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Abstract

The Hopf algebra structure of H*(Q2SU(n+l)/SU(m+l) : FJ and the action of the
Steenrod algebra on it are determined.

Introduction

Let A be a primitively generated commutative Hopf algebra over
a perfect field K of characteristic p. Then, by BorePs theorem ([I]),
A is isomorphic to a tensor product of monogenic Hopf algebras.
Using Kiinneth Formula, calculation of the cohomology of A reduces to
calculation of the cohomology of monogenic Hopf algebras. Let us denote
by Vn>m the complex Stiefel manifold SU(n + \)/SU(m+\) and let Cn>m

be the mod p ordinary homology of OVn<m, Since QVnim is a Hopf
space, Cn>m has a structure of Hopf algebra. In this case, CW i W Z is
commutative and cocommutative, and we define a certain filtration of
Cn>m analogous to that of S(n)* in [5] so that the dual of the
associate graded Hopf algebra is primitively generated. Then we can

E°C
calculate Cotor^i^

>m(Fp,> Fp) since it is easy to calculate the cohomology
of monogenic Hopf algebras. Showing that the spectral sequence
associated with the filtration of Cnifn collapses, we determine the
E^-term of the Eilenberg-Moore spectral sequence associated with the
path fibration over QVniM. On the other hand, a splitting of CBiW

enable us to describe explicit cocycles of the cobar complex of Cn<m

which represent generators of Cotor*n'™(Fp, Fp), then we can determine
the differentials of the "algebraic" Bockstein spectral sequence and
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the Hopf algebra structure of Cotor!;%m(F^ Fp).

The Hopf algebra structure of Cotor **-™ (Fp, Fp) implies that the
Eilenberg-Moore spectral sequence collapses, and H^(Q2Vn>m]Fp) is
given as follows if p is an odd prime (See (4. 14), (4. 16) for
details) ;

p or ^
<,i^n, p\i or i^mp, j^O],

where deg hitj = 2ipj— 1 and deg gij = 2ipj+e(n'»+l — 2 (* ( « , £ ) = max
{t\ipt^n}') and hitj and gitj are primitive. Moreover, hitj and gitj

are transgressivee

Section 1 is devoted to calculate the cohomology of monogenic Hopf
algebras by constructing the minimal resolutions, and we examine
induced mappings between the cohomology of monogenic Hopf alge-
bras. In Section 2, we apply the results of Section 1 to calculation
of the £"2-term of the Eilenberg-Moore spectral sequence associated
with the path fibration over &Vnim. We examine the jE2-term in
detail in Section 3, applying a splitting of H*(QSU\Z(P^) . We find
explicit cycles in the cobar complex which represent generators of the
U2-term and determine the differentials of the (algebraic) Bockstein
spectral sequence of the jE2-term. We prove in Section 4 that the
spectral sequence collapses and describe the Hopf algebra structure of

H^(Q2Vn>m',Fp) and morphisms induced by the canonical inclusion
VnimdVn+lim and projection Vnim-*Vnim+\ We also determine the
homology suspensions a*: H*(Q2Vn>m] Fp) ->H*+1(QVnin',Fp)9 0*1 H*
(QzVn>m\F^~>H^+l(Q

2Vntm\Fp"). In Section 5, the Bockstein spectral
sequence of H^(Q2Vn>m',Fp) is examined. Finally, we determine the
action of the Steenrod algebra on H*(Q2Vnim',Fp) in Section 6.

Throughout this paper, we denote by //#( — ) the mod p ordinary
homology unless otherwise stated and the modifications of statements
required in the case p = 2 are indicated inside square brackets.

I am indebted to Daniel Waggoner who showed me his results on
H*(Q2SU(ri) m,F2). He uses the Serre spectral sequence associated with
a fibering Q2SU(n} ->Q2SU(n + 1 ) ->Q2S2n+l to calculate H* (Q2SU(n) ; F2) .
And I would like to thank Frederick Cohen, Douglas Ravenel and
Stephen Wilson for helpful conversations. I would also like to express
my gratitude to Akira Kono for his suggestions and for reading my
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messy manuscript.

I am deeply grateful to the referee for reading the manuscript

very carefully and pointing out many errors,

§1. Cohomology of Moeogenic Hopf Algebras

Let K be a field of characteristic p=£Qe We denote by A(n^ r)

(n^>\) the monogenic graded Hopf algebra over K generated by x

whose height is pn and degx = 2r [deg# = r]; that is, A(n^ f) =

Let E be a bigraded exterior algebra over K generated by a single

element h having bidegree (1, 2r) [(1, r)]. And let F be a bigraded

divided polynomial algebra over K spanned by {1=^03 Ti? T* ° ° ° ?

ft, .„} with relations TiTj= OtJ)r*+r Each f{ has bidegree (2z, 2irpn)

[(2z, 2"ir)]. We also assign (0, 2r)[(0, r)] to * in 2! (re, r). Consider

a bigraded A(n, r)-algebra X(n, r)=A(n, r) (x)£"(X)Fo We define a

differential d:X(n, r}-*X(n, r), a coproduct <p:X(n, r}->X(n,

r) and an augmentation e:X(/25 r) -^>K as follows;

(i. i)
and rf is an -4(w, r) -linear map.

(1.2)

and <p is an A(n, r)-linear map where the A(n, r)-module

structure of X(n, r) ®X(n, r) is the usual one, using

coproduct A(n^ r)->A(n^ r)(X)^4(^? r)

(1.3) e ( l ) = l , £(%,) — e(Ti) ~0 and £ is A(n, r)-linear0

It is easy to verify that X(n^ r) is a differential Hopf algebra over

A(n, r). We also define a contracting homotopy

s : X ( n 9 r ) - » X ( n , r ) by ' : N f ' X~

rO,
( x l h f . ) = \ and let 7] be the unit.

*

Then we have rfj + ^s^l, ds + sd=l. Therefore K*-^—X(n, r) is an A

(n, r)-free resolution of K. It Is obvious that the complex HomA(w>r)
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(X(n, r), K) has a trivial differential and it is isomorphic to E(h*)
(x)#[£*] [E(A*)(g)tf[g*] for n>l, JST[A*] for 72-1] as an algebra,
where A* and g* are the duals of h and ft respectively. Thus we
obtain the following basic theorem.

Theorem 1.4. ExtJ£r)(JT, K) =

bideg A* =(1, 2r), bideg g*=(2, 2r/>«)

(JT, £) = £(A*)<8>Jrte*] /or «>1, ExtJtfr)(JT, K) =

bideg A*=( l , r), bideg g*=(2, 2V)].

Let A(oo^ r) be the monogenic Hopf algebra K\_x\ (deg # = 2r
[deg # = r]), then Z(oo? r)=^4(oo5 r)®E with a differential d(h)=x
gives an ^4(°o5 r)-free minimal resolution of K. Let A* be the dual
of A, then we have

Proposition 1.5. ExtJ£§r)(#, K)=E(h*} where bideg A*=( l , 2r)
[bideg A*=( l , r)].

There is another monogenic Hopf albegra E(y) (deg y = 2r— 1)
over a field of odd characteristic. This case, E(y)(x)r (bideg 7*,- =
(z, (2r— 1)0) with a differential rf(ft) = JTi-i gives an £(y)-free
minimal resolution of K. Let £* be the dual of ft, then we get the
following.

Proposition 1.6. Extl^ (tf, K) = A:[g*] ^A^r^ bideg £* = ( 1 , 2r - 1 ) .

Remark 1.7. Let ^(w, r)* (l^ragoo) be the dual Hopf algebra
of A(n, r). -4(72, r)* is spanned by {1 — x0, #1, . . . , A: »__ } over K

(l*J\Xm j-LJ^fon
with relations x{Xj= \ z / '+J'J -'^^ and with a coproduct Ax~

0, i+J^^"
Sy+&=t^j(8)^j where x{ is the dual of x{^A(n9 r). The representa-
tions of A* and ^* in the cobar complex Q* (A (n, r) *) are given by

[tfx] and Zlf^1^* 1^ «_£] respectively. It is straightforward to verify

that both A* and g* are primitive in Ext|(*r)(^T, K).

Let c:A(n, r)->A(m, r) (l^gm<>fgoo) be a map of graded Hopf
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algebras defined by c(x) =x and let K'.A(n, rpk)—>A(k + n, r) (1^^^°°9

I ^A;<C°°) be a map of graded Hopf algebras defined by TC(X)=XP
O

Then t and it induce maps of algebras £*:Ext5(w.r)C£> &) -»Ext5(B*r) (K,

K) and 7T#:Extl^+n.r)(^? K) ->ExtZ£rft(K, K) respectively.

Lemma 1,8. fi is given by **(A*) = /z* and c*(g*) =0 and TT* is given

by w*(A*) =0 and TT»(^*) =£* [TT*(£*) = (A*)2 i/ w = l] /or ra<oo5 and ^

(h*)=Q for n = oo.

Proof, c induces a map of complexes over K c$°.X(n, r) — »X(m3 r)

such that ^(A) =h, i%(ji) =0 and ^ is a map of ^4(X r)-Hopf algebras,

where X(m, r) is an A(n, r)-Hopf algebra via i* Taking the dual of

c%, it is straightforward to see that r(A*) =A* and **(£*) =0. If ?z<oo?

TT# induces a map of complexes over ^T ̂ :X(n9 rpk) ->X(k-\-n, r) such

that K%(h)=xp~lh, 7r#(fc) =7'i and ^# is a map of .4(X r/?^)-Hopf

algebras. Taking the dual, we get the result. The case n = oo is easy.

§2. Calculation of Cotor**^"--^,^)

Let Vn>m («>m) be the complex Stiefel manifold SU(n + l)/SU(m +

1). Put Cntm = H*(RVnim), then it is known that Cra,m is isomorphic

to Fp[ym^ ym+2, ...,>] (deg jVi = 2i) as an algebra and the coproduct

^? is given by

Define an increasing filtration {/%•} of Cn>w compatible with both

product and coproduct by j;fJeFt- — Ff_10 Consider the associated

graded Hopf algebra £°Cn,m and let j;£iye£SCBiW be the class ofj;feF/e

Then EQCnifn is isomorphic to j^[j;f-pj-|w + l ^z'^w, J^Ol/Cjj;^-) as an

algebra and the coproduct is given by

k.fem+l

Note that the /?-th power map of £0CWiOT is trivial. Using the exact

sequence of Milnor-Moore ([4]), it follows that the canonical map

PE°Cn,m-*QE°Cnim is a monomorphism. Therefore the dual Hopf
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algebra E°C*im of EQCKim is primitively generated. In fact, the canonical

map P£°C*m^Q,£°C*m is an epimorphism, which is the dual of

PE°Cnim—>QE°Cnim. Take a basis of EQCn<m which consists of monomials

in j>,-./s and consider the dual basis. Let us denote by y*tj the dual

of>,..y. Then, [yftj\ m+1 ̂ i^n, j^O} is a basis of PE°C*m. Easy
calculation shows an equality

This proves the following lemma.

Lemma 2.1. [y+^m + l^i^n, pJ(i or i^mp,j^Q] generates EQC*

as an algebra with relations (y*j)pen> — 0 where e(n, i) =

ip^n}- Therefore E°C*im is isomorphic to

(X) A(e(n,i)+l,ipf)[ (g) A(e(n, «)+
m+l£i£n m+l^i^n

Pti or i^mp 2J(i or i^2m
j'^0 j^O

as a Hopf algebra.

Using Kiinneth formula and (1. 4-5), we have the following.

£°r
Lemma 2. 2. Cotor, £'m(Fp, Fp) =Ext-?-* (Fp, Fp) ̂ E(hitj\m + \ ^

n, m

- i ;-| m+ 1 ̂ i <^n, p)(i or

[Cotor -(F2, F2) -Ext-0V (F2, F2) =£(*,,,-! m+ 1 ^^- 2{i or0
n,m

or

+ l^i^ -TT I 2/fi or i^2m, j^O]] /or w
L ̂  J

Io%* (^? -f#) =E(h{ j \i^m+ 1, /j|i or z^?
i ^-cso.m

bideg A,- iy= ( — 1, Zip3'), bideg &-,,— ( — 2, 2f^-7'+e(Wi0+1).
adapted the grading for the Eilenberg-Moore spectral sequence.

Let £n iOT: Fnim~>Fn+i>m be the canonical inclusion and let 7TBiOT: FM>m

•^F'B.W+I be the canonical projection. By an abuse of notations, we
also denote QkcniW fi*^B§>fl (A =1,2) by ^iW, 7rw>m respectively. The in-

duced maps cn,m*\ Cn.m-*CH+ltm and 7rWiW2*: C^^-^C^.^i are given by

(2.3) wOO^i (m +

rO, t = m + ]

Since ^BiJB and ?rn m preserve the filiations on CniW/s, they induce
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<„,: E°Cn,m-^E°Cn+l,m and *„.: EQCn,m-*E°Cn,m+l which are obviously
given by

(2.4) wO,.y)=
rO, i =ru, i = m-t-1, j^u

^n m* (j î ') == 1
Vi 75 772 + 2^i^7Z, J^>Qe

Taking the dual of *n,m* and ?rn,m*, we have maps e*itn: EL

->E°C%im and n*m: E°C*im+i->E°C*m which map ^/s as follows.

(2.5) f.%0*,) - P>J'3 m+ ^=;z J .rA ,

Consider the case / j | r a + l and n^.mp3 and take an integer ^(n3 m)
= max{s\(m + l)ps^n + l and /?s |?z + l}e Then s(n9 m)^ l and ̂ *m

U%,»).,-)pl0l>lll) = 0, where k(n, m)=^±^-. On the other hand, we

have (y*(n,m),j)pS{n'm =J'i+i.j:^0. Next, consider the case n^(m+l)p,

then <«(j'Jl+i)#.y) = W+i.y)*.
By the above observations, we obtain the following lemma, apply-

ing (1.8) and (2. 1).

EQC
Lemma 2.6. cn,m and nnim induce maps cnim\\ CotoTttf

>m(Fp9 Fp) ->

'P9 Fp) and nn>m*\«
which are described as follows.

in,m*(hi,j)=hitj in any cases.
^ rO, p\n + l and n^mp and i = k(n, m)

1.3 \g.tj9 otherwise

rO, 4|?z + l and n^4m a?zrf i = k(n, m).

Wjj otherwise
(0, i = ,( ,

*». »*(**..;) = 1,
^/z.- .-. z

0, i
'gij9 i^m + l
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EQC
Remark 2.7. It is easy to see that the map Cotor *t*

n'm(Fp,
° Fp, Fp) induced by the canonical inclusion QVnim~^>QVOQim

maps hitj to hitj and gfij to zero.

The filtration of Cn,m defines a filtration of the cobar complex
£*(CB, J ; that is

(2. 8) FsQk(Cn, J = Zs1+..+s_k=s-kFSiCn,m®. . . ®Fs_fn,m (A^O)

Then we have £«,.„ = (FsQs+t(Cn, J/F.-A^CC,. „)).+,=

Consider the spectral sequence associated with this filtration. Note
that this spectral sequence is trigraded and its jE^-term is given by

F°C
(2.9) E2

SitiU = Cotors+t
nLlu+t(Fp, Fp) and /z

In the case n = oo. ^l,*,* is an exterior algebra generated by hiti

which belongs to 2s+*=-i^s,*.*- By tne remark (1.7), these A.-./s
are primitive and there are not any primitive elements in

£°C
This implies that the spectral sequence Cotor^i^°'m(Fp,Fp)

. *.
C
~

(Fp,Fp) collapses. Let A^eCotor^/^, F#) be the element which
EQC

corresponds to hitj in Cotor -im
it2ipi-i(Fp,Fp).

Lemma 2.10. The extension is trivial: that is Cotor ̂ m (Fp, Fp)

\i or

Proof. If p is odd, it is obvious that A?y = 0 in C o t o r m ( J ^ ? Fp)
because the total degree of hitj is odd. Let us consider the case p = 2.

If m = Q, Cotor #™#Q(F2, F2) is the ^-term of the Eilenberg-Moore
spectral sequence conversing to H*(Q2SU}. By Bott periodicity,
Q2SU is homotopy equivalent to U whose homology is isomorphic to
-B(Ai, A2, . . .) (deg hi = 2i — 1). Comparing the Poincare series of

H*(Q2SU} with that of Cotor l~*m(F2, F2), the Eilenberg-Moore spectral
sequence collapses. Since squaring map of E°° — £2-term is also

trivial. Thus we have A?~0 in Cotor ̂ ~i°(jF2, F2). Since hiti (i^

m+\92J(i) in Cotor ̂ iw (F2, F2) is in the image of the map induced
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by SU-*SU/SU(m+l) from Lemma 2.6, we have / z f . — O for i^m
+ 1 and 2/fi. So we only have to prove that A?y = 0 for m+l^z^2?72.

It is easy to see that the representative of hitj in the cobar complex

•^(Coo.w) is [jy2/]. And it is also easy to verify the formula

[jf Ijvf], which implies A?,,- = 0 for

EQC
To prove that the spectral sequence Gotor1tif

m(Fp9 Fp)
(Fp, Fp) collapses, we use the Frobenius map F which is induced
by the p-th power map of Cn,m. Since the p-th power map of Cnim

preserves the filtration, the Frobenius map F of Q*(Cn>m) also preserves
the filtration of Q*(Cn<m) where F sends [# i | . . . | f f s ] to [#?|. . . | #?].
Clearly F commutes with the differential of @*(Cnim). Therefore F
induces a map of the spectral sequence.

E°C C
Lemma 2. 11. The spectral sequence CotoT*i£'m(Fp9 Fp) ^Cotor£?

(Fp, Fp) collapses.

Proof. Since the inclusion map Fn,OT— »Foo,,» induces an isomorphism
CBiJB-»Coo,« for degree ^2w + l, fl*(Cn.Jt^fl*(Cooim)f is an isomorphism

for t<^2n + l. This yields that the induced map Gotor^w(F^ Fp) ->
Q

Cotor^im(Fp, Fp) is an isomorphism for t^2n + l, and thus we see
£°C

that hiiQ^Gotor^lif^(Fp, Fp) ( m + l ^ z ^ w , p\i or i^mp) is a permanent

cycle by considering the map between the two spectral sequencese
£°C

Noting that the Frobenius map F of Cotor* £'m(Fp, Fp) maps ht j to
£°C

hij+l, we see that A f i /s in Gotor*iS;iilfI(F#, Fp) are all permanent
cycles. Note that the spectral sequence has a structure of a differential
Hopf algebra and that &-,/s are all primitive by (1.7). Moreover,

there is no primitive element in Zls+^-s^l.f, *« Hence gu's are also
permanent cycles.

E°C
Lemma 2.12. The extension of the spectral sequence Cotor*,*"1^!^ Fp)

p3 Fp) is trivial. Thus we have

)(i or
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or

or

^ ' ^ , 2Ji or i

where hitj and g{J are the elements corresponding to the permanent cycles

hitj and gitj in the E2-term and bideg hitj=(—l9 2ipj), bideg gf.§J.= ( — 2,

Proof. If p is odd, triviality of the extension is obvious. Note that

the Frobenius map of Cotor £'£ (Fp, Fp) maps hitj to hitj+i for any

prime p. So it suffices to prove that A?,0 = 0 for m+l^ i^ -o- when

p = 2. Since bideg h2
iiQ=(— 2, 40 and 4i^2n9 recalling that Cotor^1/"

(F2, F2)->Cotor^'m(F2, jF2) is an isomorphism for t^2n, we have

A?,o = 0 by (2.10).

§3. Splitting of Cn>m and the Bockstein Spectral Sequence

of

Husemoller proved in [3] that the Hopf algebra C^o decomposes

as an infinite tension product of certain Hopf algebra on infinitely

many generators. We give an explicit description of a splitting of
Cn>m in this section.

Let CB,m be a Hopf algebra Z(W [>„+!, _?m+2, ...,>] (deg j^ = 2i)
whose coproduct is given by

Hence Cn>m = Cntm®Fp. Let /feCKi0(/t-eCMio) be the i-th Newton
polynomial. That is, /,- is defined inductively by fi=yi and /,- =

i-i ~J2fi-2 + • • • + ( ~ 1 ) '>,--i/i + ( ~ 1 ) £+1ij,-. We also use the notation
i as a reduction of fi^C^f^C^ by a map C^-^C^C^-^C,, J.

Lemma 3.1. L^ flt.tj. (^/fz, j^O) be the element of p^C^o defined
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inductively by aii0=fi and a£Q+pa£i + . . . Jrpiaiij = f jm Then fl

aiij=( — l)lp3+1iy.j modulo decomposables of C^Q and [aij\pJ(

generates C^Q. Moreover the subalgebra Bt of Coo.o generated by {aitj\j^Q}

is a direct summand of C^o and a sub Hopf algebra of C^.o-

Proof. The proof of the first assertion is due to Ravenel ([5],

Lemma 1.7). If j = 0, aiiQ=fi^C00>Qa Assume inductively that aitj

eCeo.o for j = 09 19 ..., r—l. It suffices to prove that Lj-o^J'47J =
f. r mod pr. Each aitj and f, y are polynomials of y±9 j>2, . . . 9 j>. y. We

consider j;^ (£=1, 2, . .., z/>r) as the £-th elementary symmetric

polynomial of indeterminates £b t2, . .. ,tN (N=ipr), then aitj (j = Q, 1, . . - ,
r — l ) is a symmetric polynomial of £l5 . . . , tN and we put ai>j = aiij

(ti, . . . , tN) eC^.oC^)^!, . . o 3 £jv]. By definition we have

Noting that a f i j(^3 . . , ^) =aitj(ti9 . . , ^)* mod /», we have /?J'fl£iJ-

«, - . , tW'^^pbi.jV* . . , ̂ )/"J' mod /?" (See (I) of (3. 4) below).
Replacing tl by t\ in (*), we have

Er=lPJ"ij(ti, - - , **)*'* =X?-1tf=f.f mod />' in Ztf)[^ . . , ^]0

Since C^.o is a direct summand of ^u»[£i, . . 5 tN~]9 It follows that

Erj-lpjat7S =f& mod ^ in C^.o. Therefore fl1>eC^0cC00i0.

The fact /£= ( — l)f+1ijvf modulo decomposables Implies aitj =

(_ l)«y+iy, \ve prove that each j;* is contained in the subalgebra

generated by {aitj \pJ[i9 J^O} by induction on k. Since j^i = fli,oj the
assertion is obvious if k = l. Assume that the assertion is true for

( — n »y +1
A = l , 2, ..,/-!. Putting Z = t/>'' (/?ft j^0)3 then j;z = -^ — ̂  - «,..,• +

Ss^i^s^s where ^sej?(/0 and Ys is a monomial of j^l3 ae? jz_i. By the
( — i ) »V +1

assumption jv^^— - r - ^.j+S^i^*^* where a^Z^ and ̂ 4f Is a

monomial of 0riS (rps<^l}a Thus the induction proceeds. Now we have

C00iQ=Z(p}\_aij \p)(i9 j^O]=®B f- and the assertion that 5,- Is a direct
_ p%i _

summand of CU.o is obvious. Therefore3 the equality p~lBinC00iQ=Bi

holds.

Since f{ is primitive in C^Q, it is obvious that <paiiQ = (pfiE:Bi§<)BiB

Assume inductively that ^ipJ-eBz-®5£ for j = Q9 1, 8,5 r — l . Applying
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the coproduct to the defining formula of aiij9 we have pr<paiir=

l.. Hence (paiir^p-lBi®Bi. On the other hand,

^fli.j-eCco.o^Cco.o since fl^eCL.o. Thus ^aiij^(p'lBi(^Bi) fl (C«-, 0(8)^-0.0)
= Bi(^)Bi since 5,- is a direct summand of C^Q.

Let 5,-(r, 0) be the sub Hopf algebra of Bz generated by 0i>0, a.-.i,
. .., fli>f. And let Bf(r, j) (O^s^r+l) be the quotient Hopf algebra
of Bi(r9 0) by the ideal generated by aiiQ9 . .., fl»,s-i. We put Bi(r, s)
= Bi(r9 s)(x)Fp, and we also use a i t j to represent the reduction of a i t j

to Cn,m Cn.m 5,.(r, j) or 5,(r, j).

Remark 3.2. Since aitj=( — \Yp:l+liy . modulo decomposables, the
i£J"

canonical map Bi(e(n, i)9 e(m, 0+l)-»Cn > m ( l^i^w, /?/fO which sends
a i t j to flify is monomorphic, where we put e(m, i) = — l if i^>m. So
we may regard B{(e(n9 i), ^(m, 0+1) as a sub Hopf algebra of Cn>m.
Similarly we regard Bt(e(n9 «), ^(m, 0+1) as a sub Hopf algebra of

The following is a direct consequence of (3. 1).

Corollary 3.2. Bt(r9 s) (B{(r9 j)) is a polynomial algebra over Z^
(resp, Fp) generated by a i t S , aiiS+1, ... 5 aiir, and we have the following
splittings: CKim= (g) Bt(e(n9 0, e(m, 0+1), CHtm= ® Bi(e(n, i)9 e(m, i)

+ 1).

,
Pti Pti

l^t^n

We lift the filtration of Cn,OT defined in the previous section to
Cn,m. That is, we define F{Cnim to be the Z(pr sub module spanned by

{ A yl
k
k'Q+lk'lP+"+lk'jpJ+"\0^lkij<p, Zk,jklkJ^i}. Note that this filtration

k = m+l __

is compatible with the product of CBiOT. We restrict the filtrations of
Cn>m and Cn>m to B{(e(n, i)9 e(m, i) +1) and Bt(e(n9 09 ^(^9 0 +!)» then

FkBi(r, s) (FkBi(r, 5)) is spanned by

over Z^ (resp.
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To describe the coproduct of E°B{(r, «03 we arrange some notations
and lemmaSo

Notation 3.3. For a non-negative integer s. We define

dsl(l = Q, 1, 2, . „) by s = dSiQ-}-dSiip + .. +dsjp' + .. (0^=dsj<^p)«

We put C(j) = ?
 sl

Sit = 0 if

Lemma 3.4. ( i ) For l^k^pj, pk({J) =0 mod pj+\

(ii) C(,0 =IIflf i i Z! mod p.

(iii) For Q<s<p*9

p9 l = ordps

0, l<^ordps or l^j .

(iv) L££ il5 z2, .., i ;-_1 6^ a sequence of non-negative integers such that

E&isds.^p-l and Z&iJ^^p-l for Z = 0, 1, 2, ..,j-l.

zs = 0 /or #// J1 or there exists t such that is=\

Proof. ( i ) It is easy to verify the inequality ordpp
j+k(pj— 1) (p*

— 2). . (pj— ( k — l ) } ^j + 1 +ord^! which is equivalent to the assertion,,

(ii) Just apply the formula ( ) = !!( a> ) mod p to

ceo-n n

(iii) The p-adic expansion of pj — s is (p — dSik)p
k+(p — l—dSik+i)pk+l

(iv) By the assumption, we have 2fil1is(fi?Si/ + fl? ;-_s ) ^2(^—1). Apply-

ing (iii), we have EoTdp*=ipi*+EoT&p3<i(p-l)i*^2(p-l) for / = 0, 1,

2 , B . 9 j — 1. Now the result follows easily

Theorem 3.5. Fix i (pj[i) and put Ts =

/or 5 = 0, 1, 2, . . . , ^^72 ^f l»v— Ss+f^jT*®?"* modulo F j_^+ (p) where
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Fk = Fk(Bi(S)Bi) = ^ls+t=kFsBi^)FtBi and (q) is an ideal generated by q.

Proof, Since aiiQ=fi is primitive, the above assertion is true if j

= 0B Inductively, assume that <paitk = Jls Js®Tt modulo F.k_l
jr(p)

for *=o, i , . . , . / . Put vaiik=r+p«+P (r=Zs+t^
jSeF.^). Applying (i) of (3.4), we have

(W.,)^1-^(r+/5)^1-S mod (/*

Since

1 - 1 * " m o d F ,

we have

On the other hand,

... - . ,'4-i -It | . i k i k i

~l° *a Tk mod F j+i^
is<P p °"9 Pk'

0 mod (pi+2~k) for k = Q, 1, .., j— 1

2i0+»+i .=p . | . . TI' • • Tp/^T^"1' • • /? m°d C/'2) for 4=J.
- is<p p °"" PJ'

By (*), we have

fO, k = Q, 1, .J-l

modulo /^y+1_l+ (/?J'+2). Apply the coproduct q> to the both sides of

+ e- +Pj+laij+i=fipj+i- Since yjy+i is primitive,

Therefore we have
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_ _.-+iprp i Q i m m i \ i*' Pi i
.-,<# "" *J'

= l®^+V-,;+i+^'+1^,J-+i®l modulo ^+i.1

Since St-(X)5t- has no /?-torsion? we have, using the fact (/? — !)! = —
mod p9

By definition,

s=l

Therefore we have

_ . .

Hr -"
z=o pl 1=0 p

Here the above 2 is the summation over i03 . ., iy such that
p
s=iisdpj.Sil^p-l for Z =

j. Under this condition,

Now apply (iv) of (3.4) to (**),
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By (ii) and(iii) of (3. 4) ,

ipj)C(p^-s-pipj)=C(s}C(pi-s}ipj\(p-l-ipj)\ for l^s^pi-L

Finally we have

s,t>0

modulo F. y+i-;l+ (p). This completes the proof.

Corollary 3.6. Let rjik^E°ikBi(r, 0) (0^k^pr+l-l) be the class

of the mod p reduction of ffeB,-. And let P{(r, 0, j) be the subalgebra

of E*Bi(r, 0) generated by r^ Tj.*> • • 5 Tjipr+i_^ then r£(r, 0, j) w a

algebra with relations Tj,kTj,i = ( i, )Tj,k+i and coproduct <pYj,k =

Eki=tfs.i®rj.k-i. For Q^s^r, let f.^&B^r, j) (O^l^r-s) be the

reduction of rj pS+i^E0Bi(r, 0) by the map E°Bi(r, 0)-^EQB{(r, j). Put

-ifd
j
ki°...fd*^ and let A(r, j, j)

jw6 Hopf algebra of E°B{(r, s) generated by fj,ifjt2, • •? f . r-s+i_1?

(r? ^5 j) ^ fl Hopf algebra with relations fj,kfj,i = \ L. }fj,k+i ana copro-

duct <pfj,k=lLi^=QTj,i®?j,k-i' And we have the following splittings'.

E°B{(r, J)=<8)r,.(r, s, j), E°Cn.m= ® r,(«(B, i), «(«, 0+1 , j)
j^O l^i^n

Nt.j^O

where r{(r, r+l,j)=Fp.

Remark 3. 7. Let a: be a non-zero element of Fp. Consider the
map Fi(r, s^fi-^r^r, s, j) which sends fjik to a k f j t k . Then, it is an

automorphism of Hopf algebra /\-(V3 s,j). Hence, if we put fjik
i+I k

fj.k, {1, fy.i, -., f^+ij spans r,.(r, s, j) Sand f;-.^j =

'-*+" Vfj.k=Zki=°h.i®fj.*-i hold- Moreover f jtf=y.^tj modulo

decomposables in E°Cnim, where f . l^Fi(e(n9 i), 0(02, 0 +15 j)> s = e(m,

Lemma 3.8. /zu, ^.

~1 • *«or m, Afl^ representatives [fy,i], ZIf=i ~1[f;j If • *«-»_/] *
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£*(E°Cn,J where e = e(n, k) and fitl^rk(e9 s, j). (Note that e(m, k)

= s—\ in this case.}

Proof, This follows from (1.7), (3.6) and (3.7).

Remark 3.9. In Q*(E*C^J9 a cycle ZflT'^Cfy.zlf,.^-..,] is boun-

ded by [f.^.J. Hence we denote ECl'-'Cfr.ilf,.,,-, '_,] e£*(£°Cn, J

by </[f.^_s]. Similarly, although [fl£.+i] ̂ *(Cn.m)9 d[fl£.+i] is a cycle

of @*(Cn>m). (3.8) and this remark imply the following theorem.

Theorem 3. 10. A,- ,, & ,eCotor^(F* F,) (i = kp*, p)(k9
( — 1) fe+1 j ( — 1) fe

^w? 5 = 0 or i^mp, j^O) <3r^ represented by ^ , Us] flwrf . -

^[«*!«+i] *« ̂ *(Cn,J respectively, where e = e(n, k) , ap
k
J
>s^Bk(e, s), a|Jg

Consider the following Bockstein long exact sequence.,

. . . ->Cotorf,r (Z(,)5 ZuO -

associated with the short exact sequence 0->Q*(Cntm) P* >@*(Cnim) -»

£?*(Cn,w)->0. Then we have the Bockstein spectral sequence associated
with the above long exact sequence.

Theorem 3. 11. hitj<=Cotorln'™(Fp, Fp} is a permanent cycle ifipj<^n.

The differentials of the Bockstein spectral sequence are given by drhitj+r =

^i where we Put Sij = hlj if p = 2 and *>- - ] .

Proof. Since deg gii:i = 2ipj+e(n'»+l-2>2n-l, hitj is a permanent
cycle by dimensional reason, if ipj^n.

Note that r = e(n,i)+l if r-rl<^"T^il. We put i = kps where pj(k,

then i^mp if s^>0 and r — e ( n ^ k ) — s+\. Recall the defining relation

of fl.-./s in C.,0. We have Zgp'p'agr*"1 I=/^+r+,. Apply the reduc-

tion Coo.o-^Coo.B, and we have m=s+splap
k
3jr+s~l=fkpj+r+s in C^^, since

^(m, A) = j— 1. Hence fkpj+r+s in C^^ can be divided by /?s. Therefore
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we have [ZpMT+7']=[^^ in Q^(Cn,J since

the left hand side is contained in Cnm. Noting that —fk j+r+i is

primitive, apply the differential of Q*(Cntm) to the both sides of the

above equality,, Then we obtain rf[EI=o^z«l!s
++7Z] = — ̂ [^r+J modulo

Pr+l. [Z^^!s+
+7Z]^^-i(Cn,J maps to [^s

+r]^^-i(Cn.J which repre-
sents (-l)k+lkhitj. Thus we have drhitj+r= -gitj.

Remark 3.12. By (3.10), Gotor***'^, FJ = E(hkpS. |j>

Of, s . lJ^O] if /? is odd or p = 2 and r>^, where bideg A s .=

( - 1 , 2kps+^ , bideg £ . = ( - 1 , 2kpj+r+l) . The differential of the
Rp 1 3

Bockstein spectral sequence is given by dr~s+lh s . _s =— g s .. If

p = 2 , r = s , then CotorJ(;>s)(F2, F 2 ) = '

Corollary 3*13. hitj and gitj are primitive.

Proof. Since the homological degree of hitj is —1 and Cotor0iV"

(FP,FP)=FP, it is obvious that hitj is primitive. In Cotor***'5 (FP,FP),

gk s . is a higher Bockstein image of a primitive element with no

inderminacy by (3. 12). So g . .eCotor***'8 (Fp, Fp) is primitive. The

splitting Cnitn= (X) Bk(e(n,k), e(m,k)+l) gives an isomorphism

Hence giij^Cotor^'fl(Fp9 Fp) is also primitive.

Theorem 3.14. *n,m#: Cotor^^, J^)->Gotor^+1-m(J^, Fp) and

7rRWlt: Cotorx"'™(Fp, Fp) —>Cotor%nj™+1 (FP9 Fp) map hitj and gitj as stated in

(2.6). That is i

gitji otherwise

o,
ky, otherwise

/ \ _• ]
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gitj9

Proof, By (3.10), cniml(hitj} = hitj is obvious. Suppose p\n+l9

n^mp [4|w + l, 7z^4m] and i = k(n,m) and put i = kps(p)(k)e Then

e(n, k} =e(n-}-l, k) — 1 and fl{^+1eCn+iiOT where e = e(n, k). Hence

g..«t(g.-.J-)=
("'1)m^[fl{!<+J=0 in Gotor^t1-"^ F,)9 If i*k(n, m),

an equality ^(^3 A) — ̂ (?z + l3 A) (i = kp5
9pJ[k) holds. Therefore cn,m%(gi,j)

=gitj. Note that the condition "p\n + l9 n^mp [4|

equivalent to the condition "m + 1 ^k(n, m) ̂ n \m +

pJfk(n9 m) or £(X m) ̂ mp". ?rn>m maps Bk(e(n, A), e(m,k) + l)onto Bk(e(n,
k)9 e(m + l, k) +1). If m-\-l=kps for some ^>03 ker 7rniW is an ideal
generated by flM. And if p = 29 2(m + l) ^w<4(wz + l) , then e(n9 k) =

s+l where m + 1 =2S£? 2J(k. Hence rf[^'s+2] - [fl^,+1 \a2
k
J
iS+lj. These facts

imply the assertions on Kn>m$ by (3. 10).

§4. Hop! Algebra Structure of H*(Q*VHiJ

Lemma 4.1. T^ map H^V^-^H^V^ induced by the
inclusion Vnim-*V»tm is an isomorphism for k^2n — l,

Proof. Since Hk(Vn>m) -*Hk(V00im) is an isomorphism for k^
the result follows easily by using the theorem of J. H0 G0 Whitehead8

Lemma 4.2. The Eilenberg- Moore spectral sequence

collapses*

Proof. The jP-term is generated by [hitj |z^m + l3 p)[i or i^mp^
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7^0} which is also a basis of PE\ *. Since the spectral sequence has
a structure of a differential Hopf algebra, the above fact implies the
assertion.

Corollary 4.3. // ip^n, A^e^^-Gotor^C/^F,) is a

permanent cycle in the Eilenb erg- Moore spectral sequence converging to

n>r^), In particular, hii0 is a permanent cycle.

Proof. This follows from (3.14), (4.1) and (4.2).

Corollary 4.4. The sub Hopf algebra of H#(Q2VHim) generated by
^2k=QHk(Q

2Vnim} is generated by odd dimensional elements. Hence it is
primitively generated.

It is well-known that the homology of fl27ii,-_1( = 02S2i+1) is given
by the following. (See [2] Chapter III, §3, for example*)

(4. 5) H* (02VU^ = E(/^.| j^O) (SFpHhijlj^l-] [//* (Q*Viti-3 =
F2[Au|j^O]] where deg hitj = 2ipj-~l and 0 is the mod p
Bockstein homomorphism. And the action of the top
Dyer-Lashof operation <fx is given by f1A i tJ- = AJ->y+1.

(4.6) The homology suspension a%: H^(Q2Viii-^)-^H^+i(QViii^

= Cu-i is given by o*(hitj) =yf .

We need the following property of the Eilenberg-Moore spectral
sequence. (See [7] for a proof.)

Proposition 4.7. Let X be a simply connected space. And let
E2

Sit = Cotor?*^(Fp,Fp)^Hs+t(QX) be the Eilenberg-Moore spectral
sequence associated with a path fibration QX->PX~^>X. Then the following
diagram is commutative,

*.(*•„ «-L
where 0*: Hk(QX)->PHk+l(X) is a map induced by the homology suspen-

sion 0*: Hk(QX)->Hk+i(X). Hence o'* is surjective if and only if
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Corollary 4.8. In the E2-term of the Eilenb erg- Moore spectral sequence

converging to H^(Q2Vi>{^^ h^^E2^: is a permanent cycle which

corresponds to hitj

Proof. Noting that hitj = cls\^y^ ^E2^ -, the assertion follows from

(4.6) and (4.7).

Lemma 4.9. hiij^E2_i2ipj = Cotor^0
2.pj(Fp,Fp) (pjfi) is a permanent

cycle of the Eilenb erg- Mo ore spectral sequence converging to H*(Q2ViiQ)a

We can choose the unique primitive element hitj^.H^(Q2Vit^ corresponding

to hitj in the E2-term such that hiij = 7riii_2*
00 °°^i,o* ( h i t j ) ^H^(Q2Viti^

and hitj+i = Sihij.

Proof. Corollary (4.4) implies that PH2i-i(O
2Vit0) is spanned by

a single element because P(^s+t^2i-iE2
it) is spanned by a permanent

cycle hiiQ. Hence we can choose the unique primitive element

(@2ViiQ) which corresponds to hi<Q in the I^-term. Define
2ViiQ) by hitj+l = Sihij. It is easy to check that h{ij =

ri.o* (hij) holds by applying (3.14) and (4.8). Hence

j^(Q2ViiQ). Since P(Es+f=2.y _/?,*) is spanned by a single

element hi tj^E2
 ;-? it is a permanent cycle and there exists some

A^Fp such that hiij^H^(Q2Vii^) corresponds to lhitj in the ^-term.

Considering the map between the spectral sequences induced by

7r i p i_2o. °o7r i > 0 : F^o-^F/.j-i, we see that ^=1 by (4.8).

Lemma 4.10. hipij^E2_i2ipj+l = Gotor_f^pj+l(Fp, Fp) is a permanent

cycle of the Eilenberg- Moore spectral sequence converging to H*(Q2Vipti)a

We can choose the unique primitive element hipij^H%(Q2Vip^ corresponding

to hipj in the E2-term such that hipij = Kiptip-.2*°° °°Kip>v* (hiptj) and hipj+l

Proof. Since P(ZIs+f=2. j+i.^l*) i§ spanned by a single element

ijEiE2 j+i, the same argument as the above proof works.

Theorem 4. 11. The spectral sequence E2
Stt = CotorC

s
n

t*
m(Fp,
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Hs+t(Q
2Vn,m) collapses.

Proof. By (3.14)? hitj<=Gotorl%m(Fp, Fp) is the image of Au

*(FP, Fp) by 7rMim_1#o. .O7rni0 |ofn_ l i0 |o..o£. i0f t if pjfi9 and if p\i9 it is
Q

the image of A^eCotor*4;^!^, jFj) by 7rBiWJ_1#o. .0^,7^0^^ ./Mo. .0^./M.
Hence A.-./S are all permanent cycles by (4. 9) and (4. 10). Since git/s
are all primitive and there is no odd dimensional primitive element in
ZIss-ajE?,*, gi./s are also permanent cycles.

For any n, m^rO, we define hij^H 5 (Q2Vni^ for i,j such that

n, p)(i or i^mp and j^O by A£i i7- = ^ l l iOT_ ls |soo •°7rMf0*°£n_i,o*0 ' 8°

*i.o*(hi,j) if Mz where hitj^H s (Q2Vit^) is the element descrived in

(4.9) and A,-, j^^m-i*0- •°^n,.v^*°^-i ,^*°' 8°^ ..v^* (*,-,/) if /H* where
(tyViMp) is the element described in (4.10).

Lemma 4. 12. // /> = 25 Af. ~0 in H*(Q2Vn,J for «^-

f. Suppose that A?,y^=0 in H*(Q2Vnim)9 then h2j is a primitive
element of degree 2j+2i — 2. On the other hand, since h2

tj = 0 in the
jE"2-term of the Eilenberg-Moore spectral sequence, h2

itj^H*(Q2Vnin?)
belongs to F_3>!ie. However, there is no primitive element in

2S f=2-J
+2i-2^'*8 This contradicts Af^-^O.

Lemma 4.13. H*(Q2Vnin?) is primitively generated.

Proof. By (4.11), H*(@2Vntm) has generators in degrees 2ipj—l
and 2ipj+e(n'l^+l — 2 for suitable i,jvs. Hence if p is an odd prime,
there is no indecomposable element in degree 2kp (£ = 1,2, . . ) „
Therefore the assertion is obvious if p is odd. If p = 2, assume that
the square root map £ (the dual of squaring map) on H*((22Vntm)
is non-trivial. Let x^H*(@2Vnim) be an element having minimum

degree such that C#^0, we may assume that x correspond to some
gitj in the £"2-term of the Eilenberg-Moore spectral sequence. Since
£gu = 0 in the EMevel, C#eF_3iS!!. Note that £ is a Hopf algebra
homomorphism, since H*(@2VHim) is cocomutative. Put^=]
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'®x" and apply C on the both sides. Then we have d£x =
C*(X)1 by the assumption. Since deg x = deggiJ = 2j+e(n^+2i-2 = 2

mod 4, C,x is a primitive element of odd degree. But there is no odd
dimensional primitive element in F_3 ,*. This contradicts C#GEF_3 *,,
Therefore the square root map on H*(@2Vntm) is trivial. Thus
H*(Q2Vnim) is primitively generated (cfa [4], (4, 20)).

Theorem 4. 14. There are primitive elements htj^H . j (

^i^n, pfi or i^mp, j^O) and gitj^H2.pj+e(n,i}+l_2(Q
2Vn. J (m + l

^i^~- if p = 2]9 pft or i^mp, j^O) which satisfy the

following:

(i) h i t j and gitj correspond to h i t j and g{J in the E2-term of the
Eilenberg-Moore spectral sequence,

(ii) H^2Vnim) =£^1^ + 1^1^11, p\i or i^
or i^mp.j

2J[i or i^

^i^ 2J(i or i^

zn or
ILZ J" ) ' ' '

(0, p\n + l, n^mp and i = k(n,m)

gitj, otherwise

r r03

L

? n^4m, and i = k (n,

». j j otherwise

Z ^=771+1
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(iv) £ihij = hiij+l.

(v) hi^Hi(Q*Viti-J=Hi(Q*SK+l) is the image of the canonical
generator of H2i^(S2i-1) by the map induced by S2i-l-+Q2S2i+l.

(vi) h{ij's and git/s are the unique primitive elements that satisfy the

conditions (i) ~~ (v).

Proof. We have already specified the primitive elements Ait/s.
By (4.9) and (4.10), the assertions (iv) and (v) hold. We have

rc».«*(/z«+i.o) =0 by dimensional reason. It follows that 7rnimsie(/zm+i i j+i)

= nn.m*(£ihm+i.j)=£iK*.m*(km+i.j)=0 inductively. Therefore all of the
above assertions on A,-,/s hold. Let us consider the Eilenberg-Moore

spectral sequence converging to H*(Q2V.e^) where p\i and e^O

[>^1 if p = 2]. Since P(Es+f=2.^+e+i_2^?j) is spanned by a single

element gitj, there is unique element gitj in PH2. j+e+i_2(^
2V e Q) which

corresponds to gitj in the E^-term.
For general n, m^Q, we define ^,J.e//2.y.+e(nii.)+1_2(J22Fni?n) so that

the condition (iii) holds. By (3.14), we know that ^,0* fe(«,o).j) — 0
modulo filtrations of the Eilenberg-Moore spectral sequence if

p\n + l [4|/2 + l]; that is, cn,**(gkMtj) belongs to P^_32(n+1)j)J+1. But

^,2(n+1)y_2_s = 0 ^ ^-3, hence ^,0* (&(,.,».,•) =0. The fact that

^,»*(5*(».»).j)=0 i f / > | « + 1, ?2^m/? [4|w + l, ?z^4m] for general
follows from the definition of giijf If p is odd and n<^(m

xn.m*(gm+i.j) ^PF_3i* by (3. 14). By the same argument as above, we

have *rn,„*(£„+!.,-) -0. If p = 2 and 2(m + l) ^/2<4(m + l)9 icn.a*(gm+i.j')
-h2

2(m+uj(EPF-.3i* by (3. 14). Similarly we have Kn,m* (gm+lj) =h2
2(m+l)ij.

The assertion (ii) is straightforward from (4.11) and (4.12) and the
uniqueness is obvious.

Corollary 4.15. The homology suspension a*: H*(@2Vnim) -*H*+i(QVntm)
(_ i \ fc+i -

maps hitj to ^ ap
k
J,s(i = kps,p)(k) and a^(git,.) -0.

Proof. This follows from (4.7).

Theorem 416. All of the generators ki>j9 gitj of H*(Q2Vnim) are

in the image of the homology suspension a*: H*(Q*VHiJ ->//#+1 (@2Vnim)a
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Proof. hit0^Hi(Q2VniQ) is a image of a generator of //iC?1) by
the map induced by Sl->@2S3->@2SU(n-\- 1) , and any element of

HitS1) is in the image of the map induced by IQSl->Sl (the adjoint

of the identity map of OS1). Hence /z1>0 is in the image of the
homology suspension. Let SU(n + 1)<3> be the three-connective

cover of SU(n + l). Then Q2SU(n + l) is homotopy equivalent to
Q2SU(n + l)(3yxSl and H*(£26X/(/2 + l)<3>) is identified with the sub

Hopf algebra of H*(O2SU(n + l)) generated by hitj (i^

We putV'nm=\ ' . Consider the Eilenberg-Moore
[Vn.m, m>0

spectral sequence associated with the path fibratioii

O2Vn>m. By (1.6) and the calculations in §2, the £"2-term is given by

or p

j^OO'^1 if m = 05 i = V]®E(gitjik\m + l^i^n9 i^mp or p\i,

j^OO'^1 if m = 0,i=l),A:^0)(g)F^[A l . i ; .> A |m + l^i^7z, i^mp or pjfi,

j^00>l if m = Q, i= l )

where

bideg «,..,= (-!, 2i^-l), bideg ^,^=(-1, 2^(
bideg *,,,.,»= (-2, 2^+1(i^+^-»+1-l)) and ^, y§4

is the algebraic Bockstein operator).

[# = Cotor**(^»'"(FfcF^ i^

j^l if iw = 0 , i = l ) ] ( g ) F 2 K l , y i 4 | i i i + l ^ f ^ - , i^2m or

or

j^O (j^l if m = 0, i=l ) , *^

i^Zm or 2ft j^O (j^l if m = Q, t =

where

bideg «,..,.= (-l,2'+1i-l), bideg a.y.4=(-l,

bideg A,,,,- (-1,

Note that the Eilenberg-Moore spectral sequence has a structure

of Hopf algebra and the above generators hiij3 giijik, hitjik are all
primitive. Hence, if p is odd, there is no possibility of non-trivial
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differentials by dimensional reason. Therefore the spectral sequence
collapses and the assersion follows from (4. 7) if p is odd. We consider
the case p = 2. The £2-term of the Eilenberg- Moore spectral sequence
associated with the fibering Q*V'00tm--*PQ2V'00tm~>Q2700tm is given by

E2=CotorH*(°2*™-m\F2,F2)=F2[_hitj\i^m+l, i^2m or 2 |t, j^O
(j'^1 if m = Q, i = 0)] (bideg ^.= (-1, 2>+1i-l)).

It follows that the spectral sequence collapses and we have H^Q^V^^)
= F2lhitj\i^m + l, i^2m or 2)(i, j^Q (j^l if m = Q, i=l)].

By (4.7), **: H^Q^J-^H^Q^J maps Kitj to hit5. Since
the maps Ht(O*VniJ-+Ht(Q

sV^m) and HM(SfV^^HM(SfV«.m) are
bijective for ^2^ — 2, hii0^H*(Q2V'nim) is in the image of o>. The
commutativity of a* with homology operations ([2], Theorem 1. 4)

implies that hiij^H*(Q2V'ntm) is in the image of a* and that hz
it j e //*

(Q2Vn>m) is also in the image of 0*. Therefore Kiij9 and hiijik are perma-
nent cycles in the Eilenberg- Moore spectral sequence converging to
H*(@2Vntm) by (4.7). On the other hand, gi.j^'s are permanent cycle
by dimensional reason. Thus the Eilenberg-Moore spectral sequence
collapses and we have the result applying (4. 7) .

Corollary 4. 17. There are the following isomorphisms as algebras*
mp or pfa j^O (j^l if m = Q,

or pfi, j^O (j^l if m = 0, « = 1),
or pfa j^Q (j^l if m = 0, i=l) ,

,, J SF2[£.. y| m + 1 ̂ i ^ y , z^2m or 2jz, j^0(j^l if m = 0,

i^2m or 2jz, j^O (j^l if wi = 0,

i t ^}<i^w, ^2m or 2ft j^O (j^l if
iu ^ J /

= 05 f = l ) , *^

where deg hiij = 2ipj — 2, beggitjtk = 2pk(ipj+e(n'0+l— 1) -1,

,,J.fe-2^+1(^+e(M't')+1-l) -2, deg££iyii = 2*(2''+1i-l) -1.

§5. Bocksteln Spectral Sequence of H*(Q2Vn>m)

In order to apply (3. 11) to calculation of the Bockstein spectral
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sequence of H*(Q2Vnim), we need the following fact (see [7] for a

proof) .

E'-+E
Theorem 5.1. Let I j be a fiber square such that the following

B'-+B

conditions are satisfied',

(i) B is simply connected,

(ii) E->B is a Serre fibering

(in) H*(B',Z(p}}, H*(E;Z(p}} and H*(B'\ Z(P^ are torsion free. Let

[Elit, d
r] be the Eilenberg-Moore spectral sequence associated with the fiber

square in the mod p homology and let {Er
Sih dr] be the Eilenberg-Moore

spectral sequence associated with the fiber square in the homology of Z(p}-

coefficients. If y^E2
Sit is a permanent cycle, §y^E2

s-itt is also a permanent

cycle where

«:£!., = Cotorf ?** (//* (B' ; Fj , H*(E;

is the algebraic Bockstein homomorphism. Let y^FStt be the element

corresponding to y^E2
Sit, then dy^Fs_iit and dy corresponds to the permanent

cycle —^3 where d: H*(E'\ Fp) ^>H*-i(E' °,Z(P^ is the geometric Bockstein

homomorphism,

We apply the above theorem to a fiber square

- > PQVn,m

Theorems (3.11) and (4.14) yield the following.

Lemma 5.2. dhiij^H2.pj_2(Q
2Vnim;Z(p^ can not be divided by pg<*.»+i

if ipj^>n. Hence dshitj^§ for some s^e(n, i) +1 in the Bockstein spectral

sequence of H*(Q2VUim} if ipj>n.

Proof, By (3. 11), the algebraic Bockstein homomorphism S sends

hitj to an element which can not be divided by /?e(nj)+1
0

Since dhitj^E2_22.pj and £o,*=Z(^ in the Eilenberg-Moore spectral

sequence converging to H*(Q2VHim; Z(P^\ dhitjis not bounded and repre-
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sents a non-trivial element of H*(Q2Vnim\ Z(P^. Hence <5/z^ ;- e jF_2, *
— F_3>sH and dhitj corresponds to —Shu by (5. !)„ Thus dshitj^0 for
some s. Then we may put dhiij=ps~l j for some 7* such that 7- is not
divided by p. Consider the reduction of dhij^p5'1 j to the jE2-term.
We see that dhitj is divided by ps~l. This implies s— l<^e(n, i) +1,
that is, s^e(n, z) +1.

Lemma 58 3. In H^(Q2Viti-^)^ the action of the Bockstein homomor-
phism ft is given by /3/zii0 = 0, phiij+1=gij, where hitj and gitj are elements
specified in (4. 14). [//" p = 2, we put gi,j = h2

i>j,~\

Proof. fihiiQ = Q is obvious. Since dhiij+i^H*(Q2Viti-i: Z(P^) is
represented by —dhitj+l^E2_22.j+l in the Eilenberg-Moore spectral

sequence of ^^-homology and the mod p reduction of —dhiij+l is
gi,^E2_2t2.pj+l by (3. 11), it follows that phitj+^H*(Q*Viti-d is represent-

ed by gitj^.E\22{ j+l in the Eilenberg-Moore spectral sequence. Phiij+i

is a non-zero primitive element and we may put /3/zz- j+i = Agi

By the above argument, we have ^=1.

Lemma 5.4. In H*(Q2Vn,m}, phiij+l=gitj ife(n,i)=0, Phitj+l = 0 if
e(n,i)>Q. \_We put gitj^h2

iti if p = 2 and e(n, i) =0.]

Proof. First we show that ^hij+i=gij in H*(@2ViiQ) if p\i and
Phitj+l=gitj in H*(£2Viii/p) if p\i. Since dim PH^^fPV^ =

dimPH2ipj+l__2(@
2Viii/p)=l, we may put phitj+1 = 2gitj(*^Ft) in each

case. Considering the maps induced by Ff.o-*!^,,--!, Viii/p-->Viti-.i, we
have ^=1 by (4.14) and (5.3). By (4.14),

i.j, e(n,i)=Q, 0^
A .
0, otherwise

and

It follows that
r^- ,-, e (n* i) = 0

in H*(Q2V J if
e(n, 0>0
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Similarly we have

'(*>!.)=!) m HtVTV^ if p\i.
e(n, i)=l

Theorem 5. 5- The differentials of the Bockstein spectral sequence of
H*(f22Vnim) are given by de(n'i^+1hij+e(ni^+i=giij and hitj is a permanent cycle

if ipj^n \_We put gitj = h2
itj if p = 2 and e(n, i) = 0].

Proof, Since the Bockstein spectral sequence has a structure of a
differential Hopf algebra, it follows that h i t j (ipj^n) and gitj (any z, j)
are permanent cycles by dimensional reason. We assume inductively
that de(n'»+lhit j+e(n,»+1 =gij if e(n,i)+l<r and that dshitj+e(n^+l = 0 if
e(n,i)+l^r and \^s<jr. Note that the first assumption implies
that rfs/zifj-+e(llii)+1 = 0 if s<^e(n, z) + l<r. By the preceding lemma, the
assumptions are true when r = 20 Under the assumptions, the £"r-term
of the Bockstein spectral sequence becomes

+.^+^^

For each i such that e(n, i) —r— 1, drhiJ+r^Q by the second assumption
and (5.2). Since drhiij+r is a primitive element of degree 2ipj+r — 2^

we may put drhitj+r=lgiij (l^Fj). This implies that (>hitj+r=pr~l? for
some ?^H2.pj+r_2(Q

2Vntm: Z(P^) and the mod p reduction of 7 is Agitj.

Let f be the permanent cycle corresponding to y in the Eilenberg-
Moore spectral sequence,, Then we have dhitj+r= — pr~lf by (5.1).
It follows that the mod p reduction of f is gitj in the EMerm by
(3.11). This implies that / l=l . Then apply 'n-i.«*°° O0^y-i wsle

 on

the both sides of drhiij+r=gitj where hij+n gij^H^&V.^J and

\ By (4. 11) we have

.*• J>' ] f\ • p / 'N-o^ 1U) if e(n, i )>r— 1

This completes the induction.

§6. Steenrod Action on H*(Q2Vnim)0

Throughout this section, we denote the 2f-th Steenrod square Sq2i

by P1 when a prime p is 2.
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Lemma 6.1. The action of the Steenrod operation on H*(QSU) =

Fp\Ji, J>2, • . ,yti. . ] is given by P^

Proof. Since Pl**=f*>)*»+'{*-1) in H*(CP~) =Ft\x], we have P'*?-*
V/

= (*"t?"1))r*-*c*-i) in #*(CP~)=r(r) where r, is the dual of

**. yi<=H2i(QSU} is the image of ^e/^-CCP00) by the map induced
by CP°°->@SU which is the adjoint of the canonical inclusion SCP°°->

SU. So we have the result.

Corollary 6.28 77^ Steenrod operation acts on the i-th Newton

polynomial f^H*(QSU} (pl(i) as follows

. ^ p ( p where

. = Q if j^o.

Proof. Suppose i^ — 1 mod p. Since P^- is primitive and
PH2i(SU) is spanned by a single element f^ we may put P\fi = tfi-p+i.

Note that /i= (-l)f'+1ijv,-, /•_,+!= (-l)'+1(i + l)jv^+i modulo decompo-
sables and that P1^ maps decomposable elements to decomposable
elements. Hence P\fi = ( — 1 ) i+li (i + 1 ) ji-p+i modulo decomposables.
Thus l = i and we have P\fi = if{-p+i if i^ — 1 mod p. Note that the

formula /V* = */.--*+i is valid if /> |t since P1*/w=P1*/f=0. We may
put Pl*fkp-i = tkf(k-up as above. Applying P1* on the both sides of

-s+(-l)fe+1^-i9 we have

? (-0 s+y*-^-i/»-.-i)*

Therefore (^+ 1 )/tt.w= Z ?:!(-!) s+1(Vs+l)^/(fe-s-i). for A-25

3, .... Hence 2k= - 1 and Pi/w-i= "/(*-«*. We put Pffi = ^f^^

as usual. Comparing the coefficients of j>._ fe _ , we have A =

Lemma 6.3. Tfe Steenrod operation acts on akiS^H*(QVk , fc s_i)

<8> B{(e(kps, i)5 e(kp'~\ 0+1) (^W as follows.



DOUBLE LOOP SPACES OF STIEFEL MANIFOLDS 797

(rf f e j_ s+l)<2 _ j_s _ , I^>s9 k^>pl~s+l

0 KAI-S+I

Pp5 a =
* *>s 10, A^/> or j ^ l^ + l

.. ,
+1

Proof. We know that PH* (QV s s_x) is spanned by a** s_i ..
kp ,bp A ' i,e(kp ,

(\^i^kp\ pj[i9 ;^0). So P*<2fc tS is a linear combination of such

elements. Suppose deg P{akiS = deg a^e+i where e = e(kps~1, i), then

we have kps-pl(p~ 1) =ipj+e+\ Hence kps-l = ipj+e+pl-l(p-l)>ipj+e

which means £^j + £. Thus j' = 0 and kps—pl(p—I)=ipe+l
aeeo (*)

The case />j: By (*), k-pl~s(p-l) =ipe+l~s. Since /^^ we have

* = *-! and i = k-pl~s(p- 1). The fact « = j-l implies ips>kps~li

that is, k>pl~s+\ Therefore Pifl4il = 0 if k^pl~s+\ If k>pl~s+\ we

may put PiWs = V^c,-i),s-
 Since ^..= ("1)*+1^ V^-c*-i)..=

(__l)f t+i^, ^ modulo decomposables, comparing the coefficients

of -V-yc*-i)> we have the result

The case /<>: By (*), kps~l--p + l=ipe+l-1. The same argument

as above implies i = kps~l—p + l^ k>pl~s+l, comparing the coefficients

of yk s_ z the result follows.

The case l = s, pJ(k + I: It follows from (*) that i = k-p + l and

A:>j&. We have the result in the same way0

The case l = s, p\k+l: We put k = rp-la Then(*) yields r=l +

ipe~s. Suppose such i exists and we put P*akiS = Zaiie+i. Comparing the

coefficients of y s_ s _ , we have 2 = 0

Theorem 6.4. The action of P£ on h.pt ,<=H*(Q2Vni J (pfam + l

^ip^n, t = 0 or ip^mp, J^O) is given as follows.
(i) The case £ = 0:

(i + 1 ) hi-f+1J, k =j, pj(i + 1 , i-p^

lhlij+s, k=j, i-p + l=

pj(l, l^

, 0, otherwise



798 ATSUSHI YAMAGUCHI

(ii) The case

, 0, otherwise

Proof. By (4.14), each Atf, . is the image of hifi^H*(tPVitd if

£ = 0 and the image of A , ,^H*(Q2V. t . t-i) if £>0. And we know

that cnim* maps the subspace spanned by A f>/s injectively and that

ker7rniTO* n (the subspace spanned by /zz-,/s) is spanned by hm+ij(j =

0, 1, 2,..). Hence it suffices to examine the action of Pp# on hitj^

H*(@2Vii0) and h t .^H*(Q2V. t . t-i). The homology suspension

maps the subspace spanned by hit/s bijectively onto PH*(QVnitn).

Since the action of P^ commutes with the homology suspension, the

result follows from (4.15), (6.2) and (6.3).

Before we determine the action of P{ on gitj in H*(Q2Vnim), we

first consider the special case e(n, 0=0. We denote gitj by h]tj if

p = 2 and e(n, i) =0 from now on.

Theorem 6.5. Ife(n, ip*) =0, the action of Pp* on g.pt .<=

(pJ(i, m+l-^ip^n, t = 0 or ip^mp^j^O) is given as follows

(i) The case t=0:

* Si, j -

0, otherwise

(ii) The case

= (

^^, k>j + t, i>P^-',

ipt -p-i-l (p - 1 ) >max |fn) » J

( vi 1
ipt—pk~j~l(p— l)>max|m, —[

I /?J
, 0, otherwise
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Proof. By Nishida relation and (5. 4), we have

If p is odd. Then, (5. 4) and (6. 4) yield the result if p is odd. If
p = 2, we can verify the result directly from (6. 4).

Lemma 6,6- Let Bn>m be the sub Hopf algebra of H*(Q2Vnim)
generated by [gitj \m-\-l ^i^n, pJ(i or i^mp, j^O} , Then, ^M>m* :H*(£2Fn> J
~^H*(Q2Vntm+^) maps Bnim onto BUim+l and it maps Bn>m isomorphically

onto Bnim+l if(m + l)p^n. Hence ^n. [-J-] -u° 8 a 0 7 rn,m* • B^-^B^j^

(mp^ri) is an isomorphism and it maps gitj to g. e(Bi0 . and gKi-i,mu to gitj.

Proof. This is immediate from (4. 11)8

Since all of the even dimensional primitive elements of H*(Q2VHtm)
are contained in Bn>m Bn>m is closed under the action of the Steenrod
algebra. Hence (6. 5) and (6. 6) allow us to determine the action

of Pife on g{J^H*(!22VniJ when e(n, 0>0.

Theorem 6, 7. If e(n, i)>0, the action of P\ on gitj

^z^— , pj[i or i^mp, j^O) is given as follows.

, 03 otherwise

Proof. This is straightforward from (6, 5) and (6. 6).
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