of objects of J . We call X a J -CW complex if X is aJ -complex such that n� = p for all p � 0 and � 2 Ap.Now J -subcomplexes and relative J -complexes are de�ned in the obvious way.We adopt the standard terminology for CW-complexes for J -CW-complexes with-out further comment.The following technical lemma reduces directly to its space level analog.



3. CELLULAR THEORY 61Lemma 3.2. Suppose that e : Y �! Z is an n-equivalence. Then we cancomplete the following diagram in U J :Sn�1 � j //i0�� Sn�1 � I � j��yy hsssssssssss Sn�1 � joo i1 {{ gvvvvvvvvv �� iZ Yoo eDn � j ::f vvvvvvvvv //i0 Dn � I � j~heeL L L L L L Dn � j:oo i1 ~gddH H H H HFrom here, we proceed exactly as in Ix3 to obtain the following results.Theorem 3.3 (J-HELP). If (X;A) is a relative J -CW complex of dimension� n and e : Y �! Z is an n-equivalence, then we can complete the followingdiagram in U J : A //�� A� I��{{xxxxxxxxx Aoo ~~}}}}}}}} ��Z Yoo eX ? ?~~~~~~~~ // X � Ic cF F F F F X:oo ``A A A ATheorem 3.4 (Whitehead). Let e : Y �! Z be an n-equivalence and X bea J -CW complex. Then e� : h(X;Y ) �! h(X;Z) is a bijection if X has dimensionless than n and a surjection if X has dimension n. If e is a weak equivalence, thene� : h(X;Y ) �! h(X;Z) is a bijection for all X.Corollary 3.5. If e : Y �! Z is an n-equivalence between J -CW complexesof dimension less than n, then e is a J -homotopy equivalence. If e is a weakequivalence between J -CW complexes, then e is a J -homotopy equivalence.Theorem 3.6 (Cellular Approximation). Let (X;A) and (Y;B) be rela-tive J -CW complexes, (X 0; A0) be a subcomplex of (X;A), and f : (X;A) �!(Y;B) be a map of pairs in U J whose restriction to (X 0; A0) is cellular. Then f ishomotopic rel X 0 [ A to a cellular map g : (X;A) �! (Y;B).Corollary 3.7. Let X and Y be J -CW complexes. Then any J -map f :X �! Y is homotopic to a cellular J -map, and any two homotopic cellular J -maps are cellularly homotopic.



62 VI. THE HOMOTOPY THEORY OF DIAGRAMSNext we discuss the local properties of J -CW complexes. First we develop somepreliminary concepts. Let X be a J -space and, for each j 2 jJ j, let tj : X(j) �!colimJ X be the natural map of X(j) into the colimit. Observe that, for eachmorphism s : i �! j of J , tj = ti � X(s). For each subspace A � colimJ X,we de�ne �A(j) = t�1j (A); for each morphism s : i �! j of J , we de�ne �A(s) :�A(j) �! �A(i) to be the restriction of X(s). (As usual, we apply the k-i�cationfunctor to ensure that all spaces de�ned above are compactly generated.) Onequickly checks that �A is a J -space, that colimJ �A = A, and that there is a naturalinclusion �A �! X. To simplify notation, we writeX=J = colimJ Xfrom now on.Definition 3.8. A pair (X; �A) is a J -neighborhood retract pair (abbreviatedJ -NR pair) if there exists an open subset U of X=J such that A � U and aretraction r : �U �! �A. A pair (X; �A) is a J -neighborhood deformation retractpair (abbreviated J -NDR pair) if (X; �A) is a J -NR pair and the J -map r is aJ -deformation retraction.Let X be a J -CW complex. The functor colimJ sends the J -space A � j de-termined by a space A and object j to the space A, and it preserves colimits.Therefore the cellular decomposition of X determines a natural structure of a CWcomplex on X=J ; its attaching maps are the images under the functor colimJ ofthe attaching J -maps of X. One may also check that if A is a subcomplex of X=J ,then �A has a natural structure of a subcomplex of X. In particular, if Ap is thep-skeleton of X=J , then �Ap = Xp is the p-skeleton of X.Proposition 3.9 (Local contractibility). LetX be a J -CW complex andA = fag be a point of X=J . Then there is an object j 2 jJ j such that �A �= j, and(X; �A) is a J -NDR pair.Proof. Let a be in the p-skeleton but not in the (p�1)-skeleton of X=J . Thenthere is a unique attaching map f : Sp�1�j �! Xp�1 such that a is in the interiorof Dp. It follows that �A �= j. To construct the required neighborhood U , �rst takean open ball U1 contained in the interior of Bp and centered at a. Then U1 is aneighborhood in (X=J)p that contracts to A. One then extends U1 inductively cellby cell by the usual space level procedure to construct the required neighborhoodU .



4. THE HOMOLOGY AND COHOMOLOGY THEORY OF DIAGRAMS 63Proposition 3.10. Let X be a J -CW complex and A be a subcomplex of X=J .Then (X; �A) is a J -NDR pair.Proof. It follows from J -HELP that �A �! X is a J -co�bration. Just as onthe space level, a J -co�bration is the inclusion of a J -NDR pair.R. J. Piacenza. Homotopy theory of diagrams and CW-complexes over a category. Canadian J.Math. 43(1991), 814-824.4. The homology and cohomology theory of diagramsThe ordinary homology and cohomology theories of Ix3 are special cases of aconstruction that applies to the category U J for any J . The di�erence is thatthe theory in Ix3 started with G-CW complexes and then passed to the associateddiagrams de�ned on the orbit category of G, whereas we here exploit the theory ofJ -CW complexes. There is again a vast literature on the cohomology of diagrams,some relevant references being listed in Section 1.De�ne a J -coe�cient system to be a continuous contravariant functorM : J �!A b. Continuity ensures that M factors through the homotopy category hJ . LetA bhJ be the category of J -coe�cient systems. It is an Abelian category, andwe can do homological algebra in it. As in Ix4, a covariant homotopy invariantfunctor U �! A b induces a functor from J -spaces to J -coe�cient systems bycomposition; we name such functors by underlining the name of the given functor.Of course, we also have the notion of a covariant J -coe�cient system.Let (X;A) be a relative J -CW complex with n skeleton Xn and observe thatXn=Xn�1 = (aj� Dn � j�)=(aj� Sn�1 � j�) �= Sn ^ (j�)+;(4.1)where the + indicates the addition of disjoint basepoints. De�ne a chain complexC�(X;A) in A bJ , called the J -cellular chains of (X;A), by settingCn(X;A) = Hn(Xn;Xn�1;Z):(4.2)The connecting homomorphisms of the triples (Xn;Xn�1;Xn�2) specify the dif-ferential d : Cn(X;A) �! Cn�1(X;A):(4.3)



64 VI. THE HOMOTOPY THEORY OF DIAGRAMSClearly (5.1) implies thatCn(X;A)(j) =Xj� ~H0(J(j; j�)+;Z):(4.4)The construction is functorial with respect to cellular maps (X;A) �! (Y;B).For a covariant J -coe�cient system N , de�ne the cellular chain complex of(X;A) with coe�cients N byC�(X;A;N) = C�(X;A)
J N;(4.5)where the tensor product on the right is interpreted as the coend over J . Passingto homology, we obtain the cellular homology H�(X;A;N).For a contravariant J -coe�cient systemM , de�ne the cellular cochain complexof (X;A) with coe�cients M byC�(X;A;M) = HomJ (C�(X;A);M):(4.6)Passing to cohomology, we obtain the cellular cohomology H�(X;A;M).Theorem 4.7. Cellular homology and cohomology for pairs of J -CW complexessatisfy the standard Eilenberg-Steenrod axioms, suitably reformulated for dia-grams.Remark 4.8. We may extend the cellular theory to arbitrary pairs of diagramsby means of cellular approximations; see Proposition 4.6. That is, we extend ourhomology and cohomology theories to theories that carry weak equivalences toisomorphisms. We may also adapt Ilman's construction of equivariant singulartheory to construct a singular theory for diagrams. Of course, the singular theoryis isomorphic to the cellular theory on the category of J -CW complexes.S. Illman. Equivariant singular homology and cohomology. Memoirs Amer. Math. Soc. No.156. 1975. 5. The closed model structure on U JJust as the category of spaces has a (closed) model structure in the sense ofQuillen, so does the category of G-spaces for any G. This point of view has notbeen taken earlier since the conclusions are obvious to the experts and perhapsnot very helpful to the novice on a �rst reading. However, since the homotopicalproperties of categories of diagrams are likely to be less familiar than those of thecategory of spaces, it is valuable to understand how they inherit model structures



5. THE CLOSED MODEL STRUCTURE ON UJ 65from the standard model structure on U , which is the special case of the trivialcategory J in the de�nitions here. We use the name q-�bration and q-co�brationfor the model structure �brations and co�brations to avoid confusion with otherkinds of �brations and co�brations. The weak equivalences of the model structurewill be the weak equivalences that we have already de�ned; an acyclic q-�brationis one that is a weak equivalence, and similarly for acyclic q-co�brations. Considerdiagrams A //��g X�� fB > >~~~~ // YThe map g has the left lifting property (LLP) with respect to f if one can always�ll in the dotted arrow. The right lifting property (RLP) is de�ned dually.Definition 5.1. A J -map f : X �! Y is a q-�bration if f(j) : Y (j) �! X(j)is a Serre �bration for each object j 2 jJ j. Observe that f is a q-�bration if f hasthe homotopy lifting property for all objects of the form In�j. A map g : A �! Bis a q-co�bration if it has the LLP with respect to all acyclic q-co�brations.Theorem 5.2. With the structure just de�ned, U J is a model category.Proof. Just as as for spaces, one quickly checks Quillen's axioms, using thefactorization lemma below to verify the factorization axiom M2.As for spaces, the proof leads directly to the following characterizations of q-co�brations and of acyclic q-�brations.Corollary 5.3. A J -map g : A �! B is a q-co�bration if and only if it is aretract of the inclusion A0 �! B 0 of a relative J -complex (B 0; A0).Corollary 5.4. A J -map f : X �! Y is an acyclic q-�bration if and only ifit has the RLP with respect to each q-co�bration Sn � j �! Dn+1 � j.Lemma 5.5 (Quillen's factorization lemma). Any J -map f : X �! Ycan be factored as f = p � g, where g is a q-co�bration and p is an acyclic q-�bration.



66 VI. THE HOMOTOPY THEORY OF DIAGRAMSProof. We construct a diagramX //g0   f AAAAAAAA Z0 //g1�� p0 Z1 // � � �Yas follows. Let Z�1 = X and p�1 = f . Having obtained Zn�1, consider the set ofall diagrams of the form Sq� � j��� //t� Zn�1�� pn�1Dq� � j� //s� Y:Forming the coproduct over all of the left vertical arrows, we may de�ne gn :Zn�1 �! Zn by the pushout diagram`Sq� � j��� //` t� Zn�1�� pn�1`Dq� � j� //` s� Zn:We have allowed the zero dimensional pair (D0; S�1) = (fptg; ;) in this construc-tion. De�ne pn : Zn �! Y by pushing out along pn�1 and the coproduct of themaps s�. Then letZ = colimZn; p = colimpn; and g = colimgngn�1 � � � g0:One may check that g has the LLP with respect to each acyclic q-�bration and,by the \small object argument" based on the compactness of the Dn, that p is anacyclic q-�bration.Let �hU J be the localization of hU J obtained by formally inverting the weakequivalences. The model structure implies that �hU J is equivalent to the homotopycategory of J -CW complexes, as we indicate next.Lemma 5.6. LetX = colimXn taken over a sequence of J -co�brations such thateach Xn has the homotopy type of a J -CW complex. Then X has the homotopytype of a J -CW complex.



6. ANOTHER PROOF OF ELMENDORF'S THEOREM 67Proof. Up to homotopy, we may approximate the sequence by a sequence ofJ -CW complexes and cellular inclusions; we then use the homotopy invariance ofcolimits (Theorem 1.2).The following proposition follows easily.Proposition 5.7. Each J -complex is of the homotopy type of a J -CW com-plex.Theorem 5.8 (Approximation theorem). There is a functor � : U J �!U J and a natural transformation 
 : � �! id such that, for each X 2 U J , �X isa J -complex and 
 : �X �! X is an acyclic q-�bration.Proof. Applying Lemma 5.3 to the inclusion of the empty set in X, we obtainan acyclic q-�bration 
 : �X �! X. By the explicit construction, we see that �Xis a J -complex, � is a functor, and 
 is a natural transformation.The following corollary is immediate from the previous two results.Corollary 5.9. The category �hU J is equivalent to the homotopy category ofJ -CW complexes.D. G. Quillen. Homotopical Algebra. Springer Lecture Notes in Mathematics Vol. 43. 1967.W. G. Dwyer and J. Spalinsky. Homotopy theories and model categories. In \Handbook ofAlgebraic Topology", edited by I.M. James. North Holland, 1995, pp 73-126.6. Another proof of Elmendorf's theoremThe theory of diagrams leads to an alternative proof of Elmendorf's theoremV.3.2, one which gives a precise cellular perspective and illustrates the force ofmodel category techniques. We adopt the notations of Vx3.Observe that the �xed point diagram functor � from G-spaces to G -spacescarries X � G=H to X � G=H for a space X regarded as a G-trivial G-space.Thus it preserves cells. It also preserves the pushouts relevant to cellular theory.Lemma 6.1. If A��i // X��B // Y



68 VI. THE HOMOTOPY THEORY OF DIAGRAMSis a pushout of G-spaces in which i is a closed inclusion, then�A���i // �X���B // Yis a pushout of G -spaces.Proof. Stripping away the topology we see that this holds on the set levelsince every G-set is a coproduct of orbits. One may then check that the topologiesagree.Theorem 6.2. Each G -complex (or G -CW complex) Y 2 GU is isomorphic to�X for some G-complex (or G-CW complex) X. Therefore � is an isomorphismbetween the category of G-complexes (or G -CW complexes) and the category ofG -complexes (or G -CW complexes).Proof. The functor � carries G-complexes to G -complexes since it preservescells, the relevant pushouts, and ascending unions. The assertion follows since �is full and faithful: inductively, the attaching maps of Y are in the image of �.This leads to our alternative version of V.3.2.Theorem 6.3 (Elmendorf). There is a functor 	 : GU �! GU and anatural transformation " : �	 �! id such that 	X is a G-complex, �	X is aG -complex, and " : �	X �! X is a weak equivalence of G-spaces for each G -space X. Therefore � and 	 induce an equivalence of categories between �hGUand �hGU .Proof. We construct the functor 	 and transformation " by using the functor� and transformation p given in Theorem 5.7 on the level of diagrams and usingTheorem 6.2 to transport from G -complexes to G-complexes. The result followsfrom the cited results and Corollary 5.8.Corollary 6.4. Let Y be a G-space of the homotopy type of a G-CW complex.Then, for any G -space X,hGU (Y;	X) �= hGU (�Y;X) �= �h(�Y;X):Proof. This follows from Theorem 6.3 and generalities about model cate-gories.



6. ANOTHER PROOF OF ELMENDORF'S THEOREM 69In turn, this implies the following comparison with the original form, V.3.2, ofElmendorf's theorem.Corollary 6.5. Write 	0 and "0 for the constructions given in V.3.2. For aG -space X, there is a weak equivalence of G-spaces � : 	X �! 	0X such that �is natural up to homotopy and the following diagram commutes up to homotopy:�	X ##" GGGGGGGG //�� �	0X{{ "0wwwwwwwwwX:



70 VI. THE HOMOTOPY THEORY OF DIAGRAMS



CHAPTER VIIEquivariant Bundle theory and Classifying Spaces1. The de�nition of equivariant bundlesEquivariant bundle theory can be developed at various levels of generality. Weassume given a subgroup � of a compact Lie group �. We set G = �=�, and welet q : � �! G be the quotient homomorphism. That is, we consider an extensionof compact Lie groups 1 �! � �! � �! G �! 1:Many sources restrict attention to split extensions, but we see little point in that.By far the most interesting case is � = G��. When � is O(n) or U(n), this casewill lead to real and complex equivariant K-theory.De�ne a principal (�; �)-bundle to be the projection to orbits p : E �! E=� =B of a �-free �-space E. Note that G acts on the base space B. Let F be a�-space. By a G-bundle with structural group �, total group �, and �ber F , wemean the projection E �� F �! B induced by a principal (�; �)-bundle E; E iscalled the associated principal bundle. Although we prefer to think of bundles thisway, it is not hard to give an intrinsic characterization of when a G-map Y �! Bthat is a �-bundle with �ber F is such a (�; �)-bundle.When � = G � �, we shall refer to (G;�)-bundles rather than to (�;G � �)-bundles. Here it is usual to require the �ber F be a �-space. A principal (G;�)-bundle E has actions by G and � that commute with one another; it is usual towrite the action of � on the right and the action of G on the left. Equivariantvector bundles �t into this framework: a (G;O(n))-bundle with �ber Rn is calledan n-plane G-bundle, and similarly in the complex case. The tangent and normal71



72 VII. EQUIVARIANT BUNDLE THEORY AND CLASSIFYING SPACESbundles of a smooth G-manifold give examples.Example 1.1. A �nite G-cover p : Y �! B is a G-map that is also a �nitecover. Such a map is necessarily a (G;�n)-bundle with �ber the �n-set F =f1; : : : ; ng. Its associated principal (G;�n)-bundle E is the subspace of Map(F; Y )consisting of the bijections onto �bers of p.Classical bundle theory readily generalizes to the equivariant context, and wecontent ourselves with a very brief summary of some of the main points. A prin-cipal (�; �)-bundle is said to be trivial if it is equivalent to a bundle of the formq � id : � �� U �! G �H U;where H � G, � � �, � \ � = e, q maps � isomorphically onto H, and Uis an H-space regarded as a �-space by pullback along q. Provided that E andtherefore also B are completely regular, a principal (�; �)-bundle p : E �! B islocally trivial. If, in addition, B is paracompact, then p is numerable. Numerable(�; �)-bundles satisfy the equivariant bundle covering homotopy property, anda numerable bundle E over B � I is equivalent to the bundle (E � f0g) � I.Therefore the pullbacks of a numerable (�; �)-bundle along homotopic G-mapsare equivalent.R. K. Lashof. Equivariant bundles. Ill. J. Math. 26(1982).R. K. Lashof and J. P. May. Generalized equivariant bundles. Bulletin de la Soci�et�e Math�ema-tique de Belgique 38(1986), 265-271.L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure). Equiv-ariant stable homotopy theory. (IVx1.) Springer Lecture Notes in Mathematics Vol. 1213.1986. 2. The classi�cation of equivariant bundlesLet B(�; �)(X) be the set of equivalence classes of principal (�; �)-bundleswith base G-space X. We assume that X has the homotopy type of a G-CWcomplex, and we check that this implies that any bundle over X has the homotopytype of a �-CW complex. Then Elmendorf's theorem, V.3.2, specializes to give aclassi�cation theorem for principal (�; �)-bundles.Definition 2.1. De�ne F (�; �) to be the family of subgroups � of � suchthat � \� = e and observe that an F (�; �)-space is the same thing as a �-free�-space. Write E(�; �) = EF (�; �) and B(�; �) = E(�; �)=�;



2. THE CLASSIFICATION OF EQUIVARIANT BUNDLES 73and let � : E(�; �) �! B(�; �)be the resulting principal (�; �)-bundle. In the case � = G � �, write FG(�) =F (�;G��); EG(�) = E(�;G��) and BG(�) = B(�;G��):Observe that, since E(�; �) is a contractible space, B(�; �) is a model for B�that carries a particular action by G.Theorem 2.2. The bundle � : E(�; �) �! B(�; �) is universal . That is,pullback of � along G-maps X �! B(�; �) gives a bijection[X;B(�; �)]G �!B(�; �)(X):It is crucial to the utility of this result to understand the �xed point structureof B(�; �). For any principal (�; �)-bundle p : E �! B and any H � G, onecan check that BH is the disjoint union of the spaces p(E�), where � runs overthe �-conjugacy classes of subgroups � � � such that � \ � = e and q(�) = H.De�ne �� � � \N�� = � \ Z��;(2.3)where Z�� is the centralizer of � in �; the equality here is an easy observation.Then E� is a principal (��;W��)-bundle and p(E�) is its base space. We can goon to analyze the structure of BH as a WGH-space. In the case of the universalbundle, we can determine the structure of E� by use of IV.4.7. Putting thingstogether, we arrive at the following conclusion.Theorem 2.4. For a subgroup H of G,B(�; �)H =aB(��);where the union runs over the �-conjugacy classes of subgroups � of � such that� \� = e and q(�) = H; as a WGH-space,B(�; �)H =aWGH �V (�) B(��;W��);where the union runs over the q�1(NGH)-conjugacy classes of such groups � andV (�) = W��=�� is the image of W�� in WGH.



74 VII. EQUIVARIANT BUNDLE THEORY AND CLASSIFYING SPACESHere, by use of Lie group theory, V (�) has �nite index in WGH.Specializing to � = G��, we see that the subgroups � of � such that �\� = eare exactly the twisted diagonal subgroups�(�) = f(h; �(h))jh 2 Hg;(2.5)where H is a subgroup of G and � : H �! � is a homomorphism. Let N(�) =NG���(�) and observe thatN(�) = f(g; �)jg 2 NGH and ��(h)��1 = �(ghg�1) for all h 2 Hg:Therefore � \N(�) coincides with the centralizer�� = f�j��(h) = �(h)� for all h 2 Hg:(2.6)Let W (�) =WG���(�) and V (�) = W (�)=�� � WGH:As usual, let Rep(G;�) denote the set of �-conjugacy classes of homomorphismsG �! �. De�ne an action of the group WGH on the set Rep(H;�) by letting(gH)� be the conjugacy class of g � �, where, for g 2 NGH, g � � : H �! � isthe homomorphism speci�ed by (g � �)(h) = �(g�1hg): Observe that the isotropygroup of (�) is V (�).Theorem 2.7. For a subgroup H of G,(BG�)H =aB(��);where the union runs over (�) 2 Rep(H;�); as a WGH-space,(BG�)H =aWGH �V (�) B(��;W (�));where the union runs over the orbit set Rep(H;�)=WGH.It is important to observe that the group W (�) need not split as a productV (�) � �� in general. Therefore, in order to fully understand the classifying G-spaces for (G;�)-bundles, one is forced to study the classifying spaces for themore general kind of bundles that we have introduced. These are complicatedobjects, and their study is in a primitive state. In particular, rather little isknown about equivariant characteristic classes. Such classes are understood inBorel cohomology, however. By the universal property of E(�; �), there is a�-map E� �! E(�; �), which is unique up to homotopy. The induced G-mapE�=� �! B(�; �) is a nonequivariant equivalence and so induces an isomorphism



3. SOME EXAMPLES OF CLASSIFYING SPACES 75on Borel cohomology. The projection EG � E� �! E� is clearly a �-homotopyequivalence, and it induces an equivalenceEG �G (E�=�) = (EG� E�)=� �! E�=� = B�:This already implies the following calculation. We again denote Borel cohomologyby H�G for the moment.Theorem 2.8. With any coe�cients, H�G(B(�; �)) �= H�(B�). With �eld co-e�cients, H�G(BG�) �= H�(BG)
H�(B�) as an H�(BG)-module.The interpretation is that the Borel cohomology characteristic classes of a prin-cipal (G;�)-bundle E over X are determined by the H�(BG)-module structureon H�G(X) together with the nonequivariant characteristic classes of the �-bundleEG �G E over EG�G X.We shall later see that generalized versions of the Atiyah-Segal completion the-orem and of the Segal conjecture give calculations of the characteristic classes of(G;�)-bundles in equivariant K-theory and in equivariant cohomotopy.R. K. Lashof and J. P. May. Generalized equivariant bundles. Bulletin de la Soci�et�e Math�ema-tique de Belgique 38(1986), 265-271.J. P. May. Characteristic classes in Borel cohomology. J. Pure and Applied Algebra 44(1987),287-289. 3. Some examples of classifying spacesIt is often valuable to have alternative descriptions of universal bundles. Wehave Grassmannian models when � is an orthogonal or unitary group. These leadto good models for the classifying spaces for equivariant K-theory, and, just asnonequivariantly, they are useful for the proof of equivariant versions of the Thomcobordism theorem.Example 3.1. For a real inner product G-space V , letBO(n; V ) be the G-spaceof n-planes in V and let EO(n; V ) be the G-space whose points are pairs consistingof an n-plane � in V and a vector v 2 �. The map EO(n; V ) �! BO(n; V ) thatsends (�; v) to � is a real n-plane G-bundle. Provided that V is large enough, saythe direct sum of in�nitely many copies of each irreducible real representation ofG, p is a universal real n-plane G-bundle. A similar construction works in thecomplex case.



76 VII. EQUIVARIANT BUNDLE THEORY AND CLASSIFYING SPACESClearly a principal (�; �)-bundle E is universal if and only if E� is contractiblefor � 2 F (�; �). Using the fact that the space of G-maps from a free G-CWcomplex to a nonequivariantly contractibleG-space is contractible, one can use thiscriterion to obtain a simple model that has particularly good naturality properties.Regard EG as a �-space via q : � �! G and de�neSec(EG;E�) �Map(EG;E�)to be the sub �-space consisting of those maps f : EG �! E� such that thecomposite of Eq : E� �! EG and f is the identity map. Note thatSec(EG;E(G ��)) = Map(EG;E�)since E(G��) is homeomorphic to EG � E�.Theorem 3.2. The �-space Sec(EG;E�) is a universal principal (�; �)-bundleand therefore the G-space Sec(EG;E�)=� is a model for B(�; �). In particular,the G��-space Map(EG;E�) is a universal principal (G;�)-bundle and thereforethe G-space Map(EG;E�)=� is a model for BG�.Since we are interested in maps from G-CW complexes into classifying spaces,the fact that these models need not have the homotopy types of G-CW complexesneed not concern us.Observe that the map � : E� �! B� induces a natural G-map� : B(�; �) = Sec(EG;E�)=� �! Sec(EG;B�);(3.3)where Sec(EG;B�) is theG-space of maps f : EG �! B� such that the compositeof f and Bq : B� �! BG is � : EG �! BG. With � = G ��, this map is� : BG� �!Map(EG;B�):(3.4)These maps have bundle theoretic interpretations. Restricting for simplicity tothe case � = G��, let BG(�)(X) �= [X;BG�]Gbe the set of equivalence classes of (G;�)-bundles over X and let B(�)(X) bethe set of equivalence classes of nonequivariant �-bundles over X. By adjunction,a G-map X �!Map(EG;B�) is the same as a map EG�GX �! B�. Thus the



3. SOME EXAMPLES OF CLASSIFYING SPACES 77represented equivalent of � is the Borel construction on bundles that was relevantto Theorem 2.8; it givesBG(�)(X) �! B(�)(EG�G X):It is important to know how much information this construction loses, hence it isimportant to know how near � is to being an equivalence. Elementary coveringspace theory gives the following result.Proposition 3.5. If � is discrete, then the G-map � of (3.3) is a homeomor-phism. If �, but not necessarily G, is discrete, then the G-map � of (3.4) is ahomeomorphism.An Abelian compact Lie group is the product of a �nite Abelian group anda torus. Using ordinary cohomology to study the �nite factor and continuouscohomology to handle the torus factor, Lashof, May, and Segal proved anotherresult along these lines.Theorem 3.6. If G is a compact Lie group and � is an Abelian compact Liegroup, then the G-map � : BG� �! Map(EG;B�) is a weak equivalence.Consequences of the Sullivan conjecture will tell us much more about thesemaps. To see this, we will need to know the behavior of the maps � on �xed pointspaces. We have determined the �xed point spaces B(�; �)H, and it is clear thatSec(EG;B�)H = Sec(BH;B�)is the space of maps f : BH �! B� such thatBq � f = Bi : BH �! BG;where i : H �! G is the inclusion and we take Bi to be the quotient mapEG=H �! EG=G. In particular,Sec(BH;BG�B�) = Map(BH;B�):Lemma 3.7. Let � � � satisfy � \ � = e and q(�) = H. De�ne a homomor-phism � : H � �� �! � by �(q(�); �) = �� and observe that q � � = i � �1 :H ��� �! G. The restriction of�H : B(�; �)H �! Sec(BH;B�)



78 VII. EQUIVARIANT BUNDLE THEORY AND CLASSIFYING SPACESto B(��) is the adjoint of the classifying mapB� : BH �B(��) = B(H ���) �! B�:Therefore, if � = G ��, the restriction of�H : (BG�)H �! Map(BH;B�)to B(��), � : H �! �, is the adjoint of the map of classifying spacesB� : BH �B(��) = B(H ���) �! B�;where � : H ��� �! � is de�ned by �(h; �) = �(h)�.Consider what happens on components. In nonequivariant homotopy theory,maps between the classifying spaces of compact Lie groups have been studied formany years. One focus has been the question of when passage to classifying mapsB : Rep(G;�) �! [BG;B�]is a bijection. We now see that, for H � G, a map BH �! B� not in theimage of B corresponds to a principal �-bundle over BH that does not comefrom a principal (G;�)-bundle over an orbit G=H. The equivariant results aboveimply that there are no such exotic maps if � is either �nite or Abelian. TheSullivan conjecture will give information about general compact Lie groups �under restrictions on G.R. K. Lashof, J. P. May, and G. B. Segal. Equivariant bundles with Abelian structural group.Contemporary Math. Vol. 19, 1983, 167-176.J. P. May. Some remarks on equivariant bundles and classifying spaces. Ast�erisque 191(1990),239-253.



CHAPTER VIIIThe Sullivan Conjecture1. Statements of versions of the Sullivan conjectureWe de�ned the homotopy orbit space of a G-space X to beXhG = EG �G X;and we de�ned the homotopy �xed point space of X dually:XhG = Map(EG;X)G = MapG(EG;X)is the space of G-maps EG �! X. The projection EG �! � inducesXG = Map(�;X)G �! Map(EG;X) = XhG:It sends a �xed point to the constant map EG �! X at that �xed point. It is verynatural to ask how close this map is to being a homotopy equivalence. Thinkingequivariantly, it is even more natural to ask how close the G-map� : X = Map(�;X) �!Map(EG;X)is to being a G-homotopy equivalence. Since a G-map f : X �! Y that is anonequivariant equivalence induces a weak equivalence of G-spacesMap(W;Y ) �!Map(W;X)for any free G-CW complexW , such as EG, one cannot expect � to be an equiva-lence in general. Very little is known about this question for general �nite groups.However, for �nite p-groups G, to which we restrict ourselves unless we specifyotherwise, the Sullivan conjecture gives a beautiful answer. We agree to work in79



80 VIII. THE SULLIVAN CONJECTUREthe categories �hU and �hGU , implicitly applying CW approximation. This allowsus to ignore the distinction between weak and genuine equivalences.Theorem 1.1 (Generalized Sullivan conjecture). Let X be a nilpotent�nite G-CW complex. Then the natural G-mapX̂p �!Map(EG; X̂p)is an equivalence.The hypothesis that X be nilpotent can be removed by applying the Bous�eld-Kan simplicial completion on �xed point spaces and then assembling these com-pleted �xed point spaces to a global G-completion by means of Elmendorf's con-struction. This equivariant interpretation of the Sullivan conjecture was noticed byHaeberly, who also gave some information for �nite groups that are not p-groups.Looking at �xed points under H � G and noting that EG is a model for EH, wesee that the result immediately reduces to the �xed point space level.Theorem 1.2 (Miller, Carlsson, Lannes). Let X be a nilpotent �nite G-CW complex, where G is a �nite p-group. Then the natural map(XG)p̂ �= (X̂p)G �!Map(EG; X̂p)G = (X̂p)hGis an equivalence.Again, the nilpotence hypothesis is unnecessary provided that one understandsX̂p to mean the Bous�eld-Kan completion of X, which generalizes the nilpotentcompletion that we de�ned, and takes (XG)p̂ and not (X̂p)G as the source: thereis a natural map (XG)p̂ �! (X̂p)G;but it is not an equivalence in general. When G acts trivially on X, the result was�rst proven by Miller, and he deduced the following powerful consequence.Theorem 1.3 (Miller). Let G be a discrete group such that all of its �nitelygenerated subgroups are �nite and let X be a connected �nite dimensional CWcomplex. Then ��F (BG;X) = 0.To deduce this from Theorem 1.2, one �rst observes that any map BG �! Xinduces the trivial map of fundamental groups and so lifts to the universal cover,while a map �nBG �! X for n > 0 trivially lifts to the universal cover. Thusone can assume that X is simply connected. Note that this reduction depends



1. STATEMENTS OF VERSIONS OF THE SULLIVAN CONJECTURE 81on the fact that we are here working with �nite dimensional and not just �nitecomplexes, and one must generalize Theorem 1.2 accordingly; this seems to requiretrivial action on X. One then applies an inductive argument to reduce to thecase G = Z=p. Here the weak equivalence X̂p �! Map(BG; X̂p) implies that��F (BG; X̂p) = 0, and this implies that ��F (BG;X) = 0.The general case of Theorem 1.2 reduces immediately to the case when G =Z=p,by induction on the order of G. To see this, consider an extension1 �! C �! G �! J �! 1;where C is cyclic of order p. For any G-space Y , (Y hC)hJ is equivalent to Y hG. Infact, by passing to G-�xed points by �rst passing to C-�xed points and then toJ -�xed points, we obtain a homeomorphismMap(EJ � EG;Y )G �= Map(EJ;Map(EG;Y )C)J :Since EJ�EG is a free contractibleG-space and EG is a free contractibleC-space,this gives the stated equivalence of homotopy �xed point spaces. The equivalence(XC)p̂ �! (X̂p)hC is a J -map, hence it induces an equivalence on passage toJ -homotopy �xed point spaces, and the map of Theorem 1.2 coincides with thecomposite equivalence(XG)p̂ = ((XC)J )p̂ �! ((XC)p̂)hJ �! (X̂p)hC)hJ �= (X̂p)hG:When G =Z=p, Theorem 1.2 was proven independently by Lannes and Miller,using nonequivariant techniques, and by Carlsson, using equivariant techniques.Lannes later gave a variant of his original proof that generalizes the result, usesequivariant ideas, and enjoys a pleasant conceptual relationship to Smith theory.We shall sketch that proof in the following three sections.There is a basic principle in equivariant topology to the e�ect that, when workingat a prime p, results that hold for p-groups can be generalized to p-toral groupsG, which are extensions of the form1 �! T �! G �! � �! 1:The point is that the circle group can be approximated by the union �1 of itsp-subgroups �n of (pn)th roots of unity, and an r-torus T can be approximated bythe union �1 of its p-subgroups �n = (�n)r. It is not hard to see that the mapB�1 �! BT induces an isomorphism on mod p homology. Using this basic idea,Notbohm generalized Theorem 1.2 to p-toral groups.



82 VIII. THE SULLIVAN CONJECTURETheorem 1.4 (Notbohm). The generalized Sullivan conjecture, Theorem 1.2,remains true as stated when G is a p-toral group.Technically, this still works using Bous�eld-Kan completion for \p-good" G-spaces X, for which X �! X̂p is a mod p equivalence.A. K. Bous�eld and D. M. Kan. Homotopy limits, completions, and localizations. SpringerLecture Notes in Mathematics Vol. 304. 1972.G. Carlsson. Equivariant stable homotopy theory and Sullivan's conjecture. Invent. Math.(1991), 497-525.W. Dwyer, Haynes Miller, and J. Neisendorfer. Fibrewise completion and unstable Adamsspectral sequences. Israel J. Math. 66(1989), 160-178.J.-P. Haeberly. Some remarks on the Segal and Sullivan conjectures. Amer. J. Math. 110(1988),833-847.J. Lannes. Sur la cohomologie modulo p des p-groupes ab�elien �el�ementaires. in \Homotopytheory, Proc Durham Symp. 1985". London Math. Soc. Lecture Notes, 1987, 97-116.H. R. Miller. The Sullivan conjecture on maps from classifying spaces. Annals of Math.120(1984), 39-87; and corrigendum, Annals of Math. 121(1985), 605-609.H. R. Miller. The Sullivan conjecture and homotopical representation theory. Proc. Int. Cong.of Math. Berkeley, Ca, USA, 1986, 580-589.D. Notbohm. The �xed-point conjecture for p-toral groups. Springer Lecture Notes in Mathe-matics Vol. 1298, 1987, 106-119.L. Schwartz. Unstable modules over the Steenrod algebra and Sullivan's �xed point conjecture.University of Chicago Press. 1994.2. Algebraic preliminaries: Lannes' functors T and FixLet V be an elementary Abelian p-group, �xed throughout this section and thenext. It would su�ce to restrict attention to V = Z=p. The notation V indicatesthat we think of V ambiguously as both a vector space over Fp and a group thatwill act as symmetries of spaces. We refer back to IV.2.3, which gaveH�(XV ) �= Fp 
H�(BV ) Un(S�1H�V (X))(2.1)for a �nite dimensional V -CW complex X.We begin by describing this in more conceptual algebraic terms. In this section,we let U be the category of unstable modules over the mod p Steenrod algebra Aand let K be the category of unstable A-algebras. Thus the mod p cohomologyof any space is in K . We shall abbreviate notation by setting H = H�(BV ).The celebrated functor T : U �! U introduced by Lannes is the left adjoint ofH 
 (�): for unstable A-modules M and N ,U (TM;N) �= U (M;H 
N):(2.2)



2. ALGEBRAIC PRELIMINARIES: LANNES' FUNCTORS T AND FIX 83Observe that the adjoint of the mapM = Fp 
M �! H
M induced by the unitof H gives a natural A-map � : TM �!M . The key properties of the functor Tare as follows.The functor T is exact and commutes with suspension.(2.3) The functor T commutes with tensor products.(2.4)This property implies that if M is an unstable A-algebra, then so is TM . Theresulting functor T : K �! K is also left adjoint to H 
 (�): for unstableA-algebras M and N , K (TM;N) �= K (M;H 
N):(2.5)The Borel cohomology H�V (X) is both an unstable A-algebra and an H-module.The action of H is given by a map of A-modules, and the bundle mapEV �V X �! BVinduces a map H �! H�V (X) of unstable A-algebras. We codify these structuresin algebraic de�nitions. Thus let HU be the category of unstable A-modules Mtogether with an H-module structure given by an A-map H
M �!M . For suchan H-A-moduleM , de�ne an unstable A-module Fix(M) byFix(M) = Fp 
TH TM �= Fp 
H (H 
TH TM):(2.6)The notation \Fix" anticipates a connection with (2.1). Here we have used (2.4)to give that TH is an augmented A-algebra and that TM is a TH-module; THacts on H through the adjoint TH �! H of the coproduct  : H �! H 
H. Wehave another adjunction. For unstable H-A-modules M and unstable A-modulesN , we have U (Fix(M); N) �= HU (M;H 
N):(2.7)Comparing the adjunctions (2.2) and (2.7), we easily �nd that, for an unstableA-module M , Fix(H 
M) �= TM as unstable A-modules.(2.8)Less obviously, one can also construct a natural isomorphismH 
TH TM �= H 
 Fix(M) as unstable H-A-modules.(2.9)



84 VIII. THE SULLIVAN CONJECTUREThe functor Fix has properties just like those of T .Fix : HU �! U is exact and commutes with suspension.(2.10)The appropriate tensor product in HU is M 
H N .There is a natural isomorphism Fix(M 
H N) �= Fix(M) 
 Fix(N):(2.11)De�ne HnK to be the category of unstable A-algebras under H. If M is anunstable A-algebra under H, then its product factors through M 
H M and wededuce from (2.11) that Fix(M) is an unstable A-algebra. If M is an unstable A-algebra, then (2.8) is an isomorphism of unstable A-algebras. If M is an unstableA-algebra underH, then the isomorphism (2.9) is one of unstable A-algebras underH. We now reach the adjunction that we really want. For an unstable A-algebraM under H and an unstable A-algebra N ,K (Fix(M); N) �= (HnK )(M;H 
N):(2.12) 3. Lannes' generalization of the Sullivan conjectureReturning to topology, let X be a V -space. AbbreviateFix�V (X) = Fix(H�V (X)):This is a cohomology theory on V -spaces. The inclusion i : XV �! X induces anatural map j : Fix�V (X) �! Fix�V (XV ) �= TH�(XV ) �! H�(XV ):Here the middle isomorphism is implied by (2.8) and the last map is an instanceof the natural map � : TM �! M . The map j speci�es a transformation ofcohomology theories on X. By a check on V -spaces of the form V=W+ ^K, one�nds that, if X is a �nite dimensional V -CW complex, thenj : Fix�V (X) �! H�(XV ) is an isomorphism.(3.1)An alternative proof using the localization theorem is possible. In fact, this mustbe the case: the only way to reconcile (2.1) and (3.1) is to have an algebraicisomorphism Fix(M) �= Fp 
H Un(S�1M)(3.2)



3. LANNES' GENERALIZATION OF THE SULLIVAN CONJECTURE 85for reasonable M . As a matter of algebra, Dwyer and Wilkerson prove that thereis an isomorphism of H-A-algebrasH 
TH TM �= Un(S�1M)(3.3)for any unstable H-A-algebra M that is �nitely generated as an H-module. Ten-soring over H with Fp , this gives (3.2). Combined with (2.9), this gives an entirelyalgebraic version of the isomorphismH�(BV )
H�(XV ) �= Un(S�1H�V (XhV ))of IV.2.3. Here, ifM = H�V (X) is �nitely generated overH, the isomorphism (3.2)agrees with that obtained by combining (2.1) and (3.1). Thus we may view (3.1)as another reformulation of Smith theory. This reformulation is at the heart ofthe Sullivan conjecture, which is a corollary of the following theorem.Theorem 3.4 (Lannes). Let X be a V -space whose cohomology is of �nitetype and let Z be a space (with trivial V -action) whose cohomology is of �nitetype. Let ! : EV � Z �! X be a V -map. Then the homomorphism of unstableA-algebras !# : Fix�V (X) �! H�(Z)induced by ! is an isomorphism if and only if the map~! : Ẑp �! (X̂p)hVinduced by ! is an equivalence.The map ! determines and is determined by a map!0 : BV � Z �! EV �V X = XhVof bundles over BV . The map !# of the theorem is the adjoint via (2.12) ofthe map under H induced on cohomology by !0. The map ! induces a mapEV � Ẑp �! X̂p, and the map ~! of the theorem is its adjoint.To prove the Sullivan conjecture, we take Z = XV and take ! : EG�XV �! Xto be the adjoint of the canonical map XV �! XhV . Then !# is the isomorphismj of (3.1), and ~! : (XV )p̂ �! (X̂p)hV is the map that Theorem 1.2 claims to bean equivalence. Thus we see the Sullivan conjecture as a natural elaboration ofSmith theory.Theorem 3.4 has other applications. In the Sullivan conjecture, we applied it toobtain homotopical information from cohomological information, but its converse



86 VIII. THE SULLIVAN CONJECTUREimplication is also of interest. Taking Z = XhV and letting ! : EV �XhV �! Xbe the evaluation map, the theorem specializes to give the following result.Theorem 3.5. Let X be a V -space such that the cohomologies of X and ofXhV are of �nite type. Then the canonical mapFix�V (X) �! H�(XhV )is an isomorphism of unstable A-algebras if and only if the canonical map(XhV )p̂ �! (X̂p)hVis an equivalence.When both X and XhV are p-complete, so that (XhV )p̂ �! (X̂p)hV is theidentity, we conclude that H�(XhV ) is calculable as Fix�V (X). This is the startingpoint for remarkable work of Dwyer and Wilkerson in which they redevelop a greatdeal of Lie group theory in a homotopical context of p-complete �nite loop spaces.If we specialize to spaces without actions and use (2.8), we get the followingnonequivariant version of Theorem 3.4.Theorem 3.6. Let Y and Z be spaces with cohomology of �nite type and let! : BV � Z �! Y be a map. Then the homomorphism of unstable A-algebras!# : TH�(Y ) �! H�(Z) induced by ! is an isomorphism if and only if the map~! : Ẑp �! Map(BV; Ŷp) is an equivalence.W. G. Dwyer and C. W. Wilkerson. Smith theory and the functor T . Comment. Math. Helv.66(1991), 1-17.W. G. Dwyer and C. W. Wilkerson. Homotopy �xed point methods for Lie groups and �niteloop spaces. Preprint, 1992.J. Lannes. Sur les espaces fonctionnels dont la source est le classi�ant d'un p-groupe ab�elien�el�ementaire. Publ. Math. I. H. E. S. 75(1992), 135-244.4. Sketch proof of Lannes' theoremWe brie
y sketch the strategy of the proof of Theorem 3.4. The �rst step isto reduce it to the nonequivariant version given in Theorem 3.6. It is easy to seethat, for a group G and G-space Y , we have an identi�cationY hG � MapG(EG;Y ) = Sec(BG;EG �G Y ) � Sec(BG;YhG);(4.1)where the right side is the space of sections of the bundle YhG �! BG. LetMap(BG;BG)1 denote the component of the identity map and Map(BG;YhG)1



4. SKETCH PROOF OF LANNES' THEOREM 87denote the space of maps whose projection to BG is homotopic to the identity.We have a �bration Map(BG;YhG)1 �! Map(BG;BG)1with �ber Y hG over the identity map.Now return to G = V . Here easy inspections of homotopy groups show thatevaluation at a basepoint gives an equivalence" : Map(BV;BV )1 �! BVand that the composition action of Map(BV;BV )1 on Map(BV; YhV )1 induces anequivalence Y hV �Map(BV;BV )1 �!Map(BV; YhV )1:For a V -space X, the natural map EV � X̂p �! (EV �X)p̂ induces a naturalmap (X̂p)hV �! (XhV )p̂, and this map is an equivalence. By (3.7), the map ~! ofTheorem 3.4 may be viewed as a mapẐp �! Sec(BV; (X̂p)hV ):(4.2)The map ! determines a map EV � Ẑp �! X̂p, and this in turn determines andis determined by a map BV � Ẑp �! (X̂p)hV(4.3)of bundles over BG. The map (3.8) is the composite map of �bers in the followingdiagram of �brationsẐp //�� Map(BV; Ẑp) //�� Sec(BV; (X̂p)hV��BV � Ẑp //�� Map(BV;BV � Ẑp)1 //�� Map(BV; (X̂p)hV )1��BV // Map(BV;BV )1 //= Map(BV;BV )1:The left map of �brations is determined by a chosen homotopy inverse to " :Map(BV;BV )1 �! BV and the inclusion of Ẑp in Map(BV; Ẑp) as the subspaceof constant functions. Clearly the middle composite is an equivalence if and onlyif ~! is an equivalence. Applying Theorem 3.6 with Z replaced by BV � Z, Y



88 VIII. THE SULLIVAN CONJECTUREtaken to be XhV and ! replaced by the adjoint � : BV �BV � Z �! XhV of thecomposite mapBV � Z �! Map(BV;BV � Z)1 �! Map(BV;XhV )de�ned as in the middle row, but before applying completions, we �nd thatthe middle composite is an equivalence if and only if the induced map �# :TH�(XhV ) �! H 
H�(Z) is an isomorphism. Now (2.9) gives an isomorphismH 
TH TH�(XhV ) �= H 
 Fix(H�(XhV ))of unstable H-A-algebras. Its explicit construction parallels the topology in sucha way that the map !# : Fix�V (X) �! H�(Z) agrees with H 
H �#. This allowsus to deduce that �# is an isomorphism if and only if !# is an isomorphism.It remains to say something about the proof of Theorem 3.6. Since this isnonequivariant topology of the sort that requires us to join with those who usethe word \space" to mean \simplicial set", we shall say very little. For a map� :M �! N of unstable A-algebras, there are certain algebraic functors that onemay call Exts;tK (M;N ;�); for �xed t, they are the left derived functors of a certainfunctor of derivations DertK (�; N ; �) that is de�ned on the category of unstableA-algebras over N . The relevance of the functor T comes from the fact that itsde�ning adjunction leads to natural isomorphismsExts;tK (TM;N ; ~�) �= Exts;tK (M;H 
N ;�)for a map � :M �! H 
N of unstable A-algebras with adjoint ~�.There is an unstable Adams spectral sequence, due originally to Bous�eld andKan. However, the relevant version is a generalization due to Bous�eld. For amap f : X �! Ŷp, it starts fromEs;t2 = Exts;tK (H�(Y );H�(X); f�);and it converges (in total degree t�s) to ��(Map(X; Ŷp); f). Under the hypothesesof Theorem 3.6, the map ~! : Ẑp �! Map(BV; Ŷp) induces a map of spectralsequences (for any base point of Z) that is given on the E2-level by the mapExts;tK (H�(Z);Fp) �! Exts;tK (TH�(Y );Fp) �= Exts;tK (H�(Y );H)induced by !# : TH�(Y ) �! H�(Z). With due care of detail, the deduction that~! is an equivalence if !# is an isomorphism follows by a comparison of spectral



5. MAPS BETWEEN CLASSIFYING SPACES 89sequences argument. The converse implication is shown by a detailed inductiveanalysis of the spectral sequence.An alternative procedure for processing Lannes' algebra to obtain the topologicalconclusion of Theorem 3.6 has been given by Morel. Using a topological interpre-tation of the functor T in terms of the continuous cohomology of pro-p-spaces,together with a comparison of Sullivan's p-adic completion functor with that ofBous�eld and Kan, he manages to circumvent use of the Bous�eld-Kan unstableAdams spectral sequence and thus to avoid use of heavy simplicial machinery.A. K. Bous�eld. On the homology spectral sequence of a cosimplicial space. Amer. J. Math.109(1987), 361-394.A. K. Bous�eld. Homotopy spectral sequences and obstructions. Israel J. Math. 66(1989),54-104.J. Lannes. Sur les espaces fonctionnels dont la source est le classi�ant d'un p-groupe ab�elien�el�ementaire. Publ. Math. I. H. E. S. 75(1992), 135-244.F. Morel. Quelques remarques sur la cohomologie modulo p continue des pro-p-espaces et lesr�esultats de J. Lannes concernant les espaces fonctionnels hom(BV;X). Ann. scient. Ec. Norm.Sup. 4e s�erie, 26(1993), 309-360.D. Sullivan. The genetics of homotopy theory and the Adams conjecture. Annals of Math.100(1974), 1-79. 5. Maps between classifying spacesWe shall sketch the explanation given by Lannes in a talk at Chicago of how hisTheorem 3.6 applies to give a version of results of Dwyer and Zabrodsky that applythe Sullivan conjecture to the study of maps between classifying spaces. Althoughthese authors apparently were not aware of the connection with equivariant bundletheory, what is at issue is precisely the map�G :aB(��) = BG(�)G �! Map(EG;B�)G = Map(BG;B�)that we described in VII.3.7; here the coproduct runs over (�) 2 Rep(G;�). Therelevant theorem of Lannes is as follows.Theorem 5.1 (Lannes). If G is an elementary Abelian p-group and � is acompact Lie group, then the mapaB(��)p̂ �! Map(BG; (B�)p̂)induced by �G is an equivalence.It should be possible to deduce inductively that the result holds in this formfor any �nite p-group. The original version of Dwyer and Zabrodsky is somewhat



90 VIII. THE SULLIVAN CONJECTUREdi�erent and in some respects a little stronger, although it seems possible to deducemuch of one from the other. We say that a map f : X �! Y is a \mod pequivalence" if it induces an isomorphism on mod p homology. We say that f is a\strong mod p equivalence" if it satis�es the following conditions.(i) f induces an isomorphism �0(X) �! �0(Y );(ii) f induces an isomorphism �1(X;x) �! �1(Y; f(x)) for any x 2 X;(iii) f induces an isomorphismH�( ~Xx;Fp) �! H�( ~Yf(x);Fp)for any x 2 X, where ~Xx and ~Yf(x) are the universal covers of the compo-nents of X and Y that contain x and f(x).Say that a G-map f : X �! Y is a (strong) mod p equivalence if fH : XH �! Y His a (strong) mod p equivalence for each H � G. In view of VII.3.7, the followingstatements are equivariant reinterpretations of nonequivariant results of Dwyerand Zabrodsky and Notbohm. In nonequivariant terms, when � = G � �, theirresults are statements about the map �G above.Theorem 5.2 (Dwyer and Zabrodsky). If � is a normal subgroup of acompact Lie group � and G = �=� is a �nite p-group, then the G-map � :B(�; �) �! Sec(EG;B�) is a strong mod p equivalence.Actually, Dwyer and Zabrodsky give the result in this generality for G = Z=p,and they give an inductive scheme to prove the general case when � = G � �.However, their inductive scheme works just as well to handle the case of generalextensions. Their result was generalized to p-toral groups by Notbohm.Theorem 5.3 (Notbohm). If � is a normal subgroup of a compact Lie group� and G = �=� is a p-toral group, then the G-map � : B(�; �) �! Sec(EG;B�)is a mod p equivalence.However, � need not a strong mod p equivalence in this case: the componentsof �H induce injections but not surjections on the fundamental groups of corre-sponding components.These results are some of the starting points for beautiful work of Jackowski,McClure, and Oliver, and others, on maps between classifying spaces; these authorshave given an excellent survey of the state of the art on this topic.



5. MAPS BETWEEN CLASSIFYING SPACES 91Lannes' deduces Theorem 4.1 from Theorem 3.6 by taking Z = `B�� and Y =B�. The map ! is then the sum of the classifying maps of the homomorphisms� : V ��� �! � speci�ed in VII.3.7. The deduction is based on the case X = �of the following calculation.Theorem 5.4. Let X be a �nite �-CW complex. Then the natural mapTH��(X) �!YH���(X�(V ))is an isomorphism, where the product runs over (�) 2 Rep(V;�).Proof. The proof is an adaptation of methods of Quillen. Embed � in U(n) forsome large n and let F be the G-space U(n)=S, where S is a maximal elementaryAbelian subgroup of U(n). Quillen shows that the evident diagram of projectionsX � F � F //// X � F // Xinduces an equalizer diagramH��(X) // H��(X � F ) //// H��(X � F � F ):Let j�(X) = TH��(X)and k�(X) = Y(�)2Rep(V;�)H���(X�(V )):These are both �-cohomology theories in X. Applied to our original diagram ofprojections, both give equalizers, the �rst because the functor T is exact and thesecond by an elaboration of Quillen's argument. We have an induced map fromthe equalizer diagram for j� to that for k�. The isotropy subgroups of the �nite�-CW complexesX �F and X �F �F are elementary Abelian, and it thereforesu�ces to show that the mapTH�(BW ) �= j�(�=W ) �! k�(�=W ) �= Y(�)2Rep(V;�)H�(E�� ��� (�=W )�(V ))is an isomorphism when W is an elementary Abelian subgroup of �. I learnedthe details of how to see this from Nick Kuhn. He has shown that T enjoys theproperty TH�(BW ) �= Y(�)2Rep(V;W )H�(BW );(5.5)



92 VIII. THE SULLIVAN CONJECTUREand the map in cohomology that we wish to show is an isomorphism is in factinduced by a homeomorphisma(�)2Rep(V;�)E�� ��� (�=W )�(V ) �! a(�)2Rep(V;W )BW:(5.6)To see the homeomorphism, note that � acts on the disjoint union over � 2Hom(V;�) of the spaces (�=W )�(V ); � sends a point �0W �xed by �(V ) to thepoint ��0W �xed by the �-conjugate of �. It is not hard to check that, as �-spaces,a(�)2Rep(V;�)�� ��(�=W )�(V ) �= a�2Hom(V;�)(�=W )�(V ) �= a�2Hom(V;W )�=W:Taking E� as a model for each E��(V ), this implies the required homeomor-phism.W. G. Dwyer and A. Zabrodsky. Maps between classifying spaces. Springer Lecture Notes inMathematics Vol. 1298(1987), 106-119.S. Jackowski, J. McClure, and B. Oliver. Homotopy theory of classifying spaces of Lie groups.In \Algebraic topology and its applications", ed. Carlsson et al, MSRI Publications Vol. 27,Springer Verlag, 1994, pp 81-124.N. J. Kuhn. Generic representation theory and Lannes' T -functor. London Math. Scc. LectureNote Series Vol. 176(1992), 235-262.J. Lannes. Cohomology of groups and function spaces. (Notes from a talk at the University ofChicago.) Preprint, 1986. Ecole Polytechnique.D. Notbohm. Maps between classifying spaces. Math. Zeitschrift. 207(1991), 153-168.D. G. Quillen. The spectrum of an equivariant cohomology ring: I, II. Annals of Math. 94(1971),549-572 and 573-602.



CHAPTER IXAn introduction to equivariant stable homotopyMG(V ) 1. G-spheres in homotopy theoryWhat is a G-sphere? In our work so far, we have only used spheres Sn, whichhave trivial action by G. Clearly this is contrary to the equivariant spirit of ourwork. The full richness of equivariant homotopy and homology theory comes fromthe interplay of homotopy theory and representation theory that arises from theconsideration of spheres with non-trivial actions by G. In principle, it might seemreasonable to allow arbitrary G-actions. However, a closer inspection of the roleof spheres in nonequivariant topology, both in manifold theory and in homotopytheory, gives the intuition that we should restrict to the linear spheres that arisefrom representations. Throughout the rest of the book, we shall generally use theterm \representation of G" or sometimes \G-module" to mean a �nite dimensionalreal inner product space with a given smooth action of G through linear isometries.We may think of V as a homomorphism of Lie groups � : G �! O(V ). Thisconvention contradicts standard usage, in which representations are de�ned to beisomorphism classes.For a representation V , we have the unit sphere S(V ), the unit disk D(V ),and the one-point compacti�cation SV ; G acts trivially on the point at in�nity,which is taken as the basepoint of SV . The based G-spheres SV will be central tovirtually everything that we do from now on. We agree to think of n as standingfor Rn with trivial G-action, so that Sn is a special case of our de�nition. For abased G-space X, we write�VX = X ^ SV and 
VX = F (SV ;X):93



94 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPYOf course, �V is left adjoint to 
V .When do we use trivial spheres and when do we use representation spheres?This is a subtle question, and in some of our work the answer may well seem coun-terintuitive. In de�ning weak equivalences of G-spaces, we only used homotopygroups de�ned in terms of trivial spheres, and that is unquestionably the rightchoice in view of the Whitehead theorem for G-CW complexes. Nevertheless,there are homotopy groups de�ned in terms of representation spheres, and theyoften play an important role, although more often implicit than explicit. We maythink of a G-representation V as an H-representation for any H � G. For a basedG-space X, we de�ne�HV (X) = [SV ;X]H �= [G+ ^H SV ;X]G:(1.1)Here the brackets denote based homotopy classes of based maps, with the ap-propriate equivariance. For a pair (X;A) of based G-spaces, we form the usualhomotopy �ber Fi of the inclusion i : A �! X, and we de�ne�HV+1(X;A) = �HV (Fi):(1.2)It is natural to separate out the trivial and non-trivial parts of representations.Thus we let V (H) denote the orthogonal complement in V of the �xed point spaceV H. We then have the long exact sequence� � � // �HV (H)+n(X) // �HV (H)+n(X;A) // � � � // �HV (H)(A) // �HV (H)(X)(1.3)of groups up to �HV (H)+1(X) and of pointed sets thereafter.Waner will develop a G-CW theory adapted to a given representation V in thenext chapter, and Lewis will use it to study the Freudenthal suspension theoremfor these homotopy groups in the chapter that follows. There is a more elementarystandard form of the Freudenthal suspension theorem, due �rst to Hauschild, thatsu�ces for many purposes. Just as nonequivariantly, it is proven by studyingthe adjoint map � : Y �! 
V�V Y . Here one proceeds by reduction to the non-equivariant case and use of obstruction theory. Recall the notion of a �-equivalencefrom Ix3, where � is a function from conjugacy classes of subgroups of G to theintegers greater than or equal to �1. De�ne the connectivity function c�(Y ) ofa G-space Y by letting cH(Y ) be the connectivity of Y H for H � G; we setcH(Y ) = �1 if Y H is not path connected.



2. G-UNIVERSES AND STABLE G-MAPS 95Theorem 1.4 (Freudenthal suspension). The map � : Y �! 
V�V Y is a�-equivalence if � satis�es the following two conditions:(1) �(H) � 2cH(Y ) + 1 for all subgroups H with V H 6= 0, and(2) �(H) � cK(Y ) for all pairs of subgroups K � H with V K 6= V H.Therefore the suspension map�V : [X;Y ]G �! [�VX;�V Y ]Gis surjective if dim(XH) � �(H) for all H, and bijective if dim(XH) � �(H)� 1.H. Hauschild. �Aquivariante Homotopie I. Arch. Math. 29(1977), 158-165.U. Namboodiri, Equivariant vector �elds on spheres. Trans Amer. Math. Soc. 278(1983),431-460. 2. G-Universes and stable G-mapsWe next explain how to stabilize homotopy groups and, more generally, sets ofhomotopy classes of maps between G-spaces. There are several ways to make thisprecise. The most convenient is that based on the use of universes.Definition 2.1. A G-universe U is a countable direct sum of representationssuch that U contains a trivial representation and contains each of its sub-represen-tations in�nitely often. Thus U can be written as a direct sum of subspaces (Vi)1,where fVig runs over a set of distinct irreducible representations of G. We saythat a universe U is complete if, up to isomorphism, it contains every irreduciblerepresentation of G. If G is �nite, one example is V 1, where V is the regularrepresentation of G. We say that a universe is trivial if it contains only the trivialirreducible representation. One example is UG for a complete universe U . A �nitedimensional sub G-space of a universe U is said to be an indexing space in U .We should emphasize right away that, as soon as we start talking seriously aboutstable objects, or \spectra", the notion of a universe will become important evenin the nonequivariant case.We can now give a �rst de�nition of the set fX;Y gG of stable maps betweenbased G-spaces X and Y .Definition 2.2. Let U be a complete G-universe. For a �nite based G-CWcomplex X and any based G-space Y , de�nefX;Y gG = colimV [�VX;�V Y ]G;



96 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPYwhere V runs through the indexing spaces in U and the colimit is taken over thefunctions [�VX;�V Y ]G �! [�WX;�WY ]G; V �W;that are obtained by sending a map �VX �! �V Y to its smash product with theidentity map of SW�V .When G is �nite and X is �nite dimensional, the Freudenthal suspension the-orem implies that if we suspend by a su�ciently large representation, then allsubsequent suspensions will be isomorphisms.Corollary 2.3. If G is �nite and X is �nite dimensional, there is a represen-tation V0 = V0(X) such that, for any representation V ,�V : [�V0X;�V0Y ]G �=�! [�V0�VX;�V0�V Y ]Gis an isomorphism.Let X and Y be �nite G-CW complexes. If G is �nite, the stable value[�V0X;�V0Y ]G = fX;Y gGis a �nitely generated abelian group. However, if G is a compact Lie group andX has in�nite isotropy groups, there is usually no representation V0 for whichall further suspensions �V are isomorphisms, and fX;Y gG is usually not �nitelygenerated.Remark 2.4. The groups fSV ;XgG are called equivariant stable homotopygroups of X and are sometimes denoted !GV (X). However, it is more usual todenote them by �GV (X), relying on context to resolve the ambiguity between sta-ble and unstable homotopy groups.The de�nition of fX;Y gG just given is not the right de�nition for an in�nitecomplex X. Observe that[�VX;�V Y ]G �= [X;
V�V Y ]G:Definition 2.5. Let U be a complete G-universe. For a based G-space X,de�ne QX = colimV 
V�VX;where V runs over the indexing spaces in U and the colimit is taken over themaps 
V�VX �! 
W�WX; V �W;



3. EULER CHARACTERISTIC AND TRANSFER G-MAPS 97that are obtained by sending a map SV �! X ^SV to its smash product with theidentity map of SW�V . Observe that the maps of the colimit system are inclusions.Lemma 2.6. Fix an indexing space V in U . For based G-spaces X, there is anatural homeomorphism QX �= 
VQ�VX:Proof. Clearly QX is homeomorphic to colimW�V 
W�WX, and similarly forQ�VX. By the compactness of SV and the evident isomorphisms of functors�V�W�V �= �W and 
V
W�V �= 
W for V � W ,colim
W�WX �= colim
V
W�V �W�V�VX �= 
V colim
W�V�W�V�VX;where the colimits are taken over W � V . The conclusion follows.Lemma 2.7. If X is a �nite G-CW complex, thenfX;Y gG �= [X;QY ]G:Proof. This is immediate from the compactness of X, which ensures that[X;QY ]G �= colimV [X;
V�V Y ]G:For in�nite complexesX, it is [X;QY ]G that gives the right notion of the stablemaps from X to Y . We shall return to this point in Chapter XII, where weintroduce the stable homotopy category of spectra.3. Euler characteristic and transfer G-mapsWe here introduce some fundamentally important examples of stable maps thatrequire the use of representations for their de�nitions. The Euler characteristicand transfer maps de�ned here will appear at increasing levels of sophisticationand generality as we go on.Let M be a smooth closed G-manifold. We may embed M in a representationV , say with normal bundle �. We may then embed a copy of � as a tubular neigh-borhood of M in V . Just as for nonequivariant bundles, the Thom complex T� ofa G-vector bundle � is constructed by forming the �berwise one-point compact-i�cation of the bundle, letting G act trivially on the points at in�nity, and thenidentifying all of the points at in�nity to a single G-�xed basepoint �. We thenhave the Pontrjagin-Thom map t : SV �! T�:



98 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPYIt is the based G-map obtained by mapping the tubular neighborhood isomor-phically onto � and mapping all points not in the tubular neighborhood to thebasepoint �. The inclusion of � in �M � �, where �M is the tangent bundle of M ,induces a based G-mape : T� �! T (�M � �) �=M+ ^ SV :The composite of these two maps is the \transfer map"� (M) = e � t : SV �! �VM+(3.1)associated to the projection M �! fptg, which we think of as a trivial G-bundle.Of course, this projection induces a map� : �VM+ �! �V S0 �= SV :We de�ne the Euler characteristic of M to be the based G-map�(M) = � � � (M) : SV �! SV :(3.2)The name comes from the fact that if we ignore the action of G and regard �(M)as a nonequivariant map of spheres, then its degree is just the classical Eulercharacteristic of M . The proof is an interesting exercise in classical algebraictopology, but the fact will become clear from our later more conceptual descriptionof these maps. In fact, from the point of view that we will explain in XVx1, thismap is the Euler characteristic of M , by de�nition.Since V is not well-de�ned | we just chose some V large enough that we couldembedM in it | it is most natural to regard the transfer and Euler characteristicsas stable maps � (M) 2 fS0;M+gG and �(M) 2 fS0; S0gG:(3.3)Observe that, when M = G=H, the map � (G=H) of (3.1) can be written as thecomposite� (G=H) : SV //t G+ ^H SW //e G+ ^H SV �= (G=H)+ ^ SV ;(3.4)where W is the complement of the image in V of the tangent plane L(H) atthe identity coset and e is the extension to a G-map of the H-map obtained bysmashing the inclusion S0 �! SL(H) with SW . The unlabelled isomorphism isgiven by I.2.6.



4. MACKEY FUNCTORS AND COMACKEY FUNCTORS 99More generally, for subgroups K � H of G, there is a stable transfer G-map� (�) : G=K+ �! G=H+ associated to the projection G=H �! G=K. In fact, wemay view � as the extension to a G-mapG�K (K=H) �! G=Kof the projection K=H �! fptg, and we may construct the transfer K-map� (K=H) starting from an embedding of K=H in a G-representation V regarded asa K-representation by restriction. We then de�ne � (�) to be the map� (�) : G=K+ ^ SV �= G+ ^K SV �! G+ ^K (K=H+ ^ SV ) �= G=H+ ^ SV ;(3.5)where the isomorphisms are given by I.2.6 and the arrow is the extension of theK-map � (K=H) to a G-map. Note that any G-map f : G=K+ �! G=H+ isthe composite of a conjugation isomorphism cg : G=K �! G=g�1Kg and theprojection induced by an inclusion g�1Kg � H. We let � (cg) = cg�1. With thesede�nitions, we obtain a contravariantly functorial assignment of stable transfermaps � (f) to G-maps f between orbits. Of course, such G-maps may themselvesbe regarded as stable G-maps between orbits.4. Mackey functors and coMackey functorsWe are headed towards the notions of RO(G)-graded homology and cohomologytheories, but we start by describing what the coe�cients of such theories will looklike in the case of \ordinary" RO(G)-graded theories.Recall that the ordinary homology and the ordinary cohomology of G-spacesare de�ned in terms of covariant and contravariant coe�cient systems, which arefunctors from the homotopy category hG of orbits to the category A b of Abeliangroups. Let AG denote the category that is obtained from hG by applying the freeAbelian group functor to morphisms. Thus AG(G=H;G=K) is the free Abeliangroup generated by hG (G=H;G=K). Then coe�cient systems are the same asadditive functors AG �! A b.Now imagine what the stable analog might be. It is clear that the sets fX;Y gGare already Abelian groups.Definition 4.1. De�ne the Burnside category BG to have objects the orbitspaces G=H and to have morphismsBG(G=H;G=K) = fG=H+; G=K+gG;



100 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPYwith the evident composition. We shall also refer to BG as the stable orbit cate-gory. Observe that it is an \A b-category": its Hom sets are Abelian groups andcomposition is bilinear.We must explain the name \Burnside". The zeroth equivariant stable homotopygroup of spheres or equivariant \zero stem" fS0; S0gG is a ring under composition.We shall denote this ring by BG for the moment. It is a fundamental insight ofSegal that, if G is �nite, then BG is isomorphic to the Burnside ring A(G). HereA(G) is de�ned to be the Grothendieck ring of isomorphism classes of �nite G-setswith addition and multiplication given by disjoint union and Cartesian product.For a compact Lie group G, tom Dieck generalized this description of BG byde�ning the appropriate generalization of the Burnside ring. In this case, A(G)is de�ned to be the ring of equivalence classes of smooth closed G-manifolds,where two such manifolds are said to be equivalent if they have the same Eulercharacteristic in BG; again, addition and multiplication are given by disjoint unionand Cartesian product. An exposition will be given in XVIIx2.Definition 4.2. A covariant or contravariant stable coe�cient system is a co-variant or contravariant additive functor BG �! A b. A contravariant stablecoe�cient system is called a Mackey functor. A covariant stable coe�cient sys-tem is called a coMackey functor.When G is �nite, Dress �rst introduced Mackey functors, using an entirelydi�erent but equivalent de�nition, to study induction theorems in representationtheory. We shall explain the equivalence of de�nitions in XIXx3. The classicalexamples of Mackey functors are the representation ring and Burnside ring Mackeyfunctors, which send G=H to R(H) or A(H). The generalization to compact Liegroups was �rst de�ned and exploited by Lewis, McClure, and myself.Observe that we obtain an additive functor AG �! BG by sending the ho-motopy class of a G-map f : G=H �! G=K to the corresponding stable map.Therefore a (covariant or contravariant) stable coe�cient system has an underly-ing ordinary coe�cient system. Said another way, stable coe�cient systems can beviewed as given by additional structure on underlying ordinary coe�cient systems.What is the additional structure? Viewed as a stable map, � (G=H) is a mor-phism G=G �! G=H in the category BG, and, more generally, so is � (f) for anyG-map f : G=H �! G=K. We shall see in XIXx3 that every morphism of thecategory BG is a composite of stable G-maps of the form f or � (f). That is, theextra structure is given by transfer maps. When G is �nite, we shall explain alge-



4. MACKEY FUNCTORS AND COMACKEY FUNCTORS 101braically how composites of such maps are computed. In the general compact Liecase, such composites are quite hard to describe. For this reason, it is also quitehard to construct Mackey functors algebraically. However, we have the followingconcrete example. It may not seem particularly interesting at �rst sight, but weshall shortly use it to prove an important result called the Conner conjecture.Proposition 4.3. Let G be any compact Lie group. There is a unique Mackeyfunctor Z: BG �! A b such that the underlying coe�cient system of Z is con-stant at Zand the homomorphism Z�! Z induced by the stable transfer mapG=K+ �! G=H+ associated to an inclusion H � K is multiplication by the Eulercharacteristic �(K=H).Proof. In XIXx3, we shall give a complete additive calculation of the mor-phisms of BG, from which the uniqueness will be clear. The problem is to showthat the given speci�cations are compatible with composition. We do this indi-rectly. As already noted, we have the Burnside Mackey functor A. Thought oftopologically, its value on G=H isfG=H+; S0gG �= fS0; S0gH = BH ;and the contravariant functoriality is clear from this description. De�ne anotherMackey functor I by letting I(G=H) be the augmentation ideal of A(H). Thoughtof topologically, its value on G=H is the kernel of the mapfG=H+; S0gG �! fG+; S0gG �=Zinduced by the G-map G �! G=H that sends the identity element e to thecoset eH. Using XIX.3.2 and the de�nition of Burnside rings in terms of Eulercharacteristics, one can check that I is a subfunctor of A. A key point is theidentity �(Y )�(H=K) = �(H �K Y )of nonequivariant Euler classes for H � K and H-spaces Y . One can then de�neZto be the quotient Mackey functor A=I; the desired Euler characteristic formulacan be deduced from the formula just cited.T. tom Dieck. Transformation groups and representation theory. Springer Lecture Notes inMathematics. Vol. 766. 1979.A. Dress. Contributions to the theory of induced representations. Springer Lecture Notes inMathematics Vol. 342, 1973, 183-240.L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure). Equiv-ariant stable homotopy theory (Vx9). Springer Lecture Notes in Mathematics. Vol. 1213. 1986.


