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The Kervaire Invariant 1 Problem until recently was an open
problem in algebraic topology. For setting and applications, see [Al].
Hill, Hopkins, and Ravenel solved this problem for all dimensions
except n = 126. In dimension n = 126, the problem has not been solved
and has the status of a hypothesis by V.P. Snaith (2009). We consider
an alternative (with respect to the approach in [H-H-R]) geometric to
the Kervaire Invariant 1 Problem and prove the Snaith Conjecture.

1 Self-intersections of generic immerisions
and the Kervaire invariant; the problem
statement

Let us consider a smooth generic immersion f : M" 1 a5 R",
n =2/—2 ¢ > 1 of the codimension 1. Denote by g : N"~2 95 R"
the immersion of self-intersection manifold of f.

Let us recall a definition of the cobordism group Imm?*/(n —
k, k), a particular case k = 1 is better known: Imm®/(n — 1,1).
The cobordism group is defined as equivalent classes of triples up
to the standard cobordism relation, equipped with a disjoint union
operation;

o f: M" %95 R"is a codimension k immersion;
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o = : v(f) = kr};(v) is a bundle map, which is invertible;

o k) € HY M™% 7Z/2) is a prescribed cohomology class,
which is a mapping M™% — RP™ = K(Z/2,1).

By v(f) is denoted the normal bundle of the immersion f, by
x4;(7) is denoted the pull-back of the universal line bundle v over
RP> by the mapping ks, by krj,; () is denoted the Whitney
sum of the k£ copies of the line bundles, below for short we will
write krjps. The isomorphism = is called a skew-framing of the
immersion f.

The Kervaire invariant is an invariant of cobordism classes,
which is homomorphism

0% . Imm* (n — k, k) — 7/2. (1)

Let us recall the homomorphism () in the case k = 1.

The normal bundle v, of the immersion g : N" 2 ¢ R”
is a 2-dimensional bundle over N"~2, which is equipped by a
D-framing =, where D is the dihedral group of the order 8.
The classifying map of this bundle (and also the corresponding
characteristic class) is denoted by ny : N*™2 — K(D,1). The
triple (g,nn,Z) represents an element in the cobordism group
ImmP(n — 2,2). The correspondence (f,x,¥) — (g,mxn,=)
defines a homomorphism

6P Imm* (n —1,1) — ImmP(n — 2,2). (2)

Definition 1. The Kervaire invariant of an immersion f is defined
by the formula:

Ous(f) = (5 IN"7)). (3)

It is not difficult to prove that the formula (B]) determines a
homomorphism

OP : ImmP(n—2,2) = Z/2. (4)



The homorphism (4) is called the Kervaire invariant of a D-
framed immersion. The composition of the homomorphisms (2),
() determines the homomorphism ().

The group ImmP (n—2,2) admits a standard generalization to
the cobordism group ImmP (n — 2k, 2k) with a parameter k > 1.
We will need the case k = 7.

Main Result

In the case n = 2¢ — 2, ¢ > 7 the homomorphism O (f) @) is
trivial. In the case n > 8 this result is proved in [H-H-R]. For
n = 7 this is a new result, conjectured (2009) in [S].

2 First step in proof

In the present and the next sections the cobordism groups
Imm®f (n—k, k), Imm®??” (n—2k, 2k) will be used. In the case the
first argument in the bracket is strongly positive, the cobordism
group is finite.

The dihedral group Z/2 = D is defined by its

corepresentation
{a,b|b* = a® = ¢,[a, b] = b*}.

This group is represented by rotations a asubgroup in the
group O(2) of orthogonal transformation of the standard plane.
Elements transforms the base {e;,es} on the plane Lin(e;, )
to itself, a non-ordered pair of coordinate lines on the plane
are keeped by transformations. The element b is represented
by the rotation of the plane by the angle 5. The element a is
represented by the reflection of the plane relative to the straight
line [y = Lin(e; + ey) parallel to the vector e; + es.

Let us consider a subgroup I,«; = I, X ia C Z/2[2] in the

dihedral group, which is generated by the elements {a, b*a}. This
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is an elementary 2-group of the rank 2. Transformations of this
group keep each line [y, ls with the base vectors f; = e; + e»,
fy; = e; — ey correspondingly. The cohomology group H'(K (I, x
I,,1);Z/2) contains two generators g, K.

Let us define the cohomology classes

ko € HY (K (I, x 1,,1);Z/2)), ke € HY(K (I, x 1,,1);Z/2)). (5)

Denote by p, : I, X I, 51, a projection, the kernel of p, consists
the symmetry transformation with respect to the bisector of the
second coordinate angle and the identity.

Denote k, = pi(t,), where e # t, € HY(K(1,,1);Z/2) ~ 7/2.
Let us denote by p; : I, X I, — I, the projection, the kernel of p;
consists of the symmetry with respect to the bisector of the first
coordinate angle and the identity:.

Let us denote kg = pi(ts), where e # t; € H'(K(1,,1);Z/2) =
7/2.

A standardized immersion with the dihedral framing

Let us consider a D-framed immersion (g, ¥, ny) of codimension
2k. Let us assume that the image of g contains in a regular
neighbourhood U(RP?) of the embedding RP?> < R". The
following mapping m o ny : N*2* — K(D,1) — K(Z/2,1) is
well-defined, where K(D,1) — K(Z/2,1) is the epimorphism
with the kernel I, x I, ¢ D. It is required that this mapping
coincides to the composition i o PROJ o ny, where PROJ
U(RP%) — RP? is the projection of the neighbourhood onto its
central line, i : RP? C K(Z/2,1) is the standard inclusion, which
transforms the fundamental class into the generator.

Below we will clarify a small constant d and denote an integer
0 = 7 +d =~ 7. The integer 0 € N is called the co defect of a
standardization.

Cl Let us consider the submanifold N7 262 < N7=2k

sing

Nging = PROJHRPY), RPY C RP?. Require that the mapping
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nn, restricted to Ny, be skipped trough the skeleton of K (I, x
I, 1) the dimension n — 2k — & ( & is the codimension of the
considered skeleton inside the skeleton of the dimension n — 2k =

Geometrically, this means that the submanifold N, is a
defect of a reduction of the structured mapping of the normal
bundle with a control of the subgroup I, x I, € D over RP? to a
mapping with a control over RP! C RP2,

In the case k — 0+ structured mapping on the defect manifold
is skipped through a polyhedron of the dimension %7 in the case
2k — § through a polyhedron of the dimension 7.

The complement N \ Ny, to the defect we get an open
manifold, for which the classifying normal bundle mapping is given
by v 1 N\ Naing — K(I, x I,) x RP!.

Definition 2. Let us say that a D-framed immersion (g, ¥, ny)
of the codimension 2k is standardized with a codefect 6 ~ 7, if
the condition C'1 is satisfied.

Definition 3. Assume [(f,Z,ky)] € Imm*/(n — k, k), f
M as R ky € HY (M™% 7Z/2), Z is a skew-framing. Let
us say that the pair (M™%, k)/) admits a compression of an order
q, if the mapping ky; : M™% — RP> is represented (up to
homotopy) by the following composition: kK = I o k), : M™% —
RP"~#=4=1  RP*. Let us say that the element [( £, Z, xs)] admits
a compression of an order ¢, if in its cobordism class exists a triple
(f',Z, k), which admits a compression of the order g.
Teopema 4. 1. Assumen = 20—2, 0> 7, m, = 14. An arbitrary
class of D-framed cobordism from the image of the homomorphism
(2) (for k > 1 from the image of the left homomorphism on the
bottom line of the diagram (3) ) is represented by a standardized
dihedral immersion (g,ny, V) with d = 2.

'The constant d cannot be large, in the prove the inequality d < i—q — %, which relates



nN—Mgy; N—My

2. Assume that an element x € Imm?® (n—275=, 2=2=) admits
a compression of the order ¢ = %= + 1 (in particular, for ¢ = 8,

k="gg==1T7 m,=14). By thzs additional assumption one may

get a standardization of x with the following additional condition.:
— a submanifold N, ¢ N"2F,

axa

N =ny (K (n -2k —m,) C K(D,1))

axa

admits a structured subgroup I, x I, C D of the normal bundle
(equivalently, the mapping @ o g : N" ¢ as U(RP?) — RP?
restricted on the submanifold N57.. is homotopic to the constant
mapping).

To prove the theorem a preliminary construction is required.
Let
d® RP"F x RP"F \ RP?F 5 R” x R” (6)

diag

be an arbitrary (Tgpn-wygpn-+', TRoxgrn)—€quivariant mapping,
which is transversal along the diagonal Ry, C R™ x R". The
diagonal in the pre-image is mapped into the diagonal of the
image, by this reason the equivariant mapping d® is defined on
the open manifold outside of the diagonal (in the pre-image).

(To Condition 1 in Theorem Ml the case k' = k is required, for
Condition 2 the codimension k£’ has to be defined by the formula:
K =k + q+ 1 (parameters k,q correspond to denotations of
Theorem [).

Let us re-denote (d®)~'(R diag)/ Tepn—+ xgpn-v DY Nepe =
N(d®), for short, this polyhedron is called a polyhedron of
(formal) self-intersection of the equivariant mapping d®.

The polyhedron N, is an open polyhedron, this polyhedron
admits a compactification, which is denoted by N with a boundary

d with an order ¢ of the compression is required. Based on Theorem [?] by Kee Yuen Lam
and Duane Randall (2006), for n = 126 it is sufficient to get a proof of Main Result in the
case ¢ = 10.



ON. The boundary consists of all critical (formal critical) points of
the mapping d®. Let us denote by N, an open polyhedron N\ 0N,
by U(ON), a thin regular neighbourhood of the diagonal ON.

The polyhedron N, is equipped by the mapping d®, which
admits the following lift:

Neire; Ab - N, — K(Iaxa X\ 12 Z, 1)

On the polyhedron U(ON), the mapping nercap gets the
values into the following subcomplex: K(Ioxg X2 27%,1) C
K (Lyxq Xy Z,1) (the projection on K(Z,1) is the analogue of
the projection of the Moebius band onto its central line).

Definition 5. Let us call that a formal (equivariant) mapping
d®, given by (@), is holonomic, if this mapping is the formal
extension of a mapping

d: RP" % 5 R, (7)

Definition 6. Assume a formal (equivariant) mapping (@) is
holonomic. Let us say d® admits an abelian structure, if the
following two conditions are satisfied.

— 1. On the open polyhedron N, the following mapping is well-
defined:

Tlo: Ab - No — K(Iaxd ><]X[Q] Z) 1)7 (8)
which is a lift of the structured mapping
n: N, — K(Z/21% 1),

~2. Let us consider the Moebius band M? and represent the
Eilenberg-MacLane space K (I, X, 2 2, 1) as a skew-product
K(Tyxq, 1)xM? — M?; the restriction of the fibration over the
boundary circle S = 9(M?) is identified with the subspace
K(Toxa X2 22, 1) C K (Lixg X2 Z, 1). Let us include the space
K(Tyxa, 1)xM? into K(I,xq, 1) xRP? by a gluing of the trivial
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bundle over the boundary S* by the trivial bundle over a small
disk with a central point x,, € RP2. The resulting space is denoted
by K (I,xa,1) x RP2. The following mapping:

Nowap © (Noy U(ON,)) = (K (Iyxg, 1) 3 RP? K (Ixg, 1) X Xoo), (9)

is well-defined, where the inverse image by 7..45 of the fibre
K(Tuixa, 1) X Yoo C K(Tuxa, 1) x RP?) (yo & X, over a closed
point is a subpolyhedron of the dimension less (or, equals) to

3(n — k') = 3dim(N,) (up to a small constant d).
The following lemma is proved in [A-P2].

Jlemma 7. Small Lemma
For

n—k=1 (mod2), n=0 (mod?2) (10)

there exist a holonomic formal mapping d®, which admits an
Abelian structure, Definition [6l.

Proof of Theorem [

Theorem [ follows from Lemma Ml and a theorem by Kee Yuen
Lam and Duane Randall. O]
3 Local coefficients and homology groups

Let us define the group (I, X ia) X, Z and the epimorphism
(I, x I,) X, 21 Z — Z /21?1 Consider the automorphism

Y21, xI, - I, x I, (11)

of the exterior conjugation of the subgroup I, x I, C D by the
element ba € D, this element is represented by the reflection



of the plane with respect to the line Lin(ey). Let us define the
authomorphism (denotations are not changed)

X2z — 7./28 (12)

by permutations of the base vectors. It is not difficult to chack,
that the inclusion I, x ia CZ/ 221 commutes with automorphisms
(1), (I2) in the image and the preimage.

Define the group

Losca Xy Z. (13)

Let us consider the quotient of the group I,«;*Z (the free product
of the group I, and Z) by the relation zzz~! = yx?(z), where
z € 7 is the generator, x € I, is an arbitrary element.

This group is a particular example of a semi-direct product
A xy B, A = I, B = Z, by a homomorphism ¢ : B —
Aut(A); the set A x B is equipped with a binary operation
(a1,b1) * (ag,b2) — (a1, (ba), b1bs). Let us define the group (I3)
by this construction for A = 1,4, B = Z, ¢ = 2.

The classifying space K (Iyxq X2 Z, 1) is a skew-product over
the circle S with K (I x4, 1), where the shift mapping in the
cyclic covering K (Lyxa, 1) — K(Luxa, 1) over K (Lywa X2 Z, 1) is
induced by the automorphism y!2. The projection onto the circle
is denoted by

Paxa : K (Toxa ¥y Z, 1) — S, (14)
Take a marked point ptg1 € S! and define the subspace
K(Iaxa; 1) C K(Iaxa NX[Q] Z, 1) (15)

as the inverse image of the marked point ptg: by the mapping
).

A description of the standard base of the group
Hi(K (Iyxq ¥y Z,1); Z) is sufficiently complicated and is
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not required. The group H;(K (Iyxq,1);7Z) is described using the
Kunneth formula:
0= @D, ipmi His(K(10,1); Z) ® Hi, (K (1,,1); Z) —
— Hij(K(Lixa, 1), Z) — (16)
— @ilﬂ'gzz‘—l Tor?(H; (K (1,,1);Z), H;,(K(1,,1); Z) — 0.

The standard base of the group H;(K (Lyxq X2 Z, 1)) contains
the following elements:

rRy/(r®y) - (y®),

where z € H;(K(I,,1)), y € H;_j(K(I,,1)) (Z/2cocfficients is
the formulas are omitted).

In particular, for odd i the group H;(K (I x4, 1);Z) contains
elements, which are defined by the fundamental classes of the
following submanifolds: RP* x pt C RP' x RP* C K(I,, 1) x
K(I,,1) = K(Iixs 1), pt x RP? € RP! x RP' ¢ K(I,, 1) x
K(1,,1) = K(I,4,1). Let us denote the corresponding elements
as following:

ta,i - Hi(K(Iaxaa 1), Z), t('“' - Hi(K(Iaxaa 1), Z) (17)

The following analogues of the homology groups
HZ‘(K(IQX(I NX[Q] Z, 1)), HZ‘(K(IQX(I NX[Q] Z, 1), Z) with local
coefﬁcients@ is defined, the groups are denoted by

H"(K (Toxa ¥y Z,1); Z/2[Z,)2)), (18)

H"(K (Loxa ¥y Z, 1); Z[Z]2)). (19)
The following epimorphism

Paxa * Laxa Xy Z — Z (20)

Zmore simple homology groups H!°¢(K (Ioxs X2 Z,1);Z) with Z-local coefficient

system also can be defined, in this case on the last step of the construction difficulties
with triple (non-commutative) local coefficient system arise.
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is well-defined by the formula: x x y — vy, © € I,x4, y € Z. The
following homomorphism

Iaxa ><IX[2] 70— 1 — Z/2, (21)

is well-defined by the formula p,«; (mod 2).

Let us define the group (I9). Let us consider the group ring
Z[Z]2] = {a+bt}, a,b € Z,t € Z/2. The generator t € Z[Z/2]
is represented by the involution

X2 K (Tasa ¥y Z, 1) = K (Tixa ¥y Z, 1),

the restriction of the involution on the subspace K (I;xq,1) C
K(Toxa X2 Z,1) is the reflection, which is induced by the
automorphism I, x ia — I, X ia, which permutes factors. Because
all non-trivial homology classes of the space K (I,x4, 1) are of the
order 2, transformation of signs is not required. Nevertheless, even-
dimensional n — 2k-simplexes are transformed in the case of odd
k by the opposition of the orientation, in the case of even k the
orientation is preserved.

Let us consider the local system of the coefficient p;
7)2[2]2) — Aut(K(Iuxa,1) C K(Laxa X2 Z, 1)), using this
local system a chain (a 4 bt)o with the support on a simplex
0 C K(Lyxa X2 Z, 1) is transformed into a chain (at + b)xP(o).

The group (I9) is well-defined. The group (I8) is defined
analogously. A complete calculation of the groups (I8)), (19) is
not required.

Let us define the following subgroup:

Di*(Luxe; Z[Z/2]) C HI(K (Luxa ¥yo Z,1); Z[Z)2])  (22)

by the formula: DY¢(1,4; Z]Z,/2]) =
Im(H(K (Tyxa, 1); Z[Z)2]) — HP(K (Iyxq X2 Z,1); Z[Z)2])),
where the homomorphism

H"(K (Loxa, 1); Z[Z/2]) = H”(K (Loxa ¥y Z, 1); Z[Z/2])
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is induced by the inclusion of the subgroup.

From the definition, there exist a natural epimorphism:

Hi(K Ty, 1); Z[Z.)2]) — DI(1yxa; Z][Z)2]). (23)

The following natural homomorphism H;(K(Iyxs,1);7Z)) ®
7|7)2] —  Hi(K(Lixa, 1);Z]Z/2]) is well-defined, this
homomorphism is an isomorphism by the universal coefficients
formula. This calculation is following from the isomorphism
Z|Z)2] = 7 @& Z an the additivity of the derived functor
Tor?. Analogously, H;(K(I.xa,1);7Z/2)) @ 7Z/2[Z)2] =
Hi(K(Tyxa,1);Z/2[7,/2]).

The subgroup (22)) is generated by various elements X + Y,
X,Y € Hj(K(Iyx4 1);Z). The following equivalent relation
determines the equality of two elements: X = XLQ](X )t, where
the authomorphism

X2 Hi(K (Lyxi, 1); 2) — Hi(K (L, 1); Z) (24)

is induced by the authomorphism ([II]). The authomorphism (1)
induces also the authomorphism

X2 Hi(K (Laxas 1) ZIZ,/2]) = Hi(K((Loxa); Z[Z/2]). (25)
A subgroup
Di*(Lowa; Z)2[Z,/2]) C H"(K (Toxa X2 Z,1); Z/2[Z,/2]) (26)

is defined analogously as (22). A description of this subgroup is
more easy, because this group is generated by elements X + tY,
X=2Q®y,Y =12 ®4vy, wherein XE](x(X)y) =y .

Let us define the homomorphism

AR Hy(K(T,04,1); Z[2)2)) — Hi(K (Liva, 1);Z)  (27)

by the formula: AP(X + Y1) = X + XE](Y). Let us prove that
the homomorphism (27) admits a factorisomorphism:

AR ploe, 2 2(2./2]) — Hi(K (L, 1):Z), (28)
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which is denoted the same. This fact follows from the fact that
the kernel of the homomorphism (23) is generated by elements
X — XE](X )t, which is clear by geometrical reason.

Analogously, the homomorphism with modulo 2 coefficients is
well-defined.

AR DT, 00 2/2]2./2]) = Hi(K (Iyxa, 1)). (29)
The composition of the homomorphisms
Hi(K(Xyxa,1);Z) — Hi(K(Iyxa, 1); Z[Z)2]) — (30)

DI¢(Ty4: Z[Z)2]) — Hi(K (Iyxa,1);7Z),

where the first homomorphism is the natural inclusion, the middle
is (23), and the last in the composition is defined by the formula
([28), is the identity homomorphism.

Let us define the forgetful homomorphism:

forge : H(K (Iixq X yp Z,1); Z|Z/2]) — Hi(K (Lixq X e Z, 1); Z)(31)

This homomorphism is induced by the omitting the local
coefficient system and is analogous to the homomorphism Al

In the case i = 2s the basis elements y € D (I,xq; Z[Z/2]),
with the condition Xg](y) =y, are the following:

L.y = 1, r = tyos—1 + la2s—1, Where f,0, 1,%52,-1 €
Hos 1(K(Iyx4, 1);Z) are defined by the formula (7).

2.y = z(i1,42), where z(iy,92) = tor(Faiy, Tai,) HOr (Taiys Tai, ),
i1, = 1 (mod 2), i1 + ia = 25 — 2, tor(rei,Tai,) €
Tor”(H;, (K(1,,1); Z), Hi,(K (I,,1); Z)). The elements {z(iy, i5)}
belong to the kernel of the homomorphism:

D% (Loxa; Z[Z/2]) — Di2 (Taxas Z/2[Z/2]), (32)

which is defined as the modulo 2 reduction of the coefficients:
7 — 7.]2.
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The elements R,  Z (i, i) € HY(K (Lixq ¥y Z,1); Z|Z/2))

are defined as the direct product of the corresponding 2s — 1-
cycle f: Cos_1 — K (I x4, 1) on the circle. The mapping of the
cycle into K (Lyxq X, Z, 1) is defined by the composition of the
cartesian product mapping f x id : Cy, 1 x ST — K(I g, 1) X
St with the standard 2-sheeted covering K (I x4, 1) x St —
K(Iaxa ><JX[2] Z, 1).
Jlemma 8. The group HY(K(Lixa Xy Z,1);Z[Z/2]) s
isomorphic to the direct sum of the subgroup DY¢(Lyxa; Z[7./2])
and the subgroup, which is generated by elements R, {Z(i1,12)}.
The elements from the subgroup

D Hi(K(L.1);Z2)@H;,(K (L, 1);Z) C Dy (Lx1,:Z[Z/2)).
i1+i2:28

and the element R generate the image Im(A) of the following
homomorphism:

A HY(K (L, ;%0 Z,1); Z[Z]2]) — (33)
Ho (K (L %2 2, 1); 2,/2[2,/2)),
which is the modulo 2 reduction of the coefficient system.

Let us concider the diagonal subgroup: ir,1,,, : Is C I, X ia =
I,.q. This subgroup coincides to the kernel of the homomorphism

w1, x 1, = Z/2, (34)

which is defined by the formula (z x y) — xy.
Let us define the homomorphism

O Ty, Z — Z/2% (35)

by the formula: ®?(2) = ab, z € Z is the generator (the element
ab is represented by the inverson of the first basis vector ZP2

0(2)),
Oy, w0y : Taxa C D
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is the standard inclusion;
2 .
2y i Tos € D

is the conjugated inclusion, by the composition with the exterior
automorphism in the subgroup I,.s C Z/2.
Let us define
(@) (1) = Taxas
where Tywq € H?(K (Iixa ¥z Z, 1)), 1 € H?(K(ZP), 1)).

4 The fundamental class of the canonical
covering over the self-intersection D-framed
standardized immersion without a defect

Let us consider a Z/2P% framed immersion (g,%¥,ny), g
N"2F q» R" and assume that this immersion is standardized.

The mapping ny admits a reduction, the image of this mapping
belongs to the total bundle space over RP? with the fibre
K (Iyx4,1). Assume that the manifold N"~2* is connected. Assume
that a marked point PROJ (xs) € N" % is fixed. Assume
that the immersion ¢ translates a marked point into a small
neighbourhood of the central point x,, € RP?, over this point
the defect is well-defined.

The image of the fundamental class ny.([N"72*]) belongs
to H, ox(D;Z/2). The standardization condition of implies an
existence of a natural lift of this homology class into the group
Hy,op(Laxa X 21 Z; Z), because the condition C1 implies that the
submanifold Ng,, C N n=2k which is a fibre over the point x,, €
RP? determines the trivial fundamental class in H,,_op,_o(Tyxa; Z).
If N" 2 is a self-intersection of the immersion f : M™% 9 R”,
then the compression condition of of the class k € H(M;Z/2) in
the codimension ¢, for ¢ > 2, implies the existence of a lift of the
class Ny« ([N""2*]) into H,,_2x(I4x4; Z). Moreover, the homology
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Euler class PD(e.(v(g))) of the normal bundle also is lifted into
Hn—4k(Iaxa; Z)

Let us consider the self-intersection manifold L™ " of the
immersion ¢ and its canonical double covering L™ ** which is
immersed into N" 2%, Let us assume (this assumption gives no
restriction in the proof) that the defect Ng,, is empty and,
therefore, the characteristic mapping ny has the target space
K(Iaxa ><JX[2] Z, 1).

Let us investigate the Hurewicz image of the fundamental class
[L"**]. Define a local coefficient system and prove that the image
of the fundamental class [L"~%* pt] by ny determines an element

(L', pt]) € H o (K (Taxa ¥y Z,1); ZIZ/2]). (36)

in the homology group with this system.

Let us consider a skeleton of the space K (I;xq,1), which is
realized as the structured group I,«; C O(2 + 2) of a bundle
over the corresponding Grasmann manifold Gry, ,(2 + 2,n) of
non-oriented 2 + 2 = 4-plans in n—space. Denote this Grasmann
manifold by

KK(IaXa) C K(Iaxa, 1). (37)
On the space ([B7) a free involution
Y2 KK (1) = KK(Iy), (38)

acts, this involution corresponds to the automorphism (1) and
represents by a permutation of planes of fibres (by a block-
antidiagonal matrix).

Let us define a family of spaces (B7) with the prescribed
symmetry group, are parametrized over the base RP?  the
generator of RP? transforms fibres by the involution B7. This is
the required classifying space, the target space of the mapping ny.
This space is a subspace (a skeleton) in the following subspace,
which is a skew-product: K (I, 1) x RP? € K(D,1).
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To define the required space

KK (Ixg %, RP?) (39)

X

we start by the torus of the involution (B8)), which is denoted by
KK(Iaxa NX[Q] Z) (40)

Then define the space (41]) by a quotient of the direct product
KK (I,.5) x S? with respect to the involution x/? x (—1), where

—1:5% = S%is the antipodal involution. The following inclusion
is well-defined:

KK (Lyxq ¥y Z) C KK (Iix) x RP?. (41)
The involution (B8) induces the S*-fibrewise involution
Xt KK (Lg% Z) — KK (Iig X2 Z), (42)
which is extended to the involution

Xt KK (T 0 RP?) — KK (Tigq %2 RP?) (43)

12

on K K (I,x4)xRP? all this extended involutions denote the same.

The universal 4-dimensional I,.4 X, Z/2-bundle over
KK(I,x4,1) x RP? is well-defined, the restriction of the bundle
on the subspace (37) is well-defined. Let us denote this universal
bundle by 74xq-

Let us define L4 X, 21 Z-reduction of the structured mapping
of L"* for the standardized immersion g and the framing
Uz vylp = knky,(Taxa). By the construction, the normal bundle
v, of the immersion g over L" % is the Whitney sum of k
isomorphic 2-dimensional blocks. The normal bundle over L™~
inside N"~?* is isomorphic is the Whitney sum of k isomorphic
2-block, analogously. Therefore the normal bundle over L" % is
the Whitney sum of £ 2 + 2 blocks, each first term in a block
is orthogonal to g(N"~2¥), the second term is parallel to the
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tangent space of g(N"~2¥). Each term are decomposed into line
bundles, which are classified by the classes x,, k; correspondingly,
the decomposition of the 2-block into line subbundles is globally
defined, but the denotation k,, k; are well-defined up to the
permutation.

The two 2-terms in a 4-block are permuted along a path [ C
Lr=4k [r=4k s [n=4 which corresponds to a permutation of
leafs of the self-intersection manifold. Such a path represents also
an odd element in H;(S') by the mapping (I4)).

Let us consider an arbitrary cell a of a regular cell-
decomposition of the manifold N"~2¥. Assume that a prescribed
path ¢,, which connects central points of a cell o with a marked
point pt € N"~2¥_ The restriction of the fibre bundle v, on « is
classified by the mapping naxa(c, ¢a) : @ = KK(Igxq X2 Z, 1)
into the space (41)).

A change of the path ¢, with a fixed boundary points in a
conjugacy class with respect to the subgroup Hip(S!) determines
an alternative mapping 7,4 (@, ¢ ), the two mappings are related
by the composition with the involution (42)). In a cell complex
of the space (d0) with Z|[Z/2]-local coefficients this changing of
a path for a chain on acorresponds to the multiplication of the
coefficient of the chain by the variable ¢ and, simultaneously, by
the changing of the classified map to the Grasmann manifold by
the involution (42)). Therefore, the element (30]) is well-defined.

Let us apply this to the canonical covering L"** globally,
L% =y, &T(v,). On the g-normal 2-block of v(L), this block is
parallel to the normal bundle of v, define this reduction as above;
on the second 2-block, this block is parallel to the tangent bundle
T(vy)|yn-2x, define the xZ-conjugated reduction. In the case a
path to the marked point is changed into the conjugated path,
the both terms are transformed by y[2l simultaneously. Therefore,
the local coefficient system on L is well-defined.

Let us consider the image of the element (B6) by the projection

18



onto DY (I,x4;7/2[Z/2]), this projection algebraically is
determined in Lemma [§
In the case dim(N) = n — 8k, we get dim(Nytimesa) = Mo =
n — 16k (see Theorem M); when n = 126, k = 7 implies m, = 14.
Let us prove that the image of the fundamental class of the
canonical covering L, dim(L) = m,, determines an element
(L) € Dt (Taxa; Z/2[Z,/2)), (44)

axa

which is transformed to the element

Me(Noia) € Hing (K (Laxa, 1)) (45)

axa

by the homomorphism (29]).
The manifold N"~% is assumed connected. Let us consider a
decomposition of the self-intersection manifold into components:

En—lﬁk — Uil_'jnflﬁk C Nn—8k. (46)

axa 1,aXa

For each connected component of (46]) let us take a marked point
pt; € Nﬁ;}gk. Take a path p; on N"2?* from the point pt; into
pt. For each i an isomorphism of the fibres of k, @ Kk, over pt and
over pt; is defined along the corresponding path.
Therefore, the mapping
N, (Pi) 2 Lot — K (I, x I,,1) (47)

1,aXa

is well-defined. An immersed manifold [_/Z;éﬁk is framed by W, P
U,va. The framing W, @ W,y over each component E?gig’f is
totally determined by a coordinate system into the fibre over the
marked point.

Alternatively, a coordinate system in the fibre over pt; can
be changed along the path, which corresponds to the element
s(i) € Z/2 in the residue class of the subgroup I,., C Z/2.
For the element in the nontrivial resedue class the transformation

is given by the element ba € D. Let us consider an element
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ni,*(pi)(fzzgigk) € H,,, (Lixa), which is denoted by x;(p;). Let us
define the element

Xi € Dy, (1, Z/2Z/2)) (18)
equals to x;(p;) + Ot, in the case the framing W,y, on [_/Z;igk

corresponds with the framing, which is defined by an extension
of the framing W, along p;; and define X¢; = 0 + XE](:I:Z-)t, in
the case the considered framing are not agree. The element (44))
is well-defined.

By the construction, the element (44]) is not depend of a choice
of the path p;.

Jlemma 9. —1. The element (44) has the image by the
homomorphism (29), such as the decomposition of this image
with respect to the standard base of the group Hy,, (K (I, x I, 1))

contains not more then the only monomial t,; @ tq;, see. (IT),

== ”_216k. The coeffisient of this monomial coinsids with

the Kervaire invariant, which is calculated for a Z/ 22 framed
immersion (g, V,nx).

~2. The element (36]) belongs to the subgroup (26)), i = n — 2k.

Proof of Lemma

Let us proof Statement 1 for the case m, = 14. Let us consider
the manifold N . which we re-denote in the proof by N1 for
sort. This manifold is equipped with the mapping n : N4 —
K (I,x4,1). Let us consider all the collection of characteristic Z /2-
numbers for the mapping n, which is induced from the universal
classes.

Let us consider the manifold L"'% and its fundamental
class (44)). By arguments from Herbert theorem the following
two classes —[N!.] (@) and (@) coincides in the group

axa

DI (Tux45 Z/2[Z,/2]). Analogously, the projection of the opposite
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class (but modulo 2 coefficients the opposition is not required) the
classes ([43)) coincides to (44) in H,,, (K (Iixa, 1)).

Let us estimate the fundamental class [N'*] and prove that this
class is pure (see definition M) below. Because N'* is oriented,

13 3,11 5.9 7.7 9.5

among characteristic numbers: k,K;°, Ko K; , KoKy, KoKy, KKg,
3,11

kKL KekiS. the only number !k could be nontrivial.
It is sufficiently to note, that the characteristic number
(kTkT:[N™]) coincides with the characteristic number in the
lemma. Statement 1 is proved.
Statement 2 is an refrmulation of Statement 2 of Theorem [l

Lemma [ is proved. O

Definition 10. Let (g,7mn, V) be the standardized D-framed
immersion in the codimension 2k.

Let us say that this standardized immersion is negligible, if its
fundamental class (mod 2)

77*(Nn_2k) < szof%(laxa; Z]2[7./2]) (49)

axa

is trivial.

Let us say that this standardized immersion is pure, if its
fundamental class (mod 2) satisfies the condition of Lemma [0
i.e. the Hurewicz image of the fundamental class in the group €
D¢, (L,xa; Z/2[Z/2]) contains no monomials to ozt ®T; nozn
i € {#£1;42;+£3; £4; £5; +6; +7}, but, probably, contains the
monomial £, not & t; n2.

5 H,.,structure on Z/2% framed immersion
Jy X Jy—structure on Z/ 214 _framed immersion

The group 1, is defined as the cyclic subgroup of the order 4 in
the dihedral group: I, C Z/2[%.
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Let us define an analogous subgroup
iy, 0 o x Iy € Z/21, (50)

which is isomorphic to the Cartesian product of the two cyclic
groups of the order 4.

The group Z /2% (the monodromy group fot the 3-uple iterated
self-intersection of a skew-framed immersion) is defined using the
base (ey,...,eg) in the Euclidean space R®. Let us denote the
generators of the subgroup J; X Jb by b, b correspondingly. Let
us describe transformations in Z /24, which corresponds to each

generator.

Let us consider an orthogonal base {fi,...,fs}, which is
c.letei‘minecll by the formulas: fy;_; = 62“7\/1%21, f5, = %,
i=1,...,4.

The transformation group J, x J, have invariant pairwise
orthogonal (2,2, 2, 2)-dimensional subspaces, which we denote by
R; )

The subspace Rz, . is generated by linear combinations of pairs
of vectors: Lin(f; + f5,f3 + f7). The subspace Rgﬁ is generated

by linear combinations Lin(f; — f5, f3 — f7). The subspace RZ+ is

Rgﬁ, Rg,y Ri,f correspondingly.

generated by linear combinations Lin(fo+4£y, fg+1£5). The subspace

Ri _ is generated by linear combinations Lin(f; — fy, fs — fs).

It is convenient to pass to a new basis:

f, + 15 f; — 15 fs +f; f3 — 17
by B g, BTy, BT, (51
\/i 1,+ \/i 1, \/i 2,+ \/i 27 ( )
fo +¢£ . fo — £ . fg + £ . fs — £, .
9 + 1y :h1,+,u :h1,_,D :h%u —hy_.(52)

V2 V2 V2 V2

In the denotations above linear combinations Lin(h; 4, hs ),
Lin(h; _,hy_) determines linear subspaces R? s R?  with
prescribed basis correspondingly.
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Pairs of vectors (hy4,hyy), (hy_ hy_) determines basis
in the the subspaces Lin(hy ,he ), Lin(h; _,hy_), which is

denoted by Rb+, RZ_ correspondingly. Linear combinations

Lin(hy 1, hy ), Lin(h; _, hy ) determines basis in the subspaces
R§+’ Ri_ correspondingly.

The generator b is represented by the rotation on the angle 7 in
each plane R? o Rg,_ and by the central symmetry in the planes

Rzi, (this symmetry is commuted with the transformation on

the element b, which will be described below). The generator b is
represented by the rotation on the angle § in each plane Rg N Rz B

and by the central symmetry in the plane Rz,_, which is commuted
with the b transformation, described above. The subgroup (50) is
defined.

Let us denote the subgroup iHaxa7Jijb H, ., C Jp X jb, which
is the product of the diagonal subgroup, which we denote by I, C
Jy x J, with the elementary subgroup Z/2 of the second factor,
which is denoted by Jd C Jb The subgroup H,; coincides with
the preimage of the subgroup Z/2 C Z/4 by the homomorphism

Wl Jy x 3, — Z/4, (53)

which is defined by the formula (z x y) — xy.
Define the subgroup 7y : Iywq € Hyxiy as the kernel of

axXas a><¢'z

the epimorphism
Wb Hyyo — Z/2, (54)

which is defined by the formula: (z X y) — x using generators x, y
of the group Jp x J,.

Let us consider the diagonal subgroup Z/Q[S] C
7)2B x 7/2B < 7/2M which is generated by the
invariant transformations in the direct sum of the subspaces

diag(R? Jr,RQ ), dzag(R2 R2 ). This group is a subgroup of

transformatlons of the base Veetors which are defined by the
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formulas: h; 4 + }.117+, hy  + ﬁ2,+, h;_ + }.127_, hy _ + }.12,_. This
collection of the vectors determines the standard base in the space
diag(R; ., RQ )@ diag(R; _, R2 ). The complement is defined
bt R2 )@ antidiag(Rj _ Rgﬁ). In
this space the standard base is analogously defined.

Let us define a subgroup Z /22 ¢ Z /2P as the subgroup, which
is generated by transformations of unite vectors, which are parallel
to the vectors h1+—|—h1+—|—h2+—|—h2+, h _—|—h2_—|—h2_—|—h2_
It is easy to see, that the first vector in the collection is parallel
to the vector e; + e3 + e5 + e;7. The second vetor is parallel to the
vector e; + e4 + e5 + eg.

The inclusion ig, ., : Hyxe C Z/28% which is corresponded to
the inclusion (B0) is well defined, such that the following diagram
is commutative:

by the formula antidiag(R?

Lo o4 7./212
axaHyvs + ity
H,., o Z/28 (55)
UM, o dyd, ¢ ‘ it
J, x J, Ty 7./2!

Let us define automorphisms of the order 2:

X[3] : Haxd — Haxd, (56)
X[4] ZJb ij—>Jb ij, (57)
and
7ol — 7,28 (58)
4.z/2W - z./24, (59)
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which are marked with a loss of the strictness.
Define the automorphism (58)) by the permutation of the base

vectors in each direct factor diag(Rg, +,Rg,+) @ diag(Rgﬁ,Rgﬁ)

with inexes b and b. Define the automorphism (G8) as the
automorphism, which restricted on the diagonal subgroup
diag(Jb,Jb) = I, € H,.;is the identity, and the restriction on
the subgroup I,«s C Hyx; coincides with the automorphism X[Q].
Evidently, the definition is correct.

Define the automorphism (B59) in the standard basis
in  the subspaces diag(R} ., Rg‘iﬁ ®  diag(Rj_, Rg,_),
antidiag(R; ., Rgﬂr) @ antidiag(R; _, Rg’_) as above.

The following triple of Z-extensions of the group J;, x Jy, defined
below, is required.

The group Iyxs X2 Z was defined above by the formula (I3).
Analogously, the groups

H, .. Xy 181 Z, (60)

(Jb X Jb) ><JX[4] Z, (61)

are defined as semi-direct products of the corresponding groups,
equipped by automorphisms, with the group Z.

The classifying space K (Hgxa Xy 7Z,1) is a skew-product of
the circle St with the space K (Hyxg, 1), moreover, the mapping
K(Hgxq, 1) — K(Hgxa, 1), which corresponds to a shift of
the cyclic covering over K(Hgxq X, 7Z,1), is defined by the
involution, which is induced by the automorphism y[. The
definition of the group (G1]) is totally analogous.

Let us define another two Z-extensions (Laurent extensions ),
which is conjugated to each other by the automorphism . Let
us denote this pair of extensions on the subgroup J, x J,, on
this subgroup the extentions are commuted. Let us denote the
extensions by

X X ().
g u,g)
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The Loran extension on the factor J; is determined by the
authomorphism wé4) . Jy — Jp, which inverse the generator.
The Laurent expansion on the factor Jj is determined by the
automorphism ,ugl) . J, — Jy, which inverse the generator. We
have defined the double Loran extension group, which is denoted
by

Jb X jb Nw(4)- Z, X 1.

bxb

Let us extend the extension constructed above to the extension

Jb ij NMIE?&ZXZNXM 7. (62)
The Loran extensions (62)), and (6Il) (see below) are naturally
represented into Z /2.

Analogously, let us define a Z-extension (a Laurent expansion ),
which is denoted by wég). Let us firstly define this pair of extensions
on the subgroup H, .. This Laurent extension is defined using an
automorphism /%3 : Hyxq — Hgxq, which inverses the generator
in the subgroup I, C H,«;. This Laurent extension is denoted by

H,.. X @ 7. Let us extend this extension to the extension
Haxa Nugs) 7 >4X[3} 7. (63)

The extension (63) contains a sub extension (60), the both
groups are represented into Z/ 260 in an agreed way, moreover,
this representation agrees to the representation (62)), as a
subrepresentation on a subgroup of the index 2 and extends the
representation (7)), which is denoted below.

Corresponding Z/2-reductions of extensions (62)), (63)) denote
by

Haxa NMS’) Z/2 >4X[3] Z, (64)

Jb X jb ><l'u(4)' Z/Q X Z/2 >4X[4] 7. (65)

bxb
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The Z/2-reductions are required, because integer extensions
(62) is not sufficient, a parametrization of the structured group
J, x Jy, is not over S' (over the Moebius band), but also over
the projective plane RP2. For the reduction (63]) this (minimal)
parametrization is assumed.

The following Z/4-line bundle
Brxis (66)

with the hermitian conjugation (in fact, a D-bundle) over

the classifying space of the group (62), by means of the
(4)
. bxb . :
coefficients system, with inversions of cyclic factors.

On the subgroup (61]) the bundle (66)) is defined as the inverce

image of the cannonical C-bundle over K(Z/4,1), using an

authomorphism p Below this bundle determines a local

extended homomorphism (53]). Over each extension X @, X W a
b b

fibre of /3, ; is transformed by the complex conjugation (separately
for the each factor) along the generator of the Laurent extension;
generators of the factors Jy, J transforms a fibre by the rotation
on the angle 7.

As the result, the commutation of the generator b € J; of the
subgroup (62)) with the corresponding generator of the Laurent
extension X ek the action of the generator on the fibre is changed

into the oppos1te and this b-part of the double Laurent extension
commutes with the generator b € J,. The same effect for the
generator of Nu,(f) with i)—part 18.

Over the subgroup ([G3)), which is extended using ,u, the
bundle 8, ; is well-defined and is denoted the same. The Laurent
generator, associated with x4, permutes the Laurent generators
for X, Nul(»f) as well as permutes the generators of the factors

Jb X jb-
Let us consider the homology group H;(K ((J,x Jy) X\ Z,1)).
In particular, for an odd ¢ the second group contains the
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fundamental classes of the manifolds
S ixptc S/ix S /ic K1) x K(J,1),

ptx S/icSixS/icK(J,1)x KT, 1),
which are denoted by

thi, € Hi(K(Jp,1));  t, € Hy(K(Jy,1)). (67)
Let us define the homology groups

H* (K ((Jy x o) % 0 Z X Z, 1)),

bxb

(4)
bxb
(66); when the generators of the local system acts (along paths),

the generators ¢, t; , for ¢,¢ = 1 (mod 4) change singes; for
i,7 =3 (mod 4) preserve singes.
Then let us define the homology groups with the 3-uple

local coefficient system with over the module Z[Z/2], using the
[4]

The local Z x Z-coefficients system u, ’. is agree with the bundle

automorphism x'*, which changes the factors of the system (as in

(T9).
The 7Z|7Z/2]-homology groups with 3-uple system are defined
by the formulas analogously to (I8]), (I9), (22)); for exemple:

Dlee(Jy x Iy, X w Zx L Z[L[2)) C
A bxb 68
Hlc (K (T x Iy X, L X Z) %0 Z,1); Z[Z/2)). (68)

Analogous groups are defined with Z/2[Z/2]-coefficient.
Analogously to (28), (29) the homomorphism

AW DI, x 3y 0 7 x T Z(Z2]) = H(K (3 x 33, 1))(69)

bxb

is well-defined, this homomorphism is an isomorphism.
The following lemma is analogous to Lemma [§]
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Jlemma, 11. 1. The subgroup Hoy(K ((JyxJp) X 2, 1); Z[Z[2))
and the group Hao(K ((Jy x Jp) X i 73,1); Z|7)2]) contain a
direct term Dog(Jy, x Iy, Z[Z,/2]).

~2. Basis in the subgroups @; . _o Hii(K(Jp,1);Z) ®
Hi, (K(Jy,1);Z) € D¥(Jy x Iy, Z[Z/2]) generate a basis in the
group ITm(B) N D¥¢(J, . Z/2[Z/2]), where

B HY(K((Jy x ) x,0 Z, 1); Z[Z/2]) —
HY (K (3 x 3y) 3y Z,1); Z/2[Z,/2))

is the modulo 2 reduction homomorphism.

The representation ®2  defined by the formula (BH), is
generalized into the following representation:

O (Jy x Ty 3w Z X Z) 0 Z— Zf2Y, (70)

bxb

where the generator of the factor Z is represented in Z/ 2[4 by the
rensformation y#, which is defined by the formula (59J).

The automorphisms !, i = 2,3,4 in the images and pre-
images of the diagram (B5) are agree with respect to horizontal
arrows. Therefore the following diagram is well-defined:

Losca Xy Z kit 7,/2
Taxa,Haxa + Bl
Hoxa X\ Z 20 Z,/28 (71)
UH, o Jyxd, ¢ i
ol



The two bottom arrows of the diagram are included into the
corresponding diagrams of Z- and 7Z/2- extensions, which are
constructed by the formulas (62), (65). This diagram is not
written-down.

Standardized J, x J,-immersions

Let us formulate notions of standardized (and pre-standartized)
Jp X J p-immersion.

Let us consider a Z/2"-framed immersion (g, ¥,ny) of the
codimension 8k. Assume that the image of the immersion g
belongs to a regular neighbourhood of an embedding I : RP? x
RP% x ST C R”. In this formula the third factor S is not a direct,
the action (an involution) of the generator [S'] on RP7 x RPZ is
given by the permutation of the factors. Denote by U C R" a
regular thin neighbourhood of the embedding I.

Let us consider a Z/2%-framed immersion g : N" % o
U C R", for which te following condition (Y) of a control of the
structured group of the normal bundle is defined. The immersion g
admits a reduction of a general structured group to the subgroup
(65)). Additionally, the projection mog : N 8% — RP? x RP% x St
of this immersion onto the central manifold of U is agreed with
the projection of the structured group Z/2 x 7Z/2 x Z onto the
factors of the extension.

Formally, weaker but, in fact, an equivalent condition (Y1) is
following: the image of the immersion g can be outside of U, but
a mapping ¢ : N" 8% — RP? x RP% x S1, which is agree with
the reduction of the structured group of the normal bundle of the
immersion g into the subgroup (63) is fixed.

Additional, assume that the obstruction to the mapping onto
the polyhedron S} x Sg x ST C RPE x RP? x ST, this obstruction is
a codimension 2 submanifold in N"~®* have to be compressed onto
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a skeleton of the dimension ~ % in the corresponding classifying
space (a codefect of the reduction the group structure (63]) to (62)

equals to ~ 7, see Definition [2).

Definition 12. Let us say that a Z/2¥-framed immersion
(9, W,nn) of the codimension 8k is standardized if its codefect
equals to d ~ 7, and the condition (Y) is satisfied.

Let us say that Z/2@-framed immersion (g, ¥,ny) of the

codimension 8k is pre-standardized if its codefect equals to 6 ~ 7,

and the condition (Y1) is satisfied. The conditions (Y1), (Y)
are equivalent (formally, (Y) implies (Y1)), the definitions are
equivalent.

Standardized Z/2¥-framed immersions with a given codefect
generates a cobordism group, this group is naturally mapped into
TmmZ/4" (n—8k, 8k) when a standardization structure is omitted.

The following definition is analogous to Definition [14] In this
definition a projection of the Hurewicz image of a fundamental
class onto a corresponding subgroup is defined using Lemma [Tl

Definition 13. Let (g,ny,¥) be a pre-standardized Z/2-
framed immersion in the codimension 8k.

Let us say that this pre-standardized immersion is pure, if
the Hurewicz image of a fundamental class in &€ fofgk(Jb X
J,;Z/2[Z/2]) contains not monomial tpnosh gy @ B u-si gy 1 €
{£1;4+2; +£3; £4; +5; £6; £7}, but, probably, contains the only
non-trivial monom tb7nfTSk ® tb7%% :

Definition 14. Let (g, ny, ¥) be a Z/2-framed immersion, for
which a structured group Z/ 2[4 of the normal bundle is reduced
to the group Z/2B x Z /213 x Z, where the generator Z acts on
7./2B) x 7,/213! by the permutation of the factors.

Let us say that such an immersion is negligible immersion, if
the image of its fundamental mod 2 class in the group

ne(N"") € Dieg (L, x 1,; Z/2[2/2)) (72)
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by the transfer homomorphism onto 4-sheeted covering with the
tower ([[T]) equals to zero.

Teopema 15. Let (g,V,ny) be a standardized D-framed
immersion in the codimension 2k (see Definition[3), k > 7. Let
(g1, V1, mn,) be the Z./2B-framed immersion of self-intersection
points of g; (g2, Va,Cn,) be the Z/2[4]-fmmed immersion of
iterated self-intersection points of g. Then there exist a formal
deformation of the immersion g¥ (the double equivariant
extension of g), for which the iterated self-intersection manifold
is reqular cobordant to a disjoin union of pre-standardized pure
Z./2W immersion and neglected Z. /24 -immersion.

6 Proof of Theorem

Let us reformulate Definition [l and Lemma [7] replacing the
subgroup I, x I, C D into the subgroup I, C D.

Definition 16. Assume an equivariant (formal) mapping

d® : RP"F x RP"F\ RPS 5 — R” x R, (73)
which, generally speaking, is not a holonomic. Let us say that d®
admits a cyclic structure, if the following condition is satisfied.
The polyhedron of the (formal) self-intersection of d®) is divided
into two components: a closed component N, and a component
with a boundary Ngx4.0, moreower, the following conditions of a
reduction of the structured mapping are satisfied.

— 1. On an open polyhedra N,y 4. the structured mapping
admits a reduction:

Naxa - N, — K(Iaxa Xy 12 Z, 1), (74)

which is a double covering (a transfer) mapping into a classified
space of a central Z/4-extension. In particular, the fundamental
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class of the polyhedron N, has only trivial characteristic numbers
modulo 2 in the image of the mapping (74) (see Definition [I4)).

—2. The restriction of the structured mapping on the
polyhedron N; admits a reduction

mogp2 : Ny = K (I, 1) 3,0 RP?, (75)

Moreover, there exist a polyhedron N,., C N; (this polyhedron
is an obstruction to a reduction of the structured mapping (8]
to a mapping 7axa @ No — K(Igxa X2 %,1)), the dimension
dim(N,.,) equals (up to a small constant d) 3diHZ(N") = 3(";’“),
and which is a preimage of a marked point on x., € RP? of the

composition Ny — K (Lyxg X2 Z, 1) — RP2.

Let us recall the following lemma [A-P2].

Jlemma 17. Big Lemma
Assuming

n—kK=1 (mod2), n=0 (mod?2),k >2 (76)

there exist a formal mapping d®, which admits a cyclic structure
in the cence of Definition 8. The formal mapping d® is a result
of a non-holonomic (a formal vertical) small deformation of the
formal extension of a special mapping d : RP?F — g+ — R»
with the image on the sphere S™* with the assumption k' > 2.

The mapping in the lemma d : RP" % — S"* has to be
generalized, using two-stages tower (80) of ramified coverings.

Let us start a proof of Theorem with the following
construction. Let us recall, that a positive integer m, = 14.
Denote by ZZj | the Cartesian product o standard lens space
lence (mod 4), namely,

ZZy 5. =8"" T ix SR (77)

Evidently, dim(ZZ; ;) = In+m,)+2>n.
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On the space ZZj 3 a free involution xj .3 : ZZ5 .3 —
Z7Zy 3, acts by the formula: x; 5 (z X y) = (y X x).

Let us define a subpolyhedron (a manifold with singularities)
Xy i, C ZZjy ;.- Let us consider the following family
{X;, 7 =0,1, .. Jmaz}> Jmar = 0 (mod 2), of submanifolds
ZZJaxja:

—Mg

Xo=8"""5"T/ix S

X; = 8" i x SR,

Xj _ Sn7"78m0+172j/i > 52j+1/i’
X = Six S
where
7 o
oz = S =2y = 14, (78)

The dimension of each manifold in this family equals to n—*=*=+
2 and the codimension in ZZ; | ; equals to n—=="=. Let us define
an embedding

Xj C ZZJa wJ,

by a Cartesian product of te two standard inclusions Let us denote
by X3 x5, t 223, 5, = £Zj3, .5, the involution, which permutes
coordinates. Evidently, we get: xy j (X;) = Xj ..

A polyhedron Xy 5 = [y X; € ZZy . is well-defined.
This polyhedron is invariant with respect to the involution xy . j .
The polyhedron Xj | j can be considered as a stratified manifolds
with strata of the codimension 2. The restriction of the involution
X3, 3, on the polyhedron Xy 5 denote by xj .5 -

Let us written-down a sequence of the index 2 subgroup from
diagram (BH):

I, xI, — H,; — J, x Jp. (79)
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Let us define the following tower of double coverings, which is
associated with the sequence ([79):

Z Zoxs — ZZxu,xi — Z 25 .5, (80)

The bottom space of the tower (80) coincides to a skeleton of the
Eilenberg-MacLane space ZZ; | ;3 C K(J4,1) x K(J4,1). The
tower of double coverings

K(I,,1) x K(I,,1) = K(Hyy4,1) = K(Jy, 1) x K(Jy, 1),

which is associated with the sequence (79) is well-defined. This
tower determines the tower (B0) by means of the inclusion
27y 5 C K(3p,1) x K(J;,1).

Let us define the following tower of double coverings:

Xoxa — Xm, , — Xj .j.- (81)

The bottom space of the tower (81]) is a subspace of the bottom
space of the tower (BO) by means of an inclusion mocpemcTBoM
prmovenus Xy 3 C ZZ; 5. The tower (BI]) determines as the
restriction of the tower (B0) on this subspace.

Let us describe a polyhedron X« C ZZ,«, explicitly. Let us
define a family {Xg, X{,..., X} '} of standard submanifolds in

the manifold ZZ,,, = RP" "5 “F1 x RP"~"= “*1 by the following
formulas:

n—

X, =Rp" =" x RP! ... (82)

n—

g +1-25 > RPQj-i—l o

X} = RP""
X! =RP!'x RP" = tl

]maz

In this formulas the integer index j,,q. is defined by the formula
([78). The polyhedron X,vs C ZZ,xq is defined as the union of
standard submanifolds in this family. The polyhedron Xg, , C
ZZn,,, a factorspace of the double covering, which corresponds
to the tower of the groups.
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The spaces Xm,.,, Xaxq admit free involutions, which are
pullbacks of the involution xj . j by the projection on the bottom
space of the tower.

The cylinder of the involution xuxs is well-defined,
(correspondingly, of the involution xy, . ,), which is denoted by
Xaxa Xy ST (correspondingly, by Xg,,, ¥, S1). The each space is
embedded into the corresponding fibred space over RP?:

Xaxa Xy ST C Xoxa 1y RP?,

Xu

axa axa

3y St C Xu,,, X, RP?.

Then let us define a polyhedron J, ;, which is a base of a

ramified covering X,wq — J, ;-

xb?

Then let us extend the ramified covering over the bottom
space of the tower to the ramified covering: X,«a NXRP2 —
A +RP?, and the ramified covering over the middle space of
the tower of the ramified covering X, , x, RP? — J, ; x, RP?.

Let us define a polyhedron (a manifold with singularities) J, ;.
For an arbitrary 7 = 0,1, ..., Jimaez, Where j,q. is defined by the
formula (78), let us define the polihedron J; = S"~ "% ~2/+1 x
S%+L (the Cartesian product). Spheres (components of this

Cartesian product) S"~ s~ 2% §27+1 are redenoted by J;1, Jj.2
correspondingly. Using this denotations, we get:

Jj = Jj71 X Jj72.

The standard inclusion i; : Jj; x Jjo C S5 1 x §55+H!
is well-defined, each factor is included into the target sphere as
the standard subsphere. The union U?Z‘g I'm(i;) of images of this
embeddings ar denoted by

Al R (83)

The polyhedron J,; is constructed.
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Let us define a ramified covering
Paxa - Xaxa — ‘]bxl}' (84>

The covering (84]) is defined as the union of the Cartesian products
of the ramified coverings, which was constructed in Lemma [I7]

The covering (84]) is factorized into the following ramified
covering:

YHoxa XHaxa — ‘]bxl}' (85>

Because Xoxq — XH,,, — Jpj 15 a double covering, the number
of sheets of the covering 85 is greather by the factor 2", where r
is the denominator of the ramification.

The polyhedron J,; is equipped by the involution x, which is
defined analogously to the involutions xgxa, XH,,,- 1he cylinder
of the involution is well-defined, let us denote this cylinder by
Jy.i Xy ST The inclusion J, ; %, ST C J, ;% RP% is well-
defined.

The ramified covering (84) commutes with the involutions
Xaxa, XH,,, in the origine and the target. Therefore the ramified
covering

cx 1 Xaxa Xy RP? — J, >, RP?, (86)
which is factorized into the ramified covering
X, RP? — J, ;X RP?. (87)

Cy:XH

axa

is well-defined.

Jlemma 18. There exist an inclusion
i:J, %, RP? x D® C R", (88)

where D® is the standard 8-dimensional disk (of a small radius).
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Proof of Lemma [1§

Let us put my, = 14, k = 7, n = 126. The polyhedron J, ; is
embedded into the sphere S"7!2 which is the unite sphere (the
target of the standard projection) of the trivial n—11-dimensional
fiber €1 over emb : RP?2 C R"™ The normal bundle of the
embedding emb is the Whitney sum: v(emb) = k @ " 1 @ &5
Lemma [I8 is proved. O

Jlemmva 19. There exists a formal mapping, which satisfied
conditions of Definition [10l.

Proof of Lemma

Let us use Lemma [I8 Let us consider the ramified covering (87),
then take an embedding of the base into R"” and get a vertical
lift of the ramified covering along the subbundle £® of the normal
bundle of the embedding by the formula: €® = e* @ k* = R*xR*.

Let us write-down into each fibre the space S x S'U St x S!
equivalently. By Lemma [I7 a formal vertical y-invariant lift of the
iterated coverings is well-defined. Because the considered vertical
lift has to be a x-equivariant, this lift is well-defined over J, ; X S?,
the each lift in the family is defined by Lemma [I7] to the both
coordinates of the Cartesian product over each elementary block
of the polyhedron.

We get a vertical (formal) lift over J,_; %, RP!, which extend
to a (formal) vertical lift over the polyhedron J, ; x, RP2.

As the result of this (formal) deformation the polyhedron
of self-intersection is divided into two subpolyhedra, for the
subpolyhedra properties 1,2 follows from the corresponding
properties of the (formal) deformation by Lemma [I7 O
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Proof of Theorem

The proof is analogous to Theorem [, but re required deformation
is not holonomic (a formal) using Lemma [9 Deformation
contains two steps, which corresponds to coverings (83), (84)).
Constructions for both steps are analogous, the bottom step is
a little simpler. Theorem [I5is proved. O

7 Q X Z/4-structure (quaternionic-cyclic
structure) on self-intersection manifold of a
standardazed Z/2—framed immersion

Let us recall the definition of the quaternionic subgroup Q C
Z/ 2131 which contains the subgroup J, C Q.
Let us define the following subgroups:

iy dn@uzya - Ib X J,CcQx7Z/4, (89)
iquz/a: Qx Z/4 C Z/2P), (90)
Ugywdoxzya s Io X oy x 22 C 7/2P) (91)

Define the subgroup (89). Define the epimorphism Jj, x Jj, —
Z./4 by the formula (z x y) — xy. The kernel of this epimorphism
coincides with the antydiagonal subgroup I, = antidiag(J, X
Jb) C Jp X jb, and this epimorphism admits a section, the kernel is
a direct factor (the subgroup J, C J, x J3). This kernel is mapped

onto the group Z/4 by the formula: (z x 27 !) = z. The subgroup
(B9) is well-defined.
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Let us define subgroups (@0), (@I). Consider the basis
(h1,+, h27+, hL_, h2,_, Bl,—i—, }.1274_, }.117_, BQ,_) of the space Rs, which
is defined by the formulas (B1)), (52I).

Let us define an analogous basis of the space R'®. This basis
contains 16 vectors, the basis vectors are divided into two subset

16 =8 + 8.

hl,*,**, h2,*,**7 (92>

1:11,*,**7 }.12,*,**; (93)

where the symbols *, xx takes values 4+, — independently.

Let us define the subgroup (0). The representation iqyz/4 is
given such that the generator j of the quaternionic factor Q C
Q X Z/4 acts in each 4-dimensional subspace from the following
list

dZ.CLg(LZ.n(hL*’**, h2,*7**, hl,*,f**a h2,>k,7>k>k)7 (94)
Lin(}.ll,*,**7 BQ,*,**; }.11,*,—**7 }.12,*,_**))7

diag(Lm(hL_*,**, h2,—*,**; hl,—*,—**; h2,—*,—**>7 (95>
Lin(hl,—*,**, }.12,—*,**, }.11,—*,—**7 h2,—*,—**))7

antidiag(Lin(y o, Do v, Dy i o i), (96)
Lin(}.ll,*,**7 BQ,*,**; }.11,*,—**7 }.12,*,_**))7

antidiag(Lin(hy —w o Do sy o s ho o 40, (97)
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Lin(hl,—*,**, }.12,—*,**7 }.11,—*,—**7 BQ,—*,—**))

by the standard matrix, which is defined in the standard basis of
the corresponding space.

Each of 4-space, described above, corresponds to one of the
pair of spaces Ra*, or, to one of the space R? , which isdefined

b
below the formulas (51)), (52]). |

The generator i € Q acts in the direct sum of the two exemplars
of the corresponding space as the generator of the group J; by the
corresponding matrix. The generator of the factor Z/4 C Q X Z/4
acts of the direct sum of the two exemplairs of the corresponding
space as the generator of the group antidiag(J, x Jb) c J, x J.
The representation (90) is well-defined.

Let us define the representation (OI) as following. The
factor J, x J, € J, x J, x Z/2 is represented in each 4-
dimensional subspace (04)-(@7) by the formula (B0), which is
applied separately to standard basis of each spaces. The factor
7.)2 C Jy x Jy, x 72 is represented

—in 8-dimensional subspace, which is defined as the direct sum
of the subspaces (94]), (96) by the identity transformation.

—in 8-dimensional subspace, which is defined as the direct sum
of the subspaces (@3), (Q7) by the central symmetry.

The representation (91) is well-defined.

On the group Q x Z/4 define theauthomorphism Y of the
order 4. This authomorphism on the subgroup (89) is defined as
the restriction of the authomorphism y!¥. The extension of
from the subgroup ! to the group is defined by the simplest
way: the automorphism y®! keeps the generatorj. It is easy to see
that the automorphism with such property exists and uniquely.

Consider the projection

pq: QxZ/4—Q (98)
on the first factor. The kernel of the homomorphism pq coincides
with the antydiagonal subgroup I, C J, x J, € Q x Z/4.
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Evidently, the following equality is satisfied:

= paq. (99)

Analogously, on the group J, x J, x Z/2 define the
authomorphim x!° of the order 2 (this new authomorphism denete

pq o X

the same) Define the projection
Prjaxzya i I x Iy X )2 — /A X /2, (100)

the kernel pf this projection coincids with the diagonal subgroup
I, C Jy x Jy x Z/2. Obviously, the following formula is satisfied:

X[5] O P7/ax7)2 = PZJAXZ)2-
This allos to define analogously with (I3)), (€0), (61)) the groups

(Q X Z/4) ><JX[5] Z, (101)

(Jy x Jy X Z/2) ¥, Z, (102)

as semi-direct products of the corresponding groups with
automorphisms with the group Z.
Let us define the epimorphism:

W (Q X Z/4) %, Z — Q, (103)

the restriction of this epimorphism on the subgroup (89) coincides

with the epimorphism (98]). For this definition use the formula (99))

and define z € Ker(pq), where z € Z is the generator.
Evidently, the epimorphism

WP (T x Ty X Z)2) %0 7 — /A X 72, (104)

analogously is well-defined, denote this automorphism as the
automorphism (I03), the same.

In the group Z/ 2057 let us define the involution, which is denoted
by x° as on the resolution group. In the stanard basis of the spaces
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([@4)-(@7) the authomorphism X! is defined by the same formulas
as ¥, the each considered space is a proper space for x°l. This
definition implies that x® is commuted with the representations

(@n), (@D).

Moreower, the following homomorphisms

o (Q x Z/4) x5 Z — 7,25, (105)

O (Jy x Ty x Z/2) x5 Z — /27, (106)

are analogously to ([70) well-defined, they are included into
the following commutative dyagrames (I07), (I08) of the
homomorphisms, which are analogous to the datagram ([7T]).

@[4]Xq>[4])

(Jox Ip) xwZ — — 7,)2W x 7. /214
U3, 3,,Quz/4 + i) (107)
(QXZ/4) X5 Z 22 7.2,

In this diagram the left vertical homomorphism

iJ;,xj;,,QxZ/éL : (Jb X Jb) ><1X[4] 7, — (Q X Z/4) ><]X[5] 7,

is induced by the homomorphism (89), the right vertical
homomorphism

s : 220 x z,/2W © 7,/2P),

is the inclusion of the subgroup of the index 2.
The following dyagrame

(Jb X Jb) ><JX[4] 7 (I)MAI;M Z/2[4] X Z/2[4]
inij,JijbXZ/Q \L Z[5] \l/ (]‘08)
(Jy x Iy X Z/2) ¥, Z Rt 7./201,

in which the left vertical homomorphism
inij;JijbXZ/Q : (Jb X Jb) >4X[4] 7 — (Jb X Jb X Z/Q) NX[E’] 7

is an inclusion, is well-defined.
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Jlemma 20. The homomorphism (I03) is extended to the
homomorphism

(Q X Z/4) %) Z X Lxy 7 Z[2P (109)

bxb

from the subgroup J; x jb X L X 1 Xy 2 of the index 2. to

bxb

the group.

Proof of Lemma [20]

Let us construct the extension

(Q X Q) ><l'u(5). 7 X 7. Xy 15] Z,

bxb

then let us pass to the required subgroup of the index 2. The
authomorphism “éi)z; is induced from the authomorphism puq :

Q — Q of the factors: uq(i) = —i, pq(j) = —j, nqok) =k. O

7.1 An additional remark, which is required to check
properties 1,2 in Theorem 21

Let us investigate as the automorphism pq, described above, is
defined on the 3-dimensional quaternionic lance space S%/Q (the
quaternion groups acks on S® on the right). The authomorphism
piq is given by the right transformation of S®, which is given by
the formula above of the authomorphism. The authomorphism
ftq commutes with the transformation by the unite base
quaternions (a calculation of the commutator of g with the unite
quaternion k is required). Therefore on the factorspace S3/Q the
automorphism is well-defined

A trivialization of the tangent space of the lence S?/Q is
given by the left multiplication on the unite quaternions (i, j, k),
is changed by the automorphism correspondingly. Therefore
the image of the tangent framing by the differential D(uq) :
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T(S3/Q) — T(S%/Q) is fibre-preserved isotopic to the identity.
This isotopy of tangent spaces is a family of rotations of fibres on
the angle 7 in planes orthogonal to the quaternion k.

The homomorphism (I06]) is extened to the homomorphism of

the Laurent extension from the subgroup J; x J, X ) YA/ N/
bxb

of the index 2 to the all group:

(Jp x Iy x Z)2) 4,0, L X 1A 5 Lo 7./28, (110)
Definition 21. Let us say that Z/2M-framed immersion
(g, ¥, nn) of the codimension 8k, whic is stanardized in the sence
of Definition [[2], is an immersion with Q x Z/4-structure (with a
quaternion-cyclic structure), if ¢ is self-intersects along a Z/20°-
framed immersion (h,Z, ;) with the self-intersection manifold
L of the dimension n — 16k (for k = 7, n = 126 we have
n — 16k = 14). additionally, the self-intersection manifold is
divided into components: L = Lqxz/4 U Lypeg and the following
conditions are satisfied:

1. the Hurewicz image of the fundamental class [Lqxz/4]
belongs to the sum of images of the Laurent extension (62)) by

the homomorphisms (I09) and (II0).
2. The component L,.q is negligible; the Hurewicz image of

the class [Lyeq| belongs to the image of the extesion of (62).

Jlemmva 22. An arbitrary Z/29-framed immersion (g, ¥, ny)
of the codimension 8k, which is a standardized in the sence
of Definition [12, admits n its reqular cobordism class a a
standardized representative with Q X Z/4-structure in the sence

on Definition [21

Proof of Lemma

A proof is analogous to Theoem [Al A quaternionic analoug
of constructions in Lemma [I8, which is based on the Massey
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embedding S3/Q < R?* and Remark [l are needed. Local
coefficients systemis constructed fot the Laurent extension (I03]),
but not for an extension over RP? x RP?, because a standardized
immersion (g, ¥, ny) has a defect of the bicyclic structure of high
codimension, this reduces the Hurewicz image. ]

From the following theorem the Snaith Conjecture is deduced.
The proof is a transformation of the result of the paper [A-P1] to
the more complicated case, described above.

Propositions 1,2 from Definition 21| formulated above, which
are required in the statement are satisfied. A generalization of ([77))
and below on the quaternionic case is used.

Teopema 23. Let (g, U, ny) be a Z/2Wframed standardized (in
the sense of Definition[I3), which is an immersion with Q X Z /4-
structure (in the sense of Definition [21]). Assume that (g, V,ny)
is a pure (in the sense of Definition [13). Then (g, V,ny) is
negligible.

The paper was presented at the seminaire by A.S.Mischenko
,Noncommutative geometry and topology* September 30, 2021
16:45-18:30, Moscow.
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