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ABSTRACT. This paper performs the following steps toward the proof of GLC in the de Rham
setting:

(i) We deduce GLC for G = GL,,;

(i) We prove that the Langlands functor L constructed in [GLC1], when restricted to the cuspidal
category, is ambidextrous;

(iii) We reduce GLC to the study of a classical vector bundle with connection, denoted Ag irred,
on the stack LSiéred of irreducible local systems;

(iv) We prove that GLC is equivalent to the contractibility of the space of generic oper structures
on irreducible local systems;

(v) Using [BKS], we deduce GLC for classical groups.
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INTRODUCTION

This paper is the fourth in the series of five papers, whose combined content will prove the geometric
Langlands conjecture (GLC), as it was formulated in [GLC1, Conjecture 1.6.7].

0.1. What is done in this paper?

0.1.1. In the papers [GLC1, Lan2]', we constructed the Langlands functor
(0.1) Le : D—mod% (Bung) — IndCohniip (LS),

and GLC says that (0.1) is an equivalence.

0.1.2. The main result of [Lan2] says that (0.1) induces an equivalence
D—mOd% (BunG)Eis — IndCOhNilp(LS@)red,

where:

IThe paper [Lan2] is in the process of being transformed into a combination of [GLC2] and [GLC3]. Once this
process is completed, [Lan2] will cease to exist, and the references will be updated accordingly.
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e D-mod 1 (Bung)gis C D-mod 1 (Bung) is the full subcategory generated by Eisenstein series
from proper Levi subgroups;

e IndCohniip(LS¢g)rea € IndCohnip(LSe) is the full subcategory consisting of objects, set-
theoretically supported on the locus of reducible local systems.

0.1.3. As one of the first steps in this paper we will show that GLC is equivalent to the statement that
the induced functor

(0.2) Lé,cusp : D—mod% (Bung)cusp — IndCOhNi1p(LSiéred),
is an equivalence (see Corollary 1.3.10). (Note also that IndCohniip(LS*?) is the same as the usual
QCoh(LS}*?) category).

Thus, the proof of GLC amounts to the study of the functor L, cusp-

0.1.4. Before we even begin the discussion of the main results of this paper, we observe (see Sect. 1.8)
that the above considerations already allow us to deduce GLC for G = GL,,.

Namely, the fact that Lg cusp is fully faithful for GL, follows from [Ga2] (or, in a more modern
language, from [Bel]).

We then show that its essential surjectivity is equivalent to the existence of (non-zero) Hecke eigen-
sheaves attached to irreducible local systems, which was established in [FGV] using geometric methods
(or, alternatively, in [BD1] using localization at the critical level).

0.1.5. The main result of this paper, Theorem 3.1.4, which we call the Ambidexterity Theorem, says
that the left and right adjoints of the functor L cusp are isomorphic.

This already gets us pretty close to the statement that L cusp is an equivalence. Yet, we will need
to “milk” the ambidexterity statement some more in order to obtain the actual proof. Some of this
milking will be preformed in this paper, and some will be delegated to its sequel.

0.1.6. An additional crucial input comes from the paper [FR] (combined with [Be2]), which says that
the functor Lg,cusp is conservative. This implies that in order to prove GLC, it is sufficient to show
that the monad

(03) ]LG,cusp o ]Lé,cusp
acting on QCoh(LSiged) is isomorphic to the identity functor.

We observe (see Sect. 1.7.2) that the monad (0.3) is given by tensor product with an associative
algebra object

(0.4) A irrea € QCoh(LSE™Y).
The monad (0.3) is an equivalence if and only if the unit map

(0:5) Opgirrea = AG,jirred
G
is an isomorphism in QCoh(LSiéred).

0.1.7. Now, the Ambidexterity Theorem tells us something about the structure of Ag jirred. Namely, it
implies that Ag irreq is self-dual as an object of QCoh(LS‘ged). In particular, it is perfect, and hence
compact.

However, we prove more: we show (assuming that G is semi-simple) that A irrea is a classical vector
bundle, equipped with a flat connection (see Theorem 3.1.8).

Thus, we can view Agirred as a classical local system on LSgred. ‘We also show that this local system
has a finite monodromy (see Proposition 4.2.8); this latter statement will play a role in the final step
of the proof of GLC in the next paper in this series.
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0.1.8. The above additional pieces of information concerning Aq irrea result from Corollary 4.2.5, which
says that the fiber of Ag irrea at a given irredicuble local system o is isomorphic to the homology of
the space of generic oper structures on o.

We will explain the mechanism for this in Sect. 0.3.
0.2. How is ambidexterity proved?
0.2.1. The proof of the Ambidexterity Theorem is obtained by essentially staring at what we call the

Fundamental Commutative Diagram (see [Lan2, Diagram (20.25)]):

CS¢q =

Whit' (G)ran ~ —— Rep(G)ran
coeff & Tl"gec
(0.6) D-mod, (Bung) —<— IndCohyirp (LS¢)

— Nl=

P . S}’)GC
Locg T oinc

S %

FLEG,crit -f
crit,Ran _— IndCOh* (Opgon ree)Ran;

~

KL(G

~—

where we ignore some cohomological shifts and twists by constant lines.

Remark 0.2.2. In fact, (0.6) is a special case at levels (crit for G, oo for G) of an analogous diagram
that is expected to exist in the quantum case:

Whit‘(G)n,Ran _ KL(G)—R,Ran
coeffo T FG, —F
(0.7) D-mod, (Bung) =% Domod_ (Buneg)co

R
LOCG,KT TPoincG,*

FLEG ,,
KL(G)K,R&H < Whit*(G)—kyRan-

A remarkable feature of the quantum diagram is that it is self-vdual: ie., if we dualizg all categories
and arrows in (0.7) we obtain a similar diagram, but for ((G, k), (G, —&)) replaced by ((G, &), (G, —k)).

0.2.3. We break (0.6) into the upper and lower portions, i.e.,

Whit' (G ran  ——%5  Rep(G)ran

(0.8) coeerT Tr‘g)ec

D-mod s (Bung) —*S , IndCohnip(LSg)

and
D-mod; (Bung) e IndCohnip (LS¢)
0s) ] Troncgs
KL(G)eritian ——2 IndCoh* (Op=o™ree) ...

~
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and we combine (0.8) (resp., (0.9)) with the inclusion of (resp., projection to) the cuspidal subcategory:

Whit' (G)ren ~ ——2+  Rep(G)ran

coeffg T TFZFCC

D-mod, (Bung) —%—  IndCohxip(LS)

T TJ*

D-mod% (Bung)cusp M IndCOhNilp(LSg.rEd)

and
D—mod% (Bung)cusp LGoeusp, IndCohyip (Lsiged)
" I
D-mod, (Bung) ~ —%— IndCohyirp (LSg)
Locg T TPoinc‘g}i‘:
KL(@eritan oo™ IndCoh* (OpE™ ™) san,
respectively.
0.2.4. Thus, we obtain the diagrams
Whit'(G)ran ~ ——2  Rep(G)ran
(0.10) cocf oeT TF;J
D-mod s (Bung)eusp P dCoharp (LSEEY)
and
D-mody (Bung)eusp ——*%  IndCohip (LS?)
(0.11) eLoLocGT Tg*opomcgf;
KL(G)crit,Ran LBG ene IndCoh* (OpE°* ™) Ran,
respectively.

The key feature of the latter diagrams is that in (0.10) the right vertical arrow is fully faithful, and
in (0.11) the left vertical arrow is a Verdier quotient (a.k.a., is a localization).

0.2.5. Starting from diagrams (0.10) and (0.11), the ambidexterity assertion is proved as follows.

Consider the functor dual to Lg,cusp (with respect to the natural self-dualities of the two sides, see
Sect. 2).

The point now is that the vertical arrows in (0.10) admit left adjoints, and these left adjoints are
essentially? isomorphic to the duals of the original functors. Combined with the fact that the right
vertical arrow is fully faithful, this implies that the dual of Lg,cusp is isomorphic to the left adjoint of
ILAG,cusp-

Similarly, the vertical arrows in (0.11) admit right adjoints, and these right adjoints are essentially
isomorphic to the duals of the original functors. Combined with the fact that the left vertical arrow is
a Verdier quotient, this implies that the dual of L cusp is isomorphic to the right adjoint of L cusp-

Thus, we have identified both the left and right adjoints of Lg, cusp With its dual.

2Essentially::up to some twists.
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0.3. Relation to opers. We now turn to the statements announced in Sect. 0.1.8, which relate the
fiber of the object Ag irrrea at a given o € LS‘C{.rEd to the homology of the space Ongvcr:7 of generic oper
structures on o.

0.3.1. Let |
%gf)irred € QCOh(LSEYCd),
be the object, obtained by applying the left forgetful functor
oblv' : D-mod(LSE*") — QCoh(LSE™)

to the object
(ﬂ_irrcd)' (w . tered )
Ran ! Opgon— ree,irre (chn)Ran b

where:
e OpZom (X &™),y is the space of pairs (o, 0), where o € LS, and o is a generic oper structure
on it;
® TRan : Opgon'fmc(XgC“)Ran — LS is the tautological map (o, 0) — o;

on-free,irred (Xgen) irred

° Opg Ran and TRay is the base change of the above objects along the inclusion
LSE! — LSg.

Op

Girred 18 naturally a co-commutative coalgebra in QCoh(LSE?).

By construction, B

irred

Notg that since the map mgay is pseudo-proper (see Sect. 3.3.11), the fiber of Bgﬁrred at a given
o€ LS‘éer is indeed given by the homology of the space

Op%en — {0_} Lgv Oprgon—free(Xgen)

G,o
G
of generic oper structures on o.

0.3.2. The point of departure is Theorem 4.6.3, which says that the comonad on
IndCohniip (LSEY) ~ QCoh(LSE™)
given by

,  Poinc®*° := 7" o Poinc}”

spec spec )R
G ,*,irred * e

Pomca*,irred o(PomcGY*’irred

is isomorphic to the comonad given by tensoring with Bgﬁ”ed.
0.3.3. Consider the comonad
]LG o ]Lg
acting on QCoh(LS%™®?). Since it is QCoh(LSE*?)-linear, it is given by tensor product with a co-
associative coalgebra object, denoted

'BG,irred € QCOh(LSiéred).

The fact that the left vertical arrow in (0.11) is a Verdier quotient implies that we have an isomor-
phism of comonads
spec spec )R

R p.: .
Lgollg ~ P01nc(~;7*,irred O(POIHCG,*,irred

Combining with Theorem 4.6.3, we obtain an isomorphism?
BG,irred = Bg,pirrecl'
However, the Ambidexterity Theorem implies that Agirwed =~ Ba,ireda (as plain objects of
QCoh(LSZ*Y)). Combining, we obtain an isomorphism
(012) AG,irred ~ ggﬁrredv
also as plain objects of QCoh(LSged).

30ne can show that this isomorphism respects the co-associative coalgebra structures, but we will neither prove nor
use this fact.



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE IV 7

From here we obtain the desired statements relating the fiber of Ag irrea at a given irreducible local

system o with the homology of Opg" .

0.3.4. Note, however, that the isomorphism (0.12) gives us more. Namely, since we already know that
A irrea is concentrated in cohomological degree 0, we obtain that the connected components of Opgée r;
are homologically contractible.

And since GLC is equivalent to the fact that the map (0.5) is an isomorphism, we obtain that it is
equivalent to either of the following:

e For every irreducible o, the space Op%e '; is homologically contractible;
e For every irreducible o, the space Ong-e '; is connected.

0.3.5. Recall now that a recent result of [BKS] proves the homological contractibility of the spaces
Opg&” , whenever G (and hence G) is classical.

Hence, we obtain that GLC is a theorem for classical G.
0.4. Contents. We now briefly review the contents of this paper section-by-section.

0.4.1. In Sect. 1 we review the contents of [GLC1, GLC2, GLC3] relevant for this paper, and draw
some consequences. In particular:

e We show that the functor L¢ is an equivalence if and only if the corresponding functor L, cusp
is;

e We show that Lg cusp is an equivalence if and only if the object Ag irrea is isomorphic to the
structure sheaf;

e We deduce GLC for GL,.

0.4.2. In Sect. 2 we review the self-duality identifications on the two sides of (0.2), and we show that
the left adjoint of L, cusp identifies with its dual, up to a twist. This uses the compatibility of the
functor L with the Whittaker model, i.e., the upper portion of (0.6).

In Sect. 3, we show that the right adjoint of Lg cusp also identifies with its dual (up to the same
twist). This uses the compatibility of the functor Le with localization at the critical level, i.e., the
lower portion of (0.6).

Combining, we deduce the Ambidexterity Theorem, which says that the left and right adjoints of
Lg,cusp are isomorphic.

From here, we deduce that the object Ag irrea € QCoh(LSigEd) is self-dual, and hence compact.

0.4.3. In Sect. 4 we express Ag,irrea Via the space of generic oper structures.
As a result, we prove that A, irrea i a classical vector bundle (when G is semi-simple).

And we deduce GLC for classical groups.

0.4.4. In Sect. 5 we reduce Theorem 4.1.5 stated in the previous section to the combination of two
general assertions about the space of rational maps. These assertions are proved in Sects. A and B,
respectively.

0.4.5. Conventions and notation. The conventions and notation in this paper follow those in [Lan2].
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1. SUMMARY OF THE LANGLANDS FUNCTOR
In the papers [GLC1, GLC2, GLC3], a functor
L : D-modi (Bung) — IndCohniip (LSx)
2
was constructed.

The geometric Langlands conjecture, a.k.a. GLC ([Lan2, Conjecture 20.3.8]), says that the functor
L¢ is an equivalence. For the duration of this paper, we will assume the validity of GLC for proper
Levi subgroups of G.

In this section we will summarize the properties of Lg relevant for this paper, and draw some
consequences.

1.1. The functor Lg via the Whittaker model. In this subsection we will recall the “main” feature
of the functor Lg; its compatibility with the Whittaker model.

1.1.1. Recall (see [Lan2, Sects. 12.3 and 12.4]) that the category D—mod%(Bunc) is related to the
Whittaker category by a pair of adjoint functors
Poincg, : Whit!(G)Ran = D-mod% (Bung) : coeffg .

1.1.2. Recall also that the category IndCohniip (LS ) is related to the category Rep(G)ran by a pair of
adjoint functors

LocP* : Rep(G)ran = IndCohninp (LS : T
Note, however, that the functor LOCSC?QC factors as

. E{0},Nil

Rep(G@)ran — QCoh(LSs) <> IndCohnilp (LSg),
and the functor I‘g’ec factors as

oy, Nilp

IndCohyip(LSs)  —  QCoh(LSs) — Rep(G)ran,
where
E{O}’Nﬂp : QCOh(LSG) = IndCOhNilp(LS@) : \IJ{O},Nilp

are the natural embedding and projection, respectively.

1.1.3. By a slight abuse of notation, we will denote the resulting adjoint pair
Rep(G)Rran = QCoh(LSy)
by the same symbols (Locg®, T'%*).
We record the following (see Sect. C.1.9 for the proof):
Proposition 1.1.4. The functor
2% QCoh(LSg) — Rep(G)ran

is fully faithful.
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1.1.5. The Langlands functor L¢ is essentially* determined by the property that it makes the diagram

Whit' (G)Ran C_ic> Rep(G)ran

(1‘1) CO&HG[Q&Nﬂ(wX)]T Tpgec
D-mod (Bung) —¢ 5 TndCohnip(LS¢)
commute, where CS¢ is the geometric Casselman-Shalika equivalence (see [Lan2, Sect. 1.4]), and

ON = dim(BuanMX)).

plwx)

Remark 1.1.6. The commutation of (1.1) is the point of departure for any of the constructions of the
Langlands functor.

1.1.7. Tt is shown in [Lan2, Theorem 23.1.2] that the functor Le admits a left adjoint, to be denoted
L&, Passing to the left adjoints in (1.1), we obtain a commutative diagram

—1
Whit'(@ran 2 Rep(G)ran

(1.2) PoinCc.s[*%Np(wx)]l JLOC;;’SC

L
D-mod; (Bung) «—— IndCohwip (LS ).

1.2. Langlands functor and Eisenstein series. In this subsection we will summarize the properties
of L relevant for this paper that have to do with the Eisenstein series and constant term functors.

1.2.1. A key property of the functor Lg is that it commutes with the Eisenstein functors, i.e., for a
parabolic P with Levi quotient M, the diagram

D-mod s (Bun) — M IndCohniip (LS y7)
(1.3) Eis!,twkl Eisﬁpecl
D-mod; (Bung) —*S , IndCohyip(LSg)

commutes, where Eis| twk is a “tweaked” !-Eisenstein functor, where the tweak involves a translation
along Bunys and a cohomological shift (the precise details of the tweak are irrelevant for this paper).

The commutation of (1.3) is a basic feature of any of the constructions of the functor Lg. See for
example, [Lan2, Theorem 20.4.5].

1.2.2. Passing to the right adjoints along the vertical arrows in (1.3), we obtain a diagram

D-mod 1 (Buny) —2— IndCohiip (LS )

1

2

(1.4) CT*,twkT CT“‘F’“T
D-mod; (Bung) —%— IndCohxi(LS¢),

which a priori commutes up to a natural transformation (in the above diagram, CT, (wk is a “tweaked”
Constant Term functor, set to be the right adjoint of Eis; twk)-

However, one of the main results of the paper [Lan2], namely, Corollary 24.1.4 in loc. cit., says that
the natural transformation in (1.4) is an isomorphism. IL.e., the diagram (1.4) commutes.

4See [Lan2, Sects. 20.1 and 20.3] for what the word “essentially” refers to.
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1.2.3. Note that by passing to left adjoints along all arrows in (1.4), we obtain a commutative diagram
D—mod% (Bunas) (—Hi IndCohniip (LS 1)

(1.5) Eisz,twkl EPJV
D-mod (Bung) 6 ndCohnip(LSs).

1.2.4. Let

D-mod (Bung)eis C D-mod (Bung)

be the full subcategory generated by the essential images of the functors Eis) (equivalently, Eisi twk)
for proper parabolics,

Let
IndCOhNilp(LS@)red C IndCOhNﬂp (LSG)

be the full subcategory consisting of objects, set-theoretically supported on the locus
LSEY C LSe
consisting of reducible local systems, i.e.., the union of the images of the (proper) maps
LSp — LS¢
for proper parabolic subgroups.
Combining diagrams (1.3) and (1.5) we obtain that the functors Lg and L& send the subcatergories
D—mod% (Bung)gis and IndCohniip (LS&)red
to one another, thereby inducing a pair of adjoint functors

(1.6) Le.gis : D-mod (Bung)pis = IndCohitp (LS¢)red - L& mis-

The main result of [Lan2], namely, Theorem 24.1.2 in loc. cit. says:
Theorem 1.2.5. The adjoint functors in (1.6) are (mutually inverse) equivalences.

1.3. The Langlands functor on the cuspidal part. In this subsection we will study the restriction
of L to the cuspidal subcategory. We will show that GLC is equivalent to the statement that the
resulting functor

Lgcusp : D-mod 3 (Bung)eusp — IndCohniip (LSE?) ~ QCoh(LSE*®)
is an equivalence.
1.3.1. Let
1
D-mod% (Bung)cusp := (D-mod% (BunG)Eis>
be the cuspidal subcategory.
Tautologically, D-mod 1 (Bung)cusp is the intersection of the kernels of the functors CT. (equiva-
lently, CT. twk) for all proper parabolics.
1.3.2. Denote by e the tautological embedding
D-mod% (Bung)cusp < D-mod% (Bung).

Since D—mod%(Bun(;)EiS is generated by objects that are compact in D-mod% (Bung), the functor

e admits a left adjoint, to be denoted el
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1.3.3. Let
irred _J

be the embedding of the irreducible locus. We can regard IndCohNilp(LSicfred) as a full subcategory of
IndCohniip (LS¢) of IndCohnip (LS) via j«, and as such it identifies with

(IndCohNilp (LSG“)red)L .
Tautologically,
IndCOhNilp(LSG“)red = ker(j*).
1.3.4. From the commutation of (1.4), we obtain that the functor Lg sends D-mod%(Bung)cusp to
IndCohNilp(LSiged). Denote the resulting functor by
(1.7) Lé cusp : D-mod s (Bung)eusp — IndCohip (LSE®Y).
I.e., we have a commutative diagram

D-mod; (Bung) —5% 4 IndCohnip(LSg)

(1.8) o| B

D—mod%(BunG)Cusp Hp_} IndCOhNilp(LSngd).

Note that from the commutation of (1.3) we obtain a commutative diagram

D-mod  (Bung) —¢ 5 IndCohyiip(LSg)

(1.9) ot | |

]L cus .
D_mOd% (BuHG)Cusp Q IHdCOhNilp (lecgred ) .

1.3.5. Note also that when we view D—mod% (Bung )cusp and IndCohninp (LSE?) as quotient categories

of D—mod%(BunG) and IndCohnip (LSs) via X and 7%, respectively, from the commutation of (1.5),
we obtain that there exists a well-defined functor

LG cusp : IndCohiny (LSE™) — D-mod 3 (Bunc)eusp

that makes the diagram

L

D—mod% (Bung) <]L—G IndCOhNilp(LS@)

(1.10) o |
Lé.cusp i d
D—mod%(Bung)cusp PR IndCohNﬂp(LSg,rC ).
commute.
Taking into account (1.9), we obtain that the functors

(1.11) Lé.cusp : D-mod 3 (Bung)eusp = IndCohnitp(LS¢)red : L& cusp

are mutually adjoint, i.e.,

Lé,cusp & (LG,CUSP)L~
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1.3.6. We claim, however:

Proposition 1.3.7. The functor ]Lé sends IndCohNﬂp(LSiged) to D-mod%(BunG)cusp.
We will give two proofs of this proposition: one in Sect. 1.4 and another in Sect. 1.5.7.

Corollary 1.3.8. The following diagram commutes:

L
D-mod; (Bung)  +—“—  IndCohwi(LS)

(1.12) eT Ta*

LE o )
D—mod% (BunG)cusp & IndCOhan(LS‘ng).

1.3.9. Taking into account Theorem 1.2.5, we obtain:
Corollary 1.3.10. The functor Lg is an equivalence if and only if so is the functor La cusp-

1.4. First proof of Proposition 1.3.7. In this subsection we will use some notation, which is intro-
duced later in the paper, specifically in Sect. 2.1.

1.4.1. We will use [Lan2, Theorem 23.2.5], which says that the functor L& identifies, up to a cohomo-
logical shift, with the composition

Vv
(1.13)  IndCohinp(LS¢) = IndCohnip(LS¢)” “§ D-mod (Bung)” ~

MirBunG T
=~ D-mod (Bung)eco — D-mod (Bung) =& D-mod, (Bung),
where:
e The first arrow is given by Serre duality on IndCohniip (LSs);
e The second arrow is the functor dual to Lg;
e The third arrow is given by Verdier duality on Bung;
e The fourth arrow is the Miraculous Functor on Bung, see [Gal, Sect. 3.1];
e The fifth arrow is the Cartan involution.

It is enough to show that the composition (1.13), and a similar functor for a Levi, intertwines the
functors CT®P*° and CT., up to tweaks.

1.4.2. Passing to the dual functors in (1.13), we need to show that the composition

T I\I{irvull
D—mod% (Bung)” & D—mod% (Bung)"” e D—mod% (Bung)e, =~
~ D-mod s (Bung) =% IndCohiip(LS¢) ~ TndCohwip (LS¢)”,
and a similar functor for a Levi, intertwines (CT.)" and (CT**°°), up to tweaks.

1.4.3. We note that under the identification

(1.14) D—mod% (Bung)" ~ D-mod1 (Bung)co

1
3
and the resulting identification

D-mod% (Bung)e, ~ D—mod% (Bung)
the functor Mir]\éunc identifies with the original Mirgung -

Furthermore, under (1.14), the dual of the functor CT, twk is an appropriately tweaked version of
the functor
Eisco,« : D-rnod%(BunM)CO — D-rnod%(Bunc;)CO

(see [Gal, Sect. 1.4]), and under
IndCohyiyp, (LSe)" ~ IndCohpiip (LS &),



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE IV 13

spec

the dual of CT®P® is an appropriately tweaked version of Eis?

Hence, we need to show that the functor

MirBung

D—mod% (Bung)co S D—mod% (Bunc)co — D—mod% (Bung) Hﬁ IndCOhan(LSG)

and a similar functor for a Levi, intertwines Eisco « with Eis®Pc.

1.4.4. However, this follows from the commutation of (1.3) combined with the commutation of the
following diagram from [Gal, Theorem 4.1.2]:

Tan oMirgyy
D—mod%(BunM)CO M B, D—mod%(BunM)

Eisco, « J, J,EiSE

TGOoMirBung
D-mod:i (Bung)eo ——— D—mod% (Bung).

1
2

O[Proposition 1.3.7]

1.5. Spectral action. In this subsection we will recall another crucial feature of the functor Lg: its
compatibility with the QCoh(LS«)-actions on the two sides.

1.5.1. Recall (see e.g., [Lan2, Theorem 20.1.2]) that the Hecke action gives rise to an action of the
monoidal category QCoh(LSs) on D—mod% (Bung).

1.5.2. We have:
Proposition 1.5.3. With respect to the QCoh(LSx)-action on D—mod% (Bung), the full subcategory

D-mod (Bung)ris C D-mod (Bung)

is set-theoretically supported on LSrG‘fd, i.e.,
(1.15) D-mod: (Bung)eis ®  QCoh(LSE*!) =0.
2 QCoh(LS )

This proposition is probably well-known. We will supply a proof for completeness in Sect. 1.5.8.
As a formal consequence, we obtain:
Corollary 1.5.4. We have an inclusion

(1.16) D-mod 1 (Bung) ® QCoh(LSigEd) C D-mod 1 (Bung)cusp
2 QCoh(LSy) 2

as full subcategories of D—mod% (Bung).
In fact, a stronger assertion is true (to be proved in Sect. 1.6.6):
Theorem 1.5.5. The inclusion (1.16) is an equality.

1.5.6. By the construction of the functor Lg, it is QCoh(LSx)-linear, where QCoh(LSx) acts on
IndCohnilp (LS ) naturally.

Since the symmetric monoidal category QCoh(LSy) is rigid, we obtain that the functor L& is also
equipped with a natural QCoh(LSx)-linear structure.

Moreover, the monad
Lé olLg,

acting on IndCohniip (LS ), is QCoh(LSx)-linear.
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1.5.7. Second proof of Proposition 1.8.7. By QCoh(LSx)-linearity, the functor LZ sends

IndCohniip (LS ) ® QCOh(LSiC{,er)’
QCoh(LS )

viewed as a full subcategory of IndCohnip(LSs), to

D-mod 1 (Bung) ® QCoh(LSiged),
2 QCoh(LSg)

viewed as a full subcategory of D-mod 1 (Bung).

However, the former is tautologically the same as IndCOhNilp(LSiéred)7 while the latter is contained
in D—mod% (Bung)cusp by Corollary 1.5.4.
O[Proposition 1.3.7]

1.5.8. Proof of Proposition 1.5.3. According to [BG]®, the functor Eis; can be factored as a composition

Eis?art.cnh

D-mod 1 (Bunas) — D-mod 1 (Bunas) ® QCoh(LSp)
2 2 QCoh(LS ;)

D—mod% (Bung),
where the functor EisP** ™" is QCoh(LS)-linear.
This implies the required assertion.
O[Proposition 1.5.3]
1.6. Conservativity. In this subsection we recall a crucial result from [FR], which says that the
functor Lg,cusp is conservative.

In a sense, this unveils the main reason why GLC holds: that the functor L does not lose information
(in a very coarse sense, by sending some objects to zero).

1.6.1. We now import the following result from [FR, Theorem A] (which is a combination of [FR,
Theorem B] and [Be2, Theorem Al):

Theorem 1.6.2. The functor Lg,cusp 95 conservative.

Remark 1.6.3. Note that in the case when G = G L,,, the assertion of Theorem 1.6.2 follows immediately
from (the much more elementary) Theorem 1.8.2 below.

1.6.4. We now claim:

Theorem 1.6.5. The functor Lg is conservative.

Proof. The follows immediately by combining Theorems 1.6.2 and 1.2.5.

1.6.6. Proof of Theorem 1.5.5. The assertion of the theorem is equivalent to

(1.17) D-mod 1 (Bung)cusp Q QCoh(LSg)rea =0,
2 QCoh(LSg)

where QCoh(LSg)rea = ker (™).

By Theorem 1.6.2, it suffices to show that the functor Lg, cusp annihilates the subcategory (1.17).
However, Lg,cusp sends this category to

IndCohnip (LSE*Y) @  QCoh(LSg)red,
QCoh(LS &)

and the latter is obviously 0.
O[Theorem 1.5.5]

5The paper [BG] only treats the case of P = B. The general case will be treated in a forthcoming paper of
J. Feegerman and A. Hayash.
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1.7. The algebra Ag,irrea. In this subsection we will introduce an object
Ac irrea € AssocAlg(QCoh(LSE®),
which encodes the monad Lg cusp © Lé,cusry

We will show that the validity of GLC is equivalent to the fact that the unit map (1.18) is an
isomorphism.

The proof of GLC that will be presented in the sequel to this paper will amount to the showing
that the algebraic geometry and topology of LS’g;ed essentially force this map to be an isomorphism
(modulo a certain computation on the automorphic side).

1.7.1. Consider the monad Lg, cusp o]Lé,Cusp on IndCohNﬂp(LSing) corresponding to the adjoint functors
(1.11). By Sect. 1.5.6, this monad is QCoh(LSx)-linear.

Since the action of QCoh(LS¢) on IndCohni (LSE?) factors through
7" : QCoh(LSg) — QCoh(LSE®Y),

we obtain that L, cusp © L& cusp 15 QCoh(LSiéred)—linear.

1.7.2. Note that Nilp|; girrea = {0}, s0
G

IndCohip, (LSE?) = QCoh(LSE?).
Hence, the monad La,cusp © Lé,cusp is a QCOh(LSgred)-linear monad on QCOh(LSiéred) itself, and
thus corresponds to a unital associative algebra, to be denoted

AG ired € QCoh(LSE*?).

1.7.3. The unit of the (]Lé',cusp, L¢,cusp)-adjunction corresponds to the unit map

(118) OLSiéred — \AG,irred-

Tautologically, the functor ]Lécusp is fully faithful if and only if the map (1.18) is an isomorphism.

1.7.4. Given Theorem 1.6.2 and Corollary 1.3.10, we obtain:

Corollary 1.7.5. The functor Lg is an equivalence if and only if the map (1.18) is an isomorphism
mn QCOh(LSlged).

1.8. Proof of GLC for G = GL,. In this subsection, we will show how Theorem 1.2.5 allows us to
prove GLC in the case when G = GL,,.

1.8.1. The point of departure is the following result, established in [Bel] (or, in a slightly different
language, in [Ga2]):
Theorem 1.8.2. The restriction of the functor coeffg to the subcategory

D—mod% (Bung)eusp C D—mod% (Bung)

is fully faithful.
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1.8.3. From Theorem 1.8.2 we will now deduce:
Corollary 1.8.4. The functor Lag,cusp s fully faithful.

Proof. From (1.1) and (1.8), we obtain a commutative diagram

e, Rep(é )Ran

spec
coeff o [ZENP(WX)]T TFG

D-mod; (Bung) —%—  IndCohxip(LS¢)

eT TJ*

]L cus .
D_mOd% (BuHG)cusp g IHdCOhNilp (lecgred ) .

Whit'(G)Ran

It is sufficient to show that the composite right vertical arrow in the above diagram is fully faithful.
Indeed, this would imply that the fully-faithfulness of the functors

coeffg [26Np(wx)] oe and Lg,cusp
are logically equivalent.
Note that since
QCoh(LSE*") = IndCohnip (LSE™?),

the right vertical arrow in the above diagram can be identified with

spec

(1.19) QCoh(LSE*?) &5 QCoh(LSs) <+ Rep(G)ran.

Now, in the composition (1.19) both arrows are fully faithful: this is obvious for ., and for I'F*
this is the content of Proposition 1.1.4.
g

Remark 1.8.5. Note that the proof of Corollary 1.8.4 shows that it is actually logically equivalent to
Theorem 1.8.2. Hence, once we establish GLC, we will know that Theorem 1.8.2 also holds for any G.

1.8.6. By Corollary 1.7.5, in order to prove GLC, we need to show that the map (1.18) is an isomorphism
in QCoh(LSged). Since LSgred is eventually connective, it is sufficient to show that for any field-valued
point

o : Spec(K) — LSE*,
the resulting map
(1.20) K — Ac,o
is an isomorphism, where Aqg,» denotes the fiber of Ag irrea at o.

Applying base change to the functor Lg,cusp along o, we obtain a functor

Lg,o : D-mod1 (Bung)cusp ® Vectx — Vectrx .
2 QCoh(Lsizred)

Since the functor Lg cusp is fully faithful and admits a left adjoint, we obtain that Lg . is also fully
faithful. In particular, Lg . is conservative. Hence, by Barr-Beck, it can be identified with the forgetful
functor

Ag,--mod — Vectx .

Such a functor can be fully faithful either when (1.20) is an isomorphism (which is what we want
to show), or when Ag, = 0. Thus, it remains to rule out the latter possibility.
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1.8.7. We need to show that the category

D-modi (Bung)es := D-mod 1 (Bung)cusp ® Vect i
2 2 QCoh(Lsirred)

is non-zero. For this, we can further replace K by its algebraic closure.

Performing base change k ~~ K, we can assume that K = k. Then the category D—mod%(Bunc)a
is, by definition, the category of Hecke eigen-sheaves with respect to o.

However, it was shown in [FGV] that for G = GL, and o irreducible, the category D-mod 1 (Bung)o
contains a non-zero object.

Remark 1.8.8. Alternatively, the proof of the existence of a non-zero Hecke eigensheaf for a given
irreducible local system, valid for any G, follows by combining the [BD1] construction of Hecke eigen-
sheaves via localization at the critical level and the result of [Ari], which says that any irreducible local
system carries a generic oper structure.

O[GLC for G = GLy]

2. LEFT ADJOINT AS THE DUAL

In this section we will establish the ”first half” of the Ambidexterity Theorem, namely that the
functor left adjoint to Lg, cusp is, up to a certain twist, is canonically isomorphic to its dual.

In order to do so, we will first have to show that the source and the target of Lg cusp are canonically
self-dual.

2.1. The dual automorphic category. In this subsection we recall, following [DG] or [Gal], the
description of the dual of the category D-mod 1 (Bung).
2.1.1. Recall the category D—mod% (Bung)co. It is defined as the colimit
colim D-mod 1 (U),
U 2

where U runs over the poset of quasi-compact open substacks of Bung, and for U L Uz the corre-
sponding functor

D—mod%(Ul) — D—mod% (U2)
is (j1,2)x
For a given quasi-compact open
(2.1) U Bung,

we let
Jeo,s : D-mod 1 U) — D-mod (Bung)co

denote the tautological functor.

2.1.2. The category D-mod 1 (Bung)eo is endowed with a tautologically defined functor
Ps-I1d™ : D—mod% (Bung)eo — D—mod% (Bung),
characterized by the following property:
For a quasi-compact open as in (2.1), we have
(2.2) Ps-1d"™ 0jco,« = jx,

as functors
D-mod U) - D-mod (Bung).
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2.1.3. Note that Verdier duality on Bung gives rise to a canonical identification

Verdier

(2.3) D—mod% (Bung)" s D-mod% (Bung)co-
It is characterized by the requirement that for (2.1), we have
Jeor 2 (57)7,
where we identify
D-mod%(U)v =~ D-mod (V)

via usual Verdier duality, also denoted DVerdier,

2.2. The dual of the cuspidal category. In this subsection we will use Sect. 2.1 to show that the
cuspidal automorphic category is canonically self-dual.

2.2.1. Let
D-mod, (Bung)co,ris C D-mod (Bung)eo
be the full subcategory, generated by the essential images of the functors
Eisco,« : D—rnod%(BunM)CO — D—rnod%(BunG)CO
(see [Gal, Sect. 1.4]) for proper parabolic subgroups.
Set N
D—mod% (Bung)co,cusp := (D—mod% (Bung)CO’Eis) .

Let
e ! D—mod% (Bung)co,cusp < D—mod% (Bung)eo

denote the tautological embedding. It admits a left adjoint, making D-mod%(Bunc)co,cusp into a

localization of D-mod% (Bung)co-

2.2.2. The identification (2.3) gives rise to an identification

Verdier
cusp

(2.4) D—mod% (Bunc;)(\:/usp ~ D—mod% (Bung)co,cusp
so that
€co ™ (eL)v and eCLO ~e.
2.2.3. Recall now that the category D-mod% (Bung)co,cusp has the following property (see [Gal, Propo-
sition 2.3.4]): there exists a quasi-compact open substack
Up ‘]—D> Bung,

such that the functor
eco : D—mod% (Bung)co,cusp — D—mod% (Bung)eo
factors as
(J0)co,* © €U co,
for (an automatically uniquely defined fully faithful functor)

€uy,co D-mod% (Bung)co,cusp —> D-mod% (Vo).
2.2.4. Furthermore, according to [Gal, Theorem 2.2.7], the functor Ps-1d™ sends D—mod% (Bung)co,cusp
to D-mod 1 (Bung)cusp, and the resulting functor
Ps-Idfyep D—mod% (Bung)co,cusp — D—mod% (Bung)cusp
is an equivalence.
We automatically have

(25) € o PS'Idgl‘xlsp = (j())* O €y, co-
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2.2.5. Thus, combining (2.4) with the equivalence Ps-Id¢ys, we obtain a self-duality

Ps-Id2Y oD Verdier

(2.6) D-mod% (Bung)cvusp R D-mod% (Bung)cusp-
2.2.6. For later use we introduce the following notation:

Let
(2.7) ey, : D—mod% (Bung)cusp — D-mod% (Uo)

be the uniquely defined functor, so that
euy,co ™ €y, 0 Ps-Idoygy, -
The functor ey, is automatically fully faithful and
e (jo)« o ey,.
Let ebo denote the left adjoint of ey,. We have:
L

(2.8) e” ~ eﬁo °j5-

2.3. Duality and the Poincaré functors. In this section we will recall the result of [Lin] that says
that the !- and *-versions of the geometric Poincaré functor become isomorphic, once we project to the
cuspidal automorphic category.

2.3.1. Recall (see [Lan2, Sect. 12.4]) that in addition to the functor
Poince,i : Whit' (G)ran — D—mod% (Bung),
there exists a naturally defined functor

Poincg,« : Whit. (G)ran — D-mod% (Bung)co-

2.3.2. By construction, with respect the duality (2.3) and the canonical duality

(2.9) (Whit' (@)ran) " ~ Whit.(G)Ran,
we have
(2.10) (coeffg)" ~ Poincg « .

2.3.3. Recall now (see [Lan2, Sect. 1.3.5]) that, in addition to the duality (2.9), there exists a canonical
equivalence

(2.11) Ownit() : Whits(G)ran ~ Whit' (G)ran-
The following assertion is a “baby” version of the main result of [Lin] (see Lemma 1.3.4 in loc. cit.):

Theorem 2.3.4. The functors
elo Poincg,1 0@wnit(cy and e” o Ps-Id™ o Poincg « 20N

Whit, (G)ran = D—mod% (Bung)cusp

p(wx)]’

are canonically isomorphic.

2.4. Self-duality on the spectral side. In this short subsection we set up our conventions regarding
the self-duality of the category QCoh(LSgEd).

2.4.1. Let us identify QCoh(LS) with its own dual via the naive duality
(2.12) QCoh(LSg)” O~ QCoh(LSg).
L.e., the corresponding anti-self equivalence of
QCoh(LSg)¢ = QCoh(LS )P

is given by monoidal dualization.
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2.4.2. The self-duality (2.12) induces a self-duality
(2.13) QCoh(LSE*d)Y P~ QCoh(LSE*Y).

2.4.3. Recall now (see, e.g., [AGKRRV1, Sect. 11.3]) that the canonical self-duality on Rep(G) gives

rise to a self-duality of the category Rep(G)ran.

2.4.4. We have:

Lemma 2.4.5. With respect to the above self-dualities of QCoh(LSs) and Rep(G)Ran, the functors
Loc® : Rep(G)ran <+ QUoh(LSg) : T

identify with each other’s duals:
(Locg’cc)v ~ I and (I“SGPCC)v ~ Locy*.

2.5. Left adjoint vs dual. In this subsection we finally formulate and prove the main result of this
section, Theorem 2.5.3, which says that the left adjoint and the dual of Lg,cusp are isomorphic, up to
a twist.

2.5.1. Consider the functor dual to L, cusp
L& cusp QCoh(LSiged)v — D-mod% (Bung) eusp-
Using the identifications (2.13) and (2.6), we can think of L¢ .., as a functor
(2.14) QCoh(LSE*) — D-mod} (Bung)eusp-

Let
P cusp : QCoh(LSE®Y) — D-mody (Bung)eusp

denote the composition of the functor (2.14) with the Cartan involution and the shift [-2dn,, ], i-e.,

\
q)G,cusp =TG © ]LG,CUSP[_26NP(“;X)]'

2.5.2. We are going to prove:
Theorem 2.5.3. The functor ®g cusp identifies canonically with ]L(L;’C,Jsp.

This theorem is a particular case of [Lan2, Theorem 23.2.5], and its proof is much simpler in that it
only uses Theorem 2.3.4, rather than the full force of the result from [Lin]. We will supply a proof for
the sake of completeness, and it occupies the rest of this subsection.

2.5.4. By Proposition 1.1.4, it suffices to establish an isomorphism

spec
e}

spec

L
L& cusp © 7" o Loc ~ Pgcuspo g O LOCG

as functors

Rep(G) = D—mod% (Bung)cusp-
We will do so by showing that both diagrams

—1

Whit' (G)ran & Rep(G)Ran
Poineg 1 [~20n,, ] l Loc?Pee
(2.15) D-mod (Bung) QCoh(LSg)
ELl l]*

LE i
D-mod%(Bunc)Cusp LGoeusp QCOh(LS‘ged)
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and
L1 csgt .
Whit' (G)ran +———— Rep(G)ran
Poinccyg[726Np(wX)]Jv Loctpee
(2.16) D-mod (Bunc) QCoh(LSy)
eLl J{fk
PG cus i
D-mod; (Bung)cusp 2 QCoh(LSE)
commute.

21

2.5.5. The commutation of (2.15) is immediate from (1.2) and (1.10). Thus, it remains to deal with

(2.16).
First, according to [Lan2, Lemma 1.4.11], we have
TG © ngl >~ Ownit(q) © CS¢ .
Combining with Theorem 2.3.4, this allows us to replace (2.16) by

\
csy

Whit. (G)Ran Rep(G)ran
POiIlCG,*l Locg’ec
(2.17) D—mod% (Bung)co QCoh(LSg)
eLoPs—Idr‘VJ( lj*
L& irreal=20N ] .
D-mod (Bung)cusp Gmred rlox) QCoh(LSE™).

2.5.6. Using
e’ o Ps-Id™ ~ Ps-Idoy,, e,

we can rewrite (2.17) as

V. -
Whit. (G)Ran Lo Rep(G)ran
Poincg « l Locg)ec
D—mod% (Bung)co QCoh(LS¢)
Ps-1dgy,, oeV l l]*
H“é,irred [_261\7 w ] B
D—mod% (Bung)cusp rlex) QCoh(LS‘éred%
and further by
. csg .
Whit. (G)Ran Rep(G)Rran
Poincg  « J{ Locscl>ec
(2.18) D-mod (Bung)eo QCoh(LSs)
eV l lﬂ*

Vv
L& irreal—20n

w ] s
D-mod 1 (Bung )eo,cusp 7ex) QCoh(LSEeY),
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where we now think of H—‘é,irred as a functor
QCOh(LSiéred) — D—mOd% (BUHG)co,cusp

via (2.13) and (2.4).

2.5.7. Passing to the dual functors in (2.18), we obtain that it is equivalent to

Whlt* (G)Ran & Rep(é)Ran
COEHGT Fg)ec
D-mod% (Bung) QCoh(LSg)

eT TJ*

LG irred[—26n

w ] s
D-mod  (Bunc )eusp Pex), QCoh(LSEeY).

However, the commutativity of the latter diagram follows from (1.1) and (1.8).
O[Theorem 2.5.3]

3. RIGHT ADJOINT AS THE DUAL

In this section we will assume that G is semi-simple®.

We will prove the “second half” of the ambidexterity theorem, namely, that the functor right adjoint
t0 L cusp 1s isomorphic to the (twist of) the dual of La,cusp-

The full Ambidexterity Theorem says that the left and right adjoints of Lg cusp are isomorphic.
Of course, this statement a posteriori follows from GLC, but in the current strategy, it constitutes a
central step in its proof.

3.1. The ambidexterity statement.
3.1.1. We continue to regard the categories D—mod% (Bung )cusp and QCoh(LSE™?) as self-dual via the
identifications (2.13) and (2.6), respectively.

Recall the functor ® ¢ cusp, see Sect. 2.5.1. We will prove:

Theorem 3.1.2. The functor ®g cusp identifies canonically with the right adjoint of La,cusp-

3.1.3. Before we prove the theorem, let us draw some consequences. First, by combining Theorems
2.5.3 and 3.1.2, we obtain what we call the Ambidexterity Theorem:

Main Theorem 3.1.4. The left and right adjoints of Lg,cusp are isomorphic.

Corollary 3.1.5. The endofunctor
]LG,cusp o Lé‘,cusp

of QCoh(LSiged) is isomorphic to its own left and right adjoint.

6This assumption is just a convenience. The statement holds for any reductive G, just the proof would involve
slightly more notation.
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3.1.6. Recall (see Sect. 1.7.2) that the functor LG,Cuspo]Lé‘Cusp is given by tensoring with the associative
algebra object '
AG irred € QCOh(LSlg;ed).

From Corollary 3.1.5 we obtain:

Corollary 3.1.7. The object Ag,irrea € QCoh(LSgred) is self-dual. In particular, it belongs to
QCoh(LSiged)perf, i.e., it is compact.

Eventually we will prove an even more precise version of the second part of the above corollary (see
Sect. 4.4):

Main Theorem 3.1.8. The object Ag,irred € QCoh(LSiged) is a classical vector bundle, which is
equipped with a naturally defined flat connection”.

Remark 3.1.9. Note that it makes sense to talk about classical vector bundles on LSiG”ed, since, under
the assumption that G is semi-simple, the stack LSiC{Ver is classical and smooth.

3.1.10. The rest of this section is devoted to the proof of Theorem 3.1.2.

3.2. Critical localization. In this subsection, we will show that the right adjoint of the critical
localization functor (functor Loce below) is essentially isomorphic to its dual, once we restrict to the
cuspidal automorphic category.

3.2.1. Let Locg be the functor
KL(G)crit,Ran — D—mod% (Bung)
of [Lan2, Sect. 13.1.5].

3.2.2. Denote by Locg,cusp the composite functor

Loc el
KL(G)crit,Ran 2% D-mod% (Bung) — D-mod% (Bung)cusp-
We have the following counterpart of Proposition 1.1.4, proved in Sect. 3.2.7:
Proposition 3.2.3. The functor Locg,cusp 95 Verdier quotient.

In fact, we will see shortly that the right adjoint of Locg,cusp is continuous. We can reformulate
Proposition 3.2.3 as the assertion that the right adjoint Locg,Cusp of Locg,cusp is fully faithful.

3.2.4. Recall (see [Lan2, Sect. 4.3]) that the category KL(G)crit,Ran is also canonically self-dual. Thus,
using the self-duality of D—mod% (Bung)cusp given by (2.6), we can regard the dual of Locg,cusp as a
functor

(3.1) Loc cusp + D-mody (Bung)eusp — KL(G)erit Ran-
The following assertion is a counterpart of Lemma 2.4.5:
Proposition 3.2.5. We have a canonical identification between Locé,cusp and
Lock cuep @ det(D(X, 0x) @ 9) 6.

In the statement of Proposition 3.2.5, the integer d¢ is dim(Bung). The rest of this subsection is
devoted to the proof of Proposition 3.2.5.

3.2.6. Let Uy be as in Sect. 2.2.3. Denote
Loca,u, = jo o Loca, KL(G)erit,Ran — D-mod%(Uo)7
so that
(3.2) Loca,cusp ™ eﬁo o Loca,u,
where ef;, is the left adjoint of the functor ey, of (2.7).

"Note that Corollary 4.2.5 and Proposition 4.2.8 imply that the resulting local system on LSiC{,red has a finite
monodromy
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3.2.7. Proof of Proposition 3.2.3. It is known that for any quasi-compact U, the corresponding functor
Locg,u is a Verdier quotient. Now, the assertion follows from (3.2), since eﬁo is also a Verdier quotient.
O Proposition 3.2.3]

3.2.8. It follows formally that we have the identifications

v v R R
Locg cusp =~ Locg y, cev, and Locg cusp =~ Locg,u, oeuy -

Thus, in order to prove Proposition 3.2.5, it suffices to show that for a quasi-compact U C Bung,
with respect to the Verdier self-duality of D-mod 1 (U), we have

(3.3) Loct = Locg y @ det(T'(X, Ox) @ g)[dc]

as functors
D-mod (U) = KL(G)crit,Ran-

3.2.9. For any level k and U as above, we have a canonical identification between the dual of the functor
LOCG,U,n+crit

Locg, keri j*
KL(G)K+Crit,Ran GY—;F ! D‘m0d5+crit (BU.HG) J_> D‘mOdn-&-crit(U)
and the right adjoint of Loca,u,—k+erit

Locg, — k+terit i*
3 D-mod — x4 crit (Bung) = D-mod .yt (U),

KL(G)nfcrit,Ran
where we identify D-mod_ x4 crit (U) with the dual of D-modx+crit (U) using the pairing

!

D‘mOdm-&-crit(U) ® D‘mOd—ﬁ-!—crit (U) &) D‘mOdQCrit(U) = ])‘InOddlog(dctBunG ) (U) ~

—®det(T*(Bung))® ~'[— dim(Bun
(T* (Bung [ (Bung)

Car(U,—)
~ D-modgiog(det(T+ (Bune))) (U) ] D-mod(U) “&=%" Vect,

where the identification
dlog(detBun,, ) =~ dlog(det(T™(Bung)))

is induced by the identification of the line bundles
detBung =~ det(T™ (Bung)) ® det(I'(X, 0x) ® g).
Indeed, the above right adjoint/dual functor (for a fixed € Ran) is given by
r'evels, ),

where
Uls .= U x Bung'™%, D-mod_perit(U) = KL(G) s terita-

Bung

This functor is well-defined due to the assumption that U is quasi-compact, so that Uz is a
quasi-compact scheme.

3.2.10. Specializing to k = 0, we obtain the desired identification (3.3).

3.3. The spectral Poincaré functor. In this section we will show that the right adjoint of the
spectral Poincaré functor (functor PoincsopiC below) is essentially isomorphic to its dual, once we restrict

to the locus of irreducible local systems.

NB: it is in this subsection that the assumption that G (rather G) is semi-simple is used®.

8In fact, it is used twice, and one can show that the two usages cancel each other out. We just chose not to go
through this exercise.
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3.3.1. Let
PomcSpec IndCoh™ (Opg°™ free) pan — IndCohyinp (LS

be the functor of [Lan2, Sect. 17.2].

spec

G owirred the composite functor

Denote by Poinc’:

Poin. bp“

IndCoh* (OpZ°™ ™) oy —3 QCoh(LSg) 25 QCoh(LSE™).

3.3.2. Recall now (see [Lan2, Sect. 17.1]) that in addition to IndCoh* (Opgon’free)Ran, we can consider
the category
IndCoh' (OpE*™™**)ran,

and we have a canonical identification

v pSerre

(3.4) (IndCoh™ (OpE® ™ )ran)” ~ =~ IndCoh'(OpE ™) ran.

In addition, we have an identification
Oop() IndCoh!(Op‘g’“’free)Rzm — IndCoh* (Opgon’ﬁee)Ran,

Composing we obtain a datum of self-duality:

oDSerre

IndCoh™ (OpE°"™) R an.

60p<c>

(3.5) IndCoh* (OpE™™ ") fan
3.3.3. We are going to prove:

Proposition 3.3.4. With respect to the self-dualities (3.5) and (2.13), we have a canonical identifica-
tion between the functor dual to Pomcscficlrmd and

®—1
(PO]I’ICSCI;iclrred) [Kost [JG] ’

where lkost s the line of [Lan2, Sect. 17.2.2].
The rest of this subsection is devoted to the proof of Proposition 3.3.4.

3.3.5. Recall (see [Lan2, Sect. 17.1]) that in addition to the functor Poincy; %", there exists a functor

PoincZ* : IndCoh' (OpZ°" ™) gan — IndCohnilp (LS ).

Denote
spec _ spec
PomCG Lirred =30 Pomcc -
According to [Lan2, Theorem 17.2.4], we have:
spec spec

Poinc’( o Poinc" 0O¢ () ® lkost [9c].

Hence, the assertion of the proposition can be reformulated as an isomorphism
(3.6) (PoincP*° )Y ~ (Poinc?*°.  YF[264],

G, irred G, *,irred
as functors
QCOh(LSIrred) = IndCoh (O mon- free)Ran,

o) as a functor

G\ irre
(2.13)

QCoh(LSE*Y) =% QCoh(LSE*?)Y — IndCoh' (OpE°" ™) an ~ IndCoh* (OpE°" ™) g .

To simplify the notation, we will prove a variant of (3.6), where instead of the entire Ran we worked
at a fixed point € Ran. Le., we will prove

(3.7) (Poinc¥ (¢ ) ~ (PoincsPe° YR [26¢]

G,!,z,irred G,*,z,irred

where we regard (Poinc?;

as functors
QCOh( Slrred) = IndCoh (O mon- free(DQX))’
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3.3.6. Recall that

°Pe¢ and PoincP¢°

POIHCG‘,*@ Gl

are given by
(ﬂ—z),{ndCOh ° (Sz)lndCoh,* and (ﬂ_g)indCoh o (Sg)!,

respectively, for the morphisms
Opgon-free(,D;) <5_£ Opgon—free(x _ Q) E LSC‘; )
Let
coeffsgz : IndCoh(LS ) — IndCoh™ (OpZ°™ (D))
denote the functor
(Sz)indCOh o (7‘@)!~
For future use, we also introduce the notation for the Ran version of this functor
coeff* : IndCoh(LS¢) — IndCoh” (OPE ™) ran.
3.3.7. Let
Serre
(3.8) IndCoh(LS5)" b IndCoh(LS)
be the identification, given by Serre duality.
Note that with respect to identifications (3.8) and (3.4), we have

. v
(3.9) (Pomcsé)j;) ~ coeffsé’f; .

3.3.8. Due to the assumption that G (and hence é) is semi-simple, the stack LSiéred is smooth, so the
natural embedding

QCoh(LSE*?) < IndCoh(LSE*?)
is an equivalence.

In particular, the identification (3.8) induces an identification

s Serre s
(3.10) QCoh(LSe)Y P57 QCoh(LSE™).
From (3.9) we obtain
(" o Poincg’j;)v ~ coeffsc';f’;c 07x =: coeffsg’zmed,

as functors
QCoh(LSE*Y) = IndCoh™ (OpZ°™*°(DX)),

where we use (3.10) to identify QCoh(LS¥?) with its own dual.

3.3.9. Note now that since G is semi-simple, the Killing form on § defines a canonical symplectic
structure on LSIgEd. Hence,

DScrrc ~ Dnaivc [dlm(LSgrcd (X))] _ Dnaivc [26G] )
Hence, (3.7) becomes equivalent to an isomorphism

(3.11) coeffPe° ~ (Poinc¥*® VB

G,z,irred — G,*,z,irred
3.3.10. Thus, we have to establish an adjunction between

770 (1) o (s2)" and (s2): 0 ()’ 0 g

Since the functors ((s;)™dC°™* (s,)ndC°n)

between

form an adjoint pair, it suffices to establish an adjunction

J o (Wg)indcc’h and (7@)! O Jx-
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3.3.11. Set

Oprgon—free,irred(X _ 2) .= Oprgon—free(X _ g) L;< Lsiéred .
G

Let ﬂgred denote the resulting morphism

Opgon—free,lrred (X _ &) N leéred )

By base change, the required adjunction is equivalent to an adjunction between

(Wzred)indCoh

Indcoh(oprénon—free,irred(X _ E)) o IndCQh(LSiGIfred)

and

(ﬂ_irred !
x

IndCoh(LSE*!) " == IndCoh(OpZo" e d(X — z)).

However, this follows from the fact that, under the assumption that G is semi-simple, the morphism

mirred s ind-proper. This follows from the fact that the generic non-degeneracy condition for opers is

aﬁtomatic, once the underlying local system is irreducible.
O[Proposition 3.3.4]

3.4. Proof of Theorem 3.1.2. This proof will amount to comparing the commutative diagrams,
obtained from the diagram expressing the compatibility of L with critical localization (diagram (3.13)
below) by passage to right adjoint and dual functors, respectively.

3.4.1. By Proposition 3.2.3, in order to construct an isomorphism
(]LG,cusp)R =~ (IDG,cuspy
it suffices to establish an isomorphism

(312) (LOCG,cusp)v o (LG,cusp)R =~ (LOCG,cusp)v o (I)G,cusp-

3.4.2. Recall that according to [Lan2, Theorem 20.6.2], we have the following commutative diagram:

D-mod, (Bung) —<— IndCohyip (LS¢)
(313) Locg ®IT TPoincstiC
FLEG cri
KL(G)critﬁRan G, crit IndCoh* (Opgon—frcc)Ran’

where :

e FLEq, it is the critical FLE functor of [Lan2, Equation (7.1)];
e [is the comologically graded line

1
165 nr ® Wty Vo)
where: |
23\,’)(%{) is the (non-graded) line of [Lan2, Equation (12.9)];
— In, ., is the (non-graded) line of [Lan2, Equation (14.2)];
- 6Np(wx) = dim(Buan(wX)).
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3.4.3. Concatenating diagrams (3.13) and (1.9), we obtain a commutative diagram

La,cus irre
D-mod  (Bunc )eusp Greue IndCohniip (LSE?)
(3.14) Loca, cusp ®[T Tpolncgiclrred
FLEG, cri
KL(Qerit.han ~ ———=% IndCoh* (OpZo™®) g,y

Passing to the right adjoints in (3.14) we obtain a diagram

Lg,cus R i
D-mod, (Bung)ewsp -~ IndCohnip (LS*")
(315) Locgycuspl l(Polncg’C:‘rred)R(@[
FLEEchrit 1
KL(G)crit,Ran +———— IndCoh"(Opz°"""**)ran-
We will establish (3.12) by showing that the diagram
G, cus i
D-mod% (Bunc)cusp ¢ P IndCOhNilp (LSéred)
(3.16) 008 cup | | Poinegs ) e
FLEG crie

KL(G)crit,Ran IndCOh (O mon- free)Ran

commutes as well.

3.4.4. Consider the diagram obtained by passing to the duals in (3.14):

(L&, cusp)

IndCohiip (LSE)

v spec \/
(317) LOCG,cuSp ®[J J((Polncc *,irred

\
FLEG crit

D—mod% (Bung)cusp

KL(G)erit,Ran IndCoh' (OpZ°™ ™) Ran

Recall now that according to [Lan2, Theorem 7.6.4], we have a canonical identification
FLEé,crit ~7G © FLEC_;,lcrit O@Op(Gv)
as functors
IHdCOh (O e free)l’{an — KL(G)Crit,Ran‘

Combining with Proposition 3.3.4, we can rewrite (3.17) as

Tao(La,cusp)

D—mod% (Bunc)cusp IndCOhNilp(LSigred)

R ®—1
(3'18) Locé,cuSp ®Il l(Pomcstc*c‘rmd ®lgoss19a]

—1
FLEG crit

KL(G)erit,Ran IndCoh* (Op5°" ™) Ran,

and further as

PG, cusp

D—mod% (Bung)cusp IndCohnirp (LSEeY)

v - -1
(3.19) Loccycusp[zsz(wx)]J’ l(Pomcg’i‘:“red>R®[® BT e

-1
LEG crit

KL(G)crit,Ran IndCoh* (OpE* ™) Ran.
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Taking into account Proposition 3.2.5, we can further rewrite (3.19) as

PG cus ;
D—mod% (Bung)cusp (—p IndCOhNilp (Lsgred)
(3.20) Locgﬁcusp[Q(SNp(wX)]Jr l(Poincg‘fimd)R@[@—1®[§;}®det(r(x,ox)®g)®—1
FLES!

KL(Qerit.han = IndCoh* (OpZ°™ )y,

3.4.5. Comparing (3.20) with the desired diagram (3.16), we conclude that it suffices to construct an
identification of lines

_ _ ®1 _
Pl @ de (X, 00 e = (B4, )PeE .

However, the latter is the content of [Lan2, Proposition 21.1.6].
O[Theorem 3.1.2]

3.5. An addendum: ambidexterity for eigensheaves. The contents of this subsection will not
be used elsewhere in the paper. Here we will explain another approach to ambidexterity, albeit so far
working only for Hecke eigensheaves (or more generally D-modules with nilpotent singular support, see
Remark 3.5.9).

3.5.1. Fix a point o € LSiged, and let

D-mod 1 (Bung)e := D-mod 1 (Bung) ®  Vect
2 2 QCoh(LS )

be the corresponding category of Hecke eigensheaves, where
QCoh(LSs) — Vect
is the functor of *-fiber of o, to be denoted (is)*.

Note that since o was assumed irreducible, the forgetful functor

oblv,

(3.21) D—mod% (Bung)o 2y D-mod% (Bung)

lands in D—mod% (Bung)cusp-

3.5.2. The functor L¢g induces a functor
La,o: D-mod% (Bung)s — Vect.

According to Theorem 3.1.4, the left and rights adjoints of Lg,» are (canonically) isomorphic. In
this subsection we will exhibit another way of constructing such an isomorphism?.

3.5.3. Note that by construction, the functor Lg, is isomorphic to the composition

obly, coeff Yac:glob
D—mod%(Bung)(, — D—mod%(Bunc) == Vect,

where coeff*“#'°" is as in [Lan2, Sect. 12.5.3].
The left adjoint of Lg,», denoted ]Léﬁ sends the generator k£ € Vect to the object
(10)" (PoincZs #°0),

where:

9However7 it is is not obvious that the isomorphism we will construct in this subsection is the same as one from
Theorem 3.1.4.
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e (iy)" denotes the functor

D-mod (Bung) ~ D-mod: (Bung) ®  QCoh(LSg) @ 24
2 2 QCoh(LS )

— D-mod . (Bung) ® Vect = D-mod 1 (Bung)o,
2 QCoh(LS ) 2

left adjoint to the forgetful functor oblv,;
. Poincg?f’gbb € D—mod%(Bunc) is the object from [GLC1, Sect. 1.3].

3.5.4. Thus, we wish to construct a canonical isomorphism
(3.22) FHomD-mod; (Bung)a (F L&, (V)) =~ Homveet (coeff € coblv, (F), V)
for F € D—mod% (Bung)s and V € Vect.

We will rewrite both sides of (3.22) and show that they are canonically isomorphic.
3.5.5. Using Theorem 2.3.4, we rewrite ]Lé’g (V) as
(3.23) (i) (Ps-Id™ (Poinc %)) ® V,
where

. Vac,glob Verdi . Vac,glob
Poinc 8" := D" (Poine ;8 °7) [ 26N

kK

€ D-mod% (Bung)co.

p(wx)]
Since o is a smooth point of LSiged, we have
(in)" = (i) [dim(LSE)] @ det (T3 (LS4)),
where i, : QCoh(LSiéred) — Vect is the functor of !-pullback, which is defined for maps of finite
Tor-dimension, and is the the right adjoint of (is)«, since the map i, : pt — LSiC{fEd is proper.
In particular, the functor

D-mod; (Bung) ~ D-mod; (Bung) ®  QCoh(LSg) 2V
2 2 QCoh(LSx)

— D-mod1 (Bung) ® Vect = D-mod1 (Bung)s
2 QCoh(LS 5) 2

is the right adjoint of oblv,.

Note also that using the symplectic structure on LSiéred, we can trivialize the line det(7T; (LS¢)),
and we note that dim(LS¥*?) = 2dim(Bung).

Combining, we obtain that the left-hand side in (3.22) identifies with
(3.24) HoMD-mod ; (Bung) (0B (F), Ps-Id™ (Poinc*5'°") ® V)[2 dim(Bung)].
1 ,
3.5.6. Denote
F' := oblv, (7).
We rewrite (3.24) using Verdier duality as
(3.25) Homvees (C,.(Bung, ' @ Poincl? %), V) [2 dim(Bung) + 28
And we rewrite the right-hand side of (3.22) as

p(wX)]'

! .
(3.26) Homveet (C (Bung, F’ ® Poimc\éf?:’g’l"b)7 V)[26n

p(WX)]'

Hence, in order to establish (3.22), we need to construct an isomorphism

* !
(3.27) C.(Bung, ' ® Poinc\g”f’glob)[f2 dim(Bung)] ~ C' (Bung, ¥ ® Poinc\é‘:‘:’gbb).
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3.5.7. By the main theorem of [Lin], we have

Poinc\é?f’gbb[—2 dim(Bung)] ~ Mirgun, (Poinc

Now (3.27) follows from the fact that ' has nilpotent singular support (see [AGKRRV1, Corollary
14.4.10]) combined with the next general assertion from [AGKRRV2, Theorem 3.4.2]:

Vac,glob)

G, *

Theorem 3.5.8. For any F' € D—modéNﬂp(BunG) and any F" € D—mod% (Bung)co, there is a canon-
ical isomorphism

* !
C.(Bung, 3’ ® Mirgune (F')) ~ C'(Bung, ¥ ® F").

Remark 3.5.9. The above argument can be generalized so that it proves ambidexterity for the functor
induced by Lg A
D-mod 1wy, (Bung)eusp = IndCoh (LS5 *"),

where
D—mod%VNilp(Bung)cusp = D—mod%VN“p(Bung) N D—mod% (Bung)cusp
and
irred,restr ,__ t irred
Lsgre restr = Lsgs T m leére .

Note that LSiérEd’rEStr is a disjoint union of formal schemes, each of which is isomorphic to the formal
completion of a point in a smooth symplectic scheme of dimension 2 dim(Bung).

4. THE EXPRESSION FOR Ag,irred VIA OPERS

In this section we will prove that the object Ag,irrea € QCoh(LSiged) can be expressed via opers.

This will lead to a number of structural results concerning Ag irred, as well as the space of generic
oper structures on irreducible local systems.

Furthermore, given the recent result of [BKS], we will deduce GLC for classical groups.
4.1. Statement of the result.
4.1.1. Consider the space Opgon'free(Xge“)Ran fibered over Ran, whose fiber over z € Ran is
OpE™ (X — ).
Let mRan denote the resulting map

Operon—free (Xgen)Ran N LSG“ )

Set
Opgon-frcc,irrcd (chn)Ran — Opré]on—frCC(chn)Ran % LSing )
LSg
Let 7i™d denote the resulting map

mon-free,irred gen irred

irred

Note that the morphism miaa is pseudo-proper, i.e., a (not necessarily filtered) colimit of proper
maps, see Sect. 3.3.11.

4.1.2. Consider the object!®

O l irred irred
BG,F;rred := oblv ((7[‘;{;?1 )!(wopgon-free,irred(Xgen)Ran)) S QCOh(LS‘ére )7

where | |
oblv' : D-mod(LSE*!) — QCoh(LSE™?)
is the “left” forgetful functor, see [GaRol, Equation (5.3)].

Op

By construction, B5Y .

4 18 a co-commutative coalgebra in QCoh(LSE?).

107 he superscript “Op” in the notation below refers to opers and not to the opposite algebra structure.



32 ARINKIN, BERALDO, CHEN, FAERGEMAN, GAITSGORY, LIN, RASKIN, ROZENBLYUM

4.1.3. Denote by
L& cusp : QCoh(LSE ) — D-mod (Bung )eusp

the functor right adjoint to La,cusp-

Since the monoidal category QCoh(LSiged) is rigid and the functor Lg cusp is QCoh(LSiged)—linear,
the functor L& ., is also naturally QCoh(LSiged)—linear.

Hence, the comonad
R
]]"Gyc‘lSP © LG,cusp

acting on QCoh(LSing) is given by tensoring by a co-associative coalgebra object, to be denoted
BG,irrcd«

4.1.4. The main result of this section reads:

Theorem 4.1.5. There exists a canonical isomorphism between
Ba,irred Bgﬁmd

as plain objects of QCoh(LSiéred).

Remark 4.1.6. One can show that the isomorphism of Theorem 4.1.5 respects the co-associative coal-
gebra structures on the two sides. However, we will neither prove'! nor use this.

4.2. Combining with ambidexterity. Prior to proving Theorem 4.1.5 we will derive some conse-
quences.

4.2.1. Note that a priori, the comonad

]LG,cusp o ]Lg,cusp
is the right adjoint of the monad

LG,cusp ° ]Lé,cusp'

Hence, the coalgebra B irrea identifies a priori with the monoidal dual of the algebra A irred.

4.2.2. Combining with Corollary 3.1.7 we obtain:
Corollary 4.2.3. There is a canonical isomorphism

AG irred = Bgirred
as objects of QCoh(LSE*?).
4.2.4. Combing further with Theorem 4.1.5, we obtain:
Corollary 4.2.5. There is a canonical isomorphism

A irred ~ B 0a
as objects of QCoh(LSiéred).

And as a result:

Corollary 4.2.6. The object Bg’f’med € QCoh(LS*?) is compact.

11886, however, Remark 4.6.7.
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4.2.7. Consider the object

irred irred
(4.1) (TRan )!(wopgon-free,irred(Xgen)Ran) € D-mOd(LSG ).
Assuming Theorem 3.1.8 for a moment, we obtain that the object (4.1) has the form

. Op
wLS‘éWd ® ﬁG,ilmred ’

Op . . - irred
where Bl 4 is a classical local system of finite rank on LSZ™°.

We will prove the following assertion, which would be needed for the final step in the proof of GLC:

Proposition 4.2.8. The local system ﬁgﬁrred has a finite monodromy, i.e., it trivializes over a finite
étale cover of LSiged.

4.3. Proof of Proposition 4.2.8. We will deduce Proposition 4.2.8 from Theorem 4.1.5.
4.3.1. Denote

irred
F := (TRan )!(wopgon—frcc,irrcd(Xgen)Ran)[_n],
where'? n = dim(LSz).

Since the map ﬂif{;id is pseudo-proper, this object can be written as

colim¥; i € D-mod(LSE*?),

over some diagram I, where each JF; is of the form
(fi)+.ar(wy, )[=n],
where f; : Y; — LSEred is a proper map of algebraic stacks.

For each index i, consider the Stein factorization of the map f;

10
Yo - Y9 S LSE
so that f? is a finite map.

Denote

Fi = (f)rar(wyo)[-n].

4.3.2. Let 1 be the generic point of a connected component of LSiéred. It is enough to show that F,
has a finite monodromy.

We have
Fily € D-mod(n)=°, 52, € D-mod(n)°
and the map
induces an isomorphism
H°(Filn) = Fily-
By Theorem 3.1.8 combined with Corollary 4.2.5, the object F|, is concentrated in cohomological
degree 0. Hence, we obtain that
Fly >~ c?éipffﬂn.

Since F), is finite-dimensional, we obtain that I contains a finite sub-diagram I C I such that the
map
® Fly— Fy
ielf
is surjective.
Since each F?|,, has a finite monodromy, we obtain that so does F|s,.
O[Proposition 4.2.8]

12The cohomological shift is introduced for the sake of perverse normalization.
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4.4. Proof of Theorem 3.1.8. In this subsection we will continue to assume Theorem 4.1.5, and
deduce Theorem 3.1.8.

4.4.1. Since Agq irrea is perfect, in order to prove that it is a classical vector bundle, it suffices to show
that the *-fibers of Ag irred at k-points of LSEer are concentrated in cohomological degree 0.

By the self-duality assertion in Corollary 3.1.7, it suffices to show that the *-fibers of Ag irred are
concentrated in non-positive cohomological degrees.

4.4.2. By Corollary 4.2.5, it suffices to show that the *-fibers of Bgf’irrcd are concentrated in non-positive
cohomological degrees.

gen

However, the *-fiber of 3gf;rred at a k-point o € LSiGEred is isomorphic to C.(Opy" ), where

Op%er; = {O'} % Opgonffree,lrred (Xgen)Ran .
’ Lsgrcd

It is automatically concentrated in non-positive cohomological degrees, being the homology of a
prestack.

4.4.3. The D-module structure on Ag irreda comes from the isomorphism of Corollary 4.2.5.
O[Theorem 3.1.8]

4.5. Contractibility of opers. In this subsection we will continue to assume Theorem 4.1.5. We will
show that the validity of GLC is equivalent to the contractibility (and, in fact, just connectedness) of
the space of generic oper structures on irreducible local systems.

4.5.1. Note that in the course of the proof of Theorem 3.1.8 above we have established:
Corollary 4.5.2. The homology of the fibers of the map w5 is acyclic off degree 0.

This can be equivalently reformulated as follows:
irred

Corollary 4.5.3. The connected components of the fibers of the map mR,m are homologically con-
tractible.

4.5.4. Applying Corollary 1.7.5, we obtain:

Corollary 4.5.5. The following assertions are equivalent:
(i) The functor La is equivalence.
(ii) The fibers of the map et are connected.

(iii) The fibers of the map Tt are homologically contractible.
4.5.6. In particular, we obtain that GLC is equivalent to the following conjecture:

Conjecture 4.5.7. The space of generic oper structures on a given irreducible local system is homo-
logically contractible.

Remark 4.5.8. Note that the “bottom” layer of Conjecture 4.5.7 says that the space of generic oper
structures on a given irreducible local system is non-empty. This statement is actually a theorem,
thanks to [Ari].

Remark 4.5.9. The assertion of Conjecture 4.5.7 is easy for G = GL,. In particular, in this way we

obtain another proof of GLC in this case (i.e., one that is logically different from that in Sect. 1.8)*3.

13The difference between the two arguments is that one uses a fully faithfulness assertion on the automorphic side,
another on the spectral side.
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4.5.10. Recall now that thanks to [BKS], Conjecture 4.5.7 is actually a theorem whenever G is a classical
group!?. Hence, we obtain:

Main Theorem 4.5.11. The geometric Langlands conjecture holds when G is a classical group.

Remark 4.5.12. Formally speaking, the main theorem of [BKS] establishes Conjecture 4.5.7 for a slightly
different notion of oper, namely, for g-opers, rather than G-opers (and it is the latter that appears in
Conjecture 4.5.7). In other words, [BKS] implies Conjecture 4.5.7 not for G itself but rather for its
adjoint quotient.

However, as we shall see in the sequel to this paper, the statement of GLC for a given pair (G, CJ)
formally follows from the case when G is replaced by its adjoint quotient (resp., G is replaced by the
simply-connected cover of its derived group).

4.6. Proof of Theorem 4.1.5. As we shall presently see, the proof of the theorem follows almost
immediately from diagram (3.14), once we combine the following pieces of information:

e The functor FLEg it is an equivalence;
e The functor Lg,cusp is a Verdier quotient.

4.6.1. Consider the adjoint pair

.. _spec . * mon-free — irredy | spec
(4.2) Poinc ;"™ 4 IndCoh™ (Opg JRan = QCoh(LSE™ %) : coePfc’med,
see (3.11), where coeff S is the version of the functor coeff "~ when z varies in families along
Ran. B

4.6.2. We will deduce Theorem 4.1.5 from the following assertion, which takes place purely on the
spectral side.

Theorem 4.6.3. The comonad on QCoh(LS¥®?) corresponding to (4.2) is given by tensor product
with ngirred'

This theorem will be proved in Sect. 5. Let us assume it, and proceed with the proof of Theorem 4.1.5.

4.6.4. Since we only want to identify
(43) 3G,irred = Bg{aimrcd
as objects of QCOh(LSig;ed) (and not as co-algebras), it suffices to construct an isomorphism of comonads

. . R R
(4.4) Pomcg”ic’irred O(POIHCSGp:iC,irred) ~ L cusp © (LG cusp)

acting on QCoh(LSing). Indeed, each side of (4.3) is obtained by applying the corresponding side of
(4.4) to O girred.
G

4.6.5. Since FLEG ori¢ is an equivalence, the left-hand side in (4.4) identifies with

. _spec X R . _spec R
pOIHCC,*,irred o FLEG,crit © FLEG crit o(PomcG’*’irred) .

Since Locg,cusp is @ Verdier quotient, the right-hand side in (4.4) identifies with

LG,irred o (LOCG,cusp ®[) o ((LOCG,cusp ®[)R S (]LG,cusp)R

14Here by a classical group we mean a reductive group whose root datum is of type A, B, C or D.
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4.6.6. Hence, it suffices to establish an isomorphism between the comonads

. _spec X R . .. _spec R
PomcG,’*’irred o FLEG,crit © FLEG eyt o(PomcG’*,med) ~

~ ]LG,irrcd o (LOCG,cusp ®[) o ((LOCG,cusp ®[)R o (]LG',Cusp)R7

which is the same as

.. _spec X .. _spec \R
(lz’omcé,*’irer oFLEg,crit) © (Pomca,*’irer oFLEG,eit)" =~

=~ (LG,irred e} (LOCG,cusp ®[)) ) (LG,irred o (LOCG,Cusp ®[))R

However, this follows formally from the commutativity of (3.14).
O[Theorem 4.1.5]

Remark 4.6.7. Note that Theorem 4.1.5 only says that Bg irrea and Bgf’med are isomorphic as objects
of QCoh(LSiéred), but not as co-associative co-algebras. One can upgrade the proof given above to an

isomorphism of coalgebras along the following lines:

It follows from the construction that both comonads in (4.4) are linear with respect to the ac-
tion of Rep(G)ran on QCoh(LSgEd) via the functor j* o Locy®, and the isomorphism between them
constructed above respects this structure.

It also follows from the construction that the QCoh(LSiC‘ffed)—linear structure on La cusp © (LG cusp)

agrees with the above Rep(G)ran-linear structure.

The comonad given by tensor product with Bgﬁ”ed has a tautological linear structure with respect
to QCoh(LSing), and hence also with respect to Rep(G)ran. It follows from the proof of Theorem 4.6.3

given in the next section that the above Rep(G)ran-linear structure on — ® Bgf’i”ed agrees with the
A spec spec )R

e s o(Poinc®!
Rep(G)ran-linear structure on P‘omcG’*’irred (Pomchirred

Thus, we obtain that the two comonads

Op
- ® BG,irred and — ®BG,irred

are identified as Rep(G)Rran-linear comonads. Since the functor 3* o Loc}

] G
implies that the above identification is automatically QCoh(LSged)—linear. The latter is equivalent to
the identification of Bg irrea and Bgf’irred as co-associative coalgebras in QCoh(LSiged).

is a Verdier quotient, this

5. PROOF OF THEOREM 4.6.3

The rest of the paper is devoted to the proof of Theorem 4.6.3. In particular, it takes place purely
on the spectral side.

We will break up Theorem 4.6.3 into two assertions: Propositions 5.1.2 and 5.1.5. The former can
be informally phrased as “the Ran integral equates the quasi-coherent and de Rham direct images”.
The latter can be informally phrased as “the Ran integral erases the difference between the local and
the global”.

It will turn out that both these assertions are quite general, i.e., have nothing to do with the specifics
of opers or local systems.

5.1. Strategy of the proof.

5.1.1. Consider the tautological natural transformation

IndCoh T T
. [e] _fr . O
(5 1) (WRan)* OblVOngou free( xgen)p — ObleSG (ﬂ—Ran)*,dRa

as functors
D-mod(OpE* ™ (X&™)Ran) = IndCoh(LS ).
We will prove
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Proposition 5.1.2. The natural transformation (5.1) is an isomorphism when evaluated on objects in
the essential image of the functor

Than : D-mod(LSg) — D-mod(OpIG?O"'free(Xge“)Ran)‘

Remark 5.1.3. For the validity of Proposition 5.1.2, it is essential that we work with the entire Ran
and not a fixed z € Ran.

5.1.4. Let (SRan)if'dCOh denote the functor
Indcoh(opgjon—ﬁree (Xgen)Ran) N IndCoh* (Opgon—ﬁree)Rar”

and let (sRan)I“dCOh’* denote its left adjoint.

The counit of the ((sRan)I"dCOh’*, (sRan)I*“dcoh)-adjunction defines a natural transformation
(52) (ﬂ_Ran)indCoh ° (SRan)IndCOh,* ° (SRan)indCOh N (ﬂ_Ran)indCoh.

We will prove:
Proposition 5.1.5. The natural transformation (5.2), postcomposed with the coarsening functor
Vs, : IndCoh(LSs) — QCoh(LSs),
is an isomorphism, when evaluated on objects in the essential image of the functor
Than : INdCoh(LS5) — IndCoh(OpE® ™ (X&) gan).

5.1.6. We claim that the combination of Propositions 5.1.2 and 5.1.5 implies the assertion of Theo-
rem 4.6.3.

Recall that the morphism 755 is pseudo-proper, so we can identify (755%)" ~ ((7red),)®. Hence,

the comonad

POinCSCg),iC,irred O(POinCS@p,ic,irred)R
identifies with
]* ° (ﬂ_Ran)indCoh ° (SRan)IndCoh,* ° (SRan)indCoh o (ﬂ-Ran)! 0 Ju.
According to Proposition 5.1.5, this comonad maps isomorphically to the comonad
* IndCoh ! irred \IndCoh irredy!
770 (TRan)x o (TRan) ©J+ = (TRan )« o (TRan ) -

In particular, we obtain that this comonad is obtained by the !-tensor product with the coalgebra
object

irred dCoh irred\! irred dCoh
(5.3) (riE) O o (i) (wnsipea) 2 (TN (o pmon reeiored yseny, )

5.1.7. Restricting along the horizontal arrows in the Cartesian diagram

Opgon—frcc,irrcd (Xgen)Ran J Oprélon»free (Xgen)Ran

ﬂir{;idl lﬂ'Ran
LSirrcd J LS -
le} G

from Proposition 5.1.2 we obtain that the natural transformation

irred \IndCoh T
(5_4) (WRan )* o Oblvopr?on—frcc,irrcd(Xgen)Ran

r irred
— oblengd o (TRan )+,dR
G

is an isomorphism, when evaluated on objects lying in the essential image of

(i) D-mod(LSE ) — D-mod (Opfae™™eemmed (x#en) ),

Hence, we obtain that the coalgebra (5.3) maps isomorphically to

ObIV] o ((risst)ean o (wg;zd)’(wmgmd)) ~

r irred
~ ObleSiéred o (WRan )*,dl‘{(wopxgon-free,irred(chn)Ran).
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Finally, we note that
T l
0blv] girrea (—) =2 0b1V] girrea (—) ® Wy girred.
G G G

O[Theorem 4.6.3]

5.2. Framework for the proof of Proposition 5.1.2. In this subsection we will explain a general
framework for the proof of Proposition 5.1.2: it has to do with a morphism between D-prestacks over
X.

5.2.1. Consider the prestack

(Opyé]on-free (Xgen)Ran)dRrel = (Opgon_free(xgen)Ran)dR X LS@7

(LS&)dr
so that
IndCoh((Opg*™ ™ (X*™)Ran)prel ),
is the category of relative D-modules on Opgon'free(X &MY Ran With respect to the projection mran.
Denote by

ind™" : IndCoh(OpE™™ (X5 )ran) = IndCoh((OpE°" " (X5 ) ran)ggeet) : ObIV™
the resulting pair of adjoint functors.

Consider also the functors

(5.5) (TRan) ) qree + IndCoh((OpE®™ ™ (X5 )Ran)agre1) — IndCoh(LS¢)
and
(5.6) (7Ran) qgret : INdCoh(LS5) — IndCoh((OpE ™ (X 5™ )ran ) qrrel )-

5.2.2. As in Sect. 5.1.1 we have a natural transformation
(5.7) (TRan) 9" 0 0bIV'® = (TRan), qrre

as functors

IndCoh((OpE™ ™ (X 5™ )Ran ) qrret) = IndCoh(LS).

The assertion of Proposition 5.1.2 follows immediately from the one:

Proposition 5.2.3. The natural transformation (5.7) is an isomorphism when evaluated on objects in
the essential image of the functor (5.6).

In its turn, Proposition 5.2.3 follows from the next assertion:
Proposition 5.2.4. The counit of the adjunction
ind™ o oblv**' — Id
s an isomorphism, when evaluated on objects in the essential image of the functor (5.6).

5.3. An abstract version of Proposition 5.2.4. In this subsection we will show that Proposi-
tion 5.2.4 is a particular case of a general assertion that has to do with a morphism f : Z — Y of
D-prestacks over X.
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5.3.1. Counsider the prestack Sectv (X, Y) of horizontal sections of Y, as well as
Sectv (X" Y)ran and Secty (X5, Z)ran
that associate to a point z € Ran the spaces of horizontal sections of Y and Z over X — z, respectively.
Note that we have a tautological map
Sectv (X, Y) x Ran — Sectv (X" Y)ran
(and similarly for Z).
Denote

Secty (X5, Z/Y)Ran := Sectv (X*", Z)Ran X (Sectv (X,Y) x Ran).

Secty (X8, Y)Ran

Denote by mran the natural projection
Secty (X®" Z/Y)ran — Sectv (X, Y)
and by 7., qrret the map
(Sectv (XE™, Z/Y)Ran) qgret — Sectv (X, Y)

5.3.2. We will impose the following finiteness conditions on Y and Z:
e Y is sectionally laft in the sense of [Ro, Sect. 3.1.3(ii)], i.e.,
— The prestack Sectv (X, Y) is locally almost of finite type;
— The condition of [Ro, Sect. 3.1.3(ii)] is satisfied for points of Sectv (X,Y);
e Z is meromorphically sectionally laft relative to Y, i.e.,
— The prestack Sectv (X%, Z/Y)ran is locally almost of finite type;
— The condition of [Ro, Sect. 3.1.3(ii)] is satisfied for points of Sectw (X®°",Z/Y)ran.
5.3.3. Denote

(Sectv (X5, Z/Y)Ran) grret := (Sectw (X5, Z/Y)Ran)y X Secty (X, Y).

R
Secty (X,Y)ar

Let
(5.8)  ind™ : IndCoh(Secty (X®",2/Y)ran) = IndCoh ((Sectv (X5, Z/Y)Ran) ggre1) : OBV
the resulting pair of adjoint functors.

We have:
Proposition 5.3.4. The counit of the adjunction

ind™ o oblv**' — Id
is an isomorphism, when evaluated on objects in the essential image of the pullback functor
(TRanareet) : IndCoh(Sectw (X, Y)) — IndCoh ((Secty (X5, Z/Y)Ran) grrel ) -

The proof will be given in Sect. A.

5.3.5. Note that Proposition 5.2.4 is indeed a particular case of Proposition 5.3.4: we take Y to be the
constant D-stack with fiber pt /G and Z := Opg.
O[Proposition 5.2.4]

5.4. A digression: the category QCoh_,. In order to formulate (an abstract version of) Proposi-
tion 5.1.5, it will be convenient to introduce a general construction of a certain variant of the category
of quasi-coherent sheaves on a prestack, denoted QCoh,,(—).
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5.4.1. Let W be a prestack. We define the category QCoh_, (W) by

QCoh,, (W) := colim  QCoh(S),
S—+W, SeSchatf

where the colimit is taken with respect to the direct image functors®®.

5.4.2. Ezample. Suppose that W is a scheme. Then it is easy to see that the naturally defined functor
QCoh,, (W) — QCoh(W)
is an equivalence.

In fact, according to [Gad, Proposition 6.2.7 and Theorem 2.2.6], the same is true when W is an
eventually coconnective quasi-compact algebraic stack of finite type with an affine diagonal.

Note that W = LS is an example of such an algebraic stack.

Remark 5.4.3. We do not know whether QCoh,, (W) is dualizable. However, QCoh_,(W) is tautologi-
cally the pre-dual of QCoh(W), i.e.,

QCoh(W) ~ Funct(QCoh,, (W), Vect),
where Funct(—, —) is the category of colimit-preserving functors.
In particular, if W is such that QCoh_, (W) is dualizable, then so is QCoh(W).
5.4.4. Ezxample. Let W be an ind-scheme, written as
W = colim W', W' € Sch,
where the transition maps W* — W7 are closed embeddings.

In this case,
QCoh,, (W) =~ colim QCoh(W")

where the colimit is taken with respect to the direct image functors.
Note that if W is of ind-finite type, we have a naturally defined functor
(5.9) Wy : IndCoh(W) — QCoh,,(W).
Indeed, we can write _
IndCoh(W) ~ coliim IndCoh(W")
(under direct image functors) and (5.9) is given by the compatible family of functors

Ui - IndCoh(W') — QCoh(W*).
One can show that (5.9) is an equivalence if W is formally smooth.

5.4.5. The assignment
W ~» QCoh,, (W)
has the following functoriality properties for maps f : Wi — Wa:

e We have the direct image functor
f. : QCoh,, (W1) = QCoh,,(W2).
e If f is schematic, we also have the pullback functor
f7: QCoho(W2) — QCoh,, (Wh),
which is a left adjoint of f..

15The reason for the notation “QCoh,,” is that it is a version of the QCoh category, i.e., we take the colimit with
respect to the *-direct image maps, instead of the limit with respect to the *-pullback maps.
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e For a pullback square

W1 ;}Wg

! |

51 % 527

where S1 and S2 are affine schemes, the functor

QCoh(S1) @  QCoh,,(W2) = QCoh,,(W1),
QCoh(52)

defined by f*, is an equivalence;
e If f is schematic and of finite Tor dimension, we also have the !-pullback functor

f': QCoh,,(Ws) — QCoh,, (W)).

Note that if f is also proper, then the functors (fx, f') are mutually adjoint.

5.4.6. Let Wran be a prestack over Ran. Set

(5.10) QCoh,,(W)ran := lim QCoh,,(Wran x S) ® IndCoh(S),

Seschaff, s+Ran Ran ~ QCoh(S)

where the limit is formed using the *-pullback functors along the QCoh_, (Wgan x S)-factors and
Ran
I-pullback functors along the IndCoh(.S)-factors.
Thus, an object F € QCoh,,(W)ran gives rise to an object

Fs. € QCoh,,(Wran x S) ® IndCoh(S)
Ran ~ QCoh(S)

for every z € Ran(S).

In the case when Wgran — Ran is schematic, so that for every (S,z) as above we have
QCoh,,(Wran x S) =~ QCoh(Wgran x S), we will simply write QCoh(W)ran instead of
Ran Ran

QCOhco (W) Ran-

Remark 5.4.7. The assignment
S ~~» QCoh,,(Wran x S)
Ran

naturally forms a sheaf of categories over Ran, to be denoted
QCoh,,(W)Rran-

The above definition of QCoh,,(W)ran is a particular case of the following construction: for any
sheaf of categories Cy,, over Ran, we can assign the category

Cran 1= lim C(S) ® IndCoh(S).

SeSch2tf s Ran QCoh(S)

Note that since Ran is 1-affine, we have

Cran ~ I'(Ran, Cg,,) ® IndCoh(Ran).
QCoh(Ran)

In particular, since the functor
QCoh(Ran) — IndCoh(Ran), F+— F ® wran
is an equivalence, we have an equivalence

Cran ~ I'(Ran, C, ).
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5.4.8. Let pwy,, denote the projection
WRan — Ran.

Note that we have a well-defined functor
(PWran )+ : QCoh (W)Ran — IndCoh(Ran) ~ D-mod(Ran).
Let us denote by
praCoRan (Weon, —) : QCohgy (W)Ran — Vect
the functor equal to the composition

(PWRan) rlndCoh (Ray )

QCoh_,(W)Rran " D-mod(Ran) — Vect,

where we can alternatively think of I'4°°"(Ran, —) as the functor
C.(Ran, —) : D-mod(Ran) — Vect,
left adjoint to k — wRran-

5.4.9. Assume now that Wran is locally almost of finite type (so that IndCoh(WRgan) is defined) and
assume that Wgran — Ran is a relative ind-scheme.

We claim that in this case, there exists a well-defined functor
(5.11) Ywgan : INdCoh(Wgan) — QCol,(W)ran,
which is a variant of (5.9).

Indeed, we can write

IndCoh(Wgan) =~ lim IndCoh(Wgan X S),

SESCth, S—Ran Ran

so it is enough to define a compatible family of functors

(5.12) IndCoh(Wran % S) — QCoh,,(Wran x S).
Ran Ran

Write

Wgan X S =~ colim Wy,
T

Ran

where Wi are schemes, and the transition maps W§ — Wg are closed embeddings.
The functors (5.12) are given by the compatible family of functors

IndCoh(W%) — QCoh(WE) ®  IndCoh(S),
QCoh(S)

Serre-dual to the tautological functors

QCoh(Wi) ® IndCoh(S) — IndCoh(W3),
QCoh(S)

given by !-pullback along Wi — S.

5.5. Abstract version of Proposition 5.1.5: the absolute case. As with Proposition 5.1.2, we
will prove an abstract statement, of which Proposition 5.1.5 is a particular case. The general set-up
involves a morphism

Z—=Y

of D-prestacks as in Sect. 5.3.1. For expository purposes, we will first consider the absolute situation,
i.e., one when Y = pt.
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5.5.1. Let Z be an affine D-scheme over X. For z € Ran we will denote by Z, (resp., Z.) the scheme
(resp., ind-scheme) Sectv (Dg, Z) (resp., Sectv (D — z, 2)).

Consider the corresponding categories

QCoh(Z,) and QCoh,(Zz)-
In addition, we can consider the ind-scheme Sectv (X — z,Z), and the categories

IndCoh(Sectv (X — z,2)) and QCoh,,(Sectv (X — z,2)).

o
5.5.2. Letting z € Ran move in a family over Ran, we obtain the spaces Zran and Zran, where
ZRan — Ran
is a relative scheme, and

o
ZRan — Ran

is a relative ind-scheme. Consider also the relative ind-scheme Sectv (X®°", Z)ran.

o

We define the categories QCoh(Z)ran, QCoh,,(Z)ran and QCoh,, (Sectyv (X5, Z))ran by the recipe
of Sect. 5.4.6.

5.5.3. Consider the map
S$Z,Ran - Sectv (Xgen7 Z’)Ran — ZRan,
obtained by restricting horizontal sections along

Dy —z— X —z.

When Z is unambiguous, we will simply write sran instead of sz ran-

We have an adjoint pair of functors
(5Ran)" : QCoho(Z)Ran = QCoh,, (Sects (X5, 2))ran : (sRan)--
5.5.4. An abstract version of Proposition 5.1.5 (in the absolute case) case reads:
Proposition 5.5.5. The natural transformation
[mdCotRan (Sect o (X5, Z)Ran, —) © (SRan)” © (SRan)s — D49 (Secty (X5, Z)Ran, —)

s an isomorphism, when evaluated on the image of Wsect (x2en,2)) along

Ran

VSect g (X8, 2)gan

IndCoh(Sectv (X &, Z)ran) QCoh,, (Sectv (X", Z))ran-

The proof will be given in Sect. B.

5.6. Abstract version of Proposition 5.1.5: the relative case. In this section we will introduce
a relative version of the set-up of Sect. 5.5.

5.6.1. First, we introduce a relative version of the construction from Sect. 5.4.1. Let
W—=Y
be a morphism of prestacks.
We define the category QCoh,, (W/Y) by

im QCoh,, (W x S),
S—Y, SeSchaff Y

where the limit is formed using *-pullbacks.
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5.6.2. Assume for a moment that Y has an affine diagonal. Then each of the above maps S — Y is
affine, so we have well-defined pullback functors

QCol, (W) — QCoh,, (W x 5),

which combine to a functor
(5.13) QCoh,, (W) — QCoh,,(W/Y).

Remark 5.6.3. As in Remark 5.4.7, to W — Y as above, we can attach a sheaf of categories
QCoh,, (W/Y) over Y.
By definition,
QCoh,,(W/Y) ~T'(¥,QCoh,,(W/Y)).

5.6.4. Assume for a moment that both Y and W are locally almost of finite type, Y is an algebraic stack,
and W — Y is a relative ind-scheme. In this case, as in Sect. 5.4.4 we obtain a canonically defined
functor

(5.14) Wy y : IndCoh(W) — QCoh,,(W/Y).
5.6.5. Let now Wgran — Yran be a morphism of prestacks over Ran. We define the category
QCOhco(W/y)Raﬂ by

QCoh.,(W/Y)ran := lim QCoh,,(Wran x S/S) ®@ IndCoh(S),
Sesch?ff, 5 Ran Ran QCoh(S)

cf. Sect. 5.4.6.

Assume now that both Yran and Wgan are locally almost of finite type, Yran is a relative algebraic
stack over Ran, and Wgran — Yran is a relative ind-scheme.

In this case, as in Sect. 5.4.9 we obtain a canonically defined functor

(5.15) U Ynan : INACOM(Wran) — QCoh, (W/Y)Ran.

5.6.6. Let Y — X be a D-prestack with an affine diagonal, satisfying the finiteness assumptions of
Sect. C.1.1'6, Let Z — Y be an affine morphism between D-prestacks, satisfying the assumptions of
Sect. 5.3.2.

Denote

o o
(Z' X 1é)Ran = Z'Ran X yRarh
o o

Y YRan

Consider the corresponding category

(5.16) QCoh, (2

5.6.7. Let Sectwv (X5, Z/Y)ran have the same meaning as in Sect. 5.3.1. We will view it as a relative
ind-scheme over

Sectv (X,Y) x Ran.

Consider the corresponding category

QCoh,, (Secty (X", 2/Y)/ Sectv (X, Y))ran-

16For our applications, we will take Y to be the constant D-stack with fiber pt /G
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5.6.8. Let mran denote the projection
Secty (X5, Z/Y)Ran — Sectv (X, Y).
Combined with the projection
PSecto (X502 /Y)gan - S€Ctw (X5, Z/Y)Ran — Ran,
we have a map
TRan X DSecto (X80, 2 /Y)pan © S€Ctw (X5, Z/Y)Ran — Sectv (X, Y) x Ran,

and a well-defined functor

(TRan X PSecty (Xzen,2/Y)pan )+ + QC0h, (Sectw (X", 2/Y)/ Sectv (X, Y))ran —

— QCoh(Sectv (X, Y)) ® IndCoh(Ran).
Let us denote by
(TRan) 9P Ran + QCoh,, (Secty (X5, 2/Y)/ Sectv (X, Y))ran — QCoh(Sectw (X, Y))

the composite functor

(TRan XPSecty (XM, 2 /Y)gan ) *

QCoh,, (Sectv (X", 2/Y)/ Sectv (X, Y))ran

1d @rmACoh (Ran
—

— QCoh(Sectv (X, Y)) ® IndCoh(Ran) ) QCoh(Sectv (X, Y)).

Note that we have a commutative diagram

VSecty (X891, 2 /Y)gan/ Secty (X,Y)

IndCoh(Sectv (X5, Z/Y)Rran) QCoh,, (Sectv (X", Z/Y))ran

(5.17) (ﬂRyan)indCohl l(ﬂ_Ran)I*ndCohRan

Vsectg (X,Y)
—

IndCoh(Sectv (X, Y))

where the top horizontal arrow is the functor of (5.15).

QCoh(Sectv(X,Y)),

5.6.9. Restriction to the parameterized formal punctured disc gives rise to a map

SZ/‘j,Ran : SeCtV(chna Z/%)Ran — (Z Z< y)Ran-
Y

When Z and Y are unambiguous, we will simply write sran instead of sz ,y ran-

We have an adjoint pair of functors

(SRan)* : QCOhCO(Z i< H/y)Ran = QCohCO(Sectv(Xge“, Z/%)/ SeCtv(X, H))Ran : (sRan)*.
Y
5.6.10. We claim:
Proposition 5.6.11. The natural transformation
IndCohgap IndCohgrap

(WRan)* o (SRan)a‘< o (SRan)* g (ﬂ'Ran)*

is an isomorphism, when evaluated on objects that lie in the essential image of the functor
IndCoh(Secty (X, Y)) 28 IndCoh(Secty (X2, 2/Y)ran) —
— QCoh,, (Sectv (X*",2/Y)/ Sectv (X, Y))ran,
where the second arrow is the functor Vseceq (xzen,2/Y)gan/ Secty (X,¥)xRan 0f (5.15).

The proof will be given in Sect. C.
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5.6.12. Let us show how Proposition 5.6.11 implies Proposition 5.1.5.

We apply Proposition 5.6.11 to Z = Opg and Y being the constant D-prestack with fiber pt /G, SO
that

(Z' >o< IZJ)Ran = (OprGgon»free)Ran
Y

and
Sectw (X5, Z/Y)ran = OpE”" " (X5 ) ran.
According to Sect. 5.4.4, we have a naturally functor
IndCOh*(Opgon_ﬁee)Ran — QCOhCD(Opgon_ﬁee)Ran-
Combining with (5.13), we obtain a functor
(5.18) IndCoh” (Op&® " **)Ran — QCoh,, (OpE®"""**/(pt /G))Ran,
where the notation QCoh,,(OpE°™"*®/(pt /G))Ran is the particular case of (5.16).

We have a commutative diagram

Indcoh(oplgon—free(Xgen)Ran) (5.15) Qcohco(opgon—ﬁree (Xgen))Ran

(5.19) (sam,ﬁ"dm'l l(sm)*
(5.18)

IndCoh* (OpE°***)Ran ~ ——— QCoh,, (OpZ°™ ™/ (pt /G))Ran.

Moreover, the diagram

IndCoh™ (OpE™ ™ )ran  ———+ QCoho(OPE™/(pt /G))ran
(5.20) (sRan)P400R* l l(smn)*
Indcoh(opgon—free(Xgen)Ran) (5.15) QCOhCO(Opgoniﬁee(xgen))l%an7

obtained from (5.19) by passing to left adjoints along the vertical arrows, commutes as well.

The conclusion of Proposition 5.1.5 follows now from Proposition 5.6.11, by juxtaposing the com-
mutative diagrams (5.17), (5.19) and (5.20).
O[Proposition 5.1.5]

APPENDIX A. PROOF OF PROPOSITION 5.3.4

The idea of the proof of Proposition 5.3.4 can be summarized by the following slogan: the unital
version of the space of rational horizontal sections maps isomorphically to its own de Rham prestack.

We will deduce it from the main theorem of [Ro] by a rather formal manipulation.

A.1. The unital Ran space. In order to prove Proposition 5.3.4 we will need to work with the unital
Ran space, which is no longer a prestack (i.e., a functor from affine schemes to co-groupoids) but rather
a categorical prestack, i.e., a functor from affine schemes to co-categories.

A.1.1. Recall the notion of categorical prestack, see [Ro, Appendix C]. By definition, this is just a
functor
(Sch*™)°P — 1-Cat,
where 1-Cat denotes the (0o, 1)-category of (oo, 1)-categories.
Thus, a categorical prestack X assigns to an affine scheme S a category, to be denoted X(S), and to
a map f:S1 — S2 a functor
X(f) : X(S2) = X(51),

equipped with a datum of compatibility for compositions.
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A.1.2. Let Ran""" be the unital version of the Ran space, see [Ga4, Sect. 4.2] or [Ro, Sect. 2.1].
Le., Ran"" associates to an affine scheme S the category of finite subsets of Hom(S, Xqr), where the
morphisms are given by inclusion.

Let

untl

t: Ran — Ran

denote the tautological map.
A.1.3. Along with the prestacks

Sectv (X", Z)Ran, Sectv (X®",Z/Y)Ran, (Sectv (X5, Z/Y)Ran) gret » €tC
one can consider their unital versions, which are now categorical prestacks, denoted
(A1) Sectv (X5, Z)ganunt, Sectv (X&™, Z/Y)gagunet, (Secty (X5, Z/Y)ganunt)qreret 5
respectively, see [Ro, Sect. 3.3.1].

Explicitly, for an affine scheme S, the category Sectv (X®°",Z)g,nunt(S) consists of pairs (z, z),
where z € Ran"""(S) and z is a horizontal section of Z on X x S — Graph,.

A morphism (z,,21) — (z,, 22) is an inclusion z; C z, and an identification

Zl‘Xxstraph£2 =~ 22.
And similarly for the other two categorical prestacks in (A.1).

A.1.4. By definition, the projections from the categorical prestacks in (A.1) to Ran"™! are value-wise
co-Cartesian fibrations in groupoids.

Denote by m,,unt1 the projection from

(Sectw (XE", Z/Y) ganuntt ) gpret — Sectv (X, Y).

A.1.5. We will denote by t the maps from the non-unital to the unital versions. We have

TRanuntl © T = 7TRan-
A.2. IndCoh on categorical prestacks.

A.2.1. Let X be a categorical prestack locally almost of finite type, see [Ro, Sect. C.1.3] for what this
means. In this case, it makes sense to talk about the category IndCoh(X) (see [Gad, Sect. 2.2] or [Ro,
Sect. C.3]).

Namely, an object F € IndCoh(X) associates to an affine scheme S (assumed almost of finite type)
a functor

X(S) — IndCoh(S),

in a way compatible with !-pullback for morphisms between affine schemes.

We will denote this data as follows:

e For an object x € X(S), we have an object
z'(F) € IndCoh(S);
e For a morphism z; — 2 in X(S) a morphism
() > 25()
in IndCoh(S).
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A.2.2. We let
IndCoh(X)str C IndCoh(X)

be the full subcategory, consisting of objects F € IndCoh(X) such that for every affine test-scheme S
and an arrow

T1 > @, 1,12 € X(9),
the resulting map
21 (F) = @3(F)
is an isomorphism.
In other words, if we denote by
XY X

the prestack, obtained from X by inverting all arrows, the pullback functor

IndCoh(Xewr) =2 TndCoh(X)

defines an equivalence
IndCoh(Xstr) = IndCoh(X)st.

A.2.3. We claim:
Lemma A.2.4. The natural diagram of categories

IndCoh(X4gr)str — IndCoh(X)str

| |

IndCoh(X4r) — IndCoh(X)

is a pullback square.

Proof. Follows from the fact that for an affine scheme S almost of finite type, the -pullback functor
with respect to Syea — S is conservative.
O

A.3. A reformulation.

A.3.1. Note that the projection

TRan,dRrel

(SeCtv (chn7 Z/g)Ran)dRrel SeCtV (Xag)

factors as

str

(Sectw (X5, Z/Y)Ran) gret — (Sectw (XE™, 2/Y) papunt ) grrel -

(m anuntl rel )str
(Sectv(Xg " 2/9) anans )deel Rant AR S oty (X, Y),

where
(Sects (X5, 2./Y) e )
Hence, the pullback functor
TRanuntt qrrel © IndCoh(Secty (X, Y)) — IndCoh ((Sectw (X5, 2/Y) gapuntt ) qpret)

= ((Sectw (X5, 2/Y) gapuntt ) grrel ) o, -

dRrel ’

maps to

IndCoh ((Secty (X5, Z/Y)ganuntt )qgret ), C IndCoh ((Secty (X5, 2/Y) ganunt1) ggeet ) -

str
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A.3.2. We obtain that Proposition 5.3.4 follows from the next more precise statement:
Proposition A.3.3. The counit of the adjunction

ind™ o oblv™ — Id
is an isomorphism, when evaluated on objects in the essential image along t' of

IndCoh ((Sectw (X&", Z/Y)ganuntt )qgret )., C IndCoh ((Sectv (X5, 2/Y) ganunt1) ggret ) -

str

A.3.4. Consider the commutative diagram

t

Secty (X5, Z/Y)Ran  ———  Secty (X5, 2/Y)gapuntt

(A.2) J l

(Sectw (X5, 2/Y)ran)qprer —— (Sectw (X5, 2/Y)ganunt ) ggre

This diagram is value-wise Cartesian. Hence, we have a well-defined pair of adjoint functors

(A.3) indi% : IndCoh(Secty (X5, Z/Y)gaguntt) =
IndCoh ((Secty (X5, 2/Y)ganunt)qree) : ObIVimg,
and both functors are compatible with their non-unital counterparts (5.8) via t'.

A.3.5. We also have a commutative diagram

str

Secty (X2, Z/Y) ganunt! =y Secty (X&°7, Z./%)Ranl‘,tnn

! |

(Secty (X5, Z/y)Ranuntl)dRrel =, (SeCtV (xeen, Z/‘a)Ran:t,;u)dle )

where
Secty (X5, Z/9)Ranuntt := (Secty (X5 Z/Y) Ranunt1)

which is value-wise Cartesian. Hence, we have another pair of adjoint functors

str?

(A4) ind% .. : IndCoh (Sectv(Xgen, Z/y)Ranugm) =
= IndCoh ((Sectv (xee Z/H)Ranunn) 1) : oblvff;,lﬂ,str,
str dRTE

where both functors are compatible with their non-strict counterparts (A.3) via str'.

We can equivalently think of (A.4) as an adjunction
(A5) indi i ¢ (IndCoh (Secty (X2, Z/Y) gapunt))oe,
= (IndCoh ((Secty (X5, Z/Y) ganunt1 )qrrer )

=
st oblvff,}t]’str.
A.3.6. The assertion of Proposition A.3.3 follows from the following even more precise statement:
Proposition A.3.7. The functor

obIvi s : (IndCoh ((Secty (X5, Z/Y) ganuntt )qrret )

is an equivalence.

— (IndCoh (Sectw (X%, 2/Y) papunt1))

str str

49

A.4. A description of relative D-modules. In order to prove Proposition A.3.7, we will describe

the category
IndCOh ((Sectv (Xgen7 Z/y)Ranuntl )dRrel )

a la [Ro, Corollary 4.6.10].
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A.4.1. As a warm-up, let us fix a point z, and consider the prestack

Sectv (X —z,2/Y) := Sectv (X — z,2) X Sectv (X, Y)

Secty (X —z,Y)

along with its variant

Sectv (X — z,Z/Y) qrrer := Sectv (X — z,Z)ar X Sectv (X,Y) ~

Secty (X —z,Y)ar

~ (Sectv (X —z,2/Y))ur X Sectv (X, Y).

Secty (X,9)dar

We will describe the category
IndCoh(Secty (X — z,2/Y)qrrer)

along with its forgetful (i.e., pullback) functor to IndCoh(Sectv (X — z,2/Y)).

A.4.2. Consider the map

tl t1
add, : Ran"™ — Ran"™",

given by

Set
Secty (X5, Z/Y) ganuntt 5 = Secty (X5, Z/Y) g apunt X Ran""".

Ranuntl ,addg
Restriction along X — (yUz) C X — z gives rise to a map
(A.6) Secty (X — x,2/Y) x Ran"™' — Sectv (X5, Z/Y) ganunt -
A.4.3. Denote by
Sectv (Xgen, /{Z-/'Lé)g\mmumlYI
the formal completion of Sectv (X*°",2/Y)g,qunt1 , along (A.6).

The projection
Secty (X —z,2/Y) x Ran"™ — Secty (X — z, Z/Y) gprer

tautologically extends to map

(A7) Secty (X5, 2/Y) Rapun , — Secty (X — 2, 2/Y) gprel -

A.4.4. The following is a version of [Ro, Corollary 4.6.10], where we allow poles at x:

Theorem A.4.5. The functor

IndCoh (Sectv (X — z,Z/Y)qgrrer) —

— TndCoh (Secty (X — z,2/Y)) x IndCoh (Sects (X, 2/Y)pumt ;)
IndCoh(Sectv(Xfl,Z/y)XRanu"“) =

given by pullback along the maps Sectv(X — z,2/Y) — Sectv(X — z,2/Y)qrrer and (A7), is an
equivalence.

Remark A.4.6. In fact, this theorem is a particular case of [Ro, Corollary 4.6.10]: replace the original
Z by its restriction of scalars along X —z — X.
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A.4.7. We will now state a version of Theorem A.4.5, where we let z vary along Ran""!. Consider the
map
add : Ran"™ x Ran"™ — Ran"™, z,, 2, z, Uz,.

Set
Secty (X5, Z/Y)ada = Sectw (X5, Z/Y)ganuntt X (Ran™"' x Ran"™™"),
Ranuntl add
and
Secty (X5, Z/Y)pr, = Sectv (X5, Z/Y)gagunti X (Ran""" x Ran"""),
Ranuntl pr)
where

tl tl t1
pr; : Ran"™™ x Ran"™™ — Ran™

is the projection on the first factor. In other words,

Secty (X8, Z/Y)pr, = Secty (X2, Z/Y)ganuntt X Ran™.

Restriction along X — (z; Uz,) C X — z; gives rise to a map
(A.8) Sectv (X5, Z/Y)pr, — Sectw (X5, Z/Y)ada-
A.4.8. Denote by

Secty (X" Z/Y) oua

the formal completion of Sectv (X8, Z/Y)aaqa along (A.8).

The projection

Sectv (X5, Z/Y)pr, — (Sectv (X5, Z/Y) gaguntt ) ggrer

tautologically extends to a map
(A.9) Secty (X5, 2/Y)0aa — (Secty (X5, Z/Y)gapuntt ) qrrel -

The following is a version of Theorem A.4.5 in families:

Theorem A.4.9. The functor

(A.10) IndCoh ((Secty (X5, Z/Y)ganunt! )qrrel) —

— IndCoh (Sectv (X®", Z/Y)gqunt!) X IndCoh (Sectw (X*", 2/Y)244) »
IndCoh (Secty (X8°1,2./Y) pr )

given by pullback along the maps Sectw (X5, Z/Y)ganuntt — (Sectv (X5, Z/Y)ganuntt )grrer and (A.9),
is an equivalence.

A.5. Proof of Proposition A.3.7.
A.5.1. The functor (A.10) induces a functor

(A 11) IndCOh ((Sectv (Xgen’ Z/y)Ranuntl )dRrel )Str

— IndCoh(Sectv (X5, Z/Y) ganunt1 )str X IndCoh (SeCtv(Xg9n7 Z/y);\dd)
IndCoh(Sectv (Xge“,Z/‘é)prl )

—

str’

str

where the two sides in (A.11) are full subcategories in the corresponding sides in (A.10).
Since the functor (A.10) is an equivalence, we obtain that (A.11) is fully faithful.
A.5.2. We will prove:
Lemma A.5.3. The functor
IndCoh (Secty (X5, 2,/Y)2aa),

is an equivalence.

. — IndCoh (Secty (X*", Z/Y)pr, )

t str

Let us assume this lemma for a moment and finish the proof of Proposition A.3.7.
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A.5.4. By Lemma A.5.3, we obtain that the right-hand side in (A.11) projects isomorphically onto the
first factor. Hence, we obtain that the pullback functor

(A.12) IndCoh ((Secty (X", Z/Y)ganuntt )qrre! )
which is the functor oblvﬂtl,Str of Proposition A.3.7, is fully faithful.

— IndCoh(Secty (X", Z/Y)ganuntl )str,

str

It remains to show that the functor (A.12) is essentially surjective.

A.5.5. Let F be an object in IndCoh(Sectv (X®°", Z/Y)ganunt1 )str, which, by Lemma A.5.3, we interpret
as an object in the right-hand side of (A.11).

By Theorem A.4.9 it corresponds to an object Far € IndCoh ((Sectv (X®", Z/Y)ganunt! )qrerel ), and
we only need to show that Far is strict. However, this follows from (a relative version of) Lemma A.2.4.
O[Proposition A.3.7]

A.6. Proof of Lemma A.5.3.

A.6.1. We will prove that the map
(SeCtV (Xgen’ Z’/g)PH)

is an isomorphism of prestacks.

o — (Sectw (X5, 2/Y)0ad) ..,

A.6.2. We claim:

Lemma A.6.3. Let W — Ran"™! x Ran"™ be a map of categorical prestacks, which is a value-wise
co-Cartesian fibration. Then then the induced map

w X Ran"™! — W

Ranuntl x Ranuntl LA

induces an isomorphism

(W X Ranu"“) str = Weir.

Ranuntl x Rapuntl JA

Proof. This follows from the fact that the diagonal map A : Ran" — Ran"""' x Ran"™ is value-wise
cofinal.

O
A.6.4. Applying Lemma A.6.3, it suffices to show that the map
Sectw (X5, Z/Y) pr, x Ran"™" — Sectv (X5, Z/Y) 24 X Ran"™"
Ranuntl x Ranuntl A Ranuntl x Ranuntl A

induces an isomorphism on strictifications.

We claim that the above map is actually an isomorphism as-is.

A.6.5. Since the operation of formal completion commutes with fiber products, it suffices to show that
the map

Sectv (X5, Z/Y) pr, X Ran"™" — Secty (X5, Z/Y)ada X Ran"™"

Ranuntl X Ran“““,A Ranuntl X Ranuntl ,A
is an isomorphism.
However, the latter is evident on the nose.
O[Lemma A.5.3]
APPENDIX B. PROOF OF PROPOSITION 5.5.5

In this section we let Z be an arbitrary affine D-scheme over X.

We will show that the assertion of Proposition 5.5.5 essentially amounts to [BD1, Proposition 4.6.5],
combined with some unitality considerations.

B.1. A reformulation in terms of unital structure.
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B.1.1. Let us return to the setting of Sect. 5.4.6. Suppose that Wran extends to a categorical prestack
Whapuntt over Ran"™ so that

WRan ~ WRanuntl X Ran,
Ranuntl

and
untl

Wganuntt = Ran

is a value-wise co-Cartesian fibration in groupoids.

Effectively, this means that for S € Sch* and a map o : T, — T, in Ran“"tl(S’) we have a map of
prestacks

aw WRan X S — WRan X S

Ran,z; Ran,z,

We will refer to Wg,,unt1 as the unital structure on Wran.
Let t denote the tautological map
WRan — Wgaguntl.

B.1.2. To the data as above we can attach a category QCoh_,(W)g,,unt1. Namely, the data of an object
of QCoh,,(W)ganunt1 consists of an object F € QCoh,, (W)ran, and for every « as above of a map

((aw)« @ Idmacon(s)) (Fs.zy) = Fs.a,

QCoh.,(Wran x S) ® IndCoh(S).
Ran,z, QCoh(S)

Let t' denote the tautological forgetful functor
QCOhCO(W)Ranuml — QCOhCO(W)Ran-

B.1.3. Note that the space Secty(X®",Z)g,nunn from Sect. A.1.3 provides a unital structure on
Secty (X%, Z)Rran-

We will deduce Proposition 5.5.5 from the following more precise statement:
Proposition B.1.4. The natural transformation

FIndCOhRan (SeCtV (Xgen, Z)Raru _) o (SRan)* o (SRan)* N FIndCOl‘R.an (Sectv ()(gen7 Z)Ran, _)

is an isomorphism, when evaluated on the essential image of the functor

t' : QCoh,, (Secty (X, 2))ganuntt — QCoh, (Secty (X5, Z))ran.

In the rest of this subsection we will show how Proposition B.1.4 implies Proposition 5.5.5.

B.1.5. Assume that Wg, unu is locally almost of finite type (in particular, Wgran is locally almost of
finite type, so that the category IndCoh(Wgan) is well-ddefined). We claim that we have a well-defined
category IndCoh(Wg, unt1).

By definition, the data of an object of IndCoh(Wg,,unt1) consists of an object F € QCoh.,(WRran),
i.e., for every z € Ran(S) we have an object Fg,, € IndCoh(Wran X 5), and for every « as above of

Ran,z
a map
(aw)*(gsyil) - ?S»EQ

in IndCoh(S).
Let t' denote the tautological forgetful functor
IndCoh(Wgpuntt) = IndCoh(WRan).
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B.1.6. Assume now that Wgran, — Ran is a relative ind-scheme. Then as in Sect. 5.4.9 we have a functor
(B.l) \PWRan“n“ : IndCOh(WRanuntl) — QCOhCO(W)Ranuntl,

which makes the diagram

\IIW un
IndCOh(WRan“ml) % C’z(j()hco("A7)Ran‘““tl

/| I

N

IndCoh(Wran)  ——222  QCoh,, (W)gan

commutes.

B.1.7. Thus, we obtain that in order to prove Proposition 5.5.5, it suffices to show that the object
WSecty (X8, 2) . € IndCoh(Sectv (X5, Z)ran)

lies in the essential image of the functor

t' : IndCoh(Secty (X2, Z)ganunt1) — IndCoh(Secty (X, Z)Ran)-
However, this is true for any Wg, un for which the maps aw are proper, which is the case for

Secty (X", Z) ganunt! -
O[Proposition 5.5.5]

B.2. The local unital structure.

B.2.1. Recall the categories QCoh(Z)ran and QCoh,, (Z)ran, see Sect. 5.4.6. We will now introduce
their variants, to be denoted

QCoh(Z)ganuntt and QCoh,,(Z)ganuntl,
respectively.

In order to do so, as in Sect. B.1.2, we must attach to a map a: 2, = z, in Ran"™"'(S) functors

(B.2) QCoh(Zran X S) — QCoh(Zgran x S)
an,z Ran,z,

and

(B.3) QCoh.,(Zran x S) = QCoh.,(Zran x S),
Ran,z; Ran,z,

respectively.

B.2.2. Recall that for a point z of Ran we have

Zz =~ Sectv (Dg, Z) and Zg ~ Sectv (Dg — z, Z).
For z; C z,, set

z, Czy 1= Secty (@2 -, Z)

Restriction along

Dyy € Doy
defines a map
(B.4) 2y, — L, -
We define the functor
(B.5) QCoh(Zy, ) — QCoh(Zs, )

to be given by pullback along (B.4).
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B.2.3. Restriction along

‘Dﬂ_ﬁl c 92_21 2 D2_£2
defines maps
(B.6) 2,  Zogy Cay — R,y

The operation of *-pull and *-push along (B.6) gives rise to a functor
(B.7) QCoh(Zz,) = QCoh y(Zg,).

B.2.4. The operations in (B.5) and (B.7) make sense when z; and z, are S-points of Ran, and give
rise to the sought-for functors (B.2) and (B.3), respectively.

We will denote by t' the corresponding forgetful functors

o

QCoh(Z)gapuntt = QCoh(Z)ran and QCoh,,(Z)ganuntt — QCoh,,(Z)Ran,
respectively.
B.2.5. We will deduce Proposition B.1.4 from the following even more precise assertion:

Proposition B.2.6. The natural transformation

° e}
pirdCohran (Zp 0, —) — [IdCOMRan (20 1 —) 0 (SRan)« © (SRan)" =~
~ TdCOhRan (Sect o (X5, Z)Ran, —) © (SRan)",

arising from the unit of the ((Sran)”, (Sran)+)-adjunction, is an isomorphism, when evaluated on objects
lying in the essential image of the functor

o

t': QCoh,, (Z)gapunti — QCOhL, (Z)Ran-

In the rest of this subsection we will show how Proposition B.2.6 implies Proposition B.1.4.

B.2.7. Let Fgion be an object of QCoh,,(Sectv (X%, Z))ran, and assume that it lies in the essential
image of

t': QCoh,, (Sectv (X5™, Z))ganuntt = QCoh,, (Secty (X5, Z))ran-
We wish to show that the map

o o
FlndCOhRan (ZRany (SRan)* ] (SRan)* o (SRan)*(gjglob)) — FIndCOhRan (ZRan7 (SRan)*(gjglob)> s

induced by the counit of the ((sran)”, (Sran)«)-adjunction, is an isomorphism.

It is sufficient to show that the map

o o
FIndCOhRan (ZRany (SRan)*(gjglob)) — FIndCOhRan (ZRan, (SRan)* o (SRan);k o (SRan)*(gjglob)> )
induced by the unit of the adjunction, is an isomorphism.

B.2.8. Denote

o

Fioc 1= (SRan)*(gjglob) € QCOhco(Z)Ran'
Thus, we have to show that the map

(BB) FIndCOhRan (Z'R,any i}‘loc) — FIndCOhRan (ZRarn (SRan)* o (SRan)* (Stloc))y

induced by the unit of the adjunction, is an isomorphism.
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B.2.9. Note that the functor
(sRan)« : QCoh,_, (Secty (X5, Z))rRan — QCoh,,(Z)Ran

gives rise to a functor

(Spanunt1)+ : QCoh,, (Secty (X", Z))ganuntt = QCoh,, (Z)ganunt,
so that the diagram

<5Ranunt1 )
EE——

QCoh,, (Secty (XM, 2))gapunt QCoh, (2)gapunt

| !

QCoh,, (Sectv (X5, Z))Ran {oRan)s, QCOhco(%)Ran

commutes.

B.2.10. Hence, the assumption on Fgion implies that Fioc lies in the essential image of

t' : QCoh,(Z)gapuntt — QCoh, (Z)Rran-
Hence, the isomorphism (B.8) follows from Proposition B.2.6.

O[Proposition B.1.4]

B.3. An expression for the global sections functor. In this subsection we will recall the expression
for the functor
IndCohgrgay gen *
r (Sectw (X*", Z)Ran, —) © (SRan)
in terms of factorization homology & la [BD1, Sect. 4.6].
B.3.1. To any categorical prestack W we can attach the prestack W~ that classifies arrows in W. Le.,
for a test affine scheme S, the groupoid W™ (S) classifies triples
(w1 € W(S), w2 € W(S),a: w1 — w2).
B.3.2. Denote
Ranc := (Ran""")”.
Denote by
PTsmalls Plhig Ranc — Ran
the maps that correspond to the source and the target of the arrow, respectively.
Explicitly, the groupoid Ranc (S) consists of
{z,,2, € Ran(S) [z, C z,},

and the maps pr,,,,; and pry,;, send a point as above to z; and z,, respectively.

B.3.3. Denote
) = < Jbig = c
Z'Ranc small - Z’Ran X RanC Z’Ranc big Z'Ran X RanC
- Ran,propman = Ran,pry;g
and
o o o o
Z’Ranc,small = ZRan X Rang, ZRanc,big = ZRan X Ran§~
- Ran,proman N Ran,prp;g

Proceeding as in Sect. 5.4.6, one can define the corresponding categories
QCOh(Z)Rang ,smally QCOh(Z)Rang ,big

and
o

QCOhCo (Z)Rang ,small and QCOhco (Z)Rang ,bigs

respectively.
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B.3.4. Denote by
DPZran  LRan — Ran

and

PZRanc sman © “Ranc,small = Ranc and pag,, _ i, © ZRanc big = Rang,
as well as

[e]
Do : Zran — Ran
Z'Ran
and
o ]
Do : ZRanC,small — Rang and Po : ZRanC,big — Rang,
ZRan ,small = ZRanc ,big =

the resulting maps.
We will consider the corresponding functors

(P2ran )+ : QCOM(Z)Ran — IndCoh(Ran)

and
(po )« : QCoh(Z)Ranc ,big — IndCoh(Ranc)
Z»Rangbig = -
as well
(p% )« : QCoh, (Z)Ran — IndCoh(Ran)
Ran
and
(po )+ : QCoh, (Z)Ranc ,big — IndCoh(Ranc).
Z’Rang,big = -

o

B.3.5. Note now that the unital structures on the categories QCoh(Z)ran and QCoh_,(Z)Rran, deter-
o]
mined by QCoh(Z)gapunti, and QCoh,,(Z)ganuntt, respectively, give rise to functors

(BQ) QCOhCO(Z)Rang ,small — QCOhCO(Z)Rang ,big
and
(B.].O) QCOhCO(Z’)Rang,small — QCOhCO(Z)Rang,big-

Denote the compositions

T B.
QCOh(Z)Ran P ! QCOhCO(Z)Rang,small (499 QCOhCO(Z)Rang,big

and
S pr!sm 11 2 (B.10) o
QCOhCO(Z’)Ran QCOhCO(Z)Rang ,small — QCOhCO(Z’)Rang,big

in both instances by ins. vac.; we will refer to this functor as the “insertion of vacuum”.

B.3.6. Let
diag : Ran — Ranc
denote the diagonal map,
z— (z Cx).
In terms of Sect. B.3.1, it corresponds to the identity morphisms on objects of W, unt1 ().
Note that we have pullback squares

diag
Z’Ran — Z-Rang,big

(B.11) szanl J/pZR,ang,big

diag
Ran ——— Ranc.
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and
o B o
diag
ZRan E— ZRang ,big
P Po
(B.12) gRanl l ZRanc,big
diag

Ran ——— Ranc.

Note also that we have a canonical identification
diag! oins. vac. ~ Id,
in both instances.

B.3.7. Recall that sz ran (or simply Sran) denotes the map

Sectv (Xgen7 Z)Ran — ZRan~
We will use the same symbol sz ran (or simply Sgran) to denote the map

Sectv (X, Z) x Ran — Zran.

The following assertion is a variant with parameters of [BD2, Proposition 4.6.5]:

Proposition B.3.8.
(a) The functor

QCOh(Z)ran "EY " QCoh(Secty (X, 2)) ® IndCoh(Ran) " 5°°'v o5 —etd

identifies canonically with

IndCoh(Ran)

(pZRang big)* )indCo

QCOh(Z)ran ™5 QCOh(Z)ranc e S IndCoh(Ranc) P35 " IndCoh(Ran).
Under the above identification, the map
(PZgan)* = (PZgan)* © (SRan)s © (SRan)™,
giwen by the unit of the ((Sran)”, (Sran)+)-adjunction, corresponds to the map
(Peren)e = (Pryman)e © (Perne 1) o ding. =
e (PTyman)+ © (P g )+ © liag, 0 diag' 0105 VC. = (Dlyman)s © (BEran ) O 5. vac.

(b) The functor

o

QCoh,, (Z)ran B QCoh, (Secty (X5, 2))Ran

identifies canonically with

(PSectg (X80, 2)) g an )*

IndCoh(Ran)

(Po )
Z‘Ranc ,big

QCoh,, (Z)ran "3 QCohy (2)Ranc big  —5 ImdCoh(Ranc) “="%"* IndCoh(Ran).
Under the above identification, the map
(p% )* — (p% )* ° (SRan)* o (SRan)*7
Ran Ran

given by the unit of the ((Sran)”, (Sran)+)-adjunction, corresponds to the map

(Pe )+ = (Pryman)= © (po )« o diag, =~
ZRan Z’Rang,big
= (prsmall)* o (po )* o diag* o dia“g! oins.vac. — (prsmall)* o (po )* o ins. vac. .
Z’R,ang big ZR,ang |big

B.4. Inputing the unitality structure. In this subsection we will prove Proposition B.2.6 by com-
bining Proposition B.3.8(b) with a cofinality argument.



PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE IV 59

B.4.1. Note that in the situation of Sect. B.3.1, the prestack W™ itself can also be extended to a
categorical prestack.

Applying this to Ran"™", we obtain a categorical prestack, denoted Ran‘é“tl. Explicitly, the space of
morphisms
(z, Czy) — (2] C )
is
{x}ifz; €z} and z, C x5,
(0, otherwise.
Denote by

£l tl
tc : Ran"™™ — Ran¢’

the corresponding map.

B.4.2. The following assertion follows by unwinding the constructions:
Lemma B.4.3. The composite functor

o (pZR,anC ,big>*

QCoh,, (2) gamentt > QCON, (Z)Ran "S5 QC0h (D) ranc big 55 IndCoh(Ranc)
factors via a functor
QCoh,y(Z)ganunet — IndCoh(Ran™),
followed by t!g

B.4.4. Note that from (B.12), we obtain commutative diagrams

QCoh,, (2)Ranc big ——5 QCohy(Z)ran
(Po )*l (Po )*

ZRanc ,big ZRan
IndCoh(Ranc) e, IndCoh(Ran)
and
diag,

QCOhco (Z)Raﬂ — QCOhco (Z)Raﬂg ,big

(Po ) (po )
ZRan ZRanc ,big

IndCoh(Ran) ——%*,  IndCoh(Ranc).

Hence, combining Proposition B.3.8(b) and Lemma B.4.3, we obtain that in order deduce Proposi-
tion B.2.6, it suffices to prove the following assertion:

Proposition B.4.5. The natural transformation

™9 (Ran, —) o diag' ~ I"™1°°"(Ran, —) o (pr,,.1)« © diag, o diag’ —

— T4 Ran, —) o (prygan)- ~ I (Ranc, —)

of functors IndCoh(Ranc) = Vect, is an isomorphism, when evaluated on the essential image of the
functor

t!g : IndCoh(Ran™) — IndCoh(Ranc).

O[Proposition B.2.6]
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B.4.6. Proof of Proposition B.4.5. We need to show that the natural transformation
(B.13) C.(Ran, —) o diag' otc — C(Ranc, —) o tc,
as functors

IndCoh(Ranf™) = Vect,

is an isomorphism.

First, as in [Ga4, Theorem 4.6.2], one shows that the map tc is universally homologically cofinal.
Hence, the natural transformation

C.(Ranc, —) ote — C,(Rang™, —),
as functors
IndCoh(Ranf™) = Vect,

is an isomorphism.

Consider now the composition
untl

tc odiag : Ran — Ranc
It is easily seen to be value-wise cofinal. Hence, the natural transformation
C.(Ran,—) o diag! ot!g — C;(Rang’“, =),
as functors
IndCoh(Ranf™) = Vect,

is an isomorphism.
Combining, we obtain that (B.13) is also an isomorphism, as desired.
O[Proposition B.4.5]

APPENDIX C. PROOF OF PROPOSITION 5.6.11

We will show that Proposition 5.6.11 amounts to a parameterized version of Proposition 5.5.5,
combined with a fully-faithfulness assertion regarding the localization functor Locy.

C.1. The localization functor in the abstract setting.
C.1.1. Let Yran satisfy the following conditions:
e The diagonal map Yran — Yran X Yran is affine. Note that this formally implies that the
diagonal map of Sect(X,Y) is aﬂir?g;n
e For every S — Ran, the prestack Yran X S is passable (see [GaRo2, Chapter 3, Sect. 3.5.1]
for what this means); e
e The prestack Sect(X,Y) is passable.
C.1.2. Note that the above conditions imply that the morphism
Sy Ran : Sect(X,Y) x Ran = Yran
behaves nicely with respect to push-forwards:
For any prestack W mapping to Yran, and the base-changed map
s{(,’Ran : (Sect(X,Y) x Ran) x W —=W,

YRan

the functor
(8y.Ran)+ : QCoh((Sect(X,Y) x Ran) x W) — QCoh(W),

YRan
right adjoint to (sy gapn)”, commutes with colimits, and satisfies the base change formula. This follows
from [GaRo2, Chapter 3, Proposition 3.5.3].
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C.1.3. Consider the resulting pair of adjoint functors
(sy,Ran)" : QCoh(Y)ran = QCoh(Sect(X,Y)) ® IndCoh(Ran) : (sy,Ran)+-

Denote
Locy := (Id @™°°"(Ran, —)) o (sy.ran)”s  QCoh(Y)ran — QCoh(Sect(X,Y)).
The right adjoint Locé’2 of Locy is thus given by
(sy,ran)+ © (Id ®(wran ® —)), QCoh(Sect(X,Y)) = QCoh(Y)ran.
C.1.4. We will prove:

Proposition C.1.5. LetY be a D-prestack with an affine diagonal, satisfying the finiteness assumptions
of Sect. C.1.1 above. Then the natural transformation

Locy o(sy,ran)« = (Id @T™"(Ran, —)) o (sy,ran)" © (sy,Ran)x — (Id @™ " (Ran, —)),

arising from the counit of the ((sy,ran)™, (Sy,Ran)«)-adjunction, is an isomorphism, when evaluated on
the essential image of the functor

t' ® Id : QCoh(Sect(X,Y)) ® IndCoh(Ran""") — QCoh(Sect(X,Y)) ® IndCoh(Ran).
This proposition will be proved in Sect. C.3.

C.1.6. Combined with the contractibility of the Ran space, i.e., the fact that the map
4 Ran, wran) — k,

given by the counit of the (I'"™4°°"(Ran, —), wran ® —)-adjunction, is an isomorphism, from Proposi-
tion C.1.5 we obtain:

Proposition C.1.7. LetY be a D-prestack with an affine diagonal, satisfying the finiteness assumptions
of Sect. C.1.1 above. Then the counit of the adjunction

Locy o Locyf — Id,
is an isomorphism.
Note that Proposition C.1.7 can be restated as:
Corollary C.1.8. Under the above assumptions on Y, the functor
Loc{ : QCoh(Sect(X,Y)) = QCoh(Y)ran
is fully faithful.
C.1.9. Note that for Y being the constant D-stack with fiber pt /G, we have
Sect(X,Y) ~ LS .
Furthermore, we have a tautological identification
QCoh(Y)ran =~ Rep(G)Rran-
Under this identification, we have

spec

Locy =~ Loc,

and
R s
Locy ~I'F*.
Hence, Corollary C.1.8 contains Proposition 1.1.4 as a particular case.

Remark C.1.10. As far as the actual proof of Proposition C.1.5 is concerned, we will first establish
Proposition C.1.7, and then deduce the general case stated in Proposition C.1.5.

C.2. Proof of Proposition 5.6.11. In this subsection we will assume Proposition C.1.5 and deduce
Proposition 5.6.11.
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C.2.1. Note that along with the category QCoh,,(Sectv (X®",2/Y)/Sect(X,Y))ran, we can consider
its unital version QCoh,,(Sectw (X5, Z/Y)/ Sect(X,Y))ganunt1, equipped with a forgetful functor
(C.1)

t' : QCoh,, (Secty (X, 2./Y)/ Sect(X, Y)) gapuntt — QCoh,, (Secty (X, 2/Y)/ Sect(X, Y))ran-

We will show that the natural transformation

(02) (ﬂ_Ran)IndCohRdn ° (SZ/y,Ran)* ° (SZ/H,Ran)* N (ﬂ-Ran)IndCOhRdn7

induced by the counit of the ((sz/y,ran)"; (52/y,Ran)+)-adjunction, is an isomorphism, when evaluated

on objects lying in the essential image of the forgetful functor (C.1).

C.2.2. Set

(2 X Y)han = (Sect(X.,¥) x Ran) 2
‘3 Ran

viewed as a prestack mapping to Sect(X,Y) x Ran.
Let us denote by mg,, the projection

(2 X Y)han — Sect(X, Y).

«co X

Consider the corresponding category

QCoh, (( Y)'/ Sect(X, Y))ran-

X
o
Y

IndCohRran

A procedure similar to that defining the functor (mran )« gives rise to a functor

(Than ) dCoRAn . QCohCO(( )"/ Sect(X,Y))ran — QCoh(Sect(X,Y)).

X
o
Y

C.2.3. Note that the morphism

$2/Y,Ran * SeCtV(Xgen7 Z/y)Ran — (Z' X 1d)Ram
Y
can be naturally factored as
Sectw (X", 2 /an L5 (B x o " (B Y,
Y Y

where S{j,Ran is a base change of the map
Sy Ran : Sect(X,Y) x Ran — Ygran,
which appears in Proposition C.1.5.

Thus, we can factor (sz,y ran)« as

(5%/y Ran) Y.Ran)*

QCoh,, (Secty (X5, 2/Y)/ Sect(X, Y))ran 5™ QCoh,, (2 x Y)'/ Sect(X, Y))ran 4 Rap)
K
— QCOhco(Z’ X %/%)Ran
g
and (SZ/H,Ran)* as
o st n * o , (S/ y an)*
QCoh, (2 x Y/P)ran 25 QCoh, (2 x Y)'/ Sect(X, Y))ran | *L5
Y Y

— QCoh,, (Secty (X, 2/4)/ Sect(X, ¥))ran-
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C.2.4. Consider the natural transformation

(C3)  (mRan)» © (Sy,Ran)” © (8, Ran)x © (52/y,Ran)s —
— (TRan)x © (829 Ran)” © (84 Ran)” © (5Y,Ran)* © (52/y Ran)+»
arising from the unit of the ((s%/y ran)” (5% /y Ran)+)-adjunction.
Its composition with (C.2) is the natural transformation
(C.4) (ﬂ'ﬁan)* ° (S{J,Ran)* © (S{d,Ran)* o (S/Z/H,Ran)* - (Wﬁan)* © (S{Z./‘J,Ran)* >~ (TRan)
arising from the counit of the ((sy ran)”, (8y Ran)+)-adjunction.

We will show that both (C.3) and (C.4) are isomorphisms when evaluated on objects lying in the
essential image of the functor (C.1). This will imply that (C.2) is also an isomorphism on such objects.

C.2.5. Verification that (C.3) is an isomorphism. Along with QCohCO((E xY)'/Sect(X,Y))ran We can
Y

consider its unital version
o

QCOhco((Z’ %),/ SeCt(X7 y))l‘{an“““'

X
o
Y
Note that the functors
/ / / /
(S‘é,Ran)*7 (SH,Ran)*v (SZ/‘J,Ran)*7 (SZ/H,Ran)*
upgrade to functors
/ * ’ *

(s‘d,Ran“n“) ’ (Sy,Ran“““)*7 (SZ/E,Ranu““) ’ (SZ/y,Ran“ml)*

between the corresponding unital categories.

Hence, the functor
/ * / /
(8y,Ran)” © (8y,Ran)x © (SZ,/‘d,Ran)*
sends objects that lie in the essential image of the functor (C.1) to objects that lie in the essential
image of the corresponding functor

(C.5) th: QCohCO((% x Y)"/ Sect(X, Y))gapuntt — QCohCO((,’% x Y)'/Sect(X, Y))ran-
Y Y

We obtain that it is enough to show that the natural transformation
C n Cohran
(CG) (ﬂ—{lan)ind °hRa o (S;J,Ran)* — (ﬂ—Ran)ind ohg 5

arising from the counit of the ((sy ran)™, (SY Ran)+)-adjunction, is an isomorphism when evaluated on
objects lying in the essential image of the functor (C.5).

However, the latter statement is a parameterized (by Sect(X,Y)) version of Proposition B.2.6.

C.2.6. Verification that (C.4) is an isomorphism. As above, it is enough to show that the natural
transformation

IndCohgan IndCohgan
(0'7) (W{Ran)*n OMan o (s{d,Ran)* © (S(A,Ran)* — (W{{an)*n R
is an isomorphism when evaluated on objects lying in the essential image of the functor (C.5).

However, by base change along the Cartesian diagram

%)%an Sg)Ran} (Z Ié)Ran

| !

Sect(X,Y) x Ran —22%  Ypo.,

2

«co X

this reduces to the assertion of Proposition C.1.5.
O[Proposition 5.6.11]
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C.3. Proof of Proposition C.1.5.

C.3.1. We will first reduce the assertion of Proposition C.1.5 to that of Proposition C.1.7, and then
prove Proposition C.1.7.

We need to show that the natural transformation
(Id @T™9°°" (Ran™"| —)) o (sgapunt1)” © (Sgagunt1 )« — (Id @I (Ran™™, )

arising from the counit of the ((Sgapunt1)”, (Sganunti )« )-adjunction, is an isomorphism.

C.3.2. First, note that the left-lax symmetric monoidal structure on the functor
raCer (Ran"™ —) : IndCoh(Ran™") — Vect,

arising by adjunction from the monoidal structure on the functor wg,,wnt1 ® —, is actually strictly
symmetric monoidal structure. Indeed, this follows from the fact that the diagonal morphism

1 1 1
Ran™" — Ran"™' x Ran"™*

is value-wise cofinal.

C.3.3. Similarly, we obtain that the functor
(Id @I™49°" (Ran"™ | —)) o (sgaqunet)” : QCoh(Y)Ran — QCoh(Sect(X,Y))

is IndCoh(Ran"*")-linear, where IndCoh(Ran""") acts on QCoh(Sect(X,Y)) via the symmetric
monoidal functor T™4C°R (Ran"»" ).

C.3.4. This implies that we have a canonical isomorphism between the functor
(Id @I™49°" (Ran"™, —)) o (Sgapunt1)” © (Sgapunti )«
and
(@I (Ran"™", =) 0 (spanesst)" © (spaguna )+ © (14 B (@pamunss © =) & L™ (Ran™™", ),
and this isomorphism is compatible with the map of both to

(Id ®FIndCoh (Ranuntl’ 7)) ~ ((Id ®1—\IndC0h(Ranuntl’ 7)) ° (Id ®(wRa“untl ® 7))) ® FIndCoh (Ranuntl’ 7)

However, the latter map is an isomorphism, by Proposition C.1.7.
O[Proposition C.1.5]

C.4. Proof of Proposition C.1.7.

C.4.1. Due to the assumption that Sect(X,Y) is passable, self-functors on QCoh(Sect(X,Y)) are in
bijection with objects of QCoh(Sect(X,Y) x Sect(X,Y)), and the identity endofunctor is given by

(ASect(X,‘é) ) * (OseCt(X,lé) ) :

Thus, we need to show that the map

(C.8) (Id @(Locy o Loct) ) ((Asecs(x,y))# (Osect (x,))) = (Asect(x,9))+ (Oseet(x,y))

is an isomorphism.
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C.4.2. We rewrite the left-hand side in (C.8) as the image of Osect(x,y) along the push-pull along the
diagram

Sect(X,Y)
Ascct(x,w)l
Sect(X,Y) x Sect(X,Y) «—— Sect(X,Y) x Sect(X,Y) x Ran

lid X$y,Ran

id Xsy Ran

Sect(X,Y) X Yran Sect(X,Y) x Sect(X,Y) x Ran

l

Sect(X,Y) x Sect(X,Y).

By base change, we rewrite this as the push-pull along

Sect(X,Y) x Sect(X,Y) x Ran ——— Sect(X,Y) x Sect(X,Y)
J/SB‘RanRiins‘d,Ran

AYRan/Ran

yRan %Ran X 1éRan
Ran

of the object
(p‘éRan )* (wRan) € QCOh(H)Rarp
C.4.3. Consider the following version of the set-up of Sect. B.3.

Let f : Z1 — Z2 is an affine morphism of D-prestacks. Consider the following commutative (but

non-Cartesian) diagram

Sect(X, Zl) X Ran M Z—l,Ran

Sect(f)xidl lfRan

Sect(X,Z2) x Ran ———— Z2 Ran.
5%25,Ran

The ((sz,,Ran)", (52, ,Ran)+)- and ((Sz,,Ran)"; (S24,Ran)+)-adjunctions give rise to natural transfor-
mation

Szg,Ran o (fRan)* - (SeCt(f)* & Id)* ° SEI,Ran
as functors
QCoh(Z1)ran =% QCoh(Sect(X,Z2)) ® IndCoh(Ran).

Consider the induced natural transformation
(Cg) (Id ®F1ndCOh(Ra‘n7 7)) © Szg,Ran o (fRan)* —
— (Id@I"™I°°" (Ran, —)) o (Sect(f). ® Id). o 8%, Ran = Sect(f)« o (Id @I (Ran, —)) o 52, Ran

as functors
QCoh(Z1)ran = QCoh(Sect(X, Z2)).

The following is a parametrized version of Proposition B.3.8(a):

Proposition C.4.4. The natural transformation (C.9) is an isomorphism, when evaluated on objects
lying in the essential image of the forgetful functor

t' 1 QCoh(Z1)gapuntt — QCO(Z1)Ran-
Corollary C.4.5. The natural transformation (C.9) is an isomorphism, when evaluated on the object

(le,Ran)* (wRan) c QCOh(Zl)R‘an.
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C.4.6. We will apply the above to
Z1=Y, 22 =Y x1Y
and f being the diagonal map.

Unwinding the definitions, we obtain that the map

ndCo * * C.
(C10) (@™ (Ran, ) © (syman X 8y.1a0)" © (A )+ (Poen) (@ran)) &

— (Asect(x,))x © (A@I™Y"(Ran, —)) 0 (sy.Ran) " (Pygan) (WRan)) = (Asecr(x,1))« (Osect(x,1))
identifies with the map
(Id @™ (Ran, —)) o (sy,Ran X sy,Ran)” © (Ayg, )« (Pygan) (WRan)) = (Aseet(x,y))« (Osect(x,y))
of (C.8).

Hence, the latter map is an isomorphism by Corollary C.4.5.
O[Proposition C.1.7]
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