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VECTOR BU1\'DLES A.,\'D BO)IOGEl''EOUS SPACES 

BY 

M. F. ATIYAH A .. '\D F. HIRZEBRUCH 

Dedicated to Professor llarston Morae 

Introduction. In [1] we introduced for a space X the "ring of complex 
vector bundles" K(X). The Bott periodicity of the infinite unitary group 
[8; 9; 10] implied that K satisfied the "Kiinneth formula" 

K(X X E') ~ K(X) ® K(s-) 

which was fundamental for the proof of the difterentiable Riemann-Roch theo
rems [1; 16]. 

Using the Bott periodicity we construct in §1 a "periodic cohomology theory": 
For every integer ft, the abelian group K"(X) is defined, ~(X) is K(X) and 
K"d(X) is isomorphic with K"(X), the group Kl(X) is the kernel of the homo
morphism ~(X X SI) - KO(X) induced from the embedding X - X X SI. 
This cohomology theory satisfies all the axioms of Eilenberg~teenrod [14:) 
except the "dimension axiom." For the space consisting of a single point, 
K" is infinite cyclic for even ft and vanishes for odd ft. The axioms without 
the dimension axiom do not characterize the theory, even if the values of K" 
are given for a point. There is a spectral sequence relating the ordinary co
homology theory with our periodic theory (§2). 

In §§3-5 we try to get information on ~ and Kl for classifying spaces and 
certain homogeneous spaces. An important tool is the difterentiable Riemann
Roch theorem which we recall in the beginning of §3. The final goal would 
be to answer all those questions for the K-theory on homogeneous spaces which 
for the ordinary cohomology theory have been treated 80 successfully by A. 
Bore! (see for example (3)). We can give only partial results in this direction. 
The new cohomology theory can he applied to various topological questions 
and may give better results than the ordinary cohomology theory. even if 
the latter one is enriched by cohomology operations (see [2] and M. F. Atiyah 
and J. A. Todd. Oft complez SIie/el1l14ftifold8. to appear in Proc. Cambridge 
Philos. Soc.). This justifies the new theory. 

In spite of its length, the present paper is by no means a final exposition. 
The proofs are often sketchy and the definitions and results could be generalized 
in certain cases. For example, using real vector bundles and the Bott periodicity 
of the infinite orthogonal group, we can define a periodic cohomology theory 
with period 8. This is not more difficult than in the unitary case. Furthermore, 
the definition of K (X) in 1.1 can be given for any topological space. For con
venience, we have restricted the theory to the special class ! (see 1.1). We 
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have then the homotopy classification theorem (1.3) 

(1) K(X) ~ [X, Z X Bu], (X ea). 

For this actually!: could be chosen much larger. But in general (1) would 
be wrong. The restriction to !: simplifies the presentation of certain conse
quences drawn from the spectral sequence. For any topological space, we 
can take the right side of (1) 88 a definition of a functor k(X). If Z X Bu 
is endowed with a natural structure of a commutative ring (up to homotopy), 
then k(X) has a natural (commutative) ring structure for any space X and the 
rings K(X) and k(X) are isomorphic if X e!:. Such a "ring" structure on 
Z X Bu has been defined by Milnor (not published). In view of Milnor's 
construction it would perhaps be more natural to study the functor k(X), 
but since Milnor's result is not yet at our disposal we have studied K(X) where 
sum and product structure is automatically given by the Whitney sum and 
the tensor product of vector bundles. 

For the classifying spaces Bo we have defined X(Bo) 88 an inverse limit 
indicating by the curly letter that we mean neither K(Bo) nor k(Bo). We 
conjecture that X(Bo) is isomorphic to k(Bo) for any compact Lie group G. 
But we shall deal with this question elsewhere. We prove for a compact con
nected Lie group G that X(Bo) is isomorphic with the completed representation 
ring R(G) (see 4.8). 

1. A cohomology theory derived from the unitary groups. 
1.1. Let !: be the class of those spaces which can carry the structure of a 

finite CW~omplex. For X e !: we have defined in (1) an abelian group K(X). 
There we gave the definition only for a connected X, but we may define K(X) 
in general as the direct sum of the groups K(X,) where the X, are the con
nectedness components of X. For the sake of completeness we recall the defi
nition of K(X) and give it directly for a space X e !: not necessarily connected. 

We adopt the usual definition of a complex vector bundle over X except 
that we allow the bundle to have fibres of different dimensions over the various 
connectedness components of X. We can now verbally repeat the definition 
of (1): 

Let F(X) be the free abelian group generated by the set of all isomorphism 
classes of complex vector bundles over X. To every triple t = (~, (, (') of 
vector bundles with ~ ~ ~' El:) (' we assign the element It) = I~] - [~1 - [~'1 
of F(X), where W denotes the isomorphism class of~. The group K(X) is 
defined as the quotient of F(X) by the subgroup generated by all the elements 
of the form [t). 

The tensor product of vector bundles defines a commutative ring structure 
in K(X); the unit 1 is given by the trivial bundle of dimension 1. 

K is a contravariant functor: for a continuous map f : Y - X (Y, X e !:) 
we have the natural ring homomorphism f1 : K(X) - K(Y) induced by the 
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lifting of bundles under f. We denote it by fl to distinguish it from the analQlOua 
homomorphism f* in ordinary cohomology theory. 

1.2. Let ~ be the class whose objects are the pairs (X, xo) with X I ! and 
Xo I X. Usually we shall write an object of i simply by indicating the space X. 
Very often the base point Xo of X is naturally gh·en by the context. For X I I 
we define the reduced group R(X) as follows: the ring K( (xol) is canonically 
isomorphic with Z (the ring of integers). The imbedding i : (xol - X induces 
the ring homomorphism 

i l 
: K(X) - K(/xol> = Z. 

We define R(X) to be the kernel of il. It is an ideal of K(X). Whenever a 
symbol like R(X) occurs it is to be understood that X is a space with base 
point, i.e., an object of i. 

We now consider the class sa consisting of pairs (X, Y) where X can be given 
the structure of a finite CW ~omplex in such a way that Y becomes a subcomplex. 
For (X, Y) I sa we define 

K(X, y) - R(x/y). 
Here X/Y is obtained from X by collapsing Y to a point which becomes then 
the base point of X/Y. By [19J, X/Y I~. Xote that R(X) = K(X, xo) for 
X I i. If Y is empty (Y = 50), then X/50 = .'C (where X+ is the topological 
sum of X with an extra point which becomes base point of X+) Ilnd K(X, 50) = 
K(X+) = K(X). 

For X, Y I i the objects X V Y and X 1\ Y of ~ are defined. (In the liter
ature, X 1\ Y is also denoted by X # Y). X V Y is obtained from the topo
logical sum of X and Y by identifying the base point of X with the base point 
of Y to one point which becomes the base point of X V Y. The space X 1\ Y 
is X X Y with the union of the axis Xo X Y and X X Yo collapsed to a point 
which becomes the base point of X 1\ Y. We have the natural maps 

XVY-XXY-XI\Y 
and may write 

(1) X 1\ Y = X X Y /X V Y. 

The operations V and 1\ are associath·e and commutative and 1\ is distributive 
over V. This means, for example, that there is a canonical homeomorphism 
between X 1\ Y and Y 1\ X. 

If S" I i is the standard n-sphere with base point, we write 

(2) S"(X) = S" 1\ X, (X 11). 

This is the nth suspension of X. Since 

S" .,. SI 1\ S' 1\ ... 1\ S' (n times) 

it follows that S"(X) is the n times iterated suspension of X. 
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DEFINITION. For any integer n ~ 0 toe put K-"(X, Y) = K(S"(XjY», 
«X, Y) £ SS). For X £ !( we put K-"(X) = K-"(X, JlJ) = K(S"CX+». For 
X £ i with base point x. we put K-"CX) = K-"(X. xo) = K(S'CX». 

For n = 0 we have the groups already defined: 

KO(X, Y) = KCX, Y), KOCX) = K(X), go{X) = K(X). 

Of course, the K-" are also contravariant functors. 
1.3. We write [A. B] for the set of homotopy classes of maps of the space 

A into the space B and correspondingly [A. U; B, V] for the homotopy classes 
of maps of the pair (A. U) into the pair (B, V). If the spaces A and B have 
base points, then we write [A, B]o for the set of homotopy classes of maps 
pre...«erving base points. 

Let B u be the classifying space of the infinite unitary group [10) and Z X Bu 
the cartesian product of it with the group of integers (Z having the discrete 
topology). In Z X Bu we choose a base point lying in 0 X Bu. The classification 
theorem for unitary bundles [18, §19.3] gives rise to the following natural bi
jective maps (compare also [16. §1.7, 2.1]): 

K(X) ::::: [X, Z X BuJ, 

K(X) ::::: [X, Z X BuJo, 

K-'(X, Y) ::::: [S"(XjY), Z X Bu]o, 

::::: [X/Y, O"(Z X Bu)]o, 

::::: [X, Yj O"(Z X Bu), point], 

::::: [X, Y; O"-·U, point], 

(X I W). 

(X 11>. 
«X, Y) £ ~), 

n > O. 

We recall that Z X Bu is weakly homotopy equivalent to an H~ce, namely 
to OU (Bott, see (8)). Thus all the above sets of homotopy classes are endowed 
with a natural group structure. The above bijectiona are in fact all group 
isomorphisms. Since U is weakly homotopy equivalent to llCZ X Bu), the 
space 02(Z X Bd is weakly homotopy equivalent to Z X Bu and we have 
an isomorphism 

(3) n ii: O. 

We shall give ieter an explicit description of an isomorphism between these 
two groups. 

If Xo denotes the space consisting of a single point, then 

K-"CXo) = 1I'.(Z X Bu), 

and thus [9) 

K-"(xo) ::::: Z for n even and 1("""(xo> - 0 for n odd. 

1.4. PROPOSITION. If (X, Y) £ SS toe have exact aequmcu 
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(i) ... --+ K-(··'l(y) ~ K-·(X, Y) --+ [("".(X) 

--+ K-·(Y) -+ ••• -+ KO(X, Y) -+ KO(X) ..... KO(y), 

(ii) ... -+ g-(_.llCY) ~ K--(X, Y) -+ g--(X) 

-+ g--(y) -+ ••• -+ KO(X, Y) --+ gO(X) ..... K'(y). 

For (ii) we a&BUIm X, Y e i with Xo = y. e Y. 

PROOF. We use the paper of Puppe [171. If Y and X are arbitrary spaces 
with base point and f : Y -+ X a map preserving base points, then there is 
a sequence of spaces and maps (with base points) 

Y -4 X!.4 C,!4 Sly -+ SiX -+ S'C,-+ S2y -+ S2X --+ ••• 

such that the following is true: if V is any space with base point, then the 
functor [ , V10 gives an exact sequence of sets. Here we note that exactness 
is a property of sets with preferred elements-the group structure is irrelevant. 
The preferred element is always given by the constant map onto the base point. 
We recall the construction of C,. First we take the cone 

CY = Y X 1/ Y X 1 V !1o X 1. 

Then we take the topological sum CY + X in which we identify (y, 0) e CY 
with fCy) for each y t Y. The space C, contains X as subspace. C,/X is (canoni
cally homeomorphic with) the first suspension of Y. This gives rise to the 
maps Y -+' X -+PI C, -+0' S'Y. All the other maps in Puppe's sequence are 
suspensions of these. If Y is a subspace of X and f the injection, then we have 
a natural homeomorphism X/Y :::: C,/CY. If (X, Y) belongs to sa then it 
satisfies the homotopy extension condition and according to Puppe the map 
Cl --+ C,/CY followed by the above mentioned homeomorphism is a homotopy 
equivalence h. The composition h 0 PI is the natural projection X --+ X/Y. 
Taking this into account Puppe's theorem applied to V = Z X Bu gives the 
exact sequence (ii) and all homomorphisms in this sequence are canonically 
defined by Puppe's maps. K--(X, Y) -+ g--(X) is induced from X -+ X/Y. 
The sequence (i) is obtained by replacing in (ii) Y and X by Y· and X· re
spectively. 

REY.:\RK. If Y = I Xo I then the sequence (i) breaks off in split exact sequences 

o -+ g-.(X) --+ K--(X) ..... K--Cx.} ..... O. 

Hence 

(see 1.3). 

The exact sequence (i) is obtained from (ii) by adding to g-.(X) and also to 
g-(y) the direct summand 1r.(Z X Bu). 

1.5. We have mentioned in 1.1 that K(X) = KO(X) is a commutative ring. 
We wish to define more generally prod\lcts also involving the groups K-· (n i1; 0). 
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Suppose X, Ye i. Then X V }" = X X Yo V Xo X Y is a subspace of X X Y. 
We apply 1.4 (ii) to the pair (X X Y, X V Y). The exact sequenoe breaks 
off in this case into split exact sequences. 

(4) 0-+ g--(X " y) --+ g-wCX X Y) --+ g-W(X V y) -+ 0, en ~ 0), 

and we have a canonical decomposition 

(5) g--(X X Y) ~ g-weX " Y) EB g-W(X) EB g-W(y). 

For the proof of (4) we observe that g-"CX X Y) -+ g-"(X V Y) is surjective 
and that this homomorphism may be regarded as the projection onto a direct 
summand. For this we make use of 

g-(X V Y) = g(S"eX V Y) = g(S"X V S"Y) = gCS"X) EB g(S"Y) 

= g--(X) EB g-W( Y). 

We have the following natural group homomorphisms which are all induced 
by the tensor product of vector bundles 

(6) 

(7) 

K(X) ® KCy) -+ K(X X Y), 

g(X) ® KCy) -+ Kcx " Y), 

ex, Ye!), 

(X, Ye i), 

(8) K(X, Xo) ® K(Y, Yo) --+ K(X X Y, Xo X Y V X X Yo), 

for eX, Xo) and (Y, Yo) e ~. 

It is clear how (6) is defined. If a e K(X) and b e K(Y), then the product is 
in the kernel of K(X X Y) --+ 1?ex X Yo V :Co X Y). By (4) and (5) the product 
is well defined as element of 1?(X " Y), (n = 0). If we replace in (7) X by 
X/Xo and Y by Y /Yo we get the definition of (8). More generally we have 
a group homomorphism 

(9) K-"(X, Xo) ® K-(Y, Y.) -+ K-Cwi+"'eX X Y, Xo X Y V X X Yo), 

for (X, Xo), (Y, Yo) e ~ and m ~ 0, ft e; O. 

We get this from (7) and the fact that 

S"(XIXo) " S"eY I Yo) = S"'+AeXIX. " Y I Yo) 

... S"'+a(X X YIXo X Y V X X Yo). 

The equality sign means that there is a natural homeomorphism between these 
spaces. If one uses the natural identification of X X Y with Y X X, one gets 
from (9) a product 

(9') K--(Y, Yo) ® K-"eX, Xo) -+ K-c,,+w,(X X Y, Xo X Y V X X Yo). 

LzMJu. If a e K-"(X, Xo) and b t K-wey, Yo), then ab = (-1)-00 where 
ab .. the image of (J ® b under (9) and 00 the imlJge of b ® (J under (9'). 
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PROOF. The sign comes from the use of the various "natural identifications" 
between different spaces. S·" (X/Xo) " S" " (Y /Yo) and S" " (Y /Y.) " 
S· " (X/X.) are identified just by the permutation. However, for tbe defi
Dition of (9) we employ the identification 

cr. o. : S· " S" - S·" 

which comes from a map S" X S· - S"" of degree + 1 Call spheres and also 
the cartesian product in this order have the standard orientations). If fj is 
the permutation S· X S· - S" X S .. , then cr •.• 0 (j 0 a:~. has degree C -1)-. 
This shows that ab and ba correspond to elements of 

G ... [S·+·CX X Y/Xo X Y V X X Yo), Z X Bu]o 

which are related with each other by a map of S·+' onto itself of degree (-1)··. 
Since the group structure of G can also be defined by the suspension coordinate 
like a homotopy group, the lemma follows. 

1.6. l'sing the diagonal map as in the definition of the cup product we get: 

PROPOSIT10~. Let X I 2L Then L.~o K-'(X) i8 a graded anti-commulative 
ring. LeJ (X, Y) I~. Then Ihere is (J "graded homomorphiBm" 

(:E K-·(X» ® (:E K-·(X, Y) - :E K-1(X, y), 
_aD _ao iao 

making :E.~o K--(X, Y) a graded module over L,.o K-'(X). 

The products have functorial properties. For example, if (X, X.) _I (X', X:) 
and (Y, Yo) -" (Y', Y:) are maps with the pairs all belonging to SB, then we 
have the commutative diagram 

K--(X', X:) ® K-·(Y', Y~ - K-c···)(X' X Y', X~ X Y'V X' X n> 
(10) 1 t ® ,. 1 Cl X ,) I 

K-·CX, XJ ® K-"(Y, Yo) - K-(·")CX X Y, x. X Y V X X Y J • 

Furthermore, for f : Y - X, the induced homomorphism f' : L.~o K-·(X) -+ 

:E.~o K--(Y) is a ring homomorphism, etc. 
1. 7. The Bott i80morphi8m. The existence of the Bott isomorphism (see 1.3 

(3» is the central and deep point of the cohomology theory we are developing. 
We give now the e.'q>licit description of this isomorphism. 

Let x. be the space consisting of a single point. Then (1.3) K-a(:c.) is infinite 
cyclic. By definition K-2(:co) = /{CS·). Let 11 be the complex line bundle 
over S2 whose first Chern class equals the canonical generator of H2(SI, Z). 
Then 11 represents an element [11] £ K(S') and [,,] - 1 is a generator of /{(S2) = 
K-1(x.) which we denote by g. If a t K--(X, X o), then ag £ K- C.+

2)(X, Xo). 
Here we use 1.5 (9) with Y = :Co and Yo empty. 

THEOREM. The map a -+ ag is an i80morphism 01 K-·(X, X.) onto 
K- C

.+
21 (X, X o). In particular, :E.u K-'(:co) is the polynomial ring Z[g]. 
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For a proof of this central theorem we refer to [10). For any (X, Xo) e ~ 
the graded group Lwao K-a(X, Xo) is a module over Z[g). Multiplication 
with g. gives an isomorphism of K-W(X. Xo) onto K-(o+2k,(X, Xo). This holds 
in particular if Xo is empty or reduces to the base point, i.e., Lwao K-a(X) 
and La.o g-a(x) are both modules over Z[g). Let p denote the multiplication 
by g. The next lemma follows from 1.6 (10). 

LEMMA. If (X, Y) and (X', Y') belong to ~ and if f : (X, Y) -+ (X', Y') 
i8 a continuous map, then f'fJ = PI' where f' : K-"(X', Y') -+ K-a(X, y), (n ~ 0), 
i8 the induced homomorphism, in other words: f' is a homomorphism of Z[g]-modules. 

LEMMA. If (X, Y) e~, then P gives a homomorphism of exact sequences (1.4 (ii». 
i.e., we have the commutative diagram (n ~ 0) 

g-(w+,,(y) ~ K-a(X, y) -+ g-a(X) -+ g-W(Y) 

Ip Ip Ip Ip 
1t"'a+Il(y) ~ K-(a+%'(x, y) -+ g-Ia+2'(X) -+ g-Iw+z,(y). 

The corresponding statement holds for the exact sequence (1.4 (i». 

PROOF. This follows from the preceding lemma. We take into account that 
the homomorphism a is also induced by a map, namely by C, -+ S'Y. 

1.8. The group K-2a(X. Y) can be identified \\'ithKO(X, Y)andK- '2w+"(X, Y) 
with K-1(X) by the Bott isomorphisms: 

pw : KO(X, y) -+ K- 2"(X, y), 

P" : K-'(X, y) -+ K- I2w+1I (X, y). 

This allows us to define K"(X, Y) for any integer n by 

K"(X, y) = KO(X, Y) if n is even, 

K"(X, Y) = K-'(X, Y) if n is odd. 

The groups K"(X, Y) satisfy the usual axioms of a cohomology theory [14] 
(in the category ~ with all continuous maps of one pail" into another one being 
admissable) excep. that K"(xo) does not vanish for n ~ 0 (1.3). The existence 
of an exact sequence 

(11) ... -+ K"(y) ~ K"+l(X, Y) -+ K"+'(X) -+ K"+1(Y) -+ ••• ( - III < n < Ill) 

follows from 1.4 and the second lemma of 1.7. 
Let (X, Y, Z) be a triple with X :J Y :J Z and all the pairs (X, Y), (X, Z), 

(Y, Z) belonging to 58. Then we have an exact sequence 

(11*) ... -+ K"(Y, Z) ...!. K"+'(X, Y) -+ K"+'(X, Z) -+ K"+l(y, Z) -+ ••• , 

(-CD < n < CD), 

where the & of (11*) is the composition K"(Y, Z) -+ K"(y) -+' K"+'(X, Y). 
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The exactness of (11*) would follow from 1.4(ii) applied to the pair (X / Z, Y /Z) 
if this belonged to SB. But (11*) is also a consequence of the cohomology axioms. 
(Excision-, homotopy-, and dimension axioms are not needed for this formal 
deduction of (11*); compare [14, Chapter I, §10).) 

1.9. In 1.8 we have completed the construction of a cohomology theory sat
isfying all axioms except the "dimension axiom." Since these "cohomology 
groups" are periodic (K"(X, Y) = K a

•
2(X, Y» it is convenient to define 

K*(X, y) = KO(X, Y) EB KI(X, Y), (X, Y) £~, 

and similarly for K*(X) and f{*(X). K*(X) is then an anti-commutative 
ring, graded by Z2' i.e., KO(X) is a subring and 

KO(X).KI(X) C KI(X), K1(X)·KI(X) C KO(X). 

Moreover K*(X. Y) is a Z2-graded module over K*(X). Since ~ respects the 
periodicity. we have the exact triangle 

K*( Y) .!. K*(X, Y) 
(12) , ,/ 

K*(X) 

which resolves in an exact hexagon 

KI(X, Y) -+ KI(X) 

'l' '" KOCy) , ,:-K'(Y) 

KO(X) - XO(X, Y) 

and which has, so to speak, the exact sequence (11) as "universal covering." 
For a triple X, Y, Z (see 1.8) we have the exact triangle 

K*CY, Z) -+ K*(X, y) 
(12*) ,,/ 

K*(X, Z) 
and the corresponding hexagon. 

1.10. The Chern cJw.racter. For each complex vector bundle ~ over the space 
X £ !: the Chern character ch(~) is defined as an element of the rational co
homology ring H*(X, Q), [6, §9.1). If H"(X, Q) denotes the direct sum of 
the even dimensional cohomology groups (which is a commutative subring of 
H*(X, Q», then chW £ H"(X, Q). The definition of ch(~) uses only the total 
Chem class c(~). The classes ch(~) and c(~), both regarded as elements of 
H"(X, Q), determine each other. The Chern character induces a ring homo
morphism [15, §12.1 (5)] 

(13) ch: KCX) - KO(X) -+ H"(X, Q) C H*(X, Q) 

with 
ch(f{CX» C 1l*(X, Q) = Kernel (H*(X, Q) -+ H*«xol, Q». 
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We are now going to define a group homomorphism 

(If) ch: K--(X, Y) -+ H*(X, Yj Q), C(X, Y) &~, n ~ 0). 

By definition, K--(X, Y) = KCS""eX/Y». We have the suspension isomor
phiam 

(1-: Il*CA, Q) -+ O*(S"(A), Q), A &1, 
which raises degrees by n and is defined by tensoring a & O*(A, Q) (from the 
left) with the canonical generator of H-(S-, Z). If ~ I K--eX, Y), let r be 
the "corresponding element" of KcS"ex/y». Then ch(~') I O*(S"(X/y), Q) 
and «(1_)-1 ch«() I O*(X/Yj Q). We have the canonical isomorphism 

er: O*(x/y, Q) -+ H*(X, Yj Q) 

and we define 

ch(~) = a{«(lj-lch(~'». 

In 1.7 and 1.8 we described the Bott isomorphism. Since ch(['71 - 1) is the 
canonical generator of H 2(S2, Z) and since ch preserves products, it follows 
easily, that ch(fJ(m = ch(~) for ~ I K--eX, Y). Therefore we can define che~) 
for ~ & rcx, Y), n any integer. Using the notation of 1.9 we have now defined 
the Chern character as a homomorphism 

ch: K*(X, Y) -+ H*(X, Y; Q). 

eh maps X-CX, Y) into H"(X, Yj Q) and KI(X, Y) into H·4(X, Y; Q) which 
denotes the direct sum of the odd-dimensional cohomology groups. The fol
lowing theorem is easy to check. 

THEOREM. The Ch.ern eharacter is a "natural transformatian" of the "co
h.omolog1J theory" ducribed in 1.9 into the ordinary cohomology theory with rational 
~jJi.cimJ8 for whieh one only cansiders eht Z,-grading H* = W· EB HM. In 
particular, eh pre&erVU products, commutes with map8, eh 0 fl = f* 0 eh, and 
one has commutative diagrams 

KI( Y) .!. X-(X, Y) 

ehl ehl 
HM(y, Q) .!. H"(X, Yj Q). 

The commutativity of these diagrams can be deduced from the fact that 
t.he , of both theories is induced from the map Cl -+ Sly (compare 1.4). One 
has to be careful with the signs. We hope to have chosen the varioU8 definitions 
IUCh that commutativity (not only commutativity up to sign) holds in these 
diagrams. 

I. The spectral sequence. Let X be a finite simplicial complex. We shall 
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establish a spectral sequence relating the integral cohomology rinK of X with 
K·(X). 

2.1. Let X· be the n-skeleton of X. We use the K-theory defined in 1.8. 
We filter r(X) by defining 

K:(X) ... Kernel [K"(X) _ K"(.r- 1
)]. 

ThEOREM. Let X be a finite 8implicial complex. Let Xo be the B'fJIJU conft,ting 
of (J single point, 80 that K'(xo) :::: Z if q i8 even and K'(xo) ... 0 if q i. odd. There 
Ui8U a spectralltquenct E:" (r ~ ], - Cl) < p, q < 00) with 

(I) ~., :::: ~(X, K'Cxo» , 

d1 being the ordinary coboundary operator. 

(2) E;" :::::::: W(X, K'(xo», 

(3) E:." :::::::: G.JC+'(X) ... X:"(X)/X::~(X). 

The differential d. : E~" - E!+r.,-r+l ~'ani8he. for r et'en 8ince E!.I IOZ 0 for all 
odd value8 of q. 

PROOF. We use the method of [12, Chapter XV, §iJ and define the graded 
group 

H(p, q) = L Jr(p, q) = L K"CX'-l, r-'), 
--<.<- --<-<-

These H(p, q) satisfy the axiom (SP.I)-CSP.5) of [12, loc. cit.]. For axiom 
CSP.4) see 1.8 (11·). 

~., = IC+'(r, r-1
) = L K~"(I1!, a!), . 

where er~ runs through all p-simplices. But er:/';: = S~. Therefore K~+'(er:,~) :::::::: 
g.+,(~ :::::::: gICSO) :::: K'(xo). This proves (1). To get (2) one has to check 
that d1 is the ordinary coboundary operator. 

2.2. REMARK. The preceding spectral sequence can be generalized to a 
fibre bundle (Y, X, F) with projection 11" : Y - X. If this fibre bundle satisfies 
certain conditions, then there is a spectral sequence with p." :::: ~eX, K'(F» 
and E;" :::: JP(X, K'(F» (local coefficients). Furthermore E:;' :::: G~'+f(y) 
with respect to a certain filtration of KP+1eY). This spectral sequence specializes 
to the one of t.he theorem for Y = X and 11" the identity. 

2.3. The whole spectral sequence of 2.1 is compatible with the Bott periodicity. 
This makes it possible to forget about the grading and to use the notation of 1.9. 

THEOREM. Let X be a finite Bimplicial compl£x. Let K~(X) be the kernel of 
K*eX) - K*(K~-l). There exi8u a spectral 8equence ~eX), r ~ 1, with 

~(X) :::: ~CX, Z), 

E;(X) :::: JPeX, Z), 

E:.(X) :::: G~*(X) IOZ K~CX)/K:.l(X)' 

The differentials dr vanish for even r. 
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( 19) 

This spectral sequence could also be obtained directly by the method of 
[12, Chapter XV, §7) by putting H(:p, q) = K*(XO-t, ,r-I). 

REMARK. It is easy to show (by the notion of l-equivalence, [12, p. 336)) 
that the E:(X) together with the differentials d, are homotopy type invariants 
of X for r ~ 2. Also K~(X) is a homotopy type invariant. It can be invariantly 
defined as follows: an element ~ of K*(X) belongs to K~CX) if and only if for 
any finite simplicial complex Y of dimension ~ q - 1 and any continuous 
map f : Y -+ X we have fl~ = O. Thus the spectral sequence IE:Cx), T ~ 2} 
is well-defined for any space X of the homotopy type of a finite simplicial 
complex. By a theorem of J. H. C. Whitehead [19, p. 239, Theorem 13) any 
finite CW~mplex is of the homotopy type of a finite simplicial complex. 
Hence the spectral sequence IE:(X), r ~ 2} is well-defined for spaces of the 
class !{ (see 1.1). 

The differentials d, are certain Chigher order) cohomology operations. 
da : E; ::: Ir(X, Z) -+ E;+I ::: Ir+ 3CX, Z) is the Steenrod operation Sq". 

2.4. Let X be a finite simplicial complex. We propose to study the spectral 
sequence of 2.3 in its relation with the Chern character. Let 'E: be the spectral 
sequence with 

'~ = ~(X, Q), d, the ordinary coboundary operator, 

'E: ... Ir(X, Q) for T ~ 2, 'd, = 0 for T ~ 2. 

This trivial spectral sequence is obtained by the method of [12, Chapter XV, §7) 
by putting 'HCT, 8) = H*CX'-', X'-'; Q) for , ~ r. The spectral sequence 
of 2.3 comes from HCr, 8) = K*(X'-" X,-I). The Chem character gives a 
homomorphism 

ch: H(r, 8) -+ 'H(r, 8), 

and since ch is a natural transformation from the K*-theory to the rational 
cohomology theory, we get a homomorphism ch from the spectral sequence 
IE:I of 2.3 into the spectral sequence I'E:I. Using ch we can prove: 

THEOREM. SUpp08e X e ! (Bee 1.1). The spectral sequence IE:(X) I CQUapse8 
(i.e., d, = 0 for r ~ 2 and thus E;(X) ::: E!(X» if one of the following conditions 
i& sati&jied: 

(i) H*(X, Z) ha& 1/.0 torsian, 
(ii) H*CX, Z) = 0 for all odd integers i. 

PROOF. We may assume that X is a finite simplicial complex. ch: E: -+ 'E: 
is always injective for r = 1, since then it is just the coefficient homomorphism 
~(X, Z) -+ ~(X, Q). For r = 2 it is the homomorphism Ir(X, Z) -+ Ir(X, Q) 
which is injective if X has no torsion. Since the 'd, vanish for r ~ 2 it follows 
by induction on r that the d, also vanish for r ~ 2 if E; -+ 'E; is injective. 
This proves the theorem under the assumption (i). H (ii) holds, then d,(r ~ 3, 
odd) vanishes since it maps E:(X) in E:+r(X), and one of these groups is o. 
The d, (r even) vanish anyhow. 
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ThEOREM. SUppo8e X I !: (8ee 1.1). The spectral sequence {~(X) ® QI 
eol1ap8U (i.e., d. ® Q = 0 for r ~ 2). 

ch: K*eX) ® Q - H*eX, Q) 

;, biiective and map8 KO(X) ® Q onto Hn(x, Q) and K'eX) ® Q onto H·4(X, Q). 

PROOF. We may assume that X is a finite simplicia,l complex. The spectral 
leQuence IE!(X) ® QI is obtained by putting "HCp, q) = K*CX'-" r-') ® Q. 
The Chern character gives a homomorphism of this spectral sequence into the 
I))eCtral sequence ('E!CX») which is bijective for r = 1. This implies the 
theorem (compare [12, Chapter XV, Theorem 3.2]). 

COROLLARY. Supp08e X t ~ e8ee 1.1). If K*(X) ha& no torsion, then 

ch: K*eX) - H*(X, Q) 
it iniective. 

2.5. The preceding results on the spectral sequence imply: 

COROLLARY. Let X be (J space belonging to !: (8ee 1.1). Then K*CX) .8 addi
UDelll (J finitely generated abelian group. The rank of K'(X) equalB the BUm of 
IAe even dimemional BeUi number8 of X, whereas the rank of K'(X) is the BUm 
of IAe odd dimensional Betti numbers of X. 

For any ~ t K*(X) let ch.m be the n-dimensional component of ch(~). 

CoROLLARY. Supp08e X t 21 and that H*(X, Z) ha& no torsion. Then 

(i) ~ t K~CX) if and only if ch.m = 0 for r < p, in particular 

ch: K*eX) - H*(X, Q) 

;, iniective and K*CX) is without torsion, i.e., free abelian. 
(ii) If ~ t K!(X), then ch.W t Ir(X, Q) comes from an integralcla&s which 

;, uniquely determined and equal to the image of ~ in K~CX)/K:+1CX) ::: Ir(X, Z). 
To every integral p-dimensional clas8 x, there emu ~ I K~(X) with ch.m = :&, 

i.e., ch(~) = x + higher terms. 
(ill) Let A be (J subgroup of K*(X). If for every :& t Ir(X, Z), p ~ 0, there 

mst& ~ t A with chC~) = :& + higher terms, then A = K*(X). 

2.6. So far we have not studied the behaviour of the spectral sequenoe (2.3) 
with respect to the product structure of K*(X). We have only been able 
to get a partial result which we summarize without proof in the following 
theorem. 

ThEOREM. Suppose X t 21. We cururider the spectral sequence E!CX) (r ~ 2) 
with the operators do. Let z: be the kernel and Ir, the image of do. There ezUt 
pairings ITo : E!eX) ® E!(X) - E!+I(X) with 

(4) Z:(X) ® z:eX) - Z:+I(X), 
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and BUch that IT"1 i8 induced from IT. in virtue of (4). ltforeot'er, IT2 is tM 
cup-product and IT. i8 the product in GK*(X) induced by the n'ng structure of 
K*(X) for which 

(5) K~(X)·K:,(X) C K:u'(X)' 

We conjecture that d. is sn anti-derivation. This would imply (4). We 
shall only need (5) in the sequel. (5) admits a straightforward proof. 

By (5) the mth power of an element of K~(X) belongs to K:(X). If m is 
sufficiently large then K:(X) is zero, hence any element of K!(X) is nilpotent. 
Clearly, El K!(X) if and only if chaW = O. This special case of 2.5 (i) holds 
for any X I!(. We conclude: 

PROPOSITION. An element E of K*(X) i8 nilpotent if and unly if choW = O. 
An element." of K*(X) i8 invertible if and only if cho(,,) = ±1. 

PROOF. It remains to show that" is invertible if cha('7) = ±1. In this 
case, ±'7 = 1 - E with choW = 0 and thus E nilpotent. Then '7-' = 
±(l + ~ + t + ... + ~--') if ~- = O. 

3. The differentiable Riemann-Roch theorem and some applications. 
3.1. We recall the Riemann-Roch theorem given in [1) in a slightly more 

general formulation. Let X, Y be compact oriented differentiable manifolds. 
By the triangulation theorem of Cairns, X and Y belong to the class !( of 1.1. 
A continuous map f : Y -+ X will be called a Cl-map if we are given an element 
e,(f) 1 H"(Y, Z) such that c,(f) == W2(Y) - f*w.(X) mod 2 where w.(Y) and 
W2(X) are the second Stiefel-Whitney classes of Y and X respectively 
(W2 E H2( ,Z.». As in [5; 1), if ~ is a real vector bundle with finite-dimensional 
base BE we define 

I(~ = IT. (:r;J2)/{sinh (:r;J2» I H*(BfI Q) 

where the Pontrjagin classes of ~ are the elementary symmetric functions in 
the :r;~. If ~ is the tangent bundle of the differentiable manifold X we write 
I(X) instead of tW. 

THEOREM. Let Y and X be Il8 before. Let f : Y -+ X be a cl-map. Then there 
exists a Iwmomorphi8m 

9 : K*( Y) -+ K*(X) 
such that 

(i) ch(g(y» ·I{X) = f*(ch(y)e""n!2.f!(y», 1/1 K*(y), 

where f* i8 the Gysin homomorphi8m (Poincare dual of the homology homomorphi8m). 

(ii) 9 maps IC'(Y) into IC'(X) and Kl(Y) into KI(X) if dim Y == dim X 
(mod 2). 

9 maps IC'(Y) into KI(X) and K'(Y) into IC'(X) if dim Y ~ dim X 
(mod 2). 
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(ill) , i8 related to the homomorphism f' : K*(X) - K*(Y) bV the formula 

g(j'(x)·y)=x·g(y), uK*(X), ytK*Cy). 

If toe define fl(J) = fl(YH*(t(X)-I), then (i) may be uTitten as 

(i') ch(g(y» = f *(chCy) eh (!)la. t(f). 
This theorem is slightly more general than Theorem 1 of [1] which was formu

lated for KO(X). Here we have stated it for K*CX) which makes the assumption 
dim Y == dim X (mod 2) superfluous. The proof does not have to be changed 
once one has developed the cohomology theory of §1. Moreover we assert 
here the existence of the homomorphism g satisfying Ciii). This brings no 
additional difficulty. One just has to follow up the proof of Theorem 1 of [1] 
(see also [16]). Something new would be im'olved if we tried to choose g in a 
natural way (call it then fl) and prove certain functorial properties of it. We 
aball take up this question in a more detailed exposition. Xevertheless we 
permit ourselves to call the g of the theorem fl' But we are not allowed then 
to use for Z -' Y _I X the formula (J 0 J) 1 = f, 0 J I' (The composition of 
two cl-maps is a c,-map in a natural way.) The formula (i') shows that ch(g(y» 
is uniquely determined for a cl-map f. Therefore (2.4, 2.5), g ... fl is given 
without ambiguity if K*(X) or H*(X, Z) has no torsion. 

It follow8 easily from (i') that 

ch«J O])IZ) = ch(JIV.z» for u K*CZ). 

By (2.4, 2.5) 

(J 0 lJ.z = ft(J tZ) if K*(X) or H*(X, Z) has no torsion. 

3.2. Let Y be a compact oriented differentiable manifold. It is called a 
cl-manifold if we are given an element CI(Y) t H2(y, Z) whose restriction mod 2 
is w.(Y). For a cl-manifold Y the Todd genus TCY) i8 defined. It is equal 
to the value of the top-dimensional component of e" (J')/2 • t(Y) on the funda
mental cycle of Y. By definition, T(Y) is a rational number. It is an integer 
U follow8 by applying Theorem 3.1 to the map of Y onto a point. Compare 
[1], see also [6]. If Y is almost-complex and c.(Y) the first Chern class, then 
T(Y) is the usual Todd genus which is equal to the arithmetic genus if Y i8 
a projective algebraic manifold [15]. 

3.3. Let ~ = (Ef' Bf• F" 1I'f) be a differentiable fibre bundle in the sense 
of [6. §7.4]. Assume that Ef • B f • F f are compact oriented differentiable manifolds. 
Aa in [5] we let E be the bundle along the fibres. This is a real vector bundle 
over El whose second Stiefel-Whitney class W2(~) equals ID,(Ef ) - 11'*10. (Bf ). 

Alaume that 11' = 1I'f is a c.-map. Then cI('lI-) == lOam mod 2. If i : F f - E, 
is the injection of a fibre in the total space then 

i*c.(1I') Si w2(F J mod 2. 

Therefore if we put CI(Ff) = i*cI(1I'). the manifold FI becomes a Cl-manifold 
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(19) 

and we can speak of the Todd genus TCF.). Assume that f is endowed with 
a complex structure, i.e., we are given a complex vector bundle" over E. which 
considered as real vector bundle is E. Then F. is almost complex in a natural. 
way. Furthermore r is a cl-map with c,Cr) = c,(,,). The Todd genus T(Ff ) 

is then the same whether we consider F f as c,-manifold with c,CF.) = ,"cIC,,) 
or as almost complex manifold. 

3.4. THEOREM. LeJ ~ be a differentiable fibre bundle (J8 in 3.3. Let r ... r. 
be a cl-map. If the Todd genus T(F.) - ±1 then the homumorphism 

",I : K-(BJ -+ K-(BJ 

i8 iniedive. Moreover r' identifie8 K*(B.) with a dired IUmmand of K*(Ef }. 

The endomorphism rl 0 r' of K*(Bf ) i8 the muUiplicoJion wUh a fixed inverlible 
elemenJ of K*(B.). 

PRoOF. We shall use Theorem 3.1 for r with Y = El and X = B.. First 
we observe that 

i(b ... i(EJ'Cr*i(BJ)-1 ... i(r). 

Therefore with g = rl we have by 3.1 (i/) 

ch(rl(Y» = f_(ch(y) ·e" (W)II·iCb), 1/1 K-(BJ. 

Now put Y = 1, the unit of K*(Ef ). Then chC1/) = 1 and it follows easily that 
the zero-dimensional component of chCr,l) equals T(F.). Since TCF.) =- ±1, 
r,1 is an invertible element in K*(Bf ) (see 2.6) whose inverse we denote by a. 
Now let h be the homomorphism K*(Ef ) -+ K*(B.) equal to rl followed by 
multiplication with a; then (ill) of 3.1 gives 

h(",I(X» ... x for all x I K-(BJ 

which proves the theorem. 
The preceding theorem admits various generalisations. For example, if the 

Todd genus T(},.} ... m ;o! 0, (m I Z), then ",I is injective on the direct sum of 
th088 p-primary components of K*(B.) with p .. 0 or a prime not dividing m. 
This type of theorem is analogous to 3.2 of (4). 

3.5. Let G be a compact connected Lie group and T a maximal torus of G. 
Let ~ be a principal G-bundle whose base space B. is a compact oriented dif
ferentiable manifold. Consider the associated bundle with GfT as fibre. Ita 
total space is E,/T, its base space is B.. With these assumptions we have: 

PROPOSITION. Let r be the projedion E,/T -+ B •• Then 

",' : K-CBJ - K-(BtlT) 

i8 injedive. ",'K-CB.) i8 a direct IUmmand of K*(B'/T). 

PROOF. We may assume that ~ is differentiable. The bundle along the fibree 
of E,/T admits a complex structure such that GfT has Todd genus 1 (188 
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{S, §§7.4, 22.3]). The complex structure along the fibres and the orientation 
of Bt define an orientation for the compact differentiable manifold E,IT. The 
proposition follows from 3.4. 

THEoREM. We make the preceding asaumptions. Let U be a cloled conmded 
8Ubgroup of G of maximal rank, i.e., toe may tl88U1m U :J T. Then E,/U u the 
Iotal apace of the bundle as&ociated to ~ and with G I U as fibre. Let" be the projection 
E,/U --+ B,. Then 

,,1 : K.(BJ --+ K.CEdU) 

iB injedive. "IK·(B,) i8 a dired summand of K·CE,/U). 

PROOF. We have the diagram 

" 0 p =- ... , ... 1 = pi 0"'. 
By the above proposition ... 1 is injective which implies ,,1 is injective. Alao 
the last statement of the theorem follows immediately. 

R.EK.uut. We have proved this theorem under the assumption that B, is 
a compact oriented differentiable manifold. A small generalization of the 
Riemann-Roch Theorem 3.1 makes it possible to drop the assumption on 
orientability. It is probably also true when BE is any finite CW~mplex. 

The preceding theorem holds in particular for bundles with an even dimen
sional sphere as fibre and the special orthogonal group as structure group. 
If .... : Y --+ X is such a bundle (X compact oriented differentiable), then ... 1 : 

K·(X) --+ K·(Y) is injective. The corresponding theorem for integral co
homology holds if X has no 2-torsion (more generally, .... is injective on the 
direct sum of the p-primary components of H·(X, Z) with p = 0 or p an odd 
prime). 

3.6. THEOREM. Let G be a compad connected Lie group, U a cloaed conned«l 
8Ubgroup of G of maximal rank. Then Kl(G/U) = 0 and ~(Glu) u a fru 
abelian group with rank equal to the quotient of the order of the Weyl group of G 
br the order of the Weyl group of U. 

PROOF. The theorem is true if U = T (maximal torus of G). In this case 
O/T has no torsion in integral cohomology and ita odd dimensional cohomology 
group. vanish ['1). The theorem follows then from 2.5 if one takes into account 
that the order of W(G) (Weyl group of G) is the Euler number of GIT which 
equals dimo H·"(GIT, Q). For the general case, we assume that U ::> T and 
consider the map .. : G/T --+ G/U. Then .. 1 is injective by 3.5. It follows 
that Kl(G/U) = 0 and that ~(G/U) has no torsion. It is well-known [3] 
that the odd~ensional Betti numbers of 0/ U vanish and that the Euler 
Dumber of G/U equals ord W(G)/ord W(U). Thus dimo W"(G/U, Q) = 
ord W(G)/ord W(U) which completes the proof in virtue of 2.5. 

RzvARlt AB in the case of G/T, Theorem 3.6 follows immediately from 
2.5 if ]P(G/U, Z) has no torsion. 
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4. The classifying space of a compact c:onnected Lie group. 
4.1. Completions of moduleB. We shall summarize here BOme known results 

of commutative algebra which we learned from J. P. Serre. These results are 
needed in the sequel. For references see Zariski and Samuel, Commulalive 
algebra, Van ~ostrand, and [13, Expose 18 (Godement)]. 

Let A be a Xoetherian ring, a an ideal of A. We give every finitely generated 
A-module M the topology defined by the submodules aRM. The completion 
of l\l for this "a-adic topology" is by definition 

(inverse limit). 

(i) Let N be a submodule of M. Then the a-<Jdic topoWuY of N coincides with 
the topology induced on N by the a-adic topology of M. 

This is a consequence of the lemma of Artin-Rees which says that there 
exists a positive integer h such that (a"l\l) (\ N = a"-"«a",M) (\ N) for n ~ h; 
see [13, Expose 2, Theoreme 2]. 

(ii) Let 0 -+ N -+ l\l -+ P -+ 0 be an exact sequence of (finitely generak(/'j 
A.-modules; then 

is exact. Thus "completion" is an exact fUneJ.or [12, Chapter 11. §4]. 
PROOF. We have the exact sequence 

0-+ N/(a"M r. N) -+ M/o"M -+ P/o"P -+ O. 

By (i), iJ is the inverse limit of the first inverse system in this sequence. 
Since N /(a"·kM (\ N) -+ N /(a"M (\ N) is onto for all n and all k ~ 0, this 
inverse system satisfies the ":\littag-LefHer condition." According to the forth
coming book of Dieudonne-Grothendieck (Complements to Chapter 0) the 
assertion (ii) follows. There is, of course, a direct proof along the lines of [11, §3]. 

(iii) Let B be a commutative ring, G a finite group of automorphisma of B and 
let A = BI} be the subring of those elements of B which arc invariant under aU 
automorphiBmB of G. Assume B is, as an A • ..algebra, finitely generated over a 
.Yoetherian Bubring A. of A. Then B and A are Noetherian and B is a finitely 
generakd A-module. 

PROOF. Since A .• is Xoetherian, B (Ill! a quotient ring of a polynomial ring 
over A.) is also Xoetherian. If x r B, then n.,Q (x - vex»~ = O. Thu!l x 
is integral over .4.. Let .1'" ••• , x. be generaton: of B over A.. Then we have 
equations 

q ... order of G. 

Thus B is generated as an A-module by the monomials xr' ... x:' (m; ;:i q - I), 
hence is a finitely generated A-module. Let A' be the subring of A generated 
over A. by the aoj. The ring .4' is Noetherian since it is a finitely generated 
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Ao-algebra. B is even a finitely generated A'-module. Thus also A is a finitelv 
generated A'-module. If C" ••• , c. are generators of A as module m'er A.;, 
then the c. and the a'i generate A as Aa-algebra. Hence A is a Koetherian 
ring. 

(iv) We make Ihe a&3Um~ion8 0/ (iii). LeJ b be an ideal of B which is I1Jable 
under G (!T(b) = b for tT £ G). Put a = b (\ A. Let b' = a·B be Ihe ideal of B 
generated by n. Then there exisi8 a positive integer n such that b" C b' C b. Thu8 
b and b' define the &aim topology on B. 

PROOF. In a noetherian ring, to prove that a power of the ideal b is contained 
in b', it is enough to show that all prime ideals p containing b' also contain b 
(see for example [13, Expolre 2]). Let p be a prime containing b' and let x £ b. 
Then x' = II .. o a(x) £ A (\ b = a Cb'. Hence x' £ 11. Hence there is a !T 
with a(x) t p and thus x t a- I (Il). Hence b is contained in the union of the 
prime ideals a(p), a £ G. But it is an easy lemma (see Northcott, Ideal theory, 
Cambridge Tracts, pp. 12-13), true in any ring, that if an ideal b is contained 
in the union of a finite number of prime ideals, it is contained in one of them. 
Thus in our case, b C a(p) for some tT £ G. But b = a-t(b) by assumption. 
Thus bell as contended, 

We consider A and B both as A-modules and complete them with respect 
to the a-adic topology. We have a map A -+ 13 which is injective by (ii). In 
view of (iv) S is also the completion of B with respect to the fl-adic topology 
of B. The group G operates naturally on 11 Let (13)0 be the ring of invariants, 

(v) Under the preceding a&sumptions the map A -+ 13 maps A (bijectit'ely) 
onto (13)0. Thu8 (Bar = (13)0. 

PROOF. Let B(G) be the ring of all maps from G into B. This is a direct 
sum of g copies of B where g is the order of G. We consider the exact sequence 

O_Bo -B...!4B(G) 

where a(b), b £ B, is the map which attaches to a £ G the element b - a(b) £ B. 
All rings in this exact sequence have to be considered as A-modules (A = Ba). 
We complete them wit.h respect to the a-adic topology. "Completion" is an 
exact functor, hence (B(G)f = B(G) and the reSUlting sequence 

o - (B~~ -+ 13 ...!.. B(G) 
is exact which proves (v). 

4.2. The repruentation ring of a compact Lie group. Let G be a compact 
Lie group. Let (p" P2, ••• ) be the (equivalence classes of) irreducible complex 
representations of G. Let R(G) be the free abelian group generated by the p,. 

The tensor product of representations makes R(G) into a ring which we shall 
call the representation ring of G. The complex representations of G may be 
identified with the elements L n;p. of R(G) where the n. are non-negative 
integers. 

Let E : R(G) -+ Z be the "augmentation homomorphism" obt.ained by attaching 
to each representation of G its dimension. Let leG) be the kernel of E; it will 
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be called the augmentation ideal of R(G). We define the completed represen
tation ring with respect to the 1(G)-adic topology: 

RCl:,") = tim R(G)/ICG)- (inverse limit). -
Let G, H be compact Lie groups and G - H a homomorphism; then we have 

an induced homomorphism R(H) -+ R(G) which maps I(H) in 1(G) and is 
therefore continuous with respect to the 1(H)-adic topology of R(H) and the 
I(G)-adic topology of R(G). It induces therefore a homomorphism R(H) -
R(G). Suppose now G = H. Then any automorphism of G induces auto
morphisms of R(G) and of R(G). An inner automorphism induces the identity. 
If G is connected and T a maximal torus of G, then the Weyl group W(G) is 
a group of automorphisms of T and thus operates also on R(T) and R(T). 

4.3. The complded rep1'e&entation ring of a torus. Let T be a torus. We 
write it as the group of k-tuples of rea1s mod 1. Every irreducible represen
tation of T is 1-dimensional and given by a homomorphism 

a, e Z, 

of T into U(l). The ring R(T) may be identified with that subring of the ring 
of formal power series C[[x" ..• , x.ll which is generated over Z by 

exp (2ri:tJ, exp ( - 2rixJ, ... , exp (2rix.), exp ( - 2rix.). 

Hence R(T) i8 Noetkerian. 
Let z" ... , z. be indeterminates. We give the polynomial ring Z[z" ... , z.] 

the (z" .. , , z.)-adic topology, and define a ring homomorphism 

• : Z[z" .•• , z.] -+ R(T) 

by setting .(z;) = exp(2rix;} - 1. Then .(z,) e leT), thus tf> is continuous 
and induces a homomorphism 4> of the completed rings. 

PRoPOSITION. The homomorphi8m 

~ : Z[[z" ... , z.]] - R(T) 

is bijeclive. (Z[[z,,···, z.]] i8 the ring of formal power 8eTies.) 

PROOF. Put A = ZIz" '" , z.]. Under. we may identify A with a subring 
of R(T). For the latter ring we may write 

R(T) = Z[ZlJ •.. , z., (1 + Z,)-I; ••• , (1 + Z.)-I]. 

We have then 1(T) = (," ... , z., (1 + ZI)-1 - 1, ... , (1 + Z.)-1 - 1). Thus 
the ideal 1(T)- of R(T) contains only formal power series with lowest term 
of degree ~ n. Thus 1(T)- (1 A contains only polynomials with lowest term 
of degree ~ n. Therefore, I(T)- (1 A C (za, ... ,z.)-. Clearly, (z" ... , z.t C 
1(T)- (1 A. Thus 

1(T)- f'\ A = (z" "', z.)" = (1(T) (1 A)·. 

This shows that the (," ••. , z.)-adic topology of A coincides with the topelogy 
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induced from the embedding of A in R(T). Thus q, is injective. Since ~(A) 
contains R(T), the map q, is surjective. 

NOTE. We have just considered R(T) as subring of R(T). This is all right, 
since R(T) ill HausdorJl in its 1(T)-adic topology. In fact, (\ l(T)- ... 0, 
since an element of this intersection would be a power series whose lowest 
term has an arbitrarily high degree. 

4.4. The compl£ted repre&entation ring of a compact connected Lie group. 
Let G be a compact connected· Lie group and T a maximal torus of G. The 
Weyl group W(G) operates on R(T); see 4.2. We have a ring homomorphism 
RCG) -+ R(T) (by the restriction map) which is injective. R(G) maps (bi
jectively) onto the ring of invariants of R(T) under the action of W(G). This 
classical result follows from the fact that the highest weight of an irreducible 
representation has multiplicity one (compare [5, §3.4J). We denote this ring 
of invariants by R(T) W(O) and identify R(G) with it. We have the situation 
of 4.1 Ciii). Ao is here the ring Z of integers. Thus we know that R(G) is 
Noetherian and that R(T) is a finitely generated module over RCG). 

W(G) operates naturally on R(T) and we have an induced map RCG) -+ ReT) 
(see 4.2). 

THEOREM. Let G be (J compact connected Lie group, T a ma:r;;mal toru8 of G. 
Then R(G) -+ R(T) maps R(G) bijectilJely onto (R(T» r(o), the n·ng of invariants 
of W(G) in R(T). 

PaOOF. We are exactly in the situation of 4.1. Here RCT) plays the role 
of B, R(G) of A, W(G) of G, and Z of Ao• The ideal b corresponds to 1(T), 
the ideal Q to lCT) (\ R(G) = leG). 

NOTE. R(G) is HausdortI, since (\ 1(G)- C (\ l(T)- = O. The homo
morphism RCG) -+ R(G) is injective. This is in general not true if G is not 
connected (Atiyah, Characters and coIwmology, in preparation). 

4.5. Let X be a space belonging to the class !: of 1.1. Let ~ be a principal 
G-bundle over X where G is a compact Lie group. ~ induces a ring homo
morphism a, : R(G) -+ KO(X) C K*CX) 

in the following way. Consider a representation of G viewed as a homomorphism 
p : G -+ UCm). Then pW is a principal U(m)-bundle and defines an element 
a,(p) of Ir'(X). Since the (equivalence classes of) irreducible representations 
are free generators of the additive group R(G) the homomorphism a, is weU
defined. 

H we have a map f : Y -+ X (Y, X I !:), if ~ is a principal G-bundle over X 
and " = r~ the principal G-bundle over Y induced from ~ by f, then we have 
the commutative diagram 

(1) 

-;.K*(X) 

R(G):--.. If' 
-. K*(Y). 

217 



If Y consists of a single point, then K*(Y) :::: Z and a. is just the augmentation 
E : R(G) - Z. This shows that the ideal J(G) is mapped by a, into K";(X) 
(see 2.3 Remark). By 2.6 (5) there exists an no such that a,(l(Gr) = 0 for 
n ~ no. Since fl(G) is the inverse limit of the R(G)/(I(G»· "ith n ;;; n., we 
have a natural ring homomorpbian 

df : R(a) - K*(X). 

Obviously, a, is R(G) - R(G) followed by d f • 

If we have as before a map I : Y - X, then we have the commutative diagram 

A;.K*(X) 

R(a) III , 
A~ 
• K*(Y) 

(2) 

-I 6. Classifying 1pIJU8. Let F be a contravariant functor on the class 2l 
(see 1.1), i.e., F attaches to each X t ~ an algebraic object of a given type, say 
an abelian group for convenience, and for each continuous map I : Y - X 
(Y, X t !() there is given a homomorphism 1* : F(X) --+ F(y) satisfying the 
functoria.l properties and the homotopy axiom (1* = g* if the maps I, g : Y - X 
are homotopic). 

Let G be a compact Lie group, BI} its (infinite) classifying space determined 
up to homotopy type. We shan define 5(BI}) to be an algebraic object of the 
same type as all the F(X), X E!(. The definition will be such that an element 
of 5(Bo) is completely given by the group G. The classifying space Bo is not 
needed for the definition, but we write 5(Bo) rather than 5(G) to avoid the 
confusion with F(G). 

DEFINITION. An element a 01 5(Bo) i8 an operatcr which atJ.adIe8 to each 
X and each principal G-bundle ~ over X an element am r F(X) depending only 
on the equivalence class of ~ such that the following holcl8: for a map f : Y - X 
(Y, X t 2l), a principal G-bundle ~ over X and the princt"pal G-bundle f*~ ot'er Y 
IndUCed from ~ by f, we hat'e a(f*~) = ream). Using the nolation of [15, §31 
tMs means that the diagram 

1* : H'(X, Gc) - HI(y, Gc) 

a 1 a 1 
f*: F(X) - F(Y) 

is commutative. 
If V, G are compact Lie groups and p : U - G a homomorphism, then we 

have the induced homomorphism 

p* : 5(Ba) - 5(Bu). 

For a t 'J(Bo), p*a : H'(X, Vc) - F(X) is the composition H'(X, Vc) -~ 
If'(X, Gc) -." F(X) 
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H U = G and p is an inner automorphism of G, then p* is the identity since 
p : H'(X, G.) -+ H'(X, Gc) is the identity. 

According to the classification theorem [18, §19) we can choose a principal 
G-bundle ~. which is classifying up to n, i.e., .... (Eh ) = 0 for i :i n, and ,,'hOS(' 
base space Bt. = B. belongs to 2(. Let n l < ~ < nz < ... be a sequence 
of positive integers such that dim B •• ~ n,." Then ~., is induced from ~ •••• 
by a map B •• -+ B •••• uniquely determined up to homotopy. Thus we have 
a homomorphism F(B ••• .) -+ F(B.,). This enables us to write ff(Bo) as an 
inverse limit 

(3) ff(Bo) :::::: lim F(B.,). 

This isomorphism is canonical. In particular, we have: 
(4) An element Cl of ff(Bo) vani8h.es if and only if there exi8U1 for every no an 

inkger n ~ no and a principal G-bundle ~. classifying up to n such that aa.) = O. 
H we take for F the ordinary cohomology theory with coefficients in some 

abelian group, then ff(Bo) becomes H**(Bo, A); see [5, §6.1). If we take for 
F the K*-theory of 1.9 then we define the ring 

X*(Bo) = xO(Bo) El:) X'(Bo) = ff(Bo) 

XO(Bo) is the X(Bo) mentioned in the introduction. In this theory we write 
pi instead of p*. The Chern character ch : X*(Bo) -+ H**(B o, Q) is clearly 
defined. 

4.7. Because of the diagrams (1) and (2) of 4.5 we have canonical ring homo
morphisms 

er : R(a) -+ X*(Bo) , d : R(a) -+ X*(Bo). 

er equals R(G) -+ R(G) followed by d. Of course, er and d map into XO(Bo). 
We sometimes write more explicitly ero instead of er and do instead of d. 

Let G and H be compact Lie groups and p : G -+ H a homomorphism; then 
we have a commutative diagram 

R(a) -+ R(G) ..!.. X*(Bo) A H**(Bo, Q) 

I I 1 pi 1 p** 

R(H) -+ R(H) ..!.. x*(B.) A H**(B., Q). 

4.8 We state now the main theor.lm of §4 and give a corollary. The proof 
of the theorem will be given in the following sections. 

THEOREM. Let G be a compact connected Lie group. Then d is an isomorphism 
of R(G) onto X*(Bo}. 

CoROLLUY. Let G be a compact connected Lie group. Then X'(Bo) =- O. 
Moreooer, X*(Bo) = XO(Bo) ha& no torsion and no zero dUl'isor8. 
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We have seen in 4.4 that R(G) is a subring of R(T) which is a ring of formal 
power series over Z. ThU8 the corollary follows from the theorem. 

REMARK. We conjecture the theorem to hold for any compact Lie group. 
It holds if G is finite (Atiyah, loco cit. in 4.4 Note). 

4.9. We prove Theorem 4.8 first for the case where G is a torU8 T which we 
describe as in 4.3 as the group of k-tuples of reals mod 1. Let p. be the complex 
projective space of complex dimension n. Over p. we take the U(l)-bundle 
'I. whose first Chern class is the canonical generator g of H 2(P., Z) ~ Zj see 
[15, §4.2]. 'I. is induced from '1 .. 1 by the embedding p. -+ p u •• Let B .. be 
the cartesian product of k copies of p.. Over B .. we have the T-bundle ~2a 
which is the Whitney sum of the 11"~(".), 1 ~ i ~ k, where 11"; is the projection 
of B .. on its ith factor. ~ •• is classifying up to dimension 2n. We have the 
embedding B •• -+ B".2 which induces ~2. from ~20+2 and which gives rise to 
the homomorphism K*(B ... 2 ) -+ K*(B .. ). It follows from 4.6 (3) that 

X*(B r) ~ lim K*(B..}, 

the inverse limit being taken with respect to the maps K*(B .... ) -+ K*(B .. ) 
just defined. 

Let us denote by X; the first Chern class of 1I"~('I.), i.e., x; = ~(g). Then 

(5) H*(Bh • Z) ... Z[x" •.. , x.]/I ... 

where 1"1 is the ideal (x~+" •.. , X:+l). 
We consider the map ch 0 af .. 0 q, of the polynomial ring Z1z" ...• z.l into 

H*(B20 , Q), see 4.3 and 4.5. It maps Z; onto e-/ - 1. Since e-/ - 1 = x, + higher 
terms, it follows from 2.5 (Ui) that a, .. 0 q, maps Z[Zh ... ,z.] onto K*(B •• ) ... 
~(B •• ), the kernel being the ideal J.+l = (~+I, •.. , z:+I) as follows from (5). 
ThU8 

K*(B..} 9!! Z[Z" ••• , z.]/ J .+1 

and 

(6) X*(Br) :::::: lim Z[z., ... , z.l/J .... 

If we identify R(T) with Z1[zll ... , z.n (Proposition 4.3) and X*(B r) with the 
above inverse limit (6), then d : R(T) -+ X*(Br) is jU8t the natural map 

Z[[ZI , ... ,z.]] ..... lim Z[ZI J ••• ,z.]/J.+1 • 

To prove that this map is bijective, one has to check that the (z., ... ,z.)-adic 
topology of Z[z" ... ,z.1 and the topology defined by the sequence J. of ideals 
coincide. But this is easy to do. 

4.10. PROPOSITION. Let G be a compact connecUd Lit group, T a maximal 
tor"" of G and p : T -+ G the embedding. Then the map pI : X*(B.) -+ X*(Br) 
(1ft 4.6) i, injectillt. 
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PROOF. We first observe that there exist principal G-bundles which are 
classifying up to n (n arbitrary) and which have a compact oriented dtfferentiabk 
man£fold a& ba&e. This is true for G = (;(m), since then we have the complex 
Grassmannians as "universal" base spaces. An arbitrary G may be embedded 
in U(m) for m sufficiently large. G has thus "universal" base spaces which 
are fibred with U(m)/G as typical fibre and complex Grassmannians. The bundle 
along the fibres is orientable, since it is an extension of a principal G-bundle 
and G is connected [5, §7.5). Hence we have constructed universal base spaces 
for G with the desired properties (compare [18, §19.6)). 

Let a be an element of X*(Bo) for which p'(a) = o. Then we must show 
that a = O. By 4.6 (4) and the above observation on classifying bundles, it 
suffices to prove that aW = 0 where ~ is any principal G-bundle over an arbitrary 
compact oriented differentiable manifold X. Using the notation and the propo
sition of 3.5 with BE = X it suffices to prove that lI"aW = O. But 1I'

IaW = 
a(lI'*~), the lifted bundle 11'*~ equsls pe,,) where" is a principal T-bundle. Now 
a(p(,,» = (pla)(,,) = O. 

4.11. PROOF OF THEOREM 4.8. We have the commutative diagram 

ReT) ~ x*(Br) 

.1 1 pi 

ReG) -+ x*(Bo). 
a. 

The vertical maps are injective, the upper horizontal one is bijective (4.4, 
4.10, 4.9). Thus do is injective. The Weyl group W(G) as group of auto
morphisms of T operates on X*(B,.) (see definition of pi in 4.6). Since these 
automorphisms come from inner automorphisms of G, every element of p'X*(Bo) 
is invariant under W(G). The operation of WeG) on ReT) and x*(B,.) is the 
aa.me if one identifies the two rings under d,.; this follows from the diagram 
in 4.7. Therefore by 4.4 

dr'(p'X*(Bo» C iR(G), 

p'x*(Bo) C d,.i(R(G» = p'doR(G). 

Since pi is injective, x*(Bo) C doReG) which completes the proof. 
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