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(GGeometric approach towards stable homotopy
groups of spheres. The Steenrod-Hopt
Invariant

Pyotr M. Akhmet’ev *

AnHoTanus

In this paper a geometric approach toward stable homotopy groups
of spheres, based on the Pontrjagin-Thom [P] construction is proposed.
From this approach a new proof of Hopf Invariant One Theorem by
J.F.Adams |A1] for all dimensions except 15,31, 63,127 is obtained.

It is proved that for n > 127 in the stable homotopy group
of spheres II,, there is no elements with Hopf invariant one. The
new proof is based on geometric topology methods. The Pontrjagin-
Thom Theorem (in the form proposed by R.Wells [W]) about the
representation of stable homotopy groups of the real projective infinite-
dimensional space (this groups is mapped onto 2-components of stable
homotopy groups of spheres by the Khan-Priddy Theorem [A2|) by
cobordism classes of immersions of codimension 1 of closed manifolds
(generally speaking, non-orientable) is considered. The Hopf Invariant
is expressed as a characteristic number of the dihedral group for the
self-intersection manifold of an immersed codimension 1 manifold that
represents the given element in the stable homotopy group. In the
new proof the Geometric Control Principle (by M.Gromov)|Gr| for
immersions in a given regular homotopy classes based on Smale-Hirsch
Immersion Theorem [H] is required.

Let f: M™ ' 95 R", n =2'—1, be a smooth immersion of codimension

The characteristic number

(wi™ (M); [M"]) = h(f)
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is called the stable Hopf invariant or the Steenrod-Hopf invariant. This
characteristic number depends only on the immersed manifold M™ ! itself.
The relationship with the definition of the Steenrod-Hopf invariant in
algebraic topology is considered in |E],|K],[L].

Theorem (by J.F.Adams), [A]

For I >4, h(f) = 0.

Skew-framed immersions

Let f: M™% & R" be an immersion of codimension k. Let x : E(k) — M"™*
be a line bundle over M™% and let Z : kx — v(f) be an isomorphism of the
normal bundle of the immersion f with the Whitney sum of & copies of the
line bundle .

We shall call the triple (f,x,Z) a skew-framed immersion with
characteristic class k € H'(M"*;Z/2). (If n is odd then w;(k) is the
orientation class of M™% see [A-E] for more details).

The Steenrod-Hopf invariants for skew-framed immersions
The characteristic class (w; (k)" ™% [M™*]) = h(f K E) is called the
Steenrod-Hopf invariant of the skew-framed immersion (f, k, Z).

The Main Theorem 1

Let (f : M™% & R" k,Z) be a skew-framed immersion, n = 2! — 1,
dim(M) = n — k = * 4+ 7. Then for n > 255 (i.e. for [ > 8)

hf, k5, Z) = (wi (k)™ [M]) =0 (mod  2).

Corollary
Adams’ Theorem for n > 255.

Let D4 be the dihedral group of order 8,
D, = {a,bla* = V* = ¢, [a,b] = a?}.
This is the group of symmetries of the two coordinate axes in the plane. Let
I, = {e,a,a a*}, I, = {e,b,a? a®b},1. = {e, ab, a*, a®b}
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be the subgroups in Dy of index 2. The cyclic Z/4-subgroup 1, is generated
by rotation of the plane through the angle 7. The Z/2 ® Z/2-subgroup I,
(I.) is generated by symmetries (or reflections) with respect to the bisectors
of the coordinate axes. The Z/2-subgroup I, N 1. = {e,a®} is generated by
the central symmetry.

Let (f : M™% 9 R" k,Z) be a skew-framed generic immersion. Its
double points manifold N"~2* is immersed into R", g : N*~2¥ o5 R”, and the
normal bundle v(g) admits a canonical decomposition ¥ : v(g) = kn*, where
n* is a two-dimensional bundle over N"~2* with Dy-structure. The bundle 1*
is a pull-back of the universal bundle E(D,) — K(Dy, 1), via the classifying
map 7 : N" 2% — K(Dy,1).

Let us consider the canonical 2-fold covering N"~2¢ — N"~2¢ gver the
double point manifold of the immersion g. This covering corresponds to the
subgroup I. C Dy, I, = {e, a?, ab, a®b}.

Let K € HY(N"~ 2k, 1 72,/2) be the cohomology class corresponding to the
epimorphism I, — I; with the image I; = {e,a® ~ ab} = Z/2 (the kernel is
generated by the element a3b). By the definition & = i*(k), i : N"~2¢ q» Mn—Fk
is the canonical immersion of the double point covering. Let us define the
following characteristic number

h(g,n, W) = (R"2; [N"72]) .

Lemma 2

h(f, 5, Z) = h(g,n, V).

Proof of Lemma 2

Immediate from Herbert’s Theorem. (Concerning Herbert’s Theorem, see e.g.
[E-GJ.)

Definition (Cyclic structure for skew-framed immersions)

Let (f,x,Z) be a skew-framed immersion, N"~?* be the (odd-dimensional)
double self-intersection point manifold of f. A mapping

p: N o K(1,,1)
(I, = {e,a,a? a3}) is called a cyclic structure for f if
(@) [N"]) = h()),

where t € H"2*(K (I, 1); Z/Q) is the generator.
The following lemma is proved by an explicit calculation.
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The Main Lemma 3 (jointly with P.J.Eccles (1998))

Letn—k =22 +7(n—2k=15),n > 31, u: N — K(Dy, 1) be a cyclic
structure for f. Then h(f,x,Z) =0 (mod2).

Lemma 4. Cyclic Structure for skew-framed immersions

For n > 255, an arbitrary skew-framed immersion f : M"* @ R" n —k =
”T“ + 7 is regularly homotopic to an immersion with a cyclic structure.

Proof

The proof is a corollary of Lemma 5 and Proposition 6.

Definition (Cyclic Structure for generic mappings of the standard
projective space)

Let g : RP"* — R" be a generic mapping, n > 3k, n = 2! — 1 with double
point manifold N"~2* and critical points (n—2k—1)-dimensional submanifold
(ON)"—2k=1 c RP"*,

Let n : (N"2* ON) — (K (Dy,1), K(I;,1)) be the structured mapping
corresponding to g. This structured mapping is defined analogously with the
case of skew-framed immersions. Obviously, the restriction of the mapping
1 to the boundary of the double points manifold, i.e. to the critical points
submanifold, has the target K(I,,1) C K(Dy,1). The standard inclusion
I, C I, as the subgroup of the index 2 is well-defined. We shall call a mapping

p: (NP2 QN2 (K (I, 1), K(Iy, 1))

a cyclic structure for g, if the following conditions hold:
(%) the homological condition:

((); [N"72E ONT21) =1 (mod - 2),

where ¢t € H"*(K(I,,1),K(I4,1);Z/2) is the generator in the
cokernel of the homomorphism H"2*(K(I,,1), K(1;);Z/2) (remark: this

relative characteristic number is well-defined, by explicit calculations
p([ON"22=11) € H,, o 1(K(14,1;7Z/2)) is trivial);

(%) the boundary condition :
peonlon : ON" 71 — K(I,,1) — K(Iy, 1),
I, = {e,b,a% ba®}, where p, : K(I,,1) — K(I4,1) is the standard projection

with the image Iy = {e, a® ~ ba®}, coincides with p|gnn—2k-1.
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Lemma 5. Geometric Control

Let
(f,5,2), f:M""aR

be a skew-framed immersion. Let us assume (see Proposition 6 below) that
there exists a generic mapping

g:RP"* - R"  n >3k,
with a cyclic structure
pe (NP72F N2 (K (1, 1), K (I, 1)).

Then there exists a skew-framed immersion (f’, k, Z') in the regular homotopy
class of f with a cyclic structure.

The idea of the proof of Lemma 5.

Take the mapping
gok: M - RP"F R

By [Gr|, 1.2.2, in the regular homotopy class of f there exists a generic
immersion

froMF e R

defined as a C°-close generic regular perturbation ( arbitrary small) of a
(singular) mapping
goK.

A construction by S.A.Melikhov (2004)

Let us denote by J the join of (2% +1) = r copies of the standard Z/4- lens
space S7/i, dim(J) = 2" +7 = n—k. There is a PL-embedding iy : J C R"
for [ > 8.

Let p’ : S"* — J be the join of r copies of the standard cover S” — S7/i,
p: S"*/i — J be the quotient mapping of p/, p : RP"* — J be the
composition of the standard projection 7 : RP"™% — S"~*/i with p. The
composition iy o p: S"*/i — J — R" is well-defined. Let g : S"*/i — R"
be an e-small generic alternation of the mapping i; o p, d : RP"* — R" be
defined by a e;-small generic alternation, £ << ¢, of the composition g o 7.



Proposition 6

The Melikhov map d : RP"* — R” is equipped with a cyclic structure.

The rest of the paper concerns the proof of this result. This Proposition with
Lemma 5 implies Lemma 4 and Lemma 4 with the Main Lemma 3 implies
Lemma 2 and the main Theorem 1.

The beginning of the proof of the Proposition 6
Let I'y be the delated product of the standard projective space RP"~*

Fo = (an_k X an_k \ Adz‘ag)/T/7
where the quotient is determined with respect to the free involution
T RP"™F x RP"™F\ Ayigg — RP"F x RP"™F\ Aiag

T'(z,y) = (y, x).

The classifying map
N - o — K (Dy, 1)

is well-defined. (Note that m;(I'y) = D4 and the involution 7" corresponds
to the subgroup I. C Dy.) Let Agntigiag € Lo be a subspace, called the
antidiagonal, defined as

Aantidiag = {(2,y) € (RP"™F x RP"™/T")|T(x) = y},

where
T :RP" " — RP"*

is the standard involution on the covering
RP" — §"* /4.
Let us denote by I' the space
Lo\ (U(Aantidiag) Y U(Adiag)),

where U(Agntidiag) 15 a small regular neighborhoods of Agutidiag, U(Adiag 18 a
small regular neighborhood of the end of I'y near the deleted diagonal A .

!The author was developed this proof following conversations with Prof. O.Saeki and
Dr. R.R.Sadykov (2006))



(The radius of the regular neighborhoods depends on a constant ¢ of an
approximation in the Melikhov construction.)
The space I' is a manifold with boundary. The involution

T:RP"* — RP"*

induces the free involution
Tr:I' —=T.

A polyhedron

Yo = {l(z,y)] € Lo, p(z) = p(y)}, o C Ly
of double points of the mapping
p:RP"F

is called the singular set or the singular polyhedron.
The mapping
Ny, : 2o — K(Dy, 1)

is well-defined as the restriction of the mapping
771“0|20'

The subpolyhedron
20 cTIy

decomposes as
Z0 = Z:antidiag U K7 K C Fa

where
Zantidiag = E0 N U(Aantidiag)'
The restriction np, |k will be denoted by ngx : K — K(Dy,1).

Boundary conditions of 7

The diagonal and antidiagonal boundary components of K will be denoted
by
Qdiag =Kn aU(Adiag)> Qantidiag =KnN aU(Aantidiag)'

The restriction Nx|Q, .. g, @ Qantidiag — (D4, 1) is decomposes as

2.a O Nantidiag - Qantidiag - K(Iaa 1) - K(D4a 1)

The restriction nk|q,., : Qdiag — K (Dy, 1) is decomposed as
2.b o ndiag . Qantidiag - K(Ib> 1) C K(D4a 1)



The resolution space RK.

Let us construct the space RK called the resolution space for K. This space
is included into the diagram

K(I,1) <> RK s K.

Let us denote pr_l(Qdiag) by RQdiaga pr_l(Qdiag) by RQantidiag- The
boundary conditions on Quntidiag are:

RQantidiag L Qantidiag
¢ \« / Tantidiag
K(I,,1).

The boundary conditions on (g4 are:

RQdiag i} de’ag
¢ l l Ndiag
K(I41) 2 KT, 1).

The diagrams above are included into the following diagram:

K(I4,1)
To AN
RK — RQdiag U RQantidiag
l l
K ) Qdiag U Qantidiag
L /
K(Dy,1).

Let us consider Melikhov’s mapping d : RP" % — R™ (this is a small
generic alternation of the composition iopor : RP"™* — S"k /i — J C R").
Let N™"~2* be the double point manifold (with boundary) of d, the embedding
N"=2k c Ty is well-defined. The manifold N"?* is decomposed into two
manifolds (with boundary) along the common component of the boundary

n—2k
N - Nantidiag U Nd7

Nantidiag = Nn_2k N U(Aantidiag)a
Ng=N""2*AT.



Lemma 7

There exists a mapping res : Ny — RK called the resolution mapping that
induces a mapping p : Ny — K(I,, 1) included into the following diagram:

K{I,1) = K{,1)
To Tw AN
RK & Nd D Wdiag U Wantidiag
1 1 7
K(Dy,1) = K(Dgy1),

with boundary conditions on Wntidiag:

. la
M|WantydmgCNd = 1q O Nantidiag * Wantidiag > K(Ia, 1) — K(D4, 1),

and with boundary conditions on Wy;q,:

o= 2.a O Pb © Ndiag - Wdiag - K(Ib> 1) - K(Id> 1) - K(Iaa 1)

Lemma 8

The mapping
Ha = 7]|Namidmg U M Nn_2k - Nantidiag U Nd - K(Im 1)

determines a cyclic structure for d.

Proof of Lemma 8

We have to prove the equality * in the Definition of the Cyclic Structure for
generic mappings.

Let us consider the free involution 71 : I' — I' and the quotient I'/Tr.
The fundamental group 71 (I'/7Tr), denoted by E, is a quadratic extension of
D, by means of an element ¢ € E\ Dy, ¢ = a®. The element c of order 4 is
commutes with all elements in the subgroup D4 C E. The following diagram
is well-defined:



Ny — RK — K - r

! ! ! !
NgJT — RK/T — K/T c GJT
! ! ! !
KI,1) = K(L,1) K(E1) = K(E,1).

The composition RK — RK/T — K(I,,1) coincides with ¢ (The ¢ €
m(RK/T)\ m(RK) commutes with all elements in the subgroup m(RK) C
m(RK/T) of the index 2 and the mapping RK/T — K(I,, 1) is well-defined.
The image of the element ¢ is the generator of the cyclic group I,.) The
composition of the left vertical arrows in the diagram Ny — Ng/Ty, —
K(I,, 1) coincides with the mapping p : Ny — K (I,,1). The pair (N"=2_p,)
is cobordant to a pair (N™=2% u/) where N2k = N2~y N/"=2F  and

cycl

Né’;dzk is a closed manifold. The manifold (with boundary) Né’;cl% is the

double covering over the oriented manifold (with boundary) N, é”dzk /Tn,. The

base of the cover represents a cycle in Hy, o (K (I, 1), K (I4, 1); Z) Therefore
the relative cycle u;,*([]\f;"_%, ON'|) € Hy—op(K(1,,1), K(I14,1)) is trivial and

<,Ua Nn 2k aNn 2k— 1> <,U N/n 2k]>

cycl

The last characteristic number coincides with
(K" F [N"F]) = 1.

Lemma 8 is proved.

A natural stratification of the polyhedron K. Proof of Lemma 7

Let J be the join of lens spaces (S7/i);, j = 1...,r. The space J admits
a natural stratification defined by the collection of subjoins J(ki,...,ks)
generated by lenses with numbers 0 < ky < --- < ks <.
The preimage
(I (ky, ... k) C RPPTR
p: RP"* — J is denoted by R(ky, ..., ks).
A point
z € R(ky,... k) Cc RP™F

is determined by the collection of coordinates

(xkl,...,xks,)\)

(up to the antipodal transformation of the first s coordinates), where x;; €
5]7, and A\ is a barycentric coordinate on the standard (s — 1)-simplex.
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The polyhedron K admits a natural stratification
K(ky,... ks), 1<s<m,

correspondingly to the stratification of J. The maximal stratum K(1,...,r)
is represented by the disjoin union of connected components of different types.

Let a point (21, z2) belongs to K (1,...,7). Let (x11,%21, ..., T1,, Tas A)
be the collection of the coordinates of the point. The first 2r terms of
this collection is 7 ordered pairs of points on the standard sphere S7. The
collection is defined up to the permutation of the coordinates in the pair
and up to the independent antipodal transformation of first point or second
point in each pair. The equivalence class of a collection of the coordinates of
a point (x1,zo) contains 8 collections.

Types of components of the maximal stratum

Let x € K(1,...,7) be a point with the prescribed pair of collections
of spherical coordinates (xy;,22;). The following possibilities are: the
coordinates in the i-th pair

(1) coincide, or (2) are antipodal, or (3) are related by means of the
generator of the Z/4-cyclic cover.

This determines a sequence of r complex numbers v; € {1, —1,+1i, —i},
i=1,...,r, with respect to (1),(2), or (3). We will call such a sequence the
characteristic. For an arbitrary point in a prescribed component K(1,...,r)
the characteristic is well-defined up to the multiplication of each term by —1
and this characteristic does not depend on a point on the component. We
shall say that the prescribed component of the maximal stratum is of the
I.-type (I,-type) if the corresponded characteristic contains only {+i, —i}
({+1, —1}); the component is of the I;-type, if the characteristic contains at
least 3 different values. It is easy to prove that the restriction of the canonical
mapping n : I' — K(Dy, 1) on a stratum of the I,,I, or I;-type admits (up
to homotopy equivalence of the mappings) a reduction with the target in the
subspace K (I,,1), K(I,,1), K(I4,1) of the space K(Dy, 1) correspondingly.
This reduction (for strata of the I, and I,-types) is well-defined up to the
composition with mapping of the corresponding classified space given by the
conjugation automorphism Dy — Dy, x — (ba)z(ba)™!, z € Dy, ba € 1.

The resolution space RK

Let us denote by K; C K the disjoint union of all singular strata of the
length 1, by K, the disjoin union of maximal strata, and by K,., C K-
the subpolyhedron defined as K,., = Ky U K;. The component of the
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boundary K.y N Qantidiag 15 denoted by Qreg.antidiag and the component of
the boundary K,c; N Qgiqg 15 denoted by Qyeg.diag- Note that Qregantidiag
(Qreg.antidiag) contains only points for which no more then two numbers
in the characteristic are different from +i (+1). Components of the space
Ky are divided into 3 classes: diagonal, antidiagonal and generic class. A
component of the diagonal (antidiagonal) class intersects with the diagonal
(the antidiagonal) by a maximal subcomponent of the boundary. A regular
stratum of the considered type contains only points for which the only number
in the characteristic is different from +i (41).

Let us denote by K the 2-sheeted covering space over K! with respect
to the inclusion I, C Dy4. This covering coincides with the canonical double
covering over the polyhedron of self-intersection points.

The space RK is defined from the following diagram:

K' = K' CK D Ky

The space K., is defined by the gluing by means of the collection of 2-
sheeted coverings over a regular neighborhood of each component of the
singular stratum of the length 1 with respect to the mapping

U(K1)\ K1 — (Kpeg \ K1).

The cyclic mapping ¢ : RK — K(I,,1)

The union of all components in the given class is denoted by Ko giqg,
Ko antidiag: Ko,int correspondingly. The restriction of the mapping n : K —
K(Dy,1) to Kodiag C K (Ko antidiag C I) is given by the composition

KO,diag - K(Ib> 1) - K(D4? 1)

(KO,zmtz'dz’ag - K(Iaa 1) - K(D47 1))

Because of the prescribed boundary condition, the structured reduction
for a subcomponent of Ko giag, Koantidiag i canonical. The structured
reduction for a component of K ;,; is non-canonical.

The mapping

b0 : Ko — K(I,,1)

extends to a mapping
¢: RK — K(I,,1).

The composition B
K| — K, -5 K(Dy, 1)
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admits a natural reduction with the target
K(I.,1) C K(Dy,1).

Let Koo, Kopg C Ky be two prescribed components of the same type I,
(or I,) with a common boundary stratum K, C K;. A cyclic mapping

¢0,* = Tg Oy KO,* - K(Iba 1) - K(Ida 1)

(77* : KO,* - K(Ia’ 1))7 * € {Oé,ﬁ},

where K. — K(Ip,1) (Ko« — K(I,,1)) is well-defined up to a composition
with the mapping

K1) — K(I,,1) (K(I,,1) — K(I,,1)).
The last mapping is induced by the automorphism
D, — Dy, 1z — (ba)x(ba)™?,

x €Dy, ba€l.

The transfer with respect to the inclusion I. C D, determines a unique

mapping .
n, : Ko — K(Ig, 1).

This proves that the extension ¢ with the prescribed boundary conditions
exists.

The lift res : Ny — RK
Let us consider a generic P L-homotopy
F(r):S" % /i = R" 1€][0;1]
with the boundary conditions
F)=io0p:S" % /i —JCR"

For a given 7 € (0;1] the double points of F(7) is denoted by N (7). This
manifold with boundary is a submanifold of a quotient of the space I' /Tt X
{7}. The polyhedron U.N(7), 7 € (0,¢] (¢ is sufficiently small) is denoted by
Nose)-

Because the mapping F'is a P L-mapping, the bottom boundary of N(O;g],
denoted by NO, is a 15-dimensional subpolyhedron in a quotient of the space
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I'/Tr x {0}. The polyhedron N(O;s] is the base of the 4-sheeted cover N, —

No.e], where N, is the set of self-intersection points of the composition
(after a small alteration)

F(r)om:RP"™ — g7k /i  R™

Because of the general position arguments the following condition holds:
(1) the polyhedron Ny does not intersect (if ¢ is small enough) with
singular strata in I of the length > 2 (of codimension > 16).

(2) the polyhedron Nj is in general position with respect to the stratum of
length 1; in particular, the restriction of F(7)|,-1(1), J' C J, 7 € (0,¢] to
the singular stratum of length 1 is an embedding.

A resolution mapping

res: Ny(e) = RK

with the prescribed boundary conditions is well-defined from (1),(2). Note
that diam(Uantidiag), diam(Ugiqg) has to be less then the distance between N
and Ky C K.

Proposition 6 is proved.

Discussion

Conjecture 1

There exists a 7-dimensional manifold K7 with a normal Dy-framing Zx in
codimension 2! —8, [ > 4, such that the pair (K7, Zx) has the Steenrod-Hopf
invariant 1.

Remark

An arbitrary cyclic I,-framed manifold (N7,Zy) in codimension 2! — 8 has
the trivial Steenrod-Hopf invariant. The conjectured D,-framed manifold
(K7,Zk) cannot be realized as a double-point manifold for a skew-framed
immersion f : M? '3 q» R2 -1,

Conjecture 2

The Main Theorem holds for n > 31, i.e. for an arbitrary skew-framed
immersion f: M%7 as R?~1 [ > 5 the Steenrod-Hopf invariant is trivial.
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Remark

A proof of the Conjecture 2 could be obtained by means of a straightforward
generalization of the Melikhov mapping. The join of the standard mappings

RP” — S7/i Cc R™
is replaced by the join of several copies of the standard mapping
RP? — ° C RY,

where Q3 is the quotient of the 3-sphere by the quaternions group of the
order 8 (a homogeneous space) standard space,

RP? — Q3
is the standard 4-sheeted cover,
QS C R4

is the Massey embedding. This embedding is explicitly described in [M],
Example 4.
This generalized construction determines the mapping

Rp4k—1 N R5k—1
(below the metastable range) with a cyclic structure. The case
k=6, 4k—1 =123 =2"4+7,

5k—1 =29 <31 =2"—-1

is required for a generalization of the The Main Theorem 1.

The present paper was started at Postnikov’s Seminar in 1996 and
was finished at Prof. A.S.Mishenko Seminar. This paper is dedicated to
the memory of Prof. M.M.Postnikov. The paper was presented at the
M.M.Postnikov Memorial Conference (2007)— "Algebraic Topology: Old and
New". A preliminary version was presented at the Yu.P.Soloviev Memorial
Conference (2005) "Topology, analysis and applications to mathematical
physics".
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