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A plan of a positive solution of the Snaith
Conjecture (2009) on the Kervaire invariants

Petr M. Akhmet’ev

12 октября 2021 г.

Аннотация

The Kervaire Invariant 1 Problem until recently was an open
problem in algebraic topology. For setting and applications, see [A1].
Hill, Hopkins, and Ravenel solved this problem for all dimensions
except n = 126. In dimension n = 126, the problem has not been solved
and has the status of a hypothesis by V.P. Snaith (2009). We consider
an alternative (with respect to the approach in [H-H-R]) geometric to
the Kervaire Invariant 1 Problem and prove the Snaith Conjecture.

1 Self-intersections of generic immerisions

and the Kervaire invariant; the problem

statement

Let us consider a smooth generic immersion f : Mn−1
# R

n,
n = 2ℓ−2, ℓ > 1 of the codimension 1. Denote by g : Nn−2

# Rn

the immersion of self-intersection manifold of f .
Let us recall a definition of the cobordism group Immsf (n −

k, k), a particular case k = 1 is better known: Immsf (n − 1, 1).

The cobordism group is defined as equivalent classes of triples up
to the standard cobordism relation, equipped with a disjoint union

operation;

• f : Mn−k
# R

n is a codimension k immersion;
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• Ξ : ν(f) ∼= kκ∗
M(γ) is a bundle map, which is invertible;

• κM ∈ H1(Mn−k;Z/2) is a prescribed cohomology class,

which is a mapping Mn−k → RP∞ = K(Z/2, 1).
By ν(f) is denoted the normal bundle of the immersion f , by

κ∗
M(γ) is denoted the pull-back of the universal line bundle γ over

RP∞ by the mapping κM , by kκ∗
M(γ) is denoted the Whitney

sum of the k copies of the line bundles, below for short we will

write kκM . The isomorphism Ξ is called a skew-framing of the
immersion f .

The Kervaire invariant is an invariant of cobordism classes,
which is homomorphism

Θsf : Immsf (n− k, k) → Z/2. (1)

Let us recall the homomorphism (1) in the case k = 1.

The normal bundle νg of the immersion g : Nn−2
# R

n

is a 2-dimensional bundle over Nn−2, which is equipped by a

D–framing Ξ, where D is the dihedral group of the order 8.
The classifying map of this bundle (and also the corresponding

characteristic class) is denoted by ηN : Nn−2 → K(D, 1). The
triple (g, ηN ,Ξ) represents an element in the cobordism group
ImmD(n − 2, 2). The correspondence (f, κ,Ψ) 7→ (g, ηN ,Ξ)

defines a homomorphism

δD : Immsf(n− 1, 1) → ImmD(n− 2, 2). (2)

Definition 1. The Kervaire invariant of an immersion f is defined
by the formula:

Θsf(f) = 〈η
n−2
2

N ; [Nn−2]〉. (3)

It is not difficult to prove that the formula (3) determines a
homomorphism

ΘD : ImmD(n− 2, 2) → Z/2. (4)
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The homorphism (4) is called the Kervaire invariant of a D–
framed immersion. The composition of the homomorphisms (2),

(4) determines the homomorphism (1).
The group ImmD(n−2, 2) admits a standard generalization to

the cobordism group ImmD(n− 2k, 2k) with a parameter k ≥ 1.
We will need the case k = 7.

Main Result

In the case n = 2ℓ − 2, ℓ ≥ 7 the homomorphism Θsf(f) (3) is

trivial. In the case n ≥ 8 this result is proved in [H-H-R]. For
n = 7 this is a new result, conjectured (2009) in [S].

2 First step in proof

In the present and the next sections the cobordism groups
Immsf (n−k, k), ImmZ/2[2](n−2k, 2k)will be used. In the case the

first argument in the bracket is strongly positive, the cobordism
group is finite.

The dihedral group Z/2[2] = D is defined by its
corepresentation

{a, b | b4 = a2 = e, [a, b] = b2}.

This group is represented by rotations a asubgroup in the

group O(2) of orthogonal transformation of the standard plane.
Elements transforms the base {e1, e2} on the plane Lin(e1, e2)
to itself, a non-ordered pair of coordinate lines on the plane

are keeped by transformations. The element b is represented
by the rotation of the plane by the angle π

2 . The element a is

represented by the reflection of the plane relative to the straight
line l1 = Lin(e1 + e2) parallel to the vector e1 + e2.

Let us consider a subgroup Ia×ȧ = Ia × İa ⊂ Z/2[2] in the
dihedral group, which is generated by the elements {a, b2a}. This
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is an elementary 2-group of the rank 2. Transformations of this
group keep each line l1, l2 with the base vectors f1 = e1 + e2,

f2 = e1 − e2 correspondingly. The cohomology group H1(K(Ia ×
İa, 1);Z/2) contains two generators κa, κȧ.

Let us define the cohomology classes

κa ∈ H1(K(Ia × İa, 1);Z/2)), κȧ ∈ H1(K(Ia × İa, 1);Z/2)). (5)

Denote by pa : Ia × İa → Ia a projection, the kernel of pa consists

the symmetry transformation with respect to the bisector of the
second coordinate angle and the identity.

Denote κa = p∗a(ta), where e 6= ta ∈ H1(K(Ia, 1);Z/2) ≃ Z/2.
Let us denote by pȧ : Ia× İa → İa the projection, the kernel of pȧ
consists of the symmetry with respect to the bisector of the first

coordinate angle and the identity.
Let us denote κȧ = p∗ȧ(tȧ), where e 6= tȧ ∈ H1(K(İa, 1);Z/2) ∼=

Z/2.

A standardized immersion with the dihedral framing

Let us consider a D-framed immersion (g,Ψ, ηN) of codimension
2k. Let us assume that the image of g contains in a regular

neighbourhood U(RP2) of the embedding RP2 ⊂ R
n. The

following mapping π ◦ ηN : Nn−2k → K(D, 1) → K(Z/2, 1) is

well-defined, where K(D, 1) → K(Z/2, 1) is the epimorphism
with the kernel Ia × İa ⊂ D. It is required that this mapping

coincides to the composition i ◦ PROJ ◦ ηN , where PROJ :
U(RP2) → RP2 is the projection of the neighbourhood onto its
central line, i : RP2 ⊂ K(Z/2, 1) is the standard inclusion, which

transforms the fundamental class into the generator.
Below we will clarify a small constant d and denote an integer

δ = n
4 + d ≈ n

4 . The integer δ ∈ N is called the co defect of a
standardization.

С1 Let us consider the submanifold Nn−2k−2
sing ⊂ Nn−2k,

Nsing = PROJ−1(RP0),RP0 ⊂ RP2. Require that the mapping
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ηN , restricted to Nsing, be skipped trough the skeleton of K(Ia ×
İa, 1) the dimension n − 2k − δ ( δ is the codimension of the

considered skeleton inside the skeleton of the dimension n− 2k =
dim(Nsing)).

Geometrically, this means that the submanifold Nsing is a
defect of a reduction of the structured mapping of the normal
bundle with a control of the subgroup Ia × İa ⊂ D over RP2 to a

mapping with a control over RP1 ⊂ RP2.
In the case k → 0+ structured mapping on the defect manifold

is skipped through a polyhedron of the dimension 3n
4 , in the case

2k → n
2 through a polyhedron of the dimension n

4 .

The complement N \ Nsing to the defect we get an open
manifold, for which the classifying normal bundle mapping is given

by ηN : N \Nsing → K(Ia × İa)⋊ RP1.

Definition 2. Let us say that a D-framed immersion (g,Ψ, ηN)
of the codimension 2k is standardized with a codefect δ ≈ n

4
, if

the condition C1 is satisfied.

Definition 3. Assume [(f,Ξ, κM)] ∈ Immsf (n − k, k), f :

Mn−k
# R

n, κM ∈ H1(Mn−k;Z/2), Ξ is a skew-framing. Let
us say that the pair (Mn−k, κM) admits a compression of an order

q, if the mapping κM : Mn−k → RP∞ is represented (up to
homotopy) by the following composition: κ = I ◦ κ′

M : Mn−k →
RPn−k−q−1 ⊂ RP∞. Let us say that the element [(f,Ξ, κM)] admits
a compression of an order q, if in its cobordism class exists a triple
(f ′,Ξ′, κM ′), which admits a compression of the order q.

Теорема 4. 1. Assume n = 2ℓ−2, ℓ ≥ 7, mσ = 14. An arbitrary
class of D-framed cobordism from the image of the homomorphism

(2) (for k > 1 from the image of the left homomorphism on the
bottom line of the diagram (3) ) is represented by a standardized

dihedral immersion (g, ηN ,Ψ) with d = 2. 1

1The constant d cannot be large, in the prove the inequality d < 3q
4 − 3

2 , which relates
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2. Assume that an element x ∈ Immsf (n− n−mσ

16 , n−mσ

16 ) admits

a compression of the order q = mσ

2 + 1 (in particular, for q = 8,
k = n−mσ

16 = 7, mσ = 14). By this additional assumption one may

get a standardization of x with the following additional condition:
– a submanifold Nmσ

a×ȧ ⊂ Nn−2k,

Nmσ

a×ȧ = η−1
N (K(n− 2k −mσ) ⊂ K(D, 1))

admits a structured subgroup Ia × İa ⊂ D of the normal bundle

(equivalently, the mapping π ◦ g : Nn−2k
# U(RP2) → RP2,

restricted on the submanifold Nmσ

a×ȧ, is homotopic to the constant

mapping).

To prove the theorem a preliminary construction is required.
Let

d(2) : RPn−k′ × RPn−k′ \ RPn−k′

diag → R
n × R

n (6)

be an arbitrary (T
RPn−k′×RPn−k′ , TRn×Rn)–equivariant mapping,

which is transversal along the diagonal Rn
diag ⊂ Rn × Rn. The

diagonal in the pre-image is mapped into the diagonal of the

image, by this reason the equivariant mapping d(2) is defined on
the open manifold outside of the diagonal (in the pre-image).

(To Condition 1 in Theorem 4 the case k′ = k is required, for
Condition 2 the codimension k′ has to be defined by the formula:

k′ = k + q + 1 (parameters k,q correspond to denotations of
Theorem 4).

Let us re-denote (d(2))−1(Rn
diag)/TRPn−k′×RPn−k′ by Ncirc =

N(d(2))◦ for short, this polyhedron is called a polyhedron of
(formal) self-intersection of the equivariant mapping d(2).

The polyhedron N◦ is an open polyhedron, this polyhedron
admits a compactification, which is denoted by N with a boundary

d with an order q of the compression is required. Based on Theorem [?] by Kee Yuen Lam
and Duane Randall (2006), for n = 126 it is sufficient to get a proof of Main Result in the
case q = 10.
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∂N. The boundary consists of all critical (formal critical) points of
the mapping d(2). Let us denote by N◦ an open polyhedron N\∂N,

by U(∂N)◦ a thin regular neighbourhood of the diagonal ∂N.
The polyhedron N◦ is equipped by the mapping d(2), which

admits the following lift:

ηcirc;Ab : N◦ → K(Ia×ȧ⋊χ[2] Z, 1).

On the polyhedron U(∂N)◦ the mapping ηcirc;Ab gets the

values into the following subcomplex: K(Ia×ȧ⋊χ[2] 2Z, 1) ⊂
K(Ia×ȧ⋊χ[2] Z, 1) (the projection on K(Z, 1) is the analogue of

the projection of the Moebius band onto its central line).

Definition 5. Let us call that a formal (equivariant) mapping

d(2), given by (6), is holonomic, if this mapping is the formal
extension of a mapping

d : RPn−k′ → R
n. (7)

Definition 6. Assume a formal (equivariant) mapping (6) is
holonomic. Let us say d(2) admits an abelian structure, if the

following two conditions are satisfied.
– 1. On the open polyhedron N◦ the following mapping is well-

defined:

η◦;Ab : N◦ → K(Ia×ȧ⋊χ[2] Z, 1), (8)

which is a lift of the structured mapping

η◦ : N◦ → K(Z/2[2], 1).

–2. Let us consider the Moebius band M2 and represent the
Eilenberg-MacLane space K(Ia×ȧ⋊χ[2] Z, 1) as a skew-product

K(Ia×ȧ, 1)×̃M2 → M2; the restriction of the fibration over the
boundary circle S1 = ∂(M2) is identified with the subspace

K(Ia×ȧ⋊χ[2] 2Z, 1) ⊂ K(Ia×ȧ⋊χ[2] Z, 1). Let us include the space
K(Ia×ȧ, 1)×̃M2 into K(Ia×ȧ, 1)×̃RP2 by a gluing of the trivial
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bundle over the boundary S1 by the trivial bundle over a small
disk with a central point x∞ ∈ RP2. The resulting space is denoted

by K(Ia×ȧ, 1)⋊RP2. The following mapping:

η◦;Ab : (N◦, U(∂N◦)) → (K(Ia×ȧ, 1)⋊ RP2, K(Ia×ȧ, 1)× x∞), (9)

is well-defined, where the inverse image by η◦;Ab of the fibre
K(Ia×ȧ, 1) × y∞ ⊂ K(Ia×ȧ, 1) ⋊ RP2, (y∞ ≈ x∞ over a closed

point is a subpolyhedron of the dimension less (or, equals) to
3
4(n− k′) = 3

4dim(N◦) (up to a small constant d).

The following lemma is proved in [A-P2].

Лемма 7. Small Lemma

For

n− k′ ≡ 1 (mod 2), n ≡ 0 (mod 2) (10)

there exist a holonomic formal mapping d(2), which admits an
Abelian structure, Definition 6.

Proof of Theorem 4

Theorem 4 follows from Lemma 4 and a theorem by Kee Yuen

Lam and Duane Randall.

3 Local coefficients and homology groups

Let us define the group (Ia × İa)⋊χ[2] Z and the epimorphism

(Ia × İa)⋊χ[2] Z → Z/2[2]. Consider the automorphism

χ[2] : Ia × İa → Ia × İa (11)

of the exterior conjugation of the subgroup Ia × İa ⊂ D by the

element ba ∈ D, this element is represented by the reflection
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of the plane with respect to the line Lin(e1). Let us define the
authomorphism (denotations are not changed)

χ[2] : Z/2[2] → Z/2[2], (12)

by permutations of the base vectors. It is not difficult to chack,

that the inclusion Ia× İa ⊂ Z/2[2] commutes with automorphisms
(11), (12) in the image and the preimage.

Define the group

Ia×ȧ⋊χ[2] Z. (13)

Let us consider the quotient of the group Ia×ȧ∗Z (the free product
of the group Ia×ȧ and Z) by the relation zxz−1 = χ[2](x), where
z ∈ Z is the generator, x ∈ Ia×ȧ is an arbitrary element.

This group is a particular example of a semi-direct product
A ⋊φ B, A = Ia×ȧ, B = Z, by a homomorphism φ : B →
Aut(A); the set A × B is equipped with a binary operation
(a1, b1) ∗ (a2, b2) 7→ (a1φb1(b2), b1b2). Let us define the group (13)

by this construction for A = Ia×ȧ, B = Z, φ = χ[2].
The classifying space K(Ia×ȧ⋊χ[2] Z, 1) is a skew-product over

the circle S1 with K(Ia×ȧ, 1), where the shift mapping in the
cyclic covering K(Ia×ȧ, 1) → K(Ia×ȧ, 1) over K(Ia×ȧ⋊χ[2] Z, 1) is
induced by the automorphism χ[2]. The projection onto the circle

is denoted by

pa×ȧ : K(Ia×ȧ⋊χ[2] Z, 1) → S1. (14)

Take a marked point ptS1 ∈ S1 and define the subspace

K(Ia×ȧ, 1) ⊂ K(Ia×ȧ⋊χ[2] Z, 1) (15)

as the inverse image of the marked point ptS1 by the mapping
(14).

A description of the standard base of the group
Hi(K(Ia×ȧ⋊χ[2] Z, 1);Z) is sufficiently complicated and is
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not required. The group Hi(K(Ia×ȧ, 1);Z) is described using the
Kunneth formula:

0 → ⊕
i1+i2=iHi1(K(Ia, 1);Z)⊗Hi2(K(İa, 1);Z) −→

−→ Hi(K(Ia×ȧ, 1);Z) −→
−→ ⊕

i1+i2=i−1 Tor
Z(Hi1(K(Ia, 1);Z), Hi2(K(İa, 1);Z) → 0.

(16)

The standard base of the group Hi(K(Ia×ȧ⋊χ[2] Z, 1)) contains
the following elements:

x⊗ y/(x⊗ y)− (y ⊗ x),

where x ∈ Hj(K(Ia, 1)), y ∈ Hi−j(K(İa, 1)) (Z/2–coefficients is
the formulas are omitted).

In particular, for odd i the group Hi(K(Ia×ȧ, 1);Z) contains

elements, which are defined by the fundamental classes of the
following submanifolds: RPi × pt ⊂ RPi × RPi ⊂ K(Ia, 1) ×
K(İa, 1) = K(Ia×ȧ, 1), pt × RPi ⊂ RPi × RPi ⊂ K(Ia, 1) ×
K(İa, 1) = K(Ia×ȧ, 1). Let us denote the corresponding elements

as following:

ta,i ∈ Hi(K(Ia×ȧ, 1);Z), tȧ,i ∈ Hi(K(Ia×ȧ, 1);Z). (17)

The following analogues of the homology groups

Hi(K(Ia×ȧ⋊χ[2] Z, 1)), Hi(K(Ia×ȧ⋊χ[2] Z, 1);Z) with local
coefficients 2 is defined, the groups are denoted by

H loc
i (K(Ia×ȧ⋊χ[2] Z, 1);Z/2[Z/2]), (18)

H loc
i (K(Ia×ȧ⋊χ[2] Z, 1);Z[Z/2]). (19)

The following epimorphism

pa×ȧ : Ia×ȧ⋊χ[2] Z → Z (20)

2more simple homology groups H loc
i (K(Ia×ȧ ⋊χ[2] Z, 1);Z) with Z-local coefficient

system also can be defined, in this case on the last step of the construction difficulties
with triple (non-commutative) local coefficient system arise.
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is well-defined by the formula: x ∗ y 7→ y, x ∈ Ia×ȧ, y ∈ Z. The
following homomorphism

Ia×ȧ⋊χ[2] Z → Z → Z/2, (21)

is well-defined by the formula pa×ȧ (mod 2).

Let us define the group (19). Let us consider the group ring
Z[Z/2] = {a + bt}, a, b ∈ Z, t ∈ Z/2. The generator t ∈ Z[Z/2]

is represented by the involution

χ[2] : K(Ia×ȧ⋊χ[2] Z, 1) → K(Ia×ȧ⋊χ[2] Z, 1),

the restriction of the involution on the subspace K(Ia×ȧ, 1) ⊂
K(Ia×ȧ⋊χ[2] Z, 1) is the reflection, which is induced by the

automorphism Ia× İa → Ia× İa, which permutes factors. Because
all non-trivial homology classes of the space K(Ia×ȧ, 1) are of the

order 2, transformation of signs is not required. Nevertheless, even-
dimensional n − 2k-simplexes are transformed in the case of odd
k by the opposition of the orientation, in the case of even k the

orientation is preserved.
Let us consider the local system of the coefficient ρt :

Z/2[Z/2] → Aut(K(Ia×ȧ, 1) ⊂ K(Ia×ȧ⋊χ[2] Z, 1)), using this
local system a chain (a + bt)σ with the support on a simplex

σ ⊂ K(Ia×ȧ⋊χ[2] Z, 1) is transformed into a chain (at+ b)χ[2](σ).
The group (19) is well-defined. The group (18) is defined

analogously. A complete calculation of the groups (18), (19) is

not required.
Let us define the following subgroup:

Dloc
i (Ia×ȧ;Z[Z/2]) ⊂ H loc

i (K(Ia×ȧ⋊χ[2] Z, 1);Z[Z/2]) (22)

by the formula: Dloc
i (Ia×ȧ;Z[Z/2]) =

Im(H loc
i (K(Ia×ȧ, 1);Z[Z/2]) → H loc

i (K(Ia×ȧ⋊χ[2] Z, 1);Z[Z/2])),
where the homomorphism

H loc
i (K(Ia×ȧ, 1);Z[Z/2])→ H loc

i (K(Ia×ȧ⋊χ[2] Z, 1);Z[Z/2])
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is induced by the inclusion of the subgroup.
From the definition, there exist a natural epimorphism:

Hi(K(Ia×ȧ, 1);Z[Z/2])→ Dloc
i (Ia×ȧ;Z[Z/2]). (23)

The following natural homomorphism Hi(K(Ia×ȧ, 1);Z)) ⊗
Z[Z/2] → Hi(K(Ia×ȧ, 1);Z[Z/2]) is well-defined, this
homomorphism is an isomorphism by the universal coefficients

formula. This calculation is following from the isomorphism
Z[Z/2] ≡ Z ⊕ Z an the additivity of the derived functor

TorZ. Analogously, Hi(K(Ia×ȧ, 1);Z/2)) ⊗ Z/2[Z/2] ≡
Hi(K(Ia×ȧ, 1);Z/2[Z/2]).

The subgroup (22) is generated by various elements X + Y t,

X, Y ∈ Hi(K(Ia×ȧ, 1);Z). The following equivalent relation

determines the equality of two elements: X ≡ χ
[2]
∗ (X)t, where

the authomorphism

χ[2]
∗ : Hi(K(Ia×ȧ, 1);Z) → Hi(K(Ia×ȧ, 1);Z) (24)

is induced by the authomorphism (11). The authomorphism (11)
induces also the authomorphism

χ[2]
∗ : Hi(K(Ia×ȧ, 1);Z[Z/2])→ Hi(K((Ia×ȧ);Z[Z/2]). (25)

A subgroup

Dloc
i (Ia×ȧ;Z/2[Z/2]) ⊂ H loc

i (K(Ia×ȧ⋊χ[2] Z, 1);Z/2[Z/2]) (26)

is defined analogously as (22). A description of this subgroup is

more easy, because this group is generated by elements X + tY ,
X = x⊗ y, Y = x′ ⊗ y′, wherein χ

[2]
∗ (x⊗ y) = y ⊗ x.

Let us define the homomorphism

∆[2] : Hi(K(Ia×ȧ, 1);Z[Z/2])→ Hi(K(Ia×ȧ, 1);Z) (27)

by the formula: ∆[2](X + Y t) = X + χ
[2]
∗ (Y ). Let us prove that

the homomorphism (27) admits a factorisomorphism:

∆[2] : Dloc
i (Ia×ȧ;Z[Z/2]) → Hi(K(Ia×ȧ, 1);Z), (28)

12



which is denoted the same. This fact follows from the fact that
the kernel of the homomorphism (23) is generated by elements

X − χ
[2]
∗ (X)t, which is clear by geometrical reason.

Analogously, the homomorphism with modulo 2 coefficients is

well-defined.

∆[2] : Dloc
i (Ia×ȧ;Z/2[Z/2])→ Hi(K(Ia×ȧ, 1)). (29)

The composition of the homomorphisms

Hi(K(Ia×ȧ, 1);Z) → Hi(K(Ia×ȧ, 1);Z[Z/2])→ (30)

Dloc
i (Ia×ȧ;Z[Z/2]) → Hi(K(Ia×ȧ, 1);Z),

where the first homomorphism is the natural inclusion, the middle

is (23), and the last in the composition is defined by the formula
(28), is the identity homomorphism.

Let us define the forgetful homomorphism:

forg∗ : H
loc
i (K(Ia×ȧ⋊χ[2] Z, 1);Z[Z/2])→ Hi(K(Ia×ȧ⋊χ[2] Z, 1);Z).(31)

This homomorphism is induced by the omitting the local
coefficient system and is analogous to the homomorphism ∆[2].

In the case i = 2s the basis elements y ∈ Dloc
i−1(Ia×ȧ;Z[Z/2]),

with the condition χ
[2]
∗ (y) = y, are the following:

1. y = r, r = ta,2s−1 + tȧ,2s−1, where ta,2s−1, tȧ,2s−1 ∈
H2s−1(K(Ia×ȧ, 1);Z) are defined by the formula (17).

2. y = z(i1, i2), where z(i1, i2) = tor(ra,i1, rȧ,i2)+tor(ra,i2, rȧ,i1),
i1, i2 ≡ 1 (mod 2), i1 + i2 = 2s − 2, tor(ra,i1, rȧ,i2) ∈
TorZ(Hi1(K(Ia, 1);Z), Hi2(K(İa, 1);Z)). The elements {z(i1, i2)}
belong to the kernel of the homomorphism:

Dloc
i−1(Ia×ȧ;Z[Z/2]) → Dloc

i−1(Ia×ȧ;Z/2[Z/2]), (32)

which is defined as the modulo 2 reduction of the coefficients:

Z → Z/2.
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The elements R, Z(i1, i2) ∈ H lok
2s (K(Ia×ȧ⋊χ[2] Z, 1);Z[Z/2])

are defined as the direct product of the corresponding 2s − 1–
cycle f : C2s−1 → K(Ia×ȧ, 1) on the circle. The mapping of the

cycle into K(Ia×ȧ⋊χ[2] Z, 1) is defined by the composition of the
cartesian product mapping f × id : C2s−1 × S1 → K(Ia×ȧ, 1) ×
S1 with the standard 2-sheeted covering K(Ia×ȧ, 1) × S1 →
K(Ia×ȧ⋊χ[2] Z, 1).

Лемма 8. The group H loc
2s (K(Ia×ȧ⋊χ[2] Z, 1);Z[Z/2]) is

isomorphic to the direct sum of the subgroup Dloc
2s (Ia×ȧ;Z[Z/2])

and the subgroup, which is generated by elements R, {Z(i1, i2)}.
The elements from the subgroup
⊕

i1+i2=2s

Hi1(K(Ia, 1);Z)⊗Hi2(K(İa, 1);Z) ⊂ Dloc
2s (Ia×İa;Z[Z/2]),

and the element R generate the image Im(A) of the following
homomorphism:

A : H loc
2s (K(Ia×ḃ⋊χ[2] Z, 1);Z[Z/2])→ (33)

H loc
2s (K(Ia×ḃ⋊χ[2] Z, 1);Z/2[Z/2]),

which is the modulo 2 reduction of the coefficient system.

Let us concider the diagonal subgroup: iId,Ia×ȧ
: Id ⊂ Ia × İa =

Ia×ȧ. This subgroup coincides to the kernel of the homomorphism

ω[2] : Ia × İa → Z/2, (34)

which is defined by the formula (x× y) 7→ xy.

Let us define the homomorphism

Φ[2] : Ia×ȧ⋊χ[2] Z → Z/2[2] (35)

by the formula: Φ[2](z) = ab, z ∈ Z is the generator (the element
ab is represented by the inverson of the first basis vector Z[2] ⊂
O(2)),

Φ[2]|Ia×ȧ×{0} : Ia×ȧ ⊂ D
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is the standard inclusion;

Φ[2]|z−1Ia×İaz
: Ia×ȧ ⊂ D

is the conjugated inclusion, by the composition with the exterior

automorphism in the subgroup Ia×ȧ ⊂ Z/2[2].
Let us define

(Φ[2])∗(τ[2]) = τa×ȧ,

where τa×ȧ ∈ H2(K(Ia×ȧ⋊χ[2] Z, 1)), τ[2] ∈ H2(K(Z[2], 1)).

4 The fundamental class of the canonical

covering over the self-intersection D-framed

standardized immersion without a defect

Let us consider a Z/2[2]–framed immersion (g,Ψ, ηN), g :

Nn−2k
# R

n, and assume that this immersion is standardized.
The mapping ηN admits a reduction, the image of this mapping

belongs to the total bundle space over RP2 with the fibre
K(Ia×ȧ, 1). Assume that the manifold Nn−2k is connected. Assume
that a marked point PROJ−1(x∞) ∈ Nn−2k is fixed. Assume

that the immersion g translates a marked point into a small
neighbourhood of the central point x∞ ∈ RP2, over this point

the defect is well-defined.
The image of the fundamental class ηN,∗([Nn−2k]) belongs

to Hn−2k(D;Z/2). The standardization condition of implies an
existence of a natural lift of this homology class into the group
Hn−2k(Ia×ȧ⋊χ[2] Z;Z), because the condition C1 implies that the

submanifold Nsing ⊂ Nn−2k, which is a fibre over the point x∞ ∈
RP2 determines the trivial fundamental class in Hn−2k−2(Ia×ȧ;Z).

If Nn−2k is a self-intersection of the immersion f : Mn−k
# R

n,
then the compression condition of of the class κ ∈ H1(M ;Z/2) in

the codimension q, for q ≥ 2, implies the existence of a lift of the
class ηN,∗([Nn−2k]) into Hn−2k(Ia×ȧ;Z). Moreover, the homology
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Euler class PD(e∗(ν(g))) of the normal bundle also is lifted into
Hn−4k(Ia×ȧ;Z).

Let us consider the self-intersection manifold Ln−4k of the
immersion g and its canonical double covering L̄n−4k, which is

immersed into Nn−2k. Let us assume (this assumption gives no
restriction in the proof) that the defect Nsing is empty and,
therefore, the characteristic mapping ηN has the target space

K(Ia×ȧ⋊χ[2] Z, 1).
Let us investigate the Hurewicz image of the fundamental class

[L̄n−4k]. Define a local coefficient system and prove that the image
of the fundamental class [L̄n−4k, pt] by ηN determines an element

η∗([L̄
n−4k, pt]) ∈ H loc

n−2k(K(Ia×ȧ⋊χ[2] Z, 1);Z[Z/2]). (36)

in the homology group with this system.
Let us consider a skeleton of the space K(Ia×ȧ, 1), which is

realized as the structured group Ia×ȧ ⊂ O(2 + 2) of a bundle
over the corresponding Grasmann manifold GrIa×ȧ

(2 + 2, n) of
non-oriented 2 + 2 = 4-plans in n–space. Denote this Grasmann

manifold by

KK(Ia×ȧ) ⊂ K(Ia×ȧ, 1). (37)

On the space (37) a free involution

χ[2] : KK(Ia×ȧ) → KK(Ia×ȧ), (38)

acts, this involution corresponds to the automorphism (11) and
represents by a permutation of planes of fibres (by a block-
antidiagonal matrix).

Let us define a family of spaces (37) with the prescribed
symmetry group, are parametrized over the base RP2, the

generator of RP2 transforms fibres by the involution 37. This is
the required classifying space, the target space of the mapping ηN .

This space is a subspace (a skeleton) in the following subspace,
which is a skew-product: K(Ia×ȧ, 1)⋊ RP2 ⊂ K(D, 1).
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To define the required space

KK(Ia×ȧ ⋊χ[2] RP2) (39)

we start by the torus of the involution (38), which is denoted by

KK(Ia×ȧ⋊χ[2] Z). (40)

Then define the space (41) by a quotient of the direct product
KK(Ia×ȧ)× S2 with respect to the involution χ[2] × (−1), where
−1 : S2 → S2–is the antipodal involution. The following inclusion

is well-defined:

KK(Ia×ȧ⋊χ[2] Z) ⊂ KK(Ia×ȧ)⋊ RP2. (41)

The involution (38) induces the S1-fibrewise involution

χ[2] : KK(Ia×ȧ⋊χ[2] Z) → KK(Ia×ȧ⋊χ[2] Z), (42)

which is extended to the involution

χ[2] : KK(Ia×ȧ ⋊χ[2] RP2) → KK(Ia×ȧ ⋊χ[2] RP2) (43)

on KK(Ia×ȧ)⋊RP2, all this extended involutions denote the same.

The universal 4-dimensional Ia×ȧ⋊χ[2] Z/2–bundle over
KK(Ia×ȧ, 1) ⋊ RP2 is well-defined, the restriction of the bundle

on the subspace (37) is well-defined. Let us denote this universal
bundle by ηa×ȧ.

Let us define Ia×ȧ⋊χ[2] Z–reduction of the structured mapping
of L̄n−4k for the standardized immersion g and the framing
ΨL̄ : νg|L̄ ≡ kη∗a×ȧ(τa×ȧ). By the construction, the normal bundle

νg of the immersion g over L̄n−4k is the Whitney sum of k
isomorphic 2-dimensional blocks. The normal bundle over L̄n−4k

inside Nn−2k is isomorphic is the Whitney sum of k isomorphic
2-block, analogously. Therefore the normal bundle over L̄n−4k is

the Whitney sum of k 2 + 2 blocks, each first term in a block
is orthogonal to g(Nn−2k), the second term is parallel to the
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tangent space of g(Nn−2k). Each term are decomposed into line

bundles, which are classified by the classes κa, κȧ correspondingly,
the decomposition of the 2-block into line subbundles is globally

defined, but the denotation κa, κȧ are well-defined up to the
permutation.

The two 2-terms in a 4-block are permuted along a path l ⊂
Ln−4k, L̄n−4k → Ln−4k, which corresponds to a permutation of
leafs of the self-intersection manifold. Such a path represents also

an odd element in H1(S
1) by the mapping (14).

Let us consider an arbitrary cell α of a regular cell-

decomposition of the manifold Nn−2k. Assume that a prescribed
path φα, which connects central points of a cell α with a marked

point pt ∈ Nn−2k. The restriction of the fibre bundle νa×ȧ on α is
classified by the mapping ηa×ȧ(α, φα) : α → KK(Ia×ȧ⋊χ[2] Z, 1)
into the space (41).

A change of the path φα with a fixed boundary points in a
conjugacy class with respect to the subgroup H1(S

1) determines

an alternative mapping ηa×ȧ(α, φα), the two mappings are related
by the composition with the involution (42). In a cell complex

of the space (40) with Z[Z/2]–local coefficients this changing of
a path for a chain on αcorresponds to the multiplication of the
coefficient of the chain by the variable t and, simultaneously, by

the changing of the classified map to the Grasmann manifold by
the involution (42). Therefore, the element (36) is well-defined.

Let us apply this to the canonical covering L̄n−4k globally,
L̄n−4k = νg⊕T (νg). On the g-normal 2-block of ν(L̄), this block is

parallel to the normal bundle of νg, define this reduction as above;
on the second 2-block, this block is parallel to the tangent bundle

T (νg)|Nn−2k , define the χ[2]-conjugated reduction. In the case a
path to the marked point is changed into the conjugated path,
the both terms are transformed by χ[2] simultaneously. Therefore,

the local coefficient system on L̄ is well-defined.
Let us consider the image of the element (36) by the projection
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onto Dloc
n−4k(Ia×ȧ;Z/2[Z/2]), this projection algebraically is

determined in Lemma 8.
In the case dim(N) = n − 8k, we get dim(Natimesȧ) = mσ =

n− 16k (see Theorem 4); when n = 126, k = 7 implies mσ = 14.
Let us prove that the image of the fundamental class of the

canonical covering L̄, dim(L̄) = mσ, determines an element

η∗(L̄
mσ

a×ȧ) ∈ Dloc
mσ

(Ia×ȧ;Z/2[Z/2]), (44)

which is transformed to the element

η∗(N
mσ

a×ȧ) ∈ Hmσ
(K(Ia×ȧ, 1)) (45)

by the homomorphism (29).

The manifold Nn−8k is assumed connected. Let us consider a
decomposition of the self-intersection manifold into components:

L̄n−16k
a×ȧ ≡ ∪iL̄

n−16k
i,a×ȧ ⊂ Nn−8k. (46)

For each connected component of (46) let us take a marked point
pti ∈ Nn−16k

i,a×ȧ . Take a path ρi on Nn−2k from the point pti into

pt. For each i an isomorphism of the fibres of κa ⊕ κȧ over pt and
over pti is defined along the corresponding path.

Therefore, the mapping

ηL̄i,a×ȧ
(ρi) : L̄

n−16k
i,a×ȧ → K(Ia × İa, 1) (47)

is well-defined. An immersed manifold L̄n−16k
a×ȧ is framed by Ψa×ȧ⊕

Ψ̄a×ȧ. The framing Ψa×ȧ ⊕ Ψ̄a×ȧ over each component L̄n−16k
i,a×ȧ is

totally determined by a coordinate system into the fibre over the

marked point.
Alternatively, a coordinate system in the fibre over pti can

be changed along the path, which corresponds to the element
s(i) ∈ Z/2 in the residue class of the subgroup Ia×ȧ ⊂ Z/2[2].

For the element in the nontrivial resedue class the transformation
is given by the element ba ∈ D. Let us consider an element
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ηi,∗(ρi)(L̄
n−16k
i,a×ȧ ) ∈ Hmσ

(Ia×ȧ), which is denoted by xi(ρi). Let us
define the element

Xi ∈ Dmσ
(Ib×ḃ;Z/2[Z/2]) (48)

equals to xi(ρi) + 0t, in the case the framing Ψa×ȧ on L̄n−16k
i,a×ȧ

corresponds with the framing, which is defined by an extension
of the framing Ψa×ȧ along ρi; and define Xii = 0 + χ

[2]
∗ (xi)t, in

the case the considered framing are not agree. The element (44)
is well-defined.

By the construction, the element (44) is not depend of a choice
of the path ρi.

Лемма 9. –1. The element (44) has the image by the
homomorphism (29), such as the decomposition of this image

with respect to the standard base of the group Hmσ
(K(Ia× İa, 1))

contains not more then the only monomial ta,i ⊗ tȧ,i, see. (17),
i = mσ

2
= n−16k

2
. The coeffisient of this monomial coinsids with

the Kervaire invariant, which is calculated for a Z/2[2]–framed
immersion (g,Ψ, ηN).

–2. The element (36) belongs to the subgroup (26), i = n− 2k.

Proof of Lemma 9

Let us proof Statement 1 for the case mσ = 14. Let us consider
the manifold N14

a×ȧ, which we re-denote in the proof by N14 for

sort. This manifold is equipped with the mapping η : N14 →
K(Ia×ȧ, 1). Let us consider all the collection of characteristic Z/2-

numbers for the mapping η, which is induced from the universal
classes.

Let us consider the manifold L̄n−16k and its fundamental
class (44). By arguments from Herbert theorem the following
two classes −[N14

a×ȧ] (45) and (44) coincides in the group

Dloc
mσ

(Ia×ȧ;Z/2[Z/2]). Analogously, the projection of the opposite
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class (but modulo 2 coefficients the opposition is not required) the
classes (45) coincides to (44) in Hmσ

(K(Ia×ȧ, 1)).

Let us estimate the fundamental class [N14] and prove that this
class is pure (see definition 14) below. Because N14 is oriented,

among characteristic numbers: κaκ
13
ȧ , κ3

aκ
11
ȧ , κ5

aκ
9
ȧ, κ7

aκ
7
ȧ, κ9

aκ
5
ȧ,

κ3
aκ

11
ȧ , κaκ

13
ȧ . the only number κ7

aκ
7
ȧ could be nontrivial.

It is sufficiently to note, that the characteristic number

〈κ7
aκ

7
ȧ; [N

14]〉 coincides with the characteristic number in the
lemma. Statement 1 is proved.

Statement 2 is an refrmulation of Statement 2 of Theorem 4.
Lemma 9 is proved.

Definition 10. Let (g, ηN ,Ψ) be the standardized D-framed
immersion in the codimension 2k.

Let us say that this standardized immersion is negligible, if its
fundamental class (mod 2)

η∗(N
n−2k
a×ȧ ) ∈ Dloc

n−2k(Ia×ȧ;Z/2[Z/2]) (49)

is trivial.

Let us say that this standardized immersion is pure, if its
fundamental class (mod 2) satisfies the condition of Lemma 9,
i.e. the Hurewicz image of the fundamental class in the group ∈
Dloc

n−2k(Ia×ȧ;Z/2[Z/2]) contains no monomials ta,n−2k
2 +i⊗ tȧ,n−2k

2 −i,

i ∈ {±1;±2;±3;±4;±5;±6;±7}, but, probably, contains the

monomial ta,n−2k
2

⊗ tȧ,n−2k
2

.

5 Ha×ȧ–structure on Z/2[3]–framed immersion

Jb× J̇b–structure on Z/2[4]–framed immersion

The group Ib is defined as the cyclic subgroup of the order 4 in
the dihedral group: Ib ⊂ Z/2[2].
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Let us define an analogous subgroup

iJb×J̇b
: Jb × J̇b ⊂ Z/2[4], (50)

which is isomorphic to the Cartesian product of the two cyclic
groups of the order 4.

The group Z/2[4] (the monodromy group fot the 3-uple iterated
self-intersection of a skew-framed immersion) is defined using the

base (e1, . . . , e8) in the Euclidean space R
8. Let us denote the

generators of the subgroup Jb × J̇b by b, ḃ correspondingly. Let

us describe transformations in Z/2[4], which corresponds to each
generator.

Let us consider an orthogonal base {f1, . . . , f8}, which is
determined by the formulas: f2i−1 = e2i−1+e2i√

2
, f2i = e2i−1−e2i√

2
,

i = 1, . . . , 4.

The transformation group Jb × J̇b have invariant pairwise
orthogonal (2, 2, 2, 2)-dimensional subspaces, which we denote by

R
2
b,+, R2

b,−, R2
ḃ,+

, R2
ḃ,− correspondingly.

The subspace R2
b,+ is generated by linear combinations of pairs

of vectors: Lin(f1 + f5, f3 + f7). The subspace R
2
b,− is generated

by linear combinations Lin(f1 − f5, f3 − f7). The subspace R2
ḃ,+

is

generated by linear combinations Lin(f2+f4, f6+f8). The subspace

R
2
ḃ,− is generated by linear combinations Lin(f2 − f4, f6 − f8).

It is convenient to pass to a new basis:

f1 + f5√
2

= h1,+,
f1 − f5√

2
= h1,−,

f3 + f7√
2

= h2,+,
f3 − f7√

2
= h2,−,(51)

f2 + f4√
2

= ḣ1,+,
f2 − f4√

2
= ḣ1,−,

f6 + f8√
2

= ḣ2,+,
f6 − f8√

2
= ḣ2,−.(52)

In the denotations above linear combinations Lin(h1,+,h2,+),
Lin(h1,−,h2,−) determines linear subspaces R2

b,+, R2
b,− with

prescribed basis correspondingly.
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Pairs of vectors (ḣ1,+, ḣ2,+), (ḣ1,−, ḣ2,−) determines basis

in the the subspaces Lin(ḣ1,+, ḣ2,+), Lin(ḣ1,−, ḣ2,−), which is
denoted by R2

ḃ,+
, R2

ḃ,− correspondingly. Linear combinations

Lin(ḣ1,+, ḣ2,+), Lin(ḣ1,−, ḣ2,−) determines basis in the subspaces

R2
ḃ,+

, R2
ḃ,− correspondingly.

The generator b is represented by the rotation on the angle π
2

in

each plane R2
b,+, R2

b,− and by the central symmetry in the planes
R2

ḃ,−, (this symmetry is commuted with the transformation on

the element ḃ, which will be described below). The generator ḃ is
represented by the rotation on the angle π

2 in each plane R2
ḃ,+

R2
ḃ,−

and by the central symmetry in the plane R2
b,−, which is commuted

with the b transformation, described above. The subgroup (50) is

defined.
Let us denote the subgroup iHa×ȧ,Jb×J̇b

: Ha×ȧ ⊂ Jb× J̇b, which
is the product of the diagonal subgroup, which we denote by Ib ⊂
Jb × J̇b with the elementary subgroup Z/2 of the second factor,
which is denoted by J̇d ⊂ J̇b. The subgroup Ha×ȧ coincides with

the preimage of the subgroup Z/2 ⊂ Z/4 by the homomorphism

ω[4] : Jb × J̇b → Z/4, (53)

which is defined by the formula (x× y) 7→ xy.

Define the subgroup iIa×ȧ,Ha×ȧ
: Ia×ȧ ⊂ Ha×ȧ as the kernel of

the epimorphism

ω[3] : Ha×ȧ → Z/2, (54)

which is defined by the formula: (x×y) 7→ x using generators x, y

of the group Jb × J̇b.
Let us consider the diagonal subgroup Z/2[3] ⊂

Z/2[3] × Z/2[3] ⊂ Z/2[4], which is generated by the
invariant transformations in the direct sum of the subspaces

diag(R2
b,+,R

2
ḃ,+

), diag(R2
b,−,R

2
ḃ,−). This group is a subgroup of

transformations of the base vectors, which are defined by the
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formulas: h1,+ + ḣ1,+,h2,+ + ḣ2,+,h1,− + ḣ2,−,h2,− + ḣ2,−. This

collection of the vectors determines the standard base in the space
diag(R2

b,+,R
2
ḃ,+

) ⊕ diag(R2
b,−,R

2
ḃ,−). The complement is defined

by the formula: antidiag(R2
b,+,R

2
ḃ,+

) ⊕ antidiag(R2
b,−,R

2
ḃ,−). In

this space the standard base is analogously defined.
Let us define a subgroup Z/2[2] ⊂ Z/2[3] as the subgroup, which

is generated by transformations of unite vectors, which are parallel
to the vectors h1,++ ḣ1,++h2,++ ḣ2,+, h1,−+ ḣ2,−+h2,−+ ḣ2,−.

It is easy to see, that the first vector in the collection is parallel
to the vector e1+ e3+ e5+ e7. The second vetor is parallel to the

vector e2 + e4 + e5 + e6.
The inclusion iHa×ȧ

: Ha×ȧ ⊂ Z/2[3], which is corresponded to

the inclusion (50) is well defined, such that the following diagram
is commutative:

Ia×ȧ
ia×ȧ−→ Z/2[2]

ia×ȧ,Ha×ȧ
↓ i[3] ↓

Ha×ȧ

iHa×ȧ−→ Z/2[3]

iHa×ȧ,Jb×J̇b
↓ i[4] ↓

Jb × J̇b

i
Jb×J̇b−→ Z/2[4].

(55)

Let us define automorphisms of the order 2:

χ[3] : Ha×ȧ → Ha×ȧ, (56)

χ[4] : Jb × J̇b → Jb × J̇b, (57)

and

χ[3] : Z/2[3] → Z/2[3], (58)

χ[4] : Z/2[4] → Z/2[4], (59)
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which are marked with a loss of the strictness.
Define the automorphism (58) by the permutation of the base

vectors in each direct factor diag(R2
b,+,R

2
ḃ,+

) ⊕ diag(R2
b,−,R

2
ḃ,−)

with inexes b and ḃ. Define the automorphism (58) as the

automorphism, which restricted on the diagonal subgroup
diag(Jb, J̇b) = Ib ⊂ Ha×ȧis the identity, and the restriction on
the subgroup Ia×ȧ ⊂ Ha×ȧ coincides with the automorphism χ[2].

Evidently, the definition is correct.
Define the automorphism (59) in the standard basis

in the subspaces diag(R2
b,+,R

2
ḃ,+

) ⊕ diag(R2
b,−,R

2
ḃ,−),

antidiag(R2
b,+,R

2
ḃ,+

)⊕ antidiag(R2
b,−,R

2
ḃ,−) as above.

The following triple of Z-extensions of the group Jb×J̇b, defined
below, is required.

The group Ia×ȧ⋊χ[2] Z was defined above by the formula (13).
Analogously, the groups

Ha×ȧ⋊χ[3] Z, (60)

(Jb × J̇b)⋊χ[4] Z, (61)

are defined as semi-direct products of the corresponding groups,
equipped by automorphisms, with the group Z.

The classifying space K(Ha×ȧ⋊χ[3] Z, 1) is a skew-product of

the circle S1 with the space K(Ha×ȧ, 1), moreover, the mapping
K(Ha×ȧ, 1) → K(Ha×ȧ, 1), which corresponds to a shift of

the cyclic covering over K(Ha×ȧ⋊χ[3] Z, 1), is defined by the
involution, which is induced by the automorphism χ[3]. The

definition of the group (61) is totally analogous.
Let us define another two Z-extensions (Laurent extensions ),

which is conjugated to each other by the automorphism χ[4]. Let
us denote this pair of extensions on the subgroup Jb × J̇b, on
this subgroup the extentions are commuted. Let us denote the

extensions by
⋊

µ
(4)
b

, ⋊
µ
(4)

ḃ

.
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The Loran extension on the factor Jb is determined by the
authomorphism ω

(4)
b : Jb → Jb, which inverse the generator.

The Laurent expansion on the factor J̇b is determined by the
automorphism µ

(4)

ḃ
: J̇b → J̇b, which inverse the generator. We

have defined the double Loran extension group, which is denoted
by

Jb × J̇b ⋊ω
(4)

b×ḃ

Z× Z.

Let us extend the extension constructed above to the extension

Jb × J̇b ⋊µ
(4)

b×ḃ

Z× Z ⋊χ[4] Z. (62)

The Loran extensions (62), and (61) (see below) are naturally

represented into Z/2[4].
Analogously, let us define a Z-extension (a Laurent expansion ),

which is denoted by ω
(3)
b . Let us firstly define this pair of extensions

on the subgroup Ha×ȧ. This Laurent extension is defined using an
automorphism µ

(3)
b : Ha×ȧ 7→ Ha×ȧ, which inverses the generator

in the subgroup Ib ⊂ Ha×ȧ. This Laurent extension is denoted by
Ha×ȧ ⋊µ

(3)
a
Z. Let us extend this extension to the extension

Ha×ȧ ⋊µ
(3)
a

Z ⋊χ[3] Z. (63)

The extension (63) contains a sub extension (60), the both
groups are represented into Z/2[3] in an agreed way, moreover,
this representation agrees to the representation (62), as a

subrepresentation on a subgroup of the index 2 and extends the
representation (70), which is denoted below.

Corresponding Z/2–reductions of extensions (62), (63) denote
by

Ha×ȧ ⋊µ
(3)
a

Z/2⋊χ[3] Z, (64)

Jb × J̇b ⋊µ
(4)

b×ḃ

Z/2× Z/2⋊χ[4] Z. (65)
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The Z/2–reductions are required, because integer extensions
(62) is not sufficient, a parametrization of the structured group

Jb × J̇b is not over S1 (over the Moebius band), but also over
the projective plane RP2. For the reduction (65) this (minimal)

parametrization is assumed.
The following Z/4-line bundle

βb×ḃ. (66)

with the hermitian conjugation (in fact, a D-bundle) over

the classifying space of the group (62), by means of the

authomorphism µ
(4)

b×ḃ
. Below this bundle determines a local

coefficients system, with inversions of cyclic factors.

On the subgroup (61) the bundle (66) is defined as the inverce
image of the cannonical C-bundle over K(Z/4, 1), using an

extended homomorphism (53). Over each extension ⋊
µ
(4)
b

, ⋊
µ
(4)

ḃ

a

fibre of βb×ḃ is transformed by the complex conjugation (separately

for the each factor) along the generator of the Laurent extension;
generators of the factors Jb, J̇b transforms a fibre by the rotation
on the angle π

2
.

As the result, the commutation of the generator b ∈ Jb of the
subgroup (62) with the corresponding generator of the Laurent

extension ⋊
µ
(4)

ḃ

, the action of the generator on the fibre is changed

into the opposite, and this b-part of the double Laurent extension
commutes with the generator ḃ ∈ J̇b. The same effect for the

generator of ⋊
µ
(4)
b

with ḃ-part is.

Over the subgroup (65), which is extended using ⋊χ[4], the

bundle βb×ḃ is well-defined and is denoted the same. The Laurent
generator, associated with ⋊χ[4], permutes the Laurent generators
for ⋊

µ
(4)
b

, ⋊
µ
(4)

ḃ

as well as permutes the generators of the factors

Jb × J̇b.

Let us consider the homology group Hi(K((Jb×J̇b)⋊χ[4] Z, 1)).
In particular, for an odd i the second group contains the
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fundamental classes of the manifolds

Si/i× pt ⊂ Si/i× Si/i ⊂ K(Jb, 1)×K(J̇b, 1),

pt× Si/i ⊂ Si/i× Si/i ⊂ K(Jb, 1)×K(J̇b, 1),

which are denoted by

tb,i,∈ Hi(K(Jb, 1)); tḃ,i′ ∈ Hi′(K(J̇b, 1)). (67)

Let us define the homology groups

H loc
i (K((Jb × J̇b)⋊µ

(4)

b×ḃ

Z× Z, 1)).

The local Z× Z-coefficients system µ
(4)

b×ḃ
is agree with the bundle

(66); when the generators of the local system acts (along paths),

the generators tb,i, tḃ,i′ for i, i′ ≡ 1 (mod 4) change singes; for
i, i′ ≡ 3 (mod 4) preserve singes.

Then let us define the homology groups with the 3-uple
local coefficient system with over the module Z[Z/2], using the

automorphism χ[4], which changes the factors of the system (as in
(19)).

The Z[Z/2]-homology groups with 3-uple system are defined
by the formulas analogously to (18), (19), (22); for exemple:

Dloc
i (Jb × J̇b ⋊µ

(4)

b×ḃ

Z× Z;Z[Z/2]) ⊂
H loc

i (K((Jb × J̇b ⋊µ
(4)

b×ḃ

Z× Z)⋊χ[4] Z, 1);Z[Z/2]).
(68)

Analogous groups are defined with Z/2[Z/2]-coefficient.

Analogously to (28), (29) the homomorphism

∆[4] : Dloc
i (Jb × J̇b ⋊µ

(4)

b×ḃ

Z× Z;Z[Z/2]) → Hi(K(Jb × J̇b, 1)),(69)

is well-defined, this homomorphism is an isomorphism.

The following lemma is analogous to Lemma 8.
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Лемма 11. –1. The subgroup H2s(K((Jb×J̇b)⋊χ[4] Z, 1);Z[Z/2])

and the group H2s(K((Jb × J̇b)⋊χ[4];µ
[4]
a×ȧ

Z
3, 1);Z[Z/2]) contain a

direct term D2s(Jb × J̇b;Z[Z/2]).

–2. Basis in the subgroups
⊕

i1+i2=2sHi1(K(Jb, 1);Z) ⊗
Hi2(K(J̇b, 1);Z) ⊂ Dloc

2s (Jb × J̇b;Z[Z/2]) generate a basis in the

group Im(B) ∩Dloc
2s (Jb×ḃ;Z/2[Z/2]), where

B : H loc
2s (K((Jb × J̇b)⋊χ[4] Z, 1);Z[Z/2])→

H loc
2s (K((Jb × J̇b)⋊χ[4] Z, 1);Z/2[Z/2])

is the modulo 2 reduction homomorphism.

The representation Φ[2], defined by the formula (35), is
generalized into the following representation:

Φ[4] : (Jb × J̇b ⋊µ
(4)

b×ḃ

Z× Z)⋊χ[4] Z → Z/2[4], (70)

where the generator of the factor Z is represented in Z/2[4] by the

rensformation χ[4], which is defined by the formula (59).
The automorphisms χ[i], i = 2, 3, 4 in the images and pre-

images of the diagram (55) are agree with respect to horizontal
arrows. Therefore the following diagram is well-defined:

Ia×ȧ⋊χ[2] Z
Φ[2]

−→ Z/2[2]

ia×ȧ,Ha×ȧ
↓ i[3] ↓

Ha×ȧ⋊χ[3] Z
Φ[3]

−→ Z/2[3]

iHa×ȧ,Jb×J̇b
↓ i[4] ↓

(Jb × J̇b)⋊χ[4] Z
Φ[4]

−→ Z/2[4].

(71)
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The two bottom arrows of the diagram are included into the
corresponding diagrams of Z- and Z/2- extensions, which are

constructed by the formulas (62), (65). This diagram is not
written-down.

Standardized Jb × J̇b-immersions

Let us formulate notions of standardized (and pre-standartized)
Jb × J̇b-immersion.

Let us consider a Z/2[4]-framed immersion (g,Ψ, ηN) of the
codimension 8k. Assume that the image of the immersion g
belongs to a regular neighbourhood of an embedding I : RP2

b ×
RP2

ḃ
⋊S1 ⊂ Rn. In this formula the third factor S1 is not a direct,

the action (an involution) of the generator [S1] on RP2
b × RP2

ḃ
is

given by the permutation of the factors. Denote by U ⊂ R
n a

regular thin neighbourhood of the embedding I .

Let us consider a Z/2[4]–framed immersion g : Nn−8k
#

U ⊂ Rn, for which te following condition (Y) of a control of the
structured group of the normal bundle is defined. The immersion g

admits a reduction of a general structured group to the subgroup
(65). Additionally, the projection π ◦g : Nn−8k → RP2

b ×RP2
ḃ
⋊S1

of this immersion onto the central manifold of U is agreed with
the projection of the structured group Z/2 × Z/2 ⋊ Z onto the

factors of the extension.
Formally, weaker but, in fact, an equivalent condition (Y1) is

following: the image of the immersion g can be outside of U , but

a mapping φ : Nn−8k → RP2
b ⋊ RP2

ḃ
⋊ S1, which is agree with

the reduction of the structured group of the normal bundle of the

immersion g into the subgroup (65) is fixed.
Additional, assume that the obstruction to the mapping onto

the polyhedron S1
b ×S1

ḃ
⋊S1 ⊂ RP2

b×RP2
ḃ
⋊S1, this obstruction is

a codimension 2 submanifold in Nn−8k have to be compressed onto
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a skeleton of the dimension ≈ n
4 in the corresponding classifying

space (a codefect of the reduction the group structure (65) to (62)

equals to ≈ n
4 , see Definition 2).

Definition 12. Let us say that a Z/2[4]-framed immersion
(g,Ψ, ηN) of the codimension 8k is standardized if its codefect

equals to δ ≈ n
4 , and the condition (Y) is satisfied.

Let us say that Z/2[4]-framed immersion (g,Ψ, ηN) of the

codimension 8k is pre-standardized if its codefect equals to δ ≈ n
4 ,

and the condition (Y1) is satisfied. The conditions (Y1), (Y)

are equivalent (formally, (Y) implies (Y1)), the definitions are
equivalent.

Standardized Z/2[4]-framed immersions with a given codefect

generates a cobordism group, this group is naturally mapped into
ImmZ/4[4](n−8k, 8k) when a standardization structure is omitted.

The following definition is analogous to Definition 14. In this

definition a projection of the Hurewicz image of a fundamental
class onto a corresponding subgroup is defined using Lemma 11.

Definition 13. Let (g, ηN ,Ψ) be a pre-standardized Z/2[4]-
framed immersion in the codimension 8k.

Let us say that this pre-standardized immersion is pure, if

the Hurewicz image of a fundamental class in ∈ Dloc
n−8k(Jb ×

J̇b;Z/2[Z/2]) contains not monomial tb,n−8k
2 +i ⊗ tḃ,n−8k

2 −i, i ∈
{±1;±2;±3;±4;±5;±6;±7}, but, probably, contains the only

non-trivial monom tb,n−8k
2

⊗ tḃ,n−8k
2

.

Definition 14. Let (g, ηN ,Ψ) be a Z/2[4]-framed immersion, for
which a structured group Z/2[4] of the normal bundle is reduced

to the group Z/2[3] × Z/2[3] ⋊ Z, where the generator Z acts on
Z/2[3] × Z/2[3] by the permutation of the factors.

Let us say that such an immersion is negligible immersion, if
the image of its fundamental mod 2 class in the group

η∗(N
n−8k) ∈ Dloc

n−8k(Ia × İa;Z/2[Z/2]) (72)
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by the transfer homomorphism onto 4-sheeted covering with the
tower (71) equals to zero.

Теорема 15. Let (g,Ψ, ηN) be a standardized D-framed
immersion in the codimension 2k (see Definition 2), k ≥ 7. Let

(g1,Ψ1, ηN1
) be the Z/2[3]-framed immersion of self-intersection

points of g; (g2,Ψ2, ζN2
) be the Z/2[4]-framed immersion of

iterated self-intersection points of g. Then there exist a formal
deformation of the immersion g[4] (the double equivariant
extension of g), for which the iterated self-intersection manifold

is regular cobordant to a disjoin union of pre-standardized pure
Z/2[4]-immersion and neglected Z/2[4]-immersion.

6 Proof of Theorem 15

Let us reformulate Definition 6 and Lemma 7, replacing the
subgroup Ia × İa ⊂ D into the subgroup Ib ⊂ D.

Definition 16. Assume an equivariant (formal) mapping

d(2) : RPn−k × RPn−k \ RPn−k
diag → R

n × R
n, (73)

which, generally speaking, is not a holonomic. Let us say that d(2)

admits a cyclic structure, if the following condition is satisfied.

The polyhedron of the (formal) self-intersection of d(2) is divided
into two components: a closed component Nb and a component

with a boundary Na×ȧ,◦, moreower, the following conditions of a
reduction of the structured mapping are satisfied.

– 1. On an open polyhedra Na×ȧ,◦ the structured mapping

admits a reduction:

ηa×ȧ : N◦ → K(Ia×ȧ⋊χ[2] Z, 1), (74)

which is a double covering (a transfer) mapping into a classified
space of a central Z/4-extension. In particular, the fundamental
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class of the polyhedron N◦ has only trivial characteristic numbers
modulo 2 in the image of the mapping (74) (see Definition 14).

–2. The restriction of the structured mapping on the
polyhedron Nb admits a reduction

ηb,RP2 : Nb → K(Ib, 1)⋊χ[2] RP2. (75)

Moreover, there exist a polyhedron Nreg ⊂ Nb (this polyhedron
is an obstruction to a reduction of the structured mapping (8)

to a mapping ηa×ȧ : N◦ → K(Ia×ȧ⋊χ[2] Z, 1)), the dimension

dim(Nreg) equals (up to a small constant d) 3dim(N◦)
4 = 3(n−k)

4 ,
and which is a preimage of a marked point on x∞ ∈ RP2 of the
composition Nb → K(Ia×ȧ⋊χ[2] Z, 1) → RP2.

Let us recall the following lemma [A-P2].

Лемма 17. Big Lemma
Assuming

n− k′ ≡ 1 (mod 2), n ≡ 0 (mod 2), k′ ≥ 2 (76)

there exist a formal mapping d(2), which admits a cyclic structure
in the cence of Definition 6. The formal mapping d(2) is a result

of a non-holonomic (a formal vertical) small deformation of the
formal extension of a special mapping d : RPn−k′ → Sn−k′ ⊂ Rn

with the image on the sphere Sn−k′ with the assumption k′ ≥ 2.

The mapping in the lemma d : RPn−k′ → Sn−k′ has to be

generalized, using two-stages tower (80) of ramified coverings.
Let us start a proof of Theorem 15 with the following

construction. Let us recall, that a positive integer mσ = 14.
Denote by ZZJa×J̇a

the Cartesian product o standard lens space

lence (mod 4), namely,

ZZJa×J̇a
= Sn−n−mσ

8 +1/i× Sn−n−mσ
8 +1/i. (77)

Evidently, dim(ZZJa×J̇a
) = 7

4(n+mσ) + 2 > n.
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On the space ZZJa×J̇a
a free involution χJa×J̇a

: ZZJa×J̇a
→

ZZJa×J̇a
acts by the formula: χJa×J̇a

(x× y) = (y × x).

Let us define a subpolyhedron (a manifold with singularities)
XJa×J̇a

⊂ ZZJa×J̇a
. Let us consider the following family

{Xj, j = 0, 1, . . . , jmax}, jmax ≡ 0 (mod 2), of submanifolds
ZZJa×J̇a

:

X0 = Sn−n−mσ
8 +1/i× S1/i,

X1 = Sn−n−mσ
8 −1/i× S3/i, . . .

Xj = Sn−n−mσ
8 +1−2j/i× S2j+1/i,

Xjmax
= S1/i× Sn−n−mσ

8 +1/i,

where

jmax =
7n+mσ

16
= 2n−1, mσ = 14. (78)

The dimension of each manifold in this family equals to n− n−mσ

8
+

2 and the codimension in ZZJa×J̇a
equals to n−n−mσ

8 . Let us define
an embedding

Xj ⊂ ZZJa×J̇a

by a Cartesian product of te two standard inclusions Let us denote
by χJa×J̇a

: ZZJa×J̇a
→ ZZJa×J̇a

the involution, which permutes

coordinates. Evidently, we get: χJa×J̇a
(Xj) = Xjmax−j.

A polyhedron XJa×J̇a
=

⋃jmax

j=0 Xj ⊂ ZZJa×J̇a
is well-defined.

This polyhedron is invariant with respect to the involution χJa×J̇a
.

The polyhedron XJa×J̇a
can be considered as a stratified manifolds

with strata of the codimension 2. The restriction of the involution
χJa×J̇a

on the polyhedron XJa×J̇a
denote by χJa×J̇a

.

Let us written-down a sequence of the index 2 subgroup from
diagram (55):

Ia × İa −→ Ha×ȧ −→ Jb × J̇b. (79)
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Let us define the following tower of double coverings, which is
associated with the sequence (79):

ZZa×ȧ −→ ZZHa×ȧ −→ ZZJb×J̇b
. (80)

The bottom space of the tower (80) coincides to a skeleton of the
Eilenberg-MacLane space ZZJa×J̇a

⊂ K(Ja, 1) × K(J̇a, 1). The

tower of double coverings

K(Ia, 1)×K(İa, 1) → K(Ha×ȧ, 1) → K(Jb, 1)×K(J̇b, 1),

which is associated with the sequence (79) is well-defined. This
tower determines the tower (80) by means of the inclusion

ZZJb×J̇b
⊂ K(Jb, 1)×K(J̇b, 1).

Let us define the following tower of double coverings:

Xa×ȧ −→ XHb×ḃ
−→ XJa×J̇a

. (81)

The bottom space of the tower (81) is a subspace of the bottom
space of the tower (80) by means of an inclusion посредством
включения XJb×J̇b

⊂ ZZJb×J̇b
. The tower (81) determines as the

restriction of the tower (80) on this subspace.
Let us describe a polyhedron Xa×ȧ ⊂ ZZa×ȧ explicitly. Let us

define a family {X ′
0, X

′
1, . . . , X

′
jmax

} of standard submanifolds in

the manifold ZZa×ȧ = RPn−n−mσ
8 +1×RPn−n−mσ

8 +1 by the following
formulas:

X ′
0 = RPn−n−mσ

8 +1 × RP1 . . . (82)

X ′
j = RPn−n−mσ

8 +1−2j × RP2j+1 . . .

X ′
jmax

= RP1 × RPn−n−mσ
8 +1.

In this formulas the integer index jmax is defined by the formula

(78). The polyhedron Xa×ȧ ⊂ ZZa×ȧ is defined as the union of
standard submanifolds in this family. The polyhedron XHa×ȧ

⊂
ZZHa×ȧ

a factorspace of the double covering, which corresponds
to the tower of the groups.
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The spaces XHa×ȧ
, Xa×ȧ admit free involutions, which are

pullbacks of the involution χJa×J̇a
by the projection on the bottom

space of the tower.
The cylinder of the involution χa×ȧ is well-defined,

(correspondingly, of the involution χHa×ȧ
), which is denoted by

Xa×ȧ⋊χ S
1 (correspondingly, by XHa×ȧ

⋊χ S
1). The each space is

embedded into the corresponding fibred space over RP2:

Xa×ȧ⋊χ S
1 ⊂ Xa×ȧ⋊χRP

2,

XHa×ȧ
⋊χ S

1 ⊂ XHa×ȧ
⋊χRP

2.

Then let us define a polyhedron Jb×ḃ, which is a base of a
ramified covering Xa×ȧ → Jb×ḃ.

Then let us extend the ramified covering over the bottom
space of the tower to the ramified covering: Xa×ȧ⋊χRP

2 →
Jb×ḃ⋊χRP

2, and the ramified covering over the middle space of
the tower of the ramified covering XHa×ȧ

⋊χRP
2 → Jb×ḃ⋊χRP

2.

Let us define a polyhedron (a manifold with singularities) Jb×ḃ.
For an arbitrary j = 0, 1, . . . , jmax, where jmax is defined by the

formula (78), let us define the polihedron Jj = Sn−n−mσ
8 −2j+1 ×

S2j+1 (the Cartesian product). Spheres (components of this
Cartesian product) Sn−n−mσ

8 −2j+1, S2j+1 are redenoted by Jj,1, Jj,2
correspondingly. Using this denotations, we get:

Jj = Jj,1 × Jj,2.

The standard inclusion ij : Jj,1 × Jj,2 ⊂ S
n−mσ

8 +1 × S
n−mσ

8 +1

is well-defined, each factor is included into the target sphere as

the standard subsphere. The union
⋃jmax

j=0 Im(ij) of images of this
embeddings ar denoted by

Jb×ḃ ⊂ S
n−mσ

8 +1 × S
n−mσ

8 +1. (83)

The polyhedron Jb×ḃ is constructed.

36



Let us define a ramified covering

ϕa×ȧ : Xa×ȧ → Jb×ḃ. (84)

The covering (84) is defined as the union of the Cartesian products
of the ramified coverings, which was constructed in Lemma 17.

The covering (84) is factorized into the following ramified
covering:

ϕHa×ȧ
: XHa×ȧ

→ Jb×ḃ. (85)

Because Xa×ȧ → XHa×ȧ
→ Jb×ḃ is a double covering, the number

of sheets of the covering 85 is greather by the factor 2r, where r
is the denominator of the ramification.

The polyhedron Jb×ḃ is equipped by the involution χ, which is
defined analogously to the involutions χa×ȧ, χHa×ȧ

. The cylinder

of the involution is well-defined, let us denote this cylinder by
Jb×ḃ⋊χ S

1. The inclusion Jb×ḃ⋊χ S
1 ⊂ Jb×ḃ⋊χRP

2. is well-

defined.
The ramified covering (84) commutes with the involutions

χa×ȧ, χHa×ȧ
in the origine and the target. Therefore the ramified

covering

cX : Xa×ȧ⋊χRP
2 → Jb×ḃ⋊χRP

2, (86)

which is factorized into the ramified covering

cY : XHa×ȧ
⋊χRP

2 → Jb×ḃ⋊χRP
2. (87)

is well-defined.

Лемма 18. There exist an inclusion

i : Jb×ḃ⋊χRP
2 ×D8 ⊂ R

n, (88)

where D8 is the standard 8-dimensional disk (of a small radius).
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Proof of Lemma 18

Let us put mσ = 14, k = 7, n = 126. The polyhedron Jb×ḃ is

embedded into the sphere Sn−12, which is the unite sphere (the
target of the standard projection) of the trivial n−11-dimensional

fiber εn−11 over emb : RP2 ⊂ R
n. The normal bundle of the

embedding emb is the Whitney sum: ν(emb) = κ ⊕ εn−11 ⊕ ε8.

Lemma 18 is proved.

Лемма 19. There exists a formal mapping, which satisfied

conditions of Definition 16.

Proof of Lemma 19

Let us use Lemma 18. Let us consider the ramified covering (87),
then take an embedding of the base into Rn and get a vertical

lift of the ramified covering along the subbundle ε8 of the normal
bundle of the embedding by the formula: ε8 = ε4 ⊕ κ4 = R4×̃R4.

Let us write-down into each fibre the space S1 × S1 ∪ S1 × S1

equivalently. By Lemma 17 a formal vertical χ-invariant lift of the
iterated coverings is well-defined. Because the considered vertical

lift has to be a χ-equivariant, this lift is well-defined over Jb×ḃ×S2,
the each lift in the family is defined by Lemma 17 to the both

coordinates of the Cartesian product over each elementary block
of the polyhedron.

We get a vertical (formal) lift over Jb×ḃ⋊χRP
1, which extend

to a (formal) vertical lift over the polyhedron Jb×ḃ⋊χRP
2.

As the result of this (formal) deformation the polyhedron
of self-intersection is divided into two subpolyhedra, for the
subpolyhedra properties 1,2 follows from the corresponding

properties of the (formal) deformation by Lemma 17.
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Proof of Theorem 15

The proof is analogous to Theorem 4, but re required deformation

is not holonomic (a formal) using Lemma 19. Deformation
contains two steps, which corresponds to coverings (85), (84).

Constructions for both steps are analogous, the bottom step is
a little simpler. Theorem 15 is proved.

7 Q × Z/4–structure (quaternionic-cyclic

structure) on self-intersection manifold of a

standardazed Z/2[4]–framed immersion

Let us recall the definition of the quaternionic subgroup Q ⊂
Z/2[3], which contains the subgroup Jb ⊂ Q.

Let us define the following subgroups:

iJb×J̇b,Q×Z/4 : Jb × J̇b ⊂ Q× Z/4, (89)

iQ×Z/4 : Q× Z/4 ⊂ Z/2[5], (90)

iJb×J̇b×Z/2 : Jb × J̇b × Z/2 ⊂ Z/2[5]. (91)

Define the subgroup (89). Define the epimorphism Jb × J̇b →
Z/4 by the formula (x×y) 7→ xy. The kernel of this epimorphism

coincides with the antydiagonal subgroup İb = antidiag(Jb ×
J̇b) ⊂ Jb×J̇b, and this epimorphism admits a section, the kernel is

a direct factor (the subgroup Jb ⊂ Jb× J̇b). This kernel is mapped
onto the group Z/4 by the formula: (x×x−1) 7→ x. The subgroup
(89) is well-defined.
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Let us define subgroups (90), (91). Consider the basis
(h1,+,h2,+,h1,−,h2,−, ḣ1,+, ḣ2,+, ḣ1,−, ḣ2,−) of the space R8, which

is defined by the formulas (51), (52).
Let us define an analogous basis of the space R16. This basis

contains 16 vectors, the basis vectors are divided into two subset
16 = 8 + 8.

h1,∗,∗∗,h2,∗,∗∗, (92)

ḣ1,∗,∗∗, ḣ2,∗,∗∗; (93)

where the symbols ∗, ∗∗ takes values +,− independently.
Let us define the subgroup (90). The representation iQ×Z/4 is

given such that the generator j of the quaternionic factor Q ⊂
Q × Z/4 acts in each 4-dimensional subspace from the following
list

diag(Lin(h1,∗,∗∗,h2,∗,∗∗,h1,∗,−∗∗,h2,∗,−∗∗), (94)

Lin(ḣ1,∗,∗∗, ḣ2,∗,∗∗, ḣ1,∗,−∗∗, ḣ2,∗,−∗∗)),

diag(Lin(h1,−∗,∗∗,h2,−∗,∗∗,h1,−∗,−∗∗,h2,−∗,−∗∗), (95)

Lin(ḣ1,−∗,∗∗, ḣ2,−∗,∗∗, ḣ1,−∗,−∗∗, ḣ2,−∗,−∗∗)),

antidiag(Lin(h1,∗,∗∗,h2,∗,∗∗,h1,∗,−∗∗,h2,∗,−∗∗), (96)

Lin(ḣ1,∗,∗∗, ḣ2,∗,∗∗, ḣ1,∗,−∗∗, ḣ2,∗,−∗∗)),

antidiag(Lin(h1,−∗,∗∗,h2,−∗,∗∗,h1,−∗,−∗∗,h2,−∗,−∗∗), (97)
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Lin(ḣ1,−∗,∗∗, ḣ2,−∗,∗∗, ḣ1,−∗,−∗∗, ḣ2,−∗,−∗∗))

by the standard matrix, which is defined in the standard basis of
the corresponding space.

Each of 4-space, described above, corresponds to one of the

pair of spaces R2
b,∗, or, to one of the space R2

ḃ,∗, which isdefined

below the formulas (51), (52).

The generator i ∈ Q acts in the direct sum of the two exemplars
of the corresponding space as the generator of the group Jb by the
corresponding matrix. The generator of the factor Z/4 ⊂ Q×Z/4

acts of the direct sum of the two exemplairs of the corresponding
space as the generator of the group antidiag(Jb × J̇b) ⊂ Jb × J̇b.

The representation (90) is well-defined.
Let us define the representation (91) as following. The

factor Jb × J̇b ⊂ Jb × J̇b × Z/2 is represented in each 4-
dimensional subspace (94)-(97) by the formula (50), which is

applied separately to standard basis of each spaces. The factor
Z/2 ⊂ Jb × J̇b × Z/2 is represented

–in 8-dimensional subspace, which is defined as the direct sum

of the subspaces (94), (96) by the identity transformation.
–in 8-dimensional subspace, which is defined as the direct sum

of the subspaces (95), (97) by the central symmetry.
The representation (91) is well-defined.

On the group Q × Z/4 define theauthomorphism χ[5] of the
order 4. This authomorphism on the subgroup (89) is defined as
the restriction of the authomorphism χ[4]. The extension of χ[4]

from the subgroup χ[5] to the group is defined by the simplest
way: the automorphism χ[5] keeps the generatorj. It is easy to see

that the automorphism with such property exists and uniquely.
Consider the projection

pQ : Q× Z/4 → Q (98)

on the first factor. The kernel of the homomorphism pQ coincides
with the antydiagonal subgroup İb ⊂ Jb × J̇b ⊂ Q × Z/4.
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Evidently, the following equality is satisfied:

pQ ◦ χ[5] = pQ. (99)

Analogously, on the group Jb × J̇b × Z/2 define the
authomorphim χ[5] of the order 2 (this new authomorphism denete

the same) Define the projection

pZ/4×Z/2 : Jb × J̇b × Z/2 → Z/4× Z/2, (100)

the kernel of this projection coincids with the diagonal subgroup
İb ⊂ Jb × J̇b × Z/2. Obviously, the following formula is satisfied:

χ[5] ◦ pZ/4×Z/2 = pZ/4×Z/2.
This allos to define analogously with (13), (60), (61) the groups

(Q× Z/4)⋊χ[5] Z, (101)

(Jb × J̇b × Z/2)⋊χ[5] Z, (102)

as semi-direct products of the corresponding groups with

automorphisms with the group Z.
Let us define the epimorphism:

ω[5] : (Q× Z/4)⋊χ[5] Z → Q, (103)

the restriction of this epimorphism on the subgroup (89) coincides

with the epimorphism (98). For this definition use the formula (99)
and define z ∈ Ker(pQ), where z ∈ Z is the generator.

Evidently, the epimorphism

ω[5] : (Jb × J̇b × Z/2)⋊χ[5] Z → Z/4× Z/2, (104)

analogously is well-defined, denote this automorphism as the
automorphism (103), the same.

In the group Z/2[5] let us define the involution, which is denoted
by χ[5] as on the resolution group. In the stanard basis of the spaces
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(94)-(97) the authomorphism χ[5] is defined by the same formulas
as χ[4], the each considered space is a proper space for χ[5]. This

definition implies that χ[5] is commuted with the representations
(90), (91).

Moreower, the following homomorphisms

Φ[5] : (Q× Z/4)⋊χ[5] Z → Z/2[5], (105)

Φ[5] : (Jb × J̇b × Z/2)⋊χ[5] Z → Z/2[5], (106)

are analogously to (70) well-defined, they are included into
the following commutative dyagrames (107), (108) of the

homomorphisms, which are analogous to the datagram (71).

(Jb × J̇b)⋊χ[4] Z
Φ[4]×Φ[4])−→ Z/2[4] × Z/2[4]

iJb×J̇b,Q×Z/4 ↓ i[5] ↓
(Q× Z/4)⋊χ[5] Z

Φ[5]

−→ Z/2[5],

(107)

In this diagram the left vertical homomorphism

iJb×J̇b,Q×Z/4 : (Jb × J̇b)⋊χ[4] Z → (Q× Z/4)⋊χ[5] Z

is induced by the homomorphism (89), the right vertical
homomorphism

i[5] : Z/2
[4] × Z/2[4] ⊂ Z/2[5].

is the inclusion of the subgroup of the index 2.
The following dyagrame

(Jb × J̇b)⋊χ[4] Z
Φ[4]×Φ[4]

−→ Z/2[4] × Z/2[4]

iJb×J̇b,Jb×J̇b×Z/2 ↓ i[5] ↓
(Jb × J̇b × Z/2)⋊χ[5] Z

Φ[5]

−→ Z/2[5],

(108)

in which the left vertical homomorphism

iJb×J̇b,Jb×J̇b×Z/2 : (Jb × J̇b)⋊χ[4] Z → (Jb × J̇b × Z/2)⋊χ[5] Z

is an inclusion, is well-defined.
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Лемма 20. The homomorphism (105) is extended to the
homomorphism

(Q× Z/4)⋊
µ
(5)

b×ḃ

Z× Z⋊χ[5] Z 7→ Z/2[5] (109)

from the subgroup Jb × J̇b ⋊µ
(4)

b×ḃ

Z × Z ⋊χ[4] Z of the index 2. to

the group.

Proof of Lemma 20

Let us construct the extension

(Q×Q)⋊
µ
(5)

b×ḃ

Z× Z⋊χ[5] Z,

then let us pass to the required subgroup of the index 2. The

authomorphism µ
(5)

b×ḃ
is induced from the authomorphism µQ :

Q → Q of the factors: µQ(i) = −i, µQ(j) = −j, µQ(k) = k.

7.1 An additional remark, which is required to check

properties 1,2 in Theorem 21

Let us investigate as the automorphism µQ, described above, is
defined on the 3-dimensional quaternionic lance space S3/Q (the

quaternion groups acks on S3 on the right). The authomorphism
µQ is given by the right transformation of S3, which is given by

the formula above of the authomorphism. The authomorphism
µQ commutes with the transformation by the unite base
quaternions (a calculation of the commutator of µQ with the unite

quaternion k is required). Therefore on the factorspace S3/Q the
automorphism is well-defined

A trivialization of the tangent space of the lence S3/Q is
given by the left multiplication on the unite quaternions (i, j,k),

is changed by the automorphism correspondingly. Therefore
the image of the tangent framing by the differential D(µQ) :
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T (S3/Q) → T (S3/Q) is fibre-preserved isotopic to the identity.
This isotopy of tangent spaces is a family of rotations of fibres on

the angle π in planes orthogonal to the quaternion k.
The homomorphism (106) is extened to the homomorphism of

the Laurent extension from the subgroup Jb×J̇b⋊µ
(4)

b×ḃ

Z×Z⋊χ[4]Z

of the index 2 to the all group:

(Jb × J̇b × Z/2)⋊
µ
(5)

b×ḃ

Z× Z⋊χ[5] Z 7→ Z/2[5]. (110)

Definition 21. Let us say that Z/2[4]-framed immersion
(g,Ψ, ηN) of the codimension 8k, whic is stanardized in the sence

of Definition 12, is an immersion with Q× Z/4-structure (with a
quaternion-cyclic structure), if g is self-intersects along a Z/2[5]-
framed immersion (h,Ξ, ζL) with the self-intersection manifold

L of the dimension n − 16k (for k = 7, n = 126 we have
n − 16k = 14). additionally, the self-intersection manifold is

divided into components: L = LQ×Z/4 ∪ Lnegl and the following
conditions are satisfied:

1. the Hurewicz image of the fundamental class [LQ×Z/4]
belongs to the sum of images of the Laurent extension (62) by

the homomorphisms (109) and (110).
2. The component Lnegl is negligible; the Hurewicz image of

the class [L̄negl] belongs to the image of the extesion of (62).

Лемма 22. An arbitrary Z/2[4]-framed immersion (g,Ψ, ηN)
of the codimension 8k, which is a standardized in the sence

of Definition 12, admits in its regular cobordism class a a
standardized representative with Q × Z/4-structure in the sence

on Definition 21.

Proof of Lemma 22

A proof is analogous to Theoem 15. A quaternionic analoug
of constructions in Lemma 18, which is based on the Massey
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embedding S3/Q ⊂ R
4 and Remark 7.1 are needed. Local

coefficients systemis constructed fot the Laurent extension (105),

but not for an extension over RP2 × RP2, because a standardized
immersion (g,Ψ, ηN) has a defect of the bicyclic structure of high

codimension, this reduces the Hurewicz image.
From the following theorem the Snaith Conjecture is deduced.

The proof is a transformation of the result of the paper [A-P1] to

the more complicated case, described above.
Propositions 1,2 from Definition 21, formulated above, which

are required in the statement are satisfied. A generalization of (77)
and below on the quaternionic case is used.

Теорема 23. Let (g,Ψ, ηN) be a Z/2[4]–framed standardized (in
the sense of Definition 12), which is an immersion with Q×Z/4-

structure (in the sense of Definition 21). Assume that (g,Ψ, ηN)
is a pure (in the sense of Definition 13). Then (g,Ψ, ηN) is
negligible.

The paper was presented at the seminaire by A.S.Mischenko
„Noncommutative geometry and topology“ September 30, 2021

16:45–18:30, Moscow.
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