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Geometri
 approa
h towards stable homotopygroups of spheres. The Kervaire invariantP.M.Akhmet'ev ∗

ÀííîòàöèÿThe notion of the geometri
al Z/2⊕Z/2�
ontrol of self-interse
tionof a skew-framed immersion and the notion of the Z/2⊕Z/4-stru
ture(the 
y
li
 stru
ture) on the self-interse
tion manifold of a D4-framedimmersion are introdu
ed. It is shown that a skew-framed immersion
f : M

3n+q
4 # R

n, 0 < q << n (in the 3n
4 + ε-range) admits ageometri
al Z/2 ⊕ Z/2�
ontrol if the 
hara
teristi
 
lass of the skew-framing of this immersion admits a retra
tion of the order q, i.e. thereexists a mapping κ0 : M

3n+q
4 → RP

3(n−q)
4 , su
h that this 
omposition

I ◦ κ0 : M
3n+q

4 → RP
3(n−q)

4 → RP∞ is the 
hara
teristi
 
lass of theskew-framing of f . Using the notion of Z/2 ⊕ Z/2-
ontrol we provethat for a su�
iently great n, n = 2l − 2, an arbitrary immersed D4-framed manifold admits in the regular 
obordism 
lass (modulo oddtorsion) an immersion with a Z/2 ⊕ Z/4-stru
ture. In the last se
tionwe present an approa
h toward the Kervaire Invariant One Problem.1 Self-interse
tion of immersions and KervaireInvariantThe Kervaire Invariant One Problem is an open problem in Algebrai
topology, for algebrai
 approa
h see [B-J-M℄, [C-J-M℄. We will 
onsider ageometri
al approa
h; this approa
h is based on results by P.J.E

les, see[E1℄. For a geometri
al approa
h see also [C1℄,[C2℄.Let f : Mn−1
# R

n, n = 2l − 2, l > 1, be a smooth (generi
) immersionof 
odimension 1. Let us denote by g : Nn−2
# R

n the immersion of self-interse
tion manifold.
∗This work was supported in part by the London Royal So
iety (1998-2000), RFBR08-01-00663, INTAS 05-1000008-7805. 1
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De�nition 1The Kervaire invariant of f is de�ned as
Θ(f) =< w

n−2
2

2 ; [Nn−2] >,where w2 = w2(N
n−2) is the normal Stiefel-Whitney of Nn−2.The Kervaire invariant is an invariant of the regular 
obordism 
lassof the immersion f . Moreover, the Kervaire invariant is a well-de�nedhomomorphism

Θ : Immsf (n− 1, 1) → Z/2. (1)The normal bundle ν(g) of the immersion g : Nn−2
# R

n is a 2-dimensional bundle over Nn−2 equipped with a D4�framing. The 
lassifyingmapping η : Nn−2 → K(D4, 1) of this bundle is well-de�ned. The D4-stru
ture of the normal bundle or the D4�framing is the pres
ribed redu
tionof the stru
ture group of the normal bundle of the immersion g to the group
D4 
orresponding to the mapping η. The pair (g, η) represents an element inthe 
obordism group ImmD4(n− 2, 2). The homomorphism

δ : Immsf (n− 1, 1) → ImmD4(n− 2, 2) (2)is well-de�ned.Let us re
all that the 
obordism group Immsf(n − k, k) generalizes thegroup Immsf(n − 1, 1). This group is de�ned as the 
obordism group oftriples (f,Ξ, κ), where f : Mn−k
# R

n is an immersion with the pres
ribedisomorphism Ξ : ν(g) ∼= kκ, 
alled a skew-framing, ν(f) is the normal bundleof f , κ is the given line bundle over Mm−k with the 
hara
teristi
 
lass
w1(κ) ∈ H1(Mm−k; Z/2). The 
obordism relation of triples is standard.The generalization of the group ImmD4(n−2, 2) is following. Let us de�nethe 
obordism groups ImmD4(n− 2k, 2k). This group ImmD4(n− 2k, 2k) isrepresented by triples (g,Ξ, η), where g : Nn−2k

# R
n is an immersion, Ξis a dihedral k-framing, i.e. the pres
ribed isomorphism Ξ : νg

∼= kη, where
η is a 2-dimensional bundle over Nn−2k. The 
hara
teristi
 mapping of thebundle η is denoted also by η : Nn−2k → K(D4, 1). The mapping η is the
hara
teristi
 mapping for the bundle νg, be
ause νg

∼= kη.Obviously, the Kervaire homomorphism (1) is de�ned as the 
ompositionof the homomorphism (2) with a homomorphism
ΘD4 : ImmD4(n− 2, 2) → Z/2. (3)2



The homomorphism (3) is 
alled the Kervaire invariant for D4-framedimmersed manifolds.The Kervaire homomorphisms are de�ned in a more general situation bya straightforward generalization of the homomorphisms (1) and (3):
Θk : Immsf (n− k, k) → Z/2, (4a)

Θk
D4

: ImmD4(n− 2k, 2k) → Z/2, (4b)(for k = 1 the new homomorphism 
oin
ides with the homomorphism (3)de�ned above) and the following diagram
Immsf(n− 1, 1)

δ
−→ ImmD4(n− 2, 2)

ΘD4−→ Z/2
↓ Jk ↓ Jk

D4
||

Immsf (n− k, k)
δk

−→ ImmD4(n− 2k, 2k)
Θk

D4−→ Z/2

(5)is 
ommutative. The homomorphism Jk (Jk
D4
) is determined by theregular 
obordism 
lass of the restri
tion of the given immersion f (g) tothe submanifold in Mn−1 (Nn−2) dual to w1(κ)
k−1 ∈ Hk−1(Mn−1; Z/2)(w2(η)

k−1 ∈ H2k−2(Nn−2; Z/2)).Let (g,Ξ, η) be a D4-framed (generi
) immersion in the 
odimension 2k.Let h : Ln−4k
# R

n be the immersion of the self-interse
tion (double points)manifold of g. The normal bundle νh of the immersion h is de
omposed intoa dire
t sum of k isomorphi
 
opies of a 4-dimensional bundle ζ with thestru
ture group Z/2
∫

D4. This de
omposition is given by the isomorphism
Ψ : νh

∼= kζ . The bundle νh itself is 
lassi�ed by the mapping ζ : Ln−4k →
K(Z/2

∫
D4, 1).All the triples (h, ζ,Ψ) des
ribed above (we do not assume that a tripleis realized as the double point manifold for a D4-framed immersion) up tothe standard 
obordism relation form the 
obordism group ImmZ/2

R

D4(n−
4k, 4k). The self-interse
tion of an arbitrary D4-framed immersion is a
Z/2

∫
D4-framed immersed manifold and the 
obordism 
lass of this manifoldwell-de�nes the natural homomorphism

δk
D4

: ImmD4(n− 2k, 2k) → ImmZ/2
R

D4(n− 4k, 4k). (6)The subgroup D4 ⊕ D4 ⊂ Z/2
∫

D4 of index 2 indu
es the double 
over
L̄n−4k → Ln−4k. This double 
over 
orresponds with the 
anoni
al double
over over the double point manifold.Let ζ̄ : L̄n−4k → K(D4, 1) be the 
lassifying mapping indu
ed by theproje
tion homomorphism D4 ⊕D4 → D4 to the �rst fa
tor. Let ζ̄ → Ln−4kbe the 2-dimensional D4�bundle de�ned as the pull-ba
k of the universal2-dimensional bundle with respe
t to the 
lassifying mapping ζ̄.3



De�nition 2The Kervaire invariant Θk
Z/2

R

D4
: ImmZ/2

R

D4(n − 4k, 4k) → Z/2 for a
Z/2

∫
D4-framed immersion (h,Ψ, ζ) is de�ned by the following formula:

Θk
Z/2

R

D4
(h,Ψ, ζ) =< w2(η̄)

n−4k
2 ; [Ln−4k] > .This new invariant is a homomorphism Θk

Z/2
R

D4
: ImmZ/2

R

D4(n, n −

4k) → Z/2 in
luded into the following 
ommutative diagram:
ImmD4(n− 2k, 2k)

ΘD4−→ Z/2
↓ δk

D4
||

ImmZ/2
R

D4(n− 4k, 4k)
Θk

Z/2
R

D4−→ Z/2.

(7)Let us formulate the �rst main results of the paper. In se
tion 2 thenotion of Z/2⊕Z/2-
ontrol (Ib�
ontrol) on self-interse
tion of a skew-framedimmersion is 
onsidered. Theorem 1 (for the proof see se
tion 3) shows thatunder a natural restri
tion of dimensions the property of Ib-
ontrol holds foran immersion in the regular 
obordism 
lass modulo odd torsion.In se
tion 4 we formulate a notion of Z/2 ⊕ Z/4�stru
ture (or an I4�stru
ture, or a 
y
li
 stru
ture) of a D4-framed immersion. In se
tion 5 weprove Theorem 2. We prove under a natural restri
tion of dimension that anarbitrary D4-framed Ib-
ontrolled immersion admits in the regular homotopy
lass an immersion with a 
y
li
 stru
ture. For su
h an immersion Kervaireinvariant is expressed in terms of Z/2 ⊕ Z/4�
hara
teristi
 numbers of theself-interse
tion manifold. The proof (based on the two theorems from [A2℄(in Russian)) of the Kewrvaire Invariant One Problem is in se
tion 6.The author is grateful to Prof. M.Mahowald (2005) and Prof. R.Cohen(2007) for dis
ussions, to Prof. Peter Landweber for the help with theEnglish translation, and to Prof. A.A.Voronov for the invitation to MinnesotaUniversity in (2005).This paper was started in 1998 at the Postnikov Seminar. This paper isdedi
ated to the memory of Prof. Yu.P.Soloviev.2 Geometri
 Control of self-interse
tionmanifolds of skew-framed immersionsIn this and the remining se
tions of the paper by Immsf (n−k, k), ImmD4(n−
2k, 2k), ImmZ/2

R

D4(n−4k, 4k), et
., we will denote not the 
obordism groups4



themselves, but the 2-
omponents of these groups. In 
ase the �rst argument(the dimension of the immersed manifold) is stri
tly positive, all the groupsare �nite 2-group.Let us re
all that the dihedral group D4 is given by the representation(in terms of generators and relations) {a, b|a4 = b2 = e, [a, b] = a2}. Thisgroup is a subgroup of the group O(2) of isometries of the plane with thebase {f1, f2} that keeps the pair of lines generated by the ve
tors of the base.The element a 
orresponds to the rotation of the plane through the angle π
2
.The element b 
orresponds to the re�e
tion of the plane with the axis givenby the ve
tor f1 + f2.Let Ib(Z/2⊕Z/2) = Ib ⊂ D4 be the subgroup generated by the elements

{a2, b}. This is an elementary 2-group of rank 2 with two generators. Theseare the transformations of the plane that preserve ea
h line l1, l2 generatedby the ve
tors f1 + f2, f1 − f2 
orrespondingly. The 
ohomology group
H1(K(Ib, 1); Z/2) is the elementary 2-group with two generators. The �rst(se
ond) generator of this group dete
ts the re�e
tion of the line l2 (of the line
l1) 
orrespondingly. The generators of the 
ohomology group will be denotedby τ1, τ2 
orrespondingly.De�nition 3We shall say that a skew-framed immersion (f,Ξ), f : Mn−k

# R
n hasself-interse
tion of type Ib, if the double-points manifold Nn−2k of f is a D4-framed manifold that admits a redu
tion of the stru
ture group D4 of thenormal bundle to the subgroup Ib ⊂ D4.Let us formulate the following 
onje
ture.Conje
tureFor an arbitrary q > 0, q = 2(mod4), there exists a positive integer l0 =

l0(q), su
h that for an arbitrary n = 2l − 2, l > l0 an arbitrary element
a ∈ Immsf(3n+q

4
, n−q

4
) is stably regular 
obordant to a stably skew-framedimmersion with Ib-type of self-interse
tion (for the de�nition of stable framingsee [E2℄, of stable skew-framing see [A1℄).Let us formulate and prove a weaker result toward the Conje
ture. Westart with the following de�nition. 5



Let ω : Z/2
∫

D4 → Z/2 be the epimorphism de�ned as the 
omposition
Z/2

∫
D4 ⊂ Z/2

∫
Σ4 → Σ4 → Z/2, where Σ4 → Z/2 is the parity of apermutation. Let ω! : ImmZ/2

R

D4(n − 4k, 4k) → ImmKerω(n − 4k, 4k) bethe transfer homomorphism with respe
t to the kernel of the epimorphism
ω. Let P be a polyhedron with dim(P ) < 2k−1, Q ⊂ P be a subpolyhedronwith dim(Q) = dim(P )−1, and let P ⊂ R

n be an embedding. Let us denoteby UP the regular neighborhood of P ⊂ R
n of the radius rP and by U ′

Q theregular neighborhood of Q ⊂ R
n of the radius rQ, rQ > rP . Let us denote

UQ = UP ∩ U ′
Q.The boundary ∂UP of the neighborhood UP is a 
odimension onesubmanifold in R

n. This manifold ∂UP is a union of the two manifolds withboundaries VQ ∪∂ VP , VQ = UQ ∩ ∂UP , VP = ∂UP \ UQ along the 
ommonboundary ∂VQ = ∂VP .Let us assume that the two 
ohomology 
lasses τQ,1 ∈ H1(Q; Z/2),
τQ,2 ∈ H1(Q; Z/2) are given. The proje
tion UQ → Q of the neighborhoodon the 
entral submanifold determines the 
ohomology 
lasses τUQ,1, τUQ,2 ∈
H1(UQ; Z/2) as the inverse images of the 
lasses τQ,1, τQ,2 
orrespondingly.Let (g,ΞN , η), dim(N) = n − 2k be a D4�framed generi
 immersion,
n− 4k > 0, and g(Nn−2k)∩ ∂UP be an immersed submanifold in UQ ⊂ ∂UP .Let us denote g(Nn−2k) \ (g(Nn−2k) ∩ (UP )) by Nn−2k

int , and the 
omplement
Nn−2k \ Nn−2k

int by Nn−2k
ext . The manifolds Nn−2k

ext , Nn−2k
int are submanifoldsin Nn−2k of 
odimension 0 with the 
ommon boundary, this boundary isdenoted by Nn−2k−1

Q . The self-interse
tion manifold of g is denoted by Ln−4k.By the dimensional reason (n− 4k = q << n) Ln−4k is a submanifold in R
n,parameterized by an embedding h, equipped by the Z/2

∫
D4-framing of thenormal bundle denoted by (Ψ, ζ). The triple (h,Ψ, ζ) determines an elementin the 
obordism group ImmZ/2

R

D4(n− 4k, 4k).De�nition 4We say that the D4�framed immersion g is an Ib�
ontrolled immersion if thefollowing 
onditions hold:�1. The stru
ture group of the D4�framing ΞN restri
ted to thesubmanifold (with boundary) g(Nn−2k
ext ) is redu
ed to the subgroup Ib ⊂ D4and the 
ohomology 
lasses τUQ,1, τUQ,2 ∈ H1(UQ; Z/2) are mapped to thegenerators τ1, τ2 ∈ H1(Nn−2k−1

Q ; Z/2) of the 
ohomology of the stru
turegroup of this Ib-framing by the immersion g|Nn−2k−1
Q

: Nn−2k−1
Q # ∂(UQ) ⊂

UQ.�2. The restri
tion of the immersion g to the submanifold Nn−2k−1
Q ⊂6



Nn−2k is an embedding g|Nn−2k−1
Q

: Nn−2k−1
Q ⊂ ∂UQ, and the de
omposition

Ln−4k = Ln−4k
int ∪ Ln−4k

ext ⊂ (UP ∪ R
n \ UP ) of the self-interse
tion manifoldof g into two (probably, non-
onne
ted) Z/2

∫
D4-framed 
omponents iswell-de�ned. The manifold Ln−4k

int is a submanifold in UP and the triple
(Ln−4k

int ,Ψint, ζint) represents an element in ImmKerω(n−4k, 4k) in the imageof the homomorphism ω! : ImmZ/2
R

D4(n− 4k, 4k) → ImmKerω(n− 4k, 4k).De�nition 5Let (f,ΞM , κ) ∈ Immsf (n − k, k) be an arbitrary element, where f :
Mn−k

# R
n is an immersion of 
odimension k with the 
hara
teristi
 
lass

κ ∈ H1(Mn−k; Z/2) of the skew-framing ΞM . We say that the pair (Mn−k, κ)admits a retra
tion of order q, if the mapping κ : Mn−k → RP∞ is representedby the 
omposition κ = I ◦ κ̄ : Mn−k → RPn−k−q−1 ⊂ RP∞. The element
[(f,ΞM , κ)] admits a retra
tion of order q, if in the 
obordism 
lass of thisskew-framed immersion there exists a triple (M ′n−k,ΞM ′, κ′) that admits aretra
tion of order q.Theorem 1Let q = q(l) be a positive integer, q = 2(mod4). Let us assume that anelement α ∈ Immsf (3n+q

4
, n−q

4
) admits a retra
tion of the order q and 3n −

12k − 4 > 0. Then the element δ(α) ∈ ImmD4(n − 2k, 2k), k = n−q
4
, isrepresented by a D4-framed immersion [(g,ΨN , η)] with Ib-
ontrol.

3 Proof of Theorem 1Let us denote n − k − q − 1 = 3k − 1 by s. Let d : RPs → R
n be a generi
mapping. We denote the self-interse
tion points of d (in the target spa
e) by

∆(d) and the singular points of d by Σ(d).Let us re
all a 
lassi�
ation of singular points of generi
 mappings RPs →
R

n in the 
ase 4s < 3n, for details see [Sz℄. In this range generi
 mappingshave no quadruple points. The singular values (in the target spa
e) are ofthe following two types:� a 
losed manifold Σ1,1,0; 7



� a singular manifold Σ1,0 (with singularities of the type Σ1,1,0).The multiple points are of the multipli
ities 2 and 3. The set of triplepoints form a manifold with boundary and with 
orners on the boundary.These "
orner" singular points on the boundary of the triple points manifold
oin
ide with the manifold Σ1,1,0. The regular part of boundary of triplepoints is a submanifold in Σ1,0.The double self-interse
tion points form a singular submanifold in R
nwith the boundary Σ1,0. This submanifold is not generi
. After an arbitrarysmall alteration the double points manifold be
omes a submanifold in R
nwith boundary and with 
orners on the boundary of the type Σ1,1,0.Let UΣ be a small regular neighborhood of the radius ε1 of the singularsubmanifold Σ1,0. Let U∆ be a small regular neighborhood of the same radiusof the submanifold ∆(d) (this submanifold is immersed with singularities onthe boundary). The in
lusion UΣ ⊂ U∆ is well-de�ned.Let us 
onsider a regular submanifold in ∆ obtained by ex
ising asmall regular neighborhood of the boundary. This immersed manifold withboundary will be denoted by ∆reg. The (immersed) boundary ∂∆reg willbe denoted by Σreg. We will 
onsider the pair of regular neighborhoods

U reg
Σ ⊂ U reg

∆ of the pair Σreg ⊂ ∆reg of the radius ε2, ε2 << ε1.Be
ause 2dim(∆reg) < n, after a small perturbation the manifold ∆reg isa submanifold in U reg
∆ .Let (f0,Ξ0, κ), f0 : Mn−k

# R
n, n−k = 3n+q

4
be a skew-framed immersionin the 
obordism 
lass α. We will 
onstru
t an immersion f : Mn−k

# R
n inthe regular homotopy 
lass of f0 by the following 
onstru
tion.Let κ0 : Mn−k → RPs be a retra
tion of order q. Let f : M # R

nbe an immersion in the regular homotopy 
lass of f0 under the 
ondition
dist(d ◦ κ0, f0) < ε3. The 
aliber ε3 of the approximation is given by thefollowing inequality: ε3 << ε2.Let g1 : Nn−2k

# R
n be the immersion, parameterizing the double pointsof f . The immersion g1 is not generi
. After a small perturbation of theimmersion g1 with the 
aliber ε3 we obtain a generi
 immersion g2 : Nn−2k

#

R
n.The immersed submanifold g2(N

n−2k) is divided into two submanifolds
g2(N

n−2k
int ), g2(N

n−2k
ext ) with the 
ommon boundary g2(∂N

n−2k
int ) = g2(∂N

n−2k
ext )denoted by g2(N

n−2k−1
Q ). The manifold g2(N

n−2k
int ) is de�ned as theinterse
tion of the immersed submanifold g2(N

n−2k) with the neighborhood
U reg

∆ . The manifold g2(N
n−2k
ext ) is de�ned as the interse
tion of the immersedsubmanifold g2(N

n−2k) with the 
omplement R
n \ (U reg

∆ ). We will assumethat g2 is regular along ∂U reg
∆ . Then g2(N

n−2k
Q ) is an immersed submanifoldin ∂U reg

∆ . By 
onstru
tion the stru
ture group D4 of the normal bundle of the8



immersed manifold g2(N
n−2k
ext ) admits a redu
tion to the subgroup Ib ⊂ D4.Let us denote by Ln−4k the self-interse
tion manifold of the immersion

g2. This manifold is embedded into R
n by h : Ln−4k ⊂ R

n. The normalbundle of this embedding h is equipped with a Z/2
∫

D4-framing denotedby ΨL and the 
hara
teristi
 
lass of this framing is denoted by ζL. By theanalogous 
onstru
tion the manifold Ln−4k is de
omposed as the union of thetwo manifolds over a 
ommon boundary, denoted by Λ: Ln−4k = Ln−4k
ext ∪Λ

Ln−4k
int . The manifold (with boundary) Ln−4k

int is embedded by h into U reg
∆ , themanifold Ln−4k

ext (with the same boundary) is embedded in the 
omplement
R

n \ U reg
∆ . The 
ommon boundary Λ is embedded into ∂U reg

∆ .The manifold Ln−4k is a Z/2
∫

D4-framed submanifold in R
n. Letus des
ribe the redu
tion of the stru
ture group of this manifold toa 
orresponding subgroup in Z/2

∫
D4. We will des
ribe the subgroups

I2,j(Z/2⊕D4) ⊂ Z/2
∫

D4, j = x, y, z. We will des
ribe the transformationsof R
4 in the standard base (f1, f2, f3, f4) determined by generators of thegroups.Let us 
onsider the subgroup I2,x. The generator cx (a generator willbe equipped with the index 
orresponding to the subgroup) de�nes thetransformation of the spa
e by the following formula: cx(f1) = f3, cx(f3) = f1,

cx(f2) = f4, cx(f4) = f2.For the generator ax (of the order 4) the transformation is the following:
ax(f1) = f2, ax(f2) = −f1, ax(f3) = f4, ax(f4) = −f3. The generator bx (oforder 2) de�nes the transformation of the spa
e by the following formula:
bx(f1) = f2, bx(f2) = f1, bx(f3) = f4, bx(f4) = f3. From this formula thesubgroup D4 ⊂ D4 ⊕ Z/2 is represented by transformations that preservethe subspa
es (f1, f2), (f3, f4). The generator of the 
y
li
 subgroup Z/2 ⊂
D4 ⊕ Z/2 permutes these planes.The subgroups I2,y and I2,x are 
onjugated by the automorphism OP :
Z/2

∫
D4 → Z/2

∫
D4 given in the standard base by the following formula:

f1 7→ f1, f2 7→ f3, f3 7→ f2, f4 7→ f4. Therefore the generator cy ∈ I2,yis determined by the following transformation: cy(f1) = f2, cy(f2) = f1,
cy(f3) = f4, cy(f4) = f3. The generator ay (of the order 4) is given by
ay(f1) = f3, ay(f3) = −f1, ay(f2) = f4, ay(f4) = −f2. The generator by (ofthe order 2) is given by by(f1) = f3, by(f3) = f1, by(f2) = f4, by(f4) = f2.Let us des
ribe the subgroup I2,z. In this 
ase the generator cz de�nesthe transformation of the spa
e by the following formula: cz(fi) = −fi, i =
1, 2, 3, 4.For the generator az (of order 4) the transformation is the following:
az(f1) = f2, az(f2) = f3, az(f3) = f4, az(f4) = f1. The generator bx (of theorder 2) de�nes the transformation of the spa
e by the following formula:
bz(f1) = f2, bz(f2) = f1, bz(f3) = f4, bz(f4) = f3.9



Obviously, the restri
tion of the epimorphism ω : Z/2
∫

D4 → Z/2 tothe subgroups I2,x, I2,y ⊂ Z/2
∫

D4 is trivial and the restri
tion of thishomomorphism to the subgroup I2,z is non-trivial.The subgroup I3 ⊂ I2,x is de�ned as the subgroup with the generators
cx, bx, a

2
x. This is an index 2 subgroup isomorphi
 to the group Z/23.The image of this subgroup in Z/2

∫
D4 
oin
ides with the interse
tion ofarbitrary pair of subgroups I2,x, I2,y, I2,z. The subgroup I3 ⊂ I2,y is generatedby cy, by, a2

y. Moreover, one has cy = bx, by = cx, a2
y = a2

x. It is easy to 
he
kthat the following relations hold: cz = a2
x, a2

z = cx = by, bz = bx = cy.Therefore Ker(ω|I2,z) 
oin
ides with the subgroup I3 ⊂ I2,z.The subgroups I2,x, I2,y, I2,z, I3 in Z/2
∫

D4 are well-de�ned. There is anatural proje
tion πb : I3 → Ib.We will also 
onsider the subgroup I2,x↓ ⊂ Z/2
∫

D4 from geometri
al
onsiderations. This subgroup is a quadrati
 extension of the subgroup I2,xsu
h that I2,x = Kerω|I2,x↓
⊂ I2,x↓. An algebrai
 de�nition of this group willnot be required.In the following lemma we will des
ribe the stru
ture group of the framingof the triad (Ln−4k

int ∪Λ L
n−4k
ext ). The framings of the spa
es of the triad will bedenoted by (ΨR ∪ΨΛ

∪Ψext, ζint ∪ζΛ ∪ζext).Lemma 1There exists a generi
 regular deformation g1 → g2 of the 
aliber 3ε3 su
h thatthe immersed manifold g2(N
n−2k
ext ) admits a redu
tion of the stru
ture groupof the D4-framing to the subgroup Ib ⊂ D4. The manifold Ln−4k

int is dividedinto the disjoint union of the two manifolds (with boundaries) denoted by
(Ln−4k

int,x↓,Λx↓), (Ln−4k
int,y ,Λy).1. The stru
ture group of the framing (Ψint,x↓,ΨΛx↓

) for the submanifold(with boundary) (Ln−4k
int,x↓,Λx↓) is redu
ed to the subgroups (I2,x↓, I2,z). (Inparti
ular, the 2-sheeted 
over over Ln−4k

int,x↓, 
lassi�ed by ω (denoted by
L̃n−4k

int,x → Ln−4k
int,x↓) is, generally speaking, a non-trivial 
over.)2. The stru
ture group of the framing (Ψint,y,ΨΛ) for the submanifold(with boundary) (Ln−4k

int,y ,Λy) is redu
ed to the subgroup (I2,y, I3). (Inparti
ular, the 2-sheeted 
over L̃n−4k
int,y → Ln−4k

int,y 
lassi�ed by ω, is the trivial
over.) Moreover, the double 
overing L̃n−4k
x over the 
omponent Ln−4k

x↓ isnaturally di�eomorphi
 to L̃n−4k
y and this di�eomorphism agrees with therestri
tion of the automorphism OP : Z/2

∫
D4 → Z/2

∫
D4 on the subgroup

I2,x, OP (I2,x) = I2,y.3. The stru
ture group of the framing (Ψext, ζext) for the submanifold(with boundary) h(Ln−4k
ext ,Λn−4k) ⊂ (Rn \ U reg

∆ , ∂(U reg
∆ )) is redu
ed to the10



subgroup I2,z. (In parti
ular, the 2-sheeted 
over L̃n−4k
ext → Ln−4k

ext 
lassi�edby ω, is, generally speaking, a nontrivial 
over.)
Proof of Lemma 1Components of the self-interse
tion manifold g1(N

n−2k) \ (g1(N
n−2k) ∩ UΣ)(this manifold is formed by double points x ∈ g1(N

n−2k), x /∈ UΣ with inverseimages x̄1, x̄2 ∈Mn−k) are 
lassi�ed by the following two types.Type 1. The points κ(x̄1), κ(x̄2) in RPs are ε2-
lose.Type 2. The distan
es between the points κ(x̄1), κ(x̄2) in RPs are greaterthen the 
aliber ε2 of the regular approximation. Points of this type belongto the regular neighborhood U∆ (of the radius ε1).Let us 
lassify 
omponents of the triple self-interse
tion manifold ∆3(f)of the immersion f . The a priori 
lassi�
ation of 
omponents is the following.A point x ∈ ∆3(f) has inverse images x̄1, x̄2, x̄3 in Mn−k.Type 1. The images κ(x̄1), κ(x̄2), κ(x̄3) are ε2-
lose in RPs.Type 2. The images κ(x̄1), κ(x̄2) are ε2-
lose in RPs and the distan
ebetween the images κ(x̄3) and κ(x̄1) (or κ(x̄2)) are greater than the 
aliber
ε2 of the approximation.Type 3. The pairwise distan
es between the points κ(x̄1), κ(x̄2), κ(x̄3)greater than the 
aliber ε2 of the approximation.By a general position argument the 
omponent of the type 3 does notinterse
t d(RPs). Therefore the immersion f 
an be deformed by a small
ε2-small regular homotopy inside the ε3-regular neighborhood of the regularpart of d(RPs) su
h that after this regular homotopy ∆3(f) is 
ontained inthe 
omplement of U reg

∆ . The 
odimension of the submanifold ∆̄2(d) ⊂ RPsis equal to n− 3k+1 = q+ k+1 and greater then dim(∆3(f)) = n− 3k. Byanalogi
al arguments the 
omponent of triple points of the type 1 is outside
U reg

∆ .Let us 
lassify 
omponents of the quadruple self-interse
tion manifold
∆4(f) of the immersion f . A point x ∈ ∆4(f) has inverse images x̄1, x̄2, x̄3, x̄4in Mn−k. The a priori 
lassi�
ation is the following.Type 1. The images κ(x̄1), κ(x̄2) are ε2-
lose in RPs and the pairwisedistan
es between the images κ(x̄1) (or κ(x̄2)), κ(x̄3) and κ(x̄4)) are greaterthan the 
aliber ε2 of the approximation.Type 2. The two pairs (κ(x̄1), κ(x̄2)) and (κ(x̄3), κ(x̄4)) of the images are
ε2-
lose in RPs and the distan
e between the images κ(x̄1) (or κ(x̄2)) and
κ(x̄3) (or κ(x̄4)) are greater than the 
alibre ε2 of the approximation. (The11



des
ribed 
omponent is the 
omplement of the regular ε2 neighborhood ofthe triple points manifold of d(RPs).)Type 3. Images κ(x̄1), κ(x̄2) and κ(x̄3) on RPs are pairwise ε2-
lose in RPsand the distan
e between the images κ(x̄1) (or κ(x̄2), or κ(x̄3)) and κ(x̄4) isgreater than the 
aliber ε2 of the approximation.Type 4. All the images κ(x̄1), κ(x̄2), κ(x̄3) and κ(x̄4) are pairwise ε2-
losein RPs.Let us prove that there exists a generi
 f su
h that the 
omponents ofthe type 1 and the type 3 are empty. For the 
omponent of the type 3 theproof is analogous to the proof for the 
omponent of the type 1.Let us prove that there exists a generi
 deformation g1 → g2 with the
aliber 3ε3 su
h that after this deformation in the neighborhood U reg
∆ thereare no self-interse
tion points of g2 obtained by a generi
 resolution of triplepoints of f of the types 1 and 2. Let us start with the proof for triple pointsof the type 1.For a generi
 small alteration of the immersion g2 inside U reg

∆ the points ofthe type 1 of the triple points manifold∆3(f) are perturbed into a 
omponentof the self-interse
tion points on Ln−4k. This 
omponent is 
lassi�ed by thefollowing two subtypes:� Subtype a. Preimages of a point are (x̄2, x̄1), (x̄2, x̄
′
1).�Subtype b. Preimages of a point are (x̄1, x̄

′
1), (x̄1, x̄2).In the formula above the points with the 
ommon inde
es have ε3-
loseproje
tions on the 
orresponding sheet of d(RPs). The two points in a pairform a point on Nn−2k and a 
ouple of pairs forms a point on the 
omponentof Ln−4k.Let us prove that there exists a 2ε3-small regular deformation g1 → g2,su
h that the 
omponent of h(Ln−4k) ∩ U reg

∆ of the subtype a is empty. Let
Ks−k be the interse
tion manifold of f(Mn−k) with d(RPs) (this manifold isimmersed into the regular part in RPs). By a general position argument,be
ause 2s < n − 2k, a generi
 perturbation r → r′ of the immersion
r : Ks−k

# RPs → R
n is an embedding. Therefore there exists a 2ε2-smalldeformation of immersed manifold r(Ks−k) → r′(Ks−k) in R

n, su
h that theregular ε2-neighborhood of the submanifold r′(Ks−k) has no self-interse
tion.The deformation of the immersed manifolds r(Ks−k) → r′(Ks−k) is extendedto the deformation of g1(N
n−2k) in the regular neighborhoods of the
onstru
ted one-parameter family of immersed manifolds. After the des
ribedregular deformation the immersed manifold g2(N

n−2k) has no self-interse
tion
omponents of the subtype a. The 
ase of the self-interse
tion of the subtypeb is analogous.Let us des
ribe a generi
 deformation g1 → g2 with the support in U reg
∆that resolves self-interse
tion 
orresponding to quadruple points of f of the12



type 2. This deformation 
ould be arbitrarily small. After this deformationthe 
omponent ∆4(f) of the type 2 is resolved into two 
omponents of Ln−4kof di�erent subtypes. These two 
omponents will be denoted by Ln−4k
x , Ln−4k

y .The immersed submanifold g2(N
n−2k) ∩ U reg

∆ is divided into two
omponents. The �rst 
omponent is formed by pairs of points (x̄, x̄′) withthe 3ε3-
lose images (κ(x̄), κ(x̄′) on RPs. This 
omponent is denoted by
g2(N

n−2k
x ). The last 
omponent of g2(N

n−2k)∩U reg
∆ is denoted by g2(N

n−2k
y ).This 
omponent is formed by pairs of points (x̄, x̄′) with the proje
tions

(κ(x̄), κ(x̄′)) on di�erent sheets of RPs.The 
omponent Ln−4k
x↓ is de�ned by pairs (x̄1, x̄

′
1), (x̄2, x̄

′
2). The 
omponent

Ln−4k
y is de�ned by pairs (x̄1, x̄2), (x̄

′
1, x̄

′
2). A 
ommon index of points in thepair means that the images of the points are ε3-
lose on RPs. Ea
h pairdetermines a point on Nn−2k with the same image of g2. It is easy to see thatthe 
omponent Ln−4k

x↓ is the self-interse
tion of g2(N
n−2k
x ) and the 
omponent

Ln−4k
y is the self-interse
tion of g2(N

n−2k
y ).It is easy to see that the stru
ture groups of the 
omponents agree withthe 
orresponding subgroup des
ribed in the lemma. The 
omponent Ln−4k

x↓admits a redu
tion of the stru
ture group to the subgroup I2,x↓ ⊂ Z/2
∫

D4.The 
omponent Ln−4k
y admits a redu
tion of the stru
ture group to thesubgroup I2,y. Moreover, it is easy to see that the 
overing L̃n−4k

x↓ over
Ln−4k

x indu
ed by the epimorphism ω : Z/2
∫

D4 → Z/2 with the kernel
I2,x ⊂ Z/2

∫
D4 is naturally di�eomorphi
 to Ln−4k

y . Also it is easy to seethat this di�eomorphism agrees with the transformation OP of the stru
turegroups of the framing over the 
omponents.The last 
omponent of Ln−4k is immersed in the ε2-neighborhood of
d(RPs) outside of U reg

∆ and will be denoted by Ln−4k
z . The stru
ture group ofthe framing of this 
omponent is I2,z. Lemma 1 is proved.The last part of the proof of the Theorem 1Let us 
onstru
t a pair of polyhedra (P ′, Q′) ⊂ R

n, dim(P ′) = 2s − n =
n − 2k − q − 2, dim(Q′) = dim(P ′) − 1. Obviously, dim(P ′) < 2k − 1.Take a generi
 mapping d′ : RPs → R

n. Let us 
onsider the submanifoldwith boundary (∆′reg, ∂∆′reg) ⊂ R
n (see the denotation in Lemma 1). Let

η∆′reg : (∆′reg, ∂∆′reg) → (K(D4, 1), K(Ib, 1)) be the 
lassifying mapping forthe double point self-interse
tion manifold of d.By a standard argument we may modify the mapping d into d′ su
h thatthe mapping η∆reg is a homotopy equivalen
e of pairs up to the dimension
q + 1. After this modi�
ation d′ → d we de�ne (P,Q) = (∆reg, ∂∆reg) ⊂ R

nand the mapping η∆reg is a (q + 1)-homotopy equivalen
e.13



The subpolyhedron Q is equipped with two 
ohomology 
lasses
κQ,1, κQ,2 ∈ H1(Q; Z/2). Be
ause Σ is a submanifold in RPs, the restri
tionof the 
hara
teristi
 
lass κ ∈ H1(RPs; Z/2) to H1(Σ; Z/2) is well-de�ned.The in
lusion iQ : Q ⊂ UΣ determines the 
ohomology 
lass (iQ)∗(κ) ∈
H1(Q; Z/2). The 
ohomology 
lass κQ,1 is de�ned as the 
hara
teristi
 
lassof the 
anoni
al double points 
overing over Σ. The 
lass κQ,2 is de�ned bythe formula κQ,2 = (iQ)∗(κ) + κQ,1.The immersed manifold (with boundary) (Nn−2k ∩UΣ) # UΣ is equippedwith an Ib-framing. Obviously the 
lasses κQ,1, κQ,2 ∈ H1(UΣ; Z/2) =
H1(Q; Z/2) restri
ted to H1(g2(N

n−2k
ext ); Z/2) ( re
all that g2(N

n−2k
ext ) =

g2(N
n−2k) ∩ (Rn \ U∆)) agree with the two generated 
ohomology 
lasses

ρ1, ρ2 of the Ib-framing 
orrespondingly.Let us de�ne the immersion g : Nn−2k
# R

n with Ib-
ontrol over (P,Q).Let us start with the immersion g2 : Nn−2k
# R

n 
onstru
ted in the lemma.By a 2ε2�small generi
 regular deformation we may deform the immersion g2into g3, su
h that this deformation pushes the 
omponent g2(N
n−2k
x ) out of

U reg
∆ . Therefore the 
omponent Ln−4k

x↓ ⊂ Ln−4k of the self-interse
tion of g2 isalso deformed out of U reg
∆ .The immersed manifold (with boundary) g3(N

n−2k) ∩ (Rn \ U reg
∆ ) isequipped with an Ib-framing of the normal bundle. Obviously, the 
lasses

κQ,1, κQ,2 ∈ H1(UΣ; Z/2) = H1(Q; Z/2), restri
ted to H1(g2(N
n−2k) ∩

U∆; Z/2), agree with the two generated 
ohomologi
al 
lasses of the Ib-framing. The immersed manifold g3(N
n−2k) ∩ U reg

∆ 
oin
ides with g2(N
n−2k
y )and has the general stru
ture group of the framing. This immersed manifoldhas the self-interse
tion manifold (with boundary) h(Ln−4k) ∩ U reg

∆ with theredu
tion of the stru
ture group to the pair of the subgroups (I2,y, I3).Let us prove that the immersed manifold (with boundary) h(Ln−4k) ∩
U reg

∆ is Z/2
∫

D4-framed 
obordant (relative to the boundary) to a Z/2
∫

D4-framed manifold de
omposed into the disjoint union of a 
losed Z/2
∫

D4-framed manifold that is the image of the transfer homomorphism ω! and arelative I3-framed manifold.Take a Z/2
∫

D4-framed manifold (L̃n−4k, Ψ̃, ζ̃) that is de�ned asthe image of Z/2
∫

D4-framed manifold (Ln−4k,Ψ, ζ) by the transferhomomorphism (a double 
overing) with respe
t to the 
ohomology 
lass
ω ∈ H1(Z/2

∫
D4; Z/2). Re
all that the manifold L̃n−4k is obtained by gluingthe manifold L̃n−4k

x ∪ L̃n−4k
y with the manifold L̃n−4k

z along the 
ommonboundary Λ̃n−4k−1. Note that the group of the framing of the last manifold
Λ̃n−4k−1

z is the subgroup I3 ⊂ Z/2
∫

D4.Let OPα be the Z/2
∫

D4�framed immersion obtained from an arbitrary
Z/2

∫
D4-framed immersion α by 
hanging the stru
ture group of the framing14



by the transformation OP . The Z/2
∫

D4-framed manifold (with boundary)
(L̃n−4k

y , Ψ̃y, ζ̃y) 
oin
ides with the two disjoint 
opies of Z/2
∫

D4-framedmanifold (with boundary) OP (L̃n−4k
y , Ψ̃y, ζ̃y).Let us put α1 = −OP (L̃n−4k, Ψ̃, ζ̃). Let us de�ne the sequen
e of

Z/2
∫

D4-framed immersions α2 = −2OPα1, α3 = −2OPα2, . . . , αj =
−2OPαj−1.Obviously, the D/4

∫
Z/2-framed immersion α1 + α2 = α1 + 2OPα−1

1 isrepresented by 3 
opies of the manifold L̃n−4k. The se
ond and the third
opies are obtained from the �rst 
opy by the mirror image and the 
hangingof stru
ture group of the framing. The manifold −OP [L̃n−4k] ∪ 2[L̃n−4k]
ontains, in parti
ular, a 
opy of −OP [L̃n−4k
x ] inside the �rst 
omponent andthe union [L̃n−4k

y ∪Ln−4k
y ] of the mirror two 
opies of−OP [L̃n−4k

x ] in the se
ondand the third 
omponent. Therefore the manifold −OP [L̃n−4k] ∪ 2[L̃n−4k]is Z/2
∫

D4-framed 
obordant to a Z/2
∫

D4-framed manifold, obtained bygluing the union of a 
opy of −OP [L̃n−4k
x ] and 4 
opies of L̃n−4k

y by a I3-framing manifold along the boundary. This 
obordism is relative with respe
tto the submanifold −OP [L̃n−4k
z ] ∪ 2[Ln−4k

z ] ⊂ −OP [Ln−4k] ∪ 2Ln−4k.By an analogous argument it is easy to prove that the element ℵ =∑j0
j=1 αj is Z/2

∫
D4-framed 
obordant to the manifold obtained by gluingthe union −OP [L̃n−4k
x ] ∪ 2j(−OP )j−1[L̃n−4k

y ] by an I3-manifold along theboundary. Moreover, this 
obordism is relative with respe
t to all 
opies of
L̃n−4k

z (with various orientations). If j0 is great enough, the manifold (with I3-framed boundary) 2j(−OP )j0−1[L̃n−4k
y ] is 
obordant relative to the boundaryto an I3-framed manifold.Therefore the manifold Ln−4k

y is Z/2
∫

D4-framed 
obordant relative tothe boundary to the union of an I3-framed manifold with the same boundaryand a 
losed manifold that is the double 
over with respe
t to ω over a
Z/2

∫
D4-framed manifold. This 
obordism is realized as a 
obordism of theself-interse
tion of a D4-framed immersion with support inside U reg

∆ . This
obordism joins the immersion g3 with a D4�framed immersion g4. After anadditional deformation of g4 inside a larger neighborhood of ∆reg the relative
Ib-submanifold of the self-interse
tion manifold of g4 is deformed outside of
U reg

∆ . The D4-framed immersion obtained as the result of this 
obordismadmits an Ib-
ontrol. The Theorem 1 is proved.
15



4 An I4-stru
ture (a 
y
li
 stru
ture) of a D4-framed immersionLet us des
ribe the subgroup I4 ⊂ Z/2
∫

D4. This subgroup is isomorphi
to the group Z/2 ⊕ Z/4. Let us re
all that the group Z/2
∫

D4 is thetransformation group of R
4 that permutes the 4-tuple of the 
oordinatelines and two planes (f1, f2), (f3, f4) spanned by the ve
tors of the standardbase (f1, f2, f3, f4) (the planes 
an remin �xed or be permuted by atransformation).Let us denote the generators of Z/2 ⊕ Z/4 by l, r 
orrespondingly. Letus des
ribe the transformations of R

4 given by ea
h generator. Consider anew base (e1, e2, e3, e4), given by e1 = f1 + f2, e2 = f1 − f2, e3 = f3 + f4,
e4 = f3 − f4. The generator r of order 4 is represented by the rotation in theplane (e2, e4) through the angle π

2
and the re�e
tion in the plane (e1, e3) withrespe
t to the line e1 + e3. The generator l of order 2 is represented by the
entral symmetry in the plane (e1, e3).Obviously, the des
ribed representation of I4 admits invariant (1,1,2)-dimensional subspa
es. We will denote subspa
es by λ1, λ2, τ .The lines λ1, λ2 are generated by the ve
tors e1 + e3, e1 − e3
orrespondingly. The subspa
e τ is generated by the ve
tors e2, e4. Thegenerator r a
ts by the re�e
tion in λ2 and by the rotation in τ throughtthe angle π

2
. The generator l a
ts by re�e
tions in the subspa
es λ1, λ2.In parti
ular, if the stru
ture group Z/2

∫
D4 of a 4-dimensional bundle

ζ : E(ζ) → L admits a redu
tion to the subgroup I4, then the bundleis de
omposed into the dire
t sum ζ = λ1 ⊕ λ2 ⊕ τ of 1, 1, 2�dimensionalsubbundles.De�nition 6Let (g : Nn−2k
# R

n,ΞN , η) be an arbitrary D4-framed immersion. Weshall say that this immersion is an Ib�immersion (or a 
y
li
 immersion), ifthe stru
ture group Z/2
∫

D4 of the normal bundle over the double pointsmanifold Ln−4k of this immersion admits a redu
tion to the subgroup I4 ⊂
Z/2

∫
D4. In this de�nition we assume that the pairs (f1, f2), (f3, f4) are theve
tors of the framing for the two sheets of the self-interse
tion manifold ata point in the double point manifold Ln−4k.In parti
ular, for a 
y
li
 Z/2

∫
D4-framed immersion there exists themappings κa : Ln−4k → K(Z/2, 1), µa : Ln−4k → K(Z/4, 1) su
h that16



the 
hara
teristi
 mapping ζ : Ln−4k → K(Z/2
∫

D/4, 1) of the Z/2
∫

D4-framing of the normal bundle over Ln−4k is redu
ed to a mapping with thetarget K(Ib, 1) su
h that the following equation holds:
ζ = i(κa ⊕ µa),where i : Z/2 ⊕ Z/4 → I4 is the pres
ribed isomorphism.The following Proposition is proved by a straightforward 
al
ulation.Proposition 2Let (g,ΨN , η) be a D4�framed immersion, that is a 
y
li
 immersion. Thenthe Kervaire invariant, appearing as the top line of the diagram (7), 
an be
al
ulated by following formula:

Θa =< κ
n−4k

2
a µ∗

a(τ)
n−4k−2

4 µ∗
a(ρ); [L] >, (8)where τ ∈ H2(Z/4; Z/2), ρ ∈ H1(Z/4; Z/2) are the generators.Proof of Proposition 2Let us 
onsider the subgroup of index 2, Ib ⊂ I4. This subgroup is thekernel of the epimorphism χ′ : I4 → Z/2, that is the restri
tion of the
hara
teristi
 
lass χ : Z/2

∫
D4 → Z/2 of the 
anoni
al double 
over L̄→ Lto the subgroup I4 ⊂ Z/2

∫
D4. Obviously, the 
hara
teristi
 number (8) is
al
ulated by the formula

Θa =< κ̂
n−4k

2
a ρ̂

n−4k
2

a ; L̄ >, (9)where the 
hara
teristi
 
lass κ̂a ∈ H1(L̄; Z/2) is indu
ed from the 
lass κa ∈
H1(L; Z/2) by the 
anoni
al 
over L̄ → L, and the 
lass ρ̂a ∈ H1(L̄; Z/2) isobtained by the transfer of the 
lass ρ ∈ H1(L; Z/4).Note that κ̂a = τ1, ρ̂a = τ2, where τ1, τ2 are the two generating Ib�
hara
teristi
 
lasses. Therefore κ̂aρ̂a = τ1τ2 = w2(η), where η is the two-dimensional bundle that determines the D4�framing (over the submanifold
L̄n−4k ⊂ Nn−2k this framing admits a redu
tion to an Ib-framing) of thenormal bundle for the immersion g of Nn−2k into R

n.Therefore the 
hara
teristi
 number, given by the formula (8) in the 
asewhen the Z/2
∫

D4 framing over Ln−4k is redu
ed to an I4-framing, 
oin
ideswith the 
hara
teristi
 number, given by the formula (9). Proposition 2 isproved. 17



De�nition 7We shall say that a D4-framed immersion (g,ΞN , η) admits a I4�stru
ture(a 
y
li
 stru
ture), if for the double points manifold Ln−4k of g there existmappings κa : Ln−4k → K(Z/2, 1), µa : Ln−4k → K(Z/4, 1) su
h that the
hara
teristi
 number (8) 
oin
ides with Kervaire invariant, see De�nition 2.Theorem 2Let (g,Ψ, η) be a D4-framed immersion, g : Nn−2k
# R

n, that represents aregular 
obordism 
lass in the image of the homomorphism δ : Immsf (n −
k, k) → ImmD4(n− 2k, 2k), n− 4k = 62, n = 2l − 2, l ≥ 13, and assume the
onditions of the Theorem 1 hold, i.e. the residue 
lass δ−1(Immsf(n− k, k)(this 
lass is de�ned modulo odd torsion) 
ontains a skew-framed immersionthat admits a retra
tion of order 62.Then in the D4-framed 
obordism 
lass [(g,Ψ, η)] = δ[(f,Ξ, κ)] ∈
ImmD4(n − 2k, 2k) there exists a D4-framed immersion that admits an I4�stru
ture (a 
y
li
 stru
ture).5 Proof of Theorem 2Let us formulate the Geometri
al Control Prin
iple for Ib�
ontrolledimmersions.Let us take an Ib�
ontrolled immersion (see De�nition 4)
(g,ΞN , η; (P,Q), κQ,1, κQ,2), where g : N # R

n is a D4-framed immersion,equipped with a 
ontrol mapping over a polyhedron iP : P ⊂ R
n,

dim(P ) = 2k − 1; Q ⊂ P dim(Q) = dim(P ) − 1. The 
hara
teristi

lasses κQ,i ∈ H1(Q; Z/2), i = 1, 2 
oin
ide with 
hara
teristi
 
lasses
κi,NQ

∈ Nn−2k−1
Q by means of the mapping ∂Nn−2k

int = Nn−2k
Q → Q, where

Nn−2k
int ⊂ Nn−2k, Nn−2k

int = g−1(UP ), UP ⊂ R
n.Proposition 3. Geometri
al Control Prin
iple for Ib�
ontrolledimmersionsLet jP : P ⊂ R

n be an arbitrary embedding; su
h an embedding is uniqueup to isotopy by a dimensional reason, be
ause 2dim(P ) + 1 = 4k − 1 < n.Let g1 : Nn−2k → R
n be an arbitrary mapping, su
h that the restri
tion

g1|Nint
: (Nn−2k

int , Nn−2k−1
Q ) # (UP , ∂UP ) is an immersion (the restri
tion18



g|Nn−2k−1
Q

is an embedding) that 
orresponds to the immersion g|Nn−2k
int

:

(Nn−2k
int , Nn−2k−1

Q ) # (UP , ∂UP ) by means of the standard di�eomorphismof the regular neighborhoods UiP = UjP
of subpolyhedra i(P ) and j(P ). (Fora dimension reason there is a standard di�eomorphism of UiP and UjP

up toan isotopy.)Then for an arbitrary ε > 0 there exists an immersion gε : Nn−2k
# R

nsu
h that distC0(g1, gε) < ε and su
h that gε is regular homotopy to animmersion g and the restri
tions gε|Nn−2k
int

and g1|Nn−2k
int


oin
ide.We start the proof of Theorem 2 with the following 
onstru
tion. Letus 
onsider the manifold Z = S
n
2
+64/i× RP

n
2
+64. This manifold is the dire
tprodu
t of the standard lens spa
e (mod4) and the proje
tive spa
e. The 
over

pZ : Ẑ → Z over this manifold with the 
overing spa
e Ẑ = RP
n
2
+64×RP

n
2
+64is well-de�ned.Let us 
onsider in the manifold Z a family of submanifolds Xi, i =

0, . . . , n+2
64

of the 
odimension n+2
2
, de�ned by the formulas X0 = S

n
2
+64/i×

RP63, X1 = S
n
2
+32/i × RP95, . . . , Xj = S

n
2
−32(j−2)−1/i × RP32(j+2)−1, . . . ,

Xn+2
64

= S63/i×RP
n
2
+64. The embedding of the 
orresponding manifold in Zis de�ned by the Cartesian produ
t of the two standard embeddings.The union of the submanifolds {Xi} is a strati�ed submanifold (withsingularities) X ⊂ Z of the dimension n

2
+ 127, the 
odimension of maximalsingular strata in X is equal to 64. The 
overing pX : X̂ → X, indu
edfrom the 
overing pZ : Ẑ → Z by the in
lusion X ⊂ Z, is well-de�ned.The 
overing spa
e X̂ is a strati�ed manifold (with singularities) andde
omposes into the union of the submanifolds X̂0 = RP

n
2
+64×RP63, . . . , X̂j =

RP
n
2
−32(j−2) × RP32(j+2)−1, . . . , X̂n+2

64
= RP63 × RP

n
2
+64. Ea
h manifold X̂i ofthe family is the 2-sheeted 
overing spa
e over the manifold Xi over the �rst
oordinate. Let us de�ne d1(j) = n

2
− 32(j − 2), d2(j) = 32(j + 2) − 1. Thenthe formula for Xi is the following: Xj = RPd1(j) × RPd2(j).The 
ohomology 
lasses ρX,1 ∈ H1(X; Z/4), κX,2 ∈ H1(X; Z/2)are well-de�ned. These 
lasses are indu
ed from the generators of thegroups H1(Z; Z/4), H1(Z; Z/2). Analogously, the 
ohomology 
lasses κX̂,i ∈

H1(X̂; Z/4), i = 1, 2 are well-de�ned. The 
ohomology 
lass κX̂,1 is indu
edfrom the 
lass ρX,1 ∈ H1(X; Z/4) my means of the transfer homomorphim,and κX̂,2 = (pX)∗(κX,2).Let us de�ne for an arbitrary j = 0, . . . , (n+2
64

) the spa
e Jj and themapping ϕj : Xj → Jj. We denote by Y1(k) the spa
e S31/i ∗ · · · ∗ S31/i ofthe join of k 
opies, k = 1, . . . , (n+2
64

+ 1), of the standard lens spa
e S31/i.19



Let us denote by Y2(k), k = 2, . . . , (n+2
64

+ 2), Y2(k) = RP31 ∗ · · · ∗ RP31 thejoins of the k 
opies of the standard proje
tive spa
e RP31. Let us de�ne
Jj = Y1(

n+2
64

− j+ 2))×Y2(j+ 2) Q = Y1(
n+2
64

+ 2)× Y2(
n+2
64

+ 2). For a given
j the natural in
lusions Jj ⊂ Q are well-de�ned. Let us denote the union ofthe 
onsidered in
lusions by J .The mapping ϕj : Xj → Jj is well-de�ned as the Cartesian produ
t ofthe two following mappings. On the �rst 
oordinate the mapping is de�nedas the 
omposition of the standard 2-sheeted 
overing RPd1(j) → S

n
2
−64(j−1)/iand the natural proje
tion Sd1(j)/i → Y1(d1(j)). On the se
ond 
oordinatethe mapping is de�ned by the natural proje
tion RPd2(j) → Y2(j + 1).The family of mappings ϕj determines the mapping ϕ : X̂ → J , be
ausethe restri
tions of any two mappings to the 
ommon subspa
e in the origin
oin
ide.For n+2 ≥ 213 the spa
e J embeddable into the Eu
lidean n-spa
e by anembedding iJ : J ⊂ R

n. Ea
h spa
e Y1(k), Y2(k) in the family is embeddableinto the Eu
lidean (26k−1−k)�spa
e. Therefore for an arbitrary j the spa
e
Jj is embaddable into the Eu
lidean spa
e of dimension n + 126 − n+2

64
. Inparti
ular, if n + 2 ≥ 213 the spa
e Jj is embeddable into R

n. The imageof an arbitrary interse
tion of the two embeddings in the family belongs tothe standard 
oordinate subspa
e. Therefore the required embedding iJ isde�ned by the gluing of embeddings in the family.Let us des
ribe the mapping ĥ : X̂ → R
n. By ε we denote the radius ofa (strati�ed) regular neighborhood of the subpolyhedron iJ (J) ⊂ R

n. Let us
onsider a small positive ε1, ε1 << ε, (this 
onstant will be de�ned below inthe proof of Lemma 4) and let us 
onsider a generi
 PL ε1�deformation ofthe mapping iJ ◦ ϕ : X̂ → J ⊂ R
n. The result of the deformation is denotedby ĥ : X̂ → R

n.Let us de�ne the positive integer k from the equation n−4k = 62. In thepres
ribed regular homotopy 
lass of an Ib-
ontrolled immersion f : Nn−2k
#

R
n we will 
onstru
t another Ib�
ontrolled immersion g : Nn−2k

# R
n thatadmits a Ib�stru
ture.Let the immersion f be 
ontrolled over the embedded subpolyhedron

ψP : P ⊂ R
n. Let ψQ : Q → X̂ be a generi
 mapping su
h that κQ,i =

ψQ ◦ κX̂,i, i = 1, 2. By the previous de�nition the manifolds Nn−2k
int , Nn−2k

extwith the 
ommon boundary Nn−2k−1
Q , Nn−2k = Nn−2k

int ∪Nn−2k−1
Q

Nn−2k
ext arewell-de�ned.Let η : Nn−2k

ext → K(Ib, 1) ⊂ K(D4, 1) be the 
hara
teristi
 mappingof the framing ΞN , restri
ted to Nn−2k
ext ⊂ Nn−2k. The restri
tion of thismapping to the boundary ∂Nn−2k

ext = Nn−2k−1
Q is given by the 
omposition

∂Nn−2k−1
Q → Q → K(Ib, 1) ⊂ K(D4, 1). The target spa
e for the mapping20



η is the subspa
e K(Ib, 1) ⊂ K(D4, 1). This mapping is determined by the
ohomology 
lasses κNn−2k
ext ,s ∈ H1(Nn−2k

ext , Q; Z/2), s = 1, 2.Let us de�ne the mapping λ : Nn−2k
ext → X̂ by the following 
onditions.This mapping transforms the 
ohomology 
lasses κX̂,i into the 
lasses

κi ∈ H1(Nn−2k
ext ; Z/2) and also the restri
tion λ|Nn−2k−1

Q

oin
ides with the
omposition of the proje
tion Nn−2k−1

Q → Q and the mapping ψQ : Q → X̂.The boundary 
onditions for the mapping ψQ are κQ,i = ψQ ◦ κX̂,i, i = 1, 2.The submanifold with singularities X̂ ⊂ Ẑ 
ontains the skeleton of the spa
e
Ẑ of the dimension n

2
+ 62. Be
ause n − 2k = n

2
+ 31, the mapping λ iswell-de�ned.Let us denote the 
omposition ĥ ◦ λ : Nn−2k

ext → X̂ → R
n by g1. Letus denote the mapping ĥ ◦ ψQ : Q → X̂ → R

n by ϕQ. One 
an assumethat the mapping ϕQ is an embedding. Moreover, without loss of generalityone may assume that this embedding is extended to a generi
 embedding
ϕP : P ⊂ R

n su
h that the embedded polyhedron ϕP : P ⊂ R
n does notinterse
t g1(N

n−2k
ext ).Let us denote by Uϕ(P ) a regular neighborhood of the subpolyhedron

ϕP (P ) ⊂ R
n (we may assume that the radius of this neighborhood is equalto ε). Up to an isotopy a regular neighborhood Uϕ(P ) is well-de�ned, inparti
ular, this neighborhood does not depend on the 
hoi
e of a regularembedding of P , moreover Uϕ(P ) and U(P ) are di�eomorphi
.Without loss of generality after an additional small deformation we mayassume that the restri
tion g1|Nn−2k

int
is a regular immersion g1 : Nn−2k

int ⊂

R
n with the image inside Uϕ(P ). In parti
ular, the restri
tion of g1 to theboundary Nn−2k−1

Q = ∂(Nn−2k
int ) is a regular embedding Nn−2k−1

Q ⊂ ∂U(P ).The immersion g1|Nint
is 
onjugated to the immersion f |Nint

by means of adi�eomorphism of Uϕ(P ) with U(P ).By Proposition 3, for an arbitrary ε2 > 0, ε2 << ε1 << ε, there exists animmersion g : Nn−2k
# R

n in the regular homotopy 
lass of f , su
h that g
oin
ides with g′ (and with g1) on Nn−2k
int and, moreover, dist(g, g1) < ε2.Let us 
onsider the self-interse
tion manifold Ln−4k of the immersion g.This manifold is a submanifold in R
n. Let us 
onstru
t the mappings κa :

Ln−4k → K(Z/2, 1), µa : Ln−4k → K(Z/4, 1). Then we 
he
k the 
onditions(8) and (9).The manifold Ln−4k is naturally divided into two 
omponents. The �rst
omponent Ln−4k
int is inside UϕP

(P ). The last 
omponent (we will denotethis 
omponent again by Ln−4k) 
onsists of the last self-interse
tion points.This 
omponent is outside the ε�neighborhood of the submanifold withsingularities h(X). The mappings κa, µa over Ln−4k
int are de�ned as the trivial21



mappings. Let us de�ne the mappings κa, µa on Ln−4k.Let us 
onsider the mapping ϕ : X̂ → J and the singular set (polyhedron)
Σ of this mapping. This is the subpolyhedron Σ ⊂ {X̂(2) = X̂× X̂ \∆X̂/T

′},where T ′ : X̂(2) → X̂(2)� is the involution of 
oordinates in the delatedprodu
t X̂(2) of the spa
e X̂. The subpolyhedron (it is 
onvenient to viewthis polyhedron as a manifold with singularities) Σ is naturally de
omposedinto the union of the subpolyhedra Σ(j), j = 0, . . . , n+2
128

. The subpolyhedron
Σ(j) is the singular set of the mapping ϕ(j) : RPd1(j) × RPd2(j) → Sd1(j)/i×
RPd2(j) → Jj. This subpolyhedron 
onsists of the singular points of themapping ϕ in the inverse image (ϕ)−1(Jj) = RPd1(j)×RPd2(j) of the subspa
e
Jj ⊂ J .Let us 
onsider the subspa
e Σreg ⊂ Σ, 
onsisting of points on strata oflength 0 (regular strata) and of length 1 (singular strata of the 
odimension32) after the regular ε2 �neighborhoods (ε2 << ε1) of the diagonal ∆diag andthe antidiagonal ∆antidiag of Σreg are 
ut out.The manifold with singularities Σreg admits a natural 
ompa
ti�
ation(
losure) in the neighborhood of ∆diag and ∆antidiag ; the result of the
ompa
ti�
ation will be denoted by Kreg.The spa
e RK, 
alled the spa
e of resolution of singularities, equippedwith the natural proje
tion RK → Kreg is de�ned by the analogous
onstru
tion; see the short English translation of [A1℄, Lemma 7. The
ohomology 
lasses ρRK,1 ∈ H1(RK; Z/4), κRK,2 ∈ H1(RK; Z/2) arewell-de�ned. The 
ohomology 
lasses κKreg,1 ∈ H1(RK; Z/2), κRK,1 ∈
H1(RK; Z/2) are the images of the 
lass κΣ,1 ∈ H1(Σ; Z/2) with respe
t tothe in
lusion Kreg ⊂ Σ and the proje
tion RK → Kreg. The 
lass 
lassi�esthe transposition of the two non-ordered preimages of a point in the singularset.Let us 
onsider the restri
tions of the 
lasses κKreg,1, κRK,1, κΣ,1 toneighborhoods of the diagonal and the antidiagonal. The natural proje
tion
∆diag → X̂ is well-de�ned. The restri
tions of the 
lasses ρ1 and κ2 toneighborhoods of the diagonal 
oin
ide with the restri
tions of the 
lasses
ρX̂,1 ∈ H1(X̂; Z/4), κX̂,2 ∈ H1(X̂; Z/2). (These 
lasses ρX̂,1, κX̂,2 areextended to neighborhoods of the diagonal).Let us re
all that the mapping ĥ : X̂ → R

n is de�ned as the resultof an ε1�small regular deformation of the mapping X̂ → X
h

−→ R
n.The singular set of the mapping ĥ will be denoted by Σĥ. This is a 128�dimensional polyhedron, or a manifold with singularities in the 
odimensions

32, 64, 96, 128. Moreover, the in
lusion Σĥ ⊂ X̂(2) is well-de�ned. The imageof this in
lusion is in the regular ε1�small neighborhood of the singularpolyhedron Σ ⊂ X(2). 22



Let us denote by Σreg

ĥ
the part of the singular set after 
utting out theregular ε1�neighborhood of the points in singular strata of length at least 2 (ofthe 
odimension 64) and self-interse
tion points of all singular strata (thesestrata are also of the 
odimension 64). The boundary ∂Σĥ is a submanifoldwith singularities in X̂ and therefore. by a general position argument, wemay also assume that the boundary ∂Σreg

ĥ
is a regular submanifold withsingularities in X̂.Additionally, by general position arguments, the interse
tion of theimage Im(λ(Nn−2k

ext )) inside the singular set Σĥ (this is a polyhedron ofthe dimension 62) on X are outside (with respe
t to the 
aliber ε) of theproje
tion of the singular submanifold with singularities (this singular partis of the 
odimension 64) in the 
omplement of the regular submanifold withsingularities Σreg

ĥ
⊂ Σĥ. Therefore the image Im(λ(Nn−2k

ext )) is inside theregular part Σreg

ĥ
⊂ Σĥ.Let us denote by L62

cycl ⊂ L62 the submanifold (with boundary) given bythe formula L62
cycl = L62 ∩ UΣreg . The mappings κa, ρa are extendable from

UΣreg to L62
cycl ⊂ L62. Let us prove that these mappings are extendable tomappings κa : L62 → K(Z/2, 1), ρa : L62 → K(Z/4, 1).The 
omplement of thå submanifold L62

cycl ⊂ L62 is denoted by L62
I3

= L62\
L62

cycl. The submanifold L62
I3

is a submanifold in the regular ε�neighborhoodof h(X) ⊂ R
n. Obviously, the stru
ture group of the Z/2

∫
D4�framing ofthe normal bundle of the manifold (with boundary) L62

I3
is redu
ed to thesubgroup I3 ⊂ Z/2

∫
D4.Let us 
onsider the mapping of pairs µa × κa : (L62

cycl, ∂L
62
cycl) →

(K(Z/4, 1)×K(Z/2, 1), K(Z/2, 1)×K(Z/2, 1)). Let us 
onsider the naturalproje
tion πb : I3 → Ib. The extension of the mapping µa × κa to therequired mapping L62 → K(Z/4, 1)×K(Z/2, 1) is given by the 
omposition
L62

I3
→ K(I3, 1)

πb,∗
−→ K(Ib, 1) ⊂ K(Z/4, 1)×K(Z/2, 1), where κ1 ∈ K(Ib; Z/2)determines the in
lusion K(Ib, 1) ⊂ K(Z/2, 1) ⊂ K(Z/4, 1).Let us formulate the results in the following lemma.Lemma 4�1. Let n ≥ 213 − 2 and k, n − 4k = 62 satisfy the 
onditions of Theorem1 (in parti
ular, an arbitrary element in the group Immsf (n − k, k) admitsa retra
tion of the order 62. Then for arbitrarily small positive numbers ε1,

ε2, ε1 >> ε2 (the numbers ε1, ε2 are the 
alibers of the regular deformationsin the 
onstru
tion of the PL�mapping ĥ : X̂ → R
n and of the immersion

g : Nn−2k
# R

n 
orrespondingly) there exists the mapping ma = (κa × µa) :
Σreg

h → K(Z/4, 1)×K(Z/2, 1) under the following 
ondition. The restri
tion23



ma|∂Σreg
h

(by ∂Σreg
h is denoted the part of the singular polyhedron 
onsisting ofpoints on the diagonal) has the target K(Z/2, 1)×K(Z/2, 1) ⊂ K(Z/4, 1)×

K(Z/2, 1) and is determined by the 
ohomologi
al 
lasses κX̂,1, κX̂,2.�2. The mappings κa, µa indu
es a mapping (µa×κa) : L62 → K(Z/4, 1)×
K(Z/2, 1) on the self-interse
tion manifold of the immersion g.Let us prove that the mapping (µa × κa) 
onstru
ted in Lemma 4determines a Z/2⊕Z/4�stru
ture for the D4�framed immersion g. We haveto prove the equation (9).Let us re
all that the 
omponent L62

int of the self-interse
tion manifoldof the immersion g is a Z/2
∫

D4�framed manifold with trivial Kervaireinvariant: the 
orresponding element in the group ImmZ/2
R

D4(62, n − 62)is in the image of the transfer homomorphism. Therefore it is su�
ient toprove the equation
< m∗

a(ρτ
15t31); [L62] >= Θ,or, equivalently, the equation

< (ρ̂31
a κ̂

31
a ); [L̂62] >= Θ, (10)where L̂ → L is the 
anoni
al 
over over the self-interse
tion manifold, L̂ ⊂

Nn−2k
ext is the 
anoni
al in
lusion.By Herbert's theorem (see [A1℄ for the analogous 
onstru
tion) we may
al
ulate the right side of the equation by the formula

< η∗(w2(Ib))
n−2k

2 ; [Nn−2k
ext / ∼] > . (11)In this formula by Nn−2k

ext / ∼ is denoted the quotient of the boundary
∂Nn−2k

ext = Nn−2k−1
Q that is 
ontra
ted onto the polyhedron Q with the lossof the dimension. Note that the mapping ma|Nn−2k−1

Q
is obtained by the
omposition of the mapping pQ : Nn−2k−1 → Q with a loss of dimensionwith the mapping Q → K(Ib, 1), the last mapping is determined by the
ohomology 
lasses κi,Q ∈ H1(Q; Z/2), i = 1, 2. Therefore, ma∗([N

n−2k
ext / ∼

]) ∈ Hn−2k(Ib; Z/2) is a permanent 
y
le and the integration over the 
y
le
[Nn−2k

ext / ∼] of the inverse image of the universal 
ohomology 
lass in (11) iswell-de�ned.It is 
onvenient to 
onsider the 
hara
teristi
 number Θa as the valueof a homomorphism Hn−2k(X; Z/2) → Z/2 on the 
y
le λ∗[Nn−2k
ext / ∼] ∈

Hn−2k(X; Z/2). This homomorphism is the result of the 
al
ulation of the
hara
teristi
 
lass w2(Ib) ∈ H2(K(Ib, 1); Z/2) on the pres
ribed 
y
le, i.e. on24



the image of the fundamental 
y
le [Nn−2k
ext / ∼] with respe
t to the mapping

Nn−2k
ext / ∼→ X̂ → K(Ib, 1). The 
y
le λ∗[Nn−2k

ext / ∼] ∈ Hn−2k(X; Z/2) is themodulo 2 redu
tion of an integral homology 
lass. Therefore this 
y
le is givenby a sum of fundamental 
lasses of the produ
t of the two odd-dimensionalproje
tive spa
es, the sum of the dimensions of this spa
es being equal to
n− 2k.Let us 
onsider an arbitrary submanifold Sk1/i × RPk2 ⊂ X, k1 + k2 =
n
2
+31, k1, k2 being odd. Let us 
onsider the 
over RPk1×RPk2 → Sk1/i×RPk2and the 
omposition RPk1 × RPk2 ⊂ X̂

ĥ
# R

n after an ε1�small generi
perturbation. Let us denote this mapping by sk1,k2.The self-interse
tion manifold of the generi
 mapping sk1,k2 : RPk1 ×
RPk2 → R

n is a manifold with boundary denoted by Λ62
k1,k2

. The mapping
µa ×κa : (Λ62

k1,k2
, ∂Nn−2k

k1,k2
) → (K(Z/4, 1)×K(Z/2, 1), K(Z/2, 1)×K(Z/2, 1))is well-de�ned. The 61-dimensional homology fundamental 
lass [∂Λ] isintegral, therefore the image of this fundamental 
lass (µa×κa)∗([∂Λ

62
k1,k2

]) ∈
H61(K(Z/4, 1) ×K(Z/2, 1); Z/2) is trivial for a dimensional reason.Therefore the homology 
lass

(µa × κa)∗([Λ
62
k1,k2

, ∂Λ62
k1,k2

]) ∈

H62(K(Z/4, 1) ×K(Z/2, 1), K(Z/2, 1) ×K(Z/2, 1); Z/2)is well-de�ned. Let us 
onsider the (permanent) homology 
lass
(µa × κa)

!
∗([Λ̄

62
k1,k2

]) ∈ H62(K(Z/2, 1) ×K(Z/2, 1); Z/2), (12)de�ned from the relative 
lass above by the transfer homomorphism.To prove (10) it is su�
ient to prove that the 
lass (12) 
oin
ides withthe 
hara
teristi
 
lass
p∗,b ◦ η̂∗([Λ̂]) ∈ H62(K(Ib, 1); Z/2)under the following isomorphism of the target group Ib = Z/2⊕Z/2. By thisisomorphism the pres
ribed generators in H1(Z/2 ⊕ Z/2; Z/2) are identi�edwith the 
ohomology 
lasses τ1, τ2 ∈ H1(K(Ib, 1); Z/2) (
ompare with Lemma8 in [A1℄). Theorem 2 is proved.6 Kervaire Invariant One ProblemIn this se
tion we will prove the following theorem.25



Main TheoremThere exists an integer l0 su
h that for an arbitrary integer l ≥ l0, n = 2l − 2the Kervaire invariant given by the formula (1) is trivial.Proof of Main TheoremTake the integer k from the equation n− 4k = 62. Consider the diagram (5).By the Retra
tion Theorem [A2℄, Se
tion 8 there exists an integer l0 su
hthat for an arbitrary integer l ≥ l0 an arbitrary element [(f,Ξ, κ)] in the2-
omponent of the 
obordism group Immsf (3n+q
4
, n−q

4
) admits a retra
tionof order 62. By Theorem 2 in the 
obordism 
lass δ[(f,Ξ, κ)] there exists a

D4-framed immersion (g,Ψ, η) with an I4-stru
ture.Take the self-interse
tion manifold L62 of g and let L10
0 ⊂ L62 be thesubmanifold dual to the 
ohomology 
lass κ28

a µ
∗
a(τ)

12 ∈ H52(L62; Z/2). Bya straightforward 
al
ulation the restri
tion of the normal bundle of L62 tothe submanifold L10
0 ⊂ L62 is trivial and the normal bundle of L10

0 is theWhitney sum 12κa ⊕ 12µa, where κa is the line Z/2-bundle, µa is the plane
Z/4-bundle with the 
hara
teristi
 
lasses κa, µast

a (τ) des
ribed in the formula(8). By Lemma 6.1 (in the proof of this lemma we have to assume that thenormal bundle of the manifold L10
0 is as above) and by Lemma 7.1 [A2℄ the
hara
teristi
 
lass (8) is trivial. The Main Theorem is proved.
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