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Geometri approah towards stable homotopygroups of spheres. The Kervaire invariantP.M.Akhmet'ev ∗

ÀííîòàöèÿThe notion of the geometrial Z/2⊕Z/2�ontrol of self-intersetionof a skew-framed immersion and the notion of the Z/2⊕Z/4-struture(the yli struture) on the self-intersetion manifold of a D4-framedimmersion are introdued. It is shown that a skew-framed immersion
f : M

3n+q
4 # R

n, 0 < q << n (in the 3n
4 + ε-range) admits ageometrial Z/2 ⊕ Z/2�ontrol if the harateristi lass of the skew-framing of this immersion admits a retration of the order q, i.e. thereexists a mapping κ0 : M

3n+q
4 → RP

3(n−q)
4 , suh that this omposition

I ◦ κ0 : M
3n+q

4 → RP
3(n−q)

4 → RP∞ is the harateristi lass of theskew-framing of f . Using the notion of Z/2 ⊕ Z/2-ontrol we provethat for a su�iently great n, n = 2l − 2, an arbitrary immersed D4-framed manifold admits in the regular obordism lass (modulo oddtorsion) an immersion with a Z/2 ⊕ Z/4-struture. In the last setionwe present an approah toward the Kervaire Invariant One Problem.1 Self-intersetion of immersions and KervaireInvariantThe Kervaire Invariant One Problem is an open problem in Algebraitopology, for algebrai approah see [B-J-M℄, [C-J-M℄. We will onsider ageometrial approah; this approah is based on results by P.J.Eles, see[E1℄. For a geometrial approah see also [C1℄,[C2℄.Let f : Mn−1
# R

n, n = 2l − 2, l > 1, be a smooth (generi) immersionof odimension 1. Let us denote by g : Nn−2
# R

n the immersion of self-intersetion manifold.
∗This work was supported in part by the London Royal Soiety (1998-2000), RFBR08-01-00663, INTAS 05-1000008-7805. 1

http://arXiv.org/abs/0801.1417v1


De�nition 1The Kervaire invariant of f is de�ned as
Θ(f) =< w

n−2
2

2 ; [Nn−2] >,where w2 = w2(N
n−2) is the normal Stiefel-Whitney of Nn−2.The Kervaire invariant is an invariant of the regular obordism lassof the immersion f . Moreover, the Kervaire invariant is a well-de�nedhomomorphism

Θ : Immsf (n− 1, 1) → Z/2. (1)The normal bundle ν(g) of the immersion g : Nn−2
# R

n is a 2-dimensional bundle over Nn−2 equipped with a D4�framing. The lassifyingmapping η : Nn−2 → K(D4, 1) of this bundle is well-de�ned. The D4-struture of the normal bundle or the D4�framing is the presribed redutionof the struture group of the normal bundle of the immersion g to the group
D4 orresponding to the mapping η. The pair (g, η) represents an element inthe obordism group ImmD4(n− 2, 2). The homomorphism

δ : Immsf (n− 1, 1) → ImmD4(n− 2, 2) (2)is well-de�ned.Let us reall that the obordism group Immsf(n − k, k) generalizes thegroup Immsf(n − 1, 1). This group is de�ned as the obordism group oftriples (f,Ξ, κ), where f : Mn−k
# R

n is an immersion with the presribedisomorphism Ξ : ν(g) ∼= kκ, alled a skew-framing, ν(f) is the normal bundleof f , κ is the given line bundle over Mm−k with the harateristi lass
w1(κ) ∈ H1(Mm−k; Z/2). The obordism relation of triples is standard.The generalization of the group ImmD4(n−2, 2) is following. Let us de�nethe obordism groups ImmD4(n− 2k, 2k). This group ImmD4(n− 2k, 2k) isrepresented by triples (g,Ξ, η), where g : Nn−2k

# R
n is an immersion, Ξis a dihedral k-framing, i.e. the presribed isomorphism Ξ : νg

∼= kη, where
η is a 2-dimensional bundle over Nn−2k. The harateristi mapping of thebundle η is denoted also by η : Nn−2k → K(D4, 1). The mapping η is theharateristi mapping for the bundle νg, beause νg

∼= kη.Obviously, the Kervaire homomorphism (1) is de�ned as the ompositionof the homomorphism (2) with a homomorphism
ΘD4 : ImmD4(n− 2, 2) → Z/2. (3)2



The homomorphism (3) is alled the Kervaire invariant for D4-framedimmersed manifolds.The Kervaire homomorphisms are de�ned in a more general situation bya straightforward generalization of the homomorphisms (1) and (3):
Θk : Immsf (n− k, k) → Z/2, (4a)

Θk
D4

: ImmD4(n− 2k, 2k) → Z/2, (4b)(for k = 1 the new homomorphism oinides with the homomorphism (3)de�ned above) and the following diagram
Immsf(n− 1, 1)

δ
−→ ImmD4(n− 2, 2)

ΘD4−→ Z/2
↓ Jk ↓ Jk

D4
||

Immsf (n− k, k)
δk

−→ ImmD4(n− 2k, 2k)
Θk

D4−→ Z/2

(5)is ommutative. The homomorphism Jk (Jk
D4
) is determined by theregular obordism lass of the restrition of the given immersion f (g) tothe submanifold in Mn−1 (Nn−2) dual to w1(κ)
k−1 ∈ Hk−1(Mn−1; Z/2)(w2(η)

k−1 ∈ H2k−2(Nn−2; Z/2)).Let (g,Ξ, η) be a D4-framed (generi) immersion in the odimension 2k.Let h : Ln−4k
# R

n be the immersion of the self-intersetion (double points)manifold of g. The normal bundle νh of the immersion h is deomposed intoa diret sum of k isomorphi opies of a 4-dimensional bundle ζ with thestruture group Z/2
∫

D4. This deomposition is given by the isomorphism
Ψ : νh

∼= kζ . The bundle νh itself is lassi�ed by the mapping ζ : Ln−4k →
K(Z/2

∫
D4, 1).All the triples (h, ζ,Ψ) desribed above (we do not assume that a tripleis realized as the double point manifold for a D4-framed immersion) up tothe standard obordism relation form the obordism group ImmZ/2

R

D4(n−
4k, 4k). The self-intersetion of an arbitrary D4-framed immersion is a
Z/2

∫
D4-framed immersed manifold and the obordism lass of this manifoldwell-de�nes the natural homomorphism

δk
D4

: ImmD4(n− 2k, 2k) → ImmZ/2
R

D4(n− 4k, 4k). (6)The subgroup D4 ⊕ D4 ⊂ Z/2
∫

D4 of index 2 indues the double over
L̄n−4k → Ln−4k. This double over orresponds with the anonial doubleover over the double point manifold.Let ζ̄ : L̄n−4k → K(D4, 1) be the lassifying mapping indued by theprojetion homomorphism D4 ⊕D4 → D4 to the �rst fator. Let ζ̄ → Ln−4kbe the 2-dimensional D4�bundle de�ned as the pull-bak of the universal2-dimensional bundle with respet to the lassifying mapping ζ̄.3



De�nition 2The Kervaire invariant Θk
Z/2

R

D4
: ImmZ/2

R

D4(n − 4k, 4k) → Z/2 for a
Z/2

∫
D4-framed immersion (h,Ψ, ζ) is de�ned by the following formula:

Θk
Z/2

R

D4
(h,Ψ, ζ) =< w2(η̄)

n−4k
2 ; [Ln−4k] > .This new invariant is a homomorphism Θk

Z/2
R

D4
: ImmZ/2

R

D4(n, n −

4k) → Z/2 inluded into the following ommutative diagram:
ImmD4(n− 2k, 2k)

ΘD4−→ Z/2
↓ δk

D4
||

ImmZ/2
R

D4(n− 4k, 4k)
Θk

Z/2
R

D4−→ Z/2.

(7)Let us formulate the �rst main results of the paper. In setion 2 thenotion of Z/2⊕Z/2-ontrol (Ib�ontrol) on self-intersetion of a skew-framedimmersion is onsidered. Theorem 1 (for the proof see setion 3) shows thatunder a natural restrition of dimensions the property of Ib-ontrol holds foran immersion in the regular obordism lass modulo odd torsion.In setion 4 we formulate a notion of Z/2 ⊕ Z/4�struture (or an I4�struture, or a yli struture) of a D4-framed immersion. In setion 5 weprove Theorem 2. We prove under a natural restrition of dimension that anarbitrary D4-framed Ib-ontrolled immersion admits in the regular homotopylass an immersion with a yli struture. For suh an immersion Kervaireinvariant is expressed in terms of Z/2 ⊕ Z/4�harateristi numbers of theself-intersetion manifold. The proof (based on the two theorems from [A2℄(in Russian)) of the Kewrvaire Invariant One Problem is in setion 6.The author is grateful to Prof. M.Mahowald (2005) and Prof. R.Cohen(2007) for disussions, to Prof. Peter Landweber for the help with theEnglish translation, and to Prof. A.A.Voronov for the invitation to MinnesotaUniversity in (2005).This paper was started in 1998 at the Postnikov Seminar. This paper isdediated to the memory of Prof. Yu.P.Soloviev.2 Geometri Control of self-intersetionmanifolds of skew-framed immersionsIn this and the remining setions of the paper by Immsf (n−k, k), ImmD4(n−
2k, 2k), ImmZ/2

R

D4(n−4k, 4k), et., we will denote not the obordism groups4



themselves, but the 2-omponents of these groups. In ase the �rst argument(the dimension of the immersed manifold) is stritly positive, all the groupsare �nite 2-group.Let us reall that the dihedral group D4 is given by the representation(in terms of generators and relations) {a, b|a4 = b2 = e, [a, b] = a2}. Thisgroup is a subgroup of the group O(2) of isometries of the plane with thebase {f1, f2} that keeps the pair of lines generated by the vetors of the base.The element a orresponds to the rotation of the plane through the angle π
2
.The element b orresponds to the re�etion of the plane with the axis givenby the vetor f1 + f2.Let Ib(Z/2⊕Z/2) = Ib ⊂ D4 be the subgroup generated by the elements

{a2, b}. This is an elementary 2-group of rank 2 with two generators. Theseare the transformations of the plane that preserve eah line l1, l2 generatedby the vetors f1 + f2, f1 − f2 orrespondingly. The ohomology group
H1(K(Ib, 1); Z/2) is the elementary 2-group with two generators. The �rst(seond) generator of this group detets the re�etion of the line l2 (of the line
l1) orrespondingly. The generators of the ohomology group will be denotedby τ1, τ2 orrespondingly.De�nition 3We shall say that a skew-framed immersion (f,Ξ), f : Mn−k

# R
n hasself-intersetion of type Ib, if the double-points manifold Nn−2k of f is a D4-framed manifold that admits a redution of the struture group D4 of thenormal bundle to the subgroup Ib ⊂ D4.Let us formulate the following onjeture.ConjetureFor an arbitrary q > 0, q = 2(mod4), there exists a positive integer l0 =

l0(q), suh that for an arbitrary n = 2l − 2, l > l0 an arbitrary element
a ∈ Immsf(3n+q

4
, n−q

4
) is stably regular obordant to a stably skew-framedimmersion with Ib-type of self-intersetion (for the de�nition of stable framingsee [E2℄, of stable skew-framing see [A1℄).Let us formulate and prove a weaker result toward the Conjeture. Westart with the following de�nition. 5



Let ω : Z/2
∫

D4 → Z/2 be the epimorphism de�ned as the omposition
Z/2

∫
D4 ⊂ Z/2

∫
Σ4 → Σ4 → Z/2, where Σ4 → Z/2 is the parity of apermutation. Let ω! : ImmZ/2

R

D4(n − 4k, 4k) → ImmKerω(n − 4k, 4k) bethe transfer homomorphism with respet to the kernel of the epimorphism
ω. Let P be a polyhedron with dim(P ) < 2k−1, Q ⊂ P be a subpolyhedronwith dim(Q) = dim(P )−1, and let P ⊂ R

n be an embedding. Let us denoteby UP the regular neighborhood of P ⊂ R
n of the radius rP and by U ′

Q theregular neighborhood of Q ⊂ R
n of the radius rQ, rQ > rP . Let us denote

UQ = UP ∩ U ′
Q.The boundary ∂UP of the neighborhood UP is a odimension onesubmanifold in R

n. This manifold ∂UP is a union of the two manifolds withboundaries VQ ∪∂ VP , VQ = UQ ∩ ∂UP , VP = ∂UP \ UQ along the ommonboundary ∂VQ = ∂VP .Let us assume that the two ohomology lasses τQ,1 ∈ H1(Q; Z/2),
τQ,2 ∈ H1(Q; Z/2) are given. The projetion UQ → Q of the neighborhoodon the entral submanifold determines the ohomology lasses τUQ,1, τUQ,2 ∈
H1(UQ; Z/2) as the inverse images of the lasses τQ,1, τQ,2 orrespondingly.Let (g,ΞN , η), dim(N) = n − 2k be a D4�framed generi immersion,
n− 4k > 0, and g(Nn−2k)∩ ∂UP be an immersed submanifold in UQ ⊂ ∂UP .Let us denote g(Nn−2k) \ (g(Nn−2k) ∩ (UP )) by Nn−2k

int , and the omplement
Nn−2k \ Nn−2k

int by Nn−2k
ext . The manifolds Nn−2k

ext , Nn−2k
int are submanifoldsin Nn−2k of odimension 0 with the ommon boundary, this boundary isdenoted by Nn−2k−1

Q . The self-intersetion manifold of g is denoted by Ln−4k.By the dimensional reason (n− 4k = q << n) Ln−4k is a submanifold in R
n,parameterized by an embedding h, equipped by the Z/2

∫
D4-framing of thenormal bundle denoted by (Ψ, ζ). The triple (h,Ψ, ζ) determines an elementin the obordism group ImmZ/2

R

D4(n− 4k, 4k).De�nition 4We say that the D4�framed immersion g is an Ib�ontrolled immersion if thefollowing onditions hold:�1. The struture group of the D4�framing ΞN restrited to thesubmanifold (with boundary) g(Nn−2k
ext ) is redued to the subgroup Ib ⊂ D4and the ohomology lasses τUQ,1, τUQ,2 ∈ H1(UQ; Z/2) are mapped to thegenerators τ1, τ2 ∈ H1(Nn−2k−1

Q ; Z/2) of the ohomology of the struturegroup of this Ib-framing by the immersion g|Nn−2k−1
Q

: Nn−2k−1
Q # ∂(UQ) ⊂

UQ.�2. The restrition of the immersion g to the submanifold Nn−2k−1
Q ⊂6



Nn−2k is an embedding g|Nn−2k−1
Q

: Nn−2k−1
Q ⊂ ∂UQ, and the deomposition

Ln−4k = Ln−4k
int ∪ Ln−4k

ext ⊂ (UP ∪ R
n \ UP ) of the self-intersetion manifoldof g into two (probably, non-onneted) Z/2

∫
D4-framed omponents iswell-de�ned. The manifold Ln−4k

int is a submanifold in UP and the triple
(Ln−4k

int ,Ψint, ζint) represents an element in ImmKerω(n−4k, 4k) in the imageof the homomorphism ω! : ImmZ/2
R

D4(n− 4k, 4k) → ImmKerω(n− 4k, 4k).De�nition 5Let (f,ΞM , κ) ∈ Immsf (n − k, k) be an arbitrary element, where f :
Mn−k

# R
n is an immersion of odimension k with the harateristi lass

κ ∈ H1(Mn−k; Z/2) of the skew-framing ΞM . We say that the pair (Mn−k, κ)admits a retration of order q, if the mapping κ : Mn−k → RP∞ is representedby the omposition κ = I ◦ κ̄ : Mn−k → RPn−k−q−1 ⊂ RP∞. The element
[(f,ΞM , κ)] admits a retration of order q, if in the obordism lass of thisskew-framed immersion there exists a triple (M ′n−k,ΞM ′, κ′) that admits aretration of order q.Theorem 1Let q = q(l) be a positive integer, q = 2(mod4). Let us assume that anelement α ∈ Immsf (3n+q

4
, n−q

4
) admits a retration of the order q and 3n −

12k − 4 > 0. Then the element δ(α) ∈ ImmD4(n − 2k, 2k), k = n−q
4
, isrepresented by a D4-framed immersion [(g,ΨN , η)] with Ib-ontrol.

3 Proof of Theorem 1Let us denote n − k − q − 1 = 3k − 1 by s. Let d : RPs → R
n be a generimapping. We denote the self-intersetion points of d (in the target spae) by

∆(d) and the singular points of d by Σ(d).Let us reall a lassi�ation of singular points of generi mappings RPs →
R

n in the ase 4s < 3n, for details see [Sz℄. In this range generi mappingshave no quadruple points. The singular values (in the target spae) are ofthe following two types:� a losed manifold Σ1,1,0; 7



� a singular manifold Σ1,0 (with singularities of the type Σ1,1,0).The multiple points are of the multipliities 2 and 3. The set of triplepoints form a manifold with boundary and with orners on the boundary.These "orner" singular points on the boundary of the triple points manifoldoinide with the manifold Σ1,1,0. The regular part of boundary of triplepoints is a submanifold in Σ1,0.The double self-intersetion points form a singular submanifold in R
nwith the boundary Σ1,0. This submanifold is not generi. After an arbitrarysmall alteration the double points manifold beomes a submanifold in R
nwith boundary and with orners on the boundary of the type Σ1,1,0.Let UΣ be a small regular neighborhood of the radius ε1 of the singularsubmanifold Σ1,0. Let U∆ be a small regular neighborhood of the same radiusof the submanifold ∆(d) (this submanifold is immersed with singularities onthe boundary). The inlusion UΣ ⊂ U∆ is well-de�ned.Let us onsider a regular submanifold in ∆ obtained by exising asmall regular neighborhood of the boundary. This immersed manifold withboundary will be denoted by ∆reg. The (immersed) boundary ∂∆reg willbe denoted by Σreg. We will onsider the pair of regular neighborhoods

U reg
Σ ⊂ U reg

∆ of the pair Σreg ⊂ ∆reg of the radius ε2, ε2 << ε1.Beause 2dim(∆reg) < n, after a small perturbation the manifold ∆reg isa submanifold in U reg
∆ .Let (f0,Ξ0, κ), f0 : Mn−k

# R
n, n−k = 3n+q

4
be a skew-framed immersionin the obordism lass α. We will onstrut an immersion f : Mn−k

# R
n inthe regular homotopy lass of f0 by the following onstrution.Let κ0 : Mn−k → RPs be a retration of order q. Let f : M # R

nbe an immersion in the regular homotopy lass of f0 under the ondition
dist(d ◦ κ0, f0) < ε3. The aliber ε3 of the approximation is given by thefollowing inequality: ε3 << ε2.Let g1 : Nn−2k

# R
n be the immersion, parameterizing the double pointsof f . The immersion g1 is not generi. After a small perturbation of theimmersion g1 with the aliber ε3 we obtain a generi immersion g2 : Nn−2k

#

R
n.The immersed submanifold g2(N

n−2k) is divided into two submanifolds
g2(N

n−2k
int ), g2(N

n−2k
ext ) with the ommon boundary g2(∂N

n−2k
int ) = g2(∂N

n−2k
ext )denoted by g2(N

n−2k−1
Q ). The manifold g2(N

n−2k
int ) is de�ned as theintersetion of the immersed submanifold g2(N

n−2k) with the neighborhood
U reg

∆ . The manifold g2(N
n−2k
ext ) is de�ned as the intersetion of the immersedsubmanifold g2(N

n−2k) with the omplement R
n \ (U reg

∆ ). We will assumethat g2 is regular along ∂U reg
∆ . Then g2(N

n−2k
Q ) is an immersed submanifoldin ∂U reg

∆ . By onstrution the struture group D4 of the normal bundle of the8



immersed manifold g2(N
n−2k
ext ) admits a redution to the subgroup Ib ⊂ D4.Let us denote by Ln−4k the self-intersetion manifold of the immersion

g2. This manifold is embedded into R
n by h : Ln−4k ⊂ R

n. The normalbundle of this embedding h is equipped with a Z/2
∫

D4-framing denotedby ΨL and the harateristi lass of this framing is denoted by ζL. By theanalogous onstrution the manifold Ln−4k is deomposed as the union of thetwo manifolds over a ommon boundary, denoted by Λ: Ln−4k = Ln−4k
ext ∪Λ

Ln−4k
int . The manifold (with boundary) Ln−4k

int is embedded by h into U reg
∆ , themanifold Ln−4k

ext (with the same boundary) is embedded in the omplement
R

n \ U reg
∆ . The ommon boundary Λ is embedded into ∂U reg

∆ .The manifold Ln−4k is a Z/2
∫

D4-framed submanifold in R
n. Letus desribe the redution of the struture group of this manifold toa orresponding subgroup in Z/2

∫
D4. We will desribe the subgroups

I2,j(Z/2⊕D4) ⊂ Z/2
∫

D4, j = x, y, z. We will desribe the transformationsof R
4 in the standard base (f1, f2, f3, f4) determined by generators of thegroups.Let us onsider the subgroup I2,x. The generator cx (a generator willbe equipped with the index orresponding to the subgroup) de�nes thetransformation of the spae by the following formula: cx(f1) = f3, cx(f3) = f1,

cx(f2) = f4, cx(f4) = f2.For the generator ax (of the order 4) the transformation is the following:
ax(f1) = f2, ax(f2) = −f1, ax(f3) = f4, ax(f4) = −f3. The generator bx (oforder 2) de�nes the transformation of the spae by the following formula:
bx(f1) = f2, bx(f2) = f1, bx(f3) = f4, bx(f4) = f3. From this formula thesubgroup D4 ⊂ D4 ⊕ Z/2 is represented by transformations that preservethe subspaes (f1, f2), (f3, f4). The generator of the yli subgroup Z/2 ⊂
D4 ⊕ Z/2 permutes these planes.The subgroups I2,y and I2,x are onjugated by the automorphism OP :
Z/2

∫
D4 → Z/2

∫
D4 given in the standard base by the following formula:

f1 7→ f1, f2 7→ f3, f3 7→ f2, f4 7→ f4. Therefore the generator cy ∈ I2,yis determined by the following transformation: cy(f1) = f2, cy(f2) = f1,
cy(f3) = f4, cy(f4) = f3. The generator ay (of the order 4) is given by
ay(f1) = f3, ay(f3) = −f1, ay(f2) = f4, ay(f4) = −f2. The generator by (ofthe order 2) is given by by(f1) = f3, by(f3) = f1, by(f2) = f4, by(f4) = f2.Let us desribe the subgroup I2,z. In this ase the generator cz de�nesthe transformation of the spae by the following formula: cz(fi) = −fi, i =
1, 2, 3, 4.For the generator az (of order 4) the transformation is the following:
az(f1) = f2, az(f2) = f3, az(f3) = f4, az(f4) = f1. The generator bx (of theorder 2) de�nes the transformation of the spae by the following formula:
bz(f1) = f2, bz(f2) = f1, bz(f3) = f4, bz(f4) = f3.9



Obviously, the restrition of the epimorphism ω : Z/2
∫

D4 → Z/2 tothe subgroups I2,x, I2,y ⊂ Z/2
∫

D4 is trivial and the restrition of thishomomorphism to the subgroup I2,z is non-trivial.The subgroup I3 ⊂ I2,x is de�ned as the subgroup with the generators
cx, bx, a

2
x. This is an index 2 subgroup isomorphi to the group Z/23.The image of this subgroup in Z/2

∫
D4 oinides with the intersetion ofarbitrary pair of subgroups I2,x, I2,y, I2,z. The subgroup I3 ⊂ I2,y is generatedby cy, by, a2

y. Moreover, one has cy = bx, by = cx, a2
y = a2

x. It is easy to hekthat the following relations hold: cz = a2
x, a2

z = cx = by, bz = bx = cy.Therefore Ker(ω|I2,z) oinides with the subgroup I3 ⊂ I2,z.The subgroups I2,x, I2,y, I2,z, I3 in Z/2
∫

D4 are well-de�ned. There is anatural projetion πb : I3 → Ib.We will also onsider the subgroup I2,x↓ ⊂ Z/2
∫

D4 from geometrialonsiderations. This subgroup is a quadrati extension of the subgroup I2,xsuh that I2,x = Kerω|I2,x↓
⊂ I2,x↓. An algebrai de�nition of this group willnot be required.In the following lemma we will desribe the struture group of the framingof the triad (Ln−4k

int ∪Λ L
n−4k
ext ). The framings of the spaes of the triad will bedenoted by (ΨR ∪ΨΛ

∪Ψext, ζint ∪ζΛ ∪ζext).Lemma 1There exists a generi regular deformation g1 → g2 of the aliber 3ε3 suh thatthe immersed manifold g2(N
n−2k
ext ) admits a redution of the struture groupof the D4-framing to the subgroup Ib ⊂ D4. The manifold Ln−4k

int is dividedinto the disjoint union of the two manifolds (with boundaries) denoted by
(Ln−4k

int,x↓,Λx↓), (Ln−4k
int,y ,Λy).1. The struture group of the framing (Ψint,x↓,ΨΛx↓

) for the submanifold(with boundary) (Ln−4k
int,x↓,Λx↓) is redued to the subgroups (I2,x↓, I2,z). (Inpartiular, the 2-sheeted over over Ln−4k

int,x↓, lassi�ed by ω (denoted by
L̃n−4k

int,x → Ln−4k
int,x↓) is, generally speaking, a non-trivial over.)2. The struture group of the framing (Ψint,y,ΨΛ) for the submanifold(with boundary) (Ln−4k

int,y ,Λy) is redued to the subgroup (I2,y, I3). (Inpartiular, the 2-sheeted over L̃n−4k
int,y → Ln−4k

int,y lassi�ed by ω, is the trivialover.) Moreover, the double overing L̃n−4k
x over the omponent Ln−4k

x↓ isnaturally di�eomorphi to L̃n−4k
y and this di�eomorphism agrees with therestrition of the automorphism OP : Z/2

∫
D4 → Z/2

∫
D4 on the subgroup

I2,x, OP (I2,x) = I2,y.3. The struture group of the framing (Ψext, ζext) for the submanifold(with boundary) h(Ln−4k
ext ,Λn−4k) ⊂ (Rn \ U reg

∆ , ∂(U reg
∆ )) is redued to the10



subgroup I2,z. (In partiular, the 2-sheeted over L̃n−4k
ext → Ln−4k

ext lassi�edby ω, is, generally speaking, a nontrivial over.)
Proof of Lemma 1Components of the self-intersetion manifold g1(N

n−2k) \ (g1(N
n−2k) ∩ UΣ)(this manifold is formed by double points x ∈ g1(N

n−2k), x /∈ UΣ with inverseimages x̄1, x̄2 ∈Mn−k) are lassi�ed by the following two types.Type 1. The points κ(x̄1), κ(x̄2) in RPs are ε2-lose.Type 2. The distanes between the points κ(x̄1), κ(x̄2) in RPs are greaterthen the aliber ε2 of the regular approximation. Points of this type belongto the regular neighborhood U∆ (of the radius ε1).Let us lassify omponents of the triple self-intersetion manifold ∆3(f)of the immersion f . The a priori lassi�ation of omponents is the following.A point x ∈ ∆3(f) has inverse images x̄1, x̄2, x̄3 in Mn−k.Type 1. The images κ(x̄1), κ(x̄2), κ(x̄3) are ε2-lose in RPs.Type 2. The images κ(x̄1), κ(x̄2) are ε2-lose in RPs and the distanebetween the images κ(x̄3) and κ(x̄1) (or κ(x̄2)) are greater than the aliber
ε2 of the approximation.Type 3. The pairwise distanes between the points κ(x̄1), κ(x̄2), κ(x̄3)greater than the aliber ε2 of the approximation.By a general position argument the omponent of the type 3 does notinterset d(RPs). Therefore the immersion f an be deformed by a small
ε2-small regular homotopy inside the ε3-regular neighborhood of the regularpart of d(RPs) suh that after this regular homotopy ∆3(f) is ontained inthe omplement of U reg

∆ . The odimension of the submanifold ∆̄2(d) ⊂ RPsis equal to n− 3k+1 = q+ k+1 and greater then dim(∆3(f)) = n− 3k. Byanalogial arguments the omponent of triple points of the type 1 is outside
U reg

∆ .Let us lassify omponents of the quadruple self-intersetion manifold
∆4(f) of the immersion f . A point x ∈ ∆4(f) has inverse images x̄1, x̄2, x̄3, x̄4in Mn−k. The a priori lassi�ation is the following.Type 1. The images κ(x̄1), κ(x̄2) are ε2-lose in RPs and the pairwisedistanes between the images κ(x̄1) (or κ(x̄2)), κ(x̄3) and κ(x̄4)) are greaterthan the aliber ε2 of the approximation.Type 2. The two pairs (κ(x̄1), κ(x̄2)) and (κ(x̄3), κ(x̄4)) of the images are
ε2-lose in RPs and the distane between the images κ(x̄1) (or κ(x̄2)) and
κ(x̄3) (or κ(x̄4)) are greater than the alibre ε2 of the approximation. (The11



desribed omponent is the omplement of the regular ε2 neighborhood ofthe triple points manifold of d(RPs).)Type 3. Images κ(x̄1), κ(x̄2) and κ(x̄3) on RPs are pairwise ε2-lose in RPsand the distane between the images κ(x̄1) (or κ(x̄2), or κ(x̄3)) and κ(x̄4) isgreater than the aliber ε2 of the approximation.Type 4. All the images κ(x̄1), κ(x̄2), κ(x̄3) and κ(x̄4) are pairwise ε2-losein RPs.Let us prove that there exists a generi f suh that the omponents ofthe type 1 and the type 3 are empty. For the omponent of the type 3 theproof is analogous to the proof for the omponent of the type 1.Let us prove that there exists a generi deformation g1 → g2 with thealiber 3ε3 suh that after this deformation in the neighborhood U reg
∆ thereare no self-intersetion points of g2 obtained by a generi resolution of triplepoints of f of the types 1 and 2. Let us start with the proof for triple pointsof the type 1.For a generi small alteration of the immersion g2 inside U reg

∆ the points ofthe type 1 of the triple points manifold∆3(f) are perturbed into a omponentof the self-intersetion points on Ln−4k. This omponent is lassi�ed by thefollowing two subtypes:� Subtype a. Preimages of a point are (x̄2, x̄1), (x̄2, x̄
′
1).�Subtype b. Preimages of a point are (x̄1, x̄

′
1), (x̄1, x̄2).In the formula above the points with the ommon indees have ε3-loseprojetions on the orresponding sheet of d(RPs). The two points in a pairform a point on Nn−2k and a ouple of pairs forms a point on the omponentof Ln−4k.Let us prove that there exists a 2ε3-small regular deformation g1 → g2,suh that the omponent of h(Ln−4k) ∩ U reg

∆ of the subtype a is empty. Let
Ks−k be the intersetion manifold of f(Mn−k) with d(RPs) (this manifold isimmersed into the regular part in RPs). By a general position argument,beause 2s < n − 2k, a generi perturbation r → r′ of the immersion
r : Ks−k

# RPs → R
n is an embedding. Therefore there exists a 2ε2-smalldeformation of immersed manifold r(Ks−k) → r′(Ks−k) in R

n, suh that theregular ε2-neighborhood of the submanifold r′(Ks−k) has no self-intersetion.The deformation of the immersed manifolds r(Ks−k) → r′(Ks−k) is extendedto the deformation of g1(N
n−2k) in the regular neighborhoods of theonstruted one-parameter family of immersed manifolds. After the desribedregular deformation the immersed manifold g2(N

n−2k) has no self-intersetionomponents of the subtype a. The ase of the self-intersetion of the subtypeb is analogous.Let us desribe a generi deformation g1 → g2 with the support in U reg
∆that resolves self-intersetion orresponding to quadruple points of f of the12



type 2. This deformation ould be arbitrarily small. After this deformationthe omponent ∆4(f) of the type 2 is resolved into two omponents of Ln−4kof di�erent subtypes. These two omponents will be denoted by Ln−4k
x , Ln−4k

y .The immersed submanifold g2(N
n−2k) ∩ U reg

∆ is divided into twoomponents. The �rst omponent is formed by pairs of points (x̄, x̄′) withthe 3ε3-lose images (κ(x̄), κ(x̄′) on RPs. This omponent is denoted by
g2(N

n−2k
x ). The last omponent of g2(N

n−2k)∩U reg
∆ is denoted by g2(N

n−2k
y ).This omponent is formed by pairs of points (x̄, x̄′) with the projetions

(κ(x̄), κ(x̄′)) on di�erent sheets of RPs.The omponent Ln−4k
x↓ is de�ned by pairs (x̄1, x̄

′
1), (x̄2, x̄

′
2). The omponent

Ln−4k
y is de�ned by pairs (x̄1, x̄2), (x̄

′
1, x̄

′
2). A ommon index of points in thepair means that the images of the points are ε3-lose on RPs. Eah pairdetermines a point on Nn−2k with the same image of g2. It is easy to see thatthe omponent Ln−4k

x↓ is the self-intersetion of g2(N
n−2k
x ) and the omponent

Ln−4k
y is the self-intersetion of g2(N

n−2k
y ).It is easy to see that the struture groups of the omponents agree withthe orresponding subgroup desribed in the lemma. The omponent Ln−4k

x↓admits a redution of the struture group to the subgroup I2,x↓ ⊂ Z/2
∫

D4.The omponent Ln−4k
y admits a redution of the struture group to thesubgroup I2,y. Moreover, it is easy to see that the overing L̃n−4k

x↓ over
Ln−4k

x indued by the epimorphism ω : Z/2
∫

D4 → Z/2 with the kernel
I2,x ⊂ Z/2

∫
D4 is naturally di�eomorphi to Ln−4k

y . Also it is easy to seethat this di�eomorphism agrees with the transformation OP of the struturegroups of the framing over the omponents.The last omponent of Ln−4k is immersed in the ε2-neighborhood of
d(RPs) outside of U reg

∆ and will be denoted by Ln−4k
z . The struture group ofthe framing of this omponent is I2,z. Lemma 1 is proved.The last part of the proof of the Theorem 1Let us onstrut a pair of polyhedra (P ′, Q′) ⊂ R

n, dim(P ′) = 2s − n =
n − 2k − q − 2, dim(Q′) = dim(P ′) − 1. Obviously, dim(P ′) < 2k − 1.Take a generi mapping d′ : RPs → R

n. Let us onsider the submanifoldwith boundary (∆′reg, ∂∆′reg) ⊂ R
n (see the denotation in Lemma 1). Let

η∆′reg : (∆′reg, ∂∆′reg) → (K(D4, 1), K(Ib, 1)) be the lassifying mapping forthe double point self-intersetion manifold of d.By a standard argument we may modify the mapping d into d′ suh thatthe mapping η∆reg is a homotopy equivalene of pairs up to the dimension
q + 1. After this modi�ation d′ → d we de�ne (P,Q) = (∆reg, ∂∆reg) ⊂ R

nand the mapping η∆reg is a (q + 1)-homotopy equivalene.13



The subpolyhedron Q is equipped with two ohomology lasses
κQ,1, κQ,2 ∈ H1(Q; Z/2). Beause Σ is a submanifold in RPs, the restritionof the harateristi lass κ ∈ H1(RPs; Z/2) to H1(Σ; Z/2) is well-de�ned.The inlusion iQ : Q ⊂ UΣ determines the ohomology lass (iQ)∗(κ) ∈
H1(Q; Z/2). The ohomology lass κQ,1 is de�ned as the harateristi lassof the anonial double points overing over Σ. The lass κQ,2 is de�ned bythe formula κQ,2 = (iQ)∗(κ) + κQ,1.The immersed manifold (with boundary) (Nn−2k ∩UΣ) # UΣ is equippedwith an Ib-framing. Obviously the lasses κQ,1, κQ,2 ∈ H1(UΣ; Z/2) =
H1(Q; Z/2) restrited to H1(g2(N

n−2k
ext ); Z/2) ( reall that g2(N

n−2k
ext ) =

g2(N
n−2k) ∩ (Rn \ U∆)) agree with the two generated ohomology lasses

ρ1, ρ2 of the Ib-framing orrespondingly.Let us de�ne the immersion g : Nn−2k
# R

n with Ib-ontrol over (P,Q).Let us start with the immersion g2 : Nn−2k
# R

n onstruted in the lemma.By a 2ε2�small generi regular deformation we may deform the immersion g2into g3, suh that this deformation pushes the omponent g2(N
n−2k
x ) out of

U reg
∆ . Therefore the omponent Ln−4k

x↓ ⊂ Ln−4k of the self-intersetion of g2 isalso deformed out of U reg
∆ .The immersed manifold (with boundary) g3(N

n−2k) ∩ (Rn \ U reg
∆ ) isequipped with an Ib-framing of the normal bundle. Obviously, the lasses

κQ,1, κQ,2 ∈ H1(UΣ; Z/2) = H1(Q; Z/2), restrited to H1(g2(N
n−2k) ∩

U∆; Z/2), agree with the two generated ohomologial lasses of the Ib-framing. The immersed manifold g3(N
n−2k) ∩ U reg

∆ oinides with g2(N
n−2k
y )and has the general struture group of the framing. This immersed manifoldhas the self-intersetion manifold (with boundary) h(Ln−4k) ∩ U reg

∆ with theredution of the struture group to the pair of the subgroups (I2,y, I3).Let us prove that the immersed manifold (with boundary) h(Ln−4k) ∩
U reg

∆ is Z/2
∫

D4-framed obordant (relative to the boundary) to a Z/2
∫

D4-framed manifold deomposed into the disjoint union of a losed Z/2
∫

D4-framed manifold that is the image of the transfer homomorphism ω! and arelative I3-framed manifold.Take a Z/2
∫

D4-framed manifold (L̃n−4k, Ψ̃, ζ̃) that is de�ned asthe image of Z/2
∫

D4-framed manifold (Ln−4k,Ψ, ζ) by the transferhomomorphism (a double overing) with respet to the ohomology lass
ω ∈ H1(Z/2

∫
D4; Z/2). Reall that the manifold L̃n−4k is obtained by gluingthe manifold L̃n−4k

x ∪ L̃n−4k
y with the manifold L̃n−4k

z along the ommonboundary Λ̃n−4k−1. Note that the group of the framing of the last manifold
Λ̃n−4k−1

z is the subgroup I3 ⊂ Z/2
∫

D4.Let OPα be the Z/2
∫

D4�framed immersion obtained from an arbitrary
Z/2

∫
D4-framed immersion α by hanging the struture group of the framing14



by the transformation OP . The Z/2
∫

D4-framed manifold (with boundary)
(L̃n−4k

y , Ψ̃y, ζ̃y) oinides with the two disjoint opies of Z/2
∫

D4-framedmanifold (with boundary) OP (L̃n−4k
y , Ψ̃y, ζ̃y).Let us put α1 = −OP (L̃n−4k, Ψ̃, ζ̃). Let us de�ne the sequene of

Z/2
∫

D4-framed immersions α2 = −2OPα1, α3 = −2OPα2, . . . , αj =
−2OPαj−1.Obviously, the D/4

∫
Z/2-framed immersion α1 + α2 = α1 + 2OPα−1

1 isrepresented by 3 opies of the manifold L̃n−4k. The seond and the thirdopies are obtained from the �rst opy by the mirror image and the hangingof struture group of the framing. The manifold −OP [L̃n−4k] ∪ 2[L̃n−4k]ontains, in partiular, a opy of −OP [L̃n−4k
x ] inside the �rst omponent andthe union [L̃n−4k

y ∪Ln−4k
y ] of the mirror two opies of−OP [L̃n−4k

x ] in the seondand the third omponent. Therefore the manifold −OP [L̃n−4k] ∪ 2[L̃n−4k]is Z/2
∫

D4-framed obordant to a Z/2
∫

D4-framed manifold, obtained bygluing the union of a opy of −OP [L̃n−4k
x ] and 4 opies of L̃n−4k

y by a I3-framing manifold along the boundary. This obordism is relative with respetto the submanifold −OP [L̃n−4k
z ] ∪ 2[Ln−4k

z ] ⊂ −OP [Ln−4k] ∪ 2Ln−4k.By an analogous argument it is easy to prove that the element ℵ =∑j0
j=1 αj is Z/2

∫
D4-framed obordant to the manifold obtained by gluingthe union −OP [L̃n−4k
x ] ∪ 2j(−OP )j−1[L̃n−4k

y ] by an I3-manifold along theboundary. Moreover, this obordism is relative with respet to all opies of
L̃n−4k

z (with various orientations). If j0 is great enough, the manifold (with I3-framed boundary) 2j(−OP )j0−1[L̃n−4k
y ] is obordant relative to the boundaryto an I3-framed manifold.Therefore the manifold Ln−4k

y is Z/2
∫

D4-framed obordant relative tothe boundary to the union of an I3-framed manifold with the same boundaryand a losed manifold that is the double over with respet to ω over a
Z/2

∫
D4-framed manifold. This obordism is realized as a obordism of theself-intersetion of a D4-framed immersion with support inside U reg

∆ . Thisobordism joins the immersion g3 with a D4�framed immersion g4. After anadditional deformation of g4 inside a larger neighborhood of ∆reg the relative
Ib-submanifold of the self-intersetion manifold of g4 is deformed outside of
U reg

∆ . The D4-framed immersion obtained as the result of this obordismadmits an Ib-ontrol. The Theorem 1 is proved.
15



4 An I4-struture (a yli struture) of a D4-framed immersionLet us desribe the subgroup I4 ⊂ Z/2
∫

D4. This subgroup is isomorphito the group Z/2 ⊕ Z/4. Let us reall that the group Z/2
∫

D4 is thetransformation group of R
4 that permutes the 4-tuple of the oordinatelines and two planes (f1, f2), (f3, f4) spanned by the vetors of the standardbase (f1, f2, f3, f4) (the planes an remin �xed or be permuted by atransformation).Let us denote the generators of Z/2 ⊕ Z/4 by l, r orrespondingly. Letus desribe the transformations of R

4 given by eah generator. Consider anew base (e1, e2, e3, e4), given by e1 = f1 + f2, e2 = f1 − f2, e3 = f3 + f4,
e4 = f3 − f4. The generator r of order 4 is represented by the rotation in theplane (e2, e4) through the angle π

2
and the re�etion in the plane (e1, e3) withrespet to the line e1 + e3. The generator l of order 2 is represented by theentral symmetry in the plane (e1, e3).Obviously, the desribed representation of I4 admits invariant (1,1,2)-dimensional subspaes. We will denote subspaes by λ1, λ2, τ .The lines λ1, λ2 are generated by the vetors e1 + e3, e1 − e3orrespondingly. The subspae τ is generated by the vetors e2, e4. Thegenerator r ats by the re�etion in λ2 and by the rotation in τ throughtthe angle π

2
. The generator l ats by re�etions in the subspaes λ1, λ2.In partiular, if the struture group Z/2

∫
D4 of a 4-dimensional bundle

ζ : E(ζ) → L admits a redution to the subgroup I4, then the bundleis deomposed into the diret sum ζ = λ1 ⊕ λ2 ⊕ τ of 1, 1, 2�dimensionalsubbundles.De�nition 6Let (g : Nn−2k
# R

n,ΞN , η) be an arbitrary D4-framed immersion. Weshall say that this immersion is an Ib�immersion (or a yli immersion), ifthe struture group Z/2
∫

D4 of the normal bundle over the double pointsmanifold Ln−4k of this immersion admits a redution to the subgroup I4 ⊂
Z/2

∫
D4. In this de�nition we assume that the pairs (f1, f2), (f3, f4) are thevetors of the framing for the two sheets of the self-intersetion manifold ata point in the double point manifold Ln−4k.In partiular, for a yli Z/2

∫
D4-framed immersion there exists themappings κa : Ln−4k → K(Z/2, 1), µa : Ln−4k → K(Z/4, 1) suh that16



the harateristi mapping ζ : Ln−4k → K(Z/2
∫

D/4, 1) of the Z/2
∫

D4-framing of the normal bundle over Ln−4k is redued to a mapping with thetarget K(Ib, 1) suh that the following equation holds:
ζ = i(κa ⊕ µa),where i : Z/2 ⊕ Z/4 → I4 is the presribed isomorphism.The following Proposition is proved by a straightforward alulation.Proposition 2Let (g,ΨN , η) be a D4�framed immersion, that is a yli immersion. Thenthe Kervaire invariant, appearing as the top line of the diagram (7), an bealulated by following formula:

Θa =< κ
n−4k

2
a µ∗

a(τ)
n−4k−2

4 µ∗
a(ρ); [L] >, (8)where τ ∈ H2(Z/4; Z/2), ρ ∈ H1(Z/4; Z/2) are the generators.Proof of Proposition 2Let us onsider the subgroup of index 2, Ib ⊂ I4. This subgroup is thekernel of the epimorphism χ′ : I4 → Z/2, that is the restrition of theharateristi lass χ : Z/2

∫
D4 → Z/2 of the anonial double over L̄→ Lto the subgroup I4 ⊂ Z/2

∫
D4. Obviously, the harateristi number (8) isalulated by the formula

Θa =< κ̂
n−4k

2
a ρ̂

n−4k
2

a ; L̄ >, (9)where the harateristi lass κ̂a ∈ H1(L̄; Z/2) is indued from the lass κa ∈
H1(L; Z/2) by the anonial over L̄ → L, and the lass ρ̂a ∈ H1(L̄; Z/2) isobtained by the transfer of the lass ρ ∈ H1(L; Z/4).Note that κ̂a = τ1, ρ̂a = τ2, where τ1, τ2 are the two generating Ib�harateristi lasses. Therefore κ̂aρ̂a = τ1τ2 = w2(η), where η is the two-dimensional bundle that determines the D4�framing (over the submanifold
L̄n−4k ⊂ Nn−2k this framing admits a redution to an Ib-framing) of thenormal bundle for the immersion g of Nn−2k into R

n.Therefore the harateristi number, given by the formula (8) in the asewhen the Z/2
∫

D4 framing over Ln−4k is redued to an I4-framing, oinideswith the harateristi number, given by the formula (9). Proposition 2 isproved. 17



De�nition 7We shall say that a D4-framed immersion (g,ΞN , η) admits a I4�struture(a yli struture), if for the double points manifold Ln−4k of g there existmappings κa : Ln−4k → K(Z/2, 1), µa : Ln−4k → K(Z/4, 1) suh that theharateristi number (8) oinides with Kervaire invariant, see De�nition 2.Theorem 2Let (g,Ψ, η) be a D4-framed immersion, g : Nn−2k
# R

n, that represents aregular obordism lass in the image of the homomorphism δ : Immsf (n −
k, k) → ImmD4(n− 2k, 2k), n− 4k = 62, n = 2l − 2, l ≥ 13, and assume theonditions of the Theorem 1 hold, i.e. the residue lass δ−1(Immsf(n− k, k)(this lass is de�ned modulo odd torsion) ontains a skew-framed immersionthat admits a retration of order 62.Then in the D4-framed obordism lass [(g,Ψ, η)] = δ[(f,Ξ, κ)] ∈
ImmD4(n − 2k, 2k) there exists a D4-framed immersion that admits an I4�struture (a yli struture).5 Proof of Theorem 2Let us formulate the Geometrial Control Priniple for Ib�ontrolledimmersions.Let us take an Ib�ontrolled immersion (see De�nition 4)
(g,ΞN , η; (P,Q), κQ,1, κQ,2), where g : N # R

n is a D4-framed immersion,equipped with a ontrol mapping over a polyhedron iP : P ⊂ R
n,

dim(P ) = 2k − 1; Q ⊂ P dim(Q) = dim(P ) − 1. The harateristilasses κQ,i ∈ H1(Q; Z/2), i = 1, 2 oinide with harateristi lasses
κi,NQ

∈ Nn−2k−1
Q by means of the mapping ∂Nn−2k

int = Nn−2k
Q → Q, where

Nn−2k
int ⊂ Nn−2k, Nn−2k

int = g−1(UP ), UP ⊂ R
n.Proposition 3. Geometrial Control Priniple for Ib�ontrolledimmersionsLet jP : P ⊂ R

n be an arbitrary embedding; suh an embedding is uniqueup to isotopy by a dimensional reason, beause 2dim(P ) + 1 = 4k − 1 < n.Let g1 : Nn−2k → R
n be an arbitrary mapping, suh that the restrition

g1|Nint
: (Nn−2k

int , Nn−2k−1
Q ) # (UP , ∂UP ) is an immersion (the restrition18



g|Nn−2k−1
Q

is an embedding) that orresponds to the immersion g|Nn−2k
int

:

(Nn−2k
int , Nn−2k−1

Q ) # (UP , ∂UP ) by means of the standard di�eomorphismof the regular neighborhoods UiP = UjP
of subpolyhedra i(P ) and j(P ). (Fora dimension reason there is a standard di�eomorphism of UiP and UjP

up toan isotopy.)Then for an arbitrary ε > 0 there exists an immersion gε : Nn−2k
# R

nsuh that distC0(g1, gε) < ε and suh that gε is regular homotopy to animmersion g and the restritions gε|Nn−2k
int

and g1|Nn−2k
int

oinide.We start the proof of Theorem 2 with the following onstrution. Letus onsider the manifold Z = S
n
2
+64/i× RP

n
2
+64. This manifold is the diretprodut of the standard lens spae (mod4) and the projetive spae. The over

pZ : Ẑ → Z over this manifold with the overing spae Ẑ = RP
n
2
+64×RP

n
2
+64is well-de�ned.Let us onsider in the manifold Z a family of submanifolds Xi, i =

0, . . . , n+2
64

of the odimension n+2
2
, de�ned by the formulas X0 = S

n
2
+64/i×

RP63, X1 = S
n
2
+32/i × RP95, . . . , Xj = S

n
2
−32(j−2)−1/i × RP32(j+2)−1, . . . ,

Xn+2
64

= S63/i×RP
n
2
+64. The embedding of the orresponding manifold in Zis de�ned by the Cartesian produt of the two standard embeddings.The union of the submanifolds {Xi} is a strati�ed submanifold (withsingularities) X ⊂ Z of the dimension n

2
+ 127, the odimension of maximalsingular strata in X is equal to 64. The overing pX : X̂ → X, induedfrom the overing pZ : Ẑ → Z by the inlusion X ⊂ Z, is well-de�ned.The overing spae X̂ is a strati�ed manifold (with singularities) anddeomposes into the union of the submanifolds X̂0 = RP

n
2
+64×RP63, . . . , X̂j =

RP
n
2
−32(j−2) × RP32(j+2)−1, . . . , X̂n+2

64
= RP63 × RP

n
2
+64. Eah manifold X̂i ofthe family is the 2-sheeted overing spae over the manifold Xi over the �rstoordinate. Let us de�ne d1(j) = n

2
− 32(j − 2), d2(j) = 32(j + 2) − 1. Thenthe formula for Xi is the following: Xj = RPd1(j) × RPd2(j).The ohomology lasses ρX,1 ∈ H1(X; Z/4), κX,2 ∈ H1(X; Z/2)are well-de�ned. These lasses are indued from the generators of thegroups H1(Z; Z/4), H1(Z; Z/2). Analogously, the ohomology lasses κX̂,i ∈

H1(X̂; Z/4), i = 1, 2 are well-de�ned. The ohomology lass κX̂,1 is induedfrom the lass ρX,1 ∈ H1(X; Z/4) my means of the transfer homomorphim,and κX̂,2 = (pX)∗(κX,2).Let us de�ne for an arbitrary j = 0, . . . , (n+2
64

) the spae Jj and themapping ϕj : Xj → Jj. We denote by Y1(k) the spae S31/i ∗ · · · ∗ S31/i ofthe join of k opies, k = 1, . . . , (n+2
64

+ 1), of the standard lens spae S31/i.19



Let us denote by Y2(k), k = 2, . . . , (n+2
64

+ 2), Y2(k) = RP31 ∗ · · · ∗ RP31 thejoins of the k opies of the standard projetive spae RP31. Let us de�ne
Jj = Y1(

n+2
64

− j+ 2))×Y2(j+ 2) Q = Y1(
n+2
64

+ 2)× Y2(
n+2
64

+ 2). For a given
j the natural inlusions Jj ⊂ Q are well-de�ned. Let us denote the union ofthe onsidered inlusions by J .The mapping ϕj : Xj → Jj is well-de�ned as the Cartesian produt ofthe two following mappings. On the �rst oordinate the mapping is de�nedas the omposition of the standard 2-sheeted overing RPd1(j) → S

n
2
−64(j−1)/iand the natural projetion Sd1(j)/i → Y1(d1(j)). On the seond oordinatethe mapping is de�ned by the natural projetion RPd2(j) → Y2(j + 1).The family of mappings ϕj determines the mapping ϕ : X̂ → J , beausethe restritions of any two mappings to the ommon subspae in the originoinide.For n+2 ≥ 213 the spae J embeddable into the Eulidean n-spae by anembedding iJ : J ⊂ R

n. Eah spae Y1(k), Y2(k) in the family is embeddableinto the Eulidean (26k−1−k)�spae. Therefore for an arbitrary j the spae
Jj is embaddable into the Eulidean spae of dimension n + 126 − n+2

64
. Inpartiular, if n + 2 ≥ 213 the spae Jj is embeddable into R

n. The imageof an arbitrary intersetion of the two embeddings in the family belongs tothe standard oordinate subspae. Therefore the required embedding iJ isde�ned by the gluing of embeddings in the family.Let us desribe the mapping ĥ : X̂ → R
n. By ε we denote the radius ofa (strati�ed) regular neighborhood of the subpolyhedron iJ (J) ⊂ R

n. Let usonsider a small positive ε1, ε1 << ε, (this onstant will be de�ned below inthe proof of Lemma 4) and let us onsider a generi PL ε1�deformation ofthe mapping iJ ◦ ϕ : X̂ → J ⊂ R
n. The result of the deformation is denotedby ĥ : X̂ → R

n.Let us de�ne the positive integer k from the equation n−4k = 62. In thepresribed regular homotopy lass of an Ib-ontrolled immersion f : Nn−2k
#

R
n we will onstrut another Ib�ontrolled immersion g : Nn−2k

# R
n thatadmits a Ib�struture.Let the immersion f be ontrolled over the embedded subpolyhedron

ψP : P ⊂ R
n. Let ψQ : Q → X̂ be a generi mapping suh that κQ,i =

ψQ ◦ κX̂,i, i = 1, 2. By the previous de�nition the manifolds Nn−2k
int , Nn−2k

extwith the ommon boundary Nn−2k−1
Q , Nn−2k = Nn−2k

int ∪Nn−2k−1
Q

Nn−2k
ext arewell-de�ned.Let η : Nn−2k

ext → K(Ib, 1) ⊂ K(D4, 1) be the harateristi mappingof the framing ΞN , restrited to Nn−2k
ext ⊂ Nn−2k. The restrition of thismapping to the boundary ∂Nn−2k

ext = Nn−2k−1
Q is given by the omposition

∂Nn−2k−1
Q → Q → K(Ib, 1) ⊂ K(D4, 1). The target spae for the mapping20



η is the subspae K(Ib, 1) ⊂ K(D4, 1). This mapping is determined by theohomology lasses κNn−2k
ext ,s ∈ H1(Nn−2k

ext , Q; Z/2), s = 1, 2.Let us de�ne the mapping λ : Nn−2k
ext → X̂ by the following onditions.This mapping transforms the ohomology lasses κX̂,i into the lasses

κi ∈ H1(Nn−2k
ext ; Z/2) and also the restrition λ|Nn−2k−1

Q
oinides with theomposition of the projetion Nn−2k−1

Q → Q and the mapping ψQ : Q → X̂.The boundary onditions for the mapping ψQ are κQ,i = ψQ ◦ κX̂,i, i = 1, 2.The submanifold with singularities X̂ ⊂ Ẑ ontains the skeleton of the spae
Ẑ of the dimension n

2
+ 62. Beause n − 2k = n

2
+ 31, the mapping λ iswell-de�ned.Let us denote the omposition ĥ ◦ λ : Nn−2k

ext → X̂ → R
n by g1. Letus denote the mapping ĥ ◦ ψQ : Q → X̂ → R

n by ϕQ. One an assumethat the mapping ϕQ is an embedding. Moreover, without loss of generalityone may assume that this embedding is extended to a generi embedding
ϕP : P ⊂ R

n suh that the embedded polyhedron ϕP : P ⊂ R
n does notinterset g1(N

n−2k
ext ).Let us denote by Uϕ(P ) a regular neighborhood of the subpolyhedron

ϕP (P ) ⊂ R
n (we may assume that the radius of this neighborhood is equalto ε). Up to an isotopy a regular neighborhood Uϕ(P ) is well-de�ned, inpartiular, this neighborhood does not depend on the hoie of a regularembedding of P , moreover Uϕ(P ) and U(P ) are di�eomorphi.Without loss of generality after an additional small deformation we mayassume that the restrition g1|Nn−2k

int
is a regular immersion g1 : Nn−2k

int ⊂

R
n with the image inside Uϕ(P ). In partiular, the restrition of g1 to theboundary Nn−2k−1

Q = ∂(Nn−2k
int ) is a regular embedding Nn−2k−1

Q ⊂ ∂U(P ).The immersion g1|Nint
is onjugated to the immersion f |Nint

by means of adi�eomorphism of Uϕ(P ) with U(P ).By Proposition 3, for an arbitrary ε2 > 0, ε2 << ε1 << ε, there exists animmersion g : Nn−2k
# R

n in the regular homotopy lass of f , suh that goinides with g′ (and with g1) on Nn−2k
int and, moreover, dist(g, g1) < ε2.Let us onsider the self-intersetion manifold Ln−4k of the immersion g.This manifold is a submanifold in R
n. Let us onstrut the mappings κa :

Ln−4k → K(Z/2, 1), µa : Ln−4k → K(Z/4, 1). Then we hek the onditions(8) and (9).The manifold Ln−4k is naturally divided into two omponents. The �rstomponent Ln−4k
int is inside UϕP

(P ). The last omponent (we will denotethis omponent again by Ln−4k) onsists of the last self-intersetion points.This omponent is outside the ε�neighborhood of the submanifold withsingularities h(X). The mappings κa, µa over Ln−4k
int are de�ned as the trivial21



mappings. Let us de�ne the mappings κa, µa on Ln−4k.Let us onsider the mapping ϕ : X̂ → J and the singular set (polyhedron)
Σ of this mapping. This is the subpolyhedron Σ ⊂ {X̂(2) = X̂× X̂ \∆X̂/T

′},where T ′ : X̂(2) → X̂(2)� is the involution of oordinates in the delatedprodut X̂(2) of the spae X̂. The subpolyhedron (it is onvenient to viewthis polyhedron as a manifold with singularities) Σ is naturally deomposedinto the union of the subpolyhedra Σ(j), j = 0, . . . , n+2
128

. The subpolyhedron
Σ(j) is the singular set of the mapping ϕ(j) : RPd1(j) × RPd2(j) → Sd1(j)/i×
RPd2(j) → Jj. This subpolyhedron onsists of the singular points of themapping ϕ in the inverse image (ϕ)−1(Jj) = RPd1(j)×RPd2(j) of the subspae
Jj ⊂ J .Let us onsider the subspae Σreg ⊂ Σ, onsisting of points on strata oflength 0 (regular strata) and of length 1 (singular strata of the odimension32) after the regular ε2 �neighborhoods (ε2 << ε1) of the diagonal ∆diag andthe antidiagonal ∆antidiag of Σreg are ut out.The manifold with singularities Σreg admits a natural ompati�ation(losure) in the neighborhood of ∆diag and ∆antidiag ; the result of theompati�ation will be denoted by Kreg.The spae RK, alled the spae of resolution of singularities, equippedwith the natural projetion RK → Kreg is de�ned by the analogousonstrution; see the short English translation of [A1℄, Lemma 7. Theohomology lasses ρRK,1 ∈ H1(RK; Z/4), κRK,2 ∈ H1(RK; Z/2) arewell-de�ned. The ohomology lasses κKreg,1 ∈ H1(RK; Z/2), κRK,1 ∈
H1(RK; Z/2) are the images of the lass κΣ,1 ∈ H1(Σ; Z/2) with respet tothe inlusion Kreg ⊂ Σ and the projetion RK → Kreg. The lass lassi�esthe transposition of the two non-ordered preimages of a point in the singularset.Let us onsider the restritions of the lasses κKreg,1, κRK,1, κΣ,1 toneighborhoods of the diagonal and the antidiagonal. The natural projetion
∆diag → X̂ is well-de�ned. The restritions of the lasses ρ1 and κ2 toneighborhoods of the diagonal oinide with the restritions of the lasses
ρX̂,1 ∈ H1(X̂; Z/4), κX̂,2 ∈ H1(X̂; Z/2). (These lasses ρX̂,1, κX̂,2 areextended to neighborhoods of the diagonal).Let us reall that the mapping ĥ : X̂ → R

n is de�ned as the resultof an ε1�small regular deformation of the mapping X̂ → X
h

−→ R
n.The singular set of the mapping ĥ will be denoted by Σĥ. This is a 128�dimensional polyhedron, or a manifold with singularities in the odimensions

32, 64, 96, 128. Moreover, the inlusion Σĥ ⊂ X̂(2) is well-de�ned. The imageof this inlusion is in the regular ε1�small neighborhood of the singularpolyhedron Σ ⊂ X(2). 22



Let us denote by Σreg

ĥ
the part of the singular set after utting out theregular ε1�neighborhood of the points in singular strata of length at least 2 (ofthe odimension 64) and self-intersetion points of all singular strata (thesestrata are also of the odimension 64). The boundary ∂Σĥ is a submanifoldwith singularities in X̂ and therefore. by a general position argument, wemay also assume that the boundary ∂Σreg

ĥ
is a regular submanifold withsingularities in X̂.Additionally, by general position arguments, the intersetion of theimage Im(λ(Nn−2k

ext )) inside the singular set Σĥ (this is a polyhedron ofthe dimension 62) on X are outside (with respet to the aliber ε) of theprojetion of the singular submanifold with singularities (this singular partis of the odimension 64) in the omplement of the regular submanifold withsingularities Σreg

ĥ
⊂ Σĥ. Therefore the image Im(λ(Nn−2k

ext )) is inside theregular part Σreg

ĥ
⊂ Σĥ.Let us denote by L62

cycl ⊂ L62 the submanifold (with boundary) given bythe formula L62
cycl = L62 ∩ UΣreg . The mappings κa, ρa are extendable from

UΣreg to L62
cycl ⊂ L62. Let us prove that these mappings are extendable tomappings κa : L62 → K(Z/2, 1), ρa : L62 → K(Z/4, 1).The omplement of thå submanifold L62

cycl ⊂ L62 is denoted by L62
I3

= L62\
L62

cycl. The submanifold L62
I3

is a submanifold in the regular ε�neighborhoodof h(X) ⊂ R
n. Obviously, the struture group of the Z/2

∫
D4�framing ofthe normal bundle of the manifold (with boundary) L62

I3
is redued to thesubgroup I3 ⊂ Z/2

∫
D4.Let us onsider the mapping of pairs µa × κa : (L62

cycl, ∂L
62
cycl) →

(K(Z/4, 1)×K(Z/2, 1), K(Z/2, 1)×K(Z/2, 1)). Let us onsider the naturalprojetion πb : I3 → Ib. The extension of the mapping µa × κa to therequired mapping L62 → K(Z/4, 1)×K(Z/2, 1) is given by the omposition
L62

I3
→ K(I3, 1)

πb,∗
−→ K(Ib, 1) ⊂ K(Z/4, 1)×K(Z/2, 1), where κ1 ∈ K(Ib; Z/2)determines the inlusion K(Ib, 1) ⊂ K(Z/2, 1) ⊂ K(Z/4, 1).Let us formulate the results in the following lemma.Lemma 4�1. Let n ≥ 213 − 2 and k, n − 4k = 62 satisfy the onditions of Theorem1 (in partiular, an arbitrary element in the group Immsf (n − k, k) admitsa retration of the order 62. Then for arbitrarily small positive numbers ε1,

ε2, ε1 >> ε2 (the numbers ε1, ε2 are the alibers of the regular deformationsin the onstrution of the PL�mapping ĥ : X̂ → R
n and of the immersion

g : Nn−2k
# R

n orrespondingly) there exists the mapping ma = (κa × µa) :
Σreg

h → K(Z/4, 1)×K(Z/2, 1) under the following ondition. The restrition23



ma|∂Σreg
h

(by ∂Σreg
h is denoted the part of the singular polyhedron onsisting ofpoints on the diagonal) has the target K(Z/2, 1)×K(Z/2, 1) ⊂ K(Z/4, 1)×

K(Z/2, 1) and is determined by the ohomologial lasses κX̂,1, κX̂,2.�2. The mappings κa, µa indues a mapping (µa×κa) : L62 → K(Z/4, 1)×
K(Z/2, 1) on the self-intersetion manifold of the immersion g.Let us prove that the mapping (µa × κa) onstruted in Lemma 4determines a Z/2⊕Z/4�struture for the D4�framed immersion g. We haveto prove the equation (9).Let us reall that the omponent L62

int of the self-intersetion manifoldof the immersion g is a Z/2
∫

D4�framed manifold with trivial Kervaireinvariant: the orresponding element in the group ImmZ/2
R

D4(62, n − 62)is in the image of the transfer homomorphism. Therefore it is su�ient toprove the equation
< m∗

a(ρτ
15t31); [L62] >= Θ,or, equivalently, the equation

< (ρ̂31
a κ̂

31
a ); [L̂62] >= Θ, (10)where L̂ → L is the anonial over over the self-intersetion manifold, L̂ ⊂

Nn−2k
ext is the anonial inlusion.By Herbert's theorem (see [A1℄ for the analogous onstrution) we mayalulate the right side of the equation by the formula

< η∗(w2(Ib))
n−2k

2 ; [Nn−2k
ext / ∼] > . (11)In this formula by Nn−2k

ext / ∼ is denoted the quotient of the boundary
∂Nn−2k

ext = Nn−2k−1
Q that is ontrated onto the polyhedron Q with the lossof the dimension. Note that the mapping ma|Nn−2k−1

Q
is obtained by theomposition of the mapping pQ : Nn−2k−1 → Q with a loss of dimensionwith the mapping Q → K(Ib, 1), the last mapping is determined by theohomology lasses κi,Q ∈ H1(Q; Z/2), i = 1, 2. Therefore, ma∗([N

n−2k
ext / ∼

]) ∈ Hn−2k(Ib; Z/2) is a permanent yle and the integration over the yle
[Nn−2k

ext / ∼] of the inverse image of the universal ohomology lass in (11) iswell-de�ned.It is onvenient to onsider the harateristi number Θa as the valueof a homomorphism Hn−2k(X; Z/2) → Z/2 on the yle λ∗[Nn−2k
ext / ∼] ∈

Hn−2k(X; Z/2). This homomorphism is the result of the alulation of theharateristi lass w2(Ib) ∈ H2(K(Ib, 1); Z/2) on the presribed yle, i.e. on24



the image of the fundamental yle [Nn−2k
ext / ∼] with respet to the mapping

Nn−2k
ext / ∼→ X̂ → K(Ib, 1). The yle λ∗[Nn−2k

ext / ∼] ∈ Hn−2k(X; Z/2) is themodulo 2 redution of an integral homology lass. Therefore this yle is givenby a sum of fundamental lasses of the produt of the two odd-dimensionalprojetive spaes, the sum of the dimensions of this spaes being equal to
n− 2k.Let us onsider an arbitrary submanifold Sk1/i × RPk2 ⊂ X, k1 + k2 =
n
2
+31, k1, k2 being odd. Let us onsider the over RPk1×RPk2 → Sk1/i×RPk2and the omposition RPk1 × RPk2 ⊂ X̂

ĥ
# R

n after an ε1�small generiperturbation. Let us denote this mapping by sk1,k2.The self-intersetion manifold of the generi mapping sk1,k2 : RPk1 ×
RPk2 → R

n is a manifold with boundary denoted by Λ62
k1,k2

. The mapping
µa ×κa : (Λ62

k1,k2
, ∂Nn−2k

k1,k2
) → (K(Z/4, 1)×K(Z/2, 1), K(Z/2, 1)×K(Z/2, 1))is well-de�ned. The 61-dimensional homology fundamental lass [∂Λ] isintegral, therefore the image of this fundamental lass (µa×κa)∗([∂Λ

62
k1,k2

]) ∈
H61(K(Z/4, 1) ×K(Z/2, 1); Z/2) is trivial for a dimensional reason.Therefore the homology lass

(µa × κa)∗([Λ
62
k1,k2

, ∂Λ62
k1,k2

]) ∈

H62(K(Z/4, 1) ×K(Z/2, 1), K(Z/2, 1) ×K(Z/2, 1); Z/2)is well-de�ned. Let us onsider the (permanent) homology lass
(µa × κa)

!
∗([Λ̄

62
k1,k2

]) ∈ H62(K(Z/2, 1) ×K(Z/2, 1); Z/2), (12)de�ned from the relative lass above by the transfer homomorphism.To prove (10) it is su�ient to prove that the lass (12) oinides withthe harateristi lass
p∗,b ◦ η̂∗([Λ̂]) ∈ H62(K(Ib, 1); Z/2)under the following isomorphism of the target group Ib = Z/2⊕Z/2. By thisisomorphism the presribed generators in H1(Z/2 ⊕ Z/2; Z/2) are identi�edwith the ohomology lasses τ1, τ2 ∈ H1(K(Ib, 1); Z/2) (ompare with Lemma8 in [A1℄). Theorem 2 is proved.6 Kervaire Invariant One ProblemIn this setion we will prove the following theorem.25



Main TheoremThere exists an integer l0 suh that for an arbitrary integer l ≥ l0, n = 2l − 2the Kervaire invariant given by the formula (1) is trivial.Proof of Main TheoremTake the integer k from the equation n− 4k = 62. Consider the diagram (5).By the Retration Theorem [A2℄, Setion 8 there exists an integer l0 suhthat for an arbitrary integer l ≥ l0 an arbitrary element [(f,Ξ, κ)] in the2-omponent of the obordism group Immsf (3n+q
4
, n−q

4
) admits a retrationof order 62. By Theorem 2 in the obordism lass δ[(f,Ξ, κ)] there exists a

D4-framed immersion (g,Ψ, η) with an I4-struture.Take the self-intersetion manifold L62 of g and let L10
0 ⊂ L62 be thesubmanifold dual to the ohomology lass κ28

a µ
∗
a(τ)

12 ∈ H52(L62; Z/2). Bya straightforward alulation the restrition of the normal bundle of L62 tothe submanifold L10
0 ⊂ L62 is trivial and the normal bundle of L10

0 is theWhitney sum 12κa ⊕ 12µa, where κa is the line Z/2-bundle, µa is the plane
Z/4-bundle with the harateristi lasses κa, µast

a (τ) desribed in the formula(8). By Lemma 6.1 (in the proof of this lemma we have to assume that thenormal bundle of the manifold L10
0 is as above) and by Lemma 7.1 [A2℄ theharateristi lass (8) is trivial. The Main Theorem is proved.
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