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Our results on G-CW approximation of GG-spaces and on cellular approximation
of G-maps imply that these are well-defined functors on the category hG% . Sim-
ilarly, we can approximate any pair (X, A) by a G-CW pair (I'X,T'A). Less obvi-
ously, if (X; A, B) is an excisive triad, so that X is the union of the interiors of A
and B, we can approximate (X; A, B) by a triad (I'X;T'A,I'B), where I'X is the
union of its subcomplexes I'A and I'B.

That is all there is to the construction of ordinary equivariant homology and
cohomology groups satisfying the evident equivariant versions of the Eilenberg-

Steenrod axioms.

G. Bredon. Equivariant cohomology theories. Springer Lecture Notes in Mathematics Vol 34.
1967.

S. Illman. Equivariant singular homology and cohomology. Memoirs Amer. Math. Soc. No.
156. 1975.

S. J. Willson. Equivariant homology theories on G-complexes. Trans. Amer. Math. Soc.

212(1975), 155-271.

5. Obstruction theory

Obstruction theory works exactly as it does nonequivariantly, and I'll just give
a quick sketch. Fix n > 1. Recall that a connected space X is said to be n-simple
if 71(X) is Abelian and acts trivially on #,(X) for ¢ < n. Let (X, A) be a relative
G-CW complex and let Y be a G-space such that Y is non-empty, connected,
and n-simple if H occurs as an isotropy subgroup of X \ A. Let f: X"UA — Y
be a G-map. We ask when f can be extended to X"*!. Composing the attaching
maps G/H x S® — X of cells of X \ A with f gives elements of 7,,(Y!). These

elements specify a well-defined cocycle
ey € O (X, Ay, (Y)),

and f extends to X"*! if and only if ¢; = 0. If f and f’ are maps X" UA — YV
and h is a homotopy rel A of the restrictions of f and f’ to X"71 U A, then f, [,
and h together define a map

RO (X x I — Y.
Applying eu(s,51y to cells j x I, we obtain a deformation cochain
dypn € CG(X, A, (Y))

such that 6dy 5, = ¢ — ¢p. Moreover, given f and d, there exists f’ that coin-
cides with f on X"~ and satisfies d;; = d, where the constant homotopy h is
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understood. This gives the first part of the following result, and the second part
is similar.

THEOREM 5.1. For f: X"UA — Y, the restriction of f to X" ! U A extends
toa map X"t'UA — Y if and only if [¢;] = 0in HET (X, A; 7,,(Y)). Given maps
f.f": X" — Y and a homotopy rel A of their restrictions to X"t U A, there is
an obstruction in HA(X, A;x,(Y)) that vanishes if and only if the restriction of
the given homotopy to X" 2 U A extends to a homotopy f ~ [’ rel A.

G. Bredon. Equivariant cohomology theories. Springer Lecture Notes in Mathematics Vol 34.
1967.

6. Universal coefficient spectral sequences

While easy to define, Bredon cohomology is hard to compute. However, we do
have universal coefficient spectral sequences, which we describe next.

Let Wy H be the component of the identity element of W H and define a coeffi-
cient system J, (X)) by

(6.1) J(X)G/H) = H (X" )W, l; 7).

Thus J,(X) coincides with the obvious coefficient system H (X)) if G is discrete.
We claim that, if G is a compact Lie group, then J, (X) is the coefficient system
that is obtained by taking the homology of C',(X'). The point is that a Lie theoretic

argument shows that
mo((G/K)?) = (G/K)H /Wy H.

We deduce that the filtration of X* /W, H induced by the filtration of X gives rise
to the chain complex C (X)(G/H).

We can construct an injective resolution @)* of the coefficient system M and
form Homg (C,.(X),Q*). This is a bicomplex with total differential the sum of the
differentials induced by those of C,(X) and of @Q*. It admits two filtrations. Using
one of them, the differential on Ky comes from the differential on Q*, and K7
is Ext®!(C(X), M). Since C,(X) is projective, the higher Ext groups are zero,
and Fy reduces to C5L(X; M). Thus Fy = Foo = HE(X; M), and our bicomplex
computes Bredon cohomology. Filtering the other way, the differential on Ej
comes from the differential on C,(X), and we can identify F». Using a projective

resolution of N, we obtain an analogous homology spectral sequence.
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THEOREM 6.2. Let G be either discrete or a compact Lie group and let X be a

G-CW complex. There are universal coefficient spectral sequences
EY? = Exty(J(X), M) = HL(X; M)

and

& Gry.
E;q = Tor, (J(X),N) = H,(X;N).

We should say something about change of groups and about products in coho-
mology, but it would take us too far afield to go into detail. For the first, we simply
note that, for H C G, we can obtain H-coefficient systems from G-coefficient sys-
tems via the functor 7 — ¢ that sends H/K to G/K = G xyg H/K. For the
second, we note that, for groups H and G, projections give a functor from the
orbit category of H x (G to the product of the orbit categories of H and of &, so
that we can tensor an H-coefficient system and a G-coefficient system to obtain
an (H x ()-coefficient system. When H = (7, we can then apply change of groups
to the diagonal inclusion G C GG x (. The resulting pairings of coefficient systems
allow us to define cup products exactly as in ordinary cohomology, using cellular

approximations of the diagonal maps of G-CW complexes.

G. Bredon. Equivariant cohomology theories. Springer Lecture Notes in Mathematics Vol 34.
1967.
S. J. Willson. Equivariant homology theories on G-complexes. Trans. Amer. Math. Soc.

212(1975), 155-271.



CHAPTER 11

Postnikov Systems, Localization, and Completion

1. Eilenberg-MacLane G-spaces and Postnikov systems

Let M be a coefficient system. An Eilenberg-Mac Lane G-space K(M,n) is a
Gi-space of the homotopy type of a G-CW complex such that

. M if ¢ =n,
TR R

While our interest is in Abelian group-valued coefficient systems, we can allow M
to be set-valued if n = 0 and group-valued if n = 1. T will give an explicit construc-
tion later. Ordinary cohomology theories are characterized by the usual axioms,
and, by checking the axioms, it is easily verified that the reduced cohomology of
based G-spaces X is represented in the form

(1.1) HL(X; M) = [X, K(M,n)]a,

where homotopy classes of based maps (in h(G.7) are understood.

Recall that a connected space X is said to be simple if 7y A is Abelian and acts
trivially on 7,(X) for n > 2. More generally, a connected space X is said to
be nilpotent if 71(X) is nilpotent and acts nilpotently on 7,(X) for n > 2. A
G-connected Gi-space X is said to be simple if each X ¥ is simple. A GG-connected
G-space X is said to be nilpotent if each X* is nilpotent and, for each n > 1,
the orders of nilpotency of the 71 (X*)-groups 7,(X*) have a common bound.
We shall restrict our sketch proofs to simple G-spaces, for simplicity, in the next
few sections, but everything that we shall say about their Postnikov towers and
about localization and completion generalizes readily to the case of nilpotent G-

spaces. The only difference is that each homotopy group system must be built up

25
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in finitely many stages, rather than all at once.

A Postnikov system for a based simple GG-space X consists of based G-maps
a,: X — X, and p,i1: X1 — X,

for n > 0 such that Xy is a point, a, induces an isomorphism z,(X) — z,(X,)
for ¢ < n, ppr1an11 = a,, and p,4q is the G-fibration induced from the path space
fibration over a K(x,,1(X),n+2) by a map &"** : X,, — K(x,,,(X),n+2). It
follows that X7 = K(x;(X),1) and that z,(X,) = 0 for ¢ > n. Our requirement
that Eilenberg-Mac Lane GG-spaces have the homotopy types of G-CW complexes
ensures that each X, has the homotopy type of a G-CW complex. The maps
a, induce a weak equivalence X — lim X, but the inverse limit generally will
not have the homotopy type of a G-CW complex. Just as nonequivariantly, the

k-invariants that specify the tower are to be regarded as cohomology classes
k2 e HE (X myq (X)),

These classes together with the homotopy group systems x,,(X) specify the weak
homotopy type of X. On passage to H-fixed points, a Postnikov system for X
gives a Postnikov system for X*. We outline the proof of the following standard
result since there is no complete published proof and my favorite nonequivariant

proof has also not been published. The result generalizes to nilpotent G-spaces.

THEOREM 1.2. A simple G-space X of the homotopy type of a G-CW complex

has a Postnikov tower.

PROOF. Assume inductively that «, : X — X, has been constructed. By the
homotopy excision theorem applied to fixed point spaces, we see that the cofiber
C(ay) is (n + 1)-connected and satisfies

En+2(COén) = En-l—l (X)

More precisely, the canonical map F'(ea,,) — QC(a,) induces an isomorphism on

T, for ¢ < n + 1. We construct
j i Clan) — K(mp(X).n +2)

by inductively attaching cells to C'(a,) to kill its higher homotopy groups. We
take the composite of j and the inclusion X,, C C'(a,) to be the k-invariant A"+
By our definition of a Postnikov tower, X, ;1 must be the homotopy fiber of £"*2.
Its points are pairs (w, ) consisting of a path w:/ — K(z,,(X),n +2) and a
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point € X,, such that w(0) = * and w(1) = k"**(x). The map p,t1 : Xoy1 —
X, is given by ppy1(w,x) = @, and the map a,41 : X — X, 41 is given by
apt1(2) = (w(x), an(x)), where w(x)(t) = j(x,1 — 1), (x,1 —t) being a point on
the cone CX C C(ay,). Clearly py10,41 = o, It is evident that a1 induces an
isomorphism on z, for ¢ < n, and a diagram chase shows that this also holds for
g=n+1. O

2. Summary: localizations of spaces

Nonequivariantly, localization at a prime p or at a set of primes 7' is a standard
first step in homotopy theory. We quickly review some of the basic theory. Say
that a map f: X — Y is a T-cohomology isomorphism if

o H (Y A) — HY (X A)
is an isomorphism for all T-local Abelian groups A.

THEOREM 2.1. The following properties of a nilpotent space Z are equivalent.
When they hold, Z is said to be T-local.

(a) Each 7,(7) is T-local.
(b) If f: X — Y is a T-cohomology isomorphism, then f*:[Y, 7] — [X, 7]
is a bijection.

(¢) The integral homology of Z is T-local.

THEOREM 2.2. Let X be a nilpotent space. The following properties of a map
A X — X7 from X to a T-local space Xp are equivalent. There is one and, up
to homotopy, only one such map A. It is called the localization of X at T'.

(a) A" : [ X7, 7] — [X, Z] is a bijection for all T-local spaces Z.
(b) X is a T-cohomology isomorphism.

)
(¢) A mu(X) — 7 (X7) is localization at T
(d) A H (X;Z)— H.(Xrp;Z) is localization at T

A. K. Bousfield and D. M. Kan. Homotopy limits, completions, and localizations. Springer
Lecture Notes in Mathematics Vol 304. 1972.

D. Sullivan. The genetics of homotopy theory and the Adams conjecture. Annals of Math.
100(1974), 1-79.
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3. Localizations of (G-spaces

Now let (G be a compact Lie group. Say that a G-map f : X — Y is a

T-cohomology isomorphism if
[7 He (Y M) — He (X5 M)
is an isomorphism for all T-local coefficient systems M.

THEOREM 3.1. The following properties of a nilpotent GG-space Z are equivalent.
When they hold, Z is said to be T-local.

(a) Each ZH is T-local.
(b) If f: X — Y is a T-cohomology isomorphism, then

[V, Zle — [X, Z]q
is a bijection.

THEOREM 3.2. Let X be a nilpotent G-space. The following properties of a
map A : X — X7 from X to a T-local G-space X7 are equivalent. There is one
and, up to homotopy, only one such map A. It is called the localization of X at T'.

(a) A" : [ X7, Z] — [X, Z] is a bijection for all T-local G-spaces Z.

(b) X is a T-cohomology isomorphism.

(c) Bach M : X# — (X7)H is localization at T'.

PRrROOFS. We restrict attention to simple G-spaces. Assuming (a) in Theo-
rem 3.1, we may replace Z by a weakly equivalent Postnikov tower and we may
assume that the G-spaces X and Y given in (b) are G-CW complexes, so that
we are dealing with actual homotopy classes of maps. Then (a) implies (b) by a
word-for-word dualization of our proof of the Whitehead theorem. Conversely, (b)
implies (a) since the specialization of (b) to T-cohomology isomorphisms of the
form G/Hy A f, where f : X — Y is a nonequivariant 7-cohomology isomor-
phism, implies (b) of Theorem 2.1. In Theorem 3.2, (a) implies (b) by letting 7
run through K(M,n)’s, and (b) implies (a) by Theorem 3.1. Let Z7 be the local-
ization of Z at T'. One sees that (c) implies (b) by applying the universal coefficient
spectral sequence of 1.6.2, taken with homology and coefficient systems tensored
with Z. The maps A induce isomorphisms on homology with coefficients in Zr,
and one can deduce (with some work in the general compact Lie case) that they
therefore induce an isomorphism J, (X;Z7) — J.(X7;Z7). Since the universal

property (a) implies uniqueness, to complete the proof we need only construct a
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map A that satisfies (c). For this, we may assume that X is a Postnikov tower,
and we localize its terms inductively by localizing k-invariants and comparing fi-
bration sequences. The starting point is just the observation that the algebraic

localization M — My = M @ Zy of coefficient systems induces localization maps

A K(M,n) — K(Mp,n). The relevant diagram is:
Kz (X)m 4+ 1) = X, X, K533 (X +2)

| | | |

K(zpr (X)r,n + 1) —= (Xogt )1 — (X )7 — K(Zpa (X1, + 2).

We construct the right square by localizing the k-invariant, we define (X,41)7 to
be the fiber of the localized k-invariant, and we obtain X, 41 — (X,.4+1)r making
the middle square commute and the left square homotopy commute by standard

fiber sequence arguments. [J

J. P. May. The dual Whitehead theorems. London Math. Soc. Lecture Note Series Vol 86, 1983,
46-54.

J. P. May, J. McClure, and G. V. Triantafillou. Equivariant localization. Bull. London Math.
Soc. 14(1982), 223-230.

4. Summary: completions of spaces

Completion at a prime p or at a set of primes T' is another standard first step
in homotopy theory. Since completion at T' is the product of the completions at
p for p € T, we restrict to the case of a single prime. We first review some of the
nonequivariant theory. The algebra we begin with is a preview of algebra to come
later in our discussion of completions of G-spectra at ideals of the Burnside ring.

The p-adic completion functor, Ap = lim(A/p™A), is neither left nor right exact

in general, and it has left derived functors Ly and Lq. If
0 —F —F —A—0

is a free resolution of A, then LgA and LA are the cokernel and kernel of F’p —

N

F,, and there results a natural map n : A — LgA. The higher left derived

functors are zero, and a short exact sequence
2
00— A —A— A —0
gives rise to a six term exact sequence

0 — WA — LA — LA" — LyA" — LyA — LyA” — 0.
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It L4A=0,then wecallnp: A — LyA the “p-completion” of A. It must not to be
confused with the p-adic completion. We say that A is “p-complete” if L1 A = 0 and
n is an isomorphism. The groups LoA, L1 A, and Ap are p-complete for any Abelian
group A. While derived functors give the best conceptual descriptions of LgA and
L1 A, there are more easily calculable descriptions. Let Z/p™ be the colimit of the
sequence of homomorphisms p : Z/p" — Z/p"t'. Then Z/p> = Z[p~'|/Z and

there are natural isomorphisms
Lo(A) Z Ext(Z/p™,A) and Li(A) = Hom(Z/p™, A).
There is also a natural short exact sequence
0 — lim' Hom(Z/p", A) — LoA — Ap — 0.
In particular, L1 A =0 and LA = Ap if the p-torsion of A is of bounded order.
Say that a map f: X — Y is a p-cohomology isomorphism if
[T A (Y5 A) — HY (X5 A)

is an isomorphism for all p-complete Abelian groups A. This holds if and only
if it holds for all F,-vector spaces A, and this in turn holds if and only if f, :
H.(X;F,) — H.(Y;F,) is an isomorphism, where F, is the field with p elements.
While this homological characterization is essential to our proofs, we prefer to

emphasize cohomology.
THEOREM 4.1. The following properties of a nilpotent space Z are equivalent.
When they hold, Z is said to be p-complete.
(a) Each 7,(7) is p-complete.
(b) If f: X — Y is a p-cohomology isomorphism, then f*: [V, 7] — [X, 7]
is a bijection.
THEOREM 4.2. Let X be a nilpotent space. The following properties of a map

v: X — Xp from X to a p-complete space Xp are equivalent. There is one and,

up to homotopy, only one such map ~. It is called the completion of X at p.
(a) v*: [Xp, Z] — [X, Z] is a bijection for all p-complete spaces Z.
(b) ~ is a p-cohomology isomorphism.

For n > 1, there is a natural and splittable short exact sequence

0 — Lomn(X) — Fn(Xp) — Lymp1(X) — 0.
If Li7.(X) =0, then v is also characterized by
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(¢) v :mu(X) — F*(Xp) is completion at p.

A. K. Bousfield and D. M. Kan. Homotopy limits, completions, and localizations. Springer
Lecture Notes in Mathematics, Vol. 304. 1972.

D. Sullivan. The genetics of homotopy theory and the Adams conjecture. Annals of Math.
100(1974), 1-79.

5. Completions of G-spaces

Now let (G be a compact Lie group. Say that a G-map f : X — Y is a

p-cohomology isomorphism if
[7 He (Y M) — He (X5 M)

is an isomorphism for all p-complete coefficient systems M. This will hold if each
fH . XH —— YH is a p-cohomology isomorphism by another application of the

universal coefficients spectral sequence, with a little work in the general compact

Lie case to handle J_ (f).

THEOREM 5.1. The following properties of a nilpotent Gi-space Z are equivalent.
When they hold, Z is said to be p-complete.
(a) Each Z# is p-complete.
(b) If f: X — Y is a p-cohomology isomorphism, then f* : [V, Z]¢ —
[X, Z] is a bijection.

THEOREM 5.2. Let X be a nilpotent G-space. The following properties of a
map v : X — X, from X to a p-complete G-space X, are equivalent. There is
one and, up to homotopy, only one such map +. It is called the completion of X
at p.

(a) v*: [Xp, Z] — [X, Z] is a bijection for all p-complete G-spaces Z.

(b) ~ is a p-cohomology isomorphism.

(c) Bach 7 : X# — (X)) is completion at p.

For n > 1, there is a natural short exact sequence

0 — Lom, (X) — [n(f(p) — L7, 1(X) — 0.

PRrOOFS. The proofs are the same as those of Theorems 3.1 and 3.2, except that
completions of Eilenberg-Mac Lane G-spaces are not Eilenberg-Mac Lane G-spaces

in general. For a coefficient system M, n : M — LoM induces p-completions

K(M,n) — K(LoM,n) whenever 1M = 0. For the general case, let F'M be
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the coefficient system obtained by applying the free Abelian group functor to M
regarded as a set-valued functor. There results a natural epimorphism FM — M
of coefficient systems. Let F'M be its kernel. Since L; vanishes on free modules,
we can construct the completion of K(M,n) at p via the following diagram of

fibrations:

K(FM,n) — K(M,n) — K(F'M,n + 1) K(FM,n+1)

| | | |

K(LoFM,n) —> K(M,n)) — K(LoF"M,n +1) —> K(LoF'M,n +1).

That is, K(M,n);\ is the fiber of K(Lol"M,n 4+ 1) — K(LoF'M,n +1). It is
complete since its homotopy group systems are complete. The map K(M,n) —
K(M, n);\ is a p-cohomology isomorphism because its fixed point maps are so, by

the Serre spectral sequence. [

J. P. May. Equivariant completion. Bull. London Math. Soc. 14(1982), 231-237.



CHAPTER III

Equivariant Rational Homotopy Theory

by Georgia Triantafillou

1. Summary: the theory of minimal models

Let GG be a finite group. In this chapter, we summarize our work on the alge-
braicization of rational G-homotopy theory.

To simplify the statements we assume simply connected spaces throughout the
chapter. The theory can be extended to the nilpotent case in a straightforward
manner. We recall that by rationalizing a space X, we approximate it by a space
Xo the homotopy groups of which are equal to 7.(X)® Q, thus neglecting the tor-
sion. The advantage of doing so is that rational homotopy theory is determined
completely by algebraic invariants, as was shown by Quillen and later by Sullivan.
Our theory is analogous to Sullivan’s theory of minimal models, which we now re-
view. For our purposes we prefer Sullivan’s approach because of its computational
advantage and its relation to geometry by use of differential forms.

The algebraic invariants that determine the rational homotopy type are certain
algebras that we call DGA’s. By definition a DGA is a graded, commutative,
associative algebra with unit over the rationals, with differential d : A" — A"+
for n > 0. We say that A is connected it H°(A) = Q and simply connected if, in
addition, H'(A) = 0. Again we assume that all DGA’s in sight are connected and
simply connected. A map of DGA’s is said to be a quasi-isomorphism if it induces
an isomorphism on cohomology.

Certain DGA’s, the so called minimal ones, play a special role to be described
below. A DGA M is said to be minimal if it is free and its differential is decom-

33
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posable. Freeness means that M is the tensor product of a polynomial algebra
generated by elements of even degree and an exterior algebra generated by elements
of odd degree. Decomposability of the differential means that d(M) C M+TAMT,
where M™ is the set of positive degree elements of M.

There is an algebraic notion of homotopy between maps of DGA’s that mirrors
the topological notion. Let Q(t,dt) be the free DGA on two generators ¢ and d?
of degree 0 and 1 respectively with d(¢) = dt.

DEFINITION 1.1. Two morphisms f, ¢ : A — B are homotopic if there is a map
H: A — B®Q(t,dt) such that ego H = f and e; o H = g, where ¢ is the
projection t = 0,dt = 0 and e; the projection ¢t = 1,dt = 0.

The basic example of a DGA in the theory is the PL. De Rham algebra £x of a

simplicial complex X, which is constructed as follows. Let
o' =A" = {(to,tl, ce ,tn)|0 S tz S 1,2?:0t2' == 1}

be an n-simplex of X canonically embedded in R"*!. A polynomial form of degree

pon o™ is an expression

S filtos .o ot)dty Ao Adi,
I

where [ = {i1,...,1,} and f; is a polynomial with coefficients in Q. A global
PL (piecewise linear) form on X is a collection of polynomial forms, one for each
simplex of X, which coincide on common faces. The set of PL forms of X is the
DGA Ex. A version of the classical de Rham theorem holds, namely that

1 (Ex) = HY(X; Q).
We have the following facts.

THEOREM 1.2. A quasi-isomorphism between minimal DGA’s is an isomor-

phism.

THEOREM 1.3. If f : A — B is a quasi-isomorphism of DGA’s and M is a
minimal DGA; then f, : [M, A] — [M, B] is an isomorphism.

THEOREM 1.4. For any simply connected DGA A there is a minimal DGA M
and a quasi-isomorphism p : M — A. Moreover M is unique up to (non-canonical)
isomorphism, namely if p’ : M’ — A is another quasi- isomorphism then there is

an isomorphism e : M — M’ such that p’ o e and p are homotopic.
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Here M is said to be the minimal model of A. The minimal model My of
the PL. de Rham algebra £x of a simply connected space X is called the minimal
model of X.

THEOREM 1.5. The correspondance X — My induces a bijection between ra-
tional homotopy types of simplicial complexes on the one hand and isomorphism

classes of minimal DGA’s on the other.

More precisely, assuming X is a rational space, the homotopy groups 7,(X) of
X are isomorphic to Q(Mx),, where Q(M) = MT/ M+ A M* is the space of
indecomposables of M. The nth stage X,, of the Postnikov tower of X has M x(n)
as its minimal model, where M(n) denotes the subalgebra of M that is generated
by the elements of degree < n. The k-invariant k"** € H"*?(X,,, 7,41(X)), which
can be represented as a map m,41(X)* — H"t*(X,,), is determined by the dif-
ferential d : Q(Mx )pp1 — H"T?*(Mx(n)). These properties enable the inductive
construction of a rational space that realizes a given minimal algebra.

On the morphism level we have
THEOREM 1.6. If Y is a rational space then
(X, Y] = My, Mx].

We warn here that the minimal model, though very useful computationally, is
not a functor. In particular a map of spaces induces a map of the corresponding

minimal models only up to homotopy.

D. Quillen. Rational Homotopy Theory, Ann of Math. 90(1968), 205-295.
D. Sullivan. Infinitesimal Computations in Topology, Publ. Math. THES 47(1978), 269-332.

2. Equivariant minimal models

For finite groups (¢ an analogous theory can be developed for G-rational homo-
topy types of G-simplicial complexes. For simplicity we assume throughout that
the spaces X are G-connected and G-simply connected, which means that each
fixed point space X¥ is connected and simply connected; however, the theory
works just as well for G-nilpotent spaces. In fact, by work of B. Fine, the the-
ory can be extended in such a way that no fixed base point and no connectivity
assumption on the fixed point sets are required.

Let Vece be the category of rational coefficient systems and Vecy, the category of

covariant functors from G to rational vector spaces. Our invariants for determining
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Gi-rational homotopy types are functors of a special type from G into DGA’s, which

we now describe.

DEFINITION 2.1. A system of DGA’s is a covariant functor from G to simply

connected DGA’s such that the underlying functor in Vecy, is injective.

The injective objects of Vec or, equivalently, the projective rational coefficient

systems can be characterized as follows.

THEOREM 2.2. (i) For H C (¢ and a W H-representation V, there is a projective
coefficient system V € Vecg such that

V(G/K) = Q(G/H)"] @omwm V-
where the first factor is the vector space generated by the set (G/H)¥.

(ii) Every projective coefficient system is a direct sum of such Vs.

The basic system of DGA’s in the theory is the system of de Rham algebras Ex#
of the fixed point sets X of a G-simplicial complex X. We denote this system
by £y. It is crucial to realize that £y is injective and that this property is central
to the theory. The injectivity of £y can be shown by utilising the splitting of X
into its orbit types.

We note that Ex together with the induced G-action determine a minimal al-
gebra equipped with a G-action. However there are in general many G-rational
homotopy types of G-simplicial complexes that realize this minimal G-algebra. In
order to have unique spacial realizations we need to take into account the algebraic
data of all fixed point sets, which leads us to systems of DGA’s.

Define the cohomology of a system A of DGA’s with respect to a covariant coeffi-
cient system N € Vec, to be the cohomology of the cochain complex Homg(N, A).
An equivariant de Rham theorem follows by use of the universal coefficients spec-

tral sequence.
THEOREM 2.3. For M € Vecg with dual M™ € Vecg,
HE (X5 M) = H(Ex: M),

The lack of functoriality of the minimal model of a space complicates the con-
struction of equivariant minimal models. We cannot, for instance, define “the
system of minimal models” M xu of the fixed point sets of a G-complex X. It
turns out that the right definition of minimal models in the equivariant context is

the following.
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DEFINITION 2.4. A system M of DGA’s is said to be minimal if

(i) each algebra M(G//H) is free commutative,
(ii) the DGA M(G/G) is minimal, and
(iii) the differential on each M(G/H) is decomposable when restricted to the
intersection of the kernels of the maps M(G/H) — M(G/K) induced by
proper inclusions H C K.

One can think of (ii) as an “initial condition” and of (iii) as the minimality
condition that guarantees the uniqueness of equivariant minimal models. As in

the nonequivariant case, minimal systems are classified by their cohomology.

THEOREM 2.5. A quasi-isomorphism between minimal systems of DGA’s is an

isomorphism.
Also, Theorems 1.3, 1.4, 1.5, and 1.6 have equivariant counterparts.

THEOREM 2.6. If A is a system of DGA’s, then there is a quasi-isomorphism
f: M — A where M is a minimal system. Moreover M is unique up to (non-

canonical) isomorphism.

This result provides the existence of equivariant minimal models. Unlike the
nonequivariant case the proof is rather involved and is based on a careful inves-
tigation of the universal coefficients spectral sequence. We define the equivariant
minimal model Mx of a G-simplicial complex X to be the minimal system of
DGA’s that is quasi-isomorphic to the system of de Rham algebras €.

A notion of homotopy can be defined for systems of DGA’s. If A is a system of
DGA’s we denote by A @ Q(¢,dt) the functor

A@Q(t,dt)(G/H) = A(G/H) @ Q(t,dt).

It can be shown that this functor is injective and therefore it forms a system of
DGA’s. Homotopy of maps of systems of DGA’s can now be defined in the obvious
way suggested by the nonequivariant case. Let [A, B]s denote homotopy classes

of maps of systems.

THEOREM 2.7. If f: A — B is a quasi-isomorphism of systems of DGA’s and
M is a minimal system of DGA’s, then

f* : [M,A]G — [M,B]G

is an isomorphism.
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The equivariant minimal model determines the rational G-homotopy type of a

Gi-space, namely

THEOREM 2.8. The correspondence X — M x induces a bijection between ra-
tional G-homotopy types of G-simplicial complexes on the one hand and isomor-

phism classes of minimal systems of DGA’s on the other.

More precisely, there is a filtration of minimal subsystems of DGA’s
- CMx(n) ST Mx(n+1)C--- C My

such that each stage is the equivariant minimal model of the equivariant Postnikov
term X,, of the space X. The system of rational homotopy groups of the fixed
point sets 7, (X) ® Q and the rational equivariant k-invariants can also be read
from the model M yx. This makes the inductive construction of the Postnikov
decomposition of the rationalization Xy possible if the equivariant minimal model
is given.

On the morphism level we have

THEOREM 2.9. If YV is a rational G-simplicial complex then there is a bijection
[X,Y] = [My, Mx].

G. Trnantafillou. Aquivariante Rationale Homotopietheorie, Bonner Math. Schriften Vol. 110.
1978.
G. Triantafillou. Equivariant minimal models. Trans. Amer. Math. Soc. 274(1982), 509-532.

3. Rational equivariant Hopf spaces

In spite of the conceptual analogy of the equivariant theory to the nonequivariant
one, the calculations in the equivariant case are much more subtle and can yield
surprising results. We illustrate this by describing our work on rational Hopt G-
spaces. It is a basic feature of nonequivariant homotopy theory that the rational
Hopf spaces split as products of Eilenberg-Mac Lane spaces. The equivariant
analogue is false. By a Hopt GG-space we mean a based G-space X together with a
G-map X x X — X such that the base point is a two-sided unit for the product.
Examples include Lie groups K with a G-action such that ¢ is a finite subgroup
of the inner automorphisms of K, and loop spaces Q(X) of G-spaces based at a
G-fixed point of X.
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THEOREM 3.1. Let X be a G-connected rational Hopf G-space of finite type.
It G is cyclic of prime power order, then X splits as a product of Eilenberg-
Mac Lane G-spaces. It G = Z, x Z, for distinct primes p and ¢, then there are

counterexamples to this statement.

Outline of proof: In this outline we suppress the technical part of the proof
which is quite extensive. As in the nonequivariant case, the n'* term X, of
a Postnikov tower of X is a Hopf G-space. Moreover the k-invariant k"% €
H"?(X,;7,41(X)) is a primitive element. This means that

m (K"F2) = (p1)"(K") + (p2)"(K"7),

in H"*(X,, x X,;; 7,,1(X)), where m is the product and the p; are the projections.

The difference in the two cases Z,» and Z, x Z, stems from the fact that rational
coefficient systems for these groups have different projective dimensions. Indeed,
systems for Z,x have projective dimension at most 1, whereas there are rational
coefficient systems for Z, x Z, of projective dimension 2. Using this fact about
L, we can compute inductively the equivariant minimal model of each Postnikov
term X, and its cohomology. In particular we show that all non-zero elements of
HEP (X5 7,44 (X)) are decomposable and therefore non-primitive.

In the case of Z, x Z, we construct counterexamples which are 2-stage Postnikov
systems with primitive k-invariant. As in the nonequivariant case, if X has only
two non-vanishing homotopy group systems, then the primitivity of the unique k-
invariant is a sufficient condition for X to be a Hopf G-space. By construction, the
two systems of homotopy groups 7,,(X) and 7, ,(X) are as follows. The groups

*Za) = 7. The groups

7.(XH) are zero for all proper subgroups H and 7, (X%
Tni1(XT) are zero for all nontrivial subgroups H and 7,.1(X) = Z. The first
coefficient system has projective dimension 2. This and the universal coefficients
spectral sequence yields HE:(X,; ,41(X)) = Z. Moreover all non-zero elements
of this group are primitive. This gives an infinite choice of primitive k-invariants
and therefore an infinite collection of rationally distinct Hopf G-spaces which do
not split rationally into products of Eilenberg-Mac Lane G-spaces.

The counterexamples X constructed in the theorem are infinite loop G-spaces
in the sense that there are G-spaces F,, and homotopy equivalences F,, — QF, 1.
with X = FEy. For the more sophisticated notion of infinite loop G-spaces where
indexing over the representation ring of (¢ is used, no such pathological behavior

is possible.
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As a final comment we mention that the theory of equivariant minimal models
has been used by my collaborators and myself to obtain aplications of a more
geometric nature, like the classification of a large class of G-manifolds up to finite

ambiguity and the equivariant formality of G-Kahler manifolds.

M. Rothenberg and G. Triantafillou. On the classification of G-manifolds up to finite ambiguity.
Comm. in Pure and Appl. Math. 1991.

B. Fine and G. Triantafillou. Equivariant formality of G-Kahler manifolds. Canadian J. Math.
To appear.

G. Triantafillou. Rationalization of Hopf G-spaces. Math. Zeit. 182(1983), 485-500.



CHAPTER IV
Smith Theory

1. Smith theory via Bredon cohomology

We shall explain two approaches to the classical results of P.A. Smith. We begin
with the statement. Let GG be a finite p-group and let X be a finite dimensional
G-CW complex such that H*(X;F,) is a finite dimensional vector space, where
[, denotes the field with p elements. All cohomology will have coefficients in F,
here.

THEOREM 1.1. If X is a mod p cohomology n-sphere, then X% is empty or is a
mod p cohomology m-sphere for some m < n. If p is odd, then n —m is even and

X% is non-empty if n is even.

If H is a non-trivial normal subgroup of G, then X% = (X™)%/H By induction
on the order of GG, Theorem 1.1 will be true in general if it is true when G = Z /p is
the cyclic group of order p. Our first proof is an almost trivial exercise in the use
of Bredon cohomology. We restrict attention to G = Z/p, but we do not assume
that X is a mod p cohomology sphere until we put things together at the end.

Observe that an exact sequence
0 —L—M-—N—70

of coefficient systems give rise to a long exact sequence

(1.2)
c— HL(X L) — HL(X; M) — HL(X;N) — HE'(X; L) — -

Let X = X/X%. The action of G on F'X is free away from the basepoint. There
are coefficient systems L, M, and N such that

41
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HL(X:L) = HY(FX/G),
HE(X5 M) = HY(X),
and
HL(X;N) = HY(X%).

To determine L, M, and N, we need only calculate the right sides when ¢ = 0 and
X is an orbit, that is, X = G or X = x. We find:

Let I be the augmentation ideal of the group ring F,[G], and let ™ denote both
the n'* power of I and the coefficient system whose value on (' is I™ and whose
value on * is zero. Then IP~! = L. It is easy to check that we have exact sequences

of coefficient systems
00— — M —LPN —0

and

0 —L —M—1HN — 0.

These exact sequences coincide if p = 2. By (1.2), they give rise to long exact

sequences
s HE(XST) — HO(X) — [(PX/G) & HY(X) — HE (X 1) — o
and
- — HY(FX/G) — H(X) — HL(X;NOH(XY) — HP(FX/G) — -
Define
a, = dim[:]q(FX/G), a, = dim HL(X; 1), b, = dim HY(X), ¢, = dim H(X).
Note that a, = a, if p = 2. We read off the inequalities
ag+ ¢y <by+ a1 and a,+ ¢, < by + agq.
I[teratively, these imply the following inequality for ¢ > 0 and r > 0.

(1.3) ag+ ¢t g1+t gy by F bgrr 0+ by + agprty
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where r is odd if p > 2. In particular, with ¢ = 0 and r large,

(1.4) Zcq < qu.
Using the further short exact sequences
0 — 1" 1" S L—0,1<n<p-1,
we can also read off the the Euler characteristic formula
(1.5) X(X) = X (X9) + px(FX/G).

FIRST PROOF OF THEOREM 1.1. Here 3~ b, = 2, hence }"¢, < 2. The case
S c, = 1 is ruled out by the congruence y(X) = x(X“) mod p; when p > 2, this
congruence also implies that n —m is even and that X is non-empty if n is even.

Taking ¢ = n+1 and r large in (1.3), we see that m cannot be greater than n. O

J. P. May. A generalization of Smith theory. Proc. Amer. Math. Soc. 101 (1987), 728-730.
P. A. Smith. Transformations of finite period. Annals of Math. 39 (1938), 127-164.

2. Borel cohomology, localization, and Smith theory

Let EG be a free contractible G-space. For a G-space X, the Borel construction
on X is the orbit space EG xg X and the Borel homology and cohomology of
X (with coefficients in an Abelian group A) are defined to be the nonequivariant
homology and cohomology of this space. For reasons to be made clear later, the
Borel construction is also called the “homotopy orbit space” and is sometimes
denoted Xj. People not focused on equivariant algebraic topology very often
refer to Borel cohomology as “equivariant cohomology.” We can relate it to Bredon
cohomology in a simple way. Let A denote the constant coefficient system at A.

Since the orbit spaces (G//H)/G are points, we see immediately from the axioms
that HE(X; A) is isomorphic to H*(X/G; A), and similarly in homology. Therefore

H(FEG xg X;A) 2 HLUEG x X;A) and H*(EG xg X;A) 2 HL(EG x X; A).

Observe that the Borel cohomology of a point is the cohomology of the classifying
space BG = EG/G. In this section, we shall use the notation

HL(X) = H*(EG % X),

standard in much of the literature.
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Here we fix a prime p and understand mod p coefficients. If X is a based G-space,

we let Hz(X) be the kernel of Hz(X) — Hz () = H*(BG). Equivalently,
H5(X) = H(EG Ag X).

Because G acts freely on EG, it acts freely on EG x X. Therefore, by the
Whitehead theorem, if f: X — Y is a G-map between G-CW complexes that is

a nonequivariant homotopy equivalence, then
Ixf:EGx X — EGXxY
is a G-homotopy equivalence and therefore
I xXgf:EGxg X — EG xgY

is a homotopy equivalence. At first sight, it seems unreasonable to expect FG x ¢ X
to carry much information about X, but it does.

We now assume that i is an elementary Abelian p-group, GG = (Z/p)" for some
n, and that X is a finite dimensional G-CW complex. We shall describe how to
use Borel cohomology to determine the mod p cohomology of X% as an algebra
over the Steenrod algebra, and we shall sketch another proof of Theorem 1.1. Our
starting point is the localization theorem.

Since G = (Z/p)*, H*(BG) is a polynomial algebra on n generators of degree
one if p = 2 and is the tensor product of an exterior algebra on n generators of
degree one and the polynomial algebra on their Bocksteins if p > 2. Let S be the
multiplicative subset of H*(B() generated by the non-zero elements of degree one

if p = 2 and by the non-zero images of Bocksteins of degree two if p > 2.

THEOREM 2.1 (LOCALIZATION). For a finite dimensional G-CW complex X,

the inclusion 7 : X¢ — X induces an isomorphism
" STEHE(X) — STUHE(XE).

Proof. Let F'X = X/X% By the cofiber sequence Xf — X, — FX,
it suffices to show that S™'HZ(FX) = 0. Here FX is a finite dimensional G-
CW complex and (FX)Y = *. By induction up skeleta, it suffices to show that
STUHE(Y) = 0 when Y is a wedge of copies of G/Hy A S9 for some H # G,
and such a wedge can be rewritten as Y = G/H, A K, where K is a wedge of
copies of S?. Since EG x¢ (G/H) = EG/H is a model for BH, we see that

EGi N Y = BHi N K. At least one element of S restricts to zero in H*(BH),
and this implies that S~ H%(Y) = 0.
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Localization theorems of this general sort appear ubiquitously in equivariant
theory. As here, the proofs of such results reduce to the study of orbits by general
nonsense arguments, and the specifics of the situation are then used to determine

what happens on orbits. When n = 1, we can be a little more precise.

LEMMA 2.2. If G = Z/p and dim X = r, then ¢* : HL(X) — HL(X%) is an

isomorphism for ¢ > r.

PRrROOF. It suffices to show that Hz(FX) = 0 for ¢ > r. Since FX is G-
free away from its basepoint, the projection FG, — SY induces a GG-homotopy

equivalence EGy A FX — FX and therefore a homotopy equivalence EG, Ag
FX — FX/G. Obviously dim(FX/G) <r. O

Since G acts trivially on X9, EG x¢ X9 = BG x X©.

SECOND PROOF OF THEOREM 1.1. Take G = Z/p and let X be a mod p ho-
mology n-sphere. We assume that X is non-empty. The Serre spectral sequence

of the bundle FG x X — BG converges from
H*(G;H"(X)) = H"(BG) @ H*(X)

to H5(X). Since a fixed point of X gives a section, Fy = Ey,. Therefore Hz(X)
is a free H*(BG)-module on one generator of degree n and, in high degrees, this

must be isomorphic to
H:(X9) = H*(BG, A XY) = H(BG) @ H*(XY).

By a trivial dimension count, this can only happen if X% is a mod p cohomology
m-sphere for some m. Naturality arguments from the H*( BG)-module structure
show that m must be less than n and must be congruent to n mod 2 if p > 2.
To see that X is non-empty if p > 2 and n is even, one assumes that X is
empty and deduces from the multiplicative structure of the spectral sequence that

X cannot be finite dimensional. [

Returning to the context of the localization theorem, one would like to retrieve
H*(X%) algebraically from S™YH(X). As a matter of algebra, S™LH(X) inherits
a structure of algebra over the mod p Steenrod algebra A from H5(X). However,

it no longer satisfies the instability conditions that are satisfied in the cohomology
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of spaces. For any A-module M, the subset of elements that do satisfy these

conditions form a submodule Un(M). Obviously the localization map

HH(BG) & H*(XO) = Hy(X%) — §~HH(X%) = 515 (X)
takes values in Un(S™'HE(X)). By a purely algebraic analysis, using basic infor-
mation about the Steenrod operations, Dwyer and Wilkerson proved the following

remarkable result. (They assume that X is finite, but the argument still works

when X is finite dimensional.)

THEOREM 2.3. For any elementary Abelian p-group G and any finite dimen-
sional G-CW complex X,

H*(BG) @ H*(XY) — Un(S™ H;(X))
is an isomorphism of A-algebras and H*(BG))-modules. Therefore
H*(XY) =T, Qe Un(STHE(X)).
We will come back to this point when we talk about the Sullivan conjecture.

A. Borel, et al. Seminar on transformation groups. Annals of Math. Studies 46. Princeton.
1960.

G.E. Bredon. Introduction to compact transformation groups. Academic Press. 1972.

T. tom Dieck. Transformation groups. Walter de Gruyter. 1987.

W.G. Dwyer and C.W. Wilkerson. Smith theory revisited. Annals of Math. 127(1988), 191-198.
W.-Y. Hsiang. Cohomology theory of topological transformation groups. Springer. 1975.



CHAPTER V

Categorical Constructions; Equivariant Applications

1. Coends and geometric realization

We pause to introduce some categorical and topological constructs that are used
ubiquitously in both equivariant and nonequivariant homotopy theory. They will
be needed in a number of later places. We are particularly interested in homotopy
colimits. These are examples of geometric realizations of spaces, which in turn are
examples of coends, which in turn are examples of coequalizers.

Let A be a small category and let € be a category that has all colimits. Write J]
for the categorical coproduct in €. The coequalizer C(f, f') of maps f, f': X —
YVisamap g :Y — C(f, f) such that ¢f = ¢gf and g is universal with this
property. It can be constructed as the pushout in the following diagram, where
V =1+ 1 is the folding map:

XTIx F+f v

"

X Cf. 1)

Coends are categorical generalizations of tensor products. Given a functor F' :

AP x A — €, the coend
A
/ F(n,n)

is defined to be the coequalizer of the maps

L T Feym) — T F(n,n)

d:m—n

47
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whose restrictions to the ¢th summand are
F(¢,id): F(n,m) — F(m,m) and F(Id,¢): F(n,m)— F(n,n),

respectively. It satisfies a universal property like that of tensor products. If the

objects of F'(n,n) have points that can be written in the form of “tensors” x @y,

then the coend is obtained from the coproduct of the F'(n,n) by identifying x¢ @y

with = @ ¢y whenever this makes sense. Here ¢ is a map in A, contravariant actions

are written from the right, and covariant actions are written from the left.
Dually, if € has limits, a functor /' : A x A — % has an end

/A F(n,n).

It is defined to be the equalizer, E(f, f'), of the maps
L0 Fm) — IT Fm,n)

d:m—n

whose projections to the ¢th factor are
F(@d,¢): F(m,m) — F(m,n) and F(¢,id): F(n,n) — F(m,n).

Recall that a simplicial object in a category % is a contravariant functor A —
€, where A is the category of sets n = {0,1,2,... ,n} and monotonic maps. Using
the usual face and degeneracy maps, we obtain a covariant functor A.: A — %
that sends n to the standard topological n-simplex A,. For a simplicial space
X, : A — %, we have the product functor

XiX At AP X N — Y.
Define the geometric realization of X, to be the coend
N
(1.1) X :/ X % A

It X, is a simplicial based space, so that all its face and degeneracy maps are
basepoint preserving, then all points of each subspace {*} x A, are identified to
the point (x,1) € Xo x A in the construction of | X.|, hence

A
(1.2) X.| = / X A (D)
If X. is a simplicial G-space, then |X,| inherits a G-action such that
(1.3) X7 = |XF| for all H C G.
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S. Mac Lane. Categories for the Working Mathematician. Springer. 1976.
J. P. May. The Geometry of Tterated Loop Spaces (§11). Springer Lecture Notes Vol 271. 1972.

2. Homotopy colimits and limits

Let & be any small topological category. We understand & to have a discrete
object set and to have spaces of maps d — d’ such that composition is continuous.
Let B,(Z) be the set of n-tuples f = (f1,..., f,) of composable arrows of Z,
depicted

f f In
dy <— dy <—— - d,.

Here Byo(Z) is the set of objects of Z and B,(Z) is topologized as a subspace of the
n-fold product of the total morphism space [ Z(d,d"). With zeroth and last face

given by deleting the zeroth or last arrow of n-tuples f (or by taking the source or

target of f; if n = 1) and with the remaining face and degeneracy operations given
by composition or by insertion of identity maps in the appropriate position, B.(Z)
is a simplicial set called the nerve of Z. Its geometric realization is the classifying
space BZ. If 7 has a single object d, then G = 2(d, d) is a topological monoid
(= associative Hopf space with unit) and BZ = B(G is its classifying space.

We can now define the two-sided categorical bar construction. It will specialize
to give homotopy colimits. Let T : & —— % be a continuous contravariant
functor. This means that each T'(d) is a space and each function T': Z(d,d') —
2 (T(d"), T(d))is continuous. Let S : Z — % be a continuous covariant functor.
We define

(2.1) B(T,2,5) = |B/T,2,5)|.
Here B.(T, 2, 5) is the simplicial space whose set of n-simplices is
{(t, f,9)[t € T(do), f € Bu(Z), and s € S5(dn)},

topologized as a subspace of the product ([I7T(d)) x (II Z(d,d'))" x (11 5(d));
Bo(T,2,5)=11T(d) x S(d). The zeroth and last face use the evaluation of the
functors T' or .S; the remaining faces and the degeneracies are defined like those of
B.2.

Since the coend of T' x S : PP x & — 9/ is exactly the coequalizer of dy, d; :
B(T,2,5) — Bo(T,Z,S5), we obtain a natural map

(2.2) ¢: B(T,2,5) — /@ T(d) x S(d) =T @ 5.
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It is obtained by using iterated compositions to mapB.(T, Z, S)to the constant
simplicial space at the cited coend, which we denote by T'®4 S.

Let Z. be the covariant functor represented by an object e of Z, so that Z.(d) =
Z(e,d). Then € reduces to a map

e:B(T,2,7.) — T(e),

and this map is a homotopy equivalence. In fact, using the identity map of e, we
obtain an inclusion 5 : T'(e) — B(T, 2, Z.) such that en = 1 and a simplicial
deformation ne ~ id. There is a left—right symmetric analogue.

If the functor S takes values in G%, then B.(T,Z,5) is a simplicial G-space
and B(T,2,5) is a G-space such that

(2.3) B(T,7,5)" = B(T,2,5%).
We define the homotopy colimit of our covariant functor S by
(2.4) Hocolim S = B(*, Z,95),

where x : & — 9/ is the trivial functor to a 1-point space. Here the coend on

the right of (1.5) is exactly the ordinary colimit of S. Thus we have
(2.5) ¢ : hocolim S — colim S.

When ( is a group regarded as category with a single object and X is a (left) G-
space regarded as a covariant functor, the homotopy colimit of X is the “homotopy
orbit space” FG x¢ X = X/hG, and ¢ is the natural map X/hG — X/G.

Our preferred definition of homotopy limits is precisely dual. We have a cosim-
plicial space C.(T, 2, 5), the two-sided cobar construction. Its set of n-cosimplices
is the product over all f € B,(Z) of the spaces T'(dy) x S(dy), topologized as a
subspace of Map(B,(2),[1T(d) x S(d')). The fth coordinates of the cofaces and
codegeneracies with target C,(T,2,5) are obtained by projecting onto the co-
ordinate of their source that is indexed by the corresponding face or degeneracy

applied to f, except that, for the zeroth and last coface, we must compose with
T(f1) xid : T'(do) x S(dn) — T(dy) x S(d,)

or

id % S(f) : T(do) x S(dy) —> T(do) % S(dp_y).
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We define the geometric realization, or totalization, “TotY,” of a cosimplicial

space Y, to be the end
(2.6) TotY, = / Map(A, V).
A

Here we are using the evident functor A? x A — %/ that sends (m,n) to

Map(A,,, Yy). If Y takes values in based spaces, we may rewrite this as
(2.7) TotY, = / F((An)s, Vo).
A

We then define
(2.8) C(1,2,5) = TotC.(T, 2. ),
and we have a natural map
@

(2.9) 0 :/ T(d) x S(d) — C(T, 7, S).

We define the homotopy limit of our contravariant functor T : & — % to be
(2.10) Holim T’ = TotC. (T, 7, +),
and we see that n specializes to give a natural map
(2.11) g :imT — holimT.

When G is a group regarded as a category with a single object and X is a
(right) G-space regarded as a contravariant functor, the homotopy limit of X is

the “homotopy fixed point space” of G-maps KG' — X,
Mapg(EG, X) = Map(EG, X)9 = X9,

and 7 is the natural map X¢ — X"“ that sends a fixed point to the constant
function at that point. This map is the object of study of the Sullivan conjecture.
A. K. Bousfield and D. M. Kan. Homotopy limits, completions, and localizations. Springer

Lecture Notes in Mathematics Vol 304. 1972.
J. P. May. Classifying spaces and fibrations (§12). Memoirs Amer. Math. Soc. No. 155, 1975.
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3. Elmendorf’s theorem on diagrams of fixed point spaces

Recall that ¢ is the category of orbit spaces. We shall regard ¢ as a topological
category with a discrete set of objects. We write [G/H] for a typical object, to
avoid confusing it with the G-space GG/H. The space of morphisms [G/H] —
[G/K] is the space of G-maps G/H — G//K, and this space may be identified
with (G/K)". Define a ¥-space to be a continuous contravariant functor 4 —
7. A map of ¥-spaces is a natural transformation, and we write 4% for the
category of G-spaces. We shall compare this category with G%. We have already

observed that a G-space X gives a ¥-space X*, and we write
S:GU — GU

for the functor that sends X to X*. We wish to determine how much information
the functor ® loses.

By the definition of € (X), it is clear that the ordinary homology and coho-
mology of X depend only on ®X. If T': ¢ — 9% is a ¥-space such that each
T(G/H) is a CW-complex and each T(G/K) — T(G/H) is a cellular map, then
we can define HE(T; M) exactly as we defined HA(X; M). Note, however, that
unless G is discrete, X* will not inherit a structure of a CW-complex from a
G-CW complex X. Indeed, for compact Lie groups, we saw that it was not quite
the functor X that was relevant to ordinary cohomology, but rather the functor

that sends G/H to X /W, H.

There is an obvious way that ¢-spaces determine G-spaces.

LEMMA 3.1. Define a functor © : Y% — G by OT = T(G/e), with the
G-maps GG/e — G/e inducing the action. Then O is left adjoint to P,

GU (T, 0X) = Gw (0T, X).

ProOOF. Clearly ©0X = X. The quotient map G — G/H induces a map
n: T(G/H) — T(G/e), and these maps together specify a natural map 7 :
T — ®OT. Passage from ¢ : T' — ®X to O¢ : OT — X is a bijection whose
inverse sends f : 0T — X to®fon. O

The following result of Elmendorf shows that ¢-spaces determine GG-spaces in a
less obvious way. In fact, up to homotopy, any ¥-space can be realized as the fixed
point system of a GG-space and, up to homotopy, the functor ® has a right adjoint
as well as a left adjoint. Note that we can form the product T' x K of a ¥-space
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T and a space K by setting (T'x K)(G/H) =T(G/H) x K. In particular, T' x [
is defined, and we have a notion of homotopy between maps of ¢-spaces. Write

[T, T'4 for the set of homotopy classes of maps T — T".

THEOREM 3.2 (ELMENDORF). There is a functor ¥ : Y% — G% and a
natural transformation ¢ : ®¥ — id such that each e : (U7 — T(G/H) is
a homotopy equivalence. If X has the homotopy type of a G-CW complex, then

there is a natural bijection
X, WTg 2 [0X, .

PROOF. Let S : ¢ — G% be the covariant functor that sends the object
[G/H] to the G-space GG/H. On morphisms, it is given by identity maps

Y(|G/H),[G/K]) — GZ(G/H,G/K).
For a ¢¥-space T, define UT to be the G-space B(T,¥,5). We have
SHIG/K) = (G/K)Y! = G (G/H,G/K) = 9([G/H],[G/K]),

and (2.2) and (2.3) give homotopy equivalences ¢ : (VT)# — T(G/H) that define

a natural transformation ¢ : ¥ — id. Clearly
O : VT =00oYT — OT

is a weak equivalence of G-spaces for any 7. With T = ® X, this gives a weak
equivalence Q¢ : VX — X. We can check that W®.X has the homotopy type
of a G-CW complex if X does. Therefore Oc is an equivalence, and we choose a

homotopy inverse (O¢)~!. Define
a:[X,¥T]g — [®X,T]ey and [§:[®X,T]y — [X, VT4

by a(f) = e o ®f and B(¢) = ¥oé o (Oc)~!. Easy diagram chases show that
af(¢) ~ ¢ and Ba(f) =~ (Ve)o (Oz)~! o f. Since Ve is a weak equivalence, the
Whitehead theorem gives that Fa is a bijection. It follows formally that « and

are inverse bijections. [

A. D. Elmendorf. Systems of fixed point sets. Trans. Amer. Math. Soc. 277(1983), 275-284.
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4. Eilenberg-Mac Lane (G-spaces and universal F-spaces

We give some important applications of this construction, starting with the

construction of equivariant Eilenberg-Mac Lane spaces that we promised earlier.

EXAMPLE 4.1. Let B be the classifying space functor from topological monoids
to spaces. It is product-preserving, and it therefore gives an Abelian topological
group when applied to an Abelian topological group. If 7 is a discrete Abelian
group, then the n-fold iterate B"r is a K(w,n). A coefficient system M : hY —
/b may be regarded as a continuous functor 4 — % (with discrete values). We
may compose with B" to obtain a ¢-space B™ o M. In view of the equivalences
e:U(B"o M) — K(M(G/H),n), ¥(B"oM)is a K(M,n). Theorem 3.2 gives

a homotopical description of ordinary cohomology in terms of maps of ¥-spaces:
HY(X; M) = [X,K(M,n))g = [®X, B" 0 M]q.

In interpreting this, one must remember that the right side concerns homotopy
classes of genuine natural transformations ®X — B"M, and not just natural
transformations in the homotopy category. The latter would be directly com-

putable in terms of nonequivariant comology.

EXAMPLE 4.2. If M is a contravariant functor from A% to (not necessarily

Abelian) groups, then we can regard BoM as a ¢4-space and so obtain an Eilenberg-

Mac Lane G-space K(M,1) = ¥ (Bo M).

EXAMPLE 4.3. A set-valued functor M on h%¥ is the same thing as a continu-
ous set-valued functor on ¢. Applying ¥ to such an M, we obtain an Eilenberg-
Mac Lane G-space K (M, 0). Its fixed point spaces K (M, 0)? are homotopy equiv-
alent to the discrete spaces M(G//H), but the G-space K(M,0) generally has
non-trivial cohomology groups in arbitrarily high dimension. For set-valued coef-
ficient systems M and M’, let Naty(M, M) be the set of natural transformations
M — M’. Then Theorem 3.2 and the discreteness of M give isomorphisms

(4.4) (X, K(M,0)]g = [0X, My = Natg(zo(X), M).

This may seem frivolous at first sight, but in fact the spaces K(M,0) are cen-
tral to equivariant homotopy theory. For example, we shall see later that the
isomorphisms just given specialize to give a classification theorem for equivariant
bundles — and to reprove the classical classification of nonequivariant bundles.

The relevant K(M,0)’s are special cases of those in the following basic definition.
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DEFINITION 4.5. A family .% in G is a set of subgroups of GG that is closed
under subconjugacy: if H € .% and ¢7'Kg C H, then K € .%. An .Z-space is a
G-space all of whose isotropy groups are in .%. Define a functor .Z : h¥9 — Sets
by sending GG/H to the 1-point set if H € .# and to the empty set if H ¢ %
Define the universal .#-space E.% to be W.Z. It is universal in the sense that, for

F-space X of the homotopy type of a G-CW complex, there is one and, up to
homotopy, only one G-map X — E.Z%. Define the classifying space of the family
F to be the orbit space B.Z = E.% /(.

In thinking about this example, it should be remembered that there are no
maps from a non-empty set to the empty set. In particular, there are no G-maps
X — EZ if X is not an F-space. This also shows that the functor .# only
makes sense if the given set .# of subgroups of G is a family. We augment the

definition with the following relative version. It will become very important later.

DEFINITION 4.6. For a subfamily .# of a family %', define E(.#', %) to be the
cofiber of the based G-map (unique up to homotopy) EF, — EF.. Let &/l
be the family of all subgroups of G, and let £.Z = E(a/ll, F). Since Ea/ U is
G-contractible, £.Z is equivalent to the unreduced suspension of E.Z with one
of the cone points as basepoint. The space (Eﬂ)H is contractible if H € % and
is the two-point space S° if H ¢ #. For .Z C F', the G-space E(.F', .F) is
equivalent to I.7| A EZ.

The following observation will become valuable when we examine the structure

of equivariant classifying spaces.
LEMMA 4.7. Let .% be a family in G and H be a subgroup of G.
(a) Regarded as an H-space, E.% is E(%|H), where
FIH={K|K €.% and K C H}.
(b) If H € .7, then, regarded as a W H-space, (E.Z)! is E(Z"), where
FH = {L|L = K/H for some K € Z such that H C K C NH}.

The classical example is .% = {e}. An {e}-space X is a G-space all of whose
isotropy groups are trivial. That is, X is a free G-space. Then FG = FE{e} is
exactly the standard example of a free contractible G-space, and the quotient map
7 : EG — BG is a principal G-bundle. Given the result that pullbacks of bundles

along homotopic maps are homotopic, we have already proven that = is universal.
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Indeed, if p: £ — B is a principal G-bundle, we have a unique homotopy class
of G-maps f: E — EG. The map f: B — B( that is obtained by passage to
orbits from f is the classifying map of p. Certainly p is equivalent to the bundle
obtained by pulling # back along f.

When G is discrete, the ordinary homology and cohomology of the G-spaces
E.Z admit descriptions as Ext groups, generalizing the classical identification of
the homology and cohomology of groups with the homology and cohomology of
K(m,1)’s. This can be seen from the projectivity of the cellular chains C (F.%)
and inspection of definitions or by collapse of the universal coefficients spectral
sequences. Write Z[.Z] for the free Abelian group functor composed with the
o

functor #

PRrROPOSITION 4.8. Let G be discrete. For a covariant coefficient system N and

a contravariant coefficient system M,

HE(EZ;N) = Tor?(Z[.Z);N) and H}(E.Z; M) = Exty(Z[.Z]; M).



CHAPTER VI

The Homotopy Theory of Diagrams

by Robert J. Piacenza

1. Elementary homotopy theory of diagrams

A substantial portion of the homotopy, homology, and cohomology theory of
Gi-spaces X depends only on the underlying diagram of fixed point spaces ®X :
9 — % . There is a vast and growing literature in which the homotopy theory of
spaces is generalized to a homotopy theory of diagrams of spaces that are indexed
on arbitrary small indexing categories. The purpose of this chapter is to outline
this theory and to demonstrate the connection between diagrams and equivariant
theory. A very partial list of sources for further reading is given at the end of this
section.

Throughout the chapter, we let % be the cartesian category of compactly gener-
ated weak Hausdorff spaces and let J be a small topological category over % with
discrete object space. Define %77 to be the category of continuous contravariant
% -valued functors on J. Its objects are called either diagrams or J-spaces; its
morphisms, which are natural transformations, are called J-maps. Note that 27
is a topological category: its hom sets are spaces and composition is continuous.

Let I be the unit interval in 7. If X and Y are diagrams, then a homotopy
from X toYisa J-map H: [ x X — Y, where [ x X is the diagram defined
on objects j € |J| by (I x X)(j) = I x X(j) and similarly for morphisms of .J. In
the usual way homotopy defines an equivalence relation on the J-maps that gives
rise to the quotient homotopy category h%”. We denote the homotopy classes of
J-maps from X to Y by h%/7(X,Y), abbreviated h(X,Y). An isomorphism in

57
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h? will be called a homotopy equivalence.

A J-map is called a J-cofibration if it has the J homotopy extension property,
abbreviated J — HEP. The basic facts about cofibrations in % apply readily to
J-cofibrations.

The following standard results for spaces are inherited by the category %/7.

THEOREM 1.1 (INVARIANCE OF PUSHOUTS). Suppose given a commutative di-

agram:
4-—1-p
X

[}

/

|
v
. I
&5\1&’ 7 l
Y
X/\B Y/
in which ¢ and ¢ are J-cofibrations, f and f’ are arbitrary J-maps, «, 3, and ~

are homotopy equivalences, and the front and back faces are pushouts. Then the

induced map é on pushouts is also a homotopy equivalence.

THEOREM 1.2 (INVARIANCE OF COLIMITS OVER COFIBRATIONS). Suppose

given a homotopy commutative diagram

10 i1

XO Xl Ce Xk
e K
o Jo Vi J1 o vk Jk

in %7 where the ¢}, and jj are J-cofibrations and the f* are homotopy equivalences.

Then the map colimy, f* : colimy X* — colimy, Y* is a homotopy equivalence.

The reader will readily accept that other such standard results in the homotopy

theory of spaces carry over directly to the homotopy theory of diagrams.

W. G. Dwyer and D. M. Kan. An obstruction theory for diagrams of simplicial sets. Proc. Kon.
Ned. Akad. van Wetensch A87=Ind. Math. 46(1984), 139-146.

W. G. Dwyer and D. M. Kan. Singular functors and realization functors. Proc. Kon. Ned.
Akad. van Wetensch A87=Ind. Math. 46(1984), 147-153.

W. G. Dwyer, K. M. Kan, and J. H. Smith. Homotopy commutative diagrams and their real-
izations. J. Pure and Appl. Alg. 57(1989), 5-24.

E. Dror Farjoun. Homotopy and homology of diagrams of spaces. Springer Lecture Notes in

Mathematics Vol. 1286, 1987, 93-134.
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E. Dror Farjoun. Homotopy theories for diagrams of spaces. Proc Amer. Math. Soc. 101(1987),
181-189.

A. Heller. Homotopy in functor categories. Trans. Amer. Math. Soc. 272(1982), 185-202.

R. J. Piacenza. Homotopy theory of diagrams and CW-complexes over a category. Canadian J.
Math. 43(1991), 814-824.

K. Sarnowski. Homology and cohomology of diagrams of topological spaces. Thesis. University
of Alaska. 1994.

Y. Shitanda. Abstract homotopy theory and homotopy theory of functor category. Hiroshima
Math. J. 19(1989), 477-497.

I. Moerdijk and J. A. Svensson. A Shapiro lemma for diagrams of spaces with appliations to
equivariant topology. Compositio Mathematica 96(1995), 249-282.

2. Homotopy Groups

Let I™ be the topological n-cube and 9I™ its boundary. For an object j € |J],

let j € %7 denote the associated represented functor; its value on an object k is

the space %7 (k,j).

DEFINITION 2.1. By a pair (X,Y) in %77/, we mean a J-space X together with
a sub J-space Y. Morphisms of pairs are defined in the obvious way. Similar
definitions apply to triples, n-ads, etc. Let ¢ : j — Y be a morphism in 7. By
the Yoneda lemma, ¢ is completely determined by the point ¢(id;) = yo € Y(j).
For each n > 0, define

F%(Xv Yv ¢) = h((]nv a]nv {0}) X i’ (X7 Yv Y))

where yo = ¢(id;) € Y(j) serves as a basepoint, and all homotopies are homotopies
of triples relative to ¢. The reader may formulate a similar definition for the
absolute case 7/ (X, ¢). For n = 0 we adopt the convention that I° = {0,1} and
dI° = {0} and proceed as above. These constructions extend to covariant functors

on 7. From now on, we shall often drop ¢ from the notation 7/(X,Y, ).

The following proposition follows immediately from the Yoneda lemma.

PROPOSITION 2.2. There are natural isomorphisms 7/ (X) = 7,(X(j)) and
™ (X,Y) = 7,(X(5),Y(s)) that preserve the group structures when n > 1 (in

the absolute case; the relative case requires n > 2).

As a direct consequence of Proposition 2.2 we obtain the usual long exact se-

quences.
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PROPOSITION 2.3. For (X,Y) and j as in Definition 2.1, there exist natural

boundary maps d and long exact sequences
s T (X, Y) 5 (V) — (X)) — - — m(Y) — m(X)
of groups up to W{(Y) and pointed sets thereafter.

DEFINITION 2.4. A map e : (X,Y) — (X', Y") of pairs in % is said to be
an n-equivalence if e(7) : (X(),Y(j)) — (X'(y),Y’(y)) is an n-equivalence in %
for each j € |J|. A map e is said to be a weak equivalence if it is an n-equivalence
for each n > 0. Observe that e is an n-equivalence if for every j € |J| and
] — Y, e, : F]];(X, Y,¢) — F]];(X/,Y/, e¢) is an isomorphism for 0 < p < n
and an epimorphism for p = n. The reader may easily formulate similar definitions

for J-maps e : X — X’ (the absolute case).

3. Cellular Theory

In this section we adapt May’s preferred approach to the classical theory of CW
complexes to develop a theory of J-CW complexes.

Let D"*! be the topological (n + 1)-disk and S™ the topological n-sphere. Of
course, these spaces are homeomorphic to I"*! and 91" respectively. We shall
construct cell complexes over .J by the process of attaching cells of the form D™ *1 x

J by attaching morphisms with domain 5™ x j.

DEFINITION 3.1. A J-complex is an object X of %7 with a decomposition

X = colim,>¢ X? where
X°= 1] D x J,
a€Ay
and, inductively,
X? =X D J.)
f a€Ay

for some attaching J-map f : [l.ca, Sra=l l, — X?~1: here, for each p > 0,
{Jo | @ € A,} is a set of objects of J. We call X a J-CW complex if X is a
J-complex such that n, = p for all p > 0 and a € A,.

Now J-subcomplexes and relative J-complexes are defined in the obvious way.
We adopt the standard terminology for CW-complexes for J-CW-complexes with-
out further comment.

The following technical lemma reduces directly to its space level analog.
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LEMMA 3.2. Suppose that ¢ : ¥ — Z is an n-equivalence. Then we can
complete the following diagram in %”:

D O LR = IV (V0 LS U

_ / /
7 Y ‘
S . x _
/ \\h \\g
~ ~N

~N

D" xy : D" x I xy : D" x .

20 1

From here, we proceed exactly as in 1§3 to obtain the following results.

THEOREM 3.3 (J-HELP). If (X, A) is a relative J-CW complex of dimension
< nand e :Y — Z is an n-equivalence, then we can complete the following

diagram in Z7:

A Ax T A
7 y
/ b "
X X x T X.

THEOREM 3.4 (WHITEHEAD). Let e : Y — Z be an n-equivalence and X be
a J-CW complex. Then e, : h(X,Y) — h(X, Z) is a bijection if X has dimension
less than n and a surjection if X has dimension n. If ¢ is a weak equivalence, then

€.t M(X,Y) — h(X, Z) is a bijection for all X.

COROLLARY 3.5. If e : Y — Z is an n-equivalence between J-CW complexes
of dimension less than n, then e is a J-homotopy equivalence. If e is a weak

equivalence between J-CW complexes, then e is a J-homotopy equivalence.

THEOREM 3.6 (CELLULAR APPROXIMATION). Let (X, A) and (Y, B) be rela-
tive J-CW complexes, (X', A") be a subcomplex of (X, A), and f : (X, A) —
(Y, B) be a map of pairs in %7 whose restriction to (X', A’) is cellular. Then f is
homotopic rel X' U A to a cellular map ¢ : (X, A) — (Y, B).

COROLLARY 3.7. Let X and Y be J-CW complexes. Then any J-map [ :
X — Y is homotopic to a cellular J-map, and any two homotopic cellular J-

maps are cellularly homotopic.



62 VI. THE HOMOTOPY THEORY OF DIAGRAMS

Next we discuss the local properties of J-CW complexes. First we develop some
preliminary concepts. Let X be a J-space and, for each j € |J], let t; : X(j) —
colimy X be the natural map of X(j) into the colimit. Observe that, for each
morphism s : ¢« — j of J, t; = t; 0 X(s). For each subspace A C colim; X,
we define A(j) = tj_l(A); for each morphism s : i — j of J, we define A(s) :
A(j) — A(i) to be the restriction of X(s). (As usual, we apply the k-ification
functor to ensure that all spaces defined above are compactly generated.) One
quickly checks that A is a J-space, that colim; A = A, and that there is a natural

inclusion A — X. To simplify notation, we write
X/J = colimy X
from now on.

DEFINITION 3.8. A pair (X, A) is a J-neighborhood retract pair (abbreviated
J-NR pair) if there exists an open subset U of X/J such that A C U and a
retraction r : U — A. A pair (X, A) is a J-neighborhood deformation retract
pair (abbreviated J-NDR pair) if (X, A) is a J-NR pair and the J-map r is a

J-deformation retraction.

Let X be a J-CW complex. The functor colim; sends the J-space A x j de-
termined by a space A and object j to the space A, and it preserves colimits.
Therefore the cellular decomposition of X determines a natural structure of a CW
complex on X/J; its attaching maps are the images under the functor colim; of
the attaching J-maps of X. One may also check that if A is a subcomplex of X/.J,
then A has a natural structure of a subcomplex of X. In particular, if A? is the

p-skeleton of X/J, then A? = X? is the p-skeleton of X.

PROPOSITION 3.9 (LOCAL CONTRACTIBILITY). Let X be a J-CW complex and
A = {a} be a point of X/J. Then there is an object j € |J| such that A 2 j, and
(X, A) is a J-NDR pair.

PROOF. Let a be in the p-skeleton but not in the (p—1)-skeleton of X/.J. Then
there is a unique attaching map f : S7' x j — X?~! such that a is in the interior
of D?. 1t follows that A = J. To construct the required neighborhood U, first take
an open ball Uy contained in the interior of B, and centered at a. Then U is a
neighborhood in (X/.J)? that contracts to A. One then extends Uy inductively cell

by cell by the usual space level procedure to construct the required neighborhood

U. O
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PrOPOSITION 3.10. Let X be a J-CW complex and A be a subcomplex of X/.J.
Then (X, A) is a J-NDR pair.

ProOF. It follows from J-HELP that A — X is a J-cofibration. Just as on
the space level, a J-cofibration is the inclusion of a J-NDR pair. [

R. J. Piacenza. Homotopy theory of diagrams and CW-complexes over a category. Canadian J.

Math. 43(1991), 814-824.

4. The homology and cohomology theory of diagrams

The ordinary homology and cohomology theories of 1§3 are special cases of a
construction that applies to the category %7 for any J. The difference is that
the theory in 1§3 started with G-CW complexes and then passed to the associated
diagrams defined on the orbit category of (&, whereas we here exploit the theory of
J-CW complexes. There is again a vast literature on the cohomology of diagrams,
some relevant references being listed in Section 1.

Define a J-coefficient system to be a continuous contravariant functor M : J —
a/'b. Continuity ensures that M factors through the homotopy category hJ. Let
/0" be the category of J-coefficient systems. It is an Abelian category, and
we can do homological algebra in it. As in [§4, a covariant homotopy invariant
functor  — /b induces a functor from J-spaces to .J-coefficient systems by
composition; we name such functors by underlining the name of the given functor.
Of course, we also have the notion of a covariant J-coefficient system.

Let (X, A) be a relative J-CW complex with n skeleton X" and observe that

(1.1) XX = (LD G )ALS™ %) = 5" A ()

where the 4 indicates the addition of disjoint basepoints. Define a chain complex

C.(X,A) in &b, called the J-cellular chains of (X, A), by setting
(4.2) C.(X,A)=H, (X", X"\ 7).

The connecting homomorphisms of the triples (X", X"~ X"=2) specify the dif-

ferential

(4.3) d:C,(X,A) — C,_, (X, A).
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Clearly (5.1) implies that

(4.4) Co(X, A7) = 3 Ho(J(jjo)+: Z)-
ja
The construction is functorial with respect to cellular maps (X, A) — (Y, B).

For a covariant J-coefficient system N, define the cellular chain complex of

(X, A) with coefficients N by
(4.5) CL(X, A N) = CL(X; 4) @y N,

where the tensor product on the right is interpreted as the coend over .J. Passing
to homology, we obtain the cellular homology H.(X, A; N).
For a contravariant J-coefficient system M, define the cellular cochain complex

of (X, A) with coefficients M by
(4.6) C*(X,A; M) = Hom;(C.(X;A), M).
Passing to cohomology, we obtain the cellular cohomology H*(X, A; M).

THEOREM 4.7. Cellular homology and cohomology for pairs of J-CW complexes
satisfy the standard FEilenberg-Steenrod axioms, suitably reformulated for dia-

grams.

REMARK 4.8. We may extend the cellular theory to arbitrary pairs of diagrams
by means of cellular approximations; see Proposition 4.6. That is, we extend our
homology and cohomology theories to theories that carry weak equivalences to
isomorphisms. We may also adapt Ilman’s construction of equivariant singular
theory to construct a singular theory for diagrams. Of course, the singular theory
is isomorphic to the cellular theory on the category of J-CW complexes.

S. Illman. Equivariant singular homology and cohomology. Memoirs Amer. Math. Soc. No.

156. 1975.

5. The closed model structure on %~

Just as the category of spaces has a (closed) model structure in the sense of
Quillen, so does the category of G-spaces for any (. This point of view has not
been taken earlier since the conclusions are obvious to the experts and perhaps
not very helpful to the novice on a first reading. However, since the homotopical
properties of categories of diagrams are likely to be less familiar than those of the

category of spaces, it is valuable to understand how they inherit model structures
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from the standard model structure on %, which is the special case of the trivial
category J in the definitions here. We use the name g¢-fibration and ¢-cofibration
for the model structure fibrations and cofibrations to avoid confusion with other
kinds of fibrations and cofibrations. The weak equivalences of the model structure
will be the weak equivalences that we have already defined; an acyclic g-fibration
is one that is a weak equivalence, and similarly for acyclic ¢-cofibrations. Consider
diagrams

A—X

1
gl b
/

B——Y

The map ¢ has the left lifting property (LLP) with respect to f if one can always
fill in the dotted arrow. The right lifting property (RLP) is defined dually.

DEFINITION 5.1. A J-map f: X — Y is a ¢-fibration if f(j): Y (y) — X(J)
is a Serre fibration for each object j € |J|. Observe that f is a ¢-fibration if f has
the homotopy lifting property for all objects of the form " xj. Amapg: A — B
is a g-cofibration if it has the LLP with respect to all acyclic ¢-cofibrations.

THEOREM 5.2. With the structure just defined, /7 is a model category.

PROOF. Just as as for spaces, one quickly checks Quillen’s axioms, using the

factorization lemma below to verify the factorization axiom M2. [

As for spaces, the proof leads directly to the following characterizations of ¢-

cofibrations and of acyclic ¢-fibrations.

COROLLARY 5.3. A J-map g : A — B is a ¢-cofibration if and only if it is a
retract of the inclusion A” — B’ of a relative J-complex (B’, A").

COROLLARY 5.4. A J-map f: X — Y is an acyclic ¢g-fibration if and only if
it has the RLP with respect to each ¢-cofibration S x j — D"t! x j.

LEMMA 5.5 (QUILLEN’S FACTORIZATION LEMMA). Any J-map f : X — YV

can be factored as f = po ¢, where ¢ is a ¢-cofibration and p is an acyclic ¢-
fibration.



66 VI. THE HOMOTOPY THEORY OF DIAGRAMS

ProoFr. We construct a diagram

go g1

X Z° Zt

Y

as follows. Let Z7! = X and p_; = f. Having obtained Z"~!, consider the set of

all diagrams of the form

. to
Sa J, —= gn-1

s

D= xlas—>y

Forming the coproduct over all of the left vertical arrows, we may define g, :

7"t — Z™ by the pushout diagram

We have allowed the zero dimensional pair (D, S™!) = ({pt}, ) in this construc-
tion. Define p, : Z% — Y by pushing out along p,_; and the coproduct of the

maps S,. Then let
Z =colimZ", p=colimp,, and ¢ =colimg,¢,_1--"go.

One may check that ¢ has the LLP with respect to each acyclic ¢-fibration and,
by the “small object argument” based on the compactness of the D", that p is an

acyclic g-fibration. [J

Let A% 7 be the localization of A% obtained by formally inverting the weak
equivalences. The model structure implies that A% 7 is equivalent to the homotopy

category of J-CW complexes, as we indicate next.

LEMMA 5.6. Let X = colim X, taken over a sequence of J-cofibrations such that
each X, has the homotopy type of a J-CW complex. Then X has the homotopy
type of a J-CW complex.
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Proo¥F. Up to homotopy, we may approximate the sequence by a sequence of
J-CW complexes and cellular inclusions; we then use the homotopy invariance of
colimits (Theorem 1.2). O

The following proposition follows easily.

PROPOSITION 5.7. Each J-complex is of the homotopy type of a J-CW com-
plex.

THEOREM 5.8 (APPROXIMATION THEOREM). There is a functor I' : 27/ —
%7 and a natural transformation v : I' — id such that, for each X € 7, I'X is
a J-complex and v : '’X — X is an acyclic ¢g-fibration.

ProOF. Applying Lemma 5.3 to the inclusion of the empty set in X, we obtain
an acyclic ¢-fibration v : '’X — X. By the explicit construction, we see that I'’X

is a J-complex, I' is a functor, and ~ is a natural transformation. [
The following corollary is immediate from the previous two results.

COROLLARY 5.9. The category h% 7 is equivalent to the homotopy category of
J-CW complexes.

D. G. Quillen. Homotopical Algebra. Springer Lecture Notes in Mathematics Vol. 43. 1967.
W. G. Dwyer and J. Spalinsky. Homotopy theories and model categories. In “Handbook of
Algebraic Topology”, edited by .M. James. North Holland, 1995, pp 73-126.

6. Another proof of Elmendorf’s theorem

The theory of diagrams leads to an alternative proof of Elmendort’s theorem
V.3.2, one which gives a precise cellular perspective and illustrates the force of
model category techniques. We adopt the notations of V§3.

Observe that the fixed point diagram functor ® from G-spaces to ¥-spaces
carries X x G/H to X x G/H for a space X regarded as a G-trivial G-space.

Thus it preserves cells. It also preserves the pushouts relevant to cellular theory.

LEMMA 6.1. If

A—X
B Y

R
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is a pushout of GG-spaces in which ¢ is a closed inclusion, then

PA— DX

o

OB ——Y
is a pushout of ¥-spaces.

PROOF. Stripping away the topology we see that this holds on the set level
since every (-set is a coproduct of orbits. One may then check that the topologies

agree. [

THEOREM 6.2. Each ¢-complex (or ¥-CW complex) Y € ¥% is isomorphic to
¢ X for some G-complex (or G-CW complex) X. Therefore ® is an isomorphism
between the category of G-complexes (or 4-CW complexes) and the category of
&-complexes (or 4-CW complexes).

PrOOF. The functor ® carries (G-complexes to ¢-complexes since it preserves
cells, the relevant pushouts, and ascending unions. The assertion follows since ®

is full and faithful: inductively, the attaching maps of Y are in the image of . [
This leads to our alternative version of V.3.2.

THEOREM 6.3 (ELMENDORF). There is a functor ¥ : Y% — G% and a
natural transformation ¢ : ®¥ —— id such that WX is a G-complex, PV X is a
¢-complex, and ¢ : PUX — X is a weak equivalence of G-spaces for each ¥¢-

space X. Therefore ® and U induce an equivalence of categories between h¢%

and hGU .

ProoF. We construct the functor ¥ and transformation ¢ by using the functor
I' and transformation p given in Theorem 5.7 on the level of diagrams and using
Theorem 6.2 to transport from ¥-complexes to GG-complexes. The result follows
from the cited results and Corollary 5.8. O

COROLLARY 6.4. Let Y be a G-space of the homotopy type of a G-CW complex.
Then, for any ¥¢-space X,

hGU (Y, UX) = hgU (DY, X) = h(Y, X).

Proor. This follows from Theorem 6.3 and generalities about model cate-
gories. []
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In turn, this implies the following comparison with the original form, V.3.2, of

Elmendorf’s theorem.

COROLLARY 6.5. Write U’ and &’ for the constructions given in V.3.2. For a
@-space X, there is a weak equivalence of G-spaces ¢ : WX — W'X such that &

is natural up to homotopy and the following diagram commutes up to homotopy:

oUX oYU' X

R

X.
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CHAPTER VII

Equivariant Bundle theory and Classifying Spaces

1. The definition of equivariant bundles

Equivariant bundle theory can be developed at various levels of generality. We
assume given a subgroup II of a compact Lie group I'. We set G = I'/1I, and we
let ¢ : I' — G be the quotient homomorphism. That is, we consider an extension

of compact Lie groups
l—II—I—G—1.

Many sources restrict attention to split extensions, but we see little point in that.
By far the most interesting case is I' = G x II. When Il is O(n) or U(n), this case
will lead to real and complex equivariant K -theory.

Define a principal (II; I')-bundle to be the projection to orbits p: £ — E /Il =
B of a Il-free I'-space E. Note that G acts on the base space B. Let [ be a
I-space. By a G-bundle with structural group II, total group I', and fiber F'| we
mean the projection E xy ' — B induced by a principal (II;T')-bundle E; E is
called the associated principal bundle. Although we prefer to think of bundles this
way, it 1s not hard to give an intrinsic characterization of when a G-map ¥ — B
that is a Il-bundle with fiber F'is such a (II; I')-bundle.

When I' = G x 11, we shall refer to (G, II)-bundles rather than to (II; G x 1I)-
bundles. Here it is usual to require the fiber F' be a Il-space. A principal (G, 1I)-
bundle £ has actions by G and II that commute with one another; it is usual to
write the action of 1I on the right and the action of G on the left. Equivariant
vector bundles fit into this framework: a (G, O(n))-bundle with fiber R" is called

an n-plane G-bundle, and similarly in the complex case. The tangent and normal

71
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bundles of a smooth G-manifold give examples.

EXAMPLE 1.1. A finite G-cover p : ¥ — B is a G-map that is also a finite
cover. Such a map is necessarily a (G, Y, )-bundle with fiber the ¥,-set F' =
{1,...,n}. Its associated principal (G, ¥, )-bundle F is the subspace of Map(F,Y)

consisting of the bijections onto fibers of p.

Classical bundle theory readily generalizes to the equivariant context, and we
content ourselves with a very brief summary of some of the main points. A prin-

cipal (II; T')-bundle is said to be trivial if it is equivalent to a bundle of the form
gxid:I'xy U — G xyxU,

where H C G, A C I', ANIl = e, ¢ maps A isomorphically onto H, and U
is an H-space regarded as a A-space by pullback along ¢. Provided that £ and
therefore also B are completely regular, a principal (II;T')-bundle p : £ — B is
locally trivial. If, in addition, B is paracompact, then p is numerable. Numerable
(II; T')-bundles satisfy the equivariant bundle covering homotopy property, and
a numerable bundle E over B x [ is equivalent to the bundle (£ x {0}) x [I.
Therefore the pullbacks of a numerable (II; I')-bundle along homotopic G-maps

are equivalent.

R. K. Lashof. Equivariant bundles. Tll. J. Math. 26(1982).

R. K. Lashof and J. P. May. Generalized equivariant bundles. Bulletin de la Société Mathéma-
tique de Belgique 38(1986), 265-271.

L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure). Equiv-
ariant stable homotopy theory. (IV§1.) Springer Lecture Notes in Mathematics Vol. 1213.
1986.

2. The classification of equivariant bundles

Let Z(I;T)(X) be the set of equivalence classes of principal (II;I')-bundles
with base G-space X. We assume that X has the homotopy type of a G-CW
complex, and we check that this implies that any bundle over X has the homotopy
type of a I-"CW complex. Then Elmendort’s theorem, V.3.2, specializes to give a

classification theorem for principal (II; I')-bundles.

DEFINITION 2.1. Define F(II;T') to be the family of subgroups A of I' such
that A N1l = e and observe that an % (II; I')-space is the same thing as a II-free
[-space. Write

E(ILT)=FEZLT) and B(LT) = E(IL; T')/11,
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and let
7 E(I;T) — B(II; T)
be the resulting principal (II;I')-bundle. In the case I' = G x 11, write F(Il) =
F(I; G x 10),
Eq(Il) = E(II; G x IT) and Bg(Il) = B(IL; G x 1I).
Observe that, since E(II;T') is a contractible space, B(II;T') is a model for BII

that carries a particular action by G.

THEOREM 2.2. The bundle = : E(I;T') — B(I;T') is universal . That is,
pullback of 7 along G-maps X — B(I[;I') gives a bijection

(X, B(ILT)]¢ — B(ILT)(X).

It is crucial to the utility of this result to understand the fixed point structure
of B(II;I'). For any principal (II;I')-bundle p : £ — B and any H C G, one
can check that B is the disjoint union of the spaces p(E*), where A runs over
the Il-conjugacy classes of subgroups A C I' such that ANIl = e and ¢(A) = H.
Define

(2.3) I* =11 N NpA = 11N ZrpA,

where Zr A is the centralizer of A in I'; the equality here is an easy observation.
Then E* is a principal (IT*; WrA)-bundle and p(E*) is its base space. We can go
on to analyze the structure of BY as a WgH-space. In the case of the universal
bundle, we can determine the structure of E* by use of IV.4.7. Putting things

together, we arrive at the following conclusion.
THEOREM 2.4. For a subgroup H of GG,
B(ILT)" = [T BI"),

where the union runs over the Il-conjugacy classes of subgroups A of I' such that

ANII =eand ¢g(A) = H; as a W H-space,
BIL DY = [[WaH xvay B(IIY; WrA),

where the union runs over the ¢7*( NgH )-conjugacy classes of such groups A and

V(A) = WrA/TI* is the image of WA in We H.
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Here, by use of Lie group theory, V(A) has finite index in W H.
Specializing to I' = G x 11, we see that the subgroups A of I' such that ANII = e

are exactly the twisted diagonal subgroups

(2.5) Alp) = {(h, p(h))|h € H},

where H is a subgroup of G and p : H — Il is a homomorphism. Let N(p) =
NeaxnA(p) and observe that

N(p)=1{(g,7)lg € NoH and 7wp(h)x~' = p(ghg™") for all h € H}.
Therefore 11 N N(p) coincides with the centralizer
(2.6) I1? = {x|rp(h) = p(h)7 for all h € H}.
Let
W(p) = WGxHA(P) and V(p) = W(p)/Hp C WgH.
As usual, let Rep(G, 1) denote the set of II-conjugacy classes of homomorphisms
(G — 1II. Define an action of the group WgH on the set Rep(H,II) by letting
(¢H)p be the conjugacy class of ¢ - p, where, for ¢ € NoH, g-p: H — 1l is
the homomorphism specified by (¢ - p)(k) = p(¢ ' hg). Observe that the isotropy
group of (p) is V(p).
THEOREM 2.7. For a subgroup H of G,
(BeID" =] B(11*),
where the union runs over (p) € Rep(H,11); as a W H-space,
(Bgﬂ H WgH Xv( ) B(Hp; W(p)),
where the union runs over the orbit set Rep(H,Il)/ W H.

It is important to observe that the group W(p) need not split as a product
V(p) x II” in general. Therefore, in order to fully understand the classifying G-
spaces for (G, 1II)-bundles, one is forced to study the classifying spaces for the
more general kind of bundles that we have introduced. These are complicated
objects, and their study is in a primitive state. In particular, rather little is
known about equivariant characteristic classes. Such classes are understood in
Borel cohomology, however. By the universal property of F(II;I'), there is a
[-map FT' — E(IL;T'), which is unique up to homotopy. The induced G-map
ET/II — B(II;I') is a nonequivariant equivalence and so induces an isomorphism
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on Borel cohomology. The projection FG x ET' — FET is clearly a I'-homotopy

equivalence, and it induces an equivalence
EG xq (ET/II) = (FG x ET)/I' — ET/T' = BI.

This already implies the following calculation. We again denote Borel cohomology
by H for the moment.

THEOREM 2.8. With any coefficients, H(B(IL; T')) = H*(BI'). With field co-
efficients, Hj(Bgll) = H*(BG) @ H*(BIl) as an H*(BG)-module.

The interpretation is that the Borel cohomology characteristic classes of a prin-
cipal (G,II)-bundle F over X are determined by the H*(BG)-module structure
on HZ(X) together with the nonequivariant characteristic classes of the II-bundle
EG xq E over EG xg X.

We shall later see that generalized versions of the Atiyah-Segal completion the-
orem and of the Segal conjecture give calculations of the characteristic classes of

(G, II)-bundles in equivariant K-theory and in equivariant cohomotopy.

R. K. Lashof and J. P. May. Generalized equivariant bundles. Bulletin de la Société Mathéma-
tique de Belgique 38(1986), 265-271.

J. P. May. Characteristic classes in Borel cohomology. J. Pure and Applied Algebra 44(1987),
287-289.

3. Some examples of classifying spaces

It is often valuable to have alternative descriptions of universal bundles. We
have Grassmannian models when II is an orthogonal or unitary group. These lead
to good models for the classifying spaces for equivariant K-theory, and, just as
nonequivariantly, they are useful for the proof of equivariant versions of the Thom

cobordism theorem.

EXAMPLE 3.1. For a real inner product G-space V', let BO(n, V') be the G-space
of n-planes in V and let FO(n, V) be the G-space whose points are pairs consisting
of an n-plane 7 in V and a vector v € x. The map £O(n,V) — BO(n, V) that
sends (7, v) to 7 is a real n-plane G-bundle. Provided that V is large enough, say
the direct sum of infinitely many copies of each irreducible real representation of
G+, p is a universal real n-plane G-bundle. A similar construction works in the

complex case.
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Clearly a principal (IT; T')-bundle £ is universal if and only if E* is contractible
for A € Z(II;T'). Using the fact that the space of G-maps from a free G-CW
complex to a nonequivariantly contractible G-space is contractible, one can use this
criterion to obtain a simple model that has particularly good naturality properties.

Regard F (' as a I'-space via ¢ : ' — (G and define
Sec(EG, ET) C Map(FEG, ET)

to be the sub I'-space consisting of those maps f : G — ET such that the
composite of Fq: ET' — FEG and f is the identity map. Note that

Sec(EG, E(G x II)) = Map(EG, E1T)
since F(G x II) is homeomorphic to EG x EII.

THEOREM 3.2. The I'-space Sec(EG, ET') is a universal principal (II; I')-bundle
and therefore the G-space Sec(EG, ET') /11 is a model for B(II;T'). In particular,
the G x lI-space Map(FE G, E1I) is a universal principal (G, II)-bundle and therefore
the G-space Map(F G, ETI) /1 is a model for Bgll.

Since we are interested in maps from G-CW complexes into classifying spaces,
the fact that these models need not have the homotopy types of G-CW complexes
need not concern us.

Observe that the map 7 : EI' — BI' induces a natural G-map
(3.3) a: B(IL;T') = Sec(EG, ET) /Il — Sec(EG, BT),

where Sec( EG, BT') is the G-space of maps f : FG — BI such that the composite
of fand Bg: BI' — B is 7 : EG — BG. With I' = GG x 11, this map 1s

(3.4) a: Bgll — Map(EG, BII).

These maps have bundle theoretic interpretations. Restricting for simplicity to

the case I' = G' x II, let
Za(I)(X) = [X, Ball]a
be the set of equivalence classes of (G, II)-bundles over X and let Z(I)(X) be

the set of equivalence classes of nonequivariant II-bundles over X. By adjunction,

a G-map X — Map(EG, BII) is the same as a map FG x¢ X — BIl. Thus the
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represented equivalent of « is the Borel construction on bundles that was relevant

to Theorem 2.8; it gives
Be(I)(X) — ZB()(EG xq X).

It is important to know how much information this construction loses, hence it is
important to know how near « is to being an equivalence. Elementary covering

space theory gives the following result.

PROPOSITION 3.5. If T' is discrete, then the G-map « of (3.3) is a homeomor-
phism. If II, but not necessarily (7, is discrete, then the G-map « of (3.4) is a

homeomorphism.

An Abelian compact Lie group is the product of a finite Abelian group and
a torus. Using ordinary cohomology to study the finite factor and continuous
cohomology to handle the torus factor, Lashof, May, and Segal proved another

result along these lines.

THEOREM 3.6. If (G is a compact Lie group and II is an Abelian compact Lie
group, then the G-map « : Bgll — Map(EG, Bll) is a weak equivalence.

Consequences of the Sullivan conjecture will tell us much more about these
maps. To see this, we will need to know the behavior of the maps « on fixed point

spaces. We have determined the fixed point spaces B(II;T), and it is clear that
Sec(EG, BT = Sec(BH, BT
is the space of maps f: BH — BI such that
Bqo f=Bi: BH — BG,

where ¢ : H — (' is the inclusion and we take Bi to be the quotient map

EG/H — EG/G. In particular,
Sec(BH, BG x BIl) = Map(BH, BII).

LEMMA 3.7. Let A C I' satisfy ANIl = e and ¢(A) = H. Define a homomor-
phism g : H x T* — T by u(q(\),7) = Ar and observe that gopu =107 :
H x 11" — . The restriction of

o B(I; T)" — Sec(BH, BT
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to B(IT") is the adjoint of the classifying map
By : BH x B(II*) = B(H x 1I*) — BT,
Therefore, if I' = G x 11, the restriction of
o (BgI)? — Map(BH, BII)
to B(II?), p: H — 11, is the adjoint of the map of classifying spaces
Bv: BH x B(Illp) = B(H x 1I") — BII,
where v : H x [I? — I is defined by v(h,7) = p(h)~.

Consider what happens on components. In nonequivariant homotopy theory,
maps between the classifying spaces of compact Lie groups have been studied for

many years. One focus has been the question of when passage to classifying maps
B : Rep(G,11) — [BG, BlI]
is a bijection. We now see that, for H C G, a map BH — BII not in the

image of B corresponds to a principal II-bundle over BH that does not come
from a principal (G, II)-bundle over an orbit G/H. The equivariant results above
imply that there are no such exotic maps if Il is either finite or Abelian. The
Sullivan conjecture will give information about general compact Lie groups II

under restrictions on .

R. K. Lashof, J. P. May, and G. B. Segal. Equivariant bundles with Abelian structural group.
Contemporary Math. Vol. 19, 1983, 167-176.

J. P. May. Some remarks on equivariant bundles and classifying spaces. Astérisque 191(1990),
239-253.



CHAPTER VIII

The Sullivan Conjecture

1. Statements of versions of the Sullivan conjecture

We defined the homotopy orbit space of a G-space X to be
Xne = EG x¢ X,
and we defined the homotopy fixed point space of X dually:
X" = Map(EG, X)% = Mapg(EG, X)
is the space of G-maps EG — X. The projection FG — * induces
X = Map(*, X)¥ — Map(EG, X) = X",

It sends a fixed point to the constant map KG — X at that fixed point. It is very
natural to ask how close this map is to being a homotopy equivalence. Thinking

equivariantly, it is even more natural to ask how close the G-map
n: X = Map(*, X) — Map(EG, X)

is to being a G-homotopy equivalence. Since a G-map f : X — Y that is a

nonequivariant equivalence induces a weak equivalence of G-spaces
Map(W,Y) — Map(W, X)

for any free G-CW complex W, such as E'G, one cannot expect i to be an equiva-
lence in general. Very little is known about this question for general finite groups.
However, for finite p-groups G, to which we restrict ourselves unless we specify

otherwise, the Sullivan conjecture gives a beautiful answer. We agree to work in
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the categories h% and hG% , implicitly applying CW approximation. This allows

us to ignore the distinction between weak and genuine equivalences.

THEOREM 1.1 (GENERALIZED SULLIVAN CONJECTURE). Let X be a nilpotent
finite G-CW complex. Then the natural G-map

Xp — Map(FG, Xp)
is an equivalence.

The hypothesis that X be nilpotent can be removed by applying the Bousfield-
Kan simplicial completion on fixed point spaces and then assembling these com-
pleted fixed point spaces to a global GG-completion by means of Elmendort’s con-
struction. This equivariant interpretation of the Sullivan conjecture was noticed by
Haeberly, who also gave some information for finite groups that are not p-groups.
Looking at fixed points under H C G and noting that G is a model for FH, we

see that the result immediately reduces to the fixed point space level.

THEOREM 1.2 (MILLER, CARLSSON, LANNES). Let X be a nilpotent finite G-
CW complex, where (5 is a finite p-group. Then the natural map

(X9); = (X,)7 — Map(EG, X,)7 = (X,)"
is an equivalence.

Again, the nilpotence hypothesis is unnecessary provided that one understands
Xp to mean the Bousfield-Kan completion of X, which generalizes the nilpotent
completion that we defined, and takes (X“), and not (XP)G as the source: there
is a natural map

(X9 — (%,)7,
but it is not an equivalence in general. When G acts trivially on X, the result was

first proven by Miller, and he deduced the following powerful consequence.

THEOREM 1.3 (MILLER). Let G be a discrete group such that all of its finitely

generated subgroups are finite and let X be a connected finite dimensional CW

complex. Then 7. F(BG, X) = 0.

To deduce this from Theorem 1.2, one first observes that any map BG — X
induces the trivial map of fundamental groups and so lifts to the universal cover,
while a map X" BG — X for n > 0 trivially lifts to the universal cover. Thus

one can assume that X is simply connected. Note that this reduction depends
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on the fact that we are here working with finite dimensional and not just finite
complexes, and one must generalize Theorem 1.2 accordingly; this seems to require
trivial action on X. One then applies an inductive argument to reduce to the
case G = Z/p. Here the weak equivalence Xp — Map(BG, Xp) implies that
T.F(BG, Xp) = 0, and this implies that 7. F'(BG, X) = 0.

The general case of Theorem 1.2 reduces immediately to the case when G = Z/p,

by induction on the order of G. To see this, consider an extension
l—C—G—J—1,

where (' is cyclic of order p. For any G-space Y, (Y"“)"/ is equivalent to Y"“. In
fact, by passing to G-fixed points by first passing to C-fixed points and then to

J-fixed points, we obtain a homeomorphism
Map(EJ x EG,Y)% = Map(EJ, Map(EG,Y)")”.

Since EJ x E( is a free contractible G-space and EG' is a free contractible C'-space,
this gives the stated equivalence of homotopy fixed point spaces. The equivalence
(X9, — (Xp)hc is a J-map, hence it induces an equivalence on passage to
J-homotopy fixed point spaces, and the map of Theorem 1.2 coincides with the

composite equivalence
(X9 = (XI)); — (X)) — (X)P) = (X,)".

When G = Z/p, Theorem 1.2 was proven independently by Lannes and Miller,
using nonequivariant techniques, and by Carlsson, using equivariant techniques.
Lannes later gave a variant of his original proof that generalizes the result, uses
equivariant ideas, and enjoys a pleasant conceptual relationship to Smith theory.
We shall sketch that proof in the following three sections.

There is a basic principle in equivariant topology to the effect that, when working
at a prime p, results that hold for p-groups can be generalized to p-toral groups

(i, which are extensions of the form
l—T —G—7—1.

The point is that the circle group can be approximated by the union o, of its
p-subgroups o, of (p")th roots of unity, and an r-torus T' can be approximated by
the union 7., of its p-subgroups 7, = (0,)". It is not hard to see that the map
Bt,, — BT induces an isomorphism on mod p homology. Using this basic idea,
Notbohm generalized Theorem 1.2 to p-toral groups.
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THEOREM 1.4 (NOTBOHM). The generalized Sullivan conjecture, Theorem 1.2,

remains true as stated when G is a p-toral group.

Technically, this still works using Bousfield-Kan completion for “p-good” G-
spaces X, for which X — X, is a mod p equivalence.
A. K. Bousfield and D. M. Kan. Homotopy limits, completions, and localizations. Springer
Lecture Notes in Mathematics Vol. 304. 1972.
G. Carlsson. Equivariant stable homotopy theory and Sullivan’s conjecture. Invent. Math.
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2. Algebraic preliminaries: Lannes’ functors 7" and Fix

Let V be an elementary Abelian p-group, fixed throughout this section and the
next. It would suffice to restrict attention to V' = Z/p. The notation V indicates
that we think of V' ambiguously as both a vector space over F, and a group that

will act as symmetries of spaces. We refer back to IV.2.3, which gave
(2.1) HY(XY) 2 F, @gev) Un(S™ Hy (X))

for a finite dimensional V-CW complex X.

We begin by describing this in more conceptual algebraic terms. In this section,
we let % be the category of unstable modules over the mod p Steenrod algebra A
and let JZ° be the category of unstable A-algebras. Thus the mod p cohomology
of any space is in #. We shall abbreviate notation by setting H = H*(BV).
The celebrated functor T': % —— % introduced by Lannes is the left adjoint of
H @ (-): for unstable A-modules M and N,

(2.2) W(TM,N) = %(M,H o N).
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Observe that the adjoint of the map M =F, @ M — H @ M induced by the unit
of H gives a natural A-map 7 : T M — M. The key properties of the functor T
are as follows.

(2.3) The functor T' is exact and commutes with suspension.

(2.4) The functor 1" commutes with tensor products.

This property implies that if M is an unstable A-algebra, then so is M. The
resulting functor 7' : J# — J is also left adjoint to H @ (-): for unstable
A-algebras M and N,

(2.5) J(TM,N)= (M, H o N).

The Borel cohomology Hy(X) is both an unstable A-algebra and an H-module.
The action of H is given by a map of A-modules, and the bundle map

EV xy X — BV

induces a map H — H{;(X) of unstable A-algebras. We codify these structures
in algebraic definitions. Thus let H% be the category of unstable A-modules M
together with an H-module structure given by an A-map H @ M — M. For such
an H-A-module M, define an unstable A-module Fix(M) by

The notation “Fix” anticipates a connection with (2.1). Here we have used (2.4)
to give that T'H is an augmented A-algebra and that T'M is a T'H-module; T'H
acts on H through the adjoint TH — H of the coproduct v : H — H @ H. We
have another adjunction. For unstable H-A-modules M and unstable A-modules

N, we have
(2.7) Y (Fix(M),N)= HZ(M,H @ N).

Comparing the adjunctions (2.2) and (2.7), we easily find that, for an unstable
A-module M,

(2.8) Fix(H® M) = TM as unstable A-modules.

Less obviously, one can also construct a natural isomorphism

(2.9) H@rg TM = H® Fix(M) as unstable H- A-modules.
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The functor Fix has properties just like those of T

(2.10) Fix: HZ — % is exact and commutes with suspension.

The appropriate tensor product in H%Z is M @y N.

(2.11)
There is a natural isomorphism Fix(M @y N) = Fix(M) @ Fix(N).

Define H\.#Z to be the category of unstable A-algebras under H. If M is an
unstable A-algebra under H, then its product factors through M @y M and we
deduce from (2.11) that Fix(M) is an unstable A-algebra. If M is an unstable A-
algebra, then (2.8) is an isomorphism of unstable A-algebras. If M is an unstable
A-algebra under H, then the isomorphism (2.9) is one of unstable A-algebras under

H. We now reach the adjunction that we really want. For an unstable A-algebra

M under H and an unstable A-algebra N,

(2.12) J (Fix(M), N) = (H\J (M, H @ N).

3. Lannes’ generalization of the Sullivan conjecture
Returning to topology, let X be a V-space. Abbreviate
Fixj (X) = Fix(Hy (X)).

This is a cohomology theory on V-spaces. The inclusion ¢ : XV — X induces a

natural map
j: Fixt (X) — Fixh (XY) 2 TH (XY) — H*(X").

Here the middle isomorphism is implied by (2.8) and the last map is an instance
of the natural map = : TM —— M. The map j specifies a transformation of
cohomology theories on X. By a check on V-spaces of the form V/W, A K, one
finds that, it X is a finite dimensional V-CW complex, then

(3.1) j 1 Fix} (X) — H*(XV) is an isomorphism.

An alternative proof using the localization theorem is possible. In fact, this must
be the case: the only way to reconcile (2.1) and (3.1) is to have an algebraic

isomorphism

(3.2) Fix(M) 2 F, @y Un(S™'M)
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for reasonable M. As a matter of algebra, Dwyer and Wilkerson prove that there

is an isomorphism of H-A-algebras
(3.3) H @y TM =2 Un(S™'M)

for any unstable H-A-algebra M that is finitely generated as an H-module. Ten-
soring over H with F,, this gives (3.2). Combined with (2.9), this gives an entirely

algebraic version of the isomorphism
H*(BV)@ H*(XY) 2 Un(S™ Hy: (Xw))

of IV.2.3. Here, it M = H{/(X) is finitely generated over H, the isomorphism (3.2)
agrees with that obtained by combining (2.1) and (3.1). Thus we may view (3.1)
as another reformulation of Smith theory. This reformulation is at the heart of

the Sullivan conjecture, which is a corollary of the following theorem.

THEOREM 3.4 (LANNES). Let X be a V-space whose cohomology is of finite
type and let Z be a space (with trivial V-action) whose cohomology is of finite
type. Let w: EV x Z — X be a V-map. Then the homomorphism of unstable
A-algebras

W Fixy (X)) — H™(Z)
induced by w is an isomorphism if and only if the map
w: Zp — (Xp)hv
induced by w is an equivalence.

The map w determines and is determined by a map
u)/:BVXZ—>EV><VX:XhV

of bundles over BV. The map w# of the theorem is the adjoint via (2.12) of
the map under H induced on cohomology by w’. The map w induces a map
EV x 2p — Xp, and the map @ of the theorem is its adjoint.

To prove the Sullivan conjecture, we take Z = XV and take w : EGx XV — X
to be the adjoint of the canonical map XV — X"V, Then w# is the isomorphism
jof (3.1), and @ : (XV), — (Xp)hv is the map that Theorem 1.2 claims to be
an equivalence. Thus we see the Sullivan conjecture as a natural elaboration of
Smith theory.

Theorem 3.4 has other applications. In the Sullivan conjecture, we applied it to

obtain homotopical information from cohomological information, but its converse
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implication is also of interest. Taking Z = X and letting w : EV x X"V — X

be the evaluation map, the theorem specializes to give the following result.

THEOREM 3.5. Let X be a V-space such that the cohomologies of X and of
X" are of finite type. Then the canonical map

Fixy (X)) — H*(X")
is an isomorphism of unstable A-algebras if and only if the canonical map
(X)) — ()"
is an equivalence.

When both X and X" are p-complete, so that (X"V)  — (Xp)hv is the
identity, we conclude that H*(X"") is calculable as Fixj,(X). This is the starting
point for remarkable work of Dwyer and Wilkerson in which they redevelop a great
deal of Lie group theory in a homotopical context of p-complete finite loop spaces.

If we specialize to spaces without actions and use (2.8), we get the following

nonequivariant version of Theorem 3.4.

THEOREM 3.6. Let Y and Z be spaces with cohomology of finite type and let
w: BV xZ — Y be a map. Then the homomorphism of unstable A-algebras
w¥ : TH*(Y) — H*(Z) induced by w is an isomorphism if and only if the map
W : 2p — Map(BYV, f/p) is an equivalence.

W. G. Dwyer and C. W. Wilkerson. Smith theory and the functor 7. Comment. Math. Helv.
66(1991), 1-17.

W. G. Dwyer and C. W. Wilkerson. Homotopy fixed point methods for Lie groups and finite
loop spaces. Preprint, 1992.

J. Lannes. Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe abélien

élémentaire. Publ. Math. I. H. E. S. 75(1992), 135-244.

4. Sketch proof of Lannes’ theorem
We briefly sketch the strategy of the proof of Theorem 3.4. The first step is

to reduce it to the nonequivariant version given in Theorem 3.6. It is easy to see

that, for a group G and G-space Y, we have an identification
(4.1) Y = Maps(EG,Y) = Sec( BG, EG x5 Y) = Sec(BG, Yia),

where the right side is the space of sections of the bundle YV, — BG. Let
Map(BG, BG); denote the component of the identity map and Map(BG, Yig )1
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denote the space of maps whose projection to B(G' is homotopic to the identity.
We have a fibration

Map(BG, Yig )1 — Map(BG, BG),

with fiber Y over the identity map.
Now return to ¢ = V. Here easy inspections of homotopy groups show that

evaluation at a basepoint gives an equivalence
e: Map(BV,BV), — BV

and that the composition action of Map(BV, BV); on Map(BV, Y,y )1 induces an

equivalence

Y™ Map(BV, BV); — Map(BV, Yyv):.

For a V-space X, the natural map KV x Xp — (EV x X), induces a natural
map (Xp)hv — (Xuv),, and this map is an equivalence. By (3.7), the map @ of

Theorem 3.4 may be viewed as a map
(4.2) 7, — Sec(BV, (X, ) ).

The map w determines a map KV x 2p — Xp, and this in turn determines and

is determined by a map
(4.3) BV x Z, — (X,)av

of bundles over BG;. The map (3.8) is the composite map of fibers in the following

diagram of fibrations

A A

Z, Map(BV, Z,) Sec(BV, (X, )y

| |

BV x Z, — Map(BV, BV x Z,); — Map(BV, (X, )1

l |

Map(BV, BV ), - Map(BV, BV ).

BV

The left map of fibrations is determined by a chosen homotopy inverse to e :
Map(BV, BV); — BV and the inclusion of Zp in Map(BYV, Zp) as the subspace
of constant functions. Clearly the middle composite is an equivalence if and only
if @ is an equivalence. Applying Theorem 3.6 with Z replaced by BV x Z, Y
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taken to be X,y and w replaced by the adjoint v : BV x BV x Z — X,y of the

composite map
BV x Z — Map(BV, BV x Z); — Map(BV, X}v)

defined as in the middle row, but before applying completions, we find that
the middle composite is an equivalence if and only if the induced map v# :
TH*(Xnv) — H @ H*(Z) is an isomorphism. Now (2.9) gives an isomorphism

H ®TH TH*(th) = H & FIX(H*(th))

of unstable H-A-algebras. Its explicit construction parallels the topology in such
a way that the map w¥ : Fix},(X) — H*(Z) agrees with H @y v*. This allows
us to deduce that v# is an isomorphism if and only if w# is an isomorphism.

It remains to say something about the proof of Theorem 3.6. Since this is
nonequivariant topology of the sort that requires us to join with those who use
the word “space” to mean “simplicial set”, we shall say very little. For a map
¢ : M — N of unstable A-algebras, there are certain algebraic functors that one
may call Extié(M, N; ¢); for fixed t, they are the left derived functors of a certain
functor of derivations Der’y (-, N;-) that is defined on the category of unstable
A-algebras over N. The relevance of the functor T' comes from the fact that its

defining adjunction leads to natural isomorphisms
Ext% (T M, N:¢) = Ext’, (M, H ® N; ¢)

for amap ¢ : M — H @ N of unstable A-algebras with adjoint o
There is an unstable Adams spectral sequence, due originally to Bousfield and
Kan. However, the relevant version is a generalization due to Bousfield. For a

map f: X — )A/p, it starts from
By = Extly (H™(Y), H*(X); f7),

and it converges (in total degree t —s) to m.(Map(X, f/p); f). Under the hypotheses

of Theorem 3.6, the map @ : 2p — Map(BV,f/p) induces a map of spectral

sequences (for any base point of Z) that is given on the Fs-level by the map
Ext’y (H"(Z),F,) — ExtB(TH™(Y), F,) = Ext% (H(Y), H)

induced by w¥ : TH*(Y) — H*(Z). With due care of detail, the deduction that

& is an equivalence if w# is an isomorphism follows by a comparison of spectral
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sequences argument. The converse implication is shown by a detailed inductive
analysis of the spectral sequence.

An alternative procedure for processing Lannes’ algebra to obtain the topological
conclusion of Theorem 3.6 has been given by Morel. Using a topological interpre-
tation of the functor 7" in terms of the continuous cohomology of pro-p-spaces,
together with a comparison of Sullivan’s p-adic completion functor with that of
Bousfield and Kan, he manages to circumvent use of the Bousfield-Kan unstable

Adams spectral sequence and thus to avoid use of heavy simplicial machinery.
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5. Maps between classifying spaces

We shall sketch the explanation given by Lannes in a talk at Chicago of how his
Theorem 3.6 applies to give a version of results of Dwyer and Zabrodsky that apply
the Sullivan conjecture to the study of maps between classifying spaces. Although
these authors apparently were not aware of the connection with equivariant bundle
theory, what is at issue is precisely the map

o [T B(I*) = Ba(I)Y — Map(EG, BII)Y = Map(BG, BII)
that we described in VII.3.7; here the coproduct runs over (p) € Rep(G,II). The

relevant theorem of Lannes is as follows.

THEOREM 5.1 (LANNES). If G is an elementary Abelian p-group and II is a

compact Lie group, then the map
[1 B(11*); — Map(BG, (BIL);)
induced by a is an equivalence.

It should be possible to deduce inductively that the result holds in this form

for any finite p-group. The original version of Dwyer and Zabrodsky is somewhat
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different and in some respects a little stronger, although it seems possible to deduce
much of one from the other. We say that a map f : X — Y is a “mod p
equivalence” if it induces an isomorphism on mod p homology. We say that f is a

“strong mod p equivalence” if it satisfies the following conditions.

(i) f induces an isomorphism mo(X) — 7o(Y');
(ii) f induces an isomorphism 71(X, x) — m1(Y, f(x)) for any = € X

(iii) f induces an isomorphism
H*(Xl’v Fp) - H*(Y/f(l’)v [Fp)

for any = € X, where X, and f/f(x) are the universal covers of the compo-
nents of X and Y that contain x and f(x).

Say that a G-map f : X — Y is a (strong) mod p equivalence if f : X — Y
is a (strong) mod p equivalence for each H C G. In view of VIL.3.7, the following
statements are equivariant reinterpretations of nonequivariant results of Dwyer
and Zabrodsky and Notbohm. In nonequivariant terms, when I' = GG x 11, their

results are statements about the map a“ above.

THEOREM 5.2 (DWYER AND ZABRODSKY). If I is a normal subgroup of a
compact Lie group I' and G = I'/II is a finite p-group, then the G-map « :
B(IL; T') — Sec(EG, BTI') is a strong mod p equivalence.

Actually, Dwyer and Zabrodsky give the result in this generality for G = Z/p,
and they give an inductive scheme to prove the general case when I' = G x II.
However, their inductive scheme works just as well to handle the case of general

extensions. Their result was generalized to p-toral groups by Notbohm.

THEOREM 5.3 (NOTBOHM). If I is a normal subgroup of a compact Lie group
I' and G =T'/Il is a p-toral group, then the G-map o : B(II;I') — Sec(EG, BTI)

is a mod p equivalence.

However, o need not a strong mod p equivalence in this case: the components
of o induce injections but not surjections on the fundamental groups of corre-
sponding components.

These results are some of the starting points for beautiful work of Jackowski,
McClure, and Oliver, and others, on maps between classifying spaces; these authors

have given an excellent survey of the state of the art on this topic.
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Lannes’ deduces Theorem 4.1 from Theorem 3.6 by taking 7 = [ BII” and Y =
BII. The map w is then the sum of the classifying maps of the homomorphisms
v:V x II” — 1II specified in VII.3.7. The deduction is based on the case X = x

of the following calculation.
THEOREM 5.4. Let X be a finite [I-CW complex. Then the natural map
TH(X) — T] Hio (X))
is an isomorphism, where the product runs over (p) € Rep(V, 1I).

PROOF. The proof is an adaptation of methods of Quillen. Embed Il in U(n) for
some large n and let F' be the G-space U(n)/S, where S is a maximal elementary

Abelian subgroup of U(n). Quillen shows that the evident diagram of projections
XxI'xlFF—=XxF——X
induces an equalizer diagram
HE(X) — H{y(X x F) —= Hj(X x F x F).

Let
J7(X) = THp(X)
and
=TT Hi(x0)
(p)ERep(V.IT)
These are both II-cohomology theories in X. Applied to our original diagram of
projections, both give equalizers, the first because the functor T' is exact and the
second by an elaboration of Quillen’s argument. We have an induced map from
the equalizer diagram for j* to that for £*. The isotropy subgroups of the finite
I[I-CW complexes X x I and X x [’ x I are elementary Abelian, and it therefore
suffices to show that the map
TH*(BW) = j*(I/W) — k(I/W) = [  H(ET xpe (IL/W)*)
(p)ERep(V.IT)

is an isomorphism when W is an elementary Abelian subgroup of II. I learned
the details of how to see this from Nick Kuhn. He has shown that 7" enjoys the

property
(5.5) TH*(BW) = H H*(BW),

(U) eReP(va)
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and the map in cohomology that we wish to show is an isomorphism is in fact

induced by a homeomorphism

(5.6) I eUe s ywy" — I BW.

(p)ERep(V 1) (o)ERep(V,W)

To see the homeomorphism, note that Il acts on the disjoint union over p €
Hom(V, 1) of the spaces (II/W)*("): 7 sends a point 7'W fixed by p(V) to the
point #7'W fixed by the w-conjugate of p. It is not hard to check that, as II-spaces,

[T Uxp@wyM= ] awy V= ] 1/w

(p)ERep(V,II) p€Hom(V,IT) o€Hom(V, W)

Taking EII as a model for each EII*Y) this implies the required homeomor-
phism. [
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CHAPTER IX

An introduction to equivariant stable homotopy

Me(V)

1. G-spheres in homotopy theory

What is a G-spherel’ In our work so far, we have only used spheres 5™, which
have trivial action by (. Clearly this is contrary to the equivariant spirit of our
work. The full richness of equivariant homotopy and homology theory comes from
the interplay of homotopy theory and representation theory that arises from the
consideration of spheres with non-trivial actions by . In principle, it might seem
reasonable to allow arbitrary G-actions. However, a closer inspection of the role
of spheres in nonequivariant topology, both in manifold theory and in homotopy
theory, gives the intuition that we should restrict to the linear spheres that arise
from representations. Throughout the rest of the book, we shall generally use the
term “representation of GG” or sometimes “G-module” to mean a finite dimensional
real inner product space with a given smooth action of G through linear isometries.
We may think of V' as a homomorphism of Lie groups p : G — O(V). This
convention contradicts standard usage, in which representations are defined to be
isomorphism classes.

For a representation V', we have the unit sphere S(V), the unit disk D(V),
and the one-point compactification SV; i acts trivially on the point at infinity,
which is taken as the basepoint of S¥. The based G-spheres SV will be central to
virtually everything that we do from now on. We agree to think of n as standing
for R™ with trivial G-action, so that S™ is a special case of our definition. For a
based G-space X, we write

YWX=XASY and QX =F(SY,X).

93
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Of course, ¥V is left adjoint to QY.

When do we use trivial spheres and when do we use representation spheresl’
This is a subtle question, and in some of our work the answer may well seem coun-
terintuitive. In defining weak equivalences of G-spaces, we only used homotopy
groups defined in terms of trivial spheres, and that is unquestionably the right
choice in view of the Whitehead theorem for GG-CW complexes. Nevertheless,
there are homotopy groups defined in terms of representation spheres, and they
often play an important role, although more often implicit than explicit. We may
think of a G-representation V' as an H-representation for any H C (4. For a based
G-space X, we define

(1.1) (X)) =[SV, Xy =[Gy Ag SV, X6,

Here the brackets denote based homotopy classes of based maps, with the ap-
propriate equivariance. For a pair (X, A) of based G-spaces, we form the usual
homotopy fiber F'z of the inclusion 7 : A — X, and we define

(1.2) w0 (X, A4) = =(F).

It is natural to separate out the trivial and non-trivial parts of representations.
Thus we let V(H) denote the orthogonal complement in V' of the fixed point space
V. We then have the long exact sequence

(1.3)

B WXI;I(H)Jrn(X) — WXI;I(H)Jrn(Xv A) > — 7TV(H)(A) - 7TV(H)(X)
of groups up to W‘I;I(H)+1 (X)) and of pointed sets thereafter.

Waner will develop a G-CW theory adapted to a given representation V' in the
next chapter, and Lewis will use it to study the Freudenthal suspension theorem
for these homotopy groups in the chapter that follows. There is a more elementary
standard form of the Freudenthal suspension theorem, due first to Hauschild, that
suffices for many purposes. Just as nonequivariantly, it is proven by studying
the adjoint map n : ¥ — QVXVY . Here one proceeds by reduction to the non-
equivariant case and use of obstruction theory. Recall the notion of a v-equivalence
from 1§3, where v is a function from conjugacy classes of subgroups of G to the
integers greater than or equal to —1. Define the connectivity function ¢*(Y") of
a G-space Y by letting ¢ (Y) be the connectivity of Y for H C (; we set
(V)= —1if Y is not path connected.
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THEOREM 1.4 (FREUDENTHAL SUSPENSION). Themapn:Y — QVYVY isa
v-equivalence if v satisfies the following two conditions:

(1) v(H) < 2c2(Y) + 1 for all subgroups H with VH # 0, and

(2) v(H) < (YY) for all pairs of subgroups K C H with VE £ VI,

Therefore the suspension map
VX, Y] — BVX, YY)

is surjective if dim(X*) < v(H) for all H, and bijective if dim(X") < v(H) — 1.

H. Hauschild. Aquivariante Homotopie I. Arch. Math. 29(1977), 158-165.
U. Namboodiri, Equivariant vector fields on spheres. Trans Amer. Math. Soc. 278(1983),
431-460.

2. G-Universes and stable G-maps

We next explain how to stabilize homotopy groups and, more generally, sets of
homotopy classes of maps between GG-spaces. There are several ways to make this
precise. The most convenient is that based on the use of universes.

DEFINITION 2.1. A G-universe U is a countable direct sum of representations
such that U contains a trivial representation and contains each of its sub-represen-
tations infinitely often. Thus U can be written as a direct sum of subspaces (V;),
where {V;} runs over a set of distinct irreducible representations of . We say
that a universe U is complete if, up to isomorphism, it contains every irreducible
representation of ;. If G is finite, one example is V=, where V is the regular
representation of (G. We say that a universe is trivial if it contains only the trivial
irreducible representation. One example is U for a complete universe U. A finite
dimensional sub G-space of a universe U is said to be an indexing space in U.

We should emphasize right away that, as soon as we start talking seriously about
stable objects, or “spectra”, the notion of a universe will become important even
in the nonequivariant case.

We can now give a first definition of the set {X, Y}« of stable maps between
based G-spaces X and Y.

DEFINITION 2.2. Let U be a complete G-universe. For a finite based G-CW
complex X and any based G-space Y, define

{X,Y}s = colimy[EV X, 2V Y]q,
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where V' runs through the indexing spaces in U and the colimit is taken over the
functions

VX, 2YY]e — BV X, 2"Y]e, VW,

that are obtained by sending a map XV X — VY to its smash product with the
identity map of SW-V,

When (' is finite and X is finite dimensional, the Freudenthal suspension the-
orem implies that if we suspend by a sufficiently large representation, then all
subsequent suspensions will be isomorphisms.

COROLLARY 2.3. If (G is finite and X is finite dimensional, there is a represen-
tation Vo = Vo(X) such that, for any representation V,

LSRN PICD 6B LD PPN 5 SLCE L '@ SLCE AR o
is an isomorphism.
Let X and Y be finite G-CW complexes. If (G is finite, the stable value
VX, 2%V, = {X,Y}q

is a finitely generated abelian group. However, if (G is a compact Lie group and
X has infinite isotropy groups, there is usually no representation V4 for which
all further suspensions ¥V are isomorphisms, and {X, Y} is usually not finitely
generated.

REMARK 2.4. The groups {SV,X}q are called equivariant stable homotopy
groups of X and are sometimes denoted w{{(X). However, it is more usual to
denote them by 7(X), relying on context to resolve the ambiguity between sta-
ble and unstable homotopy groups.

The definition of {X,Y }s just given is not the right definition for an infinite
complex X. Observe that

VX, 2V Y]e 2 [X, QY2 Y],
DEFINITION 2.5. Let U be a complete G-universe. For a based G-space X,
define
QX = colimy OV IV X,
where V' runs over the indexing spaces in U and the colimit is taken over the

maps

QVYYX — QVsVWX, VvV cw,
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that are obtained by sending a map SV — X A SV to its smash product with the
identity map of S =Y. Observe that the maps of the colimit system are inclusions.

LEMMA 2.6. Fix an indexing space V in U. For based G-spaces X, there is a
natural homeomorphism

QX = QVEYYX.

PROOF. Clearly X is homeomorphic to colimy~y QW EW X and similarly for

QXY X. By the compactness of SV and the evident isomorphisms of functors
YWYV 2 yWoand QVOV-V =2 QW for V C W,

colim QVEV X = colimQV QY VIV VSV X > QY colim QY EV VRV X
where the colimits are taken over W 2 V. The conclusion follows. [
LEMMA 2.7. If X is a finite G-CW complex, then
[X,V}e 2 [X,QV]6.
ProoOF. This is immediate from the compactness of X, which ensures that
(X, QY]q = colimy[X, QVEVY]q. O

For infinite complexes X, it is [X, QY] that gives the right notion of the stable
maps from X to Y. We shall return to this point in Chapter XII, where we
introduce the stable homotopy category of spectra.

3. Euler characteristic and transfer G-maps

We here introduce some fundamentally important examples of stable maps that
require the use of representations for their definitions. The Euler characteristic
and transfer maps defined here will appear at increasing levels of sophistication
and generality as we go on.

Let M be a smooth closed GG-manifold. We may embed M in a representation
V', say with normal bundle . We may then embed a copy of v as a tubular neigh-
borhood of M in V. Just as for nonequivariant bundles, the Thom complex T'¢ of
a G-vector bundle ¢ is constructed by forming the fiberwise one-point compact-
ification of the bundle, letting G act trivially on the points at infinity, and then
identifying all of the points at infinity to a single G-fixed basepoint *. We then
have the Pontrjagin-Thom map

t: SV T
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It is the based GG-map obtained by mapping the tubular neighborhood isomor-
phically onto v and mapping all points not in the tubular neighborhood to the
basepoint *. The inclusion of v in 7y & v, where 7); is the tangent bundle of M,
induces a based G-map

e:TV—>T(TM@1/)%M+/\SV.
The composite of these two maps is the “transfer map”
(3.1) r(M)=eot:S" — ¥V M,

associated to the projection M — {pt}, which we think of as a trivial G-bundle.
Of course, this projection induces a map

£:9V M, — 2V S0 = gV,
We define the Euler characteristic of M to be the based G-map
(3.2) X(M)=¢or(M): SV — SV,

The name comes from the fact that if we ignore the action of ¢ and regard x (M)
as a nonequivariant map of spheres, then its degree is just the classical Euler
characteristic of M. The proof is an interesting exercise in classical algebraic
topology, but the fact will become clear from our later more conceptual description
of these maps. In fact, from the point of view that we will explain in XV§1, this
map is the Euler characteristic of M, by definition.

Since V' is not well-defined — we just chose some V' large enough that we could
embed M in it — it is most natural to regard the transfer and Euler characteristics
as stable maps

(3.3) (M) e[S Mybe  and (M) € {S° 5%

Observe that, when M = G//H, the map 7(G/H) of (3.1) can be written as the

composite
(34)  1(G/H): S =Gy hg SV =Gy ng SV = (G/H)4 A SY,

where W is the complement of the image in V of the tangent plane L(H) at
the identity coset and e is the extension to a G-map of the H-map obtained by
smashing the inclusion S¢ — ST with SW. The unlabelled isomorphism is
given by [.2.6.
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More generally, for subgroups K C H of (G, there is a stable transfer G-map
7(7): G/ Ky — G/H, associated to the projection G/H — G/K. In fact, we
may view 7 as the extension to a G-map

G xx (K/H) — G/K

of the projection K/H — {pt}, and we may construct the transfer K-map
7(K/H) starting from an embedding of K/H in a G-representation V regarded as
a K-representation by restriction. We then define 7(x) to be the map

(3.5)
() G/KL ANSY =2 Gy A SV — Gy A (KJHL ASY)Y2G/Hy ASY,

where the isomorphisms are given by [.2.6 and the arrow is the extension of the
K-map 7(K/H) to a G-map. Note that any G-map f : G/K;, — G/H; is
the composite of a conjugation isomorphism ¢, : G/K — G/g ' Kg and the
projection induced by an inclusion ¢7'Kg C H. We let 7(¢;) = ¢,~1. With these
definitions, we obtain a contravariantly functorial assignment of stable transfer
maps 7(f) to G-maps f between orbits. Of course, such G-maps may themselves
be regarded as stable G-maps between orbits.

4. Mackey functors and coMackey functors

We are headed towards the notions of RO(G')-graded homology and cohomology
theories, but we start by describing what the coefficients of such theories will look
like in the case of “ordinary” RO(()-graded theories.

Recall that the ordinary homology and the ordinary cohomology of G-spaces
are defined in terms of covariant and contravariant coefficient systems, which are
functors from the homotopy category h¥ of orbits to the category Ab of Abelian
groups. Let @/ denote the category that is obtained from A% by applying the free
Abelian group functor to morphisms. Thus @ (G/H,G/K) is the free Abelian
group generated by h¥(G/H,G/K). Then coefficient systems are the same as
additive functors & — 7.

Now imagine what the stable analog might be. It is clear that the sets {X, Y}
are already Abelian groups.

DEFINITION 4.1. Define the Burnside category #s to have objects the orbit
spaces G/ H and to have morphisms

’@G(G/Hv G/[() = {G/H-I-v G/[(-I-}Gv
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with the evident composition. We shall also refer to # as the stable orbit cate-
gory. Observe that it is an “.o/b-category”: its Hom sets are Abelian groups and
composition is bilinear.

We must explain the name “Burnside”. The zeroth equivariant stable homotopy
group of spheres or equivariant “zero stem” {S°, S°}4 is a ring under composition.
We shall denote this ring by Bg for the moment. It is a fundamental insight of
Segal that, if G is finite, then B is isomorphic to the Burnside ring A(G). Here
A(G) is defined to be the Grothendieck ring of isomorphism classes of finite G-sets
with addition and multiplication given by disjoint union and Cartesian product.
For a compact Lie group (i, tom Dieck generalized this description of Bg by
defining the appropriate generalization of the Burnside ring. In this case, A(G)
is defined to be the ring of equivalence classes of smooth closed G-manifolds,
where two such manifolds are said to be equivalent if they have the same Euler
characteristic in Bg; again, addition and multiplication are given by disjoint union
and Cartesian product. An exposition will be given in XVII§2.

DEFINITION 4.2. A covariant or contravariant stable coefficient system is a co-
variant or contravariant additive functor Bo — &b. A contravariant stable
coefficient system is called a Mackey functor. A covariant stable coefficient sys-
tem is called a coMackey functor.

When ' is finite, Dress first introduced Mackey functors, using an entirely
different but equivalent definition, to study induction theorems in representation
theory. We shall explain the equivalence of definitions in XIX§3. The classical
examples of Mackey functors are the representation ring and Burnside ring Mackey
functors, which send GG/H to R(H) or A(H). The generalization to compact Lie
groups was first defined and exploited by Lewis, McClure, and myself.

Observe that we obtain an additive functor @%; — s by sending the ho-
motopy class of a G-map [ : G/H — G/K to the corresponding stable map.
Therefore a (covariant or contravariant) stable coefficient system has an underly-
ing ordinary coefficient system. Said another way, stable coefficient systems can be
viewed as given by additional structure on underlying ordinary coefficient systems.

What is the additional structurel’ Viewed as a stable map, 7(G/H) is a mor-
phism (/G — G/ H in the category H¢, and, more generally, so is 7(f) for any
G-map [ : G/H — G/K. We shall see in XIX§3 that every morphism of the
category K is a composite of stable G-maps of the form f or 7(f). That is, the
extra structure is given by transter maps. When G is finite, we shall explain alge-
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braically how composites of such maps are computed. In the general compact Lie
case, such composites are quite hard to describe. For this reason, it is also quite
hard to construct Mackey functors algebraically. However, we have the following
concrete example. It may not seem particularly interesting at first sight, but we
shall shortly use it to prove an important result called the Conner conjecture.

PRrROPOSITION 4.3. Let G be any compact Lie group. There is a unique Mackey
functor Z : B — /b such that the underlying coefficient system of Z is con-
stant at Z and the homomorphism Z — Z induced by the stable transfer map
G/Ky — G/H, associated to an inclusion H C K is multiplication by the Euler
characteristic x(K/H).

Proo¥F. In XIX§3, we shall give a complete additive calculation of the mor-
phisms of #A, from which the uniqueness will be clear. The problem is to show
that the given specifications are compatible with composition. We do this indi-
rectly. As already noted, we have the Burnside Mackey functor A. Thought of
topologically, its value on G/H is

{G/H}, 5% ¢ 2 {5°, 5%y = B,

and the contravariant functoriality is clear from this description. Define another
Mackey functor I by letting I(G// H) be the augmentation ideal of A(H). Thought
of topologically, its value on G/ H is the kernel of the map

{G/H-I-vSO}G - {G-I-vSO}G =7

induced by the G-map G — G/H that sends the identity element e to the
coset eH. Using XIX.3.2 and the definition of Burnside rings in terms of Euler
characteristics, one can check that [ is a subfunctor of A. A key point is the
identity
X(Y)X(H/K) = x(H xXg Y)

of nonequivariant Fuler classes for H C K and H-spaces Y. One can then define
Z to be the quotient Mackey functor A/I; the desired Euler characteristic formula
can be deduced from the formula just cited. [
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