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1 An introduction to adic spaces

This year’s AWS topic is perfectoid spaces, a difficult topic to treat in one week
if there ever was one. But given the interest in the topic, and the huge amount
of important work awaiting young mathematicians who want to work on this
field, it is certainly a worthy effort. The lecture notes here are meant to be a
motivated introduction to adic spaces, perfectoid spaces and diamonds, for the
reader who knows some algebraic geometry.1.

1.1 What is a “space”?

Consider the different kinds of geometric “spaces” you know about. First you
learned about topological spaces. Then came various sorts of manifolds, which
are topological spaces which locally look like a model space (an open subset of
Rn). Then you learned that manifolds could carry different structures (differ-
entiable, smooth, complex, ...). You could express these structures in terms of
the transition functions between charts on your manifold. But this is a little
awkward, thinking of everything in terms of charts. Later you learned a more
efficient definition: a manifold with one of these structures is a ringed space
(X,OX), where X is a topological space and OX is a sheaf of rings on X, such
that locally on X the pair (X,OX) is isomorphic to one of the model spaces,
together with its sheaf of (differentiable, smooth, complex) functions. An ad-
vantage of this point of view is that it becomes simple to define a morphism
f : X → Y between such objects: it is a continuous map of topological spaces
together with a homomorphism OY → f∗OX (in other words, functions pull
back).

This formulation of spaces in terms of pairs (X,OX) was good preparation
for learning about schemes, the modern language of algebraic geometry. This
time the model spaces are affine schemes, which are spectra of rings. For a ring
A, the topological space SpecA may have initially seemed strange—in particular
it is not generally Hausdorff. But then you learn some advantages of working

1Special thanks to Johannes Anschütz, Shamil Asgarli, Tony Feng, Maŕıa-Inés de Frutos
Fernández, Nadir Hajouji, Sean Howe, Siyan Li, Jackson Morrow, David Savitt, Peter Scholze,
Koji Shimizu, and David Zureick-Brown for their helpful comments.
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with schemes. For instance, an integral scheme X has a generic point η. It
is enormously useful to take an object associated with X (a morphism to X,
an OX -module, an étale sheaf on X, ...) and pass to its generic fiber, which
is associated with the function field of X. Usually if some property is true on
the generic fiber, then it is also true “generically” on X (that is, on a dense
open subset). Number theorists use this language all the time in the setting
of Spec Z: if a property holds over the generic point Spec Q, then it holds at
almost all special points Spec Fp.

The language of formal schemes is useful for studying what happens in an
infinitesimal neighborhood of a closed subset of a scheme. Thus formal schemes
often arise in deformation theory. This time, the model spaces are formal spectra
Spf A, where A is an admissible topological ring. (Examples of such A include
Zp and Z[[T ]].) The notation Spf stands for “formal spectrum”, and refers to
the collection of open prime ideals of A. This can be given the structure of a
topological space X, which is equipped with a sheaf OX of topological rings.

In the theory of complex-analytic spaces, the model space is the vanishing
locus of a collection of holomorphic functions on an open subset of Cn. Thus
it is like the theory of complex manifolds, except that some singularities are
allowed. The theory of complex-analytic spaces has many nice interactions with
the theory of schemes. If X is a finite-type scheme over Spec C, then there is a
complex-analytic space Xan, the analytification of X, which is universal for the
property of admitting a morphism of ringed spaces (Xan,OXan) → (X,OX).
Conversely, if X is a complex-analytic space admitting a closed immerson into
projective space, then X is the analytification of a projective complex variety
X, and then X and X have equivalent categories of coherent sheaves, and the
equivalence respects cohomology groups (Serre’s GAGA theorem). In this situ-
ation there are comparison isomorphisms between the étale cohomology groups
of X and X . There are further relations known as uniformizations; most well-
known of these is the phenomenon that if E is an elliptic curve over Spec C,
then there exists a lattice L ⊂ C such that Ean ∼= C/L as complex-analytic
spaces.

1.2 Rigid-analytic spaces

Let us turn our attention from archimedean fields (R and C) to non-archimedean
fields (Qp, Cp, k((t)) for any field k). Both are kinds of complete metric fields,
so it is natural to expect a good theory of manifolds or analytic spaces for a non-
archimedean field K. Which ringed spaces (X,OX) should serve as our model
spaces? The näıve answer is that (to define a manifold) X should be an open
subset of Kn, and OX should be its sheaf of continuous K-valued functions.
The problem with this approach is that X is totally-disconnected, which makes
it too easy to glue functions together. This problem will ruin an attempt to
emulate the complex theory: if X = P1 defined this way, then H0(X,OX) 6= K
(violating GAGA) and H0

ét(X,A) 6= A (violating the comparison isomorphism).
Nonetheless, Tate observed that some elliptic curves over K (those with

multiplicative reduction) admit an explicit uniformization by K×, which hints
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that there should be a good theory of analytic varieties. Tate’s uniformization
involved power series which converged on certain sorts of domains in K×. Tate’s
theory of rigid-analytic spaces is a language which satisfies most of the desiderata
of an analytic space, including GAGA and the comparison isomorphisms. A
brief summary of the theory: we define the Tate algebra K〈T1, . . . , Tn〉 to be
the K-algebra of power series in K[[T1, . . . , Tn]] whose coefficients tend to zero.
(Alternately, this is the completion of the polynomial ring K[T1, . . . , Tn] with
respect to the “Gauss norm”.) The Tate algebra has various nice properties: it
is Noetherian, all ideals are closed, and there is a bijection between the maximal
spectrum SpmK〈T1, . . . , Tn〉 and the closed unit disc in K

n
, modulo the action

of Gal(K/K). An affinoid K-algebra is a quotient of a Tate algebra.
The model spaces in the theory of rigid-analytic spaces are SpmA, where

A is an affinoid K-algebra, and Spm means the set of maximal ideals. But
the topology Tate puts on SpmA is not the one coming from K

n
, and in fact

is not a topology at all, but rather a Grothendieck topology, with a collection
of “admissible opens” and a notion of “admissible open covering”. With this
topology, SpmA carries a sheaf of rigid-analytic functions, whose global sections
recover A. Then a rigid-analytic space over K is a pair (X,OX), where X is a
set carrying a Grothendieck topology and OX is a sheaf of K-algebras, which is
locally isomorphic to a model space SpmA.

Despite this quirk about Grothendieck topologies, the theory of rigid-analytic
spaces has had spectacular successes as a non-archimedean analogue to complex-
analytic spaces: there is a rigid-analytic GAGA theorem, comparison theorems,
fascinating theorems about uniformization of curves and of Shimura varieties,
new moduli spaces which are local analogues of Shimura varieties (implicated
in the proof of the local Langlands correspondence for GLn over a p-adic field).

1.3 A motivation for adic spaces

Despite these successes, the theory of rigid-analytic spaces has a few shortcom-
ings, which are addressed by the more general theory of adic spaces. One is the
problem with topologies, illustrated in the following examples:

Example 1.3.1. Let X = SpmK〈T 〉 be the rigid-analytic closed unit disk,
and let Y be the disjoint union of the open unit disc U with the circle S =
SpmK〈T, T−1〉. There is an open immersion Y → X, which is a bijection
on the level of points. But it is not an isomorphism, because the two spaces
have different Grothendieck topologies. (The trouble is that {U, S} is not an
admissible cover of X, because U is not a finite union of affinoid subdomains.)

Another example: let X = SpmK〈T 〉, let α be an element of the completion
of K which is transcendental over K, and let Y ⊂ X be the union of all affinoid
subdomains U which do not “contain” α, in the sense that α does not satisfy
the collection of inequalities among power series which define U . Then the open
immersion Y → X is once again a bijection on points. Indeed, a point x ∈ X
is a Galois orbit of roots of an irreducible polynomial f(T ) ∈ K[T ]. Since
f(α) 6= 0, we have |f(α)| > |t| for some nonzero t ∈ K, and then x belongs to
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the rational subdomain defined by |f | ≤ |t|, hence it belongs to Y . However,
Y → X cannot be an isomorphism: the collection of affinoid subdomains U used
to define Y does not admit a finite subcover of Y , whereas (since X is affinoid),
any admissible cover of X by affinoid subdomains admits a finite subcover.

In both examples there was an open immersion Y → X which is a bijection
on points but which is not an isomorphism. This suggests that there are certain
hidden “points” in X which Y is missing. In fact in the world of adic spaces, Y
is simply the complement in X of a single point.

Another shortcoming, if we may be so greedy as to point it out, is that
rigid-analytic spaces are too narrowly tailored to the class of K-affinoid algebras
studied by Tate. Whereas the category of adic spaces encompasses the categories
of rigid-analytic spaces, formal schemes, and even ordinary schemes. This allows
to pass between these categories very easily. For instance, ifX is a formal scheme
over Spf Zp (satisfying certain finiteness assumptions), then there should be a
corresponding rigid space Xrig, its rigid generic fiber. This was worked out by
Berthelot [Ber91], but is rather subtle: if X = Spf Zp[[T ]], then Xrig is the rigid-
analytic open unit disc, which is not even affinoid. Whereas in the adic world,
there is a formal unit disc fibered over a two-point space Spa Zp, and its generic
fiber is simply the open subset lying over the generic point Spa Qp.

1.4 Huber rings

The model spaces in the theory of adic spaces are associated to certain topo-
logical rings A. In light of our desiderata, A should be allowed to be Zp[[T ]], or
Qp〈T 〉, or even any ring whatsoever with its discrete topology. In the first and
third case, the topology of A is generated by a finitely-generated ideal. In the
second case, the topology of Qp〈T 〉 certainly isn’t generated by p (since this is
invertible in A), but rather there is an open subring Zp〈T 〉 whose topology is
generated by p.

Definition 1.4.1. A Huber ring2 is a topological ring A containing an open
subring A0 carrying the linear topology induced by a finitely generated ideal
I ⊂ A0. The ring A0 and the ideal I are called a ring of definition and an ideal
of definition, respectively. (The data of A0 and I are part of the data of a Huber
ring; only their existence is.)

A Huber ring A is Tate if it contains a topologically nilpotent unit. Such an
element is called a pseudo-uniformizer.

Example 1.4.2.

1. Any ring A can be given the discrete topology; then A is a Huber ring
with A0 = A and I = 0.

2. Let K be a nonarchimedean field: this means a topological field which is
complete with respect to a nontrivial nonarchimedean real-valued metric

2called an f -adic ring by Huber [Hub94].
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| |. Since | | is nontrivial, K contains an element $ with 0 < |$| < 1,
which is then a pseudo-uniformizer of K. Then K is a Huber ring, K◦ =
{|x| ≤ 1} is a ring of definition, and ($) is an ideal of definition.

3. Continuing with the previous example, we have the Tate K-algebra A =
K〈T1, . . . , Tn〉. This is a Tate Huber ring. The subring K◦〈T1, . . . , Tn〉 is
a ring of definition, and ($) is an ideal of definition.

4. Let R be any ring with its discrete topology. Then the power series ring
A = R[[T1, . . . , Tn]] is a Huber ring which is not Tate. Then A itself is a
ring of definition, and (T1, . . . , Tn) is an ideal of definition.

5. Similarly, if K is a nonarchimedean field with pseudouniformizer $, then
A = K◦[[T1, . . . , Tn]] is a Huber ring. Then A itself is a ring of definition,
and ($,T1, . . . , Tn) is an ideal of definition.

6. Let K be a nonarchimedean field which is perfect of characteristic p. The
ring of Witt vectors A = W (K◦) is a Huber ring, A itself is a ring of
definition, and (p, [$]) is an ideal of definition.

7. Let A = Qp[[T ]]. It is tempting to say that A is a Huber ring, with a
ring of definition A0 = Zp[[T ]] and an ideal of definition (p, T ). But in
fact one cannot put a topology on A which makes this work. Indeed, in
such a topology Tn → 0, and since multiplication by p−1 is continuous,
p−1Tn → 0 as well. But this sequence never enters A0, and therefore
A0 ⊂ A is not open. (It is fine to say that Qp[[T ]] is a Huber ring with ring
of definition Qp[[T ]] and ideal of definition (T ), but then you are artificially
suppressing the topology of Qp, so that the sequence pn does not approach
0.) There is a similar obstruction to Zp[[T ]][1/p] being a Huber ring.

We need a few more basic definitions.

Definition 1.4.3. A subset S of a topological ring A is bounded if for all open
neighborhoods U of 0, there exists an open neighborhood V of 0 such that
V S ⊂ U . An element f ∈ A is power-bounded if {fn} ⊂ A is bounded. Let
A◦ be the subset of power-bounded elements. If A is linearly topologized (for
instance if A is Huber) then A◦ ⊂ A is a subring.

A Huber ring A is uniform if A◦ ⊂ A is bounded.

All of the Huber rings in Example 1.4.2 are uniform. A non-uniform Huber
ring is A = Qp[T ]/T 2, because A◦ = Zp + QpT is unbounded.

Remark 1.4.4. In a uniform Huber ring A, the power-bounded subring A0 ⊂ A
serves as a ring of definition. Complete uniform Huber rings which are Tate are
especially convenient because they are Banach rings. Indeed, suppose A is a
uniform Tate Huber ring, and let $ ∈ A be a pseudo-uniformizer. Then the
topology on A is induced from the norm

|a| = 2inf{n: $na∈A◦}.
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1.5 Continuous valuations

The idea now is to associate to a Huber ring A a ringed space SpaA = (X,OX),
which will serve as the model space for the theory of adic spaces. The points of
X are quite interesting: they correspond to continuous valuations on the ring
A.

Recall that an ordered abelian group is an abelian group Γ endowed with
a translation-invariant total order ≤. These will be written multiplicatively.
Examples include R>0 and any subgroup thereof. Another example is Γ =
R>0 ×R>0 under its lexicographical ordering: (a, b) ≤ (c, d) means that either
a < c or else a = c and b ≤ d. A feature of this Γ is that it contains R>0

(embedded along the first coordinate) together with, for each a ∈ R>0, elements
(such as (a, 1/2), respectively (a, 2)) which are between a and every real number
less than (respectively, greater than) a. This concept easily generalizes to finite
products Rn

>0, or even infinite products of R>0 indexed by an ordinal.

Definition 1.5.1. For an ordered abelian group Γ, a subgroup Γ′ ⊂ Γ is convex
if any element of Γ lying between two elements of Γ′ itself lies in Γ′.

It is a nice exercise to show that if Γ′,Γ′′ ⊂ Γ are two convex subgroups then
either Γ′ ⊂ Γ′′ or Γ′′ ⊂ Γ′. Therefore the set of nontrivial convex subgroups
forms a totally ordered set with respect to inclusion. The cardinality of this set
is called the rank of Γ. Thus the rank of Rn

>0 is n.
The condition for Γ to be rank 1 is equivalent to the following archimedean

property: given a, b ∈ Γ with a > 1, then there exists n ∈ Z with b < an. We
remark that a rank 1 ordered abelian group can always be embedded into R>0.

Definition 1.5.2. Let A be a topological ring. A continuous valuation on A is
a map

|·| : A→ Γ ∪ {0} ,

where Γ is a totally ordered abelian group, and Γ ∪ {0} is the ordered monoid
with least element 0. It is required that

• |ab| = |a| |b|,

• |a+ b| ≤ max(|a| , |b|),

• |1| = 1,

• |0| = 0,

• (Continuity) For all γ ∈ Γ,

{
a ∈ A

∣∣∣∣ |a| < γ

}
is open in A.

Two continuous valuations | | : A → Γ ∪ {0} and | |′ : A → Γ′ ∪ {0} are
equivalent if for all a, b ∈ A we have |a| ≥ |b| if and only if |a|′ ≥ |b|′. In
that case, after replacing Γ by the subgroup generated by the image of A, and
similarly for Γ′, there exists an isomorphism ι : Γ ∼= Γ′ such that ι(|a|) = |a|′ for
all a ∈ A.
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Note that the kernel of |·| is a prime ideal of A which only depends on the
equivalence class of |·|.

Definition 1.5.3. Let Cont(A) denote the set of equivalence classes of con-
tinuous valuations of A. For an element x ∈ Cont(A), we use the notation
f 7→ |f(x)| to denote a continuous valuation representing x. We give Cont(A)

the topology generated by subsets of the form

{
x

∣∣∣∣ |f(x)| ≤ |g(x)| 6= 0

}
, with

f, g ∈ A. For x ∈ Cont(A), the rank of x is the rank of the ordered abelian
group generated by the image of a continuous valuation representing x.

Some remarks on the topology of Cont(A): Note that sets of the form
{|g(x)| 6= 0} are open, as are sets of the form {|f(x)| ≤ 1}. This blends features
of the Zariski topology on schemes and topology on rigid spaces. Furthermore,
Cont(A) is quasi-compact, just as the spectrum of a ring is quasi-compact.

When A is a Huber ring, the set Cont(A) is a good candidate for the model
space we want to build. For instance if A is a discrete ring, then Cont(A)
contains one point x for each prime p ∈ SpecA, namely the valuation pulled
back from the trivial valuation on the residue field of p. The set Cont(Qp) is a
single point, namely the equivalence class of the usual p-adic valuation on Qp.

Now consider Cont(Qp〈T 〉), which is our hypothetical “adic closed unit disc”.
For each maximal ideal m ∈ Spm Qp〈T 〉, we do get a point in Cont(A) by
pulling back the valuation on the nonarchimedean field Qp〈T 〉/m (this is a
finite extension of Qp). Thus there is a map Spm Qp〈T 〉 → Cont Qp〈T 〉. But
the latter set contains many more points. For instance, we can let α ∈ Cp be
a transcendental element with |α| ≤ 1, and define a continuous valuation on
Qp〈T 〉 by f 7→ |f(α)|. This is going to address one of the problems in classical
rigid geometry brought up in Example 1.3.1.

Addressing the other problem brought up in that example, we can also define
an element x− ∈ Cont Qp〈T 〉 as follows: let Γ = R>0 × γZ, where the order is
determined by the relations a < γ < 1 for all real a < 1. (If you like, Γ can be
embedded as a subgroup of R>0×R>0 by aγn 7→ (a, 1/2n).) Now define x− by

∞∑
n=0

anT
n 7→ sup

n≥0
|an| γn.

Thus x− “thinks” that T is infinitesimally smaller than one: we have |T (x−)| =
γ < 1, but |T (x−)| > |a| for all a ∈ Qp with |a| < 1. The point x− prevents us
from disconnecting Cont Qp〈T 〉 by the disjoint open sets ∪n≥1 {|Tn(x)| < |p|}
and {|T (x)| = 1}, because neither of these contains x−!

However, this example suggests that we have more points in Cont Qp〈T 〉 than
we bargained for. There is also a point x+ with the same definition, except that
γ is now infinitesimally greater than 1. Morally, whatever the closed adic disc
is, it should not contain any points which think that T is greater than 1, and
so we need to modify our model spaces a little.
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1.6 Integral subrings

Definition 1.6.1. Let A be a Huber ring. A subring A+ ⊂ A is a ring of
integral elements if it is open and integrally closed and A+ ⊂ A◦. A Huber
pair3 is a pair (A,A+), where A is Huber and A+ ⊂ A is a ring of integral
elements. Given a Huber pair, we let Spa(A,A+) ⊂ Cont(A) be the subset
(with its induced topology) of continuous valuations x for which |f(x)| ≤ 1 for
all f ∈ A+. We will sometimes write SpaA for Spa(A,A◦).

We remark that Spa(A,A+) is always quasi-compact.
Thus the closed adic disc should be Spa(A,A+), where A = Qp〈T 〉 and

A+ = A◦ = Zp〈T 〉. But one could also define an integral subring

A++ =

{ ∞∑
n=0

anT
n ∈ A+

∣∣∣∣ |an| < 1 for all n ≥ 1

}
.

We have A++ ⊂ A+, and so Spa(A,A+) ⊂ Spa(A,A++). In fact the comple-
ment of Spa(A,A+) in Spa(A,A++) is the single point x+ from our discussion
above. Furthermore, if we embed Spa(A,A+) into an adic closed disc of larger
radius, then it will be an open subset of the larger disc, and its closure will be
Spa(A,A++).

1.7 The classification of points in the adic unit disc

Suppose C is a nonarchimedean field which is algebraically closed, and suppose
that α 7→ |α| is an absolute value inducing the topology on C. We review here
the classification of points in X = Spa(C〈T 〉, C◦〈T 〉) as in [Sch12]. The points
of X are divided into five types; we warn that this division into five types breaks
down for other adic spaces. Generally, one may work with adic spaces without
consciously knowing what each point looks like.

• Points of Type 1 correspond to elements α ∈ C with |α| ≤ 1. The corre-
sponding continuous valuation is f 7→ |f(α)|.

• Points of Type 2 and 3, also called Gauss points, correspond to closed
discs D = D(α, r). Here α ∈ C has |α| ≤ 1, 0 < r ≤ 1 is a real number,

and D =

{
β ∈ C

∣∣∣∣ |α− β| ≤ r}. The corresponding valuation is

f 7→ sup
β∈D
|f(β)| .

Explicitly, if we expand f as a series in T−α, say f(T ) =
∑∞
n=0 an(T−α)n,

then this works out to be supn |an| rn.

If r belongs to |C|, then the point is of Type 2; otherwise it is of Type 3.

3Called an affinoid algebra in [Hub94].
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• Points of Type 4 appear because of the strange phenomenon that C may
not be spherically complete. That is, there may be a descending sequence
of closed discs D1 ⊃ D2 ⊃ · · · with empty intersection. (For instance,
this occurs when C = Cp.) The corresponding continuous valuation is
f 7→ infi supβ∈Di

|f(β)|.

• Points of Type 5 have rank 2. For each α ∈ C with |α| ≤ 1, each 0 < r ≤ 1,
and each sign ± (excluding the positive sign if r = 1), we let Γ = R>0×γZ
be the ordered abelian group generated by R>0 and an element γ which
is infinitesimally less than or greater than r, depending on the sign. The
corresponding continuous valuation is

∞∑
n=0

an(T − α)n 7→ sup
n
|an| γn.

If C has value group R>0, then there are no points of Type 3. If C is
spherically complete, then there are no points of Type 4 either: every descending
sequence of closed discs has an intersection which is either itself a closed disc or
a single point.

The only non-closed points in X are the Type 2 points, which correspond
to discs D: the closure of such a point contains all Type 5 labeled with a triple
(α, r,±), where D = D(α, r).

1.8 The structure presheaf, and the definition of an adic
space

In the construction of affine schemes, one starts with a ring A, defines the
topological space X = SpecA, and then defines the structure sheaf OX this
way: there is a basis of open sets of the form Uf =

{
x
∣∣f(x) 6= 0

}
for f ∈ A, and

one puts OX(Uf ) = A[1/f ]; it is easy enough to check that there is a unique
sheaf of rings OX with this property. (Here we use the notational convention
that if x corresponds to a prime ideal p ⊂ A, then f(x) is the image of x in the
residue field of p.) The idea behind this definition is that Uf should be an affine
scheme in its own right, namely SpecA[1/f ]. The key observation here is that
SpecA[1/f ]→ SpecA is an open immersion with image Uf , and is universal for
this property in the sense that for any A-algebra B, the map SpecB → SpecA
factors through Uf if and only if A→ B factors through A[1/f ].

It is somewhat more subtle to define OX for X = Spa(A,A+), where (A,A+)
is a Huber pair. We single out a class of open sets called rational subsets.

Definition 1.8.1. Let s1, . . . , sn ∈ A and let T1, . . . , Tn ⊂ A be finite subsets
such that TiA ⊂ A is open for all i. We define a subset

U

({
Ti
si

})
= U

(
T1

s1
, . . . ,

Tn
sn

)
=

{
x ∈ X

∣∣∣∣ |ti(x)| ≤ |si(x)| 6= 0, for all ti ∈ Ti
}
.

This is open because it is an intersection of a finite collection of the sort of
opens which generate the topology on X. Subsets of this form are called rational
subsets.
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Note that a finite intersection of rational subsets is again rational, just by
concatenating the data that define the individual rational subsets.

The following theorem shows that rational subsets are themselves adic spec-
tra.

Theorem 1.8.2 ([Hub94, Proposition 1.3]). Let U ⊂ Spa(A,A+) be a rational
subset. Then there exists a complete Huber pair (A,A+) → (OX(U),O+

X(U))
such that the map Spa(OX(U),O+

X(U)) → Spa(A,A+) factors over U , and is
final among such maps. Moreover, this map is a homeomorphism onto U . In
particular, U is quasi-compact.

Definition 1.8.3. Define a presheaf OX of topological rings on Spa(A,A+): If
U ⊂ X is rational, OX(U) is as in the theorem. On a general open W ⊂ X, we
define

OX(W ) = lim←−
U⊂W rational

OX(U).

We defines O+
X analogously. If OX is a sheaf, we call (A,A+) a sheafy Huber

pair.

Proposition 1.8.4. For all U ⊂ X = Spa(A,A+),

O+
X(U) =

{
f ∈ OX(U)

∣∣∣∣ |f(x)| ≤ 1, for all x ∈ U
}
.

In particular, O+
X is a sheaf if OX is. If (A,A+) is complete, then OX(X) = A

and O+
X(X) = A+.

Let (A,A+) be a sheafy Huber pair, and let X = SpaA. Then (X,OX) is
a locally ringed topological space, and OX is a sheaf of topological rings. The
locally ringed space (X,OX) comes equipped with some extra data: for each
x ∈ SpaA, we have a continuous valuation |·|x on the local ring OX,x. (Note
that O+

X can be recovered from the data of these valuations, by Proposition
1.8.4.)

We can now define the category of adic spaces.

Definition 1.8.5. An adic space is a triple (X,OX , {|·|x}x∈X), where (X,OX)
is locally ringed topological space, OX is a sheaf of complete topological rings,
and for each x ∈ X, |·|x is a continuous valuation on OX,x. We require that
locally on X, this is the triple associated to Spa(A,A+), where (A,A+) is a
sheafy Huber pair. A morphism between adic spaces is a morphism between
locally ringed topological spaces, which is compatible with the topology on OX
and with the given valuations |·|x∈X , in the evident manner.

Of course one wants some criteria for determining whether a given Huber
pair is sheafy.

Theorem 1.8.6 ([Hub94]). A Huber pair (A,A+) is sheafy in the following
situations.
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1. The ring A is discrete. Thus, there is a functor from schemes to adic
spaces, which sends SpecA to Spa(A,A).

2. The ring A is finitely generated (as an algebra) over a noetherian ring of
definition. Thus, there is a functor from noetherian formal schemes to
adic spaces, which sends Spf A to Spa(A,A).

3. The ring A is Tate and strongly noetherian, which means that the rings

A〈X1, . . . , Xn〉 =

 ∑
i=(i1,...,in)≥0

aiT
i

∣∣∣∣ ai ∈ A, ai → 0


are noetherian for all n ≥ 0. Thus there is a functor from rigid spaces
over a nonarchimedean field K to adic spaces over SpaK, which sends
SpmA to Spa(A,A◦) for an affinoid K-algebra A.

Example 1.8.7 (The adic closed disc over Qp). Let A = Qp〈T 〉, and let A+ =
A◦ = Zp〈T 〉. Then Spa(A,A+) is the adic closed disc over Qp.

Example 1.8.8 (The adic open disc over Qp). Let A = Zp[[T ]]. Since A is
its own ring of definition and is noetherian, (A,A) is sheafy and Spa(A,A) is
an adic space. We have a morphism Spa(A,A) → Spa(Zp,Zp). The latter is
a two-point space, with generic point η = Spa(Qp,Zp). The generic fiber of
Spa(A,A) is Spa(A,A)η, the preimage of η. It is worthwhile to study this space
in detail.

Let x ∈ Spa(A,A)η. We have |p(x)| 6= 0. We also know that since p and T
are topologically nilpotent in A, we have |T (x)|n → 0 as n → ∞. Therefore,
there exists an n ≥ 0 with |Tn(x)| ≤ |p(x)|. This means that x lies in the
rational subset U(Tn/p). From this we see that the increasing sequence of
rational subsets U(Tn/p) covers Spa(A,A)η. Since this covering has no finite
subcovering, we can conclude that Spa(A,A)η is not quasi-compact.

Example 1.8.9 (The adic affine line over Qp). Let D be the adic closed disc
over Qp. We let A1

Qp
= lim−→D, where the colimit is taken over the transition

map T 7→ pT . Put another way, A1
Qp

is the ascending union of closed discs of

unbounded radius. Then A1
Qp

is not quasi-compact. As we remarked earlier, the

closure of the unit disc D ⊂ A1
Qp

is Spa(A,A++) for a strict subring A++ ⊂ A◦.

Example 1.8.10 (The projective line over Qp). Let D be the adic closed disc
over Qp. The projective line P1

Qp
is obtained by gluing together two copies of

D along the map T 7→ T−1 on the “circle” {|T | = 1}. Then P1
Qp

contains A1
Qp

as an open subspace; the complement is a single point.

1.9 Partially proper adic spaces

Given an adic space X, one can consider its functor of points: whenever (R,R+)
is a complete sheafy Huber pair, we define X(R,R+) to be the set of morphisms

11



from Spa(R,R+) to X. We also have the relative version of this functor: If X is
fibered over a base space S, then we may consider the relative functor of points
on the category of morphisms Spa(R,R+)→ S, which sends such an object to
the set of S-morphisms Spa(R,R+)→ X. Since every adic space is covered by
affinoid spaces, an adic space is determined by its functor of points.

Let us compute the functor of points for the examples in the previous section.

Example 1.9.1. Let (R,R+) be a complete sheafy Huber pair over (Qp,Zp).

1. Let D be the closed unit disc over Qp. Then

D(R,R+) = Hom(Zp〈T 〉, R+) ∼= R+

(via f 7→ f(T )). (The Hom here and below is in the category of topological
Zp-algebras.)

2. Let D◦ be the open unit disc over Qp. Then

D◦(R,R+) = Hom(Zp[[T ]], R+) ∼= R◦◦

is the set of topologically nilpotent elements of R, again via f 7→ f(T ).
Now, a priori the image is R◦◦ ∩ R+. However, the fact that R+ is open
and integrally closed means that if a ∈ R◦◦, then an ∈ R+ for n large
enough, and thus a ∈ R+. Thus, R◦◦ ⊂ R+.

3. Let A1
Qp

be the adic affine line over Qp. Then

A1
Qp

(R,R+) = R.

If D is the closure of D in A1
Qp

, then

D(R,R+) = Hom(A++, R+) =

{
a ∈ R

∣∣∣∣ pan ∈ R◦ for all n ≥ 1

}
.

Again, a priori the condition on a is that pan ∈ R+ for all n ≥ 1. But
if pan ∈ R◦ for all n ≥ 1, then also (pan)2 = p(pa2n) ∈ pR◦ ⊂ R+, so
pan ∈ R+ as well.

4. Let P1
Qp

be the adic projective line over Qp. Then P1
Qp

(R,R+) is the set

of projective rank 1 quotients of R2.

Definition 1.9.2. Let X be an adic space. We say X is partially proper if it is
quasi-separated4 and if for every sheafy Huber pair (R,R+) and every morphism

4A topological space is quasi-separated if the intersection of any two quasi-compact open
subsets of X is again quasi-compact. If (A,A+) is a Huber pair, then Spa(A,A+) is quasi-
separated.
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Spa(R,R◦)→ X, there exists a unique morphism Spa(R,R+)→ X making the
diagram commute:

Spa(R,R◦) //

��

Spa(R,R+)

ww
X.

Thus ifX is partially proper, X(R,R+) = X(R,R◦) only depends on R. Finally,
X is proper if it is quasi-compact and partially proper.

There is a relative definition of partial properness for a morphism X → S,
which we leave to the reader to work out. Note that the definition of partial
properness is similar to the valuative criteria for properness and separatedness
for schemes. There is also a definition of properness involving universally closed
morphisms, cf. [Hub96].

Intuitively, a space is partially proper when it has no boundary. In the
examples above, D◦, D, A1

Qp
and P1

Qp
are partially proper, but of these only

D and P1
Qp

are proper. Then D is not partially proper, as its functor of points

really depends on R+.

2 Perfectoid fields

We are now going to take a sudden change of direction to talk about perfectoid
fields. The idea is that perfectoid fields are the one-point perfectoid spaces, so
they are rather a prerequisite to study perfectoid spaces in general. Besides, per-
fectoid fields have an interesting history, even if the name and formal definition
did not appear until [Sch12] and [KL15].

A class of perfectoid fields plays a crucial role in Tate’s study of p-divisible
groups [Tat67]. Let K be the fraction field of a mixed-characteristic discrete
valuation ring with perfect residue field of characteristic p (e.g., a finite extension
of Qp). Tate considered a tower of Galois extensions Kn/K satisfying the
conditions (a) Gal(Kn/K) ∼= (Z/pnZ)h for some h ≥ 1 and (b) Kn/K is totally
ramified. (For Tate, such a tower came by adjoining the torsion in a p-divisible

group.) Let K∞ = ∪nKn and let K̂∞ be its completion.
Let C be the completion of an algebraic closure of K. Tate proved some

basic facts about the cohomology of C as a Gal(K/K)-module, using K∞ as an
intermediary. (The ultimate goal was to prove a p-adic Hodge decomposition
for p-divisible groups and abelian varieties.) Along the way he proved a curious
fact: if L/K∞ is a finite extension, then the ideal of K◦∞ generated by traces
of elements of L◦ contains the maximal ideal mK∞ of K◦∞. (Thus it is either
mK∞ or else it is all of K◦∞.) Now, if L were instead a finite extension of K,
then this ideal of traces is related to the different ideal of L/K, and measures
the ramification: the bigger the ideal, the less ramified L/K is. Tate’s result is
that any finite extension of K∞ is almost unramified, or put another way, the
corresponding extension of K◦∞ is almost étale.
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The next work along these lines comes from Fontaine and Wintenberger
[FW79]. They considered a more general infinite algebraic extension K∞/K
which is highly ramified, in the technical sense that GuKGK∞ ⊂ GK is open
for all u ≥ −1, where GuK is a higher ramification group. Such extensions are
called arithmetically profinite (APF). For instance, if K∞/K is a totally ramified
Galois extension with Gal(K∞/K) a p-adic Lie group, then K∞/K is APF.
To such an extension, Fontaine and Wintenberger attached a nonarchimedean
field X, the field of norms, whose multiplicative monoid is the inverse limit
lim←−Kn, where the transition maps in the limit are norms. The field X has
characteristic p; in fact it is a Laurent series field over the residue field of K.
Rather surprisingly, we have an isomorphism of Galois groups Gal(X/X) ∼=
Gal(K/K∞). This isomorphism is fundamental to the classification of p-adic
Galois representations via (φ,Γ)-modules (see [Ked15] for a discussion of these)
and the proof of the p-adic local Langlands correspondence for GL2(Qp) [Col10].

The themes of almost étale extensions and passage to characteristic p are
the hallmarks of perfectoid fields, which we now define.

Definition 2.0.1. A nonarchimedean field K of residue characteristic p is a per-
fectoid field if (a) its value group is nondiscrete, and (b) the pth power Frobenius
map on K◦/p is surjective.

Example 2.0.2.

1. The basic examples of perfectoid fields are the completions of Qp(µp∞) and
Qp(p

1/p∞). The completion of any strictly APF extension is perfectoid.

2. One source of APF extensions (and therefore perfectoid fields) comes
from p-divisible formal group laws. Let E be a local field of character-
istic 0 with residue characteristic p and uniformizer π. Recall that a
1-dimensional formal group law over OE is a power series F(X,Y ) =
X + Y + higher order terms in OE [[X,Y ]] which satisfies the axioms of
an abelian group. Iterating F on itself p times produces a power series
[p]F (T ). If [p]F (T ) modulo π is nonzero, then F is p-divisible; in that

case [p]F (T ) mod π = g(T p
h

) for some power series g and some maximal
h, called the height of F . The set of roots F [pn] of [pn]F is isomorphic
to (Z/pnZ)h. Let E∞ = E(F [p∞]) be the field obtained by adjoining all
p-power torsion points to E. The extension E∞/E is APF, and therefore
the completion of E∞ is perfectoid.

3. If a nonarchimedean field has characteristic p, then it is perfectoid if and
only if it is perfect. A basic example is k((t1/p

∞
)), where k/Fp is a perfect

field: this is defined to be the completion of the perfection of k((t)). This
example is rather fundamental: if K is a perfectoid field of characteristic
p and residue field k, then K contains k((t1/p

∞
)), where t is any element

of K with 0 < |t| < 1.
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2.1 Tilting

Let K be a perfectoid field with absolute value | |. We let K◦ = {|x| ≤ 1} be
its ring of integers.

We define
K[ = lim←−K,

where the transition map is x 7→ xp. Thus, elements of K[ are sequences
(a0, a1, . . . ) of elements of K with apn = an−1 for all n ≥ 1. (If K has character-
istic p, then trivially K[ ∼= K; this operation is only interesting in characteristic
0.) A priori K[ is a topological multiplicative monoid. We define an addition
law on K[ by the rule (an) + (bn) = (cn), where

cn = lim
m→∞

(am+n + bm+n)p
m

. (2.1.1)

It it easy to check that the limit exists (here we use the fact that K is complete).
It can be verified directly that K[ is a field, but the easiest route is to pass to the
quotient K◦/p. The reduction map K◦ → K◦/p induces a map of topological
multiplicative monoids

lim←−
x 7→xp

K◦ → lim←−
x 7→xp

K◦/p.

Now one observes that this map is an isomorphism; the inverse sends a sequence
(an mod p) to (bn), where

bn = lim
m→∞

ap
m

m+n.

(The limit does not depend on the choice of lift of an.) Therefore lim←−K
◦ inherits

the structure of a ring, with addition law as in (2.1.1); its fraction field is K[. Let
f 7→ f ] denote the projection map K[ → K which sends (an) to a0. We define
an absolute value on K[ by |f | =

∣∣f ]∣∣. One checks that this is a nontrivial

nonarchimedean absolute value inducing the topology on K[, and that K[ is
complete with respect to it. Finally, the very definition of K[ shows that it is
perfect of characteristic p. Therefore K[ is a perfectoid field of characteristic p;
it is called the tilt of K.

The perfectoid field K[ contains a pseudo-uniformizer $ with |$| = |p|. An
important observation is that K[◦ ∼= lim←−x7→xp

K◦/p, and that

K[◦/$ ∼= K◦/p.

Example 2.1.1.

1. Let K = Qp(p
1/p∞)∧. Then K[ contains the element t = (p, p1/p, . . . )

with |t| = |p|. Thus t is a pseudo-uniformizer of K[, and since K[ is
perfectoid, K[ contains Fp((t

1/p∞)) (as remarked in Example 2.0.2). In
fact K[ = Fp((t

1/p∞)). To see this, observe that K◦/p = Zp[p
1/p∞ ]/p ∼=

Fp[t
1/p∞ ]/t, and apply lim←− along x 7→ xp to both sides.
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2. If K = Qp(µp∞)∧, then K[ (considered as the fraction field of lim←−K
◦/p)

contains the element t = (1− ζp, 1− ζp2 , . . . ), and then once again K[ =

Fp((t
1/p∞)). In fact if K is the completion of any APF extension of a p-

adic field (see Example 2.0.2), then K[ ∼= k((t1/p
∞

)), where k is the residue
field of K.

2.2 The tilting equivalence for perfectoid fields

For a perfectoid fieldK of characteristic 0, the structures ofK andK[ seem quite
different: of course their characteristics are different, and even though there is
a multiplicative map K[ → K (f 7→ f ]), this is far from being surjective in
general. Nonetheless we will encounter a family of theorems known as tilting
equivalences which relate the arithmetic of a perfectoid object and its tilt. The
most basic tilting equivalence concerns the Galois groups of perfectoid fields.

Theorem 2.2.1. Let K be a perfectoid field of characteristic 0. Then for any
finite extension L/K (necessarily separable), L is also a perfectoid field, and
L[/K[ is a finite extension of the same degree as L/K. The categories of finite
extensions of K and K[ are equivalent, via L 7→ L[. Consequently there is an

isomorphism Gal(K/K) ∼= Gal(K
[
/K[).

Example 2.2.2. Theorem 2.2.1 allows us to describe the tilt of the perfectoid

field Cp = Q
∧
p . Since Cp is the completion of the algebraic closure of the

perfectoid field K = Qp(p
1/p∞)∧, C[

p is the completion of the algebraic closure

of K[ ∼= Fp((t
1/p∞)).

There is an explicit inverse to L 7→ L[ which merits discussion. Since we
want to move from characteristic p to characteristic 0, it is not surprising that
Witt vectors appear. Recall that for a perfect ring R of characteristic p, we
have the ring of Witt vectors W (R), which is characterized by the following
properties: W (R) is p-adically complete and p-torsion free, andW (R)/pW (R) ∼=
R. This is a ring which is separated and complete for the p-adic topology;
there is a surjective morphism W (R) → R which admits a multiplicative (not
additive) section R→W (R), written x 7→ [x]. The ring W (R) has the following
universal property: For a p-adically complete, p-torsion free ring S and a map
of multiplicative monoids R → S for which the composition R → S → S/p
is a ring homomorphism, there exists a unique continuous ring homomorphism
W (R)→ S such that the diagram

R

�� ""
W (R) // S

commutes. Elements of W (R) may be written uniquely as formal power series
[x0] + [x1]p+ [xn]p2 + . . . .
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In the context of Theorem 2.2.1, we have the perfect ring K[◦, the p-adically
complete p-torsion free ring K◦, and the ring homomorphism K[◦ → K◦/p,
which factors through a map of multiplicative monoids K[◦ → K◦, namely
f 7→ f ]. Therefore by the universal property of Witt vectors, there exists a
unique continuous ring homomorphism θ : W (K[◦)→ K◦ satisfying θ([f ]) = f ].
Since p is invertible in K, the map θ extends to a homomorphism of Qp-algebras
W (K[◦)[1/p]→ K, which we continue to call θ.

Lemma 2.2.3. The homomorphism θ : W (K[◦)[1/p] → K is surjective. Its
kernel is a principal ideal, generated by an element of the form [$] +αp, where
$ ∈ K[ is a pseudo-uniformizer and α ∈W (K[◦) is a unit.

We can now describe the inverse to the tilting functor L 7→ L[ in Theorem
2.2.1. Suppose thatM/K[ is a finite extension. ThenM◦ is perfect, andW (M◦)
is an algebra over W (K[◦). We put

M ] = W (M◦)⊗W (K[◦),θ K.

Then M ] is a perfectoid field, and there is a multiplicative map M → M ]

given by f 7→ f ] = [f ] ⊗ 1. There is an isomorphism M ∼= M ][ given by
f 7→ (f ], (f1/p)], . . . ).

2.3 Untilts of a perfectoid field of characteristic p

Let K be a perfectoid field of characteristic p. Does there always exists a
characteristic 0 perfectoid field whose tilt is K, and if so, can one describe the
set of such “untilts”? Certainly an untilt is not unique in general: In Example
2.1.1 we saw that there at least two distinct perfectoid fields whose tilts are
isomorphic to Fp((t

1/p∞)).

Definition 2.3.1. An untilt of K is a pair (K], ι), where K] is a perfectoid
field and ι : K

∼→ K][ is an isomorphism.

We remark that our definition includes K as an untilt of itself, since after
all K[ = K.

Given an untilt (K], ι), the multiplicative map K◦
ι→ K][◦ ]→ K]◦ induces

a surjective ring homomorphism

θK] : W (K◦) → K]◦

∞∑
n=0

[fn]pn 7→
∞∑
n=0

f ]np
n.

Then ker θK] is an ideal which is primitive of degree 1: this means that I is
generated by an element of the form

∑
n≥0[fn]pn, where f0 is topologically

nilpotent and f1 ∈ K◦ is a unit.

Theorem 2.3.2. The map I 7→ (W (K◦)/I)[1/p] is a bijection between the set
of primitive ideals of W (K◦) of degree 1, and the set of isomorphism classes of
untilts of K.
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Note that I = (p) is the unique ideal which produces the trivial untilt K.
Theorem 2.3.2 suggests that untilts of K of characteristic 0 are parametrized

by some kind of geometric object which is related to W (K◦). An approxima-
tion to this object might be MaxSpecW (K◦)[1/p[$]], where $ is a pseudo-
uniformizer of K. After all, every characteristic 0 untilt K] of K induces a sur-
jective ring homomorphism θK] : W (K◦)[1/p]→ K] for which θK]([$]) = $] is
a pseudo-uniformizer of K] (and is therefore nonzero); thus ker θK] determines
a maximal ideal of W (K◦)[1/p[$]]. However, MaxSpecW (K◦)[1/p[$]] isn’t a
rigid-analytic space, as W (K◦)[1/p[$]] isn’t an affinoid algebra.

The approach of Fargues and Fontaine requires looking at W (K◦) as a ring
equipped with its ([$], p)-adic topology. (This is called the weak topology in
[FF11].) This makes W (K◦) into a Huber ring (with itself as ring of definition),
and so we may make the following definition.

Definition 2.3.3 (The adic Fargues–Fontaine curves YK and XK). Let

YK = SpaW (K◦)\ {|p[$]| = 0} ,

where $ is a pseudo-uniformizer of K. The Frobenius automorphism on K◦

induces a properly discontinuous automorphism φ : YK → YK ; we let

XK = YK/φZ.

We claim that YK is covered by rational subsets of the form

U

(
{p, [$a]}

[$a]
,

{
p, [$b]

}
p

)
=
{∣∣[$b]

∣∣ ≤ |p| ≤ |[$a]|
}
⊂ SpaW (K◦)

as a and b (with a ≤ b) range through Z[1/p]>0. Indeed, suppose that x ∈
SpaW (K◦) satisfies |p[$](x)| 6= 0. Since [$] is topologically nilpotent and
|p(x)| 6= 0, there exists a b > 0 with

∣∣[$]b(x)
∣∣ ≤ |p(x)|. Similarly, there exists

an a > 0 with |p(x)| ≤ |[$a](x)|.
For an interval I = [a, b] ⊂ (0,∞) with endpoints lying in Z[1/p]>0, let YK,I

be the rational subset defined above, and let BK,I = H0(YK,I ,OYK
). Finally,

let
BK = H0(YK ,OYK

) = lim←−
I

BK,I .

These rings can be defined in terms of a family of norms on the ringW (K◦)[1/p[$]].
For r > 0, let ∣∣∣∣∣∑

n∈Z

[xn]pn

∣∣∣∣∣
r

= max
{
p−n |xn|r

}
.

For the interval I = [a, b], the ring BK,I is the completion of W (K◦)[1/p[$]]
with respect to the norm max {| |a , | |b}, and BK is the Fréchet completion of
W (K◦)[1/p[$]] with respect to the family of norms | |r.

Theorem 2.3.4 ([Ked16]). The Huber ring BK,I is strongly noetherian. Thus
YK and XK are adic spaces.
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Theorem 2.3.5 ([FF11], Corollary 2.5.4). Suppose that K = C is algebraically
closed. There is a bijection between the set of isomorphism classes of closed
maximal ideals of BC and the set of isomorphism classes of characteristic 0
untilts of C, given by I 7→ BC/I.

This means that there is an embedding of the set of isomorphism classes of
characteristic 0 untilts of C into the set of closed points of YC (although this
is far from being surjective). For a characteristic 0 untilt C] with correspond-
ing ideal I, the homomorphism θC] : W (C◦) → C]◦ extends to a surjection
θC] : BC → C] with kernel I.

2.4 Explicit parametrization of untilts by a formal Qp-
vector space

Theorems 2.3.2 and 2.3.5 do not give particularly explicit parametrizations for
the set of untilts of a perfectoid field K. The problem is that, even though it is
easy to exhibit elements of W (K◦) which generate primitive ideals of degree 1,
it is not easy to decide whether two such elements generate the same ideal.

We offer now a different perspective. Assume that K = C is an algebraically
closed perfectoid field of characteristic p; we want to classify untilts of C. Sup-
pose that (C], ι : C → C][) is an untilt of C of characteristic 0. By The-
orem 2.2.1, the field C] is also algebraically closed. Therefore it contains a
compatible system of primitive pth power roots of unity: 1, ζp, ζp2 , . . . . Let
ε = ι−1(1, ζp, ζp2 , . . . ) ∈ C. The idea is that the element ε ∈ C is an invariant
of the untilt C]. Now, this element isn’t quite well-defined, because there is an
ambiguity in the choice of system of roots of unity.

Before resolving this ambiguity, we introduce some notation. Let H = Ĝm

be the formal multiplicative group over Zp. This is the completion of Gm,Zp

along the origin of Gm,Fp . It is perhaps easiest to think of H as a functor from
complete adic Zp-algebras to Zp-modules, which sends R to the abelian group
1+R◦◦ under multiplication. This group gets its Zp-module structure this way:
for a ∈ Zp, the action of a sends x to xa (defined using power series). The
underlying formal scheme of H is isomorphic to Spf Zp[[T ]]. We also define the
universal cover

H̃ = lim←−
x7→xp

H,

so that if R is an adic Zp-algebra, H̃(R) is the Qp-vector space lim←−x 7→xp
(1+R◦◦).

There is a reduction map
H̃(R)→ H̃(R/p), (2.4.1)

which one checks is an isomorphism, rather along the lines of the proof that
K[◦ ∼= lim←−x7→xp

K◦/p for a perfectoid field K. Consequently,

H̃(R) ∼= H̃(R/p) ∼= lim←−
x 7→xp

R◦◦/p ∼= lim←−
x 7→xp

R◦◦,

so that H̃ is representable by the formal scheme Spf Zp[[T
1/p∞ ]]. Thus H̃ is a Qp-

vector space object in the category of formal schemes, which is to say, a formal
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Qp-vector space. Whenever K is a perfectoid field, H̃(K◦) ∼= H̃(K[◦) ∼= H(K[◦)
(the last isomorphism holds because K[ is perfect).

Given a characteristic 0 untilt C] of C, we obtain a nonzero element ε ∈
H̃(C◦) defined as the image of (1, ζp, ζp2 , . . . ) under H̃(C]◦) ∼= H̃(C◦). This
element is well-defined up to translation by an element of Z×p . Note that

θC]([ε1/pn ]) = ζpn for all n ≥ 0; therefore the element

ξ =
[ε]− 1

[ε1/p]− 1
= [1] + [ε1/p] + · · ·+ [ε(p−1)/p] (2.4.2)

lies in the kernel of θC] . One checks that the ideal (ξ) is primitive of degree 1,
and therefore C] corresponds to the ideal (ξ) under the bijection in Theorem
2.3.2.

On the other hand, we could start with a nonzero element ε ∈ H̃(C◦), form
ξ as above, and from this construct the untilt C] = W (C◦)[1/p]/(ξ). In fact:

Theorem 2.4.1 (see [FF11, Proposition 3.4] and [FF11, Remarque 3.6]). The
map C] 7→ ε gives a bijection between equivalence classes (respectively, Frobenius-

equivalence classes) of characteristic 0 untilts of C and (H̃(C◦)\ {0})/Z×p (re-

spectively, (H̃(C◦)\ {0})/Q×p ).

The Qp-vector space H̃(C◦) is rather interesting. On the one hand it is
huge: it certainly has uncountable dimension. To get a handle on it, we first
choose a characteristic 0 untilt C] of C, so that H̃(C◦) ∼= H̃(C]◦). We have a
logarithm map log : H(C]◦)→ C], defined by the usual formula

log x =

∞∑
n=1

(−1)n−1 (x− 1)n

n
.

The logarithm map is a Zp-module homomorphism, which sits in an exact se-
quence

0→ µp∞(C])→ H(C]◦)→ C] → 0, (2.4.3)

where µp∞(C]) = H[p∞](C]◦) is the group of pth power roots of 1 in C]. Let
us check that the logarithm map is surjective. If x ∈ C], there exists an n large
enough so that pnx is in the region of convergence of the exponential map; then
z = exp(pnx) ∈ H(C]◦) satisfies log(z) = pnx, so that log(z1/pn) = x for any
pnth root z1/pn of z in C]◦.

Taking inverse limits along multiplication by p in (2.4.3) gives an exact
sequence of Qp-vector spaces:

0→ V H(C])→ H̃(C]◦)→ C] → 0, (2.4.4)

where V H = lim←−pH[p∞](C]); note that V H is a Qp-vector space of dimension

1, spanned by a compatible system of primitive pth power roots of 1.
The exact sequence in (2.4.4) sheds some light onto the structure of the Qp-

vector space H̃(C◦). Once a characteristic 0 untilt C] is chosen, together with

a system of pth power roots of 1 in C], there is a “presentation” of H̃(C◦) as
an extension of C] by Qp.

20



2.5 The schematic Fargues-Fontaine curve

We give here another interpretation of the exact sequence (2.4.4). Given an

element ε ∈ H̃(C]◦), we define its logarithm

t = log[ε] =

∞∑
n=1

(−1)n−1 ([ε]− 1)n

n
∈ BC = H0(YC ,OYC

). (2.5.1)

One has to check here that the sum converges in the Fréchet topology on BC ,
but this is just a matter of checking that |[ε]− 1|r < 1 for all 0 < r <∞. Then
formally we have

φ(t) = log φ([ε]) = log[εp] = p log[ε] = pt,

and so t lies in the Qp-vector space Bφ=p
C consisting of elements that exhibit

this behavior. The element t also has the property that θC](t) = 0, since
θC]([ε]) = 1.

In general we can take any element α ∈ H̃(C◦) and produce log[α] ∈ Bφ=p
C .

We have the following commutative diagram, in which the first row is (2.4.4):

0 // V H(C]) //

��

H̃(C]◦) //

log[·]
��

C] //

=

��

0

0 // Qpt // Bφ=p
C θ

C]

// C] // 0.

Theorem 2.5.1 ([FF11]). The map ε 7→ log[ε] defines an isomorphism of Qp-

vector spaces H̃(C◦) ∼= Bφ=p
C . Furthermore, for each t ∈ Bφ=p

C \ {0}, there
is a unique Frobenius-equivalence class of characteristic 0 untilts C] such that
θC](t) = 0. Therefore there is a bijection between the set of Frobenius-equivalence

classes of characteristic 0 untilts of C] and the set (Bφ=p
C \ {0})/Q×p .

Recall that YC is the adic space which is (informally) supposed to parametrize
equivalence classes of characteristic 0 untilts of C, and XC = YC/φZ parametrizes
Frobenius-equivalence classes of such untilts. A key insight of [FF11] is that XC
resembles a proper smooth analytic curve, and so should be the analytification
of an algebraic curve, just as the Tate curve Gm/q

Z is the analytification of an
elliptic curve over a p-adic field K. In this context, the usual thing to do is to
find an ample line bundle L on XC , and then define

XC = Proj
⊕
n≥0

H0(XC ,L⊗n).

In the case of Gm/q
Z, the line bundle is O(P ), where P is the origin of Gm/q

Z;
the graded ring in the above construction is K[x, y, z]/f(x, y, z), where f is a
cubic whose coefficients depend on q according to the usual formulas.
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For the Fargues-Fontaine curve, the requisite line bundle L on XC should
pull back to a line bundle on YC which is φ-equivariant. And so we define a free
line bundle OYC

e, with the φ-equivariance defined by φ(e) = p−1e. This OYC
e

descends to a line bundle on XC , which we call OXC
(1). For n ∈ Z we define

OXC
(n) = O⊗nXC

(with the usual convention regarding negative n).
The algebraic Fargues-Fontaine curve is defined by declaring OXC

(1) to be
very ample. Note that

H0(XC ,OXC
(n)) ∼= H0(YC ,OYC

e⊗n)φ=1 ∼= Bφ=pn

C

Definition 2.5.2 (The schematic Fargues-Fontaine curve). DefineXC = ProjP ,
where

P =
⊕
d≥0

Pd, where Pd = Bφ=pd

C .

Theorem 2.5.3. 1. The “ring of constants” H0(XC ,OXC
) = P0 = Bφ=1

C is
exactly Qp.

2. The graded ring P is factorial: the irreducible homogenous elements are
exactly the nonzero elements of P1, and for every d ≥ 1, a nonzero element
of Pd admits a factorization into irreducibles in P1, unique up to units.

3. As a result, XC is an integral Noetherian scheme of dimension 1, which
admits a cover by spectra of Dedekind rings (in fact PIDs).

In these respects XC resembles nothing so much as the projective line P1
C =

ProjC[S, T ], where C[S, T ] is graded by total degree. But unlike P1
C , the scheme

XC is not finitely generated over any field.
Since XC is an integral Noetherian scheme of dimension 1, it is the union

of its generic point together with its set of closed points |XC |. In light of
Theorem 2.5.3, it is easy to describe the closed points: they correspond to
nonzero homogenous prime ideals of P (other than the irrelevant ideal); since
every homogenous element of P factors as a product of elements of P1, every
such ideal is generated by a nonzero element of P1. Since P× = Qp, we find
that |XC | is in bijection with (P1\ {0})/Q×p . Summing up our investigations of

untilts of C] gives the following theorem.

Theorem 2.5.4. Let C be an algebraically closed perfectoid field of character-
istic p. The following sets are in bijection:

• Frobenius-equivalence classes of characteristic 0 untilts of C,

• (H̃(C◦)\ {0})/Q×p ,

• closed points of the scheme XC .

22



2.6 Universal covers of other p-divisible groups

What are the Qp-vector spaces Pd = Bφ=pd

C for d ≥ 2? It is easy enough to
exhibit elements of Pd; for x ∈ C◦◦ the element∑

n∈Z

[xp
n

]

pdn

belongs to Pd. However, it is probably not the case that all elements of Pd admit
such a presentation, nor is it clear that such a presentation is unique.

The situation is better for the Qp-vector space Bφ
h=p

C , where h ≥ 1. As in
the case h = 1, this is isomorphic to the universal cover of a p-divisible formal
group. Let H1/h/Zp be the 1-dimensional formal group whose logarithm is

logH1/h
(T ) =

∞∑
n=1

T p
hn

/pn.

This means that the underlying formal scheme of H1/h is Spf Zp[[T ]], and the
addition law +H1/h

is determined by the relation

logH1/h
(X +H1/h

Y ) = logH1/h
(X) + logH1/h

(Y )

as power series in Qp[[X,Y ]]. ThenH1/h⊗Zp
Fp has height h; in fact [p]H1/h

(T ) ≡
T p

h

(mod p) (See [Haz12] for proofs of these assertions. The formal group H1/h

is an example of a p-typical formal group.) We remark that if Qph/Qp is the
unramified extension of degree h, and if Zph is the ring of integers in Qph ,
then H1/h ⊗Zp

Zph admits endomorphisms by Zph . In fact H1/h ⊗Zp
Zph is a

Lubin-Tate formal Zph-module in the sense of [LT65].
Let

H̃1/h = lim←−
x 7→[p]H1/h

(x)

H1/h,

a priori as a functor from adic Zp-algebras to Qp-vector spaces. Just as with
H1, one uses the congruence between [p]H1/h

and a power of Frobenius to show
that for any adic Zp-algebra R, we have isomorphisms

H̃1/h(R) ∼= H̃1/h(R/p) ∼= lim←−
x 7→xp

R◦◦.

Applied to R = W (C◦), the first isomorphism has inverse

H̃1/h(C◦) → H̃1/h(W (C◦))

(xn) 7→ (yn),

where
yn = lim

m→∞
pm[xm+n].

This isomorphism respects the action of Frobenius φ on either side, and therefore
the identity φh = p holds in End H̃1/h(W (C◦)), since it holds in End H̃1/h(C◦).

Given an element (xn) ∈ H̃1/h(W (C◦)), its logarithm logH̃1/h
(x0) lies in Bφ

h=p
C .
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Theorem 2.6.1 ([FF11, Proposition 3.4.5]). The map (xn) 7→ logH̃1/h
([x0])

gives an isomorphism H̃1/h(C◦)
∼→ Bφ

h=p
C .

We can be quite explicit about this isomorphism. There is a commutative
diagram

H̃1/h(C◦)
∼ //

∼=
��

H̃1/h(W (C◦))
(xn) 7→logH1/h

(x0)
// Bφ

h=p
C

C◦◦

11

in which all maps are isomorphisms; the diagonal map is

x 7→ lim
m→∞

pm logH1/h
[x1/pm ] =

∑
n∈Z

[xp
hn

]

pn
.

Note that the latter expression visibly lies in Bφ
h=p

C .
Theorem 2.6.1 generalizes to p-divisible groups of arbitrary height h ≥ 1 and

dimension d ≥ 0, whenever 0 ≤ d/h ≤ 1. The universal cover of such a formal

group parametrizes Bφ
h=pd

C .

2.7 Interpretation in terms of vector bundles on X

A major theorem in [FF11] is the classification of vector bundles on the Fargues-
Fontaine curve X. This classification is in terms of isocrystals.

Definition 2.7.1. Let k be a perfect field of characteristic p > 0, and let
K = W (k)[1/p]. Let φ : K → K be the Frobenius automorphism. An isocrystal
over k is a finite-dimensional K-vector space N together with an isomorphism
φN : φ∗N → N .

These form an abelian tensor category. When k is algebraically closed, the
category of isocrystals over k is well understood. It is a semisimple category,
with one irreducible object N = Nd/h for each pair (d, h), where d ∈ Z and
h ≥ 1 are relatively prime. The underlying K-vector space of N has basis
e, φN (e), . . . , φh−1

N (e), and φhN (e) = pde. Morphisms between the simple objects
go as follows: There are no nonzero morphisms between distinct Nd/hs, and the
endomorphism algebra of Nd/h is a central division algebra over K of rank h2,
with invariant d/h ∈ Q/Z.

Given an isocrystal N over k, and an algebraically closed perfectoid field C
of characteristic p with residue field k, we can define the graded P -module

Ñ =
⊕
d≥0

(BC ⊗W (k) N)φ=pd .

Let E(N) be the corresponding OX -module. Then E(N) is a vector bundle of
rank dimN . For a relatively prime pair (d, h) with d ≥ 0 and h ≥ 1, we let

OXC
(d/h) = E(N−d/h). Then H0(XC ,OX(d/h)) ∼= Bφ

h=pd

C .
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Theorem 2.7.2 ([FF11]). Let C be an algebraically closed perfectoid field of
characteristic p > 0. Every vector bundle on XC is isomorphic to E(N) for an
isocrystal N , which is unique up to isomorphism.

It must be emphasized that the functor N 7→ E(N) is far from being an
equivalence of categories, as it is not full. Each nonzero element of Bφ=p gives
a morphism OX → OX(1) which does not arise from a map of isocrystals.
However if N = Nd/h as above, then EndN → End E(N) is an isomorphism.

In the last subsection we saw that if 0 ≤ d/h ≤ 1, then there is a p-divisible
group H = Hd/h/Fp of height h and dimension d, and a natural isomorphism

H̃(C◦) ∼= H0(XC ,OXC
(d/h)). Let C] be a characteristic 0 untilt of C, and let

H be a lift of H to C]◦. (The question of the existence of such lifts is addressed
in [Mes72, Chapter IV]. As a special case, p-divisible groups can always be lifted
from C◦/p to C◦.) Then there is an exact sequence of Zp-modules

0→ H[p∞](C]◦)→ H(C]◦)
logH→ LieH ⊗C]◦ C] → 0,

Taking an inverse limit along multiplication by p (this is right-exact because
H[p∞](C]◦) is p-divisible) gives an exact sequence of Qp-vector spaces

0→ V H(C]◦)→ H̃(C]◦)
logH→ LieH ⊗C]◦ C] → 0. (2.7.1)

Note that the middle term, which is naturally isomorphic to H(C◦), does not
depend on the lift H. Also note that this exact sequence presents a very large
Qp-vector space as an extension of a finite-dimensional C]-vector space by a
finite-dimensional Qp-vector space; this is an instance of the theory of Banach–
Colmez spaces, which we will investigate systematically in the last lecture.

Let x ∈ |XC | be the closed point corresponding to the Frobenius equivalence
class of C] under Theorem 2.5.4. The exact sequence in (2.7.1) can be reinter-
preted as the global sections of the following exact sequence of OXC

-modules:

0→ OXC
⊗Qp

V H → OXC
(d/h)→ i∗ LieH ⊗ C] → 0,

where i is the inclusion of x = SpecC] into XC .
We mention in passing that [FF11] deduces the following theorem from The-

orem 2.7.2:

Theorem 2.7.3. The curve XC is geometrically simply connected over Qp.
That is, any finite étale cover of XC is isomorphic to XC ×SpecQp

SpecA for
an étale Qp-algebra A. Thus, the étale fundamental group of the scheme XC is
Gal(Qp/Qp).

There are versions of Theorems 2.7.2 and 2.7.3 for the adic curve XC , owing
to the equivalence of categories between coherent sheaves on XC and XC [Far15].
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3 Perfectoid spaces and diamonds

3.1 Definitions

Definition 3.1.1. Let A be a Huber ring. A Huber ring A is perfectoid if the
following conditions hold:

1. A is Tate, meaning it contains a pseudo-uniformizer (a topologically nilpo-
tent unit),

2. A is uniform, meaning that A◦ ⊂ A is bounded,

3. A contains a pseudo-uniformizer $ such that $p|p in A◦, and such that
the pth power map A◦/$ → A◦/$p is an isomorphism.

Remark 3.1.2. In the definition above it is always possible to choose a pseudo-
uniformizer $ which contains a compatible system of pth power roots.

Theorem 3.1.3. Let (A,A+) be a Huber pair, with A perfectoid. Then (A,A+)
is sheafy, so that X = Spa(A,A+) is an adic space. Furthermore, OX(U) is a
perfectoid ring for every rational subset U ⊂ X.

Theorem 3.1.3 shows that adic spaces Spa(R,R+) with R perfectoid can
serve as model spaces for the category of perfectoid spaces:

Definition 3.1.4. A perfectoid space is an adic space that may be covered by
affinoids of the form Spa(A,A+), where A is perfectoid.

Example 3.1.5.

• If K is a perfectoid field and K+ ⊂ K is a ring of integral elements, then
Spa(K,K+) is a perfectoid space.

• (The perfectoid closed disc.) Let K be a perfectoid field. Let A =
K〈T 1/p∞〉; this is the completion of the polynomial algebra K[T 1/p∞ ].
Then A is a perfectoid ring, and Spa(A,A◦) is a perfectoid space.

• (The perfectoid open disc.) This time let A = K◦[[T 1/p∞ ]], the completion
of K◦[T 1/p∞ ] with respect to the ($,T )-adic topology (here $ is a pseudo-
uniformizer of K). Then A is not a perfectoid ring, because it is not Tate.
It is not even clear that (A,A) is sheafy (although this is probably true).
Nonetheless, the generic fiber of SpaA over SpaK◦ is perfectoid: it is
covered by the affinoids Spa(An, A

◦
n), where An = K〈(T/$1/pn)1/p∞〉.

• Let k be a perfect field of characteristic p with its discrete topology. Let

A = k[[T
1/p∞

1 , . . . , T
1/p∞

n ]]; this is defined as the (T1, . . . , Tn)-adic comple-

tion of k[T
1/p∞

1 , . . . , T
1/p∞

n ]. Then A is not a perfectoid ring (it is not
Tate), but the analytic locus in SpaA is perfectoid. This is the com-
plement in SpaA of the single non-analytic point satisfying |Ti| = 0 for
i = 1, . . . , n. Note that if n > 1, this perfectoid space does not live over
any particular perfectoid field.
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• (Some totally disconnected perfectoid spaces.) Let K be a perfectoid field
and let S be a profinite set. Let A = Cont(S,K) be the ring of continuous
maps S → K. Give A the structure of a Banach K-algebra under the sup
norm; we have A◦ = Cont(S,K◦). Then Spa(A,A◦) is a perfectoid space
whose underlying topological space is S. The construction globalizes to
the case that S is only locally profinite. If K is understood, we write S
for the resulting perfectoid space.

The tilting operation we discussed in 2.1 extends to perfectoid spaces. For a
perfectoid ring A with pseudo-uniformizer $ as in Remark 3.1.2, we define its
tilt by

A[ =

(
lim←−
x 7→xp

A◦/$

)
[1/$[],

where $[ = ($,$1/p, . . . ). Then A[ is a perfectoid ring of characteristic p.
We gather here some results from [Sch12] (which assumes a fixed perfectoid

field of scalars, but the proofs carry over in general).

Theorem 3.1.6. Let A be a perfectoid ring.

1. There is a homeomorphism of topological monoids:

A[ ∼= lim←−
x7→xp

A.

If f ∈ A[ corresponds to the sequence (fn) with fn ∈ A, define f ] = f0.

2. There is a bijection A+ 7→ A[+ = lim←−x 7→xp
A+/$ between rings of integral

elements of A and A[.

3. Given a ring of integral elements A+ ⊂ A, there is a homeomorphism

Spa(A,A+)
∼→ Spa(A[, A[+)

x 7→ x[

where x[ is defined by
∣∣f(x[)

∣∣ =
∣∣f ](x)

∣∣ for f ∈ A[. This homeomorphism
identifies rational subsets on either side.

4. The categories of perfectoid algebras over A and A[ are equivalent, via
B 7→ B[.

5. Let B be a finite étale A-algebra, so that B becomes a topological ring.
Then B is also perfectoid. The categories of finite étale algebras over A
and A[ are equivalent, via B 7→ B[.

One way to construct perfectoid spaces comes from universal covers of p-
divisible groups, which we discussed in (2.6). Let k be a perfect field of charac-
teristic p, and let H be a p-divisible group over k. We have the universal cover
H̃ = lim←−pH, which we may consider as a functor from k-algebras to Qp-vector
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spaces. For now let us assume that H is connected, so that H is representable
by Spf k[[T1, . . . , Td]], where d = dimH; then H̃ is representable by a formal

scheme Spf k[[T
1/p∞

1 , . . . , T
1/p∞

d ]]. (This follows from two facts: multplication
by p in H factors through Frobenius, and a sufficiently high power of Frobenius
on H factors through multiplication by p.)

Let H̃ad be the corresponding adic space. Then H̃ad isn’t quite a perfectoid
space (it isn’t analytic), but the punctured version H̃ad\ {0} is a perfectoid
space, as in Example 3.1.5. If we want to create a perfectoid space version of
H̃ without puncturing it, we can introduce a separate perfectoid field K/k, and

define H̃K as the adic generic fiber of H̃×Spec kSpf K◦. Then H̃K is a Qp-vector
space object in the category of perfectoid spaces over K.

A similar object exists in characteristic 0. Suppose now that K is a per-
fectoid field of characteristic 0 whose residue field contains k. Then the ring
homomorphism K◦/p → k admits a canonical section, namely k → K[◦ →
K[◦/p ∼= K◦/p. We may define H̃K as the perfectoid space over K whose tilt

is H̃K[/K[. Then if G is any lift of H ⊗k K◦/p to K◦, then we have the fol-

lowing functorial interpretation of H̃K : it is the sheafification of the functor
R 7→ G̃(R◦) on perfectoid K-algebras R. Note that this does not depend on the
choice of lift G.

In fact, the requirement that H be formal is just a red herring; there is a
functor H 7→ H̃K from the whole category of p-divisible groups over k to the
category of perfectoid spaces with Qp-vector space structure. For instance if

H = Qp/Zp is the constant p-divisible group, then H̃ = Q
p

is the constant

Qp-vector space.
Finally, if we allow K to be any nonarchimedean field with residue field

containing k, then H̃K will be a pre-perfectoid space, meaning that it becomes
perfectoid after extending scalars from K to any perfectoid field.

3.2 Untilts of perfectoid spaces in characteristic p, and a
motivation for diamonds

Let X be a perfectoid space lying over Spa Fp. As we did with perfectoid fields,
we can investigate the set of equivalence classes of untilts of X. What we would
like is a moduli space M lying over Spa Fp, for which there is a natural bijection
between the following sets:

• Morphisms X →M , and

• Equivalence classes of characteristic 0 untilts X] → Spa Qp.

This object M will ultimately be called Spd Qp, where the “d” stands for dia-
mond; it lives in a category of diamonds, which contains the category of perfec-
toid spaces as a full subcategory.

In the special case X = SpaC for a perfectoid field C of characteristic p,
Theorem 2.5.4 gave the following parametrizations:
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1. Equivalence classes of untilts correspond to primitive ideals I ⊂ W (C◦)
of degree 1, via C] 7→ ker θC] .

2. Frobenius-equivalence classes of characteristic 0 untilts correspond to closed
points on the Fargues-Fontaine curve X constructed from C as in (2.5);
the inverse map sends a point to its residue field.

3. Frobenius-equivalence classes of characteristic 0 untilts correspond to ele-
ments of the quotient (H̃(C◦)\ {0})/Q×p , where H̃ is the universal cover
of the formal multiplicative group as in (2.4).

The parametrization described in (1) relativizes quite easily. Suppose R is a
perfectoid Fp-algebra with pseudo-uniformizer $. Then we have the Witt ring
W (R◦), equipped with its (p, [$])-adic topology. A primitive ideal of degree 1 in
W (R◦) is a principal ideal generated by an element of the form ξ =

∑∞
n=0[xn]pn,

where x0 ∈ R is topologically nilpotent and x1 ∈ R◦ is a unit.

Theorem 3.2.1 ([Fon13]). Ideals I ⊂ W (R◦) which are primitive of degree 1
are in bijection with isomorphism classes of untilts of R, via I 7→ (W (R◦)/I)[1/p].

As in the case with perfectoid fields, however, this does not give us much in
the way of defining the object Spd Qp; it is not easy to tell whether two such
ideals are the same, given their generators.

We turn now to (2). It is easy to define a relative Fargues–Fontaine curve:
given a perfectoid ring R/Fp, first define the relative adic curve

YR = SpaW (R◦)\ {|p[$]| = 0}

and the ring BR = H0(YR,OYR
). Then BR has an action of Frobenius φ, and

we define the relative schematic Fargues-Fontaine curve as

XR = Proj
⊕
d≥0

Bφ=pd

R .

However, when R is not a field, we cannot expect XR to have any nice properties
(e.g. it may not be Noetherian). Nor should we expect that closed points of
XR parametrize Frobenius-equivalence classes of characteristic 0 untilts; after
all, the residue field of such a point is a field, whereas an untilt R] very well
may not be.

Perhaps (3) has more promise. In the case that R = C is an algebraically
closed field of characteristic p, Theorem 2.5.4 says that isomorphism classes
of characteristic 0 untilts of C are in bijection with (H̃(C◦)\ {0})/Z×p , where

H is the formal multiplicative group over Fp. Recall the construction: if C]

is a characteristic 0 untilt, we choose a compatible system (1, ζp, ζp2 , . . . ) of
primitive pth power roots of 1 in C], which determines a nonzero element of
H̃(C]◦) ∼= H̃(C◦), well-defined up to multiplication by an element of Z×p .

Let Qcycl
p be the completion of Qp(µp∞). Then Gal(Qp(µp∞)/Qp) ∼= Z×p

acts continuously on Qcycl
p . Finally, let H̃ad\ {0} be the punctured adic space

attached to the formal scheme H̃.
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Lemma 3.2.2. There is an isomorphism H̃ad\ {0} ∼= Spa Qcycl,[
p which is Z×p -

equivariant.

Proof. Since H̃ ∼= Spf Fp[[t
1/p∞ ]], we have H̃ad\ {0} ∼= Spa Fp((t

1/p∞)). we have
already identified the latter with Qcycl,[

p in Example 2.1.1, so one only needs to
check that the Z×p -action is preserved.

(There is a generalization of this lemma to Lubin–Tate extensions of any
local field [Wei17, Proposition 3.5.3].)

Therefore, we can restate our parametrization of untilts of C as follows:

{Char. 0 untilts of C} ∼= Homcont(Q
cycl,[
p , C)/Z×p = Hom(SpaC,Spa Qcycl,[

p )/Z×p .
(3.2.1)

We could also have derived this directly: if C] is a characteristic 0 untilt of
C, then there exists an embedding Qcycl

p ↪→ C] which is well-defined up to the

action of Z×p ; tilting this gives Qcycl,[
p ↪→ C.

The bijections in (3.2.1) suggest that Spd Qp should be the quotient

“(Spa Qcycl,[
p )/Z×p .”

But this quotient doesn’t exist in the category of adic spaces. The subfield of
Qcycl,[
p fixed by Z×p is just Fp.

We would like to formulate a generalization of (3.2.1) for general perfectoid
rings R/Fp. We begin with the case that R = K is a perfectoid field which is
not algebraically closed. Let K]/Qp be an untilt. Then K] might not contain
all pth power roots of unity. For each n ≥ 1, the field K]

n := K](µpn) is
a perfectoid field, whose tilt Kn is a finite Galois extension of K. Let K]

∞
be the completion of ∪n≥1K

]
n; then K]

∞ is perfectoid. Let K∞ = K][
∞. Let

G = Gal(K](µp∞)/K]); then G acts continuously on K∞. If we choose a
compatible sequence of pth power roots of 1 in K]

∞, we obtain a nonzero element

ε ∈ H̃(K]◦
∞) ∼= H̃(K][◦

∞ ) = H̃(K◦∞). Since G acts on ε through the cyclotomic

character, the class of ε in H̃(K◦∞)/Z×p is G-invariant.

Thus, given an untilt K]/Qp, there exists a perfectoid field K∞/K, equal
to the completion of a Galois extension with group G, together with a class
ε ∈ Hom(SpaK∞,Spa Qcycl,[

p )/Z×p which is G-invariant. Conversely, if we are

given such data, the class ε determines a characteristic 0 untilt K]
∞ of K∞

together with a continuous action of G; then K] := (K]
∞)G is a characteristic 0

untilt of K.
It may happen that two data of the form (K∞, ε) give rise to the same untilt.

The proper way to sort this out is in the language of sheaves on the pro-étale
site, in which SpaK∞ → SpaK is considered a covering.

3.3 The pro-étale topology

The extension of fields K∞/K appearing in the previous section was the com-
pletion of the union of a tower of finite separable (that is, étale) extensions of
K. Such an extension K∞/K is said to be pro-étale. The definition works in
families as follows.
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Definition 3.3.1. A morphism f : X → Y of perfectoid spaces is pro-étale if
locally on X it is of the form Spa(A∞, A

+
∞) → Spa(A,A+), where A and A∞

are perfectoid rings, and

(A∞, A
+
∞) =

[
lim−→(Ai, A

+
i )
]∧

is a filtered colimit of pairs (Ai, A
+
i ), such that Spa(Ai, A

+
i ) → Spa(A,A+) is

étale.

(The notion of an étale morphism between analytic affinoid adic spaces ap-
pears in [Sch12, Definition 7.1].)

Example 3.3.2. Let K be a perfectoid field, and let S be a profinite set; we
have the perfectoid space S as in Example 3.1.5. Then S → SpaK is pro-étale.
If K = C is algebraically closed and X → SpaC is pro-étale, then X = S for a
locally profinite set S.

Example 3.3.3. Somewhat counterintuitively, the inclusion of a Zariski-closed
subset is pro-étale. For instance, let K be a perfectoid field, let $ be a pseudo-
uniformizer of K, and let Y = SpaK〈T 1/p∞〉. For n = 1, 2, . . . , let Yn ⊂
Y be the rational subset {|T | ≤ |$|n}. Then “evaluation at 0” induces an

isomorphism
[
lim−→OY (Yn)

]∧
→ K, so that the inclusion-at-0 map SpaK → Y

is pro-étale.

Definition 3.3.4. Consider the category Pfd of perfectoid spaces of characteris-
tic p. We endow this with the structure of a site by declaring that a collection of
morphisms {fi : Xi → X} is a covering (a pro-étale cover) if the fi are pro-étale,
and if for all quasi-compact open U ⊂ X, there exists a finite subset IU ⊂ I,
and a quasi-compact open Ui ⊂ Xi for i ∈ IU , such that U = ∪i∈IU fi(Ui).

If K is eitehr a discrete perfect field (such as Fp) or a perfectoid field of
characteristic p, we write PfdK for the category of perfectoid spaces lying over
SpaK, endowed with the topology obtained by restriction from Pfd.

Remark 3.3.5. The finiteness condition in Definition 3.3.4 excludes certain
“pointwise” morphisms from being pro-étale covers. For instance if Y is the
perfectoid unit disc, we can consider the inclusion fx : Spa(Kx,K

+
x ) → Y for

each point x ∈ |Y |; this is pro-étale by similar reasoning as in Example 3.3.3,
but we don’t want {fx}x∈|Y | to be a pro-étale covering.

Remark 3.3.6. The notions of a pro-étale morphism of schemes and of a pro-
étale site appear in [BS15], where they were used to define a pro-étale funda-
mental group of a scheme, and also to give the “morally correct” definition of
the `-adic cohomology group Hi(X,Q`) for a scheme X.

It now makes sense to talk about a sheaf on Pfd: this is a presheaf on Pfd
(that is, a contravariant set-valued functor) which satisfies the sheaf axioms with
respect to the pro-étale topology. If X is a perfectoid space of characteristic p,
we have the representable presheaf hX defined by hX(Y ) = Hom(Y,X).
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Proposition 3.3.7 ([SW, Proposition 8.2.7]). The presheaf hX is a sheaf.

If F is a sheaf on Pfd, and if X is an object of Pfd, then a morphism hX → F
is the same thing as a section of F(X). Note that the functor X 7→ hX exhibits
Pfd as a full subcategory of the category of sheaves on Pfd.

Definition 3.3.8.

1. A morphism F → G of sheaves on Pfd is pro-étale if for all perfectoid
spaces X and maps hX → G, the pullback hX ×G F is representable
by a perfectoid space Y , and the morphism Y → X (corresponding to
hY = hX ×G F → hX) is pro-étale.

2. Let F be a sheaf on Pfd. A pro-étale equivalence relation is a monomor-
phism of sheaves R ↪→ F × F , such that each projection R → F is
pro-étale, and such that for all objects S of Pfd, the image of the map
R(S)→ F(S)×F(S) is an equivalence relation on F(S).

3. A diamond is a sheaf F on Pfd which is the quotient of a perfectoid space
by a pro-étale equivalence relation. That is, there exists a perfectoid space
X and a pro-étale equivalence relation R → hX × hX such that

R⇒ hX → F

is a coequalizer diagram in the category of sheaves on Pfd.

4. If X is a perfectoid space (of whatever characteristic), let X♦ be the
representable sheaf hX[ ; this is a diamond. In the case X = Spa(A,A+)
is affinoid perfectoid, we also write Spd(A,A+) for X♦.

5. A diamond X is partially proper if it satisfies the criterion appearing in
Definition 1.9.2: for a perfectoid Huber pair (R,R+), we have X(R,R◦)

∼→
X(R,R+) only depends on R. If X is partially proper we write X(R) =
X(R,R◦).

Remark 3.3.9. The definition of diamonds given above is meant to mimic
the notion of an algebraic space, which is the quotient of a scheme by an étale
equivalence relation. The category of algebraic spaces is a mild generalization
of the category of schemes. Some algebraic spaces arise as quotients of schemes
by finite groups. Suppose that X is a scheme and G is a finite group acting on
X. Assume that the action is free in the sense that for all nontrivial g ∈ G and
all x ∈ X fixed by g, the action of g on the residue field of x is nontrivial. Then
the quotient X/G is an algebraic space [Sta14, Tag 02Z2]; it is the quotient
of X by the étale equivalence relation G × X → X × X, (g, x) 7→ (x, g(x)).
(The freeness condition is necessary for this morphism to be a monomorphism.)
Algebraic spaces are not to be confused with the larger category of algebraic
stacks, which include stacky quotients [X/G] for arbitrary actions of G on X.

32

http://stacks.math.columbia.edu/tag/02Z2


3.4 The diamond SpdQp

Recall that we seek an object like “(Spa Qcycl,[
p )/Z×p ” which parametrizes char-

acteristic 0 untilts of a perfectoid space of characteristic p. Now that we have
the category of diamonds, we may make the following ad hoc definition.

Definition 3.4.1. We define Spd Qp = (Spd Qcycl,[
p )/Z×p . That is, Spd Qp is

the coequalizer of
Z×p × Spd Qcycl

p ⇒ Spd Qcycl
p , (3.4.1)

where one map is the projection and the other is the action.

Thus Spd Qp is the sheafification of the presheaf on Pfd which assigns to an
object S the set Hom(S,Spa Qcycl,[

p )/Z×p .

Lemma 3.4.2. Spd Qp is a partially proper diamond.

Proof. Each of the maps Z×p × Spd Qcycl
p → Spd Qcycl

p is pro-étale (see Ex-

ample 3.3.2). One must show that Z×p × Spd Qcycl
p → Spd Qcycl

p × Spd Qcycl
p

is a monomorphism, which ultimately boils down to the fact that the map
Z×p → Aut Qcycl,[

p is injective. From there it is formal that (3.4.1) is a pro-étale
equivalence relation, and thus that Spd Qp is a diamond. The partial properness
of Spd Qp follows from that of Spa Qcycl,[

p .

If S is an object of Pfd, then to give an element of (Spd Qp)(S) is to give a

pro-étale cover S̃ → S and an element of the set Hom(S̃,Spa Qcycl,[
p )/Z×p which

comes equipped with a descent datum along S̃ → S. In the case S = SpaK for
a perfectoid field K/Fp, one way to do this would be to give a perfectoid field

K̃/K, equal to the completion of a Galois extension of K with group G, and

an element of Homcont(Q
cycl,[
p , K̃)/Z×p which is G-invariant. We have already

seen that such data gives an untilt of K. More generally, we have the following
theorem.

Theorem 3.4.3 ([SW, Theorem 3.4.5]). Let X be a perfectoid space of char-
acteristic p. Then the set of isomorphism classes of untilts of X to character-
istic 0 is naturally in bijection with (Spd Qp)(X). In other words, there is an
equivalence of categories between perfectoid spaces over Qp, and the category
of perfectoid spaces X of characteristic p together with a “structure morphism”
X♦ → Spd Qp.

3.5 The functor X 7→ X♦

The construction of Spd Qp from Spa Qp is a special case of a general phe-
nomenon.

Definition 3.5.1. Let X be an analytic adic space on which p is topologically
nilpotent (that is, X is fibered over Spa Zp). Let X♦ be the functor on Pfd
which sends an object S to the set of isomorphism classes of pairs (S] → X, ι),
where S] is a perfectoid space and ι : S][

∼→ S is an isomorphism.
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Thus X♦ classifies “untilts to X”. If X itself is a perfectoid space and S
is a test object in Perf, then the tilting equivalence in Theorem 3.1.6(3) shows
that morphisms S 7→ X[ are in bijection with untilts S] → X. Thus X♦ agrees
with the notation introduced in Definition 3.3.8, namely X♦ = hX[ . Finally,
Theorem 3.4.3 shows that Spd Qp = (Spa Qp)

♦.
If X = Spa(R,R+) is affinoid, we may write Spd(R,R+) (or just SpdR, if

R+ = R◦) to mean X♦.

Theorem 3.5.2 ([SW, Theorem 10.1.3]). The functor X♦ is a diamond.

The idea behind this, which appears in [Fal02] and [Col02], is that if X =
SpaR for a Tate Huber Zp-algebra R, then there exists a tower of finite étale

R-algebras Ri, such that R̃ = [lim−→Ri]
∧ is a perfectoid ring. Let X̃ = Spa R̃;

then
X̃♦ ×X♦ X̃♦ ⇒ X̃♦ → X♦

presents X♦ as a quotient of a perfectoid space by a pro-étale equivalence rela-
tion.

Example 3.5.3. Let K be a perfectoid field of characteristic 0, and let R =
K〈T±1〉. Then R̃ = K〈T±1/p∞〉 is pro-étale over R. If K contains all pth power

roots of 1, then R̃/R is even a Zp-torsor.

Example 3.5.4. Let K be a perfectoid field of characteristic 0, and let $ be a
pseudo-uniformizer which divides p in K◦. Let R = K〈T 〉. This time, adjoining
pth roots of T produces ramification at the origin in SpaR (and everywhere if
K has characteristic p!), so that K〈T 1/p〉 will not be finite étale over R. Instead
one can adjoin a root of an Artin–Schreier polynomial, such as Up −$U = T ,
to produce a finite étale R-algebra R1 for which T is a pth power in R◦1/$.

Iteration of this process produces the desired R̃.

Thus we have a well-defined functor X → X♦ from analytic adic spaces over
Spa Zp to diamonds. One might wonder whether this functor is fully faithful,
which would allow us to view analytic adic spaces over Zp as a subcategory of
the category of diamonnds. This cannot be true as stated, since Spa Qcycl

p and

Spa Qcycl,[
p are non-isomorphic adic spaces, while (Spd Qcycl

p )♦ ∼= (Spd Qcycl,[
p )♦.

But if we fix a nonarchimedean scalar field K, we may instead consider the
functor X 7→ X♦ from analytic adic spaces over SpaK to diamonds over SpdK.
This also fails to be fully faithful, as shown by the following example.

Example 3.5.5. Let X be the cuspidal cubic y2 = x3, considered as an adic
space over Qp. Let X ′ → X be the usual desingularization of X. That is,
X ′ is the affine line in one variable t, and X ′ → X is t 7→ (t2, t3). We claim
that (X ′)♦ → X♦ is an isomorphism. This is equivalent to the claim that
X ′(R) → X(R) is a bijection for every perfectoid Qp-algebra R. We leave
injectivity as an exercise to the reader (hint: R is reduced). Surjectivity is a
little subtle; we refer to the reader to [KL, Theorem 3.7.4] for details.
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A ring is R seminormal t 7→ (t2, t3) is a bijection from R onto the set of pairs
(x, y) ∈ R2 satisfying y2 = x3. A rigid-analytic space X over a nonarchimedean
field K is seminormal if locally it is Spa(A,A+), where A is a seminormal
ring. The following theorem states that Example 3.5.5 is essentially the only
obstruction to X 7→ X♦ being fully faithful.

Theorem 3.5.6 ([SW, Proposition 10.2.4]). For a nonarchimedean field K of
characteristic 0, the functor X 7→ X♦ from seminormal rigid-analytic spaces
over K onto diamonds over SpdK is fully faithful.

3.6 A diamond version of the Fargues-Fontaine curve

Let C be an algebraically closed perfectoid field of characteristic p > 0, and let
$ be a pseudo-uniformizer of C. Recall the adic space

YC = SpaW (C◦)\ {|p[$]| = 0} .

Since YC is a analytic adic space over Spa Qp, Theorem 3.5.2 indicates that Y♦C
makes sense and is a diamond.

Proposition 3.6.1 (The diamond formula). Y♦C ∼= SpdC × Spd Qp

Proof. (Sketch.) The isomorphism says that for a perfectoid ring R in charar-
acteristic p, the following categories are equivalent:

1. Pairs consisting of an untilt R]/Qp of R and a continuous homomorphism
C → R, and

2. Pairs consisting of an untilt R] of R and a morphism SpaR] → YC (whose
existence means that R]/Qp).

(Both sides are partially proper, so there is no need to discuss rings of integral
elements.) We now describe the equivalence assuming an untilt R]/Qp: A
continuous homomorphism C → R induces a homomorphism θC : W (C◦)→ R],
in which the images of p and [$] are invertible; then θC induces a morphism
SpaR] → YC . Conversely if SpaR] → YC is given, we get a homomorphism
W (C◦) → R]◦, in which the images of p and [$] are invertible in R]. This
induces C◦ → R]◦/p. Take the inverse limit under Frobenius to get C◦ → R◦,
and then invert $ to get C → R.

As for the adic Fargues–Fontaine curve XC , we have the diamond formula

X♦C ∼= (SpdC × Spd Qp)/(φ× id),

where φ is the Frobenius automorphism of C. Recall from Theorem 2.7.3 (or
rather the adic version of this theorem) that the étale fundamental group of XC
is Gal(Qp/Qp). The notion of an étale morphism exists for diamonds, and for

an analytic adic space Y , there is an equivalence of sites Yét
∼→ Y ♦ét , via the

diamond functor. Therefore:

π1((SpaC × Spd Qp)/(φ× id)) ∼= Gal(Qp/Qp). (3.6.1)
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Scholze observed that this formula resembles a theorem of Drinfeld [Dri80].
Suppose U and V are two algebraic curves (not necessarily projective) over a
common algebraically closed field of characteristic p. The Künneth formula
π1(U × V ) ∼= π1(U) × π1(V ) fails (the left side is much larger), but it can be
salvaged by means of a “partial Frobenius”. There is a group π1((U × V )/(φ×
id)) classifying finite étale covers of U × V equipped with an automorphism
lying over φ × id. Drinfeld’s theorem is that π1((U × V )/(φ × id)) ∼= π1(U) ×
π1(V ). The goal of [Dri80] (and its successor [Laf02]) was to establish the
Langlands correspondence for GLn over a function field, using moduli spaces
of shtukas. Scholze’s goal as laid out in [SW] is to define a moduli space of
mixed-characteristic local shtukas to establish a local Langlands correspondence
for p-adic groups.

There are yet other versions of the diamond formula. Let H/C◦ be the

multiplicative formal group. We have seen that the universal cover H̃ is a formal
Qp-vector space, whose adic generic fiber H̃C is a Qp-vector space object in the

category of perfectoid spaces. The underlying perfectoid space of H̃C is the
perfectoid open unit disc. Let H̃∗C = H̃C\ {0}. Then H̃∗C admits an action of
Q×p .

Proposition 3.6.2 ([Wei17]). There is an isomorphism of diamonds

H̃∗♦C /Q×p
∼= (SpdC × Spd Qp)/(id× φ).

The étale fundamental group of H̃∗♦C /Q×p is isomorphic to Gal(Qp/Qp).

Proof. By Lemma 3.2.2, H̃∗C is isomorphic to SpaC×Spa Qcycl,[
p , where the Z×p

action on H̃∗C becomes the Galois action on Spa Qcycl,[
p . Therefore H̃∗♦C /Z×p is

isomorphic to SpdC× (Spd Qcycl,[
p /Z×p ) ∼= SpdC×Spd Qp. One can also check

that the action of p on H̃∗C corresponds to the action of Frobenius on Spa Qcycl,[
p ,

which gives the claimed isomorphism.
The statement about the étale fundamental group looks like (3.6.1), but the

partial Frobenius is on the wrong side. No matter: the composition of two
partial Frobenii is the absolute Frobenius, which is an equivalence on the étale
site of any diamond.

Remark 3.6.3. There is a generalization of the above proposition which con-
cerns a finite extension E/Qp. One has to replace H with the Lubin-Tate

formal OE-module HE . Then the diamond ZE = H̃∗♦E,C/E
× classifies untilts of

a perfectoid C-algebra to a perfectoid E-algebra, up to Frobenius.

Remark 3.6.4. The diamond (SpdC × Spd Qp)/(id × φ) is called the mirror
curve by Fargues, who identifies it as the moduli space of divisors of degree 1
on XC .
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4 Banach-Colmez spaces

4.1 Definition and first examples

So far we have considered objects belonging to a progression of categories: rigid
spaces over a nonarchimedean field of residue characteristic p, analytic adic
spaces over Spa Zp, perfectoid spaces, and finally diamonds, which (in the lim-
ited sense of Theorem 3.5.6) generalize all three. This lecture will introduce some
examples of diamonds which carry the structure of Qp-vector spaces. Through-
out, we fix an algebraically closed perfectoid field C/Qp with residue field k.

Example 4.1.1. The following are two examples of sheaves of Qp-vector spaces
on PfdC .

1. If V is a finite-dimensional Qp-vector space, we have the constant sheaf V .
If (R,R+) is a perfectoid Huber pair over (C,C◦), then V (R,R+) is the
Qp-vector space of continuous maps |Spa(R,R+)| → V . If Spa(R,R+) is
connected, then V (R,R+) = V .

2. The additive group Ga may be considered as a sheaf of Qp-vector spaces
on PfdC , by Ga(R,R+) = R. For a finite-dimensional C-vector space W ,
the sheaf W ⊗C Ga is (R,R+) 7→W ⊗C R.

Both sorts of examples are diamonds arising from analytic adic spaces over C.

Definition 4.1.2. The category of Banach-Colmez spaces over C is the smallest
abelian subcategory of the category of sheaves of Qp-vector spaces on PfdC
which contains the objects V and W ⊗Qp

Ga from Example 4.1.1 and which is
closed under extensions.

An equivalent category was introduced by Colmez [Col02] without reference
to perfectoid spaces; the definition above appears in [Bra], where it shown that
the two definitions are equivalent. The “Banach” half of the name refers to
Colmez’ definition, in which the objects are functors taking values in the cate-
gory of Qp-Banach spaces.

Example 4.1.3. Let H0 be a p-divisible group over k, and let H be a lift of
H0⊗k C◦/p to C◦. We have seen that the universal cover H̃ = lim←−pH does not

depend on the choice of lift H, and that the generic fiber H̃C is a Qp-vector
space object in the category of perfectoid spaces over C. The logarithm map
on H induces an exact sequence of sheaves of Qp-vector spaces on PfdC , as in
(2.7.1):

0→ V H → H̃C → LieH ⊗C◦ Ga → 0.

One has to check exactness on the right. This is a matter of showing that,
for any perfectoid C-algebra R and any v ∈ LieH ⊗C◦ R, that there exists a
pro-étale R′/R and a sequence (x0, x1, · · · ) ∈ H̃(R◦) with logH(x0) = v. After
replacing v with pnv for n � 0, we may assume that expH(v) converges to
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x0 ∈ H(R◦). The pro-étale extension R′ is then obtained by adjoining all pth
power division points of x0 to R.

Since H̃C is an extension of (LieH)[1/p]⊗CGa by V H, it is a Banach-Colmez
space, which happens to be representable by a perfectoid space.

In (2.7) we saw a connection between H̃C and vector bundes on the Fargues-
Fontaine curve XC[ . Let D(H) be the (contravariant) Dieudonné module of
H, so that D(H) is a free finite-rank W (k)-module equipped with actions of
Frobenius and Verschiebung. Then N := HomW (k)(D(H),W (k)[1/p]) is an
isocrystal, all of whose slopes lie in the range [0, 1]. Let E(N) be the associated
vector bundle. For a perfectoid C-algebra R, we have the relative Fargues–
Fontaine curve XR[ constructed in (3.2), which lies over XC[ .

Proposition 4.1.4. Let R be a perfectoid C-algebra. There is an isomorphism
H̃(R◦)

∼→ H0(XR[ , E(N)).

Proof. (Sketch.) The left-hand side is H̃(R◦) ∼= H̃(R[◦) and right-hand side
is (BR[ ⊗W (k) N)φ=1. (Thus both sides only depend on the tilt R◦.) R[◦ is
a perfect ring; by [SW13, Theorem 4.1.4], the covariant crystalline Dieudonné
module functor on p-divisible groups over R[◦ up to isogeny is fully faithful.
Applied to morphisms (Qp/Zp)R[◦ → HR[◦ , that result gives an isomorphism

H̃(R[◦)
∼→ (Bcris(R

[◦) ⊗W (k) N)φ=1, where Bcris(R
[◦) is the crystalline period

ring. A hint as to why (BR[ ⊗W (k) N)φ=1 ∼= (Bcris(R
[◦)⊗W (k) N)φ=1 is [FF11,

Corollaire 1.10.13], although strictly speaking that result only applies to the
case that R is a field.

Example 4.1.5. Let C ′/Qp be an untilt of C[, not necessarily equal to C itself.
We define a sheaf G′a on PfdC by sending a perfectoid C-algebra R to the untilt
of R[ over C ′. That is, G′a(R) = W (R[) ⊗W (C[◦) C

′. We claim that G′a is
a Banach-Colmez space. To see this, let H be the formal multiplicative group
over C◦. Theorem 2.5.1 produces two nonzero elements t, t′ ∈ H̃(C[◦) ∼= H̃(C◦),
well-defined up to multiplication by Q×p , corresponding to the untilts C and C ′

of C[, respectively. There are now two intersecting exact sequences of sheaves
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of Qp-vector spaces on PfdC :

0

��
Q
p
t′

��
0 // Q

p
t // H̃ //

��

Ga
// 0.

G′a

��
0

Thus G′a is the quotient of a Banach–Colmez space, and so must be one itself.

4.2 Banach-Colmez spaces of slope > 1

Now suppose N is a general isocrystal over k, which doesn’t necessarily arise
from a p-divisible group. We may consider the functor H0(E(N)) on PfdC ,
which sends a perfectoid C-algebra R to the Qp-vector space H0(XR[ , E(N)).
It suffices to consider the case E(N) = OX(λ) for λ ∈ Q, because a general E(N)
is isomorphic to a direct sum of these. If λ < 0 then H0(X,OX(λ)) = 0, and

if λ ∈ [0, 1], then Proposition 4.1.4 shows that H0(OX(λ)) ∼= H̃λ is an absolute
perfectoid space.

What if λ > 1? For instance, if λ = 2, then H0(XR[ ,OX(2)) = Bφ=p2

R[ . For

brevity’s sake, let Bφ=p2 = H0(OX(2)). Let C ′ be an untilt of C[ which is not
Frobenius-equivalent to C. As in Example 4.1.5, the two untilts C and C ′ cor-
respond to Qp-linearly independent elements t, t′ ∈ Bφ=p

C[
∼= H0(XC[ ,OX(1)).

Proposition 4.2.1. There is an exact sequence of sheaves of Qp-vector spaces
on PfdC :

0 // Q
p
// Bφ=p ×Bφ=p // Bφ=p2 // 0

t � // (t, t′)

(x, x′) � // xt′ − x′t

Proof. First we check that the map Bφ=p×Bφ=p → Bφ=p2 is surjective. Let R

be a perfectoid C-algebra, and let s ∈ Bφ=p2

R[ . Let R′ be the untilt of R[ over
C ′. We have two ring homomorphisms θ : BR[ → R and θ′ : BR[ → R′, such
that ker θ∩Bφ=p

R[ = Qpt and ker θ′∩Bφ=p
R[ = Qpt

′. Thus θ(t′) and θ′(t) are both

nonzero. We have the elements θ(t′)−1θ(s) ∈ R and θ′(t)−1θ′(s) ∈ R′. After
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replacing R with a pro-étale extension, we can find elements x, x′ ∈ Bφ=p
R[ such

that θ(x) = θ(t′)−1θ(s) and θ′(x′) = −θ′(t)−1θ′(s). Then the element

α = xt′ − x′t− s ∈ Bφ=p2

R′

has the property that θ(α) = 0 and θ′(α) = 0. This implies that α = att′ for
some a ∈ H0(XR[ ,OX) = Q

p
(R); this shows that s = (x− at)t′−x′t lies in the

image of Bφ=p ×Bφ=p as required.

As a corollary, we find that Bφ=p2 is a Banach-Colmez space, and also a
diamond. Indeed, Proposition 4.2.1 gives a presentation of Bφ=p2 as a quotient
of a perfectoid space by a pro-étale equivalence relation. More generally, if N is
an isocrystal over k, then H0(E(N)) is a Banach-Colmez space and a diamond.

4.3 The de Rham period ring

We begin with a definition from p-adic Hodge theory.

Definition 4.3.1. Let R be a perfectoid ring. The de Rham period ring B+
dR(R)

is the completion ofW (R[◦)[1/p] with respect to the kernel of θR : W (R[◦)[1/p]→
R.

If R = C is an algebraically closed perfectoid field, then B+
dR(C) is a discrete

valuation ring with uniformizer ξC , residue field C and fraction field BdR(C).
These objects were constructed by Fontaine. They appear in the context of p-
adic p-adic Galois representations, particularly in the comparison isomorphism
linking étale and de Rham cohomology of a variety over a p-adic field [Fal89].
They also appear in the study of the Fargues-Fontaine curve: the untilt C of
C[ determines a closed point∞ ∈ XC[ , and B+

dR(C) is the completed local ring

ÔX
C[ ,∞.

Definition 4.3.2. For n ≥ 1, let B+
dR/Filn be the sheaf on PfdC which assigns

to (R,R+) the Qp-vector space B+
dR(R)/(ker θR)n.

Theorem 4.3.3. B+
dR/Filn is a Banach–Colmez space and a diamond.

Note that B+
dR/Fil1 = Ga, because for a perfectoid C-algebra R, we have

BdR(R)+/(ker θR) = R.

Proof. We sketch the proof for BdR/Fil2; the general case works by induction.
Consider the complex of sheaves of Qp-vector spaces on PfdC :

0→ Fil1 /Fil2 → B+
dR/Fil2 → B+

dR/Fil1 → 0. (4.3.1)

We already observed that B+
dR/Fil1 = Ga. As for Fil1 /Fil2, we claim that

it is Ga(1) = Ga ⊗Qp Qp(1). We construct an isomorphism Fil1 /Fil2 → Ga

over SpdC. Form the element t as in (2.5.1), and consider it as an element
of B+

dR(C). Then t generates the kernel of B+
dR(R) → R for any perfectoid
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C-algebra R. This shows that Fil1 /Fil2 ∼= Ga, and therefore that B+
dR/Fil2 is

a Banach-Colmez space.
Given a perfectoid C-algebra R, a section of Fil1 /Fil2 over R consists of a

pro-étale cover Spa R̃ → SpaR and an element α ∈ tBdR(R̃)+, together with

a descent datum through Spa R̃ → SpaR for the image of α modulo t2. Our
morphism sends this section to θR̃(α/t), which (because of the descent datum)
lies in R. (We leave it to the reader to construct the morphism in the opposite
direction.) Note that Gal(Qcycl

p /Qp) acts on t via the cyclotomic character; this

is what we need to descend the morphism through Qcycl
p /Qp.

Now we claim that the complex in (4.3.1) locally splits. Let H be the formal

multiplicative group over C, and let H̃C be the generic fiber of its universal
cover. Then H̃C is a perfectoid space, and the logarithm map H̃C → Ga is
a pro-étale cover. Define a morphism H̃C → B+

dR by (x0, x1, . . . ) 7→ log[(xi)].
Then the following diagram commutes:

H̃C

�� ##
0 // Ga

// B+
dR/Fil2 // Ga

// 0.

We can now give a presentation of B+
dR/Fil2: it is the quotient of Ga × H̃C by

the pro-étale equivalence relation of “having the same image in B+
dR/Fil2”.

In general, B+
dR/Fili is a Banach-Colmez space admitting an i-step filtration,

where the quotients are isomorphic to Ga.
As with the Banach-Colmez spaces of the previous section, B+

dR/Filn is the
space of global sections of a (Zariski) sheaf on the Fargues-Fontaine curve XC[ .
The untilt C of C[ determines a closed point ∞ ∈ XC[ . The completion of
XC[ at ∞ is SpecB+

dR(C). Let i∞ : SpecB+
dR(C)→ XC[ be the corresponding

morphism. Then F := i∞(B+
dR/(ker θC)n) is a coherent sheaf on XC[ supported

at∞. Proposition 4.3.3 says that H0(F) (meaning the sheaf R 7→ H0(XR[ ,F))
is a Banach-Colmez space and a diamond.

Our examples show a strong connection between Banach–Colmez spaces and
coherent sheaves on the Fargues–Fontaine curve. Indeed, for any coherent sheaf
F on XC[ , the sheaf R 7→ H0(XR[ ,F) is a Banach-Colmez space. The complete
story is a theorem of Le Bras [Bra], which gives an equivalence between the
category BC(C) of Banach–Colmez spaces relative to C and the core of a certain
t-structure on the derived category of coherent sheaves on XC[ . Every object
of BC(C) is isomorphic to H0(F+)⊕H1(F−), where F+ and F− are coherent
OX

C[
-modules. (An example of type H1(F−) is discussed in Project 5.5.) As

a corollary, BC(C) only depends on the tilt C[. Finally, every Banach-Colmez
space is a diamond.
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4.4 A survey of the diamond landscape

In these lectures we have introduced a hierarchy of nonarchimedean analytic
spaces: rigid spaces, adic spaces, perfectoid spaces, and diamonds. We have
highlighted the role of Qp-vector space objects in each category. In the last
two sections, we studied Qp-vector space diamonds arising as global sections
of sheaves on the Fargues-Fontaine curve (vector bundles and torsion sheaves,
respectively).

Since we presented these objects without much context, you have a right
to wonder about motivation. Why do we care that certain sheaves on Pfd are
diamonds? And why are these particular objects so important?

Fundamentals of diamond geometry. The device of étale cohomology
allows us to apply our intuitions about algebraic topology to schemes. To wit,
if X is a scheme, there is a notion of an étale site Xét, whose objects are
étale morphisms over X; these can be used to define the `-adic cohomology
groups Hi(Xét,Q`). If in addition X is a smooth projective variety over an
algebraically closed field k, and ` is invertible in k, then the Hi(Xét,Q`) have
some nice properties: they are zero outside of the range i = 0, 1, . . . , 2 dimX,
they satisfy Poincaré duality, there is a Lefschetz fixed-point formula one can
apply to endomorphisms of X, and so on.

Underpinning these properties is a framework of results concerning different
kinds of morphisms (finite type, étale, proper, smooth, etc.) and their effects
on étale sheaves. For instance, we have a notion of a smooth morphism of
schemes f : X → Y , which is meant to mimic the same notion for manifolds,
and which can be checked using a Jacobian criterion. The Poincaré duality
theorem mentioned above is a special case of a relative version: there is an
isomorphism f !F ∼= f∗F [2d](d), valid whenever f is a smooth morphism of
relative dimension d, and F is an étale sheaf of (Z/nZ)-modules on Y , where n
is invertible on Y .

Many of these fundamentals are carried over into the world of rigid and
adic spaces in [Hub96]. Huber defines the important classes of morphisms of
adic spaces (finite type, étale, proper, smooth, etc.), and proves theorems (base
change theorems, Poincaré duality) about how they interact with étale coho-
mology.

Perfectoid spaces seem at first glance to be immune to this sort of treatment.
For instance, let K be a perfectoid field, and let D̃ = SpaK〈T 1/p∞〉 be the
perfectoid closed disc from Example 3.1.5. The ring K〈T 1/p∞〉 isn’t finitely
generated over K, nor is it even topologically finitely generated, so already we
run into problems if we wish to think of D̃ as being “finite type” over K. The
situation seems even worse if one tries to define smooth morphisms of perfectoid
spaces using a Jacobian criterion. (If f belongs to A = K〈T 1/p∞〉, then “df/dT”,
näıvely defined, may fail to lie in A, so this is certainly not the right way to
proceed.)

Nonetheless, Scholze [Sch17] has defined a notion of cohomological smooth-
ness for a morphism of diamonds (relative to a prime ` distinct from the residue
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characteristic), which essentially says that relative Poincaré duality holds. In

this sense, D̃ → SpaK is cohomologically smooth, as are the Banach–Colmez
spaces H̃ and B+

dR/Filn (over the base SpdC). Recent work of Fargues-Scholze
[FS] even gives a Jacobian criterion of sorts to determine whether a morphism
of diamonds is cohomologically smooth.

Moduli spaces of mixed-characteristic local shtukas. Let C/Qp be
an algebraically closed perfectoid field with residue field k, and let H0 be a p-
divisible group over k. Recall from the discussion in (2.7) that we have an exact
sequence of Qp-vector spaces

0→ V H(C◦)→ H̃(C◦)→ LieH ⊗ C → 0,

which can be interpreted as an exact sequence of OX
C[

-modules:

0→ OX
C[
⊗Qp

V H → E(H0)→ i∗ LieH ⊗ C → 0,

where E(H0) is the vector bundle corresponding to (the isocrystal corresponding
to) H0, and i is the morphism SpecB+

dR(C)→ XC[ .
Define a (partially proper) sheaf MH0

on PfdC as follows. For a perfectoid
C-algebra R, we defineMH0(R) to be the set of injective morphisms s : OhX

R[
→

E(H0) of OX
R[

-modules, whose cokernel is a sheaf of the form i∗W , where W is
a projective R-module. (We have used the same letter i to denote the morphism
SpecB+

dR(R)→ XR[ .)
Results in [SW13] show that MH0

is a perfectoid space, and that it is iso-
morphic to the moduli space of deformations H of H0 together with a Qp-
basis for V H. The space MH0 admits commuting actions of the groups J =
Aut0H0 (automorphisms up to isogeny; this acts on E(H0)) and GLh(Qp)
(which acts on OhX

R[
). The cohomology groups Hi

c(MH0,Cp
,Q`) admit an ac-

tion of GLh(Qp)×J ×WQp , where WQp is the Weil group. In the case that H0

is basic, the Kottwitz conjectures predict that these cohomology groups realize
Langlands functoriality. In the special case that H0 is connected of dimension
1, the space MH is called a Lubin-Tate space (at infinite level). The Kottwitz
conjectures are known to be true in for Lubin-Tate space [HT01].

The introduction of diamonds allows us to generalize the situation consider-
ably. Fix an integer h ≥ 1 and an isocrystal b of rank h. Write Eb for the cor-
responding vector bunde on XC . Fix an h-tuple of integers µ = (a1, a2, . . . , ah)
with a1 ≥ · · · ≥ ah ≥ 0. Such a µ determines a class of modules over a discrete
valuation ring (A,M), namely those of the form

⊕h
i=1A/M

ai . The set of such
µ forms a partially ordered set.

Definition 4.4.1 (The space of infinite-level local shtukas with one leg [SW]).
Let Mb,µ be the (partially proper) functor on PfdC which assigns to R the set
of exact sequences

0→ OhX
R[
→ Eb,R[ → i∗W → 0,

where W is a B+
dR(R)-module quotient of i∗Eb,R[ which (at every geometric

point of SpaR) is of type ≤ µ.
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One refers to the exact sequence above as a modification of Eb of type ≤ µ
which produces the trivial vector bundle.

When b is an isocrystal with slopes in [0, 1] and µ is minuscule (meaning
ai ≤ 1 for all i), we recover the moduli space MH0

as above, so long as a
certain compatibility is satisfied between b and µ.

The name “shtuka” recalls Drinfeld’s constructions for a smooth projective
curve over a finite field [Dri80]. Drinfeld defined a space of rank 2 shtukas and
studied the cohomology of this space, and in doing so proved the Langlands
conjectures for GL2 over a function field. This was generalized to GLn by L.
Lafforgue [Laf02]. (There is a strong but highly non-obvious analogy between
the two sorts of shtukas.)

Theorem 4.4.2 ([SW]). The sheaf Mb,µ is a diamond.

The idea is that Mb,µ admits a pro-étale morphism to the space of possible
W s, which is a kind of flag variety; one wants to show that this latter space
is a diamond. For this it helps to know that B+

dR/Fili is a diamond, which is
Theorem 4.3.3. (More details are supplied by the lecture notes of Kedlaya in
this series.)

It therefore makes sense to consider the étale cohomology of the Mb,µ, and
to pose generalizations of the Kottwitz conjecture for it. The construction of the
Mb,µ answers a question of Rapoport–Viehmann about the existence of “local
Shimura varieties” [RV14].

A geometric Langlands program for p-adic fields. Let X be a smooth
projective curve over a finite field k, with function field K. The set∏

x∈|X|

GLn(K◦x)\GLn(AK)/GLn(K)

has two interpretations: (1) it classifies the set of isomorphism classes of rank n
vector bundles on X, and (2) functions on this set are automorphic forms on K
of level 1. Now, automorphic forms on K of level 1 which are Hecke eigenforms
are supposed to correspond to n-dimensional Galois representations of K which
are unramified everywhere, which is to say, rank n local systems on X.

The idea behind geometric Langlands is to geometrize the above statement,
along the lines of the function-sheaf correspondence of Grothendieck. The set∏
x∈|X|GLn(K◦x)\GLn(AK)/GLn(K) is the set of k-points of the stack Bunn

which classifies vector bundles of rank n. Instead of considering functions on
this set, we consider Q`-sheaves on Bunn.

The Hecke operators from the usual theory get geometrized as well. The
stack Bunn admits Hecke correspondences indexed by n-tuples µ = (a1, . . . , an),
with a1 ≥ · · · ≥ an. For each such µ, there is a diagram of stacks

Heckeµ
h1

zz

h2

&&
Bunn Bunn×X.
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Here Heckeµ classifies pairs of rank n vector bundles E1 and E2, together with a
modification of E2 at a point P ∈ X which produces E1; the morphisms h1 and
h2 take such a datum to E1 and (E2, P ), respectively. The Hecke operator Hµ
inputs a sheaf on Bunn and outputs a sheaf on Bunn×X. In the case that µ is
minuscule (meaning all ai are 0 or 1), then Hµ(F)) = (h2)!h

∗
1F .

Theorem 4.4.3 ([FGV02]). For every irreducible and everywhere unramified `-
adic representation φ : Gal(Ks/K)→ GLn(Q`), there exists a nonzero perverse
sheaf Fφ on Bunn, which is a Hecke eigensheaf with respect to φ in the following
sense: for all µ, Hµ(F) ∼= F � (rµ ◦φ), where rµ is the algebraic representation
of GLn with highest weight µ.

There is a marvelous suite of conjectures due to Fargues [Far] which replaces
X with the Fargues–Fontaine curve in the above discussion. In this context
we define the stack Bunn as the sheaf on Pfd which assigns to a perfectoid
Fp-algebra R the groupoid of rank n vector bundles on XR.

Theorem 4.4.4 ([FS]). The sheaf Bunn is a smooth Artin stack in the category
of perfectoid spaces: it admits a smooth surjective morphism from a smooth
diamond.

As before, the stack Bunn admits Hecke correspondences. For each µ, there
is a corresponding Hecke operator Hµ which inputs a sheaf on Bunn and outputs
a sheaf on Bunn×Spd Qp. Part of Fargues’ conjecture is the following.

Conjecture 4.4.5. Let φ : WQp
→ GLn(Q`) be an irreducible `-adic represen-

tation. There exists a nonzero perverse sheaf Fφ on Bunn such that for all µ
we have Hµ(Fφ) ∼= Fφ ⊗ (rµ ◦ φ).

There is a connection between the Hecke operators Hµ and spaces of shtukas
Mb,µ, and in fact the full statement Fargues’ conjecture implies the generalized
Kottwitz conjecture for Mb,µ in the case that b is basic.

5 Projects

5.1 Basic examples of adic spaces

1. Classify points in Spa Qp〈T 〉; describe the set-theoretic fibers of Spa Cp〈T 〉 →
Spa Qp〈T 〉.

2. Classify points in SpaW (C◦), where C is an algebraically closed perfectoid
field of characteristic p > 0.

5.2 Perfectoid fields

1. Let K = Q2(21/2∞)∧. Identify K[ with F2((t1/2
∞

)), where t corresponds
to the sequence (2, 21/2, . . . ). Let L = K(

√
−1), so that L/K has degree 2.

Thus L is perfectoid. Identify L[ as a separable extension of F2((t1/p
∞

)).
Repeat for all other quadratic field extensions of K.
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2. Let K be a perfectoid field with residue field k. Show that K[ ∼= k((t1/p
∞

))
if and only if the following criterion holds: K admits no proper perfectoid
subfields with the same residue field and value group.

5.3 Some commutative algebra

1. Let K be a perfectoid field. Describe the group of units in K〈T 1/p∞〉.

2. Let C be an algebraically closed perfectoid field of characteric p, and let
f ∈ C〈T 1/p∞〉 be a non-unit. Let D = {|x| ≤ 1} ⊂ C. Does there always
exist α ∈ D with f(α) = 0? Is the set of zeros of f finite? Profinite?
Which subsets of D are zero sets of such f?

3. Is there a generalization of the preceding exercise in characteristic 0?

4. Continuing this theme, let C be an algebraically closed perfectoid field

of characteristic p, and let f1, . . . , fm ∈ A = C〈T 1/p∞

1 , . . . , T
1/p∞

n 〉 be
elements which do not generate the unit ideal. Does there exist a common
zero of the fi in Dn? (This is something like a perfectoid Nullstellensatz
statement.)

5.4 Closed subsets of adic spaces

For a scheme X, a closed subset T ⊂ X is (rather by definition) Zariski closed: it
is the zero locus of an ideal sheaf in OX . There is a scheme, the reduced induced
subscheme Z, and a closed immersion Z → X whose set-theoretic image is T .
This property is universal: for a reduced scheme Y , a morphism f : Y → X has
f(Y ) ⊂ T (set-theoretically) if and only if f factors as Y → Z → X.

It is quite different with adic spaces. One difference is that closed subsets
are not necessarily Zariski-closed.

1. Consider Qp as a closed subset of the underlying topological space of A1,
considered as an adic space over Qp. Show that Qp is not Zariski closed.

2. Nonetheless, show that there exists a reduced adic space Z and a morphism
Z → A1, which is a monomorphism and has image Qp, and which satisfies
a universal property.

LetH/Fp be a formal p-divisible group of height 2 and dimension 1. Its universal

cover H̃ lifts to a formal Qp-vector space over Z̆p = W (Fp); let H̃Q̆p
be its

generic fiber. Then H̃Q̆p
is a preperfectoid space. Let M(H) be the Dieudonné

module of H; this is a free Z̆p-module of rank 2. There is a quasi-logarithm
map of adic spaces

qlogH : H̃Q̆p
→M(H)⊗Z̆p

Ga
∼= G2

a

which respects the Qp-vector space structure on either side. We describe it as a
natural transformation between functors from PfdQ̆p

to Qp-vector spaces. Let
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R be a perfectoid Q̆p-algebra. We have an isomorphism H̃Q̆p
(R) = H̃(R◦) ∼=

(B(R[) ⊗Z̆p
M(H))φ=1. Then qlogH(R) is the composition of this map with

θR ⊗ 1: B(R[)⊗Z̆p
M(H)→ R⊗Z̆p

M(H).

3. Prove that qlog is a monomorphism.

4. Let Z be the image of qlogH , considered as a subset of the underlying
topological space of G2

a. Show that Z is closed and generalizing.

5. Show that the residue fields of nonzero points of Z are never finite exten-
sions of Q̆p. That is, the image of qlogH contains no “classical points”
other than the origin.

6. Show that if Y is a perfectoid space over Spa Q̆p and f : Y → G2
a has

set-theoretic image contained in Z, then f factors through qlogH .

Thus we have a closed subset of the adic space G2
a which (considered as a

subfunctor on the category of perfectoid spaces) is representable by a preperfec-
toid space. In fact, it is a theorem of Scholze [Sch17] that any closed generalizing
subset of a diamond, when considered as a subfunctor on the category of per-
fectoid spaces, is itself a diamond.

5.5 Computations with Banach-Colmez spaces

Recall our discussion of Banach-Colmez spaces, which are sheaves of Qp-algebras
on the category of perfectoid spaces. There are two projects here. The first has
to do with some “ineffective” Banach-Colmez spaces. Fix an algebraically closed
perfectoid fied C of characteristic 0.

1. We begin with the space H1(OX(−1)), which inputs a perfectoid C-
algebra R and outputs the Qp-vector space H1(XR,OX(−1)). Show that
there is an isomorphism of sheaves of Qp-vector spaces on PfdC :

H1(OX(−1)) ∼= Ga/Qp
.

2. The sheaf H1(OX(−1)) parametrizes extension classes

0→ OX(−1)→ E → OX → 0,

or (after twisting by OX(1)) extension classes

0→ OX → E → OX(1)→ 0.

Show that if this latter extension is nonsplit, then there exists an isomor-
phism E ∼= OX(1/2). Recall that global sections of OX(1/2) are repre-

sentable by a formal scheme H̃, where H/F̄p is a formal p-divisible group
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of dimension 1 and height 2. Let us abbreviate H̃∗C = H̃C\ {0}; this is a
perfectoid space over C. Show that there is an isomorphism

H1(OX(−1))\ {0} ∼= (H̃∗C ×Q
p
(1)∗)/D×,

where D = Aut0H is the nonsplit quaternion algebra over Qp, where
Qp(1)∗ = Qp(1)\ {0}, and where D× acts on Qp(1)∗ through the reduced
norm map.

3. Let Ω = Ga\Qp. Combining the previous two exercises gives an isomor-

phism Ω/Qp
∼= (H̃∗C × Q

p
(1)∗)/D×. This isomorphism means there is

a diamond M carrying an action of Qp × D×, whose quotient by D× is

Ω, and whose quotient by Qp is H̃∗C ×Qp(1)∗. Show that M (with this
action) is isomorphic to the Lubin-Tate tower for GL2(Qp).

4. Is there a similar story for H1(X,OX(λ)) for other negative values of
λ ∈ Q?

The other project is due to David Hansen. Let M → SpdC be the infinite-
level Lubin–Tate tower for GL2(Qp). Then M can be interpreted as the space of
“mixed-characteristic shtukas” of a certain type. To wit, M is the sheafification
of the presheaf which assigns to a perfectoid C-algebra R, the set of exact
sequences of the form

0→ O2
X

R[
→ OX

R[
(1/2)→ i∗W → 0,

where i : SpecBdR(R)→ XR[ is the usual morphism, and W is a rank 1 projec-
tive quotient of i∗OX

R[
(1/2). Then M admits an action of the product group

GL2(Qp)×D×, where D = AutOX
OX(1/2) is the nonsplit quaternion algebra

over Qp.
Here is a different space of shtukas, which we’ll call N : it is the sheafifica-

tion of the presheaf which assigns to a perfectoid C-algebra R the set of exact
sequences of the form

0→ O2
X

R[
→ OX

R[
(1)2 → i∗V → 0,

where this time V is a projective B+
dR(R[)/(ker θR)2-module of rank 1. Then N

admits an action of GL2(Qp)×GL2(Qp).

5. Show that N is a perfectoid space.

6. Show that, in the category of diamonds admitting an action of GL2(Qp)×
GL2(Qp), the sheaf N is isomorphic to the quotient (M ×M)/D×, where
the action of D× is the diagonal one.

7. Are there other isomorphisms of these type, for different spaces of shtukas?
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foundations, Astérisque (2015), no. 371, 239.

[Laf02] Laurent Lafforgue, Chtoucas de Drinfeld et correspondance de Lang-
lands, Invent. Math. 147 (2002), no. 1, 1–241.

[LT65] Jonathan Lubin and John Tate, Formal complex multiplication in local
fields, Ann. of Math. (2) 81 (1965), 380–387.

[Mes72] William Messing, The crystals associated to Barsotti-Tate groups: with
applications to abelian schemes, Lecture Notes in Mathematics, Vol. 264,
Springer-Verlag, Berlin-New York, 1972.

[RV14] Michael Rapoport and Eva Viehmann, Towards a theory of local
Shimura varieties, Münster J. Math. 7 (2014), no. 1, 273–326.

[Sch12] Peter Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci.
116 (2012), 245–313.

[Sch17] , The étale cohomology of diamonds, ARGOS Seminar in Bonn,
2017.

[Sta14] The Stacks Project Authors, Stacks Project, http://stacks.math.

columbia.edu, 2014.

50

http://stacks.math.columbia.edu
http://stacks.math.columbia.edu


[SW] Peter Scholze and Jared Weinstein, Berkeley lectures on p-adic geome-
try, Book manuscript, 2018.

[SW13] , Moduli of p-divisible groups, Cambridge Journal of Mathemat-
ics 1 (2013), no. 2, 145–237.

[Tat67] J. T. Tate, p− divisible groups., Proc. Conf. Local Fields (Driebergen,
1966), Springer, Berlin, 1967, pp. 158–183.

[Wei17] Jared Weinstein, Gal(Qp/Qp) as a geometric fundamental group, Int.
Math. Res. Not. IMRN (2017), no. 10, 2964–2997.

51


	An introduction to adic spaces
	What is a ``space''?
	Rigid-analytic spaces
	A motivation for adic spaces
	Huber rings
	Continuous valuations
	Integral subrings
	The classification of points in the adic unit disc
	The structure presheaf, and the definition of an adic space
	Partially proper adic spaces

	Perfectoid fields
	Tilting
	The tilting equivalence for perfectoid fields
	Untilts of a perfectoid field of characteristic p
	Explicit parametrization of untilts by a formal Qp-vector space
	The schematic Fargues-Fontaine curve
	Universal covers of other p-divisible groups
	Interpretation in terms of vector bundles on X

	Perfectoid spaces and diamonds
	Definitions
	Untilts of perfectoid spaces in characteristic p, and a motivation for diamonds
	The pro-étale topology
	The diamond `39`42`"613A``45`47`"603ASpdQp
	The functor XX
	A diamond version of the Fargues-Fontaine curve

	Banach-Colmez spaces
	Definition and first examples
	Banach-Colmez spaces of slope >1
	The de Rham period ring
	A survey of the diamond landscape

	Projects
	Basic examples of adic spaces
	Perfectoid fields
	Some commutative algebra
	Closed subsets of adic spaces
	Computations with Banach-Colmez spaces


