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GEOMETRIC APPROACH TO STABLE
HOMOTOPY GROUPS OF SPHERES. KERVAIRE INVARIANTS. II

P. M. Akhmet’ev UDC 515.164

Abstract. We present an approach to the Kervaire-invariant-one problem. The notion of the geomet-
ric (Z/2 ⊕ Z/2)-control of self-intersection of a skew-framed immersion and the notion of the (Z/2 ⊕
Z/4)-structure on the self-intersection manifold of a D4-framed immersion are introduced. It is shown

that a skew-framed immersion f : M
3n+q

4 � R
n, 0 < q � n (in the ( 3n

4
+ ε)-range), admits a geo-

metric (Z/2 ⊕ Z/2)-control if the characteristic class of the skew-framing of this immersion admits a re-

traction of order q, i.e., there exists a mapping κ0 : M
3n+q

4 → RP
3(n−q)

4 such that this composition

I ◦ κ0 : M
3n+q

4 → RP
3(n−q)

4 → RP∞ is the characteristic class of the skew-framing of f . Using the
notion of (Z/2 ⊕ Z/2)-control, we prove that for a sufficiently large n, n = 2l − 2, an arbitrarily im-
mersed D4-framed manifold admits in the regular cobordism class (modulo odd torsion) an immersion
with a (Z/2 ⊕ Z/4)-structure.

1. Self-Intersections of Immersions and Kervaire Invariants

The Kervaire-invariant-one problem is an open problem in algebraic topology (for details, see [4, 7]).
We consider an approach to a solution of this problem based on results of P. J. Eccles (see [8]). For
a geometrical approach, see also [5, 6].

Let f : Mn−1 � R
n, n = 2l − 2, l > 1, be a smooth (generic) immersion of codimension 1. Let us

denote by g : Nn−2 � R
n the immersion of a self-intersection manifold.

Definition 1. The Kervaire invariant of f is defined as

Θ(f) =
〈
w

n−2
2

2 ; [Nn−2]
〉
,

where w2 = w2(Nn−2) is the normal Stiefel–Whitney class of Nn−2.

This is an invariant of the regular cobordism classes of immersions f . This means that the Kervaire
invariant is a well-defined homomorphism

Θ: Immsf(n− 1, 1) → Z/2. (1)

The normal bundle ν(g) of the immersion g : Nn−2 � R
n is a 2-dimensional bundle over Nn−2

equipped with a D4-framing. The classifying mapping η : Nn−2 → K(D4, 1) of this bundle is well defined.
The D4-structure of the normal bundle or the D4-framing is the prescribed reduction of the structure
group of the normal bundle of the immersion g to the group D4 corresponding to the mapping η. The
pair (g, η) represents an element in the cobordism group ImmD4(n− 2, 2). The homomorphism

δ : Immsf(n− 1, 1) → ImmD4(n− 2, 2) (2)

is well defined.
Let us recall that the cobordism group Immsf(n − k, k) generalizes the group Immsf(n − 1, 1). This

group is defined as the cobordism group of triples (f,Ξ, κ), where f : Mn−k � R
n is an immersion with

the prescribed isomorphism Ξ: ν(g) = kκ called a skew-framing, ν(f) is the normal bundle of f , and κ is
the given line bundle over Mm−k with the characteristic class w1(κ) ∈ H1(Mm−k; Z/2). The cobordism
relation of triples is standard.
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The generalization of the group ImmD4(n − 2, 2) is as follows. Let us define the cobordism groups
ImmD4(n−2k, 2k). This group ImmD4(n−2k, 2k) is represented by triples (g,Ξ, η), where g : Nn−2k � R

n

is an immersion and Ξ is a dihedral k-framing, i.e., the prescribed isomorphism Ξ: νg = kη, where η is
a 2-dimensional bundle over Nn−2k. The characteristic mapping of the bundle η is also denoted by
η : Nn−2k → K(D4, 1) (a similar convention will be used). The mapping η is the characteristic mapping
for the bundle νg since νg = kη.

Obviously, the Kervaire homomorphism (1) is defined as the composition of homomorphism (2) with
a homomorphism

ΘD4 : ImmD4(n− 2, 2) → Z/2. (3)
Homomorphism (3) is called the Kervaire invariant for a D4-framed immersed manifold.

The Kervaire homomorphisms are defined in a more general situation by a straightforward general-
ization of homomorphisms (1) and (3):

Θk : Immsf(n− k, k) → Z/2,

Θk
D4

: ImmD4(n− 2k, 2k) → Z/2

(for k = 1, the new homomorphism coincides with homomorphism (3) defined above) and the diagram

Immsf(n− 1, 1)
δ� ImmD4(n− 2, 2)

ΘD4� Z/2

Immsf(n− k, k)

Jk

�
δk
� ImmD4(n− 2k, 2k)

Jk
D4�

Θk
D4� Z/2

�����

is commutative.
Let (g,Ξ, η) be a D4-framed (generic) immersion in codimension 2k. Let h : Ln−4k � R

n be the
immersion of the self-intersection (double-point) manifold of g. The normal bundle νh of the immersion h
is decomposed into the direct sum of k isomorphic copies of the 4-dimensional bundle ζ with the structure
group Z/2 � D4. This decomposition is given by the isomorphism Ψ: νh = kζ. The bundle νh itself is
classified by the mapping ζ : Ln−4k → K

(
Z/2 � D4, 1

)
.

All the triples (h, ζ,Ψ) described above (we do not assume that a triple is realized as the double-point
manifold for a D4-framed immersion) up to the standard cobordism relation form the cobordism group
ImmZ/2�D4(n− 4k, 4k). The self-intersection of an arbitrary D4-framed immersion is a

(
Z/2 �D4

)
-framed

immersed manifold and the cobordism class of this manifold well defines the natural homomorphism

δk
D4

: ImmD4(n− 2k, 2k) → ImmZ/2�D4(n− 4k, 4k).

The subgroup D4 ⊕D4 ⊂ Z/2 �D4 of index 2 induces the double cover L̄n−4k → Ln−4k. This double
cover corresponds with the canonical double cover over the double-point manifold.

Let ζ̄ : L̄n−4k → K(D4, 1) be the classifying mapping induced by the projection homomorphism
D4 ⊕ D4 → D4 on the first factor. Let ζ̄ → Ln−4k be the 2-dimensional bundle defined as the pull-back
of the universal 2-dimensional bundle with respect to the classifying mapping ζ̄.

Definition 2. The Kervaire invariant Θk
Z/2�D4

for a Z/2 �D4-framed immersion (h,Ψ, ζ) is defined by the
following formula:

Θk
Z/2�D4

(h,Ψ, ζ) =
〈
w2(η̄)

n−4k
2 ; [Ln−4k]

〉
.

This new invariant is a homomorphism Θk
Z/2�D4

: ImmZ/2�D4(n, n−4k) → Z/2 included in the following
commutative diagram:

ImmD4(n− 2k, 2k)
ΘD4 � Z/2

ImmZ/2�D4(n− 4k, 4k)

δk
D4�

Θk
Z/2�D4� Z/2.

����� (4)
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Let us formulate the main results of the paper. In Sec. 2, the notion of (Z/2⊕Z/2)-control (Ib-control)
on self-intersection of a skew-framed immersion is considered. Theorem 1 (for the proof see Sec. 3) shows
that under a natural restriction of dimensions, the property of Ib-control holds for an immersion in the
regular cobordism class modulo odd torsion.

In Sec. 4, we formulate the notion of (Z/2 ⊕ Z/4)-structure of (Z/2 ⊕ Z/2)-controlled immersion. In
Sec. 5 (Theorem 2), we prove, under a natural restriction of dimension, that an arbitrary (Z/2⊕Z/2)-con-
trolled immersion admits in the regular homotopy class an immersion with (Z/2 ⊕ Z/4)-structure of
self-intersection. For such an immersion, the Kervaire invariant is expressed in terms of (Z/2⊕Z/4)-char-
acteristic numbers of the self-intersection manifold.

The author is grateful to Prof. M. Mahowald (2005) and Prof. R. Cohen (2007) for discussions and
to Prof. A. A. Voronov for the invitation to the University of Minnesota in 2005.

This paper was begun in 1998 at the Postnikov Seminar and is dedicated to the memory of Prof.
Yu. P. Solovyov.

2. Geometric Control of Double Self-Intersection Manifolds of Skew-Framed Immersions

In the following two sections, by Immsf(n− k, k), ImmD4(n− 2k, 2k), ImmZ/2�D4(n− 4k, 4k), etc., we
will denote not the cobordism groups itself, but the 2-components of this group. In the case where the
first argument is strictly positive, all the groups are finite 2-groups.

Recall that the dihedral group D4 is given by the co-representation {a, b | a4 = b2 = e, [a, b] = a2}.
This group is the subgroup of the group O(2), i.e., the transformation group of the standard plane with
the base {f1, f2}. The element a corresponds to the rotation of the plane by the angle π

2 . The element b
corresponds to the reflection of the plane with respect to the axis given by the vector f1 + f2.

Let Ib(Z/2 ⊕ Z/2) = Ib ⊂ D4 be the subgroup generated by the elements {a2, b}. The cohomology
group H1(K(Ib, 1); Z/2) is the elementary 2-group with two generators. The first (second) generator of
this group detects the reflection of the second (first) coordinate axis, respectively. The generators of the
cohomology group will be denoted by τ1 and τ2, respectively.

Definition 3. We say that a skew-framed immersion (f,Ξ), f : Mn−k � R
n, has a self-intersection of the

type Ib if the double-point manifold Nn−2k of f is a D4-framed manifold that admits a reduction of the
structure group D4 of the normal bundle to the subgroup Ib ⊂ D4.

Let us state the following conjecture.

Conjecture. For an arbitrary q > 0, q = 2 (mod 4), there exists a positive integer l0 = l0(q) such that
for an arbitrary n = 2l − 2, l > l0, an arbitrary element a ∈ Immsf(3n+q

4 , n−q
4 ) is stably regular cobordant

to a stably skew-framed immersion with Ib-type of self-intersection (for the definition of stable framing,
see [9]; for that of stable skew-framing, see [1, 2]).

Let us state and prove a weaker result toward the conjecture. We start with the following definition.
Let ω : Z/2 � D4 → Z/2 be the epimorphism defined as the composition Z/2 � D4 ⊂ Z/2 � Σ4 →

Σ4 → Z/2, where Σ4 → Z/2 is the parity of the transposition. Let ω! : ImmZ/2�D4(n − 4k, 4k) →
ImmKer ω(n− 4k, 4k) be the transfer homomorphism induced by ω.

Let P be a polyhedron dim(P ) < 2k − 1, Q ⊂ P be a subpolyhedron, dim(Q) = dim(P ) − 1, and let
P ⊂ R

n be an embedding. Let us denote by UP the regular neighborhood of P ⊂ R
n of radius rP and

by U ′
Q the regular neighborhood of Q ⊂ R

n of radius rQ, rQ > rP . Let UQ = UP ∩ U ′
Q.

The boundary ∂UP of the neighborhood UP is a codimension-one submanifold in R
n. This manifold

∂UP is the union of two manifolds with boundaries VQ ∪∂ VP , VQ = UQ ∩ ∂UP , and VP = ∂UP \UQ along
the common boundary ∂VQ = ∂VP .

Assume that two cohomological classes τQ,1 ∈ H1(Q; Z/2) and τQ,2 ∈ H1(Q; Z/2) are given. The
projection UQ → Q determines the cohomological classes τUQ,1, τUQ,2 ∈ H1(UQ; Z/2) as the images of the
classes τQ,1 and τQ,2, respectively.
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Let (g,ΞN , η), dim(N) = n−2k, be a D4-framed generic immersion, n−4k > 0, and g(Nn−2k)∩∂UP

be an immersed submanifold in UQ ⊂ ∂UP . Denote g(Nn−2k) \ (g(Nn−2k) ∩ UP ) by Nn−2k
int , and the

complement Nn−2k \ Nn−2k
int by Nn−2k

ext . The manifolds Nn−2k
ext and Nn−2k

int are submanifolds in Nn−2k of
codimension 0 with a common boundary; this boundary is denoted by Nn−2k−1

Q . The self-intersection
manifold of g is denoted by Ln−4k. By dimension considerations (n−4k = q 	 n), Ln−4k is a submanifold
in R

n parameterized by an embedding h, equipped by the (Z/2�D4)-framing of the normal bundle denoted
by (Ψ, ζ). The triple (h,Ψ, ζ) determines an element in the cobordism group ImmZ/2�D4(n− 4k, 4k).

Definition 4. We say that the D4-framed immersion g is an Ib-controlled immersion if the following
conditions hold:

(1) the structure group of the D4-framing ΞN restricted over the submanifold (with boundary)
g(Nn−2k

ext ) is reduced to the subgroup Ib ⊂ D4 and the cohomological classes τUQ,1, τUQ,2 ∈
H1(UQ; Z/2) are mapped to the generators τ1, τ2 ∈ H1(Nn−2k−1

Q ; Z/2) of the structure group
of the Ib-framing by the immersion g|Nn−2k−1

Q
: Nn−2k−1

Q � ∂(UQ) ⊂ UQ;

(2) the restriction of the immersion g on the submanifold Nn−2k−1
Q ⊂ Nn−2k is an embedding

g|Nn−2k−1
Q

: Nn−2k−1
Q ⊂ ∂UQ and the decomposition Ln−4k = Ln−4k

int ∪ Ln−4k
ext ⊂ (UP ∪ R

n \ UP )

of the self-intersection manifold of g into two (probably, nonconnected) Z/2 � D4-framed compo-
nents is well defined. The manifold Ln−4k

int is a submanifold in UP and the triple (Ln−4k
int ,Ψint, ζint)

represents the element in ImmKer ω(n− 4k, 4k) in the image of the homomorphism

ω! : ImmZ/2�D4(n− 4k, 4k) → ImmKer ω(n− 4k, 4k).

Definition 5. Let (f,ΞM , κ) ∈ Immsf(n − k, k) be an arbitrary element, where f : Mn−k � R
n is an

immersion of codimension k with the characteristic classes κ ∈ H1(Mn−k; Z/2) of the skew-framing ΞM .
We say that the pair (Mn−k, κ) admits a retraction of order q if the mapping κ : Mn−k → RP∞ is
represented by the composition κ = I ◦ κ̄ : Mn−k → RPn−k−q−1 ⊂ RP∞. The element [(f,ΞM , κ)] admits
a retraction of order q if in the cobordism class of this skew-framed immersion, there exists a triple
(M ′n−k,ΞM ′ , κ′) that admits a retraction of order q.

Theorem 1. Let q = q(l) be a positive integer, q = 2 (mod 4). Assume that an element α ∈
Immsf

(3n+q
4 , n−q

4

)
admits a retraction of order q. Then the element δ(α) ∈ ImmD4(n− 2k, 2k), k = n−q

4 ,
is represented by a D4-framed immersion [(g,ΨN , η)] with Ib-control.

3. Proof of Theorem 1

Denote n − k − q − 1 = 3k − 1 by s. Let d : RPs → R
n be a generic mapping. We denote the

self-intersection points of d (in the target space) by ∆(d) and the singular points of d by Σ(d).
Recall a classification of singular points of generic mappings RPs → R

n in the case 4s < 3n. In
this range, generic mappings have no quadruple points. Recall the global classification of singularities
of generic mappings in this range (for details, see [11]). Singular points (in the target space) are of the
following two types:

– a closed manifold Σ1,1,0;
– a singular manifold Σ1,0 (with singularities of the type Σ1,1,0).

Multiple points are of multiplicities 2 and 3. Triple points form a manifold with boundary and with
corners on the boundary. These “corner” singular points on the boundary of the triple-point manifold
coincide with the manifold Σ1,1,0. The regular part of boundary of triple points is a submanifold in Σ1,0.

Double self-intersection points form a singular submanifold with boundary Σ1,0. This submanifold is
not generic. After an arbitrary small alternation, the double-point manifold becomes a submanifold in R

n

with boundary and with corners on the boundary of the type Σ1,1,0.
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Let UΣ be a small regular neighborhood of radius ε1 of the singular submanifold Σ1,0. Let U∆ be
a small regular neighborhood of the same radius of the submanifold ∆(d) (this submanifold is immersed
with singularities on the boundary). The inclusion UΣ ⊂ U∆ is well defined.

Consider a regular submanifold in ∆ obtained by cutting a small regular neighborhood of the bound-
ary. This immersed manifold with boundary is denoted by ∆reg. The (immersed) boundary ∂∆reg is
denoted by Σreg. We consider the pair of regular neighborhoods U reg

Σ ⊂ U reg
∆ of the pair Σreg ⊂ ∆reg of

radius ε2, ε2 	 ε1. Since 2 dim(∆reg) < n, after a small perturbation, the manifold ∆reg is a submanifold
in U reg

∆ .
Let (f0,Ξ0, κ), f0 : Mn−k � R

n, n−k = 3n+q
4 , be a skew-framed immersion in the cobordism class α.

We construct an immersion f : Mn−k � R
n in the regular homotopy class of f0 as follows.

Let κ0 : Mn−k → RPs be a retraction of order q. Let f : M � R
n be an immersion in the regular

homotopy class of f0 under the condition dist(d ◦ κ0, f0) < ε3. The diameter ε3 of the approximation is
given by the inequality ε3 	 ε2.

Let g1 : Nn−2k � R
n be the immersion parameterizing the double points of f . The immersion g1 is

not generic. After a small perturbation of the immersion g1 with the diameter ε3, we obtain a generic
immersion g2 : Nn−2k � R

n.
The immersed submanifold g2(Nn−2k) is divided into two submanifolds g2(Nn−2k

int ) and g2(Nn−2k
ext ) with

the common boundary g2(∂Nn−2k
int ) = g2(∂Nn−2k

ext ) denoted by g2(Nn−2k−1
Q ). The manifold g2(Nn−2k

int ) is
defined as the intersection of the immersed submanifold g2(Nn−2k) with the neighborhood U reg

∆ . The man-
ifold g2(Nn−2k

ext ) is defined as the intersection of the immersed submanifold g2(Nn−2k) with the complement
R

n \ (U reg
∆ ). We assume that g2 is regular along ∂U reg

∆ . Then g2(Nn−2k
Q ) is an immersed submanifold in

∂U reg
∆ . By the construction, the structure group D4 of the normal bundle of the immersed manifold

g2(Nn−2k
ext ) admits a reduction to the subgroup Ib ⊂ D4.
Denote by Ln−4k the self-intersection manifold of the immersion g2. This manifold is embedded

into R
n by h : Ln−4k ⊂ R

n. The normal bundle of this embedding h is equipped by a Z/2 � D4-framing
denoted by ΨL and the characteristic class of this framing is denoted by ζL. By a similar construction, the
manifold Ln−4k is decomposed as the union of the two manifolds over a common boundary, denoted by Λ:
Ln−4k = Ln−4k

ext ∪ΛL
n−4k
int . The manifold (with boundary) Ln−4k

int is embedded by h into U reg
∆ ; the manifold

Ln−4k
ext (with the same boundary) is embedded in the complement R

n \U reg
∆ . The common boundary Λ is

embedded into ∂U reg
∆ .

The manifold Ln−4k is a (Z/2 � D4)-framed submanifold in R
n. Let us describe the reduction of the

structure group of this manifold to the corresponding subgroup in Z/2 � D4. We describe the subgroups
I2,j(Z/2 ⊕ D4) ⊂ Z/2 � D4, j = x, y, z.

Let a, b, and c be the generators of the group D4⊕Z/2. To define the subgroups I2,j ⊂ D4, j = x, y, z,
we describe the transformation of R

4 in the standard base (f1, f2, f3, f4) determined by the generators.
Consider the subgroup I2,x. The generator cx (a generator will be equipped with an index corresponding
to the subgroup) defines the transformations of the space by the following formulas:

cx(f1) = f3, cx(f3) = f1, cx(f2) = f4, cx(f4) = f2.

For the generator ax (of order 4), the transformations are as follows:

ax(f1) = f2, ax(f2) = −f1, ax(f3) = f4, ax(f4) = −f3.

The generator bx (of order 2) defines the transformations of the space by the following formula:

bx(f1) = f2, bx(f2) = f1, bx(f3) = f4, bx(f4) = f3.

By this formula, the subgroup D4 ⊂ D4 ⊕ Z/2 is presented by transformations that keep the subspaces
(f1, f2) and (f3, f4)). The generator of the cyclic subgroup Z/2 ⊂ D4 ⊕ Z/2 permutes these planes.
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The subgroups I2,y and I2,x are conjugated by the automorphism OP : Z/2 �D4 → Z/2 �D4 given in
the standard base by the formulas

f1 → f1, f2 → f3, f3 → f2, f4 → f4.

Therefore, the generator cy ∈ I2,y is determined by the following transformation:

cy(f1) = f2, cy(f2) = f1, cy(f3) = f4, cy(f4) = f3.

The generator ay (of order 4) is given by

ay(f1) = f3, ay(f3) = −f1, ay(f2) = f4, ay(f4) = −f2.

The generator by (of order 2) is given by

by(f1) = f3, by(f3) = f1, by(f2) = f4, by(f4) = f2.

Let us describe the subgroup I2,z. In this case, the generator cz defines the transformation of the
space by the formula cz(fi) = −fi, i = 1, 2, 3, 4.

For the generator az (of order 4) the transformation is as follows:

az(f1) = f2, az(f2) = f3, az(f3) = f4, az(f4) = f1.

The generator bx (of order 2) defines the transformations of the space by the formulas

bz(f1) = f2, bz(f2) = f1, bz(f3) = f4, bz(f4) = f3.

Obviously, the restriction of the epimorphism ω : Z/2 �D4 → Z/2 to the subgroups I2,x, I2,y ⊂ Z/2 �D4

is trivial and the restriction of this homomorphism to the subgroup I2,z is nontrivial.
The subgroup I3 ⊂ I2,x is defined as the subgroup with generators cx, bx, and a2

x. This is the index-2
subgroup isomorphic to the group Z/23. The image of this subgroup in Z/2 � D4 coincides with the
intersection of an arbitrary pair of subgroups I2,x, I2,y, and I2,z. The subgroup I3 ⊂ I2,y is generated by
cy, by, and a2

y. Moreover, one has cy = bx, by = cx, and a2
y = a2

x. It is easy to verify that the relations
cz = a2

x, a2
z = cx = by, and bz = bx = cy hold. Therefore, Ker(ω|I2,z) coincides with the subgroup I3 ⊂ I2,z.

The subgroups I2,x, I2,y, I2,z, and I3 in Z/2 � D4 are well defined. There is a natural projection
πb : I3 → Ib.

We also consider the subgroup I2,x↓ ⊂ Z/2 � D4. This subgroup is a quadratic extension of the
subgroup I2,x such that I2,x = Kerω|I2,x↓ ⊂ I2,x↓. An explicit definition of this group can be deduced
from the geometrical consideration and will not be required.

In the following lemma, we describe the structure group of the framing of the triad (Ln−4k
int ∪ΛL

n−4k
ext ).

This framing is denoted by (Ψint ∪ΨΛ
∪Ψext, ζint ∪ζΛ ∪ζext).

Lemma 1. There exists a generic regular deformation g1 → g2 of diameter 3ε3 such that the immersed
manifold g2(Nn−2k

ext ) admits the reduction of the structure group of the D4-framing to the subgroup Ib ⊂ D4.
The manifold Ln−4k

int is divided into the disjoint union of the two manifolds (with boundaries) denoted by
(Ln−4k

int,x↓,Λx↓) and (Ln−4k
int,y ,Λy).

(1) The structure group of the framing (Ψint,x↓,ΨΛx↓) for the submanifold (with boundary) (Ln−4k
int,x↓,Λx↓)

is reduced to the subgroups (I2,x↓, I2,z). (In particular, the 2-sheeted cover over Ln−4k
int,x↓ classified

by ω (denoted by L̃n−4k
int,x → Ln−4k

int,x↓) is, generally speaking, a nontrivial cover.)
(2) The structure group of the framing (Ψint,y,ΨΛ) for the submanifold (with boundary) (Ln−4k

int,y ,Λy)
is reduced to the subgroups (I2,y, I3). (In particular, the 2-sheeted cover L̃n−4k

int,y → Ln−4k
int,y classified

by ω is the trivial cover.) Moreover, the double covering L̃n−4k
x over the component Ln−4k

x↓ is
naturally diffeomorphic to L̃n−4k

y and this diffeomorphism is in agreement with the restriction of
the automorphism OP : Z/2 � D4 → Z/2 � D4 on the subgroup I2,x, OP (I2,x) = I2,y.
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(3) The structure group of the framing (Ψext, ζext) for the submanifold (with boundary)
h(Ln−4k

ext ,Λn−4k) ⊂ (
R

n\U reg
∆ , ∂(U reg

∆ )
)

is reduced to the subgroup I2,z. (In particular, the 2-sheeted
cover L̃n−4k

ext → Ln−4k
ext classified by ω is, generally speaking, a nontrivial cover.)

Proof. Components of the self-intersection manifold g1(Nn−2k)\(g1(Nn−2k)∩UΣ) (this manifold is formed
by double points x ∈ g1(Nn−2k), x �= UΣ, with inverse images x̄1, x̄2 ∈Mn−k) are classified by the following
two types.

Type 1. The points κ(x̄1) and κ(x̄2) in RPs are ε2-closed.
Type 2. The distances between the points κ(x̄1) and κ(x̄2) in RPs are greater than the diameter ε2

of the regular approximation. Points of this type belong to the regular neighborhood U∆ (of radius ε1).
Let us classify components of the triple self-intersection manifold ∆3(f) of the immersion f . A point

x ∈ ∆3(f) has inverse images x̄1, x̄2, and x̄3 in Mn−k. The apriority classification of components is as
follows.

Type 1. The images κ(x̄1), κ(x̄2), and κ(x̄3) are ε2-closed in RPs.
Type 2. The images κ(x̄1) and κ(x̄2) are ε2-closed in RPs and the distance between the images κ(x̄3)

and κ(x̄1) (or κ(x̄2)) is greater than the diameter ε2 of the approximation.
Type 3. The pairwise distances between the points κ(x̄1), κ(x̄2), and κ(x̄3) are greater than the

diameter ε2 of the approximation.
By the general-position argument, the component of type 3 does not intersect d(RPs). Therefore, the

immersion f can be deformed by an ε2-small regular homotopy inside the ε3-regular neighborhood of the
regular part of d(RPs) such that after this regular homotopy, ∆3(f) is contained in the complement of
U reg

∆ . The codimension of the submanifold ∆̄2(d) ⊂ RPs is equal to n− 3k+ 1 = q + k+ 1 and is greater
than dim

(
∆3(f)

)
= n− 3k. By similar arguments, the component of triple points of the type 1 is outside

U reg
∆ .

Let us classify components of the quadruple self-intersection manifold ∆4(f) of the immersion f .
A point x ∈ ∆4(f) has inverse images x̄1, x̄2, x̄3, and x̄4 in Mn−k. The apriority classification is as
follows.

Type 1. The images κ(x̄1) and κ(x̄2) are ε2-closed in RPs and the pairwise distances between the
images κ(x̄1) (or κ(x̄2)), κ(x̄3), and κ(x̄4) are sufficiently large with respect to the diameter ε2 of the
approximation.

Type 2. The two pairs
(
κ(x̄1), κ(x̄2)

)
and

(
κ(x̄3), κ(x̄4)

)
of images are ε2-closed in RPs and the

distance between the images κ(x̄1) (or κ(x̄2)) and κ(x̄3) (or κ(x̄4)) is sufficiently large with respect to
the diameter ε2 of the approximation. (The described component is the complement of the regular
ε2-neighborhood of the triple-point manifold of d(RPs).)

Type 3. The images κ(x̄1), κ(x̄2), and κ(x̄3) on RPs are pairwise ε2-closed in RPs and the distance
between the images κ(x̄1) (or κ(x̄2), or κ(x̄3)) and κ(x̄4) is sufficiently large with respect to the diameter ε2
of the approximation.

Type 4. All the images κ(x̄1), κ(x̄2), κ(x̄3), and κ(x̄4) are pairwise ε2-closed in RPs.
Let us prove that there exists a generic f such that the components of type 1 and type 3 are empty.

For the component of type 3, the proof is similar to the proof for the component of type 1.
Let us prove that there exists a generic deformation g1 → g2 with diameter 3ε3 such that after this

deformation in the neighborhood U reg
∆ , there are no self-intersection points of g2 obtained by a generic

resolution of triple points of f of the types 1 and 2. Let us start with the proof for triple points of the
type 1.

For a generic small alternation of the immersion g2 inside U reg
∆ , the points of type 1 of the triple-point

manifold ∆3(f) are perturbed into a component of the self-intersection points on Ln−4k. This component
is classified by the following two subtypes:

– Subtype (a). Preimages of a point is (x̄2, x̄1), (x̄2, x̄
′
1).

– Subtype (b). Preimages of a point is (x̄1, x̄
′
1), (x̄1, x̄2).
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In this formula, the points with common indices have ε3-closed projections on the corresponding sheet
of d(RPs). The two points in a pair form a point on Nn−2k and a couple of pairs forms a point on the
component of Ln−4k.

Let us prove that there exists a 2ε3-small regular deformation g1 → g2 such that the component of
h(Ln−4k) ∩ U reg

∆ of the subtype (a) is empty. Let Ks−k be the intersection manifold of f(Mn−k) with
d(RPs) (immersed into RPs). By general-position arguments, since 2s < n−2k, a generic perturbation of
Ks−k � RPs in R

n is an embedded submanifold. Therefore, there exists a 2ε2-small deformation of Ks−k

in R
n into K ′s−k such that the ε2-neighborhood of K ′s−k has no self-intersections. The deformation

Ks−k → K ′s−k is extended to the deformation of g1(Nn−2k) in a neighborhood of the considered compo-
nent. After the described deformation, g2(Nn−2k) has no self-intersection components of the subtype (a).
The case of self-intersection of the subtype (b) is similar.

Let us describe a generic deformation g1 → g2 with the support in U reg
∆ that resolves quadruple points

of f of the type 2. This deformation could be arbitrarily small. After the deformation, the component
∆4(f) of the type 2 determines two components of Ln−4k of different subtypes. These two components
are denoted by Ln−4k

x and Ln−4k
y .

The immersed submanifold g2(Nn−2k) ∩ U reg
∆ is divided into two components. The first component

is formed by pairs of points (x̄, x̄′) with the 3ε3-closed images κ(x̄), κ(x̄′) on RPs. This component is
denoted by g2(Nn−2k

x ). The last component of g2(Nn−2k)∩U reg
∆ is denoted by g2(Nn−2k

y ). This component
is formed by pairs of points (x̄, x̄′) with the projections

(
κ(x̄), κ(x̄′)

)
on different sheets of RPs.

The component Ln−4k
x↓ is defined by pairs (x̄1, x̄

′
1) and (x̄2, x̄

′
2). The component Ln−4k

y is defined by
pairs (x̄1, x̄2) and (x̄′1, x̄′2). A common index of points in the pair means that the images of the points are
ε3-closed on RPs. Each pair consists of the first two points and the second two points. Each two points of
this pair determine two points on Nn−2k respectively with the same image of g2. It is easy to see that the
component Ln−4k

x↓ is the self-intersection of g2(Nn−2k
x ) and the component Ln−4k

y is the self-intersection
of g2(Nn−2k

y ).
It is easy to see that the structure groups of the components are in agreement with the corresponding

subgroup described in the lemma. The component Ln−4k
x↓ admits the reduction of the structure group to

the subgroup I2,x↓ ⊂ Z/2 � D4. The component Ln−4k
y admits a reduction of the structure group to the

subgroup I2,y. Moreover, it is easy to see that the covering L̃n−4k
x↓ over Ln−4k

x induced by the epimorphism
ω : Z/2 �D4 → Z/2 with the kernel I2,x ⊂ Z/2 �D4 is naturally diffeomorphic to Ln−4k

y . Also, it is easy to
see that this diffeomorphism is in agreement with the transformation OP of the structure groups of the
framing over the components.

The last component of Ln−4k is immersed in an ε2-neighborhood of d(RPs) outside of U reg
∆ and is

denoted by Ln−4k
z . The structure group of the framing of this component is I2,z. Lemma 1 is proved.

The last part of the proof of the Theorem 1. Let us construct a pair of polyhedra

(P ′, Q′) ⊂ R
n, dim(P ′) = 2s− n = n− 2k − q − 2, dim(Q′) = dim(P ′) − 1.

Obviously, dim(P ′) < 2k − 1. Take a generic mapping d′ : RPs → R
n. Let us consider the submani-

fold with boundary (∆′reg, ∂∆′reg) ⊂ R
n (see the definition in Lemma 1). Let η∆′reg : (∆′reg, ∂∆′reg) →(

K(D4, 1),K(Ib, 1)
)

be the classifying mapping for the double-point self-intersection manifold of d.
By the standard argument, we can take a mapping d such that the mapping η∆reg is a homotopy

equivalence of the pairs up to dimension q + 1. After this modification d′ → d, we define (P,Q) =
(∆reg, ∂∆reg) ⊂ R

n, and the mapping η∆reg is a (q + 1)-homotopy equivalence.
The subpolyhedron Q is equipped with two cohomological classes κQ,1, κQ,2 ∈ H1(Q; Z/2). Since

Σ is the submanifold in RPs, the restriction of the canonical class κ ∈ H1(RPs; Z/2) on H1(Σ; Z/2)
is well defined. The inclusion iQ : Q ⊂ UΣ determines the cohomological class (iQ)∗(κ) ∈ H1(Q; Z/2).
The cohomological class κQ,1 is defined as the characteristic class of the canonical double-points covering
over Σ. The class κQ,2 is defined by the formula κQ,2 = (iQ)∗(κ) + κQ,1.
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The immersed manifold (with boundary) (Nn−2k ∩ UΣ) � UΣ is equipped with an Ib-framing. Ob-
viously, the classes κQ,1, κQ,2 ∈ H1(UΣ; Z/2) = H1(Q; Z/2) restricted on H1(g2(Nn−2k

ext ); Z/2) (recall that
g2(Nn−2k

ext ) = g2(Nn−2k) ∩ (Rn \ U∆)) are in agreement with the two generated cohomological classes ρ1

and ρ2 of the Ib-framing, respectively.
Let us define the immersion g : Nn−2k � R

n with Ib-control over (P,Q). Let us start with the
immersion g2 : Nn−2k � R

n constructed in Lemma 1. By a 2ε2-small generic regular deformation, we can
deform the immersion g2 into g3 such that this deformation pushes the component g2(Nn−2k

x ) out of U reg
∆ .

Therefore, the component Ln−4k
x↓ ⊂ Ln−4k of the self-intersection of g2 is also deformed out of U reg

∆ .
The immersed manifold (with boundary) g3(Nn−2k) ∩ (Rn \ U reg

∆ ) is equipped with the Ib-framing
of the normal bundle. Obviously, the classes κQ,1, κQ,2 ∈ H1(UΣ; Z/2) = H1(Q; Z/2) restricted on
H1(g2(Nn−2k) ∩ U∆; Z/2) agree with the two generated cohomological classes of the Ib-framing. The
immersed manifold g3(Nn−2k) ∩ U reg

∆ coincides with g2(Nn−2k
y ) and has the general structure group of

the framing. This immersed manifold has the self-intersection manifold (with boundary) h(Ln−4k)∩U reg
∆

with the reduction of the structure group to the pair of subgroups (I2,y, I3).
Let us prove that the immersed manifold (with boundary) h(Ln−4k) ∩ U reg

∆ is (Z/2 � D4)-framed
cobordant (relative to the boundary) to a (Z/2 �D4)-framed manifold decomposed into the disjoint union
of a closed (Z/2 �D4)-framed manifold that is the image of the transfer homomorphism ω! and a relative
I3-framed manifold.

Take a (Z/2 �D4)-framed manifold (L̃n−4k, Ψ̃, ζ̃) that is defined as the image of the (Z/2 �D4)-framed
manifold (Ln−4k,Ψ, ζ) by the transfer homomorphism (a double covering) with respect to the cohomo-
logical class ω ∈ H1(Z/2 � D4; Z/2). Recall that the manifold L̃n−4k is obtained by gluing the manifolds
L̃n−4k

x ∪ L̃n−4k
y with the manifold L̃n−4k

z along the common boundary Λ̃n−4k−1. Note that the group of
the framing of the last manifold Λ̃n−4k−1

z is the subgroup I3 ⊂ Z/2 � D4.
Let OPα be the (Z/2 � D4)-framed immersion obtained from an arbitrary (Z/2 � D4)-framed immer-

sion α by changing the structure group of the framing by the transformation OP . The (Z/2 �D4)-framed
manifold (with boundary) (L̃n−4k

y , Ψ̃y, ζ̃y) coincides with the two disjoint copies of the (Z/2 �D4)-framed
manifold (with boundary) OP (L̃n−4k

y , Ψ̃y, ζ̃y).
Let

α1 = −OP (L̃n−4k, Ψ̃, ζ̃).
Define the sequence of (Z/2 � D4)-framed immersions

α2 = −2OPα1, α3 = −2OPα2, . . . , αj = −2OPαj−1.

Obviously, the (D/4 �Z/2)-framed immersion α1 + α2 = α1 + 2OPα−1
1 is represented by three copies

of the manifold L̃n−4k. The second and third copies are obtained from the first copy by a change in the
orientation and a change in the structure group of the framing. The manifold −OP [L̃n−4k] ∪ 2[L̃n−4k]
contains, in particular, a copy of −OP [L̃n−4k

x ] inside the first component and the union [L̃n−4k
y ∪ Ln−4k

y ]
of the mirror two copies of −OP [L̃n−4k

x ] in the second and third components. Therefore, the manifold
−OP [L̃n−4k]∪2[L̃n−4k] is (Z/2�D4)-framed cobordant to the (Z/2�D4)-framed manifold obtained by gluing
the union of a copy of −OP [L̃n−4k

x ] and four copies of L̃n−4k
y by an I3-framing manifold along the boundary.

This cobordism is relative with respect to the submanifold −OP [L̃n−4k
z ]∪2[Ln−4k

z ] ⊂ −OP [Ln−4k]∪2Ln−4k.
By a similar argument, it is easy to prove that the element ℵ =

j0∑
j=1

αj is (Z/2 �D4)-framed cobordant

to the manifold obtained by gluing the union −OP [L̃n−4k
x ]∪ 2j(−OP )j−1[L̃n−4k

y ] by an I3-manifold along
the boundary. Moreover, this cobordism is relative with respect to all copies of L̃n−4k

z (with various
orientations). If j0 is sufficiently large, the manifold (with I3-framed boundary) 2j(−OP )j0−1[L̃n−4k

y ] is
cobordant with respect to the boundary to an I3-framed manifold.

Therefore, the manifold Ln−4k
y is (Z/2 � D4)-framed cobordant with respect to the boundary to the

union of an I3-framed manifold with the same boundary and a closed manifold that is the double cover
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with respect to ω over a (Z/2 � D4)-framed manifold. This cobordism is realized as a cobordism of the
self-intersection of a D4-framed cobordism with support inside U reg

∆ from the immersion g3 to a D4-framed
immersion g4. After an additional deformation of g4 inside a larger neighborhood of ∆reg, the relative
Ib-submanifold of the self-intersection manifold of g4 is deformed outside of U reg

∆ . The D4-framed immer-
sion obtained as a result of this cobordism admits an Ib-control. Theorem 1 is proved.

4. (Z/2 ⊕ Z/4)-Structure (Cyclic Structure)
on the Self-Intersection of a D4-Framed Immersion

Let us describe the subgroup I4 ⊂ Z/2 � D4. This subgroup is isomorphic to the group Z/2 ⊕ Z/4.
Recall that the group Z/2 � D4 is the transformation group of R

4 that keeps the two planes (f1, f2) and
(f3, f4) spanned by the vectors of the standard base (f1, f2, f3, f4) (the planes can be kept fixed or be
permuted by means of a transformation).

Denote the generators of Z/2 ⊕ Z/4 by l and r. Describe the transformations of R
4 given by each

generator. Consider a new base (e1, e2, e3, e4) given by

e1 = f1 + f2, e2 = f1 − f2, e3 = f3 + f4, e4 = f3 − f4.

The generator r of order 4 is represented by the rotation in the plane (e2, e4) by the angle π
2 and the

reflection in the plane (e1, e3) with respect to the line e1 + e3. The generator l of order 2 is represented
by the central symmetry in the plane (e1, e3) (or, equivalently, in the plane (f1, f3)).

Obviously, the described representation of I4 admits the invariant (1, 1, 2)-dimensional subspaces. We
denote these subspaces by λ1, λ2, and τ .

The line subspaces λ1 and λ2 are generated by the vectors e1 + e3 and e1 − e3, respectively. The
subspace τ is generated by the vectors e2 and e4. The generator r acts by the reflection in κ2 and by
the rotation in τ by the angle π

2 . The generator l acts by reflections in the subspaces λ1 and λ2. In
particular, if the structure group Z/2 � D4 of a 4-dimensional bundle ζ : E(ζ) → L admits the reduction
to the subgroup I4, then the bundle is decomposed into the direct sum ζ = λ1 ⊕ λ2 ⊕ τ of 1-, 1-, and
2-dimensional subbundles.

Definition 6. Let (g : Nn−2k � R
n,ΞN , η) be an arbitrary D4-framed immersion. We say that this

immersion is a cyclic immersion if the structure group Z/2 �D4 of the normal bundle over the double-point
manifold Ln−4k of this immersion admits a reduction to the subgroup I4 ⊂ Z/2 � D4. In this definition,
we assume that the pairs (f1, f2) and (f3, f4) are the vectors of the framing for the two sheets of the
canonical covering L̄n−4k over the double-point manifolds Ln−4k.

In particular, for a cyclic (Z/2 �D4)-framed immersion, there exist mappings κa : Ln−4k → K(Z/2, 1)
and µa : Ln−4k → K(Z/4, 1) such that the characteristic mapping ζ : Ln−4k → K(Z/2 � D/4, 1) of the
(Z/2 �D4)-framing of the normal bundle over Ln−4k reduces to the mapping with the image K(Ib, 1) and
the equation ζ = i(κa ⊕ µa) holds, where i : Z/2 ⊕ Z/4 → I4 is the prescribed isomorphism.

The following proposition is proved by a straightforward calculation.

Proposition 1. Let (g,ΨN , η) be a D4-framed immersion that is a cyclic immersion. Then the Kervaire
invariant included in the diagram (4) can be calculated by the formula

Θa =
〈
κ

n−4k
2

a µ∗a(τ)
n−4k−2

4 µ∗a(ρ); [L]
〉
, (5)

where τ ∈ H2(Z/4; Z/2) and ρ ∈ H1(Z/4; Z/2) are the generators.

Proof. Consider the subgroup of index 2 Ib ⊂ I4. This subgroup is the kernel of the epimorphism
χ′ : I4 → Z/2, which is the restriction of the characteristic class χ : Z/2 � D4 → Z/2 of the canonical
double cover L̄ → L to the subgroup I4 ⊂ Z/2 � D4. Obviously, the characteristic class (5) is calculated
by the formula

Θa =
〈
κ̂

n−4k
2

a ρ̂
n−4k

2
a ; L̄

〉
, (6)
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where the characteristic class κ̂a ∈ H1(L̄; Z/2) is induced from the class κa ∈ H1(L; Z/2) by the canonical
cover L̄→ L, and the class ρ̂a ∈ H1(L̄; Z/2) is obtained by the transfer of the class ρ ∈ H1(L; Z/4).

Note that κ̂a = τ1 and ρ̂a = τ2, where τ1 and τ2 are the two Ib-characteristic classes. Therefore,
κ̂aρ̂a = τ1τ2 = w2(η), where η is the two-dimensional bundle that determines the D4-framing (over the
submanifold L̄n−4k ⊂ Nn−2k, this framing admits the reduction to an Ib-framing) of the normal bundle
for the immersion g(Nn−2k).

Therefore, the characteristic number given by formula (5) in the case where the (Z/2 � D4)-framing
over Ln−4k is reduced to the I4-framing, coincides with the characteristic number given by formula (6).
Proposition 1 is proved.

Definition 7. We say that a D4-framed immersion (g,ΞN , η) admits a (Z/2 ⊕ Z/4)-structure if for
the double-point manifold Ln−4k of g, there exist mappings κa : Ln−4k → K(Z/2, 1) and µa : Ln−4k →
K(Z/4, 1) such that the characteristic number (5) coincides with the Kervaire invariant (see Definition 2).

Theorem 2. Let (g,Ξ, η) be a D4-framed immersion, g : Nn−2k � R
n, that represents a regular cobordism

class in Im
(
δ : Immsf(n − k, k) → ImmD4(n − 2k, 2k)

)
, n − 4k = 62, n = 2l − 2, l ≥ 15, and the

conditions of Theorem 1 hold, i.e., the residue class δ−1
(
Immsf(n−k, k)) (this class is defined modulo odd

torsion) contains a D4-framed immersion that admits a retraction of order 62. Then in the skew-framed
cobordism class (g,Ξ, η) = δ[(f,Ξ, κ)] ∈ Immsf(n−k, k), there exists a skew-framed immersion that admits
a (Z/2 ⊕ Z/4)-structure.

5. Proof of Theorem 2

Let us state the geometric control principle for Ib-controlled immersions.
Let us take an Ib-controlled immersion (g,ΞN , η; (P,Q), κQ,1, κQ,2), where g : N � R

n is a D4-framed
immersion equipped by a control mapping over a polyhedron iP : P ⊂ R

n, dim(P ) = 2k − 1, Q ⊂ P ,
dim(Q) = dim(P )− 1. The characteristic classes κQ,i ∈ H1(Q; Z/2), i = 1, 2, coincide with characteristic
classes κ1 ∈ Nn−2k

int by means of the mapping ∂Nn−2k
int = Nn−2k

Q → Q, where Nn−2k
int ⊂ Nn−2k, Nn−2k

int =
g−1(UP ), UP ⊂ R

n.

Proposition 2 (geometric control principle for Ib-controlled immersions). Let jP : P ⊂ R
n be an arbitrary

embedding and g1 : Nn−2k → R
n be an arbitrary mapping such that the restriction

g1|Nint : (Nn−2k
int , Nn−2k−1

Q ) � (UP , ∂UP )

is an immersion (the restriction g|Nn−2k−1
Q

is an embedding) that corresponds to the immersion

g|Nn−2k
int

: (Nn−2k
int , Nn−2k−1

Q ) � (UP , ∂UP )

by means of the standard diffeomorphism of regular neighborhoods UiP = UjP of subpolyhedra i(P ) and
j(P ). (Since 2 dim(P ) < n− 1, there is only one diffeomorphism of UiP and UjP up to an isotopy.) Then
for an arbitrary ε > 0, there exists an immersion gε : Nn−2k � R

n such that distC0(g1, gε) < ε and, in
addition, gε is regular homotopy to an immersion g and the restrictions gε|Nn−2k

int
and g1|Nn−2k

int
coincide.

We start the proof of Theorem 2 with the following construction. Let us consider the manifold
Z = S

n
2
+64/i × RP

n
2
+64. This manifold is the direct product of two standard lens spaces (mod 4). The

cover pZ : Ẑ → Z over this manifold with the covering space Ẑ = RP
n
2
+64 × RP

n
2
+64 is well defined.

Let us consider in the manifold Z a family of submanifolds Xi, i = 0, . . . , n+2
128 , of codimension n+2

2 ,
defined by the formula

X0 = S
n
2
+64/i× RP63, X1 = S

n
2
+32/i× RP95, . . . ,

Xj = S
n
2
−32(j−2)−1/i× RP32(j+2)−1, . . . , Xn+2

64
= S63/i× RP

n
2
+64.
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The embedding of the corresponding manifold in Z is defined by the Cartesian product of two standard
embeddings.

The union of submanifolds {Xi} is the stratified submanifold (with singularities) X ⊂ Z of dimension
n
2 + 127; the codimension of maximal singular strata in X is equal to 64. The covering pX : X̂ → X

induced from the covering pZ : Ẑ → Z by the inclusion X ⊂ Z is well defined. The covering space X̂,
which is the stratified manifold (with singularities), is decomposed into the union of submanifolds

X0 = RP
n
2
+64 × RP63, . . . , Xi = RP

n
2
−64(i−1) × RP64(i+1)−1, . . . , Xn+2

64
= RP63 × RP

n
2
+64.

Each manifold X̂i of the family is the 2-sheeted covering space over the manifold Xi over the first co-
ordinate. Let us define d1(i) = n

2 − 64(i − 1) and d2(i) = 64(i + 1) − 1. Then the formula for Xi is
Xi = RPd1(i) × RPd2(i).

In the cohomologies of X, the classes ρX,1 ∈ H1(X; Z/4) and κX,2 ∈ H1(X; Z/2) are well defined.
These classes are induced by the generators of the groups H1(Z; /Z/4) and H1(Z; Z/2). Similarly, the
cohomology classes κX̂,i ∈ H1(X̂; Z/4), i = 1, 2, are well defined. The cohomological class κX̂,1 is induced
by the class ρX,1 ∈ H1(X; Z/4) by means of the transfer homomorphism, and κX̂,2 = (pX)∗(κX,2).

For an arbitrary j = 0, . . . , n+2
128 , define the space Jj ; the mapping ϕj : Xj → Jj is well defined.

We denote by Y1(k) the space S63/i ∗ · · · ∗ S63/i of the join of k copies, k = 1, . . . , n+2
128 + 1, of the

standard lens space S63/i. Let us denote by Y2(k), k = 1, . . . , n+2
128 + 1, Y2(k) = RP63 ∗ · · · ∗ RP63, the

joins of k copies of the standard projective space RP63. We set Jj = Y1

(
n+2
128 − j + 1

) × Y2(j + 1) and
Q = Y1

(
n+2
128 + 1

) × Y2

(
n+2
128 + 1

)
. For a given j, the natural inclusions Jj ⊂ Q are well defined. Denote

the union of the considered inclusions by J .
The mapping ϕj : Xj → Jj is well defined as the Cartesian product of the following two mappings.

Over the first coordinate, the mapping is defined as the composition of the standard 2-sheeted covering
RPd1(j) → S

n
2
−64(j−1)/i and the natural projection Sd1(j)/i→ Y1

(
n+2
128 −j+1

)
. Over the second coordinate,

the mapping is defined by the natural projection RPd2(j) → Y2(j + 1).
The family of the mapping ϕj determines the mapping ϕ : X̂ → J , since the restrictions of the two

mappings on the common subspace in the origin coincide.
For n+ 2 ≥ 215, the space J is embeddable into the Euclidean n-space by an embedding iJ : J ⊂ R

n.
Each space Y1(k), Y2(k) in the family is embeddable into the Euclidean (28k−1−k)-space. Therefore, for
an arbitrary j, the space Jj is embeddable into the Euclidean space of dimension 28

(
n+2
128 + 2

)− n+2
128 − 2.

In particular, if n+ 2 ≥ 215, the space Jj is embeddable into R
n. The image of an arbitrary intersection

of two embeddings in the family belongs to the standard coordinate subspace. Therefore, the required
embedding iJ is defined by the gluing of embeddings in the family.

Describe the mapping ĥ : X̂ → R
n. We denote by ε the radius of a (stratified) regular neighborhood

of the subpolyhedron iJ(J) ⊂ R
n. Consider small positive ε1, ε1 	 ε (this constant will be defined below

in the proof of Lemma 2) and a generic ε1-deformation of the mapping iJ ◦ ϕ : X̂ → J ⊂ R
n. The result

of the deformation is denoted by ĥ : X̂ → R
n.

Define the positive integer k by the equation n−4k = 62. In the prescribed regular homotopy class of
an Ib-controlled immersion f : Nn−2k � R

n, we construct another Ib-controlled immersion g : Nn−2k � R
n

with the self-intersection-points manifold Ln−4k that admits a (Z/2 ⊕ Z/4)-structure.
Let the immersion f be controlled over the embedded subpolyhedron ψP : P ⊂ R

n. Let ψQ : Q→ X̂

be a generic mapping such that κQ,i = ψQ◦κX̂,i, i = 1, 2. By the previous definition, the manifolds Nn−2k
int

and Nn−2k
ext with the common boundary Nn−2k−1

Q , Nn−2k = Nn−2k
int ∪Nn−2k−1

Q
Nn−2k

ext are well defined.

Let η : Nn−2k
ext → K(Ib, 1) ⊂ K(D4, 1) be the characteristic mapping of the framing ΞN restricted

to Nn−2k
ext ⊂ Nn−2k. The restriction of this mapping to the boundary ∂Nn−2k

ext = Nn−2k−1
Q is given by

the composition ∂Nn−2k−1
Q → Q → K(Ib, 1) ⊂ K(D4, 1). The target space for the mapping η is the
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subspace K(Ib, 1) ⊂ K(D4, 1). This mapping is determined by the cohomological classes κNn−2k
ext ,i ∈

H1(Nn−2k
ext , Q; Z/2), i = 1, 2.

Define the mapping λ : Nn−2k
ext → X̂ by the following conditions. This mapping transforms the coho-

mological classes κX̂,i into the classes κi ∈ H1(Nn−2k
ext ; Z/2) and also the restriction λ|Nn−2k−1

Q
coincides

with the composition of the projection Nn−2k−1
Q → Q and the mapping ψQ : Q → X̂. The boundary

conditions for the mapping ψQ are κQ,i = ψQ ◦ κX̂,i, i = 1, 2.

Denote the composition ĥ ◦ λ : Nn−2k
ext → X̂ → R

n by g1 and the mapping ĥ ◦ ψQ : Q → X̂ → R
n

by ϕQ. One can assume that the mapping ϕQ is an embedding. Moreover, without loss of generality, one
can assume that this embedding is extended to a generic embedding ϕP : P ⊂ R

n such that the embedded
polyhedron ϕP : P ⊂ R

n is not intersected with g1(Nn−2k
ext ) outside ϕQ(Q).

Denote by Uϕ(P ) a regular neighborhood of the subpolyhedron ϕP (P ) ⊂ R
n (we can assume that

the radius of this neighborhood is equal to ε). Since an isotopy in a regular neighborhood Uϕ(P ) is well
defined, in particular, this neighborhood is independent of the choice of the regular embedding of P ,
Uϕ(P ) and U(P ) are diffeomorphic.

The immersion g′ : Nn−2k
int ⊂ R

n with the image inside Uϕ(P ) is well defined. The restriction of g′

on the boundary Nn−2k−1
Q = ∂(Nn−2k

int ) is a regular embedding Nn−2k−1
Q ⊂ ∂U(P ). This immersion g′ is

conjugated with the immersion f |Nint by means of a diffeomorphism of Uϕ(P ) and U(P ). We can assume,
without loss of generality, that the restriction g1|Nn−2k

int
corresponds to g′.

By Proposition 2, for an arbitrary ε2 > 0, ε2 	 ε1 	 ε, there exists an immersion g : Nn−2k � R
n

in the regular homotopy class of f such that g coincides with g′ (and with g1) on Nn−2k
int and, moreover,

dist(g; g1) < ε2.
Let us consider the self-intersection manifold Ln−4k of the immersion g. This manifold is a submanifold

in R
n. Let us start with the construction of the mappings κa : Ln−4k → K(Z/2, 1) and µa : Ln−4k →

K(Z/4, 1). Then we verify conditions (5) and (6).
The manifold Ln−4k is naturally divided into two components. The first component Ln−4k

int is inside
UϕP (P ). The last component (we denote this component again by Ln−4k) consists of the last self-inter-
section points. This component is inside an ε1-neighborhood of the submanifold with singularities h(X).
The mappings κa and µa over Ln−4k

int are defined as the trivial mappings. Let us define the mappings κa

and µa on Ln−4k.
Consider the mapping ϕ : X̂ → J and the singular set (polyhedron) Σ of this mapping. This is the

subpolyhedron

Σ ⊂ {
X̂(2) = X̂ × X̂ \ ∆X̂/T

′},
where T ′ : X̂(2) → X̂(2) is the involution of coordinates in the deleted product X̂(2) of the space X̂. The
subpolyhedron Σ (it is convenient to consider this polyhedron as a manifold with singularities) is naturally
decomposed into the union of subpolyhedra Σ(j), j = 0, . . . , n+2

128 . The subpolyhedron Σ(j) is the singular
set of the mapping

ϕ(j) : RPd1(j) × RPd2(j) → Sd1(j)/i× RPd2(j) → Jj .

This subpolyhedron consists of the singular points of the mapping ϕ in the inverse image (ϕ)−1(Jj) =
RPd1(j) × RPd2(j) of the subspace Jj ⊂ J .

Consider the subspace Σreg ⊂ Σ, consisting of points on strata of length 0 (regular strata) and length 1
(singular strata of codimension 64) after the regular ε2-neighborhoods (ε2 	 ε1) of the diagonal ∆diag

and the antidiagonal ∆antidiag of Σreg will be cut out.
The manifold with singularities Σreg admits a natural cementification (closure) in the neighborhood

of ∆diag and ∆antidiag, the result of the cementification being denoted by K.
The resolution mapping RK → K is defined by a similar construction (see [2, Lemma 7]). The coho-

mological classes ρRK,1 ∈ H1(RK; Z/4) and κRK,2 ∈ H1(RK; Z/2) are well defined. The cohomological
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classes κK,1 ∈ H1(RK; Z/2) and κRK,1 ∈ H1(RK; Z/2) are the images of the class κΣ,1 ∈ H1(Σ; Z/2)
with respect to the inclusion K ⊂ Σ and the projection RK → Σ. The class classifies the transposition
of the two nonordered preimages of a point in the singular set.

Consider the restrictions of the classes κK,1, κRK,1, and κΣ,1 on the neighborhood of the diagonal and
the antidiagonal. The natural projection ∆diag → X̂ is well defined. The restriction of the classes ρ1 and κ2

on the neighborhoods of the diagonal coincides with the restrictions of the classes ρX̂,1 ∈ H1(X̂; Z/4) and

κX̂,2 ∈ H1(X̂; Z/2) (these classes are extended to the regular neighborhoods of the diagonal).

Recall that the mapping ĥ : X̂ → R
n is defined as the result of an ε1-small regular deformation

of the mapping X̂ −→ X
h−→ R

n. The singular set of the mapping ĥ is denoted by Σĥ. This is
a 128-dimensional polyhedron, or the manifold with singularities in codimensions 32, 64, 96, and 128.
Moreover, the inclusion Σĥ ⊂ X̂(2) is well defined. The image of this inclusion is in the regular ε1-small
neighborhood of the singular polyhedron Σ ⊂ X(2).

Denote by Σreg

ĥ
the part of the singular set after the cutting-out of the regular ε1-neighborhood

of the points in singular strata of length at least 2 (of codimension 64) and self-intersection points of
all singular strata (these strata are also of codimension 64). The boundary ∂Σĥ is a submanifold with
singularities in X̂ and, therefore, we can also assume that the boundary ∂Σreg

ĥ
is a regular submanifold

with singularities in X̂.
By general-position arguments, the intersection of the projection X̂ → X of double points of the

image Im
(
λ(Nn−2k

ext )
)

with the projection of the singular set Σĥ (this is a subpolyhedron of dimension 62)
on X is outside of the projection of the submanifold with singularities Σreg

ĥ
⊂ Σĥ (this is the submanifold

with singularities of codimension 64).
Denote by L62

cycl ⊂ L62 the submanifold (with boundary) given by the formula L62
cycl = L62∩UΣreg . The

mappings κa and ρa are extendable from UΣreg to L62
cycl. Let us prove that these mappings are extendable

to the mappings κa : L62 → K(Z/2, 1) and ρa : L62 → K(Z/4, 1).
The complement of this submanifold is denoted by L62

I3
= L62 \ L62

cycl. The submanifold L62
I3

is
a submanifold in the regular ε-neighborhood of h(X) ⊂ R

n. Obviously, the structure group of the
(Z/2 � D4)-framing of the normal bundle of the manifold L62

I3
is reduced to the subgroup I3 ⊂ Z/2 � D4.

Consider the mapping of pairs

µa × κa : (L62
cycl, ∂L

62
cycl) →

(
K(Z/4, 1) ×K(Z/2, 1), K(Z/2, 1) ×K(Z/2, 1)

)
.

Consider the natural projection πb : I3 → Ib. The extension of the mapping µa × κa to the required
mapping L62 → K(Z/4, 1) ×K(Z/2, 1) is given by the composition

L62
I3 −→ K(I3, 1)

πb,∗−→ K(Ib, 1) ⊂ K(Z/4, 1) ×K(Z/2, 1),

where κ1 ∈ K(Ib; Z/2) determines the inclusion K(Ib, 1) ⊂ K(Z/2, 1) ⊂ K(Z/4, 1).
Let us state the results in the following lemma.

Lemma 2.
(1) Let n ≥ 216 − 2 and k, n− 4k = 62, be under the conditions of Theorem 1. Then for arbitrarily

small positive ε1 and ε2 (the diameters of the regular deformations in the construction of the
mapping ĥ : X̂ → R

n and of the immersion g : Nn−2k � R
n), there exists the mapping

ma = (κa × µa) : Σreg
h → K(Z/4, 1) ×K(Z/2, 1)

under the following condition. The restriction ma|∂Σreg
h

has the target K(Z/2, 1) ×K(Z/2, 1) ⊂
K(Z/4, 1) ×K(Z/2, 1) and is determined by the cohomological classes κX̂,1 and κX̂,2.

(2) The mappings κa and µa induce the mappings (µa × κa) : L62 → K(Z/4, 1) × K(Z/2, 1) on the
self-intersection manifold of the immersion g.
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Let us prove that the mapping (µa ×κa) constructed in Lemma 2 determines a (Z/2⊕Z/4)-structure
for the D4-framed immersion immersion g. We must prove Eq. (6).

Recall that the component L62
int of the self-intersection manifold of the immersion g is

a (Z/2 � D4)-framed manifold with the trivial Kervaire invariant: the corresponding element in the group
ImmZ/2�D4(62, n− 62) is in the image of the transfer homomorphism. Therefore, to prove that the map-
ping ma determines a (Z/2 ⊕ Z/4)-structure, it suffices to prove the equation

〈m∗
a(ρτ

15t31); [L62]〉 = Θ,

or, equivalently, the equation
〈(ρ̂31

a κ̂
31
a ); [L̂62]〉 = Θ, (7)

where L̂ → L is the canonical cover over the self-intersection-points manifold and L̂ ⊂ Nn−2k
ext is the

canonical inclusion.
By the Herbert theorem (see [1, 2] for the analogous construction), we can calculate the right-hand

side of the equation by the formula
〈
η∗

(
w2(Ib)

)n−2k
2 ; [Nn−2k

ext /∼]
〉
. (8)

In this formula, Nn−2k
ext /∼ denotes the quotient of the boundary ∂Nn−2k

ext = Nn−2k−1
Q that is contracted

onto the polyhedron Q with the loss of dimension.
Note that the mapping ma|Nn−2k−1

Q
is obtained by the composition of the shrink pQ : Nn−2k−1 → Q

with the mapping Q → K(Ib, 1), the last mapping being determined by the cohomological classes
κi,Q ∈ H1(Q; Z/2), i = 1, 2. Therefore, ma∗([Nn−2k

ext /∼]) ∈ Hn−2k(Ib; Z/2) is a permanent cycle and
the integration over the cycle [Nn−2k

ext /∼] of the inverse image of the universal cohomological class in (8)
is well defined.

It is convenient to consider the characteristic number Θa as the value of a homomorphism
Hn−2k(X; Z/2) → Z/2 on the cycle λ∗[Nn−2k

ext /∼] ∈ Hn−2k(X; Z/2). This homomorphism is the result of
the calculation of the characteristic class w2(Ib) ∈ H2(K(Ib, 1); Z/2) on the prescribed cycle, i.e., on the
image of the fundamental cycle [Nn−2k

ext /∼] with respect to the mapping Nn−2k
ext /∼ → X̂ → K(Ib, 1). The

cycle λ∗[Nn−2k
ext /∼] ∈ Hn−2k(X; Z/2) is integer. Therefore, this cycle is given by the sum of fundamental

classes of the product of two odd-dimensional projective spaces, the sum of the dimensions of these spaces
being equal to n− 2k.

Consider an arbitrary submanifold Sk1/i×RPk2 ⊂ X, k1 + k2 = n
2 + 31, k1 and k2 are odd. Consider

the cover RPk1 × RPk2 → Sk1/i × RPk2 and the composition RPk1 × RPk2 ⊂ X̂
ĥ
� R

n after an ε1-small
generic perturbation. Denote this mapping by sk1,k2 .

The self-intersection manifold of the generic mapping sk1,k2 : RPk1 × RPk2 → R
n is a manifold with

boundary denoted by Λ62
k1,k2

. The mapping

µa × κa : (Λ62
k1,k2

, ∂Nn−2k
k1,k2

) → (
K(Z/4, 1) ×K(Z/2, 1), K(Z/2, 1) ×K(Z/2, 1)

)

is well defined. The homological 61-dimensional fundamental class [∂Λ] is integer; therefore, the image of
this fundamental class

(µa × κa)∗([∂Λ62
k1,k2

]) ∈ H61(K(Z/4, 1) ×K(Z/2, 1); Z/2)

is trivial by the dimensional reason. Therefore, the homological class

(µa × κa)∗([Λ62
k1,k2

, ∂Λ62
k1,k2

]) ∈ H62(K(Z/4, 1) ×K(Z/2, 1), K(Z/2, 1) ×K(Z/2, 1); Z/2)

is well defined. Let us consider the (permanent) homological class

(µa × κa)!∗([Λ̄
62
k1,k2

]) ∈ H62(K(Z/2, 1) ×K(Z/2, 1); Z/2) (9)

defined from the relative class above by the transfer homomorphism.
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To prove (7), it suffices to prove that the class (9) coincides with the characteristic class p∗,b◦ η̂∗([Λ̂]) ∈
H62(K(Ib, 1); Z/2) under the isomorphism of the target group Ib = Z/2 ⊕ Z/2. By this isomorphism,
the prescribed generators in H1(Z/2 ⊕ Z/2; Z/2) are identified with the cohomological classes τ1, τ2 ∈
H1(K(Ib, 1); Z/2) (cf. [2, Lemma 8]). Theorem 2 is proved.
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