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Algebraicity in monochromatic homotopy theory

Torgeir Aambø

Abstract

Using Patchkoria–Pstrągowski’s version of Franke’s algebraicity theorem, we prove

that the category of Kp(n)-local spectra is exotically equivalent to the category of de-

rived In-complete periodic comodules over the Adams Hopf algebroid (E∗, E∗E) for

large primes. This gives a finite prime result analogous to the asymptotic algebraicity

for SpKp(n) of Barthel–Schlank–Stapleton.
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1 Introduction

The central idea in chromatic homotopy theory is to study the symmetric monoidal stable ∞-

category of spectra, Sp, via its smaller building blocks. These are the categories Spn,p and

SpKp(n) of En,p-local and Kp(n)-local spectra, where E = En,p is Morava E-theory, and

Kp(n) is Morava K-theory, see for example [HS99]. These categories depend on a prime p
and an integer n, called the height. For a fixed height n, increasing the prime p makes both

categories behave more algebraic. This manifests itself, for example, in the E-Adams spectral

sequence of signature

Es,t
2 (LnS) = Exts,tE∗E

(E∗, E∗) =⇒ πt−sLnS

computing the homotopy groups of the E-local sphere. By the smash product theorem of

Ravenel, see [Rav92, 7.5.6], this spectral sequence has a horizontal vanishing line at a finite

page. If p > n + 1, this vanishing line appears already on the second page, where the infor-

mation is completely described by the homological algebra of ComodE∗E – the Grothendieck

abelian category of comodules over the Hopf algebroid (E∗, E∗E).

Increasing the prime p correspondingly increases the distance between objects appearing in the

E-Adams spectral sequence. When 2p − 2 exceeds n2 + n, there is no longer room for any

differentials, and the spectral sequence in fact collapses to an isomorphism

π∗LnS ∼= Ext∗,∗
E∗E

(E∗, E∗),

for degree reasons. In other words, the homotopy groups are completely algebraic in this range.

A natural question to ask is whether this collapse is a feature solely of the E-Adams spectral

sequence or if it is a feature of the category Spn,p. More precisely, is the entire category of

E-local spectra algebraic, in the sense that it is equivalent to a derived category of an abelian

category, whenever 2p − 2 > n2 + n?

At height n = 0, the category Spn,p is the category of rational spectra SpQ, which can be seen to

be equivalent to the derived ∞-category of rational vector spaces, but at positive heights n > 0,

there can never be an equivalence of ∞-categories Spn,p ≃ D(A).

However, in [Bou85] Bousfield showed that for p > 2 and n = 1, that there is an equivalence

of homotopy categories

hSp1,p ≃ hFr1,p,

where Frn,p is a certain derived ∞-category of twisted comodules over the Hopf algebroid

(E∗, E∗E). As this cannot be lifted to an equivalence of ∞-categories, it is sometimes referred

to as an exotic equivalence.

Franke expanded upon this in [Fra96] by conjecturing – and attempting to prove – that for

2p− 2 > n2 + n there should be an equivalence of homotopy categories

hSpn,p ≃ hFrn,p.
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Unfortunately, a subtle error was discovered in the proof by Patchkoria in [Pat12], but the result

was recovered in [Pst21] with a slightly worse bound: 2p − 2 > 2n2 + 2n. Pstrągowski also

proved that this equivalence gets “stronger” the larger the prime, where we not only get an

equivalence of categories but an equivalence of k-categories

hkSpn,p ≃ hkFrn,p,

for k = 2p− 2− n2 − n. Here hkC denotes taking the homotopy k-category, given by (k− 1)-
truncating the mapping spaces in C. At k = 1, this gives the classical situation of taking the

homotopy category hC. Using and developing a more general machinery, Pstrągowski and

Patchkoria proved in [PP21] that the above equivalence holds in Franke’s conjectured bound,

2p − 2 > n2 + n.

These results imply that increasing the prime p decreases how destructive the k-truncation of

the mapping spaces needs to be. In the limit p → ∞, we might expect that there is no need

to truncate at all, giving an equivalence of ∞-categories. But, there needs to be an appropriate

notion of what “going to the infinite prime” should be. In [BSS20], the authors use a notion

of ultraproducts over a non-principal ultrafilter F of primes to formalize this limiting process.

They use this to prove the existence of a symmetric monoidal equivalence of ∞-categories
∏

F

Spn,p ≃
∏

F

Frn,p.

Expanding on their work, Barthel, Schlank, and Stapleton proved in [BSS21] a Kp(n)-local

version of the above result. More precisely, they show that there is a symmetric monoidal

equivalence of ∞-categories ∏

F

SpKp(n) ≃
∏

F

F̂rn,p,

where the right-hand side consists of derived complete twisted comodules for the naturally

occurring Landweber ideal In ⊆ E∗.

Statement of results

We can summarize the most general of the above algebraicity results in the following table,

p <∞ p→ ∞

Spn,p [PP21] [BSS20]

SpKp(n) [BSS21]

A natural question arises: Is there a finite prime exotic algebraicity for SpKp(n)? The goal of

this paper is to give an affirmative answer. More precisely, we prove the following.

Theorem A (Theorem 7.10). Let p be a prime and n a natural number. If k = 2p−2−n2 > 0,

then there is an equivalence of k-categories

hkSpKp(n) ≃ hkF̂rn,p.

In other words, Kp(n)-local spectra are exotically algebraic at large primes.
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The available tools for proving such a statement require an abelian category with enough in-

jective objects admitting lifts to a stable ∞-category. In lack of such a well-behaved abelian

approximation for SpKp(n), we take inspiration from [BSS21] and instead use the dual category

Mn,p of monochromatic spectra, which we show has the needed properties. Theorem A then

follows from the following result.

Theorem B (Theorem 7.7). Let p be a prime and n a natural number. If k = 2p− 2− n2 > 0,

then there is an equivalence of k-categories hkMn,p ≃ hkFr
In−tors
n,p .

Remark. Note that whenever there is an equivalence hkSpn,p ≃ Spn,phkFrn,p as in [PP21], we

inherit an equivalence hkSpKp(n) ≃ F̂rn,p as full subcategories. But, for a fixed height n we

obtain a sharper bound for the prime p. For example, at n = 2, the equivalence induced from

Spn,p only applies for p > 7, but our results also give an equivalence for p = 5. Furthermore,

fixing both a height n and a prime p, we can often conclude with stronger statements. For

example, if p = 3 and n = 1 [PP21] induced on the subcategory gives h2SpK3(1) ≃ h2F̂r1,3,

but we obtain h3SpK3(1) ≃ h3F̂r1,3.

In order to prove Theorem B, we first prove the analogous statement for monochromatic E-

modules.

Theorem C (Theorem 6.6). Let p be a prime and n a natural number. If k = 2p − 2− n > 0,

then there is an equivalence of k-categories hkModIn−tors
E ≃ hkD

per(ModIn−tors
E∗

).

Overview of the paper

Be aware that the paper contains a significant amount of exposition – perhaps more than some

would like. This is done with non-experts in mind. Readers familiar with local duality, chomatic

homotopy theory, and algebraicity, can skip to the last two sections, where most of the new

material is proved.

Section 2 introduces the theory of local duality, as well as some Barr-Beck type statements re-

lated to it. In Section 3, we introduce Hopf algebroids and the theory of torsion comodules,

which we at the end of the section relate back to local duality. In Section 4, we look at chro-

matic homotopy theory, with a particular focus on monochromatic homotopy theory and its

relationship to local duality. Section 5 focuses on the relationship between the two sections

prior, where we introduce exotic adapted homology theories and Franke’s algebraicity theorem.

Most of the new results are presented in Section 6 and Section 7, where we prove Theorem A,

Theorem B and Theorem C.

Acknowledgements. We want to thank Drew Heard, Irakli Patchkoria and Marius Nielsen for

helpful conversations and for proof-reading the paper. This work forms a part of the authors the-

sis, partially supported by grant number TMS2020TMT02 from the Trond Mohn Foundation.
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2 Torsion and completion

The goal of this section is to set up some necessary results that will be used throughout the paper.

More precisely, we present the theory of local duality, proved in [HPS97] and generalized to

the ∞-categorical setting in [BHV18]. This theory will be used in Section 3 and Section 4 to

describe the “irreducible pieces” of certain categories, as well as making arguments in Section 6

and Section 7 simpler by dualizing to a category that behaves better in respect to existing tools

and techniques.

2.1 Local duality

We freely use the language of ∞-categories, as developed by Joyal [Joy02] and Lurie [Lur09;

Lur17]. Even though we are dealing with both classical 1-categories and ∞-categories in this

paper, we will mostly refer to them both as categories, hoping that the prefix is clear from the

context.

Notation 2.1. We denote by PrLst the ∞-category of presentable stable ∞-categories and colimit

preserving functors. Together with the Lurie tensor product, it is a symmetric monoidal ∞-

category.

Construction 2.2. The category of commutative algebra objects CAlg(PrLst) is the ∞-category

of presentable stable symmetric monoidal ∞-categories, where the monoidal product commutes

with colimits separately in each variable. Any C ∈ CAlg(PrLst), then, has an internal hom-

functor HomC(X,−) that is a right adjoint to (−) ⊗C X, making the symmetric monoidal cat-

egory (C,⊗C,1C) into a closed symmetric monoidal category. This means we have an internal

duality functor DC(−) : Cop −→ C, sending and object X 7−→ HomC(X,1C).

Remark 2.3. If it is clear from the context we will sometimes omit the subscript from the

notation, simply using (−)⊗ (−), Hom(−,−) and D(−).

Definition 2.4. Let C ∈ CAlg(PrLst). An object X ∈ C is said to be compact if the functor

HomC(X,−) corepresented by X preserves filtered colimits. It is said to be dualizable if the

natural map DX ⊗ Y −→ Hom(X,Y )is an equivalence for all Y ∈ C.

Definition 2.5. If there is a set of compact objects K in C such that K generates C under filtered

colimits, then we say C is compactly generated. If all objects in K are in addition dualizable,

then we say C is compactly generated by dualizables.

Remark 2.6. Being compact or dualizable can be thought of as smallness conditions. By [Lur17,

1.4.4.2] any C ∈ CAlg(PrLst) is generated by κ-compact generators. Being compactly generated

means κ can be chosen to be ω.

Remark 2.7. If C is compactly generated by a set of dualizable objects K which contains the

monoidal unit 1C, then any object X is compact if and only if it is dualizable. This will hold for

many of the categories we meet, but not all of them. If 1C is not compact, then compact objects

are still dualizable, but the converse fails in general.
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We will, throughout the paper, be interested in certain functors called localizations. In spirit,

these are functors that invert a certain class of maps.

Definition 2.8. Let C,D ∈ CAlg(PrLst) and L : C −→ D a functor. A map f in C is called an

L-equivalence if Lf is an equivalence. The functor L is said to be tensor-compatible if being an

L-equivalence is stable under tensor product: in the sense that for any L-equivalence X −→ Y
and object Z ∈ C, the induced map X ⊗ Z −→ Y ⊗ Z is again an L-equivalence.

Definition 2.9. Let C,D ∈ CAlg(PrLst). A (monoidal) localization is a tensor-compatible

functor f : C −→ D with a fully faithful right adjoint i.

Remark 2.10. Note that in the litterature localizations are not always assumed to be tensor-

compatible. We will, however, assume that all of our localizations satisfy this, and omit the

prefix monoidal. This is not a very restrictive assumption, and is, for example, satisfied by all

Bousfield localizations of spectra.

Remark 2.11. Let f : C −→ D be a localization. The composition of f with The fully faithful

right adjoint i is denoted L. The functor i gives an equivalence between D and a full subcategory

of C, denoted CL. By [Lur09, 5.2.7.4] there is an equivalence between localizations f : C −→ D

and functors L : C −→ CL (L viewed as a functor to its essential image) that are left adjoint to

the inclusion. Hence, by abuse of notation, we will also call L : C −→ CL a localization.

Definition 2.12. Given a localization L : C −→ CL, any object C ∈ C admits a mapC −→ LC
coming from the unit of the adjunction, called its L-localization. The object C is said to be L-

local if this is an L-equivalence.

Proposition 2.13 ([Lur17, 1.3.4.3]). Let L : C −→ CL be a localization. Then CL is equivalent

to the full subcategory of C obtained by inverting the collection of L-equivalences WL. In other

words, CL ≃ C[W−1
L ].

Remark 2.14. Let L : C −→ CL be a localization. The symmetric monoidal structure on C

induces a symmetric monoidal structure on CL, defined by L(− ⊗C −), making L into a sym-

metric monoidal functor. This follows from [Lur17, 2.2.1.9] by our standing assumption that

all localizations are tensor-compatible, see Remark 2.10.

Remark 2.15. Similarly to localizations, we can define colocalizations as functors g : C −→ D

admitting a fully faithful left adjoint i. The composition i ◦ g is denoted Γ. The adjoint gives

an equivalence between D and a full subcategory CΓ of C, and the datum of a colocalization is

equivalent to the datum of a functor Γ: C −→ CΓ that is right adjoint to the inclusion. Dually to

localizations, we get for any C ∈ C a colocalization map ΓC → C , and we say C is Γ-colocal

if this is an equivalence.

For any localization L : C −→ CL, the image of the unit L1C is a ring object, and any L-local

object X admits the structure of an L1C module via a map L1C ⊗ X −→ X. Equivalently,

there is a map of functors L1C ⊗ L(−) −→ L(−). Via the tensor-internal hom adjunction this

is equivalently a map L(−) −→ Hom(L1C,−).

Definition 2.16. We say a localization L is smashing if the L1C-module map above is an equiv-

alence. This is equivalent to the dual map L(−) −→ HomC(L1,−) being an equivalence.
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Remark 2.17. Similarily, for a colocalization Γ there are maps Γ1C ⊗ Γ(−) −→ Γ(−) and

Γ(−) −→ Hom(Γ1C,−). The colocalization Γ is said to be smashing if the former is an

equivalence, and cosmashing if the latter is. Note that being smashing and cosmashing is not

equivalent for colocalizations, as was the case for localizations. We plan to investigate this

distinction, and its relationship with comodules, contramodules and Positselski duality, in future

work.

Remark 2.18. Any localization L equips CL with a symmetric monoidal structure, as seen in

Remark 2.14. If L is a smashing localization, then the induced tensor product is the same as in

the category C. The same applies to smashing colocalizations.

There are several ways to construct localizations, but one method particularly important for us

will be via localizing subcategories.

Definition 2.19. Let C ∈ CAlg(PrLst). A subcategory L ⊆ C is said to be a localizing subcate-

gory if it is closed under retracts, suspensions, and filtered colimits. If in addition L⊗ C ∈ L
for all L ∈ L and C ∈ C, then L is called a localizing ideal.

Notation 2.20. Let C ∈ CAlg(PrLst) and K ⊆ C a set of objects. We denote by Loc⊗
C
(K) the

smallest localizing ideal in C containing K. It will sometimes be referred to as the localizing

ideal generated by K.

Definition 2.21. Let L ⊆ C be a full subcategory. The left orthogonal complement of L, is the

full subcategory L⊥ consisting of objects C ∈ C such that HomC(L,C) ≃ 0 for all L ∈ L.

Example 2.22. Let C ∈ CAlg(PrLst) and L a localizing ideal. The inclusion of the complement

L⊥ →֒ C is fully faithful and has a left adjoint L : C −→ L⊥. Viewed as an endofunctor on C,

this is a localization, and its kernel is precisely L.

We are now ready to present the setup for local duality. In essence, it can be viewed as a

natural duality theory occurring whenever the localizing ideal L is generated by a set of compact

objects.

Definition 2.23. A pair (C,K), where C ∈ CAlg(PrLst) is compactly generated by dualizables,

and K is a subset of compact objects, is called a local duality context.

Definition 2.24. Let (C,K) be a local duality context. We define CK−tors to be the localizing

tensor ideal Loc⊗
C
(K). In addition, CK−loc denotes the left orthogonal complement (CK−tors)⊥,

and CK−comp denotes the double left-orthogonal complement (CK−loc)⊥. These full subcate-

gories are respectively called the K-torsion, K-local and K-complete objects in C.

Remark 2.25. By definition CK−tors is compactly generated, and by [BHV18, 2.17] both CK−loc

and CK−comp are as well.

Notation 2.26. The categories CK−tors, CK−loc and CK−comp are full subcategories of C, and

have full inclusions into C, denoted iK−tors, iK−loc and iK−comp respectively. When the K is

understood, we sometimes omit it from the notation. By the adjoint functor theorem, [Lur09,

5.5.2.9], the inclusions iK−loc and iK−comp have left adjoints LK and ΛK respectively, while

iK−tors and iK−loc have right adjoints ΓK and VK respectively.
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For any X ∈ C, these functors assemble into two cofiber sequences:

ΓKX −→ X −→ LKX and VKX −→ X −→ ΛKX.

Note also that these functors only depend on the localizing subcategory CK−tors, not on the

particular choice of generators K. Thus, when the set K is clear from the context, we often omit

it as a subscript when writing the functors.

Construction 2.27. As CK−tors is a localizing ideal, it automatically inherits a non-unitally sym-

metric monoidal structure from C. As CK−loc is the left complement of a localizing ideal, the

functor L is a localization, as mentioned in Example 2.22. By Remark 2.14, we have a sym-

metric monoidal structure on its local objects – in this case, CK−loc – that is compatible with

the localization L. As L is a localization, Γ is a colocalization, and is in particular idempo-

tent. Hence, the non-unitally symmetric monoidal structure on CK−tors is quasi-unital, which

by [Lur17, 5.4.4.7] can be made into a symmetric monoidal structure. This makes Γ into a

symmetric monoidal functor by the same argument as for localizations. Similarly, as CK−tors

is generated by a set of compact objects [BHV18, 2.17] makes sure that also CK−loc is a local-

izing ideal, making Λ into a localization as well. In particular, CK−comp inherits a symmetric

monoidal structure compatible with Λ.

We are now ready to state the abstract local duality theorem. We have chosen a slightly restricted

version compared to that of [HPS97, 3.3.5] and [BHV18, 2.21], where we focus only on the

parts we will need.

Theorem 2.28. Let (C,K) be a local duality context. Then

1. the functors Γ and L are smashing, i.e. ΓX ≃ X ⊗ Γ1 and LX ≃ X ⊗ L1,

2. the functors Λ and V are cosmashing, i.e. ΛX ≃ Hom(Γ1,X) and V X ≃ Hom(L1, x),
and

3. the functors Γ: CK−comp −→ CK−tors and Λ: CK−tors −→ CK−comp are mutually in-

verse equivalences of categories,

This can be summarized by the following diagram of adjoints

CK−loc

C

CK−tors CK−comp

L

Λ

Γ
≃

Remark 2.29. Although not stated in [HPS97] or [BHV18] the equivalence CK−tors ≃ CK−comp

is in fact monoidal. This is because the equivalence is a composition of a lax-monoidal functor

icomp (it is lax as it is adjoint to the symmetric monoidal functor ΛK) and a symmetric monoidal

functor ΓK.
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The following example will be useful later, and was also used as an instructive example of stable

recollments in [BRW23, 3.4].

Example 2.30. We denote by D(Z) the derived category of abelian groups. An abelian group

A is said to be p-local for a prime p if all other primes act invertably on A. Equivalently, it

is a module over the p-local integers Z(p). The derived category of p-local abelian groups is

denoted D(Z)(p) and can equivalently be described by modules over Z(p), treated as a chain

complex in degree zero, in D(Z). The object Z(p)/p is compact in D(Z)(p), hence the pair

(D(Z)(p), {Z(p)/p}) is a local duality context. By Theorem 2.28, we have a local duality dia-

gram

D(Q)

D(Z)(p)

D(Z)p−tors D(Z)∧p

L

Λ

Γ
≃

We have identified D(Z)p−loc
(p) with D(Q) as every prime is invertible, giving us the rationals Q.

We have also identified D(Z)p−comp
(p) with D(Z)∧p , the category of derived p-complete abelian

groups. The category D(Z)p−tors is the full subcategory of objects with p-torsion homology.

For more on derived completion, see Remark 3.18. The functor Λ is then identified with the

total left derived functor of p-adic completion,

Λ(X) ≃ LCp(X) ≃ lim
k

Σ−1Z/pk ⊗X,

while the functor Γ is identified with the total right derived functor of p-torsion

Γ(X) ≃ RTp(X) ≃ colimk HomZ(p)
(Z/pk,X),

see [BHV18, 3.16, 3.18] for details. This, then, reduces the local duality for (D(Z)(p),Z/p)
to the classical duality theory between derived p-torsion and derived p-completion in abelian

groups.

Remark 2.31. We will see more examples of this duality in later sections. In Section 3, we will

study a local duality of a particular class of derived categories, while in Section 4 we will study

a local duality in chromatic homotopy theory. Hence, we give no more examples here, except

to state that the above result puts several known duality results on a common framework, for

example, Grothendieck duality and Greenlees-May duality, see [BHV18].

2.2 Barr-Beck for localizing ideals

As stated earlier, we will later be particularly interested in smashing localizations on categories.

The goal of this section is essentially to prove that such smashing localizations interact nicely

with local duality as in Theorem 2.28.
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Remark 2.32. Let L be localization on C. As noted before, the image L1 is a ring object, and

every L-local object admits the structure of an L1-module. If L is a smashing localization, then

L1 is an idempotent algebra in C. The image of the inclusion CL →֒ C is then identified with

the category of modules ModL1(C). In particular, smashing localizations are in bijection with

idempotent algebras.

There is a more general way to identify which categories are equivalent to modules over an

algebra. This is the contents of the Barr-Beck-Lurie theorem, which we now cover.

Definition 2.33. Let C,D ∈ CAlg(PrLst). An adjoint pair (F ⊣ G) : C −→ D is called a

monoidal adjunction if F admits the structure of a symmetric monoidal functor.

Remark 2.34. If (F ⊣ G) is a monoidal adjunction, then the right adjoint G is a lax monoidal

functor. In particular, it sends algebras to algebras.

Definition 2.35. Let (F ⊣ G) : C −→ D be an adjoint pair. The composition GF is a monad

on C, i.e. an object in AlgE1
(End(C)). The functor G factors as

D
Ḡ

−→ ModGF (C)
f

−→ C

where ModGF (C) is the Eilenberg-Moore category of GF and f is the forgetful functor. We say

the adjunction (F ⊣ G) is monadic if Ḡ is an equivalence. If the adjunction is monoidal and Ḡ
is a monoidal equivalence, we say (F ⊣ G) is monoidally monadic.

Definition 2.36. Let (F ⊣ G) : C −→ D be a monoidal adjunction. For any X ∈ D and Y ∈ C

there is a natural map φX,Y : G(X)⊗C Y −→ G(X ⊗D F (Y )), called the projection formula,

adjoint to the composition

G(X ⊗D F (Y )) −→ G(X) ⊗C GF (Y ) −→ G(X) ⊗C Y.

If φX,Y is an isomorphism for all X and Y , we say the projection formula holds for (F ⊣ G).

The following theorem is the monoidal Barr-Beck-Lurie theorem. It is a monoidal version

of Lurie’s ∞-categorical version of the classical Barr-Beck monadicity theorem, see [Lur17,

Section 4.7].

Theorem 2.37 ([MNN17, 5.29]). Let C,D ∈ CAlg(PrLst) and (F ⊣ G) : C −→ D be a

monoidal adjunction. If in addition

1. G is conservative

2. G preserves colimits

3. The projection formula holds

then (F,G) is a monoidally monadic adjunction and the monad GF is equivalent to the monad

G(1D)⊗ (−). In particular this gives a symmetric monoidal equivalence D ≃ ModG(1D)(C).

Proof. By [Lur17, 4.7.0.3] the adjunction is monadic by the first two criteria, giving an equiva-

lence D ≃ ModGF (C). The projection formula applied to the unit 1D gives an equivalence of

monads GF ≃ G(1D)⊗ C.

10



Definition 2.38. When the three criteria above hold for a given monoidal adjunction (F ⊣ G),
we will say that the adjunction satisfies the monoidal Barr-Beck criteria or that it is a monoidal

Barr-Beck adjunction. We will sometimes omit the prefix monoidal when it is clear from context.

Example 2.39. This gives an immediate proof of the claim in Remark 2.32. Let C ∈ CAlg(PrLst)
and L : C −→ CL any smashing localization. Then L1C is an idempotent algebra and the

monoidal adjunction (L ⊣ i) : C −→ CL satisfies the Barr-Beck criteria. Hence Theorem 2.37

gives CL
≃

−→ ModL1C
(C), which is exactly the claimed equivalence.

Let (C,K) be a local duality context. The goal for this section was to prove that local duality

interacts nicely with smashing localizations. Since smashing localizations are examples of

the Barr-Beck adjunction, we take a more general approach and prove that local duality is

compatible with Theorem 2.37. By modifying [BS20, 3.7] slightly, we know that any Barr-

Beck adjunction induces a Barr-Beck adjunction on K-local and K-complete objects. Hence, it

remains only to prove a similar statement for the K-torsion objects.

Definition 2.40. Let (C,K) and (D,L) be local duality contexts. A map of local duality contexts

is a symmetric monoidal colimit-preserving functor F : C −→ D such that F (K) ⊆ L. If, in

addition Loc⊗
D
(F (K)) ≃ Loc⊗

D
(L), then we say F is a strict map of local duality contexts. A

monoidal adjunction (F ⊣ G) : C −→ D such that F is a strict map of local duality contexts is

called a local duality adjunction, sometimes denoted

(F ⊣ G) : (C,K) −→ (D,L).

Given a local duality context and an appropriate functor, one can always extend the functor to a

strict map of local duality context in the following way.

Construction 2.41. Let (C,K) be a local duality context, D ∈ CAlg(PrLst) and F : C −→ D

be a symmetric monoidal colimit-preserving functor. The image of K under F generates a

localizing ideal Loc⊗
D
(F (K)) in D, which makes F a map of local duality contexts. We call

this the local duality context on D induced by C via F .

The following lemma is essentially the “non-geometric” version of [BS17, 5.11]. The proof is

also similar, but as we have phrased it in a different and slightly more general language, we

present a full proof.

Lemma 2.42. Let (F ⊣ G) : (C,K) −→ (D,L) be a local duality adjunction. Then, the

adjunction induces a monoidal adjunction on localizing ideals

Loc⊗
C
(K) Loc⊗

D
(L).

F ′

G′

Proof. Recall first that localizing ideals inherit symmetric monoidal structures by Construction 2.27.

Since the functors ΓK : C −→ Loc⊗
C
(K) and ΓL : D −→ Loc⊗

D
(L) are both smashing, these

symmetric monoidal structures are the symmetric monoidal structures on C and D, restricted to

Loc⊗
C
(K) and Loc⊗

D
(D) respectively.

11



Since F is a map of local duality contexts, we have an inclusion F (K) ⊆ L, which gives

inclusions

F (Loc⊗
C
(K)) ⊆ Loc⊗

D
(F (K)) ⊆ Loc⊗

D
(L),

meaning that the functor F restricts to the torsion objects. In particular we have for any object

X ∈ CK−tors an equivalence ΓLF (X) ≃ F (X). We let F ′ = F|Loc⊗
C
(K) and define U ′ to be

the composition

Loc⊗
D
(L)

iL−tors
−→ D

U
−→ C

ΓK−→ Loc⊗
C
(K),

which is an adjoint to F ′. We need to show that F is a symmetric monoidal functor, but, as the

inclusions iK−loc and iL−loc are non-unitally monoidal all that remains to be proven is that F ′

sends the monoidal unit ΓK1C to the monoidal unit ΓL1D.

The localizing ideals Loc⊗
C
(K) and Loc⊗

D
(L) are equivalent to the localizing ideals generated

by the respective units, i.e.

Loc⊗
C
(K) ≃ Loc⊗

C
(ΓK1C) and Loc⊗

D
(L) ≃ Loc⊗

D
(ΓL1D).

Since (F ⊣ U) is a local duality adjunction we also know that Loc⊗
D
(F (K)) ≃ Loc⊗

D
(L), which

also means LocD(F (ΓK1C)) ≃ Loc⊗
D
(L). Let G be the full subcategory of Loc⊗

D
(L) where

F (ΓK1C) acts as a unit, in other words objects M ∈ Loc⊗
D
(L) such that F (ΓK1C)⊗DM ≃M .

In particular, F (ΓK1C) is in G. The category G is closed under retracts, suspension, and colimits,

as well as tensoring with objects in D, as we have

F (ΓK1C)⊗D (M ⊗D D) ≃ (F (ΓK1C)⊗D M)⊗D D ≃M ⊗D D

for any M ∈ G and D ∈ D. Hence, it is a localizing tensor ideal of D, with a symmetric

monoidal structure where the unit is F (ΓK1C). In particular, G ≃ Loc⊗
D
(F (ΓK1C)), which we

already know is equivalent to Loc⊗
D
(L).

Since the ideals are equivalent, and the unit is unique, we must have F (ΓK1C) ≃ ΓL1D, which

finishes the proof.

The key feature for us is that such an induced adjunction inherits the property of being a Barr-

Beck adjunction, i.e., that the right adjoint is conservative, preserves colimits, and has a pro-

jection formula. An analogous, but not equivalent, statement was proven in [BS20, 4.5]. An-

other related, but not equivalent statement, is Greenlees and Shipleys Cellularization principle,

[GS13].

Theorem 2.43. Let (F ⊣ G) : (C,K) −→ (D,L) be a local duality adjunction. If (F ⊣ G)
satisfies the Barr-Beck criteria, then the induced monoidal adjunction on localizing ideals

Loc⊗
C
(K) Loc⊗

D
(L)

F ′

G′

constructed in Lemma 2.42, also satisfies the Barr-Beck criteria.
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Proof. We need to prove that G′ is conservative and colimit-preserving and that the projection

formula holds. The first two will both follow from the following computation, showing that

also G′ is just the restriction of G to Loc⊗
D
(L).

Let X ∈ Loc⊗
D
(L). By definition we have G′(X) = ΓKG(X), where we have omitted the

inclusions from the notation for simplicity. Since ΓK is smashing and (F ⊣ G) by assumption

has a projection formula we have

ΓKG(X) ≃ G(X) ⊗C ΓK1C ≃ G(X ⊗D F (ΓK1C)).

By Lemma 2.42 F ′ is symmetric monoidal, hence F (ΓK1C) ≃ ΓL1D, which acts on X as the

monoidal unit. Thus, we can summarize with

G′(X) ≃ G(X ⊗D F (ΓK1C)) ≃ G(X ⊗D ΓL1D) ≃ G(X),

which shows that also G′ is the restriction of G.

Now, as U is both conservative and preserves colimits, and colimits in the localizing ideals are

computed in C and D respectively, then also U ′ is conservative and colimit-preserving. The

projection formula for (F ′ ⊣ U ′) also automatically follows from the projection formula for

(F ⊣ U).

3 Hopf algebroids and comodules

Before we pass to the world of stable homotopy theory in Section 4 we study a related but

simpler theory arising in algebra via comodules over Hopf algebroids. The contents of this

section can be thought of as an algebraic analog to Section 4, and the goal of Section 6 and

Section 7 is to study how precise this analogy is.

Definition 3.1. A (graded) Hopf algebroid is a cogroupoid object (A,Ψ) in the category of

graded commutative rings.

The use of Hopf algebroids in situations related to homotopy theory was studied by Ravenel in

[Rav86, A.1] and later in more detail by Hovey in [Hov04].

Remark 3.2. In the literature outside of topology, the assumptions of being commutative and

graded are usually not present. But, as all our examples will be of this kind, we keep in line

with the topological tradition.

Definition 3.3. Let (A,Ψ) be a Hopf algebroid. A Ψ-comodule is an A-module M together

with a coassociative and counital map ψ : M −→ M ⊗A Ψ. The category of comodules over

(A,Ψ) is denoted ComodΨ.

Example 3.4. For any commutative graded ring A, the pair (A,A) is a called a discrete Hopf

algebroid. The category of comodules over this Hopf algebroid is the normal abelian category

ModA of modules over A.
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Remark 3.5. In algebraic geometry, Hopf algebroids are usually formulated dually as groupoid

objects in affine schemes. The left and right unit maps A⇒ Ψ induces a presentation of stacks

Spec(Ψ) ⇒ Spec(A), and the category ComodΨ is equivalent to the category of quasi-coherent

sheaves on the presented stack, see [Nau07, Thm 8].

Construction 3.6. Given an Adams Hopf algebroid (A,Ψ), we can define a discretization map

ε : (A,Ψ) −→ (A,A), which is given by the identity on A and the counit on Ψ. By [Rav86,

A1.2.1] and [BHV18, 4.6] it induces a faithful exact forgetful functor ε∗ : ComodΨ −→ ModA
with a right adjoint ε∗ given by ε∗(M) ≃ Ψ⊗A M . A comodule in the essential image of ε∗ is

called an extended comodule.

Definition 3.7. We say a Hopf algebroid (A,Ψ) is of Adams type if Ψ is a filtered colimit

colimk Ψk ≃ Ψ of dualizable comodules Ψk.

Proposition 3.8 ([Hov04, 1.3.1, 1.4.1]). Let (A,Ψ) be an Adams Hopf algebroid. Then, the

category ComodΨ is a Grothendieck abelian category generated by the dualizable comodules.

There is a symmetric monoidal product −⊗Ψ−, which on the underlying modules is the normal

tensor product of A-modules. It has a right adjoint HomΨ(−,−), making ComodΨ a closed

symmetric monoidal category.

As in Section 2.1, we have certain objects that are especially important – the compact objects

and the dualizable objects. In Grothendieck abelian categories it is, in addition, important to

understand the injective objects. This will also become important later in Section 5, as we will

use injective objects to approximate other objects and to build certain spectral sequences.

Proposition 3.9. Let (A,Ψ) be an Adams Hopf algebroid. A Ψ-comodule M is dualizable if

and only if its underlying A-module ε∗M is dualizable, i.e., it is finitely generated and projective.

Similarly, a Ψ-comodule is compact if and only if its underlying A-module is compact, which

coincides with being finitely presented.

Proof. The first claim is [Hov04, 1.3.4] and the second is [Hov04, 1.4.2].

Remark 3.10. As colimits in ComodΨ are exact and are computed in ModA, all the dualiz-

able comodules are compact. Hence, the full subcategory of dualizable comodules is a set of

compact generators for ComodΨ.

Proposition 3.11 ([HS05b, 2.1]). Let (A,Ψ) be an Adams Hopf alebroid. If I is an injective

object in ComodΨ, then there is an injective A-moduleQ, such that I is a retract of the extended

comodule Ψ⊗A Q.

Remark 3.12. Note that as ComodΨ is Grothendieck abelian, it has enough injective objects.

This allows us to construct injective resolutions and thus Ext-groups, which we will see later,

greatly help in computing information in stable homotopy theory. For example, the pair (F2,A∗)
where A∗ is the dual Steenrod algebra is a Hopf algebroid, and the groups ExtsA∗

(F2,F2) are

used in the Adams spectral sequence to approximate homotopy groups of spheres, see [Ada58].

Given an Adams Hopf algebroid (A,Ψ), we also have an associated derived category. By

[Hov04, 2.1.2, 2.1.3] the category of chain complexes of Ψ-comodules, ChΨ, has a cofibrantly
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generated stable symmetric monoidal model structure. In [BR11] this model structure was mod-

ified slightly to more easily compare it to the periodic derived category, which we will construct

in Section 3.2. The homotopy category associated to this model structure is the usual unbounded

derived category D(ComodΨ) associated to the Grothendieck abelian category ComodΨ.

Notation 3.13. We will use D(Ψ) as our notation for the underlying symmetric monoidal stable

∞-category associated with the above model structure. The monoidal unit is A, treated as a

chain complex centered in degree 0.

Remark 3.14. We warn the reader that some authors use the notation D(Ψ) to reffer to the

above-mentioned periodic derived category of (A,Ψ). This is the case, for example, in [Pst21].

We also get an induced discretization adjunction on the level of derived categories.

Proposition 3.15. Let (A,ψ) be an Adams Hopf algebroid. Then the discretization adjunction

(ε∗ ⊣ ε∗) : ComodΨ −→ ModA induces an adjunction (ε∗ ⊣ ε
∗) : D(Ψ) −→ D(A).

Proof. This follows from the fact that Ψ is flat over A, which implies that both ε∗ and ε∗ on the

abelian categories are exact.

3.1 Torsion and completion for comodules

There are two approaches to studying torsion and completion in D(Ψ) – one “internal” and

one “external”. The internal approach uses the classical theory of torsion objects in abelian

categories, while the external uses local duality, as in Theorem 2.28. These two approaches are

luckily equivalent in the situations we are interested in.

We first review the abelian situation: the internal approach. We follow [BHV18] and [BHV20]

in notation and results.

Definition 3.16. Let A be a commutative ring and I ⊆ R a finitely generated ideal. The

I-power torsion of an A-module M is defined as

TA
I M = {x ∈M | Ikx = 0 for some k ∈ N}.

We say a module M is I-torsion if the natural map TA
I M −→M is an equivalence.

Definition 3.17. Let A be a commutative ring and I ⊆ R a finitely generated ideal. The I-adic

completion of an A-module M is defined as

CA
I M = lim

k
A/Ik ⊗A M.

We say a module M is I-adically complete if the natural map M −→ CA
I M .

Remark 3.18. The resulting category of I-adically complete modules is not very well-behaved.

The I-adic completion functor is often neither left nor right exact, and the category is often not

abelian. To fix these issues, Greenlees and May introduced the notion of L-complete modules

in [GM92], using instead the zeroth left derived functor L = L0C
A
I . Thus, it is also some-

times referred to as derived completion. One then defines I-complete modules, also called
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L-complete or derived complete, to be those R-modules such that the natural map M −→ LM
is an equivalence.

Notation 3.19. We denote the full subcategory consisting of I-power torsion A-modules by

ModI−tors
A and the full subcategory of I-complete A-modules by ModI−comp

A .

Remark 3.20. The category ModI−tors
A is a Grothendieck abelian category. On the other hand,

ModI−comp
A is abelian, but not Grothendieck in general.

The inclusion of the full subcategory ModI−tors
A →֒ ModA has a right adjoint, which coincides

with the I-power torsion TA
I (−). This gives the I-power torsion another description as the

colimit

TA
I M

∼= colimk HomA(A/I
k,M).

We want to extend the construction of I-torsion and L-complete modules to general Adams

Hopf algebroids (A,Ψ). For this, we need to choose sufficiently nice ideals that interact nicely

with the additional comodule structure.

Definition 3.21. Let (A,Ψ) be an Adams Hopf algebroid, and I an ideal in A. We say I is an

invariant ideal if, for any comodule M , the comodule IM is a subcomodule ofM . If I is finitely

generated by (x1, . . . , xr) and xi is non-zero-divisor in R/(x1, . . . , xi−1) for each i = 1, . . . , r,

then we say I is regular.

Definition 3.22. Let (A,Ψ) be an Adams Hopf algebroid and I ⊆ A a regular invariant ideal.

The I-power torsion of a comodule M is defined as

TΨ
I M = {x ∈M | Ikx = 0 for some k ∈ N}.

We say a comodule M is I-torsion if the natural map TΨ
I M −→M is an equivalence.

Remark 3.23. By [BHV18, 5.10] the full subcategory of I-torsion comodules, which we de-

note ComodI−tors
Ψ , is a Grothendieck abelian category. It also inherits a symmetric monoidal

structure from ComodΨ. This also makes ModI−tors
A Grothendieck abelian and symmetric

monoidal by Example 3.4.

Remark 3.24. Unfortunately, the corresponding versions of I-adically complete and L-complete

comodules do not form abelian categories in general, as we can have problems with the comod-

ule structure on certain cokernels.

As for the case of modules, the inclusion ComodI−tors
Ψ →֒ ComodΨ has a right adjoint that cor-

responds to the I-power torsion construction TΨ
I . This, by [BHV18, 5.5] also has the alternative

description

TΨ
I M

∼= colimk HomΨ(A/I
k,M).

The construction of I-power torsion in ModA and ComodΨ are completely analogous, so one

can wonder whether they agree on the underlying modules. This turns out to be the case.

Lemma 3.25 ([BHV18, 5.7]). For any Ψ-comodule M there is an isomorphism of A-modules

ε∗T
Ψ
I M

∼= TA
I ε∗M. Furthermore, if an A-module N is I-power torsion, then the extended
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comodule Ψ ⊗A N is I-power torsion. In particular, a Ψ-comodule M is I-power torsion if

and only if the underlying A-module is I-power torsion.

As mentioned above, we will later make use of injectives in ComodI−tors
Ψ . Hence, we relate

some facts about these.

Lemma 3.26. Let (A,Ψ) be an Adams Hopf algebroid and I a regular invariant ideal.

1. If J is an injective in ComodΨ then TΨ
I J is an injective in ComodI−tors

Ψ .

2. There are enough injectives in ComodI−tors
Ψ .

3. Any injective J ′ in ComodI−tors
Ψ is a retract of an object of the form TΨ

I J for an injective

Ψ-comodule J .

Proof. The first point is [BS12, 2.1.4], while the second is a consequence of ComodI−tors
Ψ

being Grothendieck abelian, as mentioned in Remark 3.23. The third point is stated in the proof

of [BHV20, 3.16].

Remark 3.27. Choosing a discrete Hopf algebroid (A,A), Lemma 3.26 implies that injectives

in ModI−tors
A are retracts of TA

I (Q) for some injective A-module Q and that TA
I preserves in-

jectives. As noted in Proposition 3.11, an injective object in ComodΨ is a retract of an extended

comodule of the form Ψ⊗AQ for an injective A-module Q. This means that all injectives J in

ComodI−tors
Ψ are retracts of TΨ

I (Ψ⊗A Q) where Q is an injective A-module.

Remark 3.28. As colimits in ComodI−tors
Ψ are computed in ComodΨ, we have, similar to

Proposition 3.9, that an I-power torsion Ψ-comodule M is dualizable (resp. compact) if and

only if its underlying A-module is finitely generated and projective (resp. finitely presented).

Lemma 3.29. Let (A,Ψ) be an Adams Hopf algebroid, where A is noetherian and I ⊆ A a

regular invariant ideal. Then ComodI−tors
Ψ is generated under filtered colimits by the compact

I-power torsion comodules.

Proof. By [BHV20, 3.4] ComodI−tors
Ψ is generated by the set

TorsfpΨ := {G⊗A/Ik | G ∈ ComodfpΨ , k > 1},

where ComodfpΨ is the full subcategory of dualizable Ψ-comodules. Since I is finitely generated

and regular, A/Ik is finitely presented as an A-module, hence it is compact in ComodI−tors
Ψ

by Proposition 3.9 and Remark 3.28. As A is noetherian, being finitely generated and finitely

presented coincide. The tensor product of finitely generated modules is finitely generated, hence

any element in TorsfpΨ is compact.

Remark 3.30. The assumption that the ring A is noetherian can most likely be removed, but it

makes no difference to the results in this paper.

Notation 3.31. Since ComodI−tors
Ψ is Grothendieck abelian we have an associated derived sta-

ble ∞-category D(ComodI−tors
Ψ ) which we denote simply by D(ΨI−tors).
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We now move to the external approach, using local duality.

Construction 3.32. Let (A,Ψ) be an Adams Hopf algebroid and I ⊆ A a regular invariant

ideal. Then A/I , treated as a complex concentrated in degree zero, is by [BHV18, 5.13] a

compact object in D(Ψ). Thus, (D(Ψ), A/I) is a local duality context, and we can consider

the corresponding local duality diagram

D(Ψ)I−loc

D(Ψ)

D(Ψ)I−tors D(Ψ)I−comp

LΨ
I

∆Ψ
I

ΓΨ
I

≃

where we have used the superscript I instead of A/I for simplicity. This gives, in particular, a

definition of I-torsion objects in D(Ψ) as D(Ψ)I−tors.

Our goal was to give two constructions and prove that they were equal in the cases we were

interested in.

Lemma 3.33 ([BHV20, 3.7(2)]). Let (A,Ψ) be an Adams Hopf algebroid and I ⊆ A a regular

invariant ideal. There is an equivalence of categories

D(Ψ)I−tors ≃ D(ΨI−tors).

Furthermore, an object M ∈ D(Ψ) is I-torsion if and only if the homology groups H∗M are

I-power torsion Ψ-comodules.

Remark 3.34. One can wonder whether the same is true for the I-complete derived category,

but this is unfortunately not true as ComodI−comp
Ψ is not abelian. A partial result can, however,

be recovered for discrete Hopf algebroids (A,A).

We follow [BHV20] in the following construction.

Construction 3.35. Recall that ModI−comp
A denotes the category of L-complete A-modules for

I ⊆ A a regular ideal. By [BHV20, 2.11] the category has enough projectives, hence by [Lur17,

1.3.2] we can associate to it the right bounded category D−(ModI−comp
A ). This has a by [Lur17,

1.3.2.19, 1.3.3.16] a left complete t-structure with heart equivalent to ModI−comp
A . We can then

form its right completion, which we denote D(ModI−comp
A ), and call the completed derived

category of ModI−comp
A .

This is what allows us the partial version of Lemma 3.33 in the case of I-completion.

Proposition 3.36 ([BHV20, 3.7(1)]). Let A be a commutative ring and I ⊆ A a regular ideal.

Then, there is an equivalence

D(ModA)
I−comp ≃ D(ModI−comp

A ),
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where the former category is the full subcategory of A/I-complete objects in D(ModA) while

the latter is the completed derived category of ModI−comp
A .

3.2 The periodic derived category

The standard derived ∞-category will, for our purposes, not be the correct category to work

with. The periodic derived category was constructed by Franke to serve as an algebraic version

of a certain category of spectra, which we will cover in the next section.

The spirit of the periodic derived category can be captured as follows. If we have an abelian

category with a local grading, for example, graded modules over a graded ring R∗, then the

derived category D(R∗) has two gradings, one coming from R∗ and one from forming chain

complexes. If we want to compare this category to a category with only one grading, then we

need to remove a grading in order for the comparison to be compatible. The periodic derived

category is a way to collapse the two gradings on D(R∗) into a single grading.

Definition 3.37. Let D be a category. A local grading on D is an autoequivalence T : D −→ D.

A category together with a choice of a local grading is called a locally graded category.

Example 3.38. Any stable ∞-category C, together with its suspension functor Σ: C −→ C,

makes C a locally graded category.

Example 3.39. Let R be a graded ring and ModR its category of graded modules. Then the

grading shift functor [1] : ModR −→ ModR defined by (TM)k = Mk−1 is a local grading

on ModR. Similarly, for a (graded) Hopf algebroid (A,Ψ), the same grading shift functor T
makes ComodΨ a locally graded abelian category.

There are several ways of constructing the periodic derived category, but we follow [Fra96] in

spirit, using periodic chain complexes.

Definition 3.40. Let A be an abelian category with a local grading T and denote [1] the shift

functor on the category of chain complexes Ch(A) in A. A chain complex C ∈ Ch(A) is called

periodic if there is an isomorphism φ : C[1] −→ TC .

Notation 3.41. It is more common to write the chain complex grading as C•. We can then

incorporate the isomorphism into the structure, defining a periodic chain complex to be a pair

(C•, φ•). Together with chain maps that commute with the ψ• isomorphisms, these objects form

a category of periodic chain complexes, denoted Chper(A).

Definition 3.42. The forgetful functor Chper(A) −→ Ch(A) has a left adjoint P , called the

periodization.

Remark 3.43. By [BR11], there is an explicit formula for this periodization of a chain complex

C , given by

P (C) =
⊕

k∈Z

T kC[−k],

which in particular means that P (C)n =
⊕

k∈Z T
kCn+k. The proof of the fact that this functor

is left adjoint to the forgetful functor is given in [BR11, Lemma 1.2].
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Definition 3.44. Let A be a locally graded abelian category. Then the periodic derived cate-

gory of A, denoted Dper(A) is the ∞-category obtained by localizing Chper(A) at the quasi-

isomorphism. It is in fact stable by [PP21, 7.8].

Remark 3.45. For more details on the model structure and finer details of this definition, the

interested reader is referred to [BR11] and [PP21]. Other ources covering the more specific

case of comodules over an Adams Hopf algebroid, are [BSS20] and [Pst21].

Remark 3.46. If A is a symmetric monoidal category, for example A = ComodΨ, then P1 is

a commutative ring object called the periodic unit. The category of periodic chain complexes

Chper(A) is equivalent to ModP1(Ch(A)). This descends also to the derived categories, giving

an equivalence

Dper(A) ≃ ModP1(D(A)),

see for example [Pst21, 3.7].

Construction 3.47. The pair (Dper(A), P (A/I)) is a local duality context with associated local

duality diagram

Dper(Ψ)I−loc

Dper(Ψ)

Dper(Ψ)I−tors Dper(Ψ)I−comp

LΨ
I

ΛΨ
I

ΓΨ
I ≃

The functors in the diagram are induced by the functors from Construction 3.32. In fact, there

is a diagram

D(Ψ)I−tors D(Ψ) D(Ψ)I−loc

Dper(Ψ)I−tors Dper(Ψ) Dper(Ψ)I−loc

P P

LΨ
I

ΓΨ
I

P

LΨ
I

ΓΨ
I

that is commutative in all possible directions. Here where the unmarked horizontal arrows are

the respective fully faithful inclusions.

Remark 3.48. In the specific case of (A,Ψ) = (E0, E0E) and I ⊆ E0 the Landweber ideal In,

then the above construction is [BSS21, 3.12]. For more on this example, see Section 4.2.

There is now some ambiguity to take care of for our category of interest Dper(Ψ)I−tors. In the

picture above, we do mean that we take I-torsion objects in Dper(Ψ), i.e., [Dper(Ψ)]I−tors, but

we could also take the periodization of the category D(Ψ)I−tors as our model. Luckily, there is

no choice, as they are equivalent. This can be thought of as the periodic version of Lemma 3.33,

where we had an equivalence D(ΨI−tors) ≃ D(Ψ)I−tors.
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Theorem 3.49. Let (A,Ψ) be an Adams Hopf algebroid and I ⊆ A a finitely generated invari-

ant regular ideal. Then there is an equivalence of stable ∞-categories

[Dper(Ψ)]I−tors ≃ Dper(ΨI−tors).

Proof. By Remark 3.46 we have equivalences

Dper(Ψ) ≃ ModP1(D(Ψ)) and Dper(ΨI−tors) ≃ ModP (ΓΨ
I
1)(D(ΨI−tors)). (1)

By Theorem 2.43 the former induces an equivalence

[Dper(Ψ)]I−tors ≃ ModΓΨ
I
(P1)(D(Ψ)I−tors).

Since ΓΨ
I is a smashing colocalization and P is given by tensoring with P (1), they do in

fact commute. By again identifying D(Ψ)I−tors ≃ D(ΨI−tors) the above equivalence can

be rewritten as

[Dper(Ψ)]I−tors ≃ ModP (ΓΨ
I
1)(D(ΨI−tors)),

which by the second equivalence in Eq. (1) is equivalent to Dper(ΨI−tors), finishing the argu-

ment.

4 Chromatic homotopy theory

There are by now countless well-written introductions to the chromatic viewpoint of stable

homotopy theory – from multiple different viewpoints. But, we still decided to include a short

version of the story, as well as the key ideas and the definitions we need to state our results.

In light of our overarching focus on local duality (Theorem 2.28), we have chosen a viewpoint

that exemplifies the relationship between such dualities and the chromatic viewpoint. A reader

interested in a more comprehensive background treatment is referred to [BB19], of which some

of the below approach is inspired.

4.1 Fracture squares and field objects

In light of Waldhausen’s viewpoint of stable homotopy theory as an enhancement of algebra,

usually called brave new algebra, one should view the category of spectra Sp as a homotopical

enrichment of the derived category of abelian groups D(Z). We know that abelian groups can

be studied one prime at the time, which corresponds to studying D(Z)(p), the p-local derived

category. In [Bou79b], Bousfield developed a general machinery for studying localizations on

Sp, by inverting maps that are equivalences with respect to some spectrum F . The correspond-

ing localization dunctor is denoted LF . We can then create p-localization on Sp, by Bousfield

localizing at the p-local Moore spectrum MZ(p). On homotopy groups this has the effect of

p-localizing, i.e., inverting all primes except for p. The category of p-local spectra, denoted

Sp(p), should then be thought of as a homotopical enrichment of D(Z)(p).

Remark 4.1. Both L(p) : D(Z) −→ D(Z)(p) and L(p) : Sp −→ Sp(p) are smashing localiza-

tions.
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The study of D(Z)(p) can be further reduced to the study of its “atomic pieces”, which are the

minimal localizing subcategories.

Definition 4.2. A localizing subcategory L ⊆ C (see Definition 2.19) is said to be minimal if

any proper localizing subcategory L′ ⊂ L is (0).

Remark 4.3. If L is a minimal localizing subcategory, then any non-zero object K ∈ L gener-

ates L as LocC(K) ≃ L.

These minimal localizing subcategories are tightly related to local duality, as in Theorem 2.28.

In Example 2.30, we studied the local duality between p-torsion and p-complete abelian groups.

By [BHV18, 2.26], we get from any local duality diagram a fracture square, which for the local

duality context (D(Z)(p),Z(p)/p) gives the classical arithmetic fracture square

Z(p) Zp

Q Q⊗ Zp

In particular, this decomposes the unit Z(p) into a rational part and a p-complete part. This also

extends to a general chain complex A ∈ D(Z)(p), where we have a homotopy pullback square

A A∧
p

Q⊗A Q⊗Z A
∧
p

where (−)∧p denotes derived p-completion as in Remark 3.18. We can then wonder whether

these also give our minimal localizing subcategories, which is indeed the case.

Proposition 4.4. Let L be a minimal localizing subcategory ofD(Z)(p). Then either L ≃ D(Q)
or L is the category of derived p-complete objects, L ≃ D(Z)∧p .

Now, if Sp(p) is supposed to be a homotopical enrichment, we should expect there to be an anal-

ogy of this decomposition for p-local spectra, which is indeed the case. The first to study such

squares in topology was Sullivan in his 1970 MIT notes, where he constructed the analogous

square for nilpotent spaces, see [Sul05, 3.20]. This was later lifted up to spectra by Bousfield

in [Bou79b, 2.9], and takes the following form.

If S(p) denotes the p-local sphere spectrum, we have a spectral artithmetic fracture square

S(p) S∧p

HQ HQ⊗ S∧p

where S∧p denotes the p-complete sphere. This also extends to any object X ∈ Sp(p), just like

for A ∈ D(Z)(p).
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We can then ask the same natural question as we did above: do these give all the minimal lo-

calizing subcategories of Sp(p)? Recall that this was indeed the case before, but now, this is no

longer true. In fact, we now have an infinite sequence of minimal localizing subcategories, in-

dexed by a natural number n, interpolating between the rational spectra SpQ and the p-complete

spectra Sp∧p . 1

We can identify these “intermediary” subcategories by an analysis of field objects. For D(Z)(p)
there are exactly two field objects associated to Z(p), namely Q and Fp. For Sp(p) we have

a field object for any number n ∈ N ∪ {∞}, usually denoted K(n), or Kp(n) if we want to

remember the prime. As we have K(0) = HQ and H(∞) = HFp, this sequence of field

objects really forms an interpolation between the two field objects coming from algebra.

Notation 4.5. The object Kp(n) is called the height n Morava K-theory. Its associated minimal

localizing subcategory is the Bousfield localization SpKp(n).

These field objects Kp(n) were constructed by Morava in the early 70’s, and the categories

SpKp(n) have been under intense study ever since. We do not cover precise constructions here

and instead refer the interested reader to [HS99].

Proposition 4.6. Let p be a prime and n a natural number. The height n Morava K-theory

spectrum Kp(n) is a complex oriented E1-ring spectrum with coefficients

Kp(n)∗ := π∗Kp(n) ≃ Fp[v
±
n ],

with |vn| = 2pn − 2, whose associated formal group is the height n Honda formal group.

Furthermore, for any two spectra X,Y ∈ Sp, there is a Künneth isomorphism

Kp(n)∗(X × Y ) ≃ Kp(n)∗X ⊗Kp(n)∗ Kp(n)∗Y.

Remark 4.7. While the E1-ring structure on Kp(n) can be shown to be essentially unique, it

does admit uncountably many E1-MU -algebra structures – see [Ang11].

So, how are these new field objects related to the fracture squares above? If the SpKp(n)’s form

minimal localizing subcategories, then we should, by the previous discussion, expect there to

be an infinite sequence of pullback squares converging to S(p). This is indeed the case.

Let Ln := LKp(0)∨···∨Kp(n). By Ravenel’s smash product theorem, see [Rav92, 7.5.6], the

functor Ln : Sp(p) −→ Sp(p) is a smashing localization (Definition 2.16), hence the relevant

fracture squares for the two bottom cases n = 0 and n = 1 are given by

L1S LK(1)S L2S LK(2)S

HQ HQ⊗ LK(1)S L1S L1S⊗ LK(2)S

1In fact even more is true: By [Bur+23], there are at least two such infinite sequences. We can make sure that

there is a single such sequence if we translate over to tensor-triangulated ideals of compact objects, but for the above

exposition, we have chosen to push these details under a huge telescope-shaped rug.
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making the general square have the form

LnS LKp(n)S

Ln−1S Ln−1S⊗ LKp(n)S

This is called the chromatic fracture square, see for example [Hov95, 4.3]. The spectra LnS

assemble into a tower

· · · −→ L3S −→ L2S −→ L1S −→ L0S = LQS

called the chromatic filtration, and by the chromatic convergence theorem of Hopkins-Ravenel,

see [Rav92, 7.5.7], we can recover S(p) as the limit of this diagram.

Remark 4.8. Reducing to the subcategory of Sp(p) containing the Ln-local spectra, we should

then expect there to be a local duality diagram categorifying the chromatic fracture square. This

is precisely the goal of Section 4.3, but first, we need to understand this Ln-local category.

4.2 Morava E-theories

In the previous section, we obtained a localization functor Ln, which collected the information

coming from height 0 up to, and including, height n. This localization is good for many pur-

poses, but when we later want to tie the homotopy theory to algebra, we need another approach.

In particular, we want a spectrum E such that localizing at E is the same as using Ln, but with

some additional better properties. There are several approaches to obtaining such a spectrum E,

and the goal of this short section is to give a brief overview of the ones we will need later. We

will assume general knowledge about formal groups – all needed background can be found in

[Rav86, Appendix 2].

Remark 4.9. Let p be a prime and k be a perfect field of characteristic p. Lubin and Tate proved

in [LT66] that for any formal group law F of height n over k, there is a universal deformation F̄
over the Lubin-Tate ring E(k, F ) = W(k)[[u1, . . . , un−1]] of formal power series over the Witt

vectors of k. Using the algebraic geometry of formal groups, Morava interpreted this universal

deformation as a normal bundle over a formal neighborhood of the height nHonda formal group

law, leading to a spectrum EMor
n .

Using the theory of manifolds with singularities developed by Baas-Sullivan (see [Baa73a] and

[Baa73b]), Johnson and Wilson constructed in [JW75] an alternative spectrum exhibiting the

same information as Morava’s spectrum. Using Landweber’s exact functor theorem, we can

obtain a simpler description.

Definition 4.10. Let p be a prime, n a natural number and E(n)∗ := Z(p)[v1, . . . , vn−1, v
±
n ].

The ideal (p, v1, . . . , vn−1) is a regular invariant ideal, meaning in particular that E(n)∗ is

Landweber exact. In particular, there is a spectrum E(n), called the height n Johnson-Wilson

theory, with coefficients E(n)∗.
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Remark 4.11. The construction of E(n) has the added benefit that quotienting by the maximal

ideal In = (p, v1, . . . , vn−1) gives E(n)∗/In ∼= Fp[v
±
n ] = Kp(n)∗. This can also be suitably

interpreted as a quotient of spectra.

Definition 4.12. An E1-ring spectrum R is said to be concentrated in degrees divisible by q if

πkR ∼= 0 for all k 6= 0 mod q.

Proposition 4.13. Let p be a prime and n a natural number. Height n Johnson-Wilson the-

ory E(n) is a complex oriented, Landweber exact, E1-ring spectrum concentrated in degrees

divisible by 2p − 2.

Later, using a 2-periodic analogue of the universal deformation theory of Lubin and Tate, Hop-

kins and Miller constructed a 2-periodic E1-version of Morava’s spectrum, which was later

enhanced to an E∞-ring spectrum En via Goerss–Hopkins theory, see [GH04] or [PV22] for

a modern treatment. In essence, Hopkins–Miller constructed a functor from pairs (k, F ) of a

perfect field k of characteristic p, together with a choice of height n formal group law F , to

even periodic ring spectra. For a specific choice of (k, F ), we can summarize the properties as

follows.

Proposition 4.14. Let p be a prime, k a perfect field of characteristic p, and F a formal group

law of height n over k. The spectrum E(k, F ) is a 2-periodic, complex oriented, Landweber

exact, E∞-ring spectrum, such that π0E(k, F ) = W(k)[[u1, . . . , un−1]] and the associated

formal group law is the universal deformation of F .

Definition 4.15. For the specific choice (k, F ) = (Fpn ,Hn) we simply writeE(Fpn ,Hn) = En,

and call it the height n Morava E-theory.

Remark 4.16. One can also study maps of ring spectra En −→ Kn such that the induced map on

homotopy groups is given by taking the quotient by the maximal ideal, just as in Remark 4.11.

Such spectra Kn are 2-periodic versions of Morava K-theory and have been studied, for exam-

ple, in [HL17] and [BP23].

Remark 4.17. One nice benefit with En over E(n) is that the former is K(n)-local, making

its chromatic behavior even more interesting. In fact, the unit map LKp(n)S −→ En is a

pro-Galois extension in the sense of [Rog08], where the Galois group is the extended Morava

stabilizer group Gn, see [devinatz hopkins 2004]. We can, however, fix this by instead using

a completed version Ê(n), often called completed Johnson-Wilson theory. It has most of the

same properties as that of E(n), except that it is Kp(n)-local and its coefficients are p-adic and

In-complete: Ê(n)∗ ≃ Zp[v1, · · · , vn−1, v
±
n ]

∧
In

.

Remark 4.18. An E∞-version of Morava’s original spectrum EMor
n can be recovered from

En by taking the homotopy fixed points with respect to the Galois action Gal(Fpn/Fp) ∼= Z/n.

Another alternative is to use E
hF×

p
n . This spectrum is concentrated in degrees divisible by 2p−2,

hence serves as a nice E∞-version of the E1-ring spectrum E(n). This is the model of E used,

for example, in Barkan’s monoidal algebraicity theory, see [Bar23].

We have now introduced several versions of E-theory, all in light of trying to understand the
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localization functor Ln. Hence, we round off this section by stating that the Bousfield localiza-

tions at any of the above E-theories are equivalent.

Proposition 4.19 ([Hov95, 1.12]). Let p be a prime and n a natural number. Then there are

symmetric monoidal equivalences of stable ∞-categories

Spn ≃ SpE(n) ≃ SpE(k,F ) ≃ SpEn
≃ Sp

Ê(n)
≃ Sp

E
hF

×
p

n

.

In fact, if E is any Landweber exact vn-periodic spectrum, then SpE is equivalent to the above

categories.

Notation 4.20. We will use the common notation Spn,p for any of the above categories.

Remark 4.21. Note that even though the different models for Spn,p are equivalent, some of them

have non-equivalent associated module categories. For example, ModEn 6≃ ModE(n), as the

ring spectra En and E(n) have different periodicity – the former is 2-periodic while the latter

is (2pn − 2)-periodic. Whenever such a distinction is relevant, we will make this explicit.

4.3 Monochromatic spectra and local duality

Recall from Section 4.1 that our goal is to understand the Kp(n)-local pieces of the category of

p-local spectra, Sp(p). By Remark 4.8, we are looking for a local duality theory that categorifies

the chromatic fracture square. In this section, we construct precisely such a local duality theory,

both for Spn,p and for modules over E for some choice of E-theory.

Definition 4.22. A spectrum X is called n-monochromatic if it is En-local and En−1-acyclic.

The full subcategory of n-monochromatic spectra will be denoted Mn,p and referred to as the

height n monochromatic category.

If the height is understood, we will sometimes drop the n from the notation. We have a conve-

nient way to produce monochromatic spectra from En-local ones.

Definition 4.23. Let X ∈ Spn,p. The fiber of the localization X −→ Ln−1X, which we denote

MnX is called the n’th monochromatic layer of X.

Remark 4.24. If X is a monochromatic spectrum, then it is Ln−1-local by definition, i.e.,

Ln−1X ≃ 0. Hence the fiber sequence

MnX −→ X −→ Ln−1X

gives an equivalence X ≃ MnX. The fully faithful inclusion Mn,p −→ Spn,p has a right

adjoint, given by X 7−→MnX, which we call the monochromatization.

Proposition 4.25. The monochromatization functor Mn : Spn,p −→ Mn,p is a smashing colo-

calization.

Proof. As far as the authors are aware, this proposition was first proved in [Bou96, Sec 6.3] in

the case of finite monochromatization, i.e., the fiber functor of the finite localization Lf
n. The

proof, however, uses the arguments from [Bou79a, 2.10], which also work for the non-finite
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case. An even simpler argument uses the before-mentioned smash product theorem, which

states that the localization Ln−1 = LEn−1 is smashing. Hence, we can compare the two fiber

sequences

MnS⊗X −→ X −→ Ln−1S⊗X and MnX −→ X −→ Ln−1X,

which immediately identifies the fibers.

We are now almost ready to construct local duality for chromatic homotopy theory. The last

thing we need is the notion of a type n complex.

Definition 4.26. A compact p-local spectrum X is said to be of type n if Kp(n)∗X 6∼= 0 and

Kp(m)∗X ∼= 0 for all m < n.

As a consequence of the thick subcategory theorem of Hopkins–Smith, [HS98, Theorem 7],

such spectra exist for all primes p and natural numbers n. For example, if n = 1, we can choose

the mod p Moore spectrum S/p.

Construction 4.27. Let n be a non-negative integer and p a prime. For a type n spectrum

F (n) the Ln-localization K = LnF (n) is a compact object in Spn,p and hence generates a

localizing tensor ideal SpK−tors
n,p in Spn,p. By Theorem 2.28, we have a corresponding local

duality diagram for the local duality context (Spn,p,K):

SpK−loc
n,p

Spn,p

SpK−tors
n,p SpK−comp

n,p

L

Λ

Γ
≃

Even though these categories arise abstractly from the local duality process, we can luckily

recognize them as familiar categories we have already encountered.

Proposition 4.28. There are symmetric monoidal equivalences of stable ∞-categories

(1) SpK−tors
n,p ≃ Mn,p, (2) SpK−loc

n,p ≃ Spn−1,p and (3) SpK−comp
n,p ≃ SpKp(n).

These equivalences are classical, but we recall their arguments for the reader’s convenience and

for building intuition.

Proof. By definition Mn,p is the full subcategory of Ln−1-acyclics in Spn,p and Mn coincides

with the Ln−1-acyclification. By [HS99, 6.10] Ln−1-localization is the finite localization away

from K = LnF (n), which proves equivalence (2). This also means that the Ln−1-acyclics

are precicely the objects in Loc⊗Spn,p
(K), which by definition is SpK−tors

n,p . This gives the

equivalences Mn,p ≃ SpK−tors
n,p and Γ ≃ Mn, which proves (1). One can also see this by
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the fact that Mn preserves compact objects, as it is smashing by Proposition 4.25, which also

implies that Mn,p is closed under colimits. The compact objects LnX ∈ Spn,p for X any finite

spectrum of type > n are also monochromatic, as En−1∗LnX ∼= En−1∗X ∼= 0, and do in fact

generate Mn,p under colimits.

The equivalence in (3) follows from [BHV18, 2.34], which shows that Λ can be identified with

the Bousfield localization LK whenever the set of compact objects in a local duality context

(C,K) consists of a single element K = {K}. Note that this localization LK is not the same

as the functor L, which we earlier denoted by LK. Since Bousfield localizations are symmetric

monoidal, this proves (3).

Remark 4.29. The equivalence SpK−tors
n,p

≃
−→ SpK−comp

n,p is then given by the adjoint pair

(LKp(n) ⊣ Mn), which recovers the symmetric monoidal equivalence Mn,p ≃ SpKp(n) of

[HS99, 6.19].

Remark 4.30. The local duality diagram from Construction 4.27 gives via [BHV18, 2.26] pre-

cisely the chromatic fracture square, as wanted in Remark 4.8.

Remark 4.31. By Remark 2.25, all the categories in the above diagram are compactly generated.

But, the unit LKp(n)S in SpKp(n) is not compact, so by Remark 2.7 the compact objects and the

dualizables might differ. The same is then necessarily true for Mn,p.

We have a similar construction for the case of modules overEn, which we will need in Section 6.

Construction 4.32. Let n be a non-negative integer, p a prime, and E = En the height nMorava

E-theory at the prime p. The object E/In is compact in ModE and generates a localizing tensor

ideal ModIn−tors
E . By Theorem 2.28, we have a corresponding local duality diagram for the

local duality context (ModE, E/In):

ModIn−loc
E

ModE

ModIn−tors
E ModIn−comp

E

L

Λ

Γ
≃

Just as in Construction 4.27 there are equivalences

ModK−tors
E ≃ MnModE (2)

ModK−loc
E ≃ Ln−1ModE (3)

ModK−comp
E ≃ LKp(n)ModE (4)

where (2) is the full subcategory of monochromatic E-modules, (3) is the full subcategory of

En−1-local E-modules and (4) is the full subcategory of Kp(n)-local E-modules.
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4.4 Hopf algebroids revisited

In Section 3, we surveyed some results on Hopf algebroids and their associated derived cate-

gories and local duality theories, but we did not give any examples. In this short subsection, we

relay some constructions and facts about Hopf algebroids coming from homotopy theory, which

will serve as the connection between the world of homotopy theory and the world of algebra.

Construction 4.33. Let R be a ring spectrum. Associated to R we have an R-homology functor

defined by R∗(−) := π∗(R ⊗ −). We denote R∗ := R∗(S) and R∗R := R∗(R), which

we for now assume are both commutative (graded) rings. From the unit map S −→ R, the

multiplication map µ : R⊗R −→ R and the twist map τ : R⊗R −→ R⊗R we get maps on

R∗-homology

1. ηL : R∗ −→ R∗R, from the identification R⊗ S ≃ R

2. ηR : R∗ −→ R∗R, from the identification S⊗R ≃ R

3. ε : R∗R −→ R, from µ

4. c : R∗R −→ R∗R, from τ

5. R∗(R⊗R) −→ R∗R, from µ

We have a comparison map R∗R⊗R∗
R∗R −→ R∗(R ⊗ R), which is an isomorphism in nice

cases – for example, if R∗R is a flat module over R∗. If this is the case we can extend the map

R∗R −→ R∗(R ⊗ R) through the above isomorphism to get a coassociative comultiplication

∆: R∗R −→ R∗R ⊗R∗
R∗R as well as a multiplication map ∇ : R∗R ⊗R∗

R∗R −→ R∗R
from the fifth map in the above list. The relations on ring spectra also induce relations on the

pair (R∗, R∗R), like coassociativity, counitality, and the antipode relation.

Remark 4.34. If R∗ is a field object, for example, Kp(n) or HFp, then the operations described

above, together with the associated relations, make (R∗, R∗R) into a Hopf algebra. In particular,

the left and right unit maps are equal: ηL = ηR.

Definition 4.35. A ring spectrum R is called flat if R∗R is a flat module over R∗. We say R
is of Adams type if it can be written as a filtered colimit R ≃ colimαRα, where each Rα is

a finite spectrum such that R∗Rα is a finitely generated projective R∗-module and the natural

map R∗Rα −→ HomR∗
(R∗Rα, R∗) is an isomorphism.

In particular, all Adams type ring spectra are flat, as the filtered colimit R ≃ colimαRα gives a

filtered colimit R∗R ∼= colimαR∗Rα of projective objects.

Most of the following examples were given by Adams in [Ada95, III.13.4], except for Kp(n),
which was not discovered yet.

Example 4.36 ([Hov04, 1.4.7, 1.4.9]). The ring spectra MU , MSp, KO, HFp, Kp(n), E(n),
En are all of Adams type. We also have the following class of examples: if R is Adams type,

then any Landweber exact R-algebra is also Adams type.
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Recall the definition of an Adams Hopf algebroid in Definition 3.7. The following proposition

is standard – see, for example, [Hov04, 1.4.6].

Proposition 4.37. Let R be a flat ring spectrum such that R∗R is a commutative ring. Then,

the pair (R∗, R∗R) is a Hopf algebroid. If R is Adams, then (R∗, R∗R) is an Adams Hopf

algebroid.

The following proposition is what allows us to translate the homotopy theoretical information

from Sp into an algebraic setting.

Proposition 4.38. LetR be an Adams type ring spectrum. Then the functor R∗(−) takes values

in the Grothendieck abelian category ComodR∗R. In particular, given any spectrum X, then

R∗X has a coassociative and counital coaction R∗R −→ R∗X ⊗R∗
R∗R.

Remark 4.39. We don’t need the Adams type condition in order for R∗X to be a comodule, but

in this case, ComodR∗R is not Grothendieck.

In Section 4.2 we developed serveral versions of E-theory, and by Proposition 4.19 all the cor-

responding E-local categories are equivalent. The same occurs for the categories of comodules

associated to the Adams Hopf algebroid (E∗, E∗E).

Proposition 4.40 ([HS05a, 4.2]). Let p be a prime and n a positive natural number. Then the

categories of comodules over the Hopf algebroids associated to En, E(n) and A = E
hF×

p
n are

equivalent:

ComodEn∗En ≃ ComodE(n)∗E(n) ≃ ComodA∗A.

Notation 4.41. We will use the common notation ComodE∗E for any of the above categories.

5 Exotic algebraic models

We now have two sets of local duality diagrams, one coming from chromatic homotopy theory

and one from the homological algebra of Adams Hopf algebroids. We also have a way to pass

between them by using Proposition 4.38. In particular, if we let E = En be height n Morava

E-theory at a prime p, then we have the E-homology functor E∗ : Spn,p −→ ComodE∗E con-

verting between homotopy theory and algebra. We can, in some sense, say thatE∗ approximates

homotopical information by algebraic information.

The goal of this section is to set up an abstract framework for studying how good such approx-

imations are. The version we recall below was developed in [PP21], taking inspiration from

[Fra96] and [Pst23].

5.1 Adapted homology theories

Recall from Definition 3.37 that a locally graded category is a category D together with a choice

of autoequivalence [1] : D → D. All stable ∞-categories are locally graded by the suspension,

and the categories of graded modules (comodules) over a graded ring (Hopf algebroid) are

locally graded by the shift functor (M [1])k =Mk−1.
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Definition 5.1. Let C be a presentable symmetric monoidal stable ∞-category and A an abelian

category with a local grading [1]. A functor H : C −→ A is called a homology theory if:

1. H is additive

2. for a cofiber sequence X → Y → Z in C, then HX → HY → HZ is exact in A

3. there is a natural isomorphism H(ΣX) ≡ (HX)[1] for any X ∈ C.

Remark 5.2. The first two axioms make H a homological functor, while the last makes H into

a locally graded functor, i.e., a functor that preserves the local grading.

Example 5.3. Let R be a ring spectrum. Then the functor π∗ : ModR −→ ModR∗
defined as

π∗M = [S,M ]∗ is a homology theory.

Example 5.4. Let R be a ring spectrum. The functor R∗(−) : Sp −→ ModR, defined as the

composition

Sp
R⊗(−)
−→ ModR

π∗−→ ModR∗
,

is a homology theory. If R is of Adams type, then R∗(−) naturally lands in the subcategory

ComodR∗R by Proposition 4.38.

Definition 5.5. A homology theory H : C −→ A is conservative if it reflects isomorphisms,

meaning that if a map C
f

−→ D gives an isomorphism HC
Hf
−→ HD if and only if f is an

equivalence.

Example 5.6. The functor π∗ : ModR −→ ModR∗
is always a conservative homology theory.

The functor R∗ is not conservative in general. It can, however, be made conservative by restrict-

ing to the R-local objects SpR instead of the whole category Sp.

Remark 5.7. Reflecting isomorphisms is a very important property to have, as it allows us to

check equivalences using algebraic tools, which are usually simpler than homotopical ones. For

this reason, we will only be working with the above “local” version of R∗-homology, i.e. the

restricted functor R∗ : SpR −→ ModR∗.

Definition 5.8. Let H : C −→ A be a homology theory and J an injective object in A. An

object J̄ ∈ C is said to be an injective lift of J if it represents the functor

HomA(H(−), J) : Cop −→ Ab

in the homotopy category hC, i.e. HomA(H(−), J) ∼= [−, J̄ ]. We call J̄ a faithful lift if the map

H(J̄) −→ J coming from the identity on J̄ is an equivalence.

Definition 5.9. A homology theoryH : C −→ A is said to be adapted if A has enough injectives,

and for any injective J ∈ A there is a faithful lift J̄ ∈ C.

Example 5.10. We again return to our two guiding examples π∗ and R∗. The former is an

adapted homology theory, with faithful lifts provided by Brown representability. The latter also

has injective lifts by Brown representability, but they are not faithful in general, as can be seen

by the following argument.
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Let R = HFp, which gives the standard mod p homology HFp∗ = H(−;Fp) : Sp −→ VectFp .

Standard mod p singular cohomology is represented byHFp, which, together with the universal

coefficient theorem, gives equivalences

[X,HFp] ≃ H∗(X;Fp) ≃ HomFp(H∗(X;Fp),Fp).

Now, the one-dimensional vector space Fp is an injective object, and the above equivalences

show that HFp is an injective lift of Fp. But, there is not an equivalence between HFp∗HFp

and Fp, as the former is equivalent to the mod p dual Steenrod algebra Ap.

But, as noted in Proposition 4.38, we should think of R∗-homology as landing in ComodR∗R.

By passing to this more restricted subcategory with more structure, we get by Proposition 3.11

that Fp is no longer injective, and reducing the image of H∗(−;Fp) to ComodAp
ensures that

any injective lift is faithful. In fact, by [PP21, 3.27, 3.28] something more general is true.

Proposition 5.11. Let R be an Adams-type ring spectrum and R∗ : SpR −→ ModR∗
the asso-

ciated homology theory. Then, there is an essentially unique factorization

SpR
R̄∗−→ ComodR∗R

U
−→ ModR∗

such that R̄∗ is adapted (in particular, having faithful injective lifts), and U is an exact functor.

Notation 5.12. We will denote R∗ : SpR −→ ComodR∗R for the conservative adapted homol-

ogy theory associated with an Adams-type ring spectrum R.

Remark 5.13. The definition of an adapted homology theory H states that for any injective

J ∈ A, there is some object J̄ ∈ C together with an equivalence [X, J̄ ] ≃ HomA(HX,J).
Because A has enough injective objects, we can use these equivalences to approximate homo-

topy classes of maps by repeatedly mapping into injective envelopes. This gives precisely an

associated Adams spectral sequence for the homology theory H . In fact, Patchkoria and Pstrą-

gowski proved that there is a bijection between adapted homology theories and Adams spectral

sequences, see [PP21, 3.24, 3.25]. The constructioin of the Adams spectral sequence associated

to an adapted homology theory H : C −→ A is given in [PP21, 2.24], or alternatively as a

totalization spectral sequence in [PP21, 2.27].

In certain situations, which in particular apply to us, this H-Adams spectral sequence converges

and has a description in simple terms. This holds, for example, in the cases where the abelian

category A has a finite cohomological dimension.

Definition 5.14. Let A be a locally graded abelian category with enough injectives. Then the

cohomological dimension of A is the smallest integer d such that Exts,t
A
(−,−) = 0 for all

s > d.

Lemma 5.15 ([PP21, 2.24, 2.25]). Let H : C −→ A be an adapted homology theory such that

A has a finite cohomological dimension. The associated H-Adams spectral sequence converges

and has the signature

Es,t
2 = Exts,t

A
(HX,HY ) =⇒ [X,Y ]∗.
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Example 5.16. Let n be an integer, p a prime such that p > n + 1 and En,p the associated

Morava E-theory. Then by [Pst21, 2.5] the category ComodE∗E has cohomological dimension

n2 + n.

Remark 5.17. The H-Adams spectral sequence exists and could also converge in examples

where A is not of finite cohomological dimension. But, we will only be interested in cases

where it does, hence a more restricted Lemma 5.15.

Construction 5.18. Let R be an Adams-type ring spectrum such that π∗R is concentrated in

degrees divisible by some positive number q + 1, i.e., πmR = 0 for all m 6= 0 mod q + 1. Any

comodule M in the category ComodR∗R splits uniquely into a direct sum of subcomodules⊕
φ∈Z/q+1Mφ such that Mφ is concentrated in degrees divisible by φ. Such a splitting induces

a decomposition of the full subcategory of injective objects

ComodinjR∗R
≃ ComodinjR∗R,0 × ComodinjR∗R,1 × · · · × ComodinjR∗R,q

where the category ComodinjR∗R,φ denotes the full subcategory spanned by injective comodules

concentrated in degrees divisible by φ.

Let hkC denote the homotopy k-category of C, obtained by k + 1-truncating all the mapping

spaces in C. The lift associated with each injective via the Adapted homology theory R∗ allows

us to construct a partial inverse to R∗, called the Bousfield functor βinj in [PP21]. It is a

functor βinj : ComodinjR∗R
−→ hq+1Sp

inj
R , where the latter category is the homotopy (q + 1)-

category of the full subcategory of SpR containing all spectra X such that R∗X is injective and

[X,Y ] → HomR∗R(R∗X,R∗Y ) is a bijection for all Y ∈ SpR.

In order to mimic this behavior for a general adapted homology theory, Franke introduced the

notion of a splitting of an abelian category.

Definition 5.19 ([Fra96]). Let A be an abelian category with a local grading [1]. A splitting

of A of order q + 1 is a collection of Serre subcategories Aφ ⊆ A indexed by φ ∈ Z/(q + 1)
satisfying

1. [k]An ⊆ An+k mod (q+1) for any k ∈ Z, and

2. the functor
∏

φAφ −→ A, defined by (aφ) 7→ ⊕φaφ, is an equivalence of categories.

Example 5.20. As we saw above in Construction 5.18, the category of comodules over an

Adams Hopf algebroid (R∗, R∗R), where R∗ is concentrated in degrees divisible by q + 1,

has a splitting of order q + 1. This, then, also holds for the discrete Hopf algebroid (R∗, R∗),
giving the module category ModR∗

a splitting of order q + 1 as well.

Example 5.21. In the case R = E(1) this has been written out in detail in [BR11, Section 4].

The Serre subcategories are all copies of the category of p-local abelian groups together with

Adams operations ψk for k 6= 0 in Z(p). The shift leaves the underlying module unchanged, but

changes the Adams operation.

Notation 5.22. We will say that objects A ∈ Aφ are of pure weight φ.
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Remark 5.23. Just as for ComodR∗R, a splitting of order q + 1 of a locally graded abelian

category A is enough to define, for any adapted homology theory H : C −→ A, a partial inverse

Bousfield functor βinj .

5.2 Exotic homology theories

In order to make some statements about exotic equivalences a bit simpler to write down and

read, we introduce the concept of exotic adapted homology theories. Note that this is not the

way similar results are phrased in [PP21], but the notation serves as a shorthand for the criteria

that they use.

Definition 5.24. Let H : C −→ A be an adapted homology theory. We say H is k-exotic if H
is conservative, A has finite cohomological dimension d and a splitting of order q+1 such that

k = d+ 1− q > 0.

Remark 5.25. By Lemma 5.15, the H-Adams spectral sequence associated with any k-exotic

homology theory is automatically convergent.

The remarkable thing about a k-exotic homology theory H : C −→ A is that it forces the stable

∞-category C to be approximately algebraic. Intuitively: As the order of the splitting is greater

than the cohomological dimension, the H-Adams spectral sequence is very sparse and well-

behaved. There is a partial inverse of H via the Bousfield functor β : Ainj → hkC
inj , which

forces a certain subcategory of a categorified deformation of H to be equivalent to both hkC
and hkD

per(A).

Theorem 5.26 ([PP21, 7.56]). Let H : C −→ A be a k-exotic homology theory. Then there is

an equivalence of homotopy k-categories hkC ≃ hkD
per(A).

There are several interesting examples of homology theories satisfying Theorem 5.26, see Sec-

tion 8 in [PP21]. We highlight again our two guiding examples but focus specifically on certain

Morava E-theories, see Section 4.2.

Example 5.27 ([PP21, 8.7]). Let p be a prime, n be a non-negative integer, and E a height n
Morava E-theory concentrated in degrees divisible by 2p− 2. If k = 2p− 2− n > 0, then the

functor π∗ : ModE −→ ModE∗
is a k-exotic homology theory, giving an equivalence

hkModE ≃ hkD
perModE∗

.

Notation 5.28. For the following example and the rest of the paper, we follow the notation of

[BSS20], [BSS21] and [Bar23] and denote the category Dper(ComodE∗E) by Frn,p.

Example 5.29 ([PP21, 8.13]). Let p be a prime, n be a non-negative integer, and E any height

n Morava E-theory. If k = 2p− 2− n2 − n > 0, then the functor En : Spn,p −→ ComodE∗E

is a k-exotic homology theory, giving an equivalence

hkSpn,p ≃ hkFrn,p.
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Remark 5.30. As noted in [BSS20, 5.29], this equivalence is strictly exotic for all n > 1 and

primes p. In other words, it can never be made into an equivalence of stable ∞-categories. In

particular, the mapping spectra in Frn,p are HZ-linear, while the mapping spectra in Spn,p are

only HZ-linear for n = 0.

Definition 5.31. Let H : C −→ A be a k-exotic homology theory. The category Dper(A) is

called an exotic algebraic model of C if the equivalence hkC ≃ hkD
per(A) can not be enhanced

to an equivalence of ∞-categories C ≃ Dper(A).

Remark 5.32. The existence of an exotic algebraic model for a stable ∞-category C implies

that the category is not rigid. See [BRW23] for a great exposé on different levels of algebraicity

for stable ∞-categories. This means, in particular, that there cannot exist a k-exotic homology

theory with source Sp or Sp(p) as these are all rigid for all primes, see [Sch07], [SS02] and

[Sch01]. The same holds for Sp1,2, as this is rigid by [Roi07], and similarily for SpK2(1) by

[Ish19]. This shows that being k-exotic is quite a strong requirement.

6 Algebraicity for monochromatic modules

We now turn to proving our two main results, namely that monochromatic homotopy theory

is algebraic at large primes. In this section, we prove this for modules, and in Section 7, we

will prove it for all monochromatic spectra. In essence, by Example 5.27 we know that the

homotopy groups functor π∗ : ModE −→ ModE∗
is a good approximation when the prime p

is large compared to the height n, and the goal of this section is to prove that it remains a good

approximation when we restrict to monochromatic E-modules as in Construction 4.32.

We prove this in three steps, which are essentially just checking that the functor π∗ restricted

to monochromatic modules is k-exotic (Definition 5.24) for a given value of k, i.e., that it is

a conservative adapted homology theory, that we have finite cohomological dimension and a

splitting.

For the rest of this section, we assume that E is a version of height n Morava E-theory at the

prime p that is concentrated in degrees divisible by 2p − 2, for example, E(n) or E
hF×

p
n .

The following lemma is the In-torsion version [BF15, 3.14], and the proof is similar.

Lemma 6.1. Let p be a prime and n a natural number. Then anE-module M is monochromatic

if and only if π∗M is In-torsion.

Proof. Let X ∈ ModIn−tors
E . By [BHV18, 3.19] there is a strongly convergent spectral se-

quence of E(n)∗-modules with signature

Es,t
2 = (H−s

In
π∗X)t =⇒ πs+tMnX,

where H−s
In

denotes local cohomology. By [BS12, 2.1.3(ii)] the E2-page consist of only In-

power torsion modules. As ModIn−tors
E∗

is abelian, it is closed under quotients and subobjects,

as as the higher pages are created from the E2-page using quotients and subobjects, they must

35



also consist of only In-power torsion modules. In particular, the E∞-page is all In-power

torsion. By Grothendieck’s vanishing theorem, see for example [BS12, 6.1.2], Hs
In
(−) = 0

for s > n, hence the abutment of the spectral sequence π∗MnX is a finite fintration of In-

power torsion E∗-modules, and is therefore itself an In-power torsion module. Since X was

assumed to be monochromatic, i.e. X ∈ ModIn−tors
E , we have π∗MnX ∼= π∗X, and thus

π∗X ∈ ModIn−tors
E∗

.

Assume now X ∈ ModE such that its homotopy groups are In-power torsion. Monochroma-

tization gives a map φ : MnX −→ X, and as π∗MnX is In-power torsion this map factors on

homotopy groups as

π∗MnX −→ H0
Inπ∗X −→ π∗X,

where the first map is the edge morphism in the above-mentioned spectral sequence. As π∗X
was assumed to be In-power torsion we have π∗X ∼= H0

In
π∗X, and Hs

In
π∗X ∼= 0 for s > 0.

Hence the spectral sequence collapses to give the isomorphism π∗MnX ∼= H0
In
π∗X, which

shows that π∗φ is an isomorphism. As π∗ is conservative φ was already an isomorphism, hence

X ∈ ModIn−tors
E .

Lemma 6.2. Let p be a prime and n a natural number. Then the functor

π∗ : ModIn−tors
E −→ ModIn−tors

E∗

is a conservative adapted homology theory.

Proof. We first note that the functor π∗ : ModE −→ ModE∗
is a conservative adapted homol-

ogy theory. By Lemma 6.1 its restriction to ModIn−tors
E lands in ModIn−tors

E∗
, hence autmoati-

cally π∗ : ModIn−tors
E −→ ModIn−tors

E∗
is a conservative homology theory.

Let J be an injective In-power torsion E-module. By Lemma 3.26 and Remark 3.27 we can

assume J = TE∗

In
Q for an injective E-module Q. Since π∗ is adapted on ModE we can chose

a faithful injective lift J̄ of J to ModE , and since J̄ was assumed to have In-torsion homotopy

groups we know by Lemma 6.1 that J̄ ∈ ModIn−tors
E . In particular, we have faithful lifts for any

injective in ModIn−tors
E∗

, which means that π∗ : ModIn−tors
E −→ ModIn−tors

E∗
is adapted.

Lemma 6.3. Let p be a prime and n a natural number. Then the category ModIn−tors
E∗

has

cohomological dimension n.

Proof. Note first that the category ModE∗
has cohomological dimension n. By Lemma 3.26

and Remark 3.27, this implies that the cohomological dimension of ModIn−tors
E∗

can’t be greater

than n, so it remains to prove that it is exactly n. We prove this by computing an ExtnE∗
group

that is non-zero.

By [HS99, A.2(d)] we have L0M ∼= ExtnE∗
(Hn

In
(E∗),M) for any E∗module M . In other

words, this states that the derived completion of an E∗-module is the n’th derived functor of

maps from the In-local cohomology of E∗ into M . Choosing M = E∗/In we get

L0(E∗/In) ∼= ExtnE∗
(Hn

In(E∗), E∗/In).
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As any bounded In-torsion E∗-module is In-adically complete we have, as remarked in [BH16,

1.4], that L0(E∗/In) ∼= E∗/In. The local cohomology of E∗ is also In-torsion, in particular

Hn
In
E∗ = E∗/I

∞
n . Hence we have

ExtnE∗
(E∗/I

∞
n , E∗/In) ∼= E∗/In 6∼= 0,

showing that there are two In-power torsion E∗-modules with non-trivial n’th Ext, which con-

cludes the proof.

Lemma 6.4. Let p be a prime and n a natural number. Then, the category ModIn−tors
E∗

has a

splitting of order 2p − 2.

Proof. By [PP21, 8.1] the category ModE∗
has a splitting of order 2p − 2. We will use this

to induce a splitting on ModIn−tors
E∗

. In particular, we define the pure weight φ component of

ModIn−tors
E∗

, denoted ModIn−tors
E∗,φ

, to be the essential image of TE∗

In
: ModE∗

−→ ModIn−tors
E∗

restricted to the pure weight φ component ModE∗,φ. We claim that this defines a splitting

of order 2p − 2 on ModIn−tors
E∗

. For the claim to be true, we need to check the axioms in

Definition 5.19: (1) that the pure weight components are Serre subcategories, (2) that they are

shift-invariant and (3) that they form a decomposition of ModIn−tors
E∗

.

The first point, (1), follows from the fact that ModE∗,φ is a Serre subcategory, and being In-

power torsion is a property closed under subobjects, quotients, and extensions. Hence also

ModIn−tors
E∗,φ

is a Serre subcategory.

For (2), we note that we have a diagram of adjoint functors

ModE∗
ModE∗

ModIn−tors
E∗

ModIn−tors
E∗

[1]

TE∗
In

TE∗
In

[1]

i i

which is commutative from bottom left to top right. Here [1] denotes the local grading on

ModIn−tors
E∗

. We want the diagram to commute from top left to bottom right, which can be

obtained by the dual Beck-Chevalley condition. This reduces to checking [−1] ◦ i ≃ i ◦ [−1],
which is true due to the commutativity and the fact that [1] and [−1] are autoequivalences. Hence

we have [1] ◦ TE∗

In
≃ TE∗

I−n ◦ [1]. In fact, the diagram is commutative in all possible directions.

This means that for any In-power torsion E∗-module M of pure weight φ, we have

[k]M ∼= [k]TE∗

In
M ∼= TE∗

In
[k]N ∈ ModIn−tors

E∗,φ+k mod 2p−2

as [k]M ∈ ModE∗,φ+k mod 2p−2.

For the final point (3), note that any subcategory of a product category is a product of subcate-

gories. Hence, the ModIn−tors
E∗

splits as a product of the pure weight components. In particular,

the functor ∏

φ∈Z/(2p−2)

ModIn−tors
E∗,φ

−→ ModIn−tors
E∗
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defined by (Mφ) 7−→
⊕

φMφ is an equivalence of categories.

Remark 6.5. This is the part where it was important we chose a version of Morava E-theory that

is concentrated in degrees divisible by 2p − 2. If we instead chose a 2-periodic E-theory, for

example En, then neither ModE∗
nor ModIn−tors

E∗
would have a splitting of the above degree.

We can now summarize the above discussion with the first of our main results.

Theorem 6.6 (Theorem C). Let p be a prime, n a natural number, and E a version of height n
Morava E-theory concentrated in degrees divisible by 2p− 2. If k = 2p− 2− n > 0, then the

functor

π∗ : ModIn−tors
E −→ ModIn−tors

E∗

is a k-exotic homology theory, giving an equivalence

hkModIn−tors
E ≃ hkD

per(ModIn−tors
E∗

).

In particular, monochromatic E-modules are exotically algebraic at large primes.

Proof. By Lemma 6.3 the cohomological dimension of ModIn−tors
E∗

is n, and by Lemma 6.4

we have a splitting on ModIn−tors
E∗

of order 2p− 2. Hence, by Lemma 6.2 the functor

π∗ : ModIn−tors
E −→ ModIn−tors

E∗

is a k-exotic homology theory for k = 2p− 2− n > 0, which gives an equivalence

hkModIn−tors
E ≃ hkD

per(ModIn−tors
E∗

)

by Theorem 5.26.

We can also phrase this dually in terms of Kp(n)-local E-modules.

Corollary 6.7. Let p be a prime, n a positive integer. Let further Kp(n) be the height nMorava

K-theory at the prime p and E be a height n Morava E-theory at p concentrated in degrees

divisible by 2p − 2. If k = 2p − 2− n > 0, then we have a k-exotic algebraic equivalence

hkLKp(n)ModE ≃ hkD
per(ModE∗

)In−comp.

In particular, Kp(n)-local E-modules are exotically algebraic at large primes.

Proof. The equivalence is constructed from the equivalences obtained from Construction 4.32,

Theorem 6.6, Theorem 3.49 and Construction 3.47. In particular, we have

hkModIn−comp
E

4.32
≃ hkModIn−tors

E

6.6
≃ hkD

per(ModIn−tors
E∗

)

3.49
≃ hkD

per(ModE∗
)In−tors

3.47
≃ hkD

per(ModE∗
)In−comp,
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where we have used that an equivalence of ∞-categories induces an equivalence on homotopy

k-categories.

Now, let HE∗ be the Eilenberg-MacLane spectrum of E∗. By [Lur17, 7.1.1.16] there is a sym-

metric monoidal equivalence D(E∗) ≃ ModHE∗
and we can form a local duality diagram for

ModHE∗
corresponding to Construction 3.32 for the discrete Hopf algebroid (E∗, E∗). By ar-

guments similar to Lemma 6.1 and Lemma 6.2 one can show that the homotopy groups functor

π∗ : ModHE∗
−→ ModE restricts to a conservative adapted homology theory

π∗ModIn−tors
HE∗

−→ ModIn−tors
E∗

.

In the same range as Theorem 6.6 this is then automatically also k-exotic. We can then combine

the algebraicity for ModIn−tors
E and ModHE∗

to get the following statement.

Corollary 6.8. Let k = 2p− 2− n > 0. Then, there is an exotic equivalence

hkModIn−tors
E ≃ hkModIn−tors

HE∗
.

7 Algebraicity for monochromatic spectra

Having proven that monochromatic E-modules are algebraic at large primes, we now turn to

the larger category of all monochromatic spectra Mn,p with the same goal. The strategy is

exactly the same as in Section 6: we first prove that the conservative adapted homology the-

ory E∗ : Spn,p −→ ComodE∗E of Example 5.29, restricts to a conservative adapted homology

theory on Mn,p, before proving that ModIn−tors
E∗

has a splitting and finite cohomological di-

mension, making sure that we have a k-exotic homology theory.

The interesting thing about this bigger case is that E∗ is k-exotic in a better range for Mn,p

compared to Spn,p. For Theorem 6.6, the range stayed the same, which shows that E-modules

form a much simpler theory than all of Spn,p – which is, of course, to be expected.

Lemma 7.1. Let X ∈ Sp. Then X ∈ Mn,p if and only if E∗X ∈ ComodIn−tors
E∗E

.

Proof. Assume first that X ∈ Mn,p. We have E ⊗X ∈ ModIn−tors
E as

E ⊗X ≃ E ⊗MnX ≃MnE ⊗X,

where the last equivalence follows fromMn being smashing. In particular, the restricted functor

E∗ : Mn,p −→ ComodE∗E factors through ModIn−tors
E . By Lemma 6.1 and Lemma 3.25 this

means that E∗X is an In-power torsion E∗E-comodule.

For the converse, assume that we have X ∈ Spn,p such that E∗X ∈ ComodIn−tors
E∗E

. Using

the monochroimatization functor we obtain a comparison map MnX −→ X, which induces a

map on E-modules E ⊗MnX −→ E ⊗X. This map is an isomorphism on homotopy groups,

as E∗X was assumed to be In-power torsion. As E∗ is conservative on Spn,p, the original

comparison map MnX −→ X was an isomorphism, meaning that X ∈ Mn,p.
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Lemma 7.2. Let p be a prime and n a natural number. Then, the functor

E∗ : Mn,p −→ ComodIn−tors
E∗E

is a conservative adapted homology theory.

Proof. First note that the image of the functor E∗ : Spn,p −→ ComodE∗E restricted to Mn,p

is contained in ComodIn−tors
E∗E

by Lemma 7.1. The functor E∗ : Mn,p −→ ComodIn−tors
E∗E

is

then automatically a conservative homology theory. The category ComodIn−tors
E∗E

has enough

injectives by Lemma 3.26(2). Hence, it only remains to prove that we have faithful lifts for all

injective objects.

Let J be an injective in ComodIn−tors
E∗E

. Following [BHV20, 3.16] we can by Lemma 3.26(3)

and Remark 3.27 assume that J = TE∗E
In

(E∗E⊗E∗
Q) for some injective E∗-module Q. Since

being torsion is a property of the underlying module, and the forgetful functor ε∗ is conservative,

we have an isomorphism TE∗E
In

(E∗E⊗E∗
Q) ∼= E∗E⊗E∗

TE∗

In
Q.By Lemma 3.26(1) the functor

TE∗

In
preserves injectives, hence J is also injective in ComodE∗E .

Now, E∗ has faithful injective lifts from ComodE∗E to Spn,p by Proposition 5.11, hence there

is a lift J̄ such that [X, J̄ ] ≃ HomE∗E(E∗X,J) and E∗J̄ ≃ J . By Lemma 7.1 J̄ ∈ Mn,p as J
was assumed to be In-power torsion, hence we have found our faithful injective lift.

Lemma 7.3. Let p be a prime and n a natural number such that p > n+ 1. Then the category

ComodIn−tors
E∗E

has cohomological dimension n2.

Proof. The proof follows [Pst21, 2.5] closely, which is itself a modern reformulation of [Fra96,

3.4.3.9]. We start by defining good targets to be In-power torsion comodules N such that

Exts,tE∗E
(E∗/In, N) = 0 and good sources to be In-power torsion comodules M such that

Exts,tE∗E
(M,N) for all In-torsion comodules N .

By the Landweber filtration theorem, see for example [HS99, 5.7], we know that any finitely

presented comodule M has a finite filtration

0 =M0 ⊆M1 ⊆ · · · ⊆Ms−1 ⊆Ms =M,

where Mr/Mr−1
∼= E∗/Ijr [tr] and jr 6 n. When M is In-power torsion we get jr = n

for all r, as noted in [HS99, 4.3]. By Morava’s vanishing theorem, see for example [Rav86,

6.2.10], we have Exts,tE∗E
(E∗, E∗/In) = 0 for all s > n2, which by the long exact sequence

in Ext-groups also give Exts,tE∗E
(E∗/In, E∗/In) = 0 for s > n2. By using the Landweber

filtration, this implies that any finitely presented In-power torsion comodule is a good target. By

Lemma 3.29 any In-power torsion comodule is a filtered colimit of finitely presented ones, and

as Exts,tE∗E
(E∗/In,−) commutes with colimits this implies that any In-power torsion comodule

is a good target.

Note that the above argument also proves that E∗/In is a good source, which by the Landweber

filtration argument implies that any finitely presented In-torsion comodule is a good source.

40



By Lemma 3.29, the category ComodIn−tors
E∗E

is generated under filtered colimits by finitely

presented ones. Hence, we can apply [Pst21, 2.4] to any injective resolution

0 −→M −→ J0 −→ J1 −→ · · ·

to get that the map Jn2 −→ Im(Jn2 → Jn2+1) is a split surjection, and that the object

Im(Jn2 → Jn2+1) is injective. Hence, any injective resolution can be modified to have length

n2, which concludes the proof.

Remark 7.4. This is where we obtain the better range compared to Spn,p, as the non-torsion

category ComodE∗E has cohomological dimension n2 + n, as seen in Example 5.16.

Remark 7.5. When p < n+1, the category ComodE∗E is not of finite cohomological dimension.

By Lemma 3.26(1) the functor TE∗E
In

: ComodE∗E −→ ComodIn−tors
E∗E

preserves injectives,

which means that also ComodIn−tors
E∗E

does not have finite cohomological dimension.

Lemma 7.6. Let p be a prime, n a natural number, and E any height nMorava E-theory. Then,

the category ComodIn−tors
E∗E

has a splitting of order 2p− 2.

Proof. All of the height n Morava E-theories give equivalent categories of comodules, see

Proposition 4.40. Hence we can chose a version concentrated in degrees divisible by 2p − 2.

The category ComodE∗E has a splitting of order 2p − 2 by [PP21, 8.13]. The proof of the

induced splitting on the In-torsion category is then identical to Lemma 6.4.

We can now summarize the above results with our second main result, which is the monochro-

matic analogue of Example 5.29.

Theorem 7.7 (Theorem B). Let p be a prime, n a natural number, and E any height n Morava

E-theory. If k = 2p− 2− n2 > 0, then the restricted functor E∗ : Mn,p −→ ComodIn−tors
E∗E

is

k-exotic. In particular, there is an equivalence

hkMn,p ≃ hkD
per(E∗E

In−tors),

meaning that monochromatic homotopy theory is exotically algebraic at large primes.

Proof. By Lemma 7.3, the cohomological dimension of ComodIn−tors
E∗E

is n2 and by Lemma 7.6

we have a splitting of order 2p − 2. The restricted functor E∗ is then by Lemma 7.2 k-exotic

whenever k = 2p − 2− n2 > 0, which by Theorem 5.26 finishes the proof.

Remark 7.8. Note that the unrestricted functor E∗ : Spn,p −→ ComodE∗E is not k-exotic

unless k > n, hence Theorem 7.7 is stronger than just restricting Example 5.29 to the relevant

subcategories.

Remark 7.9. By Theorem 3.49 there is an equivalence Dper(E∗E
In−tors) ≃ FrIn−tors

n,p and by

Proposition 4.28 there is an equivalence Mn,p ≃ SpIn−tors
n,p , so the equivalence in Theorem 7.7

can alternatively be written as

hkSp
In−tors
n,p ≃ hkFr

In−tors
n,p
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for k = 2p−2−n2 > 0. This is more in line with thinking about Theorem 7.7 as “coming from”

the chromatic algebraicity of Example 5.29 on localizing ideals, except with a better bound on

k. This formulation is perhaps also easier to connect to the limiting case p → ∞ as described

using ultraproducts in [BSS21], which can be stated informally as

lim
p→∞

SpIn−tors
n,p ≃ lim

p→∞
FrIn−tors

n,p .

Via local duality (Theorem 2.28), we obtain the associated exotic algebraicity statement for the

category of Kp(n)-local spectra.

Theorem 7.10 (Theorem A). Let p be a prime and n a natural number. Let further Kp(n) be

height n Morava K-theory at the prime p and E be any height n Morava E-theory at p. If

k = 2p − 2− n2 > 0, then we have a k-exotic algebraic equivalence

hkSpKp(n) ≃ hkFr
In−comp
n,p .

Proof. As we did in Corollary 6.7, we construct the equivalence from a sequence of equiva-

lences coming from Theorem 2.28 and Theorem 7.7. More precisely we use equivalences com-

ing from Construction 4.27, Theorem 7.7, Theorem 3.49 and Construction 3.47, which give

hkSpKp(n)
4.27
≃ hkMn,p

7.7
≃ hkD

per(ComodIn−tors
E∗E

)

3.49
≃ hkFr

In−tors
n,p

3.47
≃ hkFr

In−comp
n,p ,

where we again have used that an equivalence of ∞-categories induces an equivalence on ho-

motopy k-categories.

Remark 7.11. By Proposition 4.28 we can also phrase this as hkSp
In−comp
n,p ≃ hkFr

In−comp
n,p .

7.1 Some remarks on future work

The reason why Theorem 5.26 works so well, is that there is a deformation of stable ∞-categories

lurking behind the scenes. One does not need this in order to apply the theorem, but it is there

regardless. In the case of a Morava E-theory E = En, the deformation associated with the

adapted homology theory E∗ : Spn,p −→ ComodE∗E is equivalent to the category of hyper-

complete E-based synthetic spectra, ŜynE , introduced in [Pst23]. Our restricted homology

theory E∗ : Mn,p −→ ComodIn−tors
E∗E

should then be associated to a deformation ŜynIn−tors
E

coming from a local duality theory for ŜynE , in the sense that there is a diagram of stable

∞-categories

Mn,p ≃ SpIn−tors
n,p ŜynIn−tors

E FrIn−tors
n,p .τ−1 τ∼0
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SinceE∗ is adapted on Mn,p, we abstractly know that there is a deformation Dω(Mn,p) arising

out of the work of Patchkoria-Pstrągowski in [PP21], called the perfect derived category. This

should give an equivalent “internal” approach to In-torsion synthetic spectra, much akin to how

we have equivalences Mn,p ≃ SpIn−tors
n,p and D(E∗E)In−tors ≃ D(E∗E

In−tors).

In [Bar23], Barkan provides a monoidal version of Theorem 5.26 by using filtered spectra. His

deformation En,p is equivalent to ŜynE , which hints that there should be a monoidal version

of Theorem 7.7 as well. We originally intended to incorporate such a result into this paper

but decided against it in order to keep it deformation-theory-free. We do, however, state the

conjectured monoidal result, which we will pursue in future work.

Conjecture 7.12. Let p be a prime and n a natural number. If k is a positive natural number

such that 2p−2 > n2+(k+3)n+k−2, then we have an equivalence hkMn,p ≃ hkFr
In−tors
n,p

of symmetric monoidal stable ∞-categorires.

By the monoidality of local duality, see Remark 2.29, this would give a similar statement for

the Kp(n)-local category, i.e. a symmetric monoidal equivalence hkSpKp(n) ≃ hkFr
In−comp
n,p .

Since E-based synthetic spectra are categorifications of the E-Adams spectral sequence, one

should expect the above-mentioned local duality for ŜynE to give a category ŜynIn−comp
E ,

which categorifies the Kp(n)-local E-Adams spectral sequence. We plan to study such cate-

gorifications of the Kp(n)-local E-Adams spectral sequence in future work joint with Marius

Nielsen.
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