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Abstract

A skew-framing of an immersion is an isomorphism between the normal bun-
dle of the immersion and the Whitney sum of copies of some line bundle. This
reduces to a framing if the line bundle is oriented. In this note we investigate the
relationship between the bordism groups of framed immersions in Euclidean space
and the bordism groups of skew-framed immersions. We show that in certain codi-
mensions (i) framed immersions in Euclidean space are skew-framed boundaries
and (ii) framed immersions in Euclidean space are framed bordant to the double
cover of a skew-framed immersions. These results are simple consequences of the
Kahn–Priddy Theorem and James Periodicity.

1 Framed immersions and skew-framed immersions

Recall that a framing of an immersion Mn # Rn+k of a smooth n-dimensional manifold
Mn into Euclidean (n+k)-space is a trivialization of its normal bundle. A manifold which
has a framed immersion into some Euclidean space is stably parallelizable. A framing may
be thought of as an isomorphism between the normal bundle of the immersion and the
Whitney sum of k copies of the (unique) oriented line bundle over M . So, by analogy, we
may define a skew-framing (or projective framing) of an immersion to be an isomorphism
between the normal bundle of the immersion and the Whitney sum of k copies of some
(not necessarily oriented) line bundle over M .

It should be noted that given a self-transverse framed immersion f : Mn # Rn+k

then the double point manifold, a smooth manifold of dimension n−k, has an immersion
∆2(f)n−k # Rn and the framing of f induces a natural skew-framing on this immersion
(see Proposition 5). Hence skew-framed immersions arise naturally in the study of framed
immersions.

Clearly, a framing is a particular sort of skew-framing in which the line bundle used is
oriented (and so trivial). The main purpose of this note is to observe that given n then,
for infinitely many values of k, every framed immersion Mn # Rn+k = Rn+k × {0} ⊆
Rn+k×[0, 1) of a manifold without boundary is the boundary of a skew-framed immersion
W n+1 # Rn+k × [0, 1).

More generally, we can use a skew-framed immersion F : W n+1 # Rn+k × [0, 1] of a
manifold with boundary ∂W n+1 = Mn

1 tMn
2 such that F−1(Rn+k × {i}) = Mn

i to define
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a skew-framed bordism between the two skew-framed immersions fi = F |Mn
i : Mn

i #
Rn+k×{i} in the usual way. The skew-framed bordism group of skew-framed immersions
of n-manifolds in codimension k will denoted by Immsfr(n, k) and the framed bordism
group of framed immersions of n-manifold in codimension k will denoted by Immfr(n, k).
Treating a framing as a skew-framing leads to the forgetful homomorphism

σ : Immfr(n, k) → Immsfr(n, k).

To state the theorem precisely it is necessary to recall the definition of some well-
known numbers. For a positive integer a, let φ(a) be the number of positive integers r
such that r < a and r ≡ 0, 1, 2 or 4 modulo 8. Put b(a) = 2φ(a).

Theorem 1. For n ≥ 1, let Mn be a stably parallelizable compact manifold of di-
mension n without boundary. Then, for 2m ≥ n, each framed immersion Mn #
Rn+b(2m+1)−1 = Rn+b(2m+1)−1 × {0} is the boundary of a non-oriented framed immersion
W n+1 # Rn+b(2m+1)−1 × [0, 1) or, equivalently, the forgetful homomorphism

σ : Immfr(n, b(2m + 1)− 1) → Immsfr(n, b(2m + 1)− 1)

is trivial.

On the other hand, it is also possible to associate a framed immersion to each skew-
framed immersion in the following manner. Suppose that (f : Nn # Rn+k, φ) is a skew-
framed immersion with φ : νf

∼= kκ, where νf is the normal bundle of the immersion and

κ is a line bundle over Nn. Let p : Ñn → N be the double covering of Nn given by the
sphere bundle of κ. Then the skew-framing φ induces a framing φ̃ : νf◦p ∼= kp∗(κ) ∼= εk

of the immersion f ◦ p : Ñn → Nn # Rn+k. It is routine to check that this construction
respects bordisms so that a transfer homomorphism

τ : Immsfr(n, k) → Immfr(n, k)

may be defined by

τ [f : Nn # Rn+k, φ] = [f ◦ p : Ñn # Rn+k, φ̃].

Theorem 2. For n ≥ 1, let Mn be a stably parallelizable compact manifold of dimension
n without boundary. Then, for 2m ≥ n, each framed immersion Mn # Rn+b(2m+1)

is framed bordant to the double cover of a skew-framed immersion or, equivalently, the
transfer homomorphism

τ : Immsfr
(
n, b(2m + 1)

) → Immfr
(
n, b(2m + 1)

)

is an epimorphism.

2 Bordism classes of immersions and the stable ho-

motopy groups of Thom spaces

Theorems 1 and 2 are most readily obtained by interpreting the homomorphisms be-
tween the bordism groups as homomorphism between the stable homotopy groups of the
appropriate Thom complexes as described below.

2



The basis of the application of stable homotopy theory to the study of immersions
is the observation that the bordism group of immersions of (smooth compact closed)
n-manifolds in Rn+k with a G(k)-structure (where G(k) is a subgroup of the orthogonal
group O(k)) is isomorphic to the stable homotopy group πS

n+kMG(k). Here MG(k) is
the Thom complex of the universal G(k)-bundle i∗γk where i : BG(k) → BO(k) is the
inclusion map and γk is the universal k-plane bundle over BO(k). This was first observed,
in the case G(k) = O(k) by Wells ([7]) using the Smale-Hirsch Theorem, which relates
immersions of manifolds to monomorphisms of their tangent bundles, and the Pontrjagin-
Thom construction, which gives an isomorphism between bordism groups of embeddings
and homotopy groups of Thom complexes. The result for a general subgroup of O(k)
follows by the same method.

The simplest case is that of framed immersions for which G(k) is the trivial group
and so the universal G(k)-bundle can be taken to be the trivial k-dimensional bundle
over a point with Thom complex Sk. This gives the well-known result that Immfr(n, k)
is isomorphic to the stable stem πS

n+kS
k ∼= πS

n .
For skew-framings the group G(k) is O(1) embedded diagonally in O(k), for a skew-

framing of an immersion Mn # Rn+k corresponds to a factorization of the classifying map
of the normal bundle Mn → BO(k) through the diagonal map d : BO(1) → BO(1)k →
BO(k). In this case the universal bundle d∗γk is the Whitney sum kγ1 of k copies
of the universal line bundle. If γ1 is taken to be the canonical line bundle over RP∞

then the Thom complex of kγ1 is homeomorphic to the truncated real projective space
P∞

k = RP∞/RPk−1 ([3]). Thus, by the Pontrjagin-Thom-Wells Theorem, the bordism
group Immsfr(n, k) is isomorphic to the stable homotopy group πS

n+kP
∞
k .

Lemma 3. The forgetful homomorphism

σ : Immfr(n, k) → Immsfr(n, k)

corresponds under the Pontrjagin-Thom-Wells isomorphism to the map

πS
n+kS

k → πS
n+kP

∞
k

induced by the inclusion of the bottom cell.

Proof. The map of universal bundles corresponding to viewing a framing as a skew-
framing can be described as kγ1

0 → kγ1 where γ1
0 is the canonical line bundle over

RP0 ⊆ RP∞. This induces a map of Thom complexes Sk = P k
k → P∞

k which is the
inclusion of the bottom cell, as required. ¤

Lemma 4. The transfer homomorphism

τ : Immsfr(n, k) → Immfr(n, k)

corresponds under the Pontrjagin-Thom-Wells ismomophism to the map

πS
n+kP

∞
k → πS

n+kS
k

induced by the co-attaching map of the bottom cell of P∞
k−1, i.e. the map q in the cofibre

sequence

Sk−1 i→ P∞
k−1

j→ P∞
k

q→ Sk. (1)

arising from the inclusion of the bottom cell in P∞
k−1.
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Proof. Given a skew-framed immersion (f : Nn # Rn+k, φ) with φ : νf
∼= kκ, where νf

is the normal bundle of the immersion and κ is a line bundle over Nn, we can define
an embedding, g : Ñn → E(kκ), of the double cover of Nn into the total space of the
bundle kκ by g(a, x) = (a, 0, . . . , 0, x), for a ∈ Nn and x a unit vector in the fibre of κ
over a. Composing this with the bundle map E(kκ) → Nn gives the double cover map

p : Ñn → Nn. Let F : E(νf ) # Rn+k be a tubular neighbourhood of the immersion f .

Then it is clear that the composition f̃1 : Ñn g→ E(kκ)
φ−1→ E(νf )

F→ Rn+k is regularly

homotopic to the immersion f̃ : Ñn # Rn+k.
The embedding g has a tubular neighbourhood G : Ñn × Rk → E(kκ) given by

G
(
(a, x), (t1, t2, . . . , tk)

)
= (a, t1x, t2x, . . . , tk−1x, exp(tk)x).

Then Ñn × Rk G→ E(kκ)
φ−1→ E(νf )

F→ Rn+k gives a tubular neighbourhood of f̃1.
The universal case of the embedding G is the map S∞ × Rk → E(kγ1) given by

(x, t1, t2, . . . , tk) 7→ ([x], t1x, t2x, . . . , tk−1x, exp(tk)x)

where γ1 is the canonical line bundle over the Grassmanian G1(R∞) = RP∞ which can
be taken as the universal line bundle over BO(1).

It follows that the transfer homomorphism corresponds to the homomorphism in
stable homotopy induced by the map T (kγ1) = P∞

k → Sk obtained by applying the
Pontrjagin-Thom construction to this universal map S∞ × Rk → E(kγ1).

It is sufficient to consider the embedding SN × Rk → E(kγ1
N) where γ1

N is the
canonical line bundle over RPN . The total space E(kγ1

N) can be identified with the
space RPN+k − RPk−1 via ([x], t1x, t2x, . . . , tkx) 7→ [t1, t2, . . . , tk,x] for x ∈ SN . Under
this identification the embedding SN × Rk → E(kγ1

N) = RPN+k − RPk−1 is given by
(x, t1, t2, . . . tk) 7→ [t1, t2, . . . , tk−1, exp(tk),x]. Applying the Pontrjagin-Thom construc-
tion to this embedding gives a pointed map T (kγ1

N) = (RPk+N − RPk−1)∗ = P k+N
k →

(Rk)∗ ∼= Sk given by

[s1, s2, . . . , sk−1, sk,x] 7→
{

(s1, s2, . . . , sk−1, ln(sk)) if sk > 0
∗ if sk = 0,

where x ∈ SN and sk ≥ 0.
It is now sufficient to recognize this map as the map q in the cofibre sequence

Sk−1 i→ P k+N
k−1

j→ P k+N
k

q→ Sk.

To see this observe that the map i is the one point compactification of the map Rk−1 →
P k+N − P k−2 given by (t1, t2, . . . , tk−1) 7→ [t1, t2, . . . , tk−1, 1,0]. Hence the map j is the
pointed map (P k+N −P k−2)∗ → (P k+N −P k−1)∗ given by [x] 7→ [x] if [x] ∈ P k+N −P k−1

and [x] 7→ ∗ otherwise. It follows that the above formula gives the map q. ¤
Finally in the section we give the result about the double manifolds of framed immer-

sions referred to earlier.

Proposition 5. Given a self-transverse framed immersion f : Mn # Rn+k then the
natural immersion of the ((n − k)-dimensional) double point manifold ∆2(f) # Rn+k

gives rise to an immersion ∆2(f) # Rn and the framing of f induces a natural skew-
framing on this immersion.
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Proof. Let
∆̃2(f) = { (x1, x2) ∈ M ×M | f(x1) = f(x2), x1 6= x2 }.

By the self-transversality of f this is a submanifold of M ×M of dimension n− k. The
group of order 2 acts freely on ∆̃2(f) by interchanging coordinates and the double point
manifold ∆2(f) is the quotient space. Clearly f induces an immersion δ2(f) : ∆(f) #
Rn+k.

The framing on the immersion f gives a basis for each fibre of the normal bundle
of f . Each fibre of the normal space of δ2(f) has a natural decomposition as the direct
sum of two unordered normal fibres of f each of which has a basis. Thus in this case
the group of the bundle is the wreath product 1k o Z2 ⊆ O(2k) where 1k is the trivial
subgroup of O(k) (see for example [2], 2.1). This subgroup is conjugate to the subgroup

O(1) embedded through the diagonal map as O(1)
d→ O(k) ⊆ O(2k). Thus the normal

bundle of δ2(f) has a normal k-frame field so that by the Smale-Hirsch Theorem there is
an immersion of ∆2(f) in Rn. The structure group for this immersion is O(1) embedded
diagonally in O(k) and so the immersion has a skew-framing as required. ¤

3 James periodicity and the Kahn-Priddy Theorem

For 0 ≤ a ≤ b, the truncated real projective space RPb/RPa−1 will be denoted by P b
a . In

the case of a = 0, RP−1 is interpreted as the empty set so that P b
0 is RPb with a disjoint

base point.
The theorem we need is the following.

Theorem 6 (James Periodicity Theorem). For each positive integer a and each
non-negative integer k there is a homeomorphism

Σb(a)P k+a−1
k = P k+a−1

k ∧ Sb(a) → P
k+b(a)+a−1
k+b(a) .

Proof. This result is implicit in [6]. It may be obtained quite explicitly as follows.
The well-known Hurwitz-Radon-Eckmann theorem in linear algebra (see [5]) tells us

that there is a non-singular bilinear map

f : Ra × Rb(a) → Rb(a).

This induces a homeomorphism

(RPk+a−1 − RPk−1)× Rb(a) → RPk+b(a)+a−1 − RPk+b(a)−1.

by ([x, y], z) 7→ [x, y, f(x, z)] for x ∈ Ra − {0}, y ∈ Rk, z ∈ Rb(a).
On taking one point compactifications this gives the homeomorphism in the

theorem. ¤
Adams’ version of the Kahn-Priddy Theorem ([1], Formulation 2.3) gives the following

result.

Theorem 7 (Kahn-Priddy Theorem). A stable map RP2m 6→ S0 which induces an
isomorphism πS

1RP2m → πS
1 (∼= Z/2) induces an epimorphism of 2-primary stable homo-

topy groups 2π
S
nRP2m → 2π

S
n for 1 ≤ n ≤ 2m.
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These two results now enable us to prove the main results of this paper.

Proof of Theorem 2. For m ≥ 1, let

q : P∞
b(2m+1) → Sb(2m+1)

be the co-attaching map of the bottom cell of P∞
b(2m+1)−1, i.e. the map q in the cofibre

sequence (1) of Lemma 4 in the case k = b(2m + 1). By Lemma 4, the theorem is
equivalent to the statement that q induces an epimorphism of stable homotopy groups
πS

n+b(2m+1)( ) for 1 ≤ n ≤ 2m.

Firstly, observe that Sb(2m+1) i→ P∞
b(2m+1)

q→ Sb(2m+1) is a map of degree 2 since

b(2m + 1) is even. This means that q ◦ i induces isomorphisms of p-primary stable
homotopy groups pπ

S
b(2m+1)+n( ) for p 6= 2 and n ≥ 1 and so q induces epimorphisms of

such groups.
Now, by the James Periodicity Theorem, P

b(2m+1)+2m
b(2m+1) is homeomorphic to

Σb(2m+1)P 2m
0 and so the restriction of q

q| : P
b(2m+1)+2m
b(2m+1) → Sb(2m+1)

determines a stable map
q0 : P 2m

0 6→ S0.

Composing this with the inclusion map RP2m → P 2m
0 gives a stable map

q1 : RP2m 6→ S0.

The cofibre of q| is ΣP
b(2m+1)+2m
b(2m+1)−1 . Since b(2m + 1) is a multiple of 4,

πS
b(2m+1)P

b(2m+1)+2m
b(2m+1)−1

∼= πS
b(2m+1)P

b(2m+1)+1
b(2m+1)−1

∼= πS
4 P 5

3 (by James Periodicity).

From the cofibre sequence

S3 2ι→ S3 → P 4
3 → S4 2ι→ S4,

πS
4 P 4

3
∼= Z/2 generated by the image of the suspension of the Hopf map η3 ∈ πS

4 S3.
This maps to zero under the epimorphism πS

4 P 4
3 → πS

4 P 5
3 (since Sq2 : H3(P 5

3 ;Z/2) →
H5(P 5

3 ;Z/2) is non-zero implying that the 5-cell in P 5
3 is attached by the generator of

πS
4 P 4

3 ) and so πS
b(2m+1)+1ΣP

b(2m+1)+2m
b(2m+1)−1

∼= πS
b(2m+1)P

b(2m+1)+2m
b(2m+1)−1

∼= πS
4 P 5

3 = 0.

This shows that q| induces an epimorphism of πS
b(2m+1)+1( ) or equivalently that q0

induces an epimorphism of πS
1 ( ). It follows that q1 induces an epimorphism and so an

isomorphism of πS
1 , since, as above, the stable map S0 i→ P 2m

0

q06→ S0 is a map of degree
2 and so induces the zero homomorphism on πS

1
∼= Z/2.

It now follows from the Kahn-Priddy Theorem that the stable map q1 induces an
epimorphism of 2π

S
n ( ) for 1 ≤ n ≤ 2m. The same must therefore be true of the stable

map q0 and so the map q induces an epimorphism of 2π
S
n+b(2m+1)( ) for 1 ≤ n ≤ 2m.

Combining this with the earlier observation about mod p stable homotopy we obtain
that the map q induces an epimorphism of πS

n+b(2m+1)( ) for 1 ≤ n ≤ 2m as required. ¤
Proof of Theorem 1. For 1 ≤ n ≤ 2m, continuing the long exact sequence in stable
homotopy coming from the cofibre sequence (1) in Lemma 4 with k = b(2m + 1), the
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above result that q∗ induces an epimorphism of stable homotopy groups is equivalent to
the vanishing of the homomorphisms

(Σi)∗ : πS
n+b(2m+1)S

b(2m+1) → πS
n+b(2m+1)ΣP

b(2m+1)+2m
b(2m+1)−1 .

By Lemma 3, this observation is equivalent to Theorem 1. ¤
Notice that the above arguments show that for an odd prime p there are p-local

versions of Theorems 1 and 2 in which b(2m+1) is replaced by any even positive integer.

4 Examples

Proposition 8. The bordism group Immsfr(2, 3) is cyclic of order 2.

Proof. This is clear since, by the Pontrjagin-Thom-Wells Theorem, this bordism group
is isomorphic to the stable homotopy group πS

5 P∞
3 . An easy calculation shows that this is

cyclic of order 2 generated by an element η[
4 which maps to the element η4 ∈ πS

5 P∞
4 given

by composing the double suspension of the Hopf map η ∈ π3S
2 ∼= Z with the inclusion

of the bottom cell. ¤
A generator for Immsfr(2, 3) ∼= Z/2 may be described as follows.
Let f : K2 # R3 be the immersion of the Klein bottle obtained by constructing a

cylinder on a ‘figure eight’ and identifying the ends after rotating through an angle π.
This represents an element of order 4 in the group Immsfr(2, 1) ∼= Z/8 ([4]). Let κ be the
normal line bundle of this immersion of the Klein bottle. This bundle is the pull back of
the canonical line bundle over the circle under the standard bundle map K2 → S1 and
so the bundle 2κ over K2 is trivial. We fix an arbitrary bundle isomorphism 2κ ∼= 2ε
where ε is the trivial line bundle over K2. Let g : K2 # R5 be the composition of f with
the standard inclusion R3 ⊂ R5 (this is in fact regularly homotopic to an embedding as
we are in the stable range). Then there is an isomorphism φ : νg

∼= κ⊕ 2ε ∼= 3κ giving a
skew-framing on g.

Proposition 9. This skew-framed immersion (g : K2 # R5, φ) represents a generator of
Immsfr(2, 3) ∼= Z/2.

In order to prove this result we describe a geometrical construction corresponding to
the homomorphism of stable homotopy induced by the middle map of the cofibre sequence
Sk → P∞

k → P∞
k+1 → Sk+1.

Given an immersion f : Mn # Rn+k with a skew-framing νf
∼= kκ we can construct

a submanifold Ln−1 of Mn representing the Poincaré dual of w1(κ) ∈ H1(M ;Z/2) by
taking the transverse self-intersection of the zero section of the bundle κ. The normal
bundle of the inclusion i : L → M is the pull-back of the bundle κ and so the immersion
f ◦ i : L → M # Rn+k has a skew-framing νf◦i ∼= (k + 1)i∗κ. This construction is clearly
bordism invariant and gives a homomorphism ω : Immsfr(n, k) → Immsfr(n− 1, k + 1).

Lemma 10. This homomorphism

ω : Immsfr(n, k) → Immsfr(n− 1, k + 1)

corresponds under the Ponrtjagin-Thom-Wells isomorphism to the map

πS
n+kP

∞
k → πS

n+kP
∞
k+1

induced by the collapse of the bottom cell.
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Proof. Let κ : M → RPN be the map representing the line bundle κ where N is large.
Then, if choose κ transverse to RPN−1 ⊆ RN , the submanifold L is given by κ−1(RPN−1).
Since kγ1

N may be taken to be the normal bundle of RPN in RPN+k the skew-structure
on M gives the following diagram.

RPN−1 RPN RPN+k

L M E(νf )

- -

-i -

? ? ?

This induces the following diagram of Thom complexes.

PN+k
k PN+k

k+1

T (νf ) T (νf◦i)

-

-

? ?

This gives the result by applying the Pontrjagin-Thom construction. ¤
Proof of Proposition 9. In the example, since κ is the normal bundle of the immersion
f : K2 → R3, the submanifold L is a circle S1 embedded in K as one ‘figure eight’
section. The restriction of κ to this circle is trivial and so the induced skew-framing of
the immersion S1 → K # R3 is a framing, clearly regularly homotopic to the standard
Hopf framing representing a generator of π3S

2. It follows that the element of πS
5 P∞

3

represented by g : K # R5 maps to η4 ∈ πS
5 P∞

4 as required. ¤.

It should be observed from Theorem 2 that the transfer homomorphism Immsfr(2, 3) →
Immfr(2, 3) is an isomorphism (since Immfr(2, 3) ∼= π5S

3 ∼= Z/2). Applying the double
cover construction to the above immersion g : K2 # R5 of the Klein bottle gives a framed
immersion of the torus which represents the generator of Immfr(2, 3).

An exact sequence

Finally, we observe that the following result.

Theorem 11. For all n and k ≥ 0 the following sequence is exact:

Immfr(n, k)
σ→ Immsfr(n, k)

ω→ Immsfr(n− 1, k + 1)
τ→ Immfr(n− 1, k + 1)

σ→ Immsfr(n− 1, k + 1).

Proof. This follows from the long exact sequence in stable homotopy arising from the
cofibre sequence Sk → P∞

k → P∞
k+1 → Sk+1 using Lemma 3, Lemma 4 and Lemma 10.¤
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